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ABSTRACT 

An axisymmetric primitive equation tropical cyclone model in the 

sigma coordinate is presented. The parameterization of the convective 

scale vertical transports of heat, moisture and momentum follow the 

theory presented by Arakawa and Schubert. The equations of the theory 

are grouped into three parts: feedback, static control and dynamic 

control. The dynamic control is formulated in terms of a linear pro­

gramming problem which is solved by the simplex method. The space 

differencing schemes used in the model follow those developed by 

Arakawa and are designed such that the discrete analogues of certain 

integral constraints are maintained. 



1.0 INTRODUCTION 

A tropical cyclone generally consists of motions on two widely 

different space and time scales. The large-scale motion is on a space 

scale of hundreds of kilometers and a time scale of days and consists of 

cyclonic inflow in the lower troposphere and anticyclonic outflow in the 

Lipper troposphere. The small-scale motion is on a space scale of 

kilometers and a time scale of tens of minutes and consists of the many 

cumulus and cumulonimbus clouds which are organized by the large-scale 

motion. The cloud field may be organized in such a way as to give rise 

to a heat source which causes amplification of the large-scale disturb­

ance, which in turn amplifies the cloud field. A mathematical theory of 

this positive feedback mechanism was first proposed by Charney and 

[1 i assen (1964) and Ooyama (1964). Both Charney and E1 i assen and Ooyama 

nodeled the large-scale or cyclone scale explicitly but treated the 

small-scale or cumulus scale only implicitly, i.e. by what is now com­

monly referred to as cumulus parameterization. Although Charney and 

Eliassen's and Ooyama's work dealt only with the initial growth of a 

tropical depression. their approach stimulated efforts to numerically 

simUlate the life cycle of tropical cyclones with axisymmetric models 

using the gradient balance assumption (Ogura, 1964; Kuo, 1965; Ooyama, 

1969 a, bi Sundqvist, 1970 a~ b, 1972; Peng and Kuo, 1975), with 

aXisymmetric models using the primitive equations (Yamasaki, 1968 a, b~ c; 

Rosenthal, 1969 a, b, 1970, 1971; Kurihara, 1975), and with fully three 

dimensional models using the primitive equations (Anthes et al., 1971 a, bi 

Anthes, 1972; ~lathur, 1972; Kurihara and Tuleya, 1974; Tuleya and 
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Kurihara, 1975; Madala and Piacsek, 1975). The generally accepted criti­

cisms of all the above works are the methods by which cumulus clouds are 

implicitly incorporated into the models, i.e. the methods by which 

cumulus clouds are parameterized. Recently~ however, considerable 

advance in cumulus parameterization theory has been made by Ooyama (1971) 

and Arakawa and Schubert (1974). The theory of Ooyama (1971) was tested 

in a tropical cyclone model by Rosenthal (1973). The purpose of this 

paper is to present the design of a tropical cyclone model which includes 

the parameterization theory of Arakawa and Schubert (1974). Hark along 

lines similar to ours ;s also being performed by Rosenthal. 
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2.0 GOVERNING EQUATIONS 

2.1 Sigma coordinate 

As a vertical coordinate we shall use the sigma coordinate given 

by Arakawa (1972) as 

(2.1) 

where the top boundary pressure PT ;s a specified constant and the 

surface pressure Ps (or equivalently ~) is a function of the horizontal 

coordinates and time. The upper and lower boundaries are respectively 

a = 0 and a = 1. In the special case where PT = 0, (2.1) reduces to 

the original definition introduced by Phillips (1957). 

2.2 Hydrostatic equation 

With pressure as the vertical coordinate, the hydrostatic equa­

tion is written 

E.! = -CI. op , (2.2) 

where ~ = gz. From (2.1) and (2.2) we can easily show that 

(2.3) 

which is the hydrostatic equation in the a-coordinate. Since (2.3) can 

also be written 

pdxdydz = - ~ dxdyda , (2.4) 

the quantity ~ can be thought of as a "density", i.e. the mass per unit 

IIvolume" of xya space, or the mass of a vertical column with unit 
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horizontal cross section. Although constant in the vertical, ~ may 
9 

vary with the horizontal coordinates and time. 

2.3 Equation of continuity 

In pressure coordinates the equation of continuity is 

v ·w + ~ = 0 (2.5) P \ ap , 

where w is the vertical p velocity *. It can be shown that the del 

operator on a constant pressure surface is related to the del operator 

on a constant sigma surface by 

Using (2.1) and (2.6), (2.5) can be written 

~~ + vcr' ( 1T \V) + ~cr (1T;) = 0 , 

(2.6) 

f,.., '7) \L. 

where cr is the vertical cr velocity ~~. In our tropical cyclone modl=l 

we make use of cylindrical coordinates and of the aXisymmetric assump­

tion. The continuity equation (2.7) can then be written 

(2.8) 

As upper and lower boundary conditions we require that air parti­

cles do not cross the cr = 0 and cr = 1 levels, i.e • 

. 
cr = 0 at cr = 0, 1 . (2.9) 
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Integrating (2.8) over the entire vertical column and using the boun­

dary conditions (2.9), we obtain 

1 
~ = __ 13_ ( 7frudcr 
at rar 1 . 

o 

(2.10) 

Integrating (2.8) from the top of the vertical column to a and using 

the upper boundary condition, we obtain 

[ 
cr J • a7f a I 7fcr :: - cr - + -f 7frudcr at far • 

o 

(2.11) 

Thus, knowing the radial wind component u, (2.10) can be used to com-
a7f • pute at' then (2.11) can be used to diagnose 7fC" at any a level. 

With the assumption of ax; symmetry , the individual time deriva­

tive of an arbitrary scalar quantity $ ;s given by 

~=~+u.£1t+·~ dt at or C" 8cr • (2.12) 

Using the continuity equation (2.8), we obtain the flux form of the 

individual time derivative of an arbitrary scalar quantity $ as 

d$ _ a () a ( ) 8 (. \ 
'If dt - at 7f$ + rar 7fru$ + au 7fcr$) • (2.13) 

2.4 Equations of motion 

The horizontal component of the vector equation of motion in 

pressure coordinates is 

d d\~ + f Ikx w + 1/ P ip = IF , (2.14) 

where d;~ is the horizontal acceleration, flkx w the horizontal 
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coriolis acceleration, Vp~ the horizontal pressure gradient force per 

unit mass, and IF the horizontal frictional force per unit mass. Using 

(2.3) and (2.6) we can rewrite (2.14) as 

~t + f Ikx w + v (j ~ + aaV'IT = IF • 

Equation (2.15) can also be written as 

( " "' r:; , (.. • J."", ) 

where 1;; is the vertical component of the relative vorticity, i.e. 

Ik·vxw. In the special case ofaxisymmetry the relative vorticity is 

given by 

1;; = r~ r (rv). (2.17) 

Using (2.17) we can write the radial component of (2.16) as 

~ + ; ~ - [f + _a_ (rv)] v at aa rar 

(2.18) 

and the tangential component as 

~ + ; ~ + [f + _a_ (rv)] u = F,j, • at da rar ~ 
(2.19) 

Equations (2.18) and (2.19) can be combined with the continuity equa­

tion (2.8) to yield the flux form of the radial momentum equatiiol1 

~t ('ITu) + r~r (nruu) + ~a ('IT;u) - (f + ~hv 

( a~ an) - F + 'IT - + aa - - 'IT dr ar r ' 
(2.20) 



7 

and the flux form of the tangential momentum equation 

(2.21) 

2.5 Equation of state 

The equation of state is given by 

RT 
a. = p , (2.22) 

where R is the gas constant for dry air. 

2.6 First law of thermodynamics 

The first law of thermodynamics can be written as 

(2.23) 

or in flux form as 

(2.24) 

Defining 

(2.25) 

and using (2.1), we can rewrite (2.24) as 

(2.26) 
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In cylindrical coordinates and with the axisymmetric assumption, 

(2.26) can be written 

= ,(l. ()) , Q 1fcrat3f T U ar 7T .. 'IT • 

2.7 Water vapor equation 

(2.27) 

If q is the water vapor mixing ratio, C the rate of condensation 

and E the rate of evaporation per unit mass of dry air, the continuity 

equation for water vapor can be written as 

~ = -c + E , 

or in flux form as 

In cylindrical coordinates and with the axisymmetric assumption, 

(2.29) can be written 

~t ('ITq) + r~r (TIruq) + ~cr ('IT~q) = 'IT(-C + E) • 

2.8 Summary of the complete set of equations (continuous form) 

(2.28) 

(2.29) 

(2.30) 

The set .of model variables consists of five prognostic variables 

and five diagnostic variables. The five prognostic variables are TI~ u, 

v, T and q, all of which are functions of the three independent variables 
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(r, a, t) with the exception of ~, which is a function of only (r, t). 

The five diagnostic variables are a, p, a, ~ and a, all of which are 

functions of (r, cr, t). 

The complete set of model equations consists of five prognostic 

equations and five diagnostic equations. The five prognostic equations 

are the vertically integrated continuity equation (2.10), the horizontal 

momentum equations (2.20) and (2.21), the thermodynamic equation (2.27), 

and the water vapor equation (2.30). The five diagnostic equations are 

the continuity equation (2.11), the definition of sigma (2.1), the gas 

law (2.22), the hydrostatic equation (2.3), and the definition of po­

tential temperature (2.25). 

The complete set of equations can be arranged for numerical inte­

gration in the following order. 

(2.31) 

(2.32) 

p = PT + 'ITa (2.33) 

_ RT 
a --p (2.34) 

d~ 
- = -~a 
dO ' 

(2.35) 

(2.36) 
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(2.37) 

(2.38) 

(2.39) 

(2.40) 

Initial conditions are required on the five prognostic variables 

TI, U, v, T and q. The initial conditions are discussed in section 6. 

The procedure followed in a single prognostic cycle is as follows. 

1) Calculate the tendency of TI from (2.31). 
2) Using the tendency of TI just calculated, calculate 

TIro from (2.32). 
3) Using (2.33) and (2.34), calculate the geopotential 

tIl from (2.35). 
4) Calculate the tendencies of u and v from (2.36) and 

(2.37) . 
5) Using (2.38) calculate the tendency of T from (2.39). 
6) Calculate the tendency of q from (2.40). 
7) Return to the first step. 
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3.0 PARAMETERIZATION OF CONVECTIVE SCALE PROCESSES 

In this section we discuss the parameterization of cumulus con­

vection and the parameterization of the surface exchanges of momentum 

and sensible and latent heat. The parameterization of the convective 

scale vertical transports of heat, moisture and momentum follows the 

theory presented by Arakawa and Schubert (1974) and Schubert (1974) 

and is described in 3.1. The parameterization of the surface exchanges 

is accomplished by bulk aerodynalnic methods and is described in 3.2. 

3.1 Cumulus parameterization 

The cumulus parameterization theory describes the mutual inter­

action of a cumulus cloud ensemble with the large-scale environment. 

This mutual interaction is shown schematically in figure 3.1. We have 

conceptually grouped the equations of the theory into the three cate­

gories: feedback, static control, and dynamic control (Schubert, 1974). 

The feedback loop describes how the cumulus scale transport terms and 

source/sink terms modify the large-scale temperature and moisture 

fields and is discussed in section 3.1.1. The static control and dy­

namic control loops describe how the properties of the cloud ensemble 

are controlled by the large-scale fields and are discussed in sections 

3.1.2 and 3.1.3 respectively. The most difficult aspect of the theory 

is the dynamic control, i.e. the solution of the equation for the mass 

flux distribution function. We have solved this equation by using op­

timization theory, in partlcular the simplex method of linear programming. 



LARGE - SCALE 
ENVIRONMENT 

s{p) 

Pa 

FEEDBACK 

cumulus terms in 
prognostic equations 

for s{p), q(p), Pa 

STATIC CONTROL 

sub-ensemble budgets, 
~---I saturation relation, 10---­

vanishing buoyancy at 
detrainment level. 

DYNAMIC CONTROL 

integral equation 

for mB(>.). 

----~-~--

CUMULUS CLOUD 
ENSEMBLE 

.,., (p,~) 

Sc (p,~) 

qc (p,~) 

.e (p,)J 

"o(p) or Po (,,) 

Fig. 3.1. Schematic representation of the mutual interaction of a cumulus cloud 
ensernbl e vii til the 1 arge···sral e env; ronment. 
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From a computational point of view it is convenient to formulate the 

dynamic control in terms of an adjustment process. Application of the 

simplex method to this formulation of the problem results in what we 

have called lithe optimal adjustment method,1I which is discussed in 

3.1.4. Although we have used the word Il adjustment," our method bears 

very little resemblance to the moist convective adjustment methods used 

in many numerical models, including the GFDL and NCAR general circula­

tion models. 

3.1.1 feedback 

Let us consider a horizontal area large enough to contain an en­

semble of clouds but small enough so as to cover only a fraction of a 

large-scale disturbance. ~Je shan refer to the vertical transports 

caused by motions on a scale smaller than this area as convective scale 

transports. 

Let the large-scale environment of the cloud ensemble be divided 

into the subcloud mixed layer, the infinitesimally thin transition layer, 

and the region above (see figure 3.2). In the subcloud mixed layer the 

dry sta.tic energy s, water vapor mixing ratio q, and therefore the moist 

static energy h, are constant with height, having the respective values 

sM' qM' and hMo The top of the subcloud mixed layer PB is usually some­

what below cloud base PC. Below PB convective scale transports are 

accomplished by the turbulence of the mixed layer. This turbulence ;s 

confined below PB by the stable and infinitesimally thin transition 

layer. Across the transition layer there can be discontinuities in 
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Esbensen and Chu (1973). The schematic sub-ensemble has cloud base Pc slightly above 
PB" The iilassflux at p is n(p~A)mB(A)dA~ whi'le the mass flux at PB is ITIB(A)dAo 
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temperature and moisture, and also discontinuities in the convective 

scale fluxes. Above Ps the convective scale transports are accom­

plished by the cloud ensemble, which is spectrally divided into "sub-

ensembles" according to the fractional entrainment rate A, small A 

corresponding to deep clouds and large A corresponding to shallow 

clouds. 

Let us define the convective scale fluxes of dry static energy, 

water vapor, and liquid water as 

f
ADep) 

n (p ,A ) [ s c Cp , A ) - s (p)] mBLA 1 dA 
o 

(3 .la) 

f
AD{P) 

n(p,A) [qC(P,A) - q(p)] mB(A)dA 
o . 

PB>P (3.2a) 

PS~P>PB' (3.2b) 

fO(Pl 
n(p,A)~(P,A) mB(A)dA PB>P (3.3a) 

F~(p) - 0 

0 PS~P>PB • (3.3b) 
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Below Ps the convective scale fluxes of sand q are linear in p 

with the values (Fs)S and (Fq)S at the surface pS and the va1ues (Fs)S 

and (Fq)S just below PBo The convective scale flux of ~ is zero every­

where below PBo 

Above Ps the convective scale fluxes are accomplished by the cloud 

ensemble. Let SC(p,A) be the dry static energy at level p inside sub­

ensemble A and n(p,A)mB(A)dA be the vertical mass flux at level p due to 

sub-ensemble A. Let n(p,A) be the normalized mass flux, having the 

vallue unity at PS. Then mB(A)dA is the sub-ensemble mass flux at PS< 

We shall refer to mB(A) as the mass flux distribution function since it 

gives the distribution of mass flux in A space. The upward flux of dry 

static energy inside sub-ensemble A at level p is n(p,A)sc(p,A)ms(A)dAo 

The downward flux in the environment at level P5 caused by the induced 

subsidence of sUb-ensemble A, is given by n(p,A)s(p)ms{A)dA. Thus, the 

total upward flux at level p due to sub-ensembl? I is n(p,A) [SC(p~f') -

~(p)J mS(A)dA. The total ensemble flux at leve1 ~ is an integral over 

all sub-ensembles which penetrate level p. Sub-ensembles which pene­

trate level p have fractional entrainment rates in the interval c~~~AD(P)~ 

where ~D(P) is the fractional entrainment rate of the sub-ensemble which 

detrains at level p. The convective scale fluxes of water vapor and 

liquid water above PB are analogous to that of dry static energy except 

that there is no vertical flux of liquid water in the environment since 

the environment contains no liquid water. 

Certain combinations of the three basic fluxes given in (3.1) -

(3.3) are useful. Thus, let us define the convective scale fluxes of 

virtual dry static energy, moist static energy~ total water content, and 
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liquid water static energy as 

Fsv(p) ~ Fs(p) + os(p)LFq(p) , 

Fh(P) ~ FS(p) + LFq{p) , 

Fq+~(P) ~ Fq(p) + F~(p) , 

Fs_L~(P) ~ FS(p) - LF~(p) • 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

In (3.4), 0 = 0.608 and s(p) = c T(p)/L. The liquid water static energy p 

(s-L~) is the static energy analog of the liquid water potential temper-

ature introduced by Betts (1973). 

The governing equations for the large-scale environment are de­

rived from the heat and moisture budgets for the region above the mixed 

layer, for the infinitesimally thin transition layer, and for the mixed 

layer. These budgets are 

as _ - - - as a 
-;:;-t - W-IIS - w - + 9 - F L + LR + QR a ap ap s- ~ 

~ = - 0" ollq- w- ~ + g a F R , at \V - ap ap q+~-

liFS_L.Q. 
/';.S 

bF +" q Jt. , 

bq 

aSM =-w ·IlS + g ) ()] ( ) at M M Ps - PB [(Fs S - Fs B + QR M ' 

(3.8) 

(3.9) 

(3.10) 

(3.ll) 

(3.12) 

(3.13) 
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In addition to large-scale advection terms, the heat and moisture budgets 

above the mixed layer (equations (3.8) and (3.9)) contain convective 

scale flux divergence terms and the convective scale liquid water sink 

term R, defined by 

(3.14) 

Since n(p,A)r(p,A)mB(A)dA is the sub-ensemble sink of liquid water, R(p) 

is the total ensemble sink of liquid water. QR is the radiationa1 heat­

ing. The detrainment forms of the heat and moisture budgets above the 

mixed layer were derived by Arakawa and Schubert (1974). The relation 

of (3.8) and (3.9) to the detrainment forms was discussed by Schubert 

(1974). 

Since the transition layer is assumed to be infinitesimally thin, 

the heat and moisture budgets for this layer (equations (3.10) and (3.11)) 

turn out to be conditions on the discontinuities across the layer. In 

(3.10) and (3.11) the symbol delta represents the jump of a quantity 

across the transition layer, e.g., 6S = s(Pa-) - sM and 6Fs_L£ = 

Fs-L~(PB-) - (Fs)B· The left hand side of (3.10) or (3.11) is the large­

scale mas:; flux into the mixed layer, i.e., the large-scale mass flux 

relative to the moving PB surface. Equations (3.10) and (3.11) show that 

discontinuities in the large-scale fluxes of sand q must be balanced by 

discontinuities in the convective scale fluxes of sand q. 

The heat and moisture budget equations for the mixed layer (equa­

tions (3.12) and (3.13) are similar to those above the mixed layer except 

for the absence of vertical advection terms and precipitation terms. 
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(QR) is the vertically averaged radiational heating of the mixed layer. 
M 

The fluxes at PS+ can be written in terms of the surface fluxes 

by considering the turbulent energy balance of the mixed layer. This 

yields 

(3.15) 

where k is an empirical constant \,/ith a value of approximately 0.20. 

DE!fining 

(3.16) 

(3.8) through (3.15) can be reduced to 

as _ - - - as a ";\t - - Woi/s - w - + g - F L + LR + QR D ap ap s .. ~ 
(3.ll) 

N = _ \vovq- - ~ ~ + g .L F - R , at ap ap . q+~ (3.18) 

aqM at = - \V ovq + 9 [(F) + k ~ (F ) ] 
M M Ps - PB q S ~sv sv S 

(3.20) 

(3.21) 

Thus, the temperature and moisture fields above and below PB and the 

pressure at the top of the mixed layer pS can be predicted if we can 

somehow determine Fs_L~' Fq+2
, R, and MB• The cumulus ensemble transport 

tE!rmS Fs-U,' Fq+~' MB and the cumulus ensemble source/sink term R consti .. 

tute the feedback loop shown in figure 3.1. From (3.1), (3.21, C3.3}, 
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(3.6), (3.7), (3.14) and (3.16) we can see that the determination of 

Fs-U,' Fq+Q,' Rand MB is equivalent to the determination of n(p,A), 

Sc(p,A), qc(P,A), Q,(p,A), r(p,A), AO(p) and mB(A). All except mB(A) are 

determined from the static control loop of the theory, which is discussed 

in 3.1.2. The mass flux distribution function mB(A) is determined from 

the dynamic control loop of the theory, which is discussed in 3.1.3. 

3.1.2 static control 

The sUb-ensemble normalized mass flux n(p,AJ, the sub-ensemble 

moist static energy hc(p,A), and the sUb-ensemble total water content 

qc(p,A) + Q,(p,A) are determined from the sub-ensemble mass, moist static 

energy, and total water budget equations. These are 

adp,A) 
djl 

AH (p) ,,( P A '\ P 'I ,'J 

AH(p) 
p 

l .. \ ;::: I ".", . 

n\p,i.)i'i.; . ."; 

d {( [ J} AH (p) -ap n p,A) qc(p,A) + Q,(p,A) - - p n(p,i,)q(p) 

+ H~p) n(p,A)r(p,A) 

(3.22) 

(3.23) 

(3.24) 

where H is the scale height RT/g. Between the top of the mixed iayer 

PB and the condensation level Pc' qC{p,A) is determined from 

(3.25a) 

whi1e above Pc the air inside the clouds is saturated at a temperature 

only slightly different from the environment, allowing us to write 
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(3.25b) 

_ L [~l where Y = c- aTJ . 
p p 

AD(p) ;s given implicitly by 

SvC(p,AD(p)) = sv(p) , (3.26) 

a statement that level p is a level of vanishing buoyancy (in terms of 

virtual dry static energy) for sUb-ensemble AO(p). 

If r(p,A) is regarded as a known function of £(P,A), (3.22), 

(3.23), (3.24), (3.25), and (3.26) constitute a set of five equations 

in the five unknowns n(p,A), SC(p~A)' qC(p,A), i(p,A), and AO{p)l. Thus, 

the sub-ensemble budgets (3.22) through (3.25a), the saturation relation 

(3.25b), and the condition of vanishing buoyancy at the detrainment level 

(3.26) constitute the static control loop as shown in figure 3.1. 

3.1.3 dynamic control 

In order to predict the large-scale fields from (3.17) through 

(3.21) there remains only the problem of determining mB(A). 

Let us define the cloud work function as 

(3.27) 

A(A) is an integral measure of the buoyancy force. It is also a measure 

lEquations (3.22), (3.23), (3.24), and (3.25a) are differential 
equation~ ~,hich are solved from PB upward. The boundary conditions at 
PB are slmply n(PB,A) = 1, hc(p,~ = hM' qC(PB,A) = qM' and i(PB,A) = o. 
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of the efficiency of kinetic energy generation for sUb-ensemble A. 

Since A(A) is actually a property of the large sca1e, its time deriva-

tive can be written in terms of the time derivatives of sM' qM' PBs 

~(p)t and ~(p). Thus, 

JPS j as (p) ah{p) I d 
+ n(p,A) t[- 1 + Aa(p,A)] ~t + Ab(p,),) at ~. (3.28) 

PO(A) 

-
HB is the scale height at PB' a(p,A) and b(p,A) are known weighting 

functions. The terms on the right hand side of (3.28) can be divided in­

to two classes: those "'/hich depend on mB( A) and those which do not. 

Thus, (3.28) can be written 

(3.29) 

where the kernel K(A,A') and the forcing F(A) are known. 

The quasi-equilibrium assumption discussed by Arakawa and Schubert 

(1974) can be stated as an optimization problem as follows 

subject to 
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dA(A) 
dt ~ 0 . (3.30) 

In (3.30) both dS~A) and mB(A) are regarded as unknown, while C(A), 

K(A,A') and F{A) are regarded as known. Since we define the weighting 

function C(A) as negative, and since dS~A) ~ 0, we are attempting to 

minimize a non-negative quantity. 

Equation (3.30) constitutes the dynamic control loop shown in 

figure 3.1. The parameterization theory is nO\'I closed. 

3.1.4 optimal adjustment method 

In a model which is discrete in time it is convenient from the 

computational point of view to formulate the parameterization theory 

in terms of an adjustment process. Thus let us divide into two parts 

the processes which tend to change the large-scale temperature and mois­

ture fields--large-scale terms and convective scale terms. 

(3.31 ) 

- (~) 
- at L.S. 

+ (l§.) 
at Cony. 

{3.32} 

aSM _ (asM) (asM) 
---at - ---at L.S. + at Conv. 

(3.33 ) 
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3qM = (aq~~) + (dqt~) 
at at/L.S. at Cony. 

(3.34) 

(3" 35 'j 

The 1arge-scale terms consist of radiation and large-scale horizontal 

and vertical advection. 

( 3S) - _ \VoVS 
at L.S. -

- as + Q 
w 3p R 

- an 
- w .::...:L tip (3 ,,:)7\ 

• "J ) 

(
3SM) = 

at L.S. 

(3.39) 

(3.40 ) 

The convective scale terms consist of convective flux divergence and 

source/sink terms. 

( dSt ) = 9 ~p Fs_L n + LR 
3 Conv. 0 N 

(~) == 9 3 F R 
at Conv. ap q+g, 

(3.42) 
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(3.43) 

(3.44) 

- = gM _.9..!L (F ) (
3PB) k 
at Conv. B ~sv sv S 

(3.45) 

In our hurricane model the large-scale terms and the convective scale 

terms are computed in separate subroutines which may use different 

time steps. Typically the large-scale terms might be computed every 

0.6 minute, while the convective scale terms are computed every 

2.5 minute. 

Let us say that the atmosphere is stable over the depth 

PO(A) ~ p ~ PB if the cloud work function A(A), given by (3.27), is 

smaller than some critical value. The atmosphere is respectively neu­

tral or unstable according to whether A(A} equals or exceeds the criti­

cal value. 

If the large-scale terms push the atmosphere into an unstable 

state, it is the job of the cumulus subroutine to find a mass flux dis­

tribution function which will adjust the atmosphere back at least to 

(but at the same time as close as possible to) the neutral state subject 

to the constraint that each sub-ensemble mass flux be non-negative. 

This is the discrete analogue of (3.30). 

Suppose we have n cloud types. Let xi be the mass flux of the 

ith cloud type. Let b
i 

be the amount that the ith cloud work function 
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exceeds the neutral value (b. > 0). Cloud type j contributes an amount 
1 

aij per unit mass flux to the reduction of biD We can now write 

a21 xl + a?? x2 + ••. + a.2 , x ~ b2 ~_ n n 

(3..46) states that an adjustment greater than or equal to b. must occur 
1 

for each i and that each sub-ensemble mass flux must be non-negative. 

The ;th inequality in (3.46) can be converted to an equality by 

introducing a surplus variable xn+i' which is the surplus adjustment 

done to the ;th work function. 

a x + a v +0.' + a x - x . il 1 12 A2 in n n+, (3.47) 

Note that xn+i is not a mass flux but that it ~as dimensions of bi , 

Our objective is to minimize some measure of the surplus adjustment. 

If we assume that this measure is linear and gross in character~ we 

can write 

min { 
2n } 
~ c.x. 

i=n+l 1 1 

subject to 
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a 1 xl + a 2 x2 + .•• + a x n n nn n 

-x 2 n+ 

-x 2n 

where the ci are weights. In more compact notation we can write 

min cx 

subject to 

Ax = b 

and 

x ~ 0 • 

(3.48) 

(3.49) 

We now have one minimization objective, n adjustment constraints and 

2n non-negativity constraints. Solution of the problem will yield the 

n unknown sUb-ensemble mass fluxes, the n unknown surplus adjustments, 
2n 

and the value of our objective function I c.x.~ which is a gross 
i=n+1 1 1 

measure of the surplus adjustment. 

The optimization problem (3.49) is easily solved by the simplex 

method of linear programming. 

3.2 Surface flux parameterization 

Surface energy interactions in the model are parameterized by the 

bulk aerodynamic method. The flux of sensible heat at the surface is 

given by (Arakawa, 1972) 

(Fs)S = cppscDi Wsl[TSEA - TsJ ' (3.50) 



the flux of water vapor by 

and the surface stress as 

where the drag coefficient Co is 

C ::: 
D 

1 -

I I 
! (CO) II + l neut 

0.0025 
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given by 

\EA - TS 1 
7.0 . 2 I 

! wsl ...! 

and (CD) ::: min 
neut 0.0010(1 + 0.70 

for TSEA < TS 

for TSEA ). T S 

'3 ..... , 'j 
\ ·~.!.I 

(3.52) 

'3 ~fI\ t .0'1' J 

In (3.50) - (3.54) TS' qs and Ws are respectively the surface air temp­

erature, mixing ratio and horizontal wind, TSEA is the sea surface temp­

erature, and all quantities are expressed in SI units. 



29 

4.0 FINITE DIFFERENCING 

Our fi nite di fferencing schemes fo 11 ow those proposed by Arakawa 

(1972) and Arakawa, Mintz et al. (1974) for the UCLA GeM. Our vertical 

differencing scheme! described in section 4.1, is identical to the UCLA 

scheme while our horizontal differencing scheme, described in section 4.2, 

is somewhat different due to the use of cylindrical coordinates and con­

siderably simpler due to the assumption ofaxisynnnetry. Detailed deri­

vations of the finite difference schemes given here were first done by 

Arakawa (1972). We repeat some of them here for completeness and conven­

ience of the reader. The reader wishing only a summary of the results can 

skip to sections 4.3 and 4.4, where we summarize the discrete form of the 

adiabatic frictionless part of the model. 

4.1 Vertica1 differendng 

4.1.1 vertical indexing 

Let us denote by the integers k (k = 1, 2, ..• K) those 1 eve 1 s at 

which the prognostic variables u, v, T and q are carried (see figure 4.1) 

and by the half integers k t],.2 (I< = 0,1, 2, ••• K) those levels where cr 

is carried. The upper boundary of the model corresponds to the half 

integer level ~ and the lower boundary to the half integer level K + ~. 

The integer level k is representative of a layer of thickness 

IJ..crk = Ok-I.! - Ok 1 s • "2 -~ 
(4.1) 



k 

~2 
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III I / / I I I ! I / I / / / ! I /0- = 0 

I - W, T, q 
I V2 ---------------- & 

2 - W, T,q 

k-I - - - - - - - - - - - - - - ',~,.j' T ~ . ~ , "1 

~~ & 
k - - -- -- - \\/, T, q 

k+~2 0-
k+1 - - - - - W, T,(I 

K-I - .....: - - - - - - - - - - - - \\1, T,q 
K-~2 --.----" 0-
'K - - - - - - - - - - - - - --- "\/ -:- C; 

K+Y2/-J 7 71 / I / / / I I I I I I / / 7 &.' :' ~ 

Fig. 4.1. Depiction of the vertical indexing scheme. 
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K 
E AOk = 1 . 
k=l 

ak :: ~(crk+l + ok 1) • '2 -'2 

4.1.2 continuity equation 

The vertically discrete form of (2.8) is given by 

3w + 3 (ru) + 1 (. .) = a . at rar W k ~ak wak+~ - wak_~ 

Summing (4.3) over all k gives the vertically discrete equivalent of 

(2.31) 

(w~)k+~ is then obtained from the vertically discrete equivalent of 

(2.32) 

4.1.3 momentum equations 

We write th.e vertically discrete momentum equations as 

(4.2) 

(4.3) 

(4.4) 

(4.5) 
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(4.6) 

(4. 

The kinetic energy equation is found by multiply·1E's (4.6) by uk and 

(4.7} by vk and addi ng the resul t. It can then be shown that for :r~k+~ 

to remove as much ki neti c energy from 1 ayer k as it adds to 1 ayer 1<.+1!1 we 

must require that 

(4.9) 

4.1.4 first law of thermodynamics 

In addition to the flux form of the thermodynamic equation given b.y' 

{2.39} we have the form 

de _ 1 e Q 
(ff-cT 

P 

The verti cally di screte form of (4.10) can be wri tten 
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(4.11) 

where 

(4.12) 

(4.13) 

Arakawa (1972) has shown that if 

(4.14) 

K 2 
the vertical difference scheme will conserve the area integral of 2: TISk ~crk 

k=1 

under adiabatic conditions. This is the discrete analogue of an important 

integral property of the continuous equation. Multiplying bY(:o)l and 

rearranging allows us to write (4.11) as 

= TI (4.15) 

This is the vertically discrete form of (2.39). 
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4.1. 5 total energy conservation and the hydrostati c equation 

Multiplying (4.6) by uk and (4.7) by vk and adding the result \~ie 

obtain 

<:I [ 1~2(Uk2+Vk2)J + d \ ~u ri {,.2+p2·)·-:I·~! ";\t 'IT ~- -~- /.' 'If, IK "2 "Uk Vip 
() rdf . L . "J . 

(4.16) 

We can also show that 

_ 8 ii 
\P -k 3t 

a~ 
+ 'IT ( RT) u an = nU [_k + ( RT) J1T 1 

a P k k ar k <:Ir a P k 3r J . (l~,~17) 

Adding (4.15), (4.16) and (4.17), multiplying the result by flak' summing 

over all k and assuming Q = F~ = F, = 0, we obtain 
, III 
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This is the total energy equation for adiabatic frictionless flow. As far 

as the vertical differencing scheme is concerned, total energy conservation 

requires 

(4.19) 

and 

Equation (4.19} can be rewritten as 

(4.21) 

while (4.20} can be rewritten as 

_ ~(Pk+l)K (Pk)K] q,k - q,k+l - c Bk+1 -- - - for k = 1,2, ••• K-1. 
. P '2 Po Po 

(4.22) 

Using (4.22) we can rewrite (4.21) as 

(4.23) 

and using (4.12) and (4.14) we can rewrite (4.22) as 

(4.24) 

where we have defined 



36 

o or any value for k = 1 

(4.25) 
for k 2 2 

~ [(P~:l)" 
..., 
I - lJ for k ~ 1<-1 

!\ - (ll. ?!;, 
( It ,-v, 

a for k = K 

Thus! knowing the temperature Tk we can use (4.23) to compute the geopot!2n·· 

tial of the lowermost integer level, then use (4.24) to compute the geopo­

tential at every other integer level. Equations U~.23) and (4.24) 

guarantee, at least as far as the vertical differencing scheme is concerned,. 

that total energy is conserved under adiabatic frictionless motion. 

The weighting factors a k and Bk are shown in figure 4.2 and the factor 

[no k ~k flo k - (ok+~Sk + °k_~ak)J, which is the i1eighting factor' on cpll(in 

(4.23), is given in table 4.1. In both cases .:; ha.s been s-pecified as 

90 kPa, PT as 10 kPa and flak as 1/18 for all k. 

4.1.6 water vapor equation 

The fi ni te difference analogue of the fl ux form of the lAfater vapor 

equation (2.40) can be written 

r 11, ?7) ~'\.., .-

Provided there are no water vapor sources or sinks (i.e. -Ck + Ek = 0 for 

all k), (4.27) insures conservation of total water vapor as far as the 
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IOO~--'--------------------------------------------------------~ 

-0 o_ 
N 
'0 500 -w 
n:: 
:::> 
t.l) 600 

oW 
W 
IJC 
a.. 700 

...4J.--
Q 

i .k 

4.5 50 

Fig. 4.2. Weighting factors ai,k and Bi,k (see equations (4.65a) and 
(4.65b)). ~ has been specified as 90 kPa, PT as 10 kPa and 
AOk ~s 1/18 for all k. Units on the abscissa are 10-2• 
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TABLE 4.1 

~------~------------------------------! 

p 
(units 

of 102 Pa) 

125 
175 
225 
275 
325 

375 

425 
475 

525 

575 

625 

675 

725 

775 

825 

875 

925 

975 

.. 
" r i ~ 

inG. E..... 6cr
k 

- (a., 8. + (5. , a.)i ~ 
L K Pk '. K+~ . K K-;2 iC: , 

. 3.... '". ! • • £:. n- \ r, 

~um ts 01 L J 

0,37161 ! 
0.12082 

0.05158 

0.02562 

0.D1399 

0.00813 

0.00305 

0.00193. 

0.00118 

0.00071 

0.00040 

-O.OOGI]5 
-0.00012 
-0.00016 

7.19533 

I 
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vertical differencing is concerned. Let us now concern ourselves with 

the problem of making a judicious choice of q at the half integer levels. 

~Je have no object; ve means of choos i ng among the many pass i bl e interpol a-

tion schemes for q at the half integer levels, but present here one 

possible scheme which we believe is reasonable. 

Let us relate qk+1:! to qk and qk+l through an interpolation of rela-

tive humidity such that 

(4.28) 

where 

and 0* • - n*{T p , 
i k+ i - .-; \ k+ l' k+ I' , (4.29) 

and where qk+~2 is an as yet unspecified function of q'k and qk+l. Equation 

(4.28) can a1so be written 

If qkH
2 

is required to lie between qk and qk+P then 

(4.31) 

which can also be written 

Thus:) qk+~2 is the harmonic mean of q'k and qk+l" Substituting (4.32) into 

(4.30) we obtain our interpolation formula for the mixing ratio at the 
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half integer levels 

(4.33) 

Since qk+l is typically greater than qt, th2 IJieighting factor on qk is 

typ; ca lly 1 arger than the wei ghti ng factor C:l q;,-'-1. Thus, qkJ _L tends to 
)\. t... a .... 2 

be closer to qk than to qk+l" Profiles of the weighting factors 

qk+l qk 
* * and * + q* for a mean Marshall Islands sounding with ~ kPa. 

qk + qk+l qk k+l 

resolution are shown in figure 4.3. 

In the saturated case (4.33) may be a poor chc'~ce for q! _p~ and may 
I( . ~2 

result in what ArakavJa (1972) terms i' conditional i:"stability of the compu-

tational kind ll or IICICI('I. This type of instabilHy can be understood by 

deriving the form of the thermodynamic equatiol": 1ch holds when la!rge·· 

1 d . .. " - • k --,. t . 'I t
' 

.r: 1 sca e can ensa1:"lOn 1S occurnng a1: :2V'2 i ,,, :1;15 squa,10n taKes ne lorm 

(L + (})T c (...aT,) CJ f'd!_ 
Cp'at uk ar k = p'ap m,k k'()t' 

(4.34) 

h ( aT) were ap' is the mo~st adiabatic lapse rate at level k, h is the moist 
m,k 

static energy c T 
P 

+ CJ? + Lq and h* is the saturation moist static energy 
• 0$ \. .. ~ 

CpT + Ii> + Lq*. If hk+J2 > h"k' rising motion at k+~ (i.e. -;r0 k+}2 < 0) ccntr1o:Jtes 

tov!arming at level k. Similarly, if hk_~ < h"ks rising motion at k-}z (i.e. 

"0k-!a < 0) contributes to warming at level k. If ,,0
kH2 

< 0, there are three 

lSee Arakawa (1972), page IV-6. 
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IOO----------------------------------------------------~ 

200 

400 -c 
q* * a.. 

qk+1 C\I k 
'0 500 *+ * *+ * - Qk qktl qk qktl 
w 
0:: 
::::J 600 -(J) 
VI 
W 
0:: 
0.. 700 

800 

900 

IOOO~--~----~----~----~--~~--~----~----~----~----
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

q* q"k 
Weighting factors * ~+1* and q* + q* for a mean Marshall 

qk qk+l k k+l 
Fig. 4.3. 

Islands sounding with 5 kPa resolution. 
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situations of interest at the neighboring integer levels as shown ir the 

1 eft. column of figure 4.4. These cases are as follmlls: 

case (a) hk = ht- and hk · 1 < hk+1 
(tJ ':{f"";,\ 

K TJ. 
. , ... ",", Oc...} 

case (b) hk < hk and hk..l..· = '* ~.35b~; 
'1 nk+1 

case (c) hk = h* and hk+1 = '* '~4'G35c k il k+1 

In each case one might expect that the atmosphere could be either absol~tely 

stable (second column of figure 4.4) or conditionally unstable (third cclumr 

of figure 4.4). If we require that rising motion at level k+~2 does not 12:':<::,-

tribute to warming at neighboring saturated integer levels~ then \tile must hC.>;e 

case (a) h k+1;~ < h* k ([~,,3.sa) 

case (b) hk+1 < h 
k+~2 

(4.1.36b) 

case (c) h"k+l < hk+~2 < h':' 'k ~26c) 

These inequalities are satisfied if hk+
J2 

lies on ths heavy lines in hle 

second and third columns of figure 4.4. 

Let us first discuss the second column~ i.e. the absolutely stable 

situation. Requiring that sk+~ lie between sk and sk+l1, and since 

{4.33]i guarantees that qkH
2 

lies betvl/een qk and qk+l' then hk+~2 rmJ~t tie 

between hk and hk+1o Thus, it is obvious that (4.36a) and (4.36c) are 

satisfied. However, (4.33) may lead to an hk+~ which does not sa.t~sfy 

(4.36b), i.e. (4.33) may in this case cause "conditional instabil Hy of the 

computational kind. 1I If such a situation arises, we abandon (4.33) and 

IThis is analogous to (4.14). 



CONDENSATION 
k ------------------------

k +~ t 7To-k+~g: 0 
hk liS h*k 

+,2 t 

NO CONDENSATION 
k + I ----------------------

CASE (A) 

CASE (B) 

CASE (C) 

--------------*._------
,./ ! 

.. .s <" 6>----
./ 

----~----------------/ 
t' 

CASE (A), ABSOLUTELY 
STABLE 

< 
/' 

/' 
------.--------~.-------,. 
-~Q <" • 

1 .' ., -----/-----------------
/ 

CASE (B): ABSOLUTELY 
STABLE 

------------------~~/-./.> 
-------------~------/-i 

'7 <" 0 . /' 

-----~.:.------------ ---
/ 

7 
CASE (C)'ABSOLUTELY 

STABLE 

h* 

t\ 
-------~-------------: ......... 
..... _----6-< . '" 

" 

---------------~------
......... 

CASE (Al: CONDITIONALLY 
UNSTABLE 

\ 
-----~,,------------

" 

o • '. : '.: 
--------------~------......... 

>" 
CASE (B): CONDITIONALLY 

UNSTABLE 

\ 
------~~-------------: " 

• 6' <;' II 
......... I ,: ______________ ;:.0"" ______ _ 

". 

CASE (C): CONDITIONALLY 
UNSTABLE 

Fig. 4.4. The left column illustrates three cases in which conditional instability of the 
computational kind might occur. The second column portrays the absolutely stable 
situation and the third. column the conditionally unstable situation. 
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Let us now discuss the third column, i.e. the conditionally unstable 

situation. Since hk+!z must lie betv.Jeen hk and hk+1 as discussed above~ 

we can see that (4.36a) is satisfied if hk+1 ~ hk" In addition, the 

requirement hk+1 ~ h~ will eliminate case (b) and case (c). In order to 

maintain this requirement we resort to a moist convective adjustment 

scheme which is described in section 5.3. We enforce this adjustment for 

1 ~ k ~ K-l since the cumulus parameterization theory given in section 3.1 

is not general enough to include moist convection in which the updrafts 

originate above the mixed layer. 

4.2 Horizontal differencing 

4.2.1 continuity equation 

We use a distribution of variables in the horizontal as show~ in 

figure 4.5, which together with figure 4.1 le2ds to the depiction shown in 

figure 4.6. This is referred to as Scheme B by ,':\r"ke;;\lIJa (1972) ~ \rllnc dis··, 

cusses its excellent geostrophic adjustment properties. For the equaticn 

of continuity (4.3) we use the following finite difference fon;: 

aIT. 1 - • 1 
-' + F - F + -ls -S I = a (4.37) at i+!z,k i-12,k L\O'k i ,k+!z i ,k-~.J 

where we define 

. 
F _ nru and 

. 
S _ ITa (4' ~8) 

\ " ..... - I 

The mass flux F ;s given as 

(4.39) 
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I 

'7Tj W% _ 7T2 -Wi 7f3 Wi-Y2 71j \V1+Y2 7Ti+1 \VI+% 77I-i \VI-11z 1li \VI+'lz 
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Fig. 4.5. Distribution of variables in the 
horizontal differencing scheme. 

K-3 ___ (1rru). I, 
.- 1.-,2 
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K 
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I I T,q \1/ T,q 

- +-0- - --It- - -<? 
I ! " 10- CT 

.,t' 

.,~ 
'W T,q 

- -<r--

Fig. 4.6. Three dimensional depiction of the 
distribution and indexing schemes. 
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(ur) . -!-' k = 
1 .~, 

4.2.2 pressure gradient force 
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(4·.40) 

The pressure gradient force in the radial momentum equation (2.36) can 

be written 

Since the first term can be rewritten as 

-r [L (nCb) - <1l ~l or - or $ 
(4.4·2) 

we write the discrete form as 

The second term in (4.41) is now written in a form consistant th 

that of (4.43) 

(: 
-1 an) - nrop -

or '+1 k 1 ~, 

where 

To summarize then, the pressure force contributing to ~t (rrru)i+~2~k is 
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Although IT has been defined at the integer radial location by (4.38), IT at 

the u.v points (i.e. half integer radial location) has yet to be defined. 

4.2.3 first law of thermodynamics 

We use the form 

1 Pi ,k • 0 

( )

K 

oak Po [l,k.» 1,k+", 1,k-» 1,k-»] - - -- S. -1-1 8. 1 - S. , 8. 1 

n.Q. 
+ -'-' cp 

as the horizontally discrete analogue of (4.15). 

4.2.4 water vapor equation 

For the horizontally discrete form of (4.27) we choose 

~ (IT.q. ) t F., (qitl,k t q; ,k) _ F. 1 (q; ,k t q;-l,k) 
d t 1 1, k 1 t'2, k 2 1 -~, k 2 

1 [0 . ] t - S. 1 q. 1 - S. 1 q. 1 = IT. (-CtE) nO k 1,kt~ 1,kt#2 1,k--2 "k-~ 1 

4.2.5 momentum fluxes 

(4.47) 

(4.48) 

let us define the mass flux at the integer radial locations as 

F. k == ~ (F. t1 k t F. 1 k) 1 , 1 ~, ,-~, 
(4.49) 
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Then we may write t:,r times the first three terms in (2.36) as 

with a similar expression for the first three terms in (2.37). vJe must 
. 

now determine II and S at the half integer radial ioeations. Making u con-

stant in both space and time requires that (4.50) become zero, or 

a 1'· 
-t II. +1 + Fi +1 k - F. k + - (S. 1 k-l-l - S. +1 k") = 0 3 1 ~ , 1, AOk 1+'2' ,72 1 -'2" -~2 

(4 < 51) 

As pointed lOut by Arakawa (1972), (4.51) is necess·;xry fO'!" the conservation 

of kinetic energy under a pure advective process. We can see that by 

defining 

and (4.52) 

(4.37) and (4.49) guarantee that (4.51) holds, 

4.2.6 coriolis force 

From the momentum equations (4.6) and (4.7) the coriolis force con­

tributing to ~iIIU) is 

[frt:,r + vt:,rJ TrV 

and that contributing to a(IIv) is at 

- [frt:,r + vt:,r] TrU • 

We will use the form 

(4.54) 
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(4.55) 

for (4.53) and a similar form for (4.54). In (4.55) 

c. k:: fr.lIr + !a (V·+1 k + V. 1 k)li.r. 1, 1 1 ~, l-~, 
(4.56) 

This form of the coriolis force allows us to maintain the relation 

(4.53) x u + (5.45) x v = 0 and thus avoid kinetic energy generation by the 

coriolis force. 

4.3 Summary of the complete set of equations (differential difference form) 

The finite difference analogues of (2.31) - (2.40) will now be given. 

We shall write the complete set in a differential difference form, leaving 

the time differencing scheme to section 4.4. 

Our continuity equation takes the forms 

aII. K 
"It' = - L (F ·+1 k - F. 1 k)lIO"k ' 
o k=l l~, l-~, 

(4.57) 

~. k+1 = s. k 1 - (aIIti + F·+1 k - F. 1 k)li.O"k ' 1, ~ 1, -~ a 1 ~, l-~, 
(4.58) 

where we have defined 

(4.59) 

F . +1 k := !a (7T. + 7T. +1)( ru ) . +1 k , ~, 1 1 1 ~, 
(4.60) 

s. k+1 :: 11. ~. k+1 , 
1, ~ 1 1, ~ 

(4.61) 

and where 

(4.62) 



50 

The hydrostatic equation is given by 

K [ R l 
cIl. K = L TI.ak -- !J.° k - C (a k, 1 Ci.. k + °','1)3.; k)J'To! i 

1 , k= 1 1 Pi, k P -':2 1, ,\ T'2 " I ~ K 
(~,. 63) 

and by 

= I. -cIl,·.k - cIl,. ,k+l Cp\iJ..;: 1'+1" 1"1 >.r.1 + ~ _ ~si'\. ~~I'~:J. 

\ 

P-i kT. k) • , 1 , 
I 

where 

o or any value for k :;: 1. 

Ci.. k -
~ [1 -(Pi ,k-l)"l 1 , 

p. k J 1 , 

(ii Cha) 
\ L ~ vV 

for k ~ 2 

[C )" 1, i ,k+ 1 1 I 
'2 - .J. 

S· k 
P;,k J , , -

for K :; K-l 

(4l.65b) 

0 fot k = K 

The equation of state is 

-1 RT. k 
p. k :;: 

1 , 

1 , p. k 1 , 

The radial and tangential momentum equations are given respective"ly by 

1 1 [. 
- - -2 S. 1 k 1 (u. +1 k + u,. +1:

2
• k+ 1 ) !J.a k 1+'2' +':2 1 ':2, _ .. 

(4.67) 
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- ~ [( Tf . +Tf . +1)( C. k+C, +1 k)] U . +1 k + n. +1 F" ' 
1 1 1 , 1, 1~, 1 ~ '1" +1 k 

1 ~, 

where 

n'+l = ~ (n. + n.+1) 1 ~ 1 1 

F. k = ~ (F._~ k + F'+l k) , 1 , 1 2, 1 ~, 

. . 
5'+1 k+1 == ~ (5. k+1 + S'+l k+1) 1~, ~ 1, "2 1, ~ 

C. k == fr.lIr + !),2
r 

(V'+l k + V. 1 k) 
1, 1 1 "2, l-~, 

-1 RT. k 
( ) 

_ 1 , 
O'TfP . k = O'k Tf . • 

1, 1 P;,k 

The thermodynamic equation is written in its final form as 

(O'TfP -1). k l all. ~ ] I 
+ 1, "'t' + ~ (ru). 1 (Tf.-Tf. l)+(ru) '+1 (Tf·+1-Tf.) co, --2 , , - 1 "2 1 1 

P 
n.Q. 

+ -'-' Cp 

(4.68) 

(4.69) 

(4.70) 

(4.71) 

(4.72) 

(4.73) 

(4.74) 

And finally, our continuity equation for water vapor may be written 
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a [/q. k + q. 1 k' (q.. + Q. )1 -(n.q. )=-.F'
l 

i 1, 1+~ I_F. l-l~k °l,k 
at 1 1, k 1 +"2, k \ 2 I i -!2 ~ k , 2 ! oj 

- _1_ [So k+1q · k 1 - S. k Lq· ok 11 + n.(-C+E). k . t.cr k 1 , "2 1 s ,+"2 1, -'2 1, -"2 J 1 1 , 
(4.75) 

4.4 Time differencing 

The time differencing scheme for the equations of section 4.3 can be 

described in the following manner. Suppose we have the equation 

(4,76) 

where 1/1 is an arbitrary scaler. The j eapfrog scheme is g1 yen b.y 

1jJ(n+1) = 1/J(n-1) + 2~t f(1/J(n)) 
\ / 

and the Matsuno scheme by 

1jJ(n+1)* = 1/1(n) + t.t f(1jJ(n)) ~ (4.78) 

.h(n+l) = ~(n) c( (n+l)*\ 
't' y + l1t I l~ f 0 

I 

The time di fferenci ng in the model is primarily handl ed by the 1 eap­

fro!~ scheme. However, we periodicany (every 15th step or so) enploy t.he 

Matsuno scheme to prevent the divergence of the odd and even leapfrog 

solutions. 

The use of the above explicit time differencing scheme coupled with 

the existence of external gravity waves requires a very small time step to 

satisfy the criterion for linear computational stability. For a !"adial grid 

spacing of 15 km our experience is that the time step must be less than 21 

seconds. If an implicit time differencing scheme ~I/ere applied to those terms 

which give rise to external gravity waves, a considerably larger time step 

could be used. 
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5.0 LARGE-SCALE PHASE CHANGE, 

DRY AND MOIST CONVECTIVE ADJUSTt~ENT 

5.1 Large-scale phase change 

The subgrid scale condensation, evaporation and precipitation 

caused by the parameterized cumulus convection discussed in section 4.0 

can occur when the atmosphere is not saturated in a large-scale sense. 

In addition, large-scale condensation, evaporation and precipitation 

can occur when the air becomes saturated and remains saturated in a 

large-scale sense. 

The water vapor equation can be written as 

!!9..=-C+E dt 

and, neglecting for the moment heating other than that due to phase 

change, the first law of thermodynamics can be written as 

d dt (cpT) - wa = L(C - E) , 

(5.1) 

(5.2) 

where C and E are respectively the rates of condensation and evaporation 

per unit mass of dry air. If the air is saturated and is remaining sat­

urated, E vanishes and C is related to the individual time change of the 

saturation mixing ratio such that 

C = _ dg* 
dt • (5.3) 

In our tropical cyclone model the time step must be small enough 

to satisfy the linear stab"ility criterion of Courant-Friedericks-Lewy. 

This criterion requires a very small time step and thus it is not 

necessary to compute large-scale phase change at each time step. Our 
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procedure is to predict q and T from (5.1) and (5.2) with C and E neg­

lected for several time steps, then check to see if q exceeds the 

saturation value. Thus, if in the course of integration the air becomes 

supersaturated on the scale of the grid, large-scale condensation and 

release of latent heat is assumed to occur. The excess water removed 

from a supersaturated layer is allowed to precipitate into the next 

lower layer and to evaporate completely. This process may bring that 

layer to supersaturation, in which case the excess is removed and pre­

cipitated to the next lower layer. When the bottom layer of the model 

is reached, any excess is assumed to fall to the earth's surface as 

large-scale precipitation. 

The procedure described above is identical to that developed by 

A. Arakawa and J. W. Kim for the UCLA GCM. However, the computational 

procedure described below is somewhat different. 

At level k, let the temperature be denoted by T k and the vwter 

vapor mixing ratio by qk" If qk is larger than the saturation va-lue 

* qk' a certain mass of water vapor per mass of dry air must be con-· 

densed. 1 This condensation, denoted by Ck6t. will reduce qk to q~ and 

increase Tk to Tk, 

(5.4) 

T ~ = T k + ~p C k6 t (5.5) 

The new water vapor mixing ratio qk is the saturation value at 

the new temperature Tk, 

1 The vapor is condensed to liquid water. The ice phase is not con­
sidered. 
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(5.6) 

Equations (5.4), (5.5) and (5.6) form a c10sed system in the unknowns 

qk' Tk and Ck~t. qk and Ck~t can be eliminated to give 

(5.7) 

* Because of the complicated form of the function q (T, p) an ex-

plicit equation for Tk cannot be derived from (5.7). However, an 

iterative scheme can be developed by applying Newton's method to 

(5.7). This scheme is as follows: 

a) Make an initial guess of Tk for Tk, setting the iteration 

index, v, to one. 

b) Compute a new estimate of Tk from the previous estimate using 

(5.8) 

_ L ~ ( *) 1 where y = c
p 

aT p • 

c) Compute a new estimate of condensation from 

(5.9} 

1 * The actual expressions used for q (T, p) and y(T, p) are given in 
Appendix A. 
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d) Compute a new estimate of qk from 

(5.10) 

e) Test if 

* (v) (v) 
q(Tk ,Pk)-qk 

I-----'-~_r--r-'----'--_; < some to 1 e rab 1 e erro r (5,,11) 

If this is not true, set v = v + 1 and return to (b). 

f) Allow the condensate Ck~t to fall into the next lower layer 
. L ~Gk 

and to evaporate entirely reducing Tk+1 by c
p 

(Ck~t)(L\Gk_~l)' 

6cr k 
and increasing qk+l by (Ck~t)(L1crk+l). If the bottom layelr' 

of the model is under consideration (k = K), the condensate 

reaches the earth's surface where the mass of large-scale pre-

cipitation per unit horizontal at'2a -~s g-lven by 

g) If the bottom layer of the model has not been reached, return 

to (a) and repeat the procedure for the next level (k + 1). 

Our experience is that a reasonable convergence criterion is 

usually reached in a few iterations. 

5.2 Dry convective adjustment 

When potenti a 1 temperature decreases with he; ght Ci. e" when 

8k < 8k+l for one or more integers 1 :S k :S K-l), we assume that subgrid 
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scale dry convection will occur and that a dry adiabatic lapse rate 

wi 11 resul t. The dry adi abati c adjustment procedure we wi 11 now de­

scribe is identical to that developed by J. W. Kim and A. Arakawa for 

the UCLA GeM. 

At level k, let the temperature before adjustment be denoted by 

Tk and the temperature after adjustment by T~. Then, if the adjustment 

involves the contiguous layers beginning with kb and ending with ke' we 

can write 

(5.12) 

If 8 denotes the potential temperature which results from the adjust-

ment, then 

(5.13) 

Substituting (5.13) into (5.12) we obtain 

(5.14) 

After computing e from (5.14) we can easily compute Tk from (5.13). This 

procedure may result in an unstable potential temperature stratificat'ion 

at neighboring intervals, in which case the procedure is repeated with 
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new kb and keG The procedure is complete when there exists no single 

pair of k and k+l for which Bk < Bk+1 for any integer 1 ~ k ~ K-l~ i.E. 

when a stable temperature stratification in the entire vertical column 

i sreached. 

5.3 Moist convective adjustment 

The cumulus parameterization theory given in section 3.1 is not 

general enough to include moist convection in which the updrafts originate 

above the mixed layer (i.e. altocumulus convection). As we saw in section 

4.1.6, if the atmosphere above the mixed layer becomes conditiona11y un-

stable and too moist, instability can result. The instability shown in 

the right hand column of figure 4.4 occurs when ht < h~+l and hk+1 > ht 

for 1 ~ k ~ K-2. The important case k = K-l is of course handled by the 

cumulus parameterization theory. In a model with high vertical resolution 

such as ours, this instability is unlikely unless the relative humidity is 

very large. However, if such an unstable situation arises, ~'Ve must adjust 

hk+1 and h~ so that hk+1 = h~. This is accomplished as follows. 

Let us consider non-entraining clouds whose bases lie in layer k+l 

and whose tops lie in layer k. These clouds produce fluxes at level k+J2 

and rain in layers k and k+l so that the following temperature and moisture 

changes are produced (see (3.17) and (3.18)). 

(5.15) 

(5.16) 
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(5.17) 

(5.18) 

Here n represents the mass flux at level k+~, and Rk and Rk+1 represent the 

rate of rain production in layers k and k+l respectively. Since the clouds 

are non-entraining, h is constant with height in the clouds and equal to 

hk+1o We assume that Rk+1 is zero, i.e. that q+l is constant with height 

in the clouds ;n layer k+l and equal to qk+l. We also assume that Rk is 

such that the detraining air in layer k is saturated but contains no 

liquid water, i.e. 

(5.19) 

The rain produced over the time interval fit is then 

(5.20) 

Equations (5.15) - (5.18) can now be written in discrete form as 

(5.21) 

(5.22) 

(5.23) 

(5.24) 
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Equations (5.22) and (5.24) can be combined to give 

(5.25) 

while (5.20) and the relation (1+Yk)~sk = ~h~ allow (5.21) to be written 

( I:; "6\ ",ot. ) 

Equations (5.25) and (5.26) are then combined to give 

allowing us to write the mass flux required to reduce hk+1 - Ilk to zero as 

(5.28) 

Our adjustment procedure is to compute n~t from (5.28), Rk~t from (5.20) and 

~sk' ~sk+1' ~qk and ~qk+l from (5.21) - (5.24). When the adjustment procedure 

;s applied to the pair of layers (k,k+1), we see from (5.22) that layer k+l 

is warmed so that the pair of layers (k+1,k+2) must become more stable. 

Thus, if we start the procedure from the pair of layers (K-2,K-l) and work 

upwards, only one pass ;s required. 
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6.0 INITIALIZATION 

To begin integration of the model initial conditions on the prog­

nostic variables ~, u, v, T and q must be specified. We shall assume 

that initially there is no transverse circulation, i.e. u = 0 every­

where, that the ~, v and T fields are in gradient wind balance, and that 

q is a function of the vertical coordinate only and corresponds to some 

mean tropical sounding. Since the ~, v, T and ~ fields are initially 

related by hydrostatic and gradient wind balance, specification of the 

initial v field allows computation of the initial ~ and T fields. Alter-

natively, specification of the initial ~ and T fields allows computation 

of the initial v field. Although neither of these is as straightforward 

as might first appear, we have chosen the first alternative as being the 

most convenient. Applying gradient wind balance at the sea surface we 

obtain 

f +.2 v = RT S (
V) a£np 
r S S ar at (J = 1 , (6.1) 

where ~~ disappears since ~ is zero in our model everywhere along the 

(J = 1 surface. Knowing Vs and TS everywhere, (6.1) allows us to compute 

Pst and hence TI, provided we specify an outer boundary condition on pS. 

The gradient wind equation at an interior point takes the form 

f + - v = - + (Jet - • ( v) a~ an 
r ar ar (6.2) 

Differentiating (6.2) with respect to sigma and using the hydrostatic 

equation, we obtain 
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d'IT do. 'IT do. = L [ f + "i.. V] 
o ar 3cr - d r dO r' (6.3) 

Since we know v and 'IT we can regard (6.3) as a first order partial 

differential equation in a.. Knowledge of a. at the sea surface and at 

the outer boundary allows us to solve for a. at all interior points, aftet" 

which T can be determined from the equation of state. 

Let us now consider the initialization procedure in discrete form. 

The discrete analogue of (6.1) can be written 

( C. K 1 + C. 1 K 1 ) V. 1 K+l 1, '+'2 1+, +"2 1+"2, . '2 
inpS. = inpS - 2 RT 

1 i+1 ri+~ S 
(6.4) 

allowing us to determine the surface pressure inward from the outer 

boundary of the model. 

The discrete analogue of (6.2) can be written 

1 
2 (C. k + C'+l k)v.+~ k r'+ l 1, 1, l~, 

1 '2 

+ 1 1 R 1, + pl+ " ,,{6.5) 'IT'+l - 'IT. ( T. k T. 1 k\) 
= eli. - eli. k 0 k'IT· -- 0 k'IT . ..).1 \ 

1 + 1, k 1 , 7T. + 7T. +1 1 p. I 1 ' . 1 k 
1 1 1,K 1+_, I 

Taking the difference of (6.5) applied at k and k + 1, and using the 

form of the hydrostatic equation given byl 

(6.6) 

1 In (6.6), a. k and S· k are given by (4.65). 
1 , 1 , 
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we obtain 

c (a., T. + 13, T, ) +' , 1T.R C5 1, - cr -'-'-
1T'+l-1T , [ T, k+l T. k] 

p lt k+l 1,k+l 1,k 1,k 1T;+1T;+1 1 k+1 Pi,k+1 k P;,k 

+ 2 1 [(C, k+1 + C'+l k l)V. 1 k+l - (C. k + C'+l k)V'+l k-I·(6.n r ' +1 1 , 1, + 1 +~ , 1 , 1, 1 ~ , 
1 ~ j 

The gradient wind balance in the lowest layer is 

(6.8) 

where ~, K is given by the vertically integrated form of the hydrostatic 
1 , 

equation 

!Pi,K = tJ"iOk P~,k .ok - cp(ok_" ok + °k+" ak)}i,k • (6.9) 

Equations (6.7) and (6.8) can thus be written 
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k = 1,2, .•.•.••• K-l, 

(6.11) 

Knowing T1+1,k and ~i+l,k (k=1,2 ... K) we can solve (6.10) and 

(6.11) as a linear system of K equations for T. k (k=1,2, .•• K). We then 
1 , 

use (6.9) to compute ~i,K and (6.6) to compute ~i,k (k=K-l,K-2, ... 1). 

This procedure is repeated for each i until we reach ;=1. To initiate 

the procedure we assume some vertical temperature profile at the outer 

boundary (e.g. a mean tropical sounding) and compute the resulting pro­

file of ~ from (6.9) and (6.6). 

Thus, with the specification of u, v and q and the determination of 

1T and T from hydrostatic and gradient wind balance, the initialization i's 

complete. 
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7.0 CONCLUS IONS 

We have presented the detailed des i gn of an axi symmetri c trap; ca 1 

cyclone model. The model is based on the primitive equations in the sigma 

coordinate system. The cumulus parameterization used in the model follows 

the theory presented by Arakawa and Schubert (1974). The finite differ­

encing schemes follow those developed by Arakawa for the UCLA GeM. further 

discussion of and experiments \4Jith the parameterization theory will be 

given by P. Silva Dias and W. Schubert. 1 In addition~ results of numerical 

integrations wi til the trap; ca 1 cyc"lone model wi 11 be gi ven by J. Hack and 

~J. Schubert. 1 

In the present model there a:~e two shortcomings which we are attempt-

in9 to con'ect. 

The first shortcom~ng of the present model is that virtual tempera-

ture effects are not incorporated into the large-scale equations. The 

incorporation of virtual temperature effects is not as straightforward as 

one might think. This situation results from the fact that water vapor 

effects must appear not only in vii> but also in V1T. 

The second shortcoming is that a mixed layer of variable depth is 

not included in the present model. If a mixed layer of variable depth is 

introduced into the present sigma coordinate model~ certain computational 

disadvantages arise because the top of the mixed layer is not necessarily 

a coordinate surface. However, it is possible to design a generalized 

sigma coordinate system in which both the ground and the top of the mixed 

~ayer are coordinate surfaces. Such a generalized sigma coordinate system 

is presently being incorporated into the model. 

IThese reports will appear in this Atmospheric Science series. 
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