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ABSTRACT

An axisymmetric primitjve equation tropical cyclone model in the
sigma coordinate is presented. The parameterization of the convective
scale vertical transports of heat, moisture and momentum follow the
theory presented by Arakawa and Schubert. The equations of the thecry
are grouped into three parts: feedback, static control and dynamic
control. The dynamic control is formulated in terms of a linear pro-
gramming problem which is solved by the simplex method. The space
differencing schemes used in the model follow those developed by
Arakawa and are designed such that the discrete analogues of certain

integral constraints are maintained.



1.0 INTRODUCTION

A tropical cyclone generally consists of motions on two widely
different space and time scales. The Targe-scale motion is on a space
scale of hundreds of kiiometers and a time scale of days and consists of
cyclonic inflow in the Tower troposphere and anticyclonic outfiow in the
upper troposphere. The small-scale motion is on a space scale of
kilometers and a time scale of tens of minutes and consists of the many
cumuius and cumulonimbus clouds which are organized by the large-scale
motion. The cloud field may be organized in such a way as to give rise
to a heat source which causes amplification of the large-scale disturb-
ance, which in turn amplifies the cloud field. A mathematical theory of
this positive feedback mechanism was first proposed by Charney and
Eliassen (1964) and Ooyama (1964). Both Charney and Eliassen and Ooyama
riodeled the Targe-scale or cyclone scale explicitly but treated the
small-scale or cumulus scale only implicitly, i.e. by what is now com-
monly referred to as cumulus parameterization. Although Charney and
Eliassen's and Qoyama's work dealt only with the initial growth of a
tropical depression, their approach stimulated efforts to numerically
simulate the Tife cycle of tropical cyclones with axisymmetric models
using the gradient balance assumption (Ogura, 1964; Kuo, 1965; Ooyama,
1969 a, b; Sundqvist, 1970 a, b, 1972; Peng and Kuc, 1975), with
axisymmetric models using the primitive equations (Yamasaki, 1968 a, b, c;
Rosenthal, 1969 a, b, 1970, 1971; Kurihara, 1975), and with fully three
dimensional models using the primitive equations (Anthes et al., 1971 a, b;

Anthes, 1972; Mathur, 1972; Kurihara and Tuleya, 1974; Tuleya and



Kurihara, 1975; Madala and Piacsek, 1975). The generally accepted criti-
cisms of all the above works are the methods by which cumulus clouds are
jmplicitly incorporated into the models, i.e. the methods by which
cumulus clouds are parameterized. Recently, however, considerable
advance in cumulus parameterization theory has been made by Ooyama {1971)
and Arakawa and Schubert (1974). The theory of Ooyama (1971) was tested
in a tropical cyclone model by Rosenthal (1973). The purpose of this
paper is to present the design of a tropical cyclone model which includes
the parameterization theory of Arakawa and Schubert (1974). Work along

lines similar to ours is also being performed by Rosenthal.



2.0 GOVERNING EQUATIONS

2.1 Sigma coordinate
As a vertical coordinate we shall use the sigma coordinate given
by Arakawa (1972) as

_ p 'pT _ p‘pT
- pS-pT Toom

> (2.1)

)

where the top boundary pressure Pt is a specified constant and the
surface pressure Ps (or equivalently =) is a function of the horizontal
coordinates and time. The upper and lower boundaries are respectively
o =0and o =1. In the special case where p; = 0, (2.1) reduces to

the original definition introduced by Phillips (1957).

2.2 Hydrostatic equation
With pressure as the vertical coordinate, the hydrostatic equa-
tion is written

5 _
ap

where @ = gz. From (2.1) and (2.2) we can easily show that

-a (2.2)

0, (2.3)

which is the hydrostatic equation in the o-coordinate. Since (2.3) can
alsao be written

pdxdydz = - g-dxdydo , (2,4)

the quantity %~can be thought of as a "density", i.e. the mass per unit

"volume” of Xyo space, or the mass of a vertical column with unit



horizontal cross section. Although constant in the vertical, g-may

vary with the horizontal coordinates and time.

2.3 Equation of continuity

In pressure coordinates the equation of continuity is

W
v ° + — = R .
D WV 3 0 (2.5)

where w is the vertical p velocity %% . It can be shown that the del
operator on a constant pressure surface is related to the del operator

on a constant sigma surface by

ot 9 R frn

IR . + 2 =

ot VG (m V) 55 (o) 0., (2.7)
do

where ¢ is the vertical o velocity T In our tropical cyclone model
we make use of cylindrical coordinates and of the axisymmetric assump-

tion. The continuity equation (2.7) can then be written

3 4+ 2 (npy) + -g-g (ns) = 0 . (2.8)

As upper and Tower boundary conditions we require that air parti-

cles do not cross the o = 0 and o = 1 levels, i.e.

c=0ato=0,1. (2.9)



Integrating (2.8) aver the entire vertical column and using the boun-

dary conditions (2.9), we cobtain

g“ = -2 | rpudo . (2.10)

Integrating (2.8) from the top of the vertical column to o and using

the upper boundary condition, we obtain

. am , 8 (° :
TG = = {-O‘ *a-jt—'l‘ F-B—Y—" 'ITY'UdO'} . (2,11)‘

[¢]

Thus, knowing the radial wind component u, (2.10) can be used to com-
pute %%-, then (2.11) can be used to diagnose 7o at any o level.
With the assumption of axisymmetry, the individual time deriva-

tive of an arbitrary scalar quantity v is given by

dv _ 3y .JE 3y
Gt o5t Ut G vl (2.12)

Using the continuity equation (2.8), we obtain the flux form of the

jndividual time derivative of an arbitrary scalar quantity ¢ as

T = 3 (m) + e (rwy) 2 (ndy) . (2.13)

2.4 Equations of motion
The horizontal component of the vector equation of motion in

pressure coordinates is
dw =

where ddt is the horizontal acceleration, flkxw the horizontal



coriolis acceleration, Vp® the horizontal pressure gradient force per
unit mass, and IF the horizontal frictional force per unit mass. Using

(2.3) and (2.6) we can rewrite {2.14) as

%’f\l + f kx w + VG@ + gavw = |F , (2.15)

Equation (2.15) can also be written as

AW , ¢ 3V 2 )
—-55§+a—-é-5+ (f + c)lkxw+vc(lz’+ 8) + oovr = IF , (2.16)

where ¢ is the vertical component of the relative vorticity, i.e.
lkevxw. In the special case of axisymmetry the relative vorticity is

given by
g = 2 (rv). (2.17)
rar -

Using (2.17) we can write the radial component of (2.16) as

3U , = 3U , 3
il [f + ———-(rv)]v

3_ (U, v? am _ )
+8Y‘ (2+§+ o) + oo 8Y‘~FY‘ (2.18]
and the tangential component as
3V , = 3u 3 _
ﬁ+c&-’-+\:f+-ﬁ?(rv)]u = F¢ . (2019)

Equations (2.18) and (2.19) can be combined with the continuity equa-

tion (2.8) to yield the flux form of the radial momentum equation

(nruu) + 2= (nou) = (f + v

2 9
SE'(“U) * Tar 30

+ Tr(—ag+ oa 21)

ar ar (2.20)

1]
-
w

™y



and the flux form of the tangential momentum equation

3 9 3 e vy
T (nv) + T (wruv) + Fy (mov) + (f + 'F)TTU wF

2.5 Equation of state

The equation of state is given by

RL
p L

where R is the gas constant for dry air.

o =

2.6 First Taw of thermodynamics

The first Taw of thermodynamics can be written as

or in flux form as

-g—:c- (TGCT) + V&(Tr \VCpT) + (w&c T) = mwo + wQ .

90 p

Defining
K
p
e:T_.Q_)
) .
and using (2.1), we can rewrite (2.24) as
§-( c.T) + ve(nwc T) + E—-K é—-( 5C_6)
Y Trp U'IT\ P g mcp

pO

]
= —_— .
noa(at wev)r + nQ .

5

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)



In cylindrical coordinates and with the axisymmetric assumption,

(2.26) can be written

3 N PN A ey
oI (ncpT) o (wrucpT) + (po) ~ (moc_8)

= noa(g—f + U E-l;)wr + Q. (2.27)

2.7 MWater vapor equation
If g is the water vapor mixing ratio, C the rate of condensation
and E the rate of evaporation per unit mass of dry air, the continuity

equation for water vapor can be written as

dg _ _ :
at C+E, (2.28)
or in flux form as
2o (ng) + ve(nwq) + 2= (noq) = w{-C + £ (2.29)
ot o 30 AY T A e

In cylindrical coordinates and with the axisymmetric assumption,

(2.29) can be written

%‘E (rq) + —2— (mrug) + %5 (noq) = n(-C + E) . (2.30)

2.8 Summary of the complete set of equations (continuous form)
The set of model variables consists of five prognostic variables
and five diagnostic variables. The five prognostic variables are =, u,

v, T and q, all of which are functions of the three independent variables



(r, o, t) with the exception of m, which is a function of only (r, t).
The five diagnostic variables are o, p, o, @ and 8, all of which are
functions of (r, o, t).

The complete set of model equations consists of five prognostic
equations and five diagnostic equations. The five prognostic equations
are the vertically integrated continuity equation (2.10), the horizontal
momentum equations (2.20) and (2.21), the thermodynamic equation (2.27),
and the water vapor equation (2.30). The five diagnostic equatians are
the continuity equation (2.11), the definition of sigma (2.1), the gas
law (2.22), the hydrostatic equation (2.3}, and the definition of po-
tential temperature (2.25).

The complete set of equations can be arranged for numerical inte-

gration in the following order,

1

9 9
= (mr) = = 5| mrudo (2.31)
0
4 { 9 2 a '
o = - \{c s (mr) + —B-Ff mruda (2.32)
o
p=pytmo (2.33)
o = &g_ . (2.34)
%ga = -ma , (2.35)
g = .3 -3 (o v
gi-(nru) = (rruu) = (nrou) + (f + 2)wry
- ﬂr(%g ¥+ oo 'g‘% )+ 1rY‘Fr s (2.36)



(nrv)

Qs
—

(mrT)

Qrjar
ot

B -
5{'(WPQ)

Initial

10

- %F (rruv) - %E-(wrév) - (f + %Jwru + wrF¢ . (2.37)
p K
6 = T<59> . (2.38)
P\ 2 (g
- & (oru) '(Po, 2 (wrdo)
Troo ¢ 9 3 rQ .
v lggrugp (2.39)
p p
3 ? .
- 5?-(wruq) - 5;-(ﬁrcq) + mr(=C + E). (2.40}

conditions are required on the five prognostic variables

my Us V, T and q. The initial conditions are discussed in section 6.

The procedure

1)
2)

3)

followed in a single prognostic cycle is as follows.

Calculate the tendency of n from (2.31).

Usjng the tendency of = just calculated, calculate
wro from (2.32).

Using (2.33) and (2.34), calculate the geopotential
o from (2.35).

%a]cugate the tendencies of u and v from {2.36) and
2.37).

Using (2.38) calculate the tendency of T from (2.39).
Calculate the tendency of q from (2.40).
Return to the first step.
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3.0 PARAMETERIZATION OF CONVECTIVE SCALE PROCESSES

In this section we discuss the parameterization of cumulus con-
vection and the parameterizaticn of the surface exchanges of momentum
and sensible and latent heat, The parameterization of the convective
scale vertical transports of heat, moisture and momentum follows the
theory presented by Arakawa and Schubert (1974) and Schubert (1974)
and is described in 3.1. The parameterization of the surface exchanges

is accomplished by bulk aerodynamic methods and is described in 3.2.

3.1 Cumulus parameterization

The cumulus parameterization theory describes the mutual inter-
action of a cumulus cloud ensemble with the large-scale environment.
This mutual interaction is shown schematically in figure 3.1. We have
conceptualiy grouped the equations of the theory into the three cate-
gories: feedback, static control, and dynamic control (Schubert, 1974).
The feedback loop describes how the cumulus scale transport terms and
source/sink terms modify the Targe-scale temperature and mojsture
fields and is discussed in section 3.1.1. The static control and dy-
namic controi Toops describe how the properties of the cloud ensembie
are controlled by the large-scale fields and are discussed in sections
3.1.2 and 3.1.3 respectively. The most difficult aspect of the theory
is the dynamic control, i.e. the solution of the equation for the mass
flux distribution function. We have solved this equation by using op-

timization theory, in particular the simplex method of Tinear programming.



LARGE — SCALE

ENVIRONMENT
s(p) q(p)
Sm RIY | P

Fig. 3.1.

FEEDBACK

 cumulus terms in
prognostic equations

for s(p), qip), Py

CUMULUS CLOUD
ENSEMBLE

7 (p,)\)
s (P,A)
q. (P)
2 (p,\)
xD(p) or po(x)

mg (A)

STATIC CONTROL

sub~ensemble budgets,

| saturation relation,
vanishing buoyancy at
detrainment level.

DYNAMIC CONTROL

integral equation
for mg(X).

Schematic representation of the mutual interaction of a cumulus cloud
ensemble with the large-scale envivonment.
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From a computational point of view it is convenient to formulate the
dynamic control in terms of an adjustment process. Application of the
simplex method to this formulation of the problem results in what we
have called "the optimal adjustment method," which is discussed in
3.1.4. Although we have used the word "adjustment,” our method bears
very 1ittle resemblance to the meist convective adjustment methods used
in many numerical models, including the GFDL and NCAR general circula-

tion models.

3.1.1 feedback

Let us consider a horizontal area large encugh to contain an en-
semble of clouds but small enough so as to cover only a fraction of a
large-scale disturbance., We shali refer to the vertical transports
caused by motions on a scale smaller than this area as convective scale
transports.

Let the large-scale environment of the cloud ensemble be divided
into the subcloud mixed Tayer, the infinitesimally thin transition layer,
and the region above (see figure 3.2). In the subcloud mixed layer the
dry static energy s, water vapor mixing ratio g, and therefore the moist
static enpergy h, are constant with height, having the respective values
Sy Ays and hM‘ The top of the subcloud mixed layer Pg is usually some-
what below cloud base Pee Below PR convective scale transports are
accomplished by the turbulence of the mixed layer. This turbulence is
confined below PR by the stable and infinitesimally thin transition

layer. Across the transiticn layer there can be discontinuities in



100

suB-

ENSEMBLE -1200

(A A+dA) 300
~1400

~1500

7(p,A)mg(N)dA - 600

- 700
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kd/kg

Fig. 3.2. Typical ITCZ profiles of s, h, and h*. Above pp these profiles are those of Yanai,
Eshensen and Chu (1973). The schematic sub-ensemble has cloud base Pe sTightly above

P The mass Tlux at p 1is n(psx)mB(x)dxg while the mass flux at py is mB(A)dAB

Bn

mb

71



15

temperature and moisture, and aiso discontinuities in the convective
scale fluxes. Above PR the convective scale transports are accom-
plished by the cloud ensemble, which is spectrally divided into “sub-
ensembles" according to the fractional entrainment rate A, small A
corresponding to deep clouds and large A corresponding to shallow
clouds.

Let us define the convective scale fluxes of dry static energy,

water vapor, and 1iquid water as

Ap(p)
J'rlp A [sc(pr) - 5(p)] mgladdr  ppop (3.1a)
Fo(p) = 7o
ps - P .
rpp)
J( n{psr) [a.(ps2) - alp)] mg(A)dr  ppp (3.2a)
F (p) = 0 .
1 - p
F F >p> 3.2b
)s + [(Fgdg = (Fyds ] P~ b5 Ps>p>pg , (3.2b)
AD(p)
J'n(pak)l(pal) mg (1) dx Pg>P (3.3a)
Fo(p) = |7

0 Pe2P>pg . (3.3b)
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Below Pg the convective scale fluxes of s and g are Tinear in p
with the values (FS)S and (Fq)S at the surface pg and the values (FS)B
and (Fq)B just below Pg- The convective scaie flux of & is zero every-
where below PR-

Above Pg the convective scale fiuxes are accomplished by the cloud
ensemble. Let sc(p,x) be the dry static energy at level p inside sub-
ensemble X and n(p,x)mB(A)dA be the vertical mass flux at Tevel p due to
sub-ensemble A . Let n{p,r) be the normalized mass flux, having the
value unity at Pg- Then mB(A)dA is the sub-ensemble mass flux at Pg-

We shall refer to mB(A) as the mass flux distribution function since it
gives the distribution of mass flux in X space. The upward flux of dry
static energy inside sub-ensemble » at level p is n(p,k)sc(pgx}mgih)dk.
The downward flux in the environment at level p, caused by the induced
subsidence of sub-ensemble A, is given by n(p,k)§(p)m8{x)dx. Thus, the
total upward flux at level p due to sub-egnsemblz > is n(p,A)[sC{psx) -
s(p)] mB(x)dA. The total ensemble flux at leve® o is an integral over
all sub-ensembles which penetrate level p. Sub-ensembles which pene-
trate level p have fractional entrainment rates in the interval kaka(p}g
where AD(p) is the fractional entrainment rate of the sub-ensembie which
detrains at level p. The convective scale fluxes of water vapor and
liquid water above pg are analogous to that of dry static enesrgy except
that there is no vertical flux of Tiquid water in the environment since
the environment contains no liquid water.

Certain combinations of the three basic fluxes given in {3.1) -
(3.3) are useful. Thus, let us define the convective scale fluxes of

virtual dry static energy, moist static energy, total water content, and
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liquid water static energy as

Foo(P) = Folp) + se(p)LF (p) » (3.4)
F(P) = Fg(p) + LF(p) (3.5)
Faaa(P) = Fo(p) + Fy(p) (3.6)
Fo_Lo(p) = F.(p) -'LFg(p) . (3.7)

In (3.4), 6§ = 0.608 and e(p) = cpT(p)/L. The Tiquid water static energy
(s-L2) is the static energy analog of the 1iquid water potential temper-
ature introduced by Betts (1973).

The governing equations for the large-scale environment are de-
rived from the heat and moisture budgets for the region above the mixed
layer, for the infinitesimally thin transition layer, and for the mixed

layer. These budgets are

g%-= - WS - %%—+ g %E'FS-LL LR+ Qp (3.8)
%%.= R s %%.+ g% Foy - R (3.9)
_g'l ;E§%-+ Vg ¥pg - QB] = ﬁi%g& ° (3.11)
M s, + i (g - (gl e @)y (a2
3%%-=-\vaqu + 6g75?iﬂ; [(Fy)s - (Fq)B] . (3.13)
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In addition to large-scale advection terms, the heat and moisture budgets
above the mixed Tayer (equations (3.8) and (3.9)) contain convective
scale flux divergence terms and the convective scale Tiquid water sink

term R, defined by
n(p)
= g —P—f n(psa)r(parmg(2)da . (3.14)

Since n(p,k)r(p,k)mB(k)dx is the sub-ensemble sink of liquid water, R{p;
is the total ensemble sink of liquid water. QR is the radiational heat-
ing. The detrainment forms of the heat and moisture budgets above the
mixed layer were derived by Arakawa and Schubert (1974). The relation
f (3.8) and (3.9) to the detrainment forms was discussed by Schubert
(1974).

Since the transition layer is assumed to be infinitesimally thin,
the heat and moisture budgets for this layer {eguations (3.10) and (3.11))}
turn out to be conditions on the discontinuities across the layer. In
(3.10) and (3.11) the symbol delta represents the jump of a quantity
across the transition layer, e.g., As = §(pB—) - Sy and AFs—Lz =
Fs-Lz(pB') - (Fs)B' The left hand side of (3.10) or (3.11) is the large-
scale mass flux into the mixed layer, i.e., the large-scale mass fiux
relative to the moving Pq surface. Equations (3.10) and (3.11) show that
discontinuities in the large-scale fiuxes of s and q must be balanced by
discontinuities in the convective scale fluxes of s and qg.

The heat and moisture budget equations for the mixed layer (equa-
tions (3.12) and (3.13) are similar to those above the mixed layer except

for the absence of vertical advection terms and precipitation terms.



19

(QR) is the vertically averaged radiational heating of the mixed layer.
The fluxes at pgt can be written in terms of the surface fluxes
by considering the turbulent energy balance of the mixed layer, This

yields
(F.) =-k(F_) » (3.15)

where k is an empirical constant with a value of approximately 0.20.

Defining

max
MB =j.n%(x)dx R (3.16)

0

(3.8) through (3.15) can be reduced to

35

§%=- \Vov§-5—33+g-§—5Fs_L2+LR+QRa (3.17)
%%.= - Wed -G %§.+ g %E'Fq+2 -R, (3.18)
3;%—= - WSy * —g—%—ﬁg-[(Fs) + Kk Z§§'(FSV)S] + (QR)M » (3.19)
Eg%-= - Wy Tgy ¥ Eg—g—ﬁg-[(Fq)s + k Eég—(Fsv)s] . (3.20)
E%%—= - WpeWpg + g t oMy - ng-(FSv)S . (3.21)

Thus, the temperature and moisture fields above and below PR and the
pressure at the top of the mixed Tayer pp can be predicted if we can

scmehow determine F._ o F R, and My. The cumulus ensemble transport

qte’
terms Fo ) os Fq+z’ Mp and the cumulus ensemble source/sink term R consti-

tute the feedback loop shown in figure 3.1. From (3.1), (3.2), (3.3),
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(3.6), (3.7), (3.14) and (3.16) we can see that the determination of
Fs-Lz’ Fq+z’ R and MB is equivalent to the determination of n(p.2),
sc(p,x), qc(p,A), 2{psr), rip,r), AD(p) and mg(x). A1l except mB(A) are
determined from the static control lcop of the theory, which is discussed
in 3.1.2. The mass flux distribution functicn mB{A) is determined from
the dynamic control loop of the theory, which is discussed in 3.1.3.

3.1.2 static control

The sub-ensemble normalized mass flux n{p,r}, the sub-ensemble
moist static energy hc(p,x), and the sub-ensemble total water content
qc(p,A) + 2(p,A) are determined from the sub-ensemble mass, moist static

energy, and total water budget equations. These are

an(p,A) _ _ AH{p)

o 5 n{psr} s (3.22)
.a_.__ - . KH(E) ] A YRS ¢ Y
ap [ﬂ(PsA)hC(.Ps)\)] p n(‘ps-"-,!ft\_r--,‘ : “_3-2u/

S o) [a(e1) + alp0] = - 282D 0 Gp)

+ %P—)n(PaK)T(PsU s (3a2£‘}

where H is the scale height RT/g. Between the top of the mixed Tayer
pg and the condensation level Pe qc(p,x) is determined from

3 N = - M a {3 opad
55 [1(ps2)a (pan)] 2L n(p,)3(p) (3.252)

while above Pe the air inside the clouds is saturated at a temperature

only slightly different from the environment, allowing us to write



21

a(pr) = @) + R L [ (o) - Fe()] . (3.280)

L %
where v = E“'[Q%T] .
p p
AD(p) is given implicitly by

S
vC v

(pa2p(P)) = 5,(p) (3.26)

a statement that level p is a level of vanishing buoyancy (in terms of
virtual dry static energy) for sub-ensemble AD(p).

If r(per) is regarded as a known function of 2(p,2r), (3.22),
(3.23), (3.24), (3.25), and (3.26) constitute a set of five equations
in the five unknowns n{p,:), sc(p,x), qc(p,l), 2(p,2), and XD(p)l. Thus,
the sub-ensemble budgets (3.22) through (3.25a), the saturation relation
(3.25b), and the condition of vanishing buoyancy at the detrainment level

(3.26) constitute the static control loop as showh in figure 3.1,

3.1.3 dynamic control
In order to predict the large-scale fields from (3.17) through
(3.21) there remains only the problem of determining mB(A).

Let us define the cloud work function as

P
A(x) =f n(p,x)[svc(p,k) - §v(p)] 9% . (3.27)
pp(*)

A(») is an integral measure of the buoyancy force. It is also a measure

1Equations (3.22), (3.23), (3.24), and (3.25a) are differential
equations which are solved from Py upward. The boundary conditions at
pB are S1mp].y n(sz)\) =1, hC(pJ) = hm’ qC(pB’A) = qu and 2(pB’>‘) = 0.
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of the efficiency of kinetic energy generaticon for sub-ensemble i.
Since A{x) is actually a property of the large scale, its time deriva-
tive can be written in terms of the time derivatives of Sy dy: Pps

s(p), and q(p). Thus,

dA(x) _ a(pgsh) sy , b(pgs1) 3hy,

dt T 3t Y at
Hp Hp
s 1 h + Afih
: '"a'fiﬁg{[‘ 1+ aalpg.a)]as, + ab(pg.a)ah + AAG) |

pB 33 (p)
f DyA) [-1+?\a(p>\)] at +xbp>\—'ﬁ‘—°—}§g—.(3.28}

D

Hy is the scale height at Pg- a(p,r) and b(p,r) are known weighting
functions. The terms on the right hand side of {3.28) can be divided in-
to two classes: those which depend on mB(A} and those which do not.

Thus, (3.28) can be written

( ) Max
dA )\ _ H 1 ' N
T —,{ K{x,x )mB(k Ydar + F(x) (3.29)

o]

where the kernel K(a,r') and the forcing F(A) are known.
The quasi-equilibrium assumption discussed by Arakawz and Schubert

(1974) can be stated as an optimization problem as follows

min

lmax
f c(n) B g

subject to



d—ﬁéﬂ <o. (3.30)

In (3.30) both Q%%ll and mB(A) are regarded as unknown, while c(x),
K(ax,x') and F()) are regarded as known. Since we define the weighting
function c()) as negative, and since Q%%il < 0, we are attempting to
minimize a non-negative quantity.

Equation (3.30) constitutes the dynamic control loop shawn in

figure 3.1. The parameterization theory is now closed.

3.1.4 optimal adjustment method

In a model which is discrete in time it is convenient from the
computational point of view to formuiate the parameterization theory
in terms of an adjustment process. Thus let us divide into two parts
the processes which tend to change the large-scale temperature and mois-

ture fields--large-scale terms and convective scale terms.

8 (_ai) . (_3_5_) (3.31)
ot 3t s, %t /conv. ‘
g (ii) : (&) (3.32)
ot LY/ T /cany. ’

55 95 35
) (%) -
at 3t/ .s. 3t/cony. '



) 3 3
% _ ,EMN + "I 3.34)
{3.34)
g at/L.S‘ ot Conv.,
9pg 9pp /305
= + == (3.35}
0 ( aQ‘L'/L,Sa ( at)Conv )

The large-scale terms consist of radiation and large-scale horizontal

and vertical advection.

a§) - - - 33 s

—_— = e \WeVS = gy — Q K3.,do}

(at L.S. op R

5q - - =230 7

<3t)L S = - WeVq - 5%— (3.37}
39S

_M_ - ° ":{ 2 3

( 3t>L c Wy sy + (QR)M (3.38)
1Y

(—-M-> = - W,,~Vq PR
ot LS. M M (3.,39)
ap

(——E> = - WpeVpp - W 3,40
ot LS B ""B B d

The convective scale terms consist of convective flux divergence and

source/sink terms.

a_-s_ - _a__!: fa py
<at>Conv g op 's-L2 +LR Vet
8¢ =g o - 2.49%
(at)Conv. 3 g R (3.42



3s

-—M) = —d— [(F) +k3—(F )] (3.43)
( %/conv.  Ps = Pp [ S's As, ~ SVg

aqM)

M =_9___[(F) + k&9 (F )] (3.44)
( 3t /conv. Ps = Pg L Qs As, "~ SVg

3"3) k

In our hurricane model the large-scale terms and the convective scale
terms are computed in separate subroutines which may use different
time steps. Typically the large-scale terms might be computed every
0.5 minute, while the convective scale terms are computed every

2.5 minute.

Let us say that the atmosphere is stable over the depth
pD(A) <P <P if the cloud work function A(A), given by (3.27), is
smaller than some critical value. The atmosphere is respectively neu-
tral or unstable according to whether A()A) equals or exceeds the criti-
cal value.

If the Targe-scale terms push the atmosphere into an unstable
state, it is the job of the cumulus subroutine to find a mass flux dis-
tribution function which will adjust the atmosphere back at least to
(but at the same time as close as possible to) the neutral state subject
to the constraint that each sub-ensemble mass flux be non-negative,
This is the discrete analogue of (3.30).

Suppose we have n cloud types. Let X be the mass flux of the

1th cloud type. Let bi be the amount that the 1th cloud work function
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exceeds the neutral value (bi > 0). Clioud tvpe j contributes an amount

aij per unit mass flux tc the reduction of bi‘ We can now write

<+ A s 8 e
11 X F 8y Xp Pt Ay, X > by

@ °
e ° @

8p1 X1 gy Xp FUUrFAn, Xy 2 by

L] + L] +...+ o L]
%1 Xl LY XZ %nn Xn 2 bn ?

12 0, Xp 2 0, «ovs X, >0. (3.46)

(3.46) states that an adjustment greater than or egual to bi must occur

for each i and that each sub-ensemble mass flux must be non-negative.

h

The it inequality in {(3.46) can be converted to an equaiity by

introducing a surplus varijable X4 s which is the surplus adjustment

sth

done to the work function.

. + . X +.°‘+ ° X _X u="t 3 o )
31 %1 T 32 % &in *n n+ P (3.47]

Note that x .. is not a mass flux but that it has dimensicns of b..

+1 »
Our objective is to minimize some measure of the surpius adjustment.

If we assume that this measure is linear and gross in character, we

. en
min 3, Cixi

i=n+1

can write

subject to
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a3y X T agy Xp TR A, X = Xy =b,
By Xyt gy Xyttt A X X, =b,
301 X + a5 x2 SRRRE ann X X0 =bn »
and x; > 0, Xy 2 0suuuy X 20 (3.48)

where the c; are weights. In more compact notation we can write

min cx
subject to
Ax = b
and
x>0. (3.49)

We now have one minimization objective, n adjustment constraints and
2n non-negativity constraints. Solution of the problem will yield the
n unknown sub-ensemble mass fluxes, the n unknown surplus adjustments,
and the value of our objective function __%; Ci%y which is a gross
measure of the surplus adjustment. e

The optimization problem (3.49) is easily solved by the simplex

method of linear programming.

3.2 Surface flux parameterization
Surface energy interactions in the model are parameterized by the
bulk aerodynamic method. The flux of sensible heat at the surface is

given by (Arakawa, 1972)

(FS)S = c,o5Cp | \VSI[TSEA - TS] ; (3.50)



the flux of water vapor by

28

(Fq)s = pSCDi \\I’Si {q*(TSEA s PS) = QS-] s {3»51}
and the surface stress as
T = ‘DSCDl‘VSi‘Vs , {3.52)
where the drag coefficient CD is given by
( [ 1
(C ) for Ter <T
Dneut1_70TSEA-TSl SEA <'s
L § \VSg g
CD = < - i {3.53}
-
Tera = Tedol
(Ch) 1+ [ =EA__S b for Tepp >T
D ; SEA 'S
neut N :
\ 7 E’
L i 4
0.0025 {
and (CD) = min , (3.54}
neut 0.0010(1 + 0.70 I\VSEH

In (3.50) - (3.54) Ts» Qg and wg are respectiveiy the surface air temp-

erature, mixing ratio and horizontal wind, TSE& is the

erature, and all quantities are expressed in SI units.

sea surface temp-
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4.0 FINITE DIFFERENCING

Our finite differencing schemes follow those proposed by Arakawa
(1972) and Arakawa, Mintz et al. {1974) for the UCLA GCM. Our vertical
differencing scheme, described in section 4.1, is identical to the UCLA
scheme while cur horizontal differencing scheme, described in section 4.2,
is somewhat different due to the use of cylindrical coordinates and con-
siderably simpier due to the assumption of axisymmetry. Detailed deri-
vations of the finite difference schemes given here were first done by
Arakawa (1972). We repeat some of them here for compieteness and conven-
ience of the reader. The reader wishing only a summary of the results can
skip to sections 4.3 and 4.4, where we summarize the discrete form of the

adiabatic frictionless part of the model.
4.1 Vertical differencing

4,1.1 vertical indexing

Let us dencte by the integers k (k = 1, 2,...K) those levels at
which the prognostic variables u, v, T and g are carried (see figure 4.1)
and by the half integers k + 35 (k = 0, 1, 2,...K) those levels where ¢
is carried. The upper boundary of the model corresponds to the half
integer Tevel 1s and the lower boundary to the half integer level K + 1.

The integer level k is representative of a layer of thickness

A.Gk = Gk"}'l - Gk_;‘ [ (4‘.1)
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Depiction of the vertical indexing scheme.
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so that
K
> Aoy = 1
k=1
We define
o = 1/2(_ck+1/2 + Gk-‘/a) . (4.2)

4.1.2 continuity equation

The vertically discrete form of (2.8) is given by

o 1o .
st ar () g (o - w ) = 0 (4.3)

Summing (4.3) over all k gives the vertically discrete equivalent of

(2.31)

T K d

‘—f‘ = 2 _'a_' (Tfruk AUk . (.4'4)
(1rc'r)k+1/2 is then obtained from the vertically discrete equivalent of
(2.32}

() == 3 [éh-a—(nru )]Ao (4.5)
ki gLq L3t - orar K k' ° b

4.1,3 momentum equations

We write the vertically discrete momentum equations as



%f (nuk) + ———-(wruku

y g0 3
k (%% . RTy 2] o
- (f+ —=)wy, = el Gl B 1IN {4.5]
r K '3 Py ory e
P p) i . . 7
. + 2 b= ; - !
ot (i ¥ war (v * go | Woin Vs = e, ¥ |
Vi
+ (f + = = (4.7
(f = )'nuk F {4.7]

o

The kinetic energy equation is found by multiplying {4.6) by , and
(4.7) by v, and adding the result. It can then be shown that for “ék+k

to remove as much kinetic energy from layer k as it adds to layer k+1, we

must require that

uk.;.;é ] (uk + uk+l) s (4,8}

= i + }
Ve =2 (et V)

4.1.4 TFirst law of thermodynamics
In addition to the fiux form of the thermodynamic equaticn given by

(2.39) we have the form

de_l 6
HY"E;?Q' {&.10]

fowd
2
S

The vertically discrete form of (4.10) can be written



1 (. ~
o (1) * g (ruyey) + 52 Ry [’“’k+1/z Pkt T ke ek-%}

1 /9
= ('—) ﬂQ » (4.11)
cp T K k
where
— pO \
ek = Tk E"(‘ ? (4.12)
P = Pp t mop . (4.13)
Arakawa (1972) has shown that if
K 2
the vertical difference scheme will conserve the area integral of }: ) Agy
k=1

under adiabatic conditions. This js the discrete analogue of an important
p K
integral property of the continuous equation. Multiplying by'(irj) and
(o]
rearranging allows us to write (4.11) as
c

K
p
9 9 R T I -
5t (16pTi) * vy (nrupeTy) (po) 5, ["°k+1/2 Okt T ™k-y ek-l/a]

RT
=7 (o E—ﬁ (at o ar) m+ Q. (4.15)

This is the vertically discrete form of (2.39).
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4.1.5 total energy conservation and the hydrostatic equation
Multiplying (4.6) by Uy and {4.7) by Vi and adding the result we

obtain

] 2 2 ., 03
°F [‘n 1/2(Uk + Vk )] T T"‘Uk

Q>
e
P

1 . . Y . L] " 7
" Sop [“"k+;§(”k“k+1/2 P Vi) T U T Ve

Y] -
=" [-LL (o &) 21+ TF, tE, ‘4,16

We can also show that

- . . _on
(nY‘uktbk) + — Az, (mk-;’ G‘)k - FUk‘l/z @k—%) + (Pk Yy
16
RT om . K 4 RTy om7] A 37
+ 1 (o 28 Uy == = [a + (o 5 }k or | (4,17}

Adding (4.15), (4.16) and (4.17), multiplying the result hy hoy s summing

over all k and assuming Q = F_ = F, = 0, we obtain

K .
2 24y 2 3 i Ll Zay By o w4 s
3T {Z n[l/a(uk AP cka]Aok} t oy {Z T l_g(uk +, ) STt

k=1

K K -
+ . ——!S- : pk A 3?
kgl{mk’“/ZKPO p%kass * k| T k- /[ b/ Cptk- o

k=1

"

K
+ 2T Z i—cb (6 =—) {po, =0 . {4,18)
8t =Rl k p K k '



This is the total energy equation for adiabatic frictionless flow, As far
as the vertical differencing scheme is concerned, total energy conservation

requires

K
RT =

Py . Pr+1 “

_ L RT S
@K = kgl Tr(AO— -p—)kAO'k - kgl 6k+j/2 (@k - {I)k_‘_l) 9 (4-21)

while (4.20) can be rewritten as
K K
_ Pl Py

‘Dk - ®k+1 = Cp6k+1/2 [(—]5-0—) - (‘E; for k = 1,2,...K-1. (4.22)

Using (4.22) we can rewrite (4.21) as
K R ,

oy = k-z-:l [mk BE Aoy - Cp(gk+1/2 By * Oy, ock)]Tk s (4.23)

and using (4.12) and (4.14) we can rewrite (4.22) as
- = { = -
Oy = Epaq Cp‘uk+1Tk+1 + Bka) for k = 1,2,...K-1, (4.24)

where we have defined
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0 or any value for k =1
K . -
. = ) (4.25)
k zé[-(—‘-‘i>-{ for k > 2
Py J
K -
P i
5 [(—ki) S1 for kst ,
By = P (4.28)
" for k =

Thus, knowing the temperature Tk we can use {4.23) to compute the gesopotan-
tial of the lowermost integer level, then use (4.24) to compute the geopo-
tential at every other integer level. Equations {£.23) and (4.24)
guarantee, at least as far as the vertical differancing scheme is concerned.
that total energy is conserved under adiabatic frictionless motion.

The weighting factors o and B are shown in figure 4.2 and the factor
T

q
J coh ie the wed .
ﬁvk D Ack (ok+1/28k + Uk-%“k)J’ which is the weighting factor on ¢

L g pEe
o oX

(4.23), is given in table 4.1. In both cases = has been specified as

90 kPa, pr as 10 kPa and Acy as 1/18 for all k.

4,1.6 water vapor equation
The finite difference analogue of the flux form of the water vapsr

equation (2.40) can be written

1 [ e . 1
at (mqy ) + (nruqu) *‘;‘[“°k+g Ueass ™ k-1 Yk
= ﬂ(-Ck + Ek) . (4.27)

Provided there are no water vapor sources or sinks (i.e. -Ck + Ek =g for

all k), {4.27) insures consarvation of total water vapor as far as the
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(unF;ts i_mk Pk kT Ve p’f_; k=3 %k’ E
of 102 Pa) tunits of 1077) ;f
125 0.37161 !
175 0.12082 ;
225 0.05158
275 0.02562
325 0.0139¢
375 0.00813
425 0.00432
475 0.06305 3
525 0.00153 3
575 0.00113
625 0.00071
675 0.00042
725 6.00015 g
775 06003 g
825 -0.00805 :
875 -0.00012 g
925 -0.00016 §
975 7.19533 E
|




vertical differencing is concerned., Let us now concern curseives with
the problem of making a judicious choice of q at the half integer Tevels.
We have no objective means of choosing among the many possible interpola-
tion schemes for q at the haif integer levels, but present here one
possible scheme which we believe is reasonable.

Let us relate Gy, to Gy and P through an interpolation of rela-

tive humidity such that

G | Fay k1 % 4.28
q* . i E’;—*— oF Pt ( ) )
k+is Lk e+l
where
qf = a*(Topy ) and gy = a¥(TegaPyyd o (4.29)

and where q§+L is an as yet unspecified functicn of qﬁ and q§+1. Equation
2

{4,28) can also be written

T, W,
U, = 2qF I T EoEL Gkl (4.30)
k k+is
If Apas, is reguired to Tie bestween ay and Qs ? then
GRas, Gk
smre b e = 1, 4.31
R ) (4.3
which can also be written
29595,
q* = _;__Eg._sf__‘_c.l_ . (4_32)

NI |

Thus , Q§¢L is the harmonic mean of q§ and q§¢l. Substituting (4.32) into
TS ‘

(4.30) we obtain our interpolation formuia for the mixing ratio at the
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half integer levels

ax x

- e+ § K n {4.33)
= - } B S v W s R
iy q*{i - q?-‘-i Qk q-gf EX :-{zﬁu ‘iK"-Ll LT

Since qﬁ+1 is typically greater than qis the weighting factor on Gy is

typically Targer than the weighting facio 1o TOUS, Gy tends to
t

..3
O

-y
vd

K

pe closer to A than to chy Profiles of ihe weighting factors

A1 % el o
o~ and —¢ ——=— for a mean Marshall Islands sounding with 5 «Pa.
U ™ %1 YT Gk

resolution are shown in figure 4.3,

In the saturated case {4.33) may be a poor choice for Apeas, and may
result in what Arakawa (1872) terms "conditional irstability of the compu-
tational kind" or “CICK", This type of instabilityv can be understood by
deriving the form of the thermodynamic esguation which holds when large-

o . . L - - . : 1
scale condensaticn is occurring at Tevel k., 7his squation takes the form

[

e w8 e

o3

.Y

where ( is the moist adiabatic Tapse rate at Tevel k., h is the moist

static energy cpT + ¢ + ig and h* is the saturation moist static energy

cpT + 9 + Lg*, If hk+%

to warming at level k. Similariy, if h < hﬁs rising motion at k-% (i.e.
2

®

gy
K+

A
<o
(]
(=)
o3
pors
-3
—l
(=)
[ ot
s
1Y)
n

> hk, rising motion at k+s {i.e. =

k-1

70 < 0} contributes to warming at Tevel k. If no,,, < 0, there are three
k=1 k+is

1See Arakawa (1972}, page IV-6.



PRESSURE (102Pa)

41

100

200}

300

400~

500 - *

a5

O

(&)
i

~

o

o
i

800

900} /L \

1000 j | i } 1 | i | ]
0.1 0.2 0.3 04 0.5 0.6 0.7 08 09 |.0

9
UG+ e

Isiands sounding with 5 kPa resolution.

U1

f 1
T At or a mean Marshal

and

Fig. 4.3. Weighting factors



42

situations of interest at the neighboring integer Tevels as shown ir the

Teft column of figure 4.4. These cases are as follows:

and h,., <h

B
A
(S}
o

pa s

case (a) h = P

case (b) hk < hi and hk+1 = hﬁ+1 . (4,350
= * = h¥* (8 2
case (c) hk hk and hk+1 R &,35¢

In each case one might expect that the atmosphere could be either absciuiely
stable (second column of figure 4.4) or conditionally unstabie (third zclumn
of figure 4.4). If we require that rising motion at level k+% does not con-

tribute to warming at neighboring saturated integer levels, then we must hove

case (a) hk+% < hi . £ .35z}

* < £ 3ERD
case (b) hk+1 < hk+% s 360
case (c) §+1 < hk+é < h? . (£.26C)

¢
s
i

These inequalities are satisfied if hk+% lies on the heavy Tines in
second and third columns of figure 4.4.

Let us first discuss the second column, i.e. the absolutely ziable
situation. Requiring that skJrl/2 1ie between Sk and Sk+11’ and since

(4.33) guarantees that Gy, Ties between = and Gp1° then hE must Tie

¢ e
&

between h Thus, it is obvious that (4.36a) and (£.36c} are

K and hk+1'
satisfied. However, (4.33) may lead to an hk+‘ which does not satisfy
2

(4.36b), i.e. (4.33) may in this case cause "conditional instabiiity of the
computational kind." If such a situation arises, we abandon (4.33) and

choose Gpas, such that h, , = h§+1.

K23

1This is analogous to (4.14).
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The left column illustrates three cases in which conditional instability of the
computational kind might occur.

The second column portrays the absolutely stable
s1tuat10n and the third column the conditionally unstable situation.

£¥
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Let us now discuss the third column, i.e. the conditionally unstable
situation. Since thrl/2 must lie between hk and hk+l as discussed above,
we can see that (4.36a) is satisfied if heor S hﬁ. In addition, the
requirement hk+1 < hﬁ will eliminate case {b) and case (c). In order to
maintain this requirement we resort to a moist convective adjustment
scheme which is described in section 5.3. We enforce this adjusiment for
1 <k < K-1 since the cumulus parameterization theory given in section 3.1

is not general enough to include moist convection in which the updrafis

originate above the mixed layer.
4.2 Horizontal differencing

4.2.1 continuity equation

We use a distribution of variables in the horizontal as shown in
figure 4.5, which together with figure 4.1 leads %o the depiction shown in
figure 4.6. This is referred to as Scheme B by Aratewa (1972), whc dis-

cusses its excellent geostrophic adjustment properties. For the eguaticn

of continuity (4.3) we use the following finite difference form

i R - F +—1—[é S5 l=0 (4.37)
ot sk T ik Aoy LT ks T T k- ’ vresty
where we define
I = wrar , Fzmru and S =15 . {4,28)
The mass flux F is given as
F'i‘i‘l/z,k =1 (TT”H‘I + wi)(ur)ﬁlzak , {4,39)
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where

(ur)i+%,k = Uik Mo - {4.40)

4,2.2 pressure gradient force
The pressure gradient force in the radial momentum equation {(2,36) can

be written

-Tr %%-— wrcp-l %%- . {4.43)
Since the first term can be rewritten as
-r [-g—}; (r0) - o g-}] (4.42)
we write the discrete form as
‘("r'%%)i+; T E%%Z [T1+1¢i+1,k =y o w0 0 oy (g - “i{ﬁ :
” (4,43

The second term in (4.41) is now written in a form consistant with

that of (4.43)

_G”vp-l.iz) - .
ar i+, k 2AT

where

[
—

-1 = (4,4
(rop 55 i = Rﬂigi,kTi,K//bi,k ' S

To summarize then, the pressure force contributing to %E-(Hru}

c
T+, K

ri+1/2

- -1 -1 -
i [k“1+1 (054 - oy i) Llwoe )y yHlnoe Thy il yg =7 g)



Although T has been defined at the integer radial location by (4.38), I at

the u,v points (i.e. half integer radial location) has yet to be defined.

4.,2,3 first law of thermodynamics

We use the form

23

p K
o1 Pk T E
“k( P ) [siak**‘/z O,k T 21,k ei,k-l/J

(cﬂp~l)i’k

“p

3 - h -
Efmﬂmﬁ"%{ﬁ%x(ﬁx+TwLQ F%>k”FLk+H*ﬂ

oll,

1 i r { -
¥ T T ZBru)i—%,k\ﬁi T T Wi (e "1)]

c s (4.47)

as the horizontally discrete analogue of (4.15).

4,2.4 water vapor equation

For the horizontally discrete form of (4.27) we choose

q. + q. ) (q. + q. )
_3___ 1+1,k 1’k 19k 1-1,k
ot (1395 1)+ Frag i ( 5 = Fiak 7

1 . . _
* E-k— [S'i N q'i,k+l5_ - S-i Jk-% Q1’k_1/2]— H.i(-C"'E) . (4.48)

4.2.5 wmomentum fluxes

Let us define the mass flux at the integer radial locations as

F

[H
N
~
-1

IR AT R (4.49)
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Then we may write Ar times the first three terms in {2.36) as

3
o (M, u; + 5| F, o3y, F UL
5T (Mt i) * [F1+1,k(ua+§§,x Uazg, k)

S

1 11z .
+ —— =15, U + U, } - S, T + U, }
Ack 2 1+%,k+%( T+, k1 T T4,k 1+%sk—%( i+, k f+s, k=17

(4.

1 b
3

0}
with a similar expression for the first three terms in (2.37). We must
now determine I and S at the half integer radial locations. Making u con-

stant in both space and time requires that (4.50) become zerc, or

1 o . \ ;
F,  +-— (S, - S, L) =0 . 4.51)
1.k AUk ( T+ ki T, K2g! ‘ ‘

5
fent

P
3t Tiwg T Fiel,k ”

As pointed out by Arakawa (1972), (4.51) is necessary for the conservation

of kinetic energy under a pure advective process. We can see that by

defining
n, + I, . T
1 - i 1 .nd S I S i+l ks (4.52)
it ~ 2 itd, ki T~ 2 ? ew=s

(4.37) and (4.49) guarantee that (4.51) holds.

4,2.6 coriolis force

From the momentum equations (4.6} and {4.7) the coriclis force con-
tributing to o(mu) is

ot
[frar + var] av (4,53}
and that contributing to %%EXl-is
- [frar + var] mu . (4.54)

We will use the form
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R [CIEERICHVIELN] N (4.55)
for (4.53) and a similar form for (4.54). In (4.55)

= L
C.,k — friAY"l‘ 2

; k)Ar . (4.56)

1"1/29

This form of the coriolis force allows us to maintain the relation
{4.53) x u + (5.45) x v = 0 and thus avoid kinetic energy generation by the

coriolis force.

4,3 Summary of the complete set of equations (differential difference form)

The finite difference analogues of (2.31) - (2.40) will now be given.
We shall write the complete set in a differential difference form, leaving
the time differencing scheme to section 4.4.

Our continuity equation takes the forms

;[i= -él (Fip i = Fioy )00 (4.57)
. . 3L,
Skt T ke T (E'ti F Pk Fi—l/z,k)AGk ’ (4.58)
where we have defined
I, = meraar (4.59)
Fi+g,k R (ni + n1.+1)(|ru)1.+1/2’k . (4.60)
TS X N (4.61)

and where

pi,k = pr + 0 (4.62)



The hydrostatic equation is given by

K =
R N .
o, ., = . Ao, - ¢ (o, ., o, B, T. . & 4.63)
i,K E;ﬁ[%10k pisk % p'ok-%aa,k okvggx,k{j i oK ( !
and by
/ - , _—_— th ooan
BT Hke T St e Pk V0
where
0 or any value for k = 1
= f4_85
O'._i’k = pi k_l K % euua}
11 - | ——— for k > 2
Pik / |
K =
p.
2 {(—%ﬁﬁfﬁl) -1 for k < K-
By 15K . (4.65b)
0 for k = K

The equation of state is

L N
[EL S

,.!::
°

<
[¥)]

The radial and tangential momentum equations are given respectively by

a 1 3 ! \.m-:
el ¢ TR = LIiF. . + U, - 7, {u. + Ui, o)
at (H1+%u1+%,k) é[pl+1,k(u1+%,k u1+§§,k) 1,k -1,k T+g,K0
-1 ( * Uy ) - S sl F O]
Aoy 2 L7its, kst itk i+l kt+l P4, k=it i, k-1 T+ K7L
N P e
* [(HT ﬂ1+1)( i,k 1+1,k) Vistg,k
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ot BjaViu ) = 7 [Fi+1,k(vi+%,k+vi+§§,k) - Fi,k(vi—%,k+vi+%,k)]

L)

1 1
5 1+g,k+1) ) Si+%,k—%(vi+%,k—1+vi+%=k)]

hoy 2 [Si+%,k+%(vi+%sk+v

- Y [(ﬂi+ﬂi+1)(ci,k+ci+1ski]ui+%,k + Hi+%F¢i+%,k , (4.68)
where
Loy, =0 (M + 14) (4.69)
Fo =%y ¥ Fan ) s (4.70)
é1'+1/2,k+1/2 =% (.i,k+% + §i+1,k+%) s (4,71)
Cj g = frypr+ %ﬁ'(v1+%,k + V1—%,k) . (4.72)
(G“p-l)i,k = oy z:j;k (4.73)

The thermodynamic equation is written in its final form as

3 - i
3t (T4,0) = '12[F1'+1/2,k(T1',k+T1'+1,k) Fi—l/z,k(Ti-l,k+T1,k)]

. (onp-l)i,k ; oll.

1
5t 1/2[(‘””)1-!5(”1‘“1-1)+(r“)1+1<,_(“1+1'“1)]

T (4.74)

And finally, our continuity equation for water vapor may be written

1 1 o .
Tor 2 [51 et T T 20 o T k) = St kesTH 6T k1428 1T k1)

]
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5 ) (95 k F 541,k (qi-l,k Ay
at (Hiqi,k) T [F1+%,k( R } 'F‘_g,k\ )]

1

- o _. “,+ .I__*_r')_
Ack [S .J H1\ C+E)

. . S. .
1,k , ki i k=5 k-3 |

4.4 Time differencing
The time differencing scheme for the equations of section 4.3 can be

described in the following manner. Suppose we have the equation

e

= f(w) s {@=76)

where ¢ is an arbitrary scaler. The Teapfrog scheme is given by

_ o
(L) oy (n=1) 4 f(wK“’; , (4.77)
and the Matsuno scheme by
IULE D) B f(w(“)') 5 (4.78)
L be(”+1}*} : (4.79)

The time differencing in the model is primarily handled by the leap-
frog scheme. However, we perindically {every 15th step or so} emplioy the
Matsuno scheme to prevent the divergence of the odd and even leapfrog
solutions.

The use of the above explicit time differencing scheme coupied with
the existence of external gravity waves requires a very small time step to
satisfy the criterion for linear computational stability. For a radial grid
spacing of 15 km our experience is that the time step must be Tess than 21
seconds. If an implicit time differencing scheme were applied to those terms

which give rise to external gravity waves, a considerably larger time step

could be used.



5.0 LARGE-SCALE PHASE CHANGE,
DRY AND MOIST CONVECTIVE ADJUSTMENT

5.1 Large-scale phase change

The subgrid scale condensation, evaporation and precipitétion
caused by the parameterized cumulus convection discussed in section 4.0
can occur when the atmosphere is not saturated in a large-scale sense.
In addition, large-scale condensation, evaporation and precipitation
can occur when the air becomes saturated and remains saturated in a
large-scale sense.

The water vapor equation can be written as

-(jj-= ——
Tt C+E (5.1)

and, neglecting for the moment heating other than that due to phase

change, the first law of thermodynamics can be written as

S D - =Lc-E), (5.2)
where C and E are respectively the rates of condensation and evaporation
per unit mass of dry air. If the air is saturated and is remaining sat-

urated, E vanishes and C is related to the individual time change of the

saturation mixing ratio such that

I
c el (5.3)

In our tropical cyclone model the time step must be small enough
to satisfy the linear stability criterion of Courant-Friedericks-Lewy,
This criterion requires a very small time step and thus it is not

necessary to compute large-scale phase change at each time step, Our
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procedure is to predict q and T from (5.1) and (5.2) with C and £ neg-
lected for several time steps, then check to see if q exceeds the
saturation value. Thus, if in the course of integration the air becomes
supersaturated on the scale of the grid, large-scale condensaticn and
release of latent heat is assumed to occur. The excess water removed
from a supersaturated layer is allowed to precipitate into the next
lower layer and to evaporate completely. This process may bring that
layer to supersaturation, in which case the excess is removed and pre-
cipitated to the next Tower layer. When the bottom layer of the model
is reached, any excess is assumed to fall to the earth's surface as
large-scale precipitation.

The procedure described above is identical to that developed by
A. Arakawa and J. W. Kim for the UCLA GCM. However, the computational
procedure described below is somewhat different.

At level k, let the temperature be dsnoted by Tk and the water
vapor mixing ratio by Qe+ If Ay is larger than the saturation value
qz, a certain mass of water vapor per mass of dry air must be con-

densed.1 This condensation, denoted by CkAts will reduce 9y to qé and

. 1
increase Tk to Tk’

q = g, - Cat , 15.4)
T, =T, +=Cat (.5)
k K c, k=" - T

The new water vapor mixing ratio qL is the saturation value at

the new temperature TL,

1 The vapor is condensed to 1iquid water. The ice phase is not con-
sidered.
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* !
q =9 (Ts py) (5.6)

Equations (5.4), (5.5) and (5.6) form a closed system in the unknowns

i ! i . . .
Sh Tk and CkAt. qy and CkAt can be eliminated to give

a - 0 (Ths p) = 2 (T = T,) = 0 (5.7)
Because of the complicated form of the function q*(T, p) an ex-
plicit equation for Tk cannot be derived from (5.7). However, an
jterative scheme can be developed by applying Newton's method to
(5.7). This scheme is as follows:
a) Make an initial guess of Tk for TL, setting the iteration
index, v, to one.

b) Compute a new estimate of T& from the previous estimate using

% v-1 (v-1
q - q (T, ), p,) - B (r ) T,)
_ % K K - T Tk k (5.8)
C(v-1) ’
1+ Y(Tk s pk)
1

*
where v = %*-<g%—>
p p
c) Compute a new estimate of condensation from

(v) (v)
C, At=§[m -Q}. (5.9)

b
L

The actual expressions used for q*(T, p) and y(T, p) are given in
Appendix A.
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d) Compute a new estimate of a from

(v) {(v)
qQ =9 - % ot (5.10)
e) Test if
* (V) (v)
q (Tk » Pk) - qk i
) < some tolerable error (5.11)

x
| q (T, s py)
If this is not true, set v = v + 1 and return to (b).

f) Allow the condensate CkAt to fall into the next Tower layer

Ao
and to evaporate entirely reducing Tk+1 by L {C,at)( k Y,
Cp K Ac k1
Ao
. N . Fal KN . '; . P
and increasing sy by (CkAt)(AGk+1). If the bottom layer

of the model is under consideration {k = X}, the condensate
reaches the earth's surface where the mass of large-scale pre-

cipitation per unit horizontal area is given by
ﬁ/g(CKAt)AOK .

g) If the bottom layer of the model has not been reached, return
to (a) and repeat the procedure for the next Tevel {k + 1).
Our experience is that a reasonable convergence criterion is

usually reached in a few iterations.

5.2 Dry convective adjustment
When potential temperature decreases with height (i.e. when

ek < 6k+1 for one or more integers 1 < k < K-1), we assume that subgrid



scale dry convection will occur and that a dry adiabatic lapse rate
will result. The dry adiabatic adjustment procedure we will now de-
scribe is identical to that developed by J. W. Kim and A. Arakawa for
the UCLA GCM.

At Tevel k, Tet the temperature before adjustment be dencted by
Tk and the temperature after adjustmént by TL. Then, if the adjustment

involves the contiguous layers beginning with kb and ending with ke, we

can write
ke ke
> Tlae, = 2. T,ho, . (5.12)
- S ~ k= k
k'—kb !'\_kb

If o denotes the potential temperature which results from the adjust-

ment, then

K
\ Pk
T, = (b;) e fork <ks<k, . (5.13)

Substituting (5.13) into (5.12) we obtain

0 = —p , (5.14)

After computing 6 from (5.14) we can easily compute TL from (5.13). This
procedure may vesult in an unstable potential temperature stratification

at neighboring intervals. in which case the procedure is repeated with
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new kb and ke. The procedure is compiete when there exists no single
pair of k and k+1 for which 8, < 8111 for any integer 1 < k < K-1, i.e.
when a stable temperature stratification in the entire vertical column

is reached.

5.3 Moist convective adjustment

The cumulus parameterization theory given in section 3.1 is not
general enough to include moist convection in which the updrafts originate
above the mixed Tayer (i.e. altocumulus convection}. As we saw in section
4.1.6, if the atmosphere above the mixed layer becomes conditionally un-
stable and too moist, instability can result. The instability shown in
the right hand column of figure 4.4 occurs when h§ < h§+1 and hk+1 > h§
for 1 < k <K-2. The important case k = K-1 is of course handled by the
cumulus parameterization theory. In a model with high vertical resolution
such as ours, this instability is unlikely unless the relative humidity is
very large. However, if such an unstable situation arises, we must adjust
hk+1 and hﬁ so that hk+1 = hih This is accomplished as foilows.

Let us consider non-entraining clouds whose bases lie in taver k+1
and whose tops lie in Tayer k. These clouds produce fluxes at Tevel ki

and rain in layers k and k+1 so that the following temperaturs and moisture

changes are produced (see (3.17) and (3.18)).

PPk 5k 7 ‘_
g st n[‘Sc - LK)k+1/2 T Sk | +1LR (5.15)

-

Apk'*'l aSk‘i'l
—_— e = o - - 16}
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Ap 99
k ko .
g st ”[(qc t B, - qk“"lé}- " (5.17)

Pit1 2
kil “HHL - (o + Dy, - U |~ Rt - (5.18)

Here n represents the mass flux at level k+s, and Rk and Rk+1 represent the
rate of rain production in Tayers k and k+1 respectively. Since the clouds
are non-entraining, h is constant with height in the clouds and equal to
hk+1' We assume that Ry s zero, j.e. that g+£ is constant with height

in the clouds in Tayer k+1 and equal to Gy We also assume that Rk is
such that the detraining air in layer k is saturated but contains no

liquid water, i.e.

b = (9 * Dy - () - (5.19)

The rain produced over the time interval At is then

- 1
LRkAt = nAt[?k = Spep ¥ T?§E'(hk+1 - hﬁ)} . (5.20)

Equations (5.15) - (5.18) can now be written in discrete form as

bs) = Z%E'[nAt(sk+1 - Sk+g) + LRkAt] , {5.21)
BSy4q = Zgizg-nAt(sk+% - Sp4q) s (5.22)
aqy, = Z%E-{nAt(qk+1 - qk+%) - RkAtJ R (5.23)
Myyq = Zgilz-nat(qk+% - Qppp) (5.24)
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Equations (5.22) and (5.24) can be combined to give

thy g = E&H ety - ) s (5.25)

while (5.20) and the relation (1+yk}Ask = Ahﬁ allow (5.21) to be written

ahf = g g - b+ (s - )] - (5.26)
Equations (5.25) and (5.26) are then combined to give
- 1 17 i ,

allowing us to write the mass flux required to reduce hk+l - hﬁ to zero as

h h*

- k+17'k
gTIAL - 1 + 1
p l—hk”-hkﬂlﬂk)(sk'sk’rl/a)} Y [hk+%'hk+1]

(5.28)

—

Our adjustment procedure is to compute nat from {5.28), RkAt from (5.20) and
ASys DSy 1s AQY and Ay yq from (5.21) - (5.24). When the adjustment procedure
is applied to the pair of layers (k,k+l), we see from {5.22) that Taver k+l

is warmed so that the pair of layers (k+1,k+2) must become more stable.

Thus, if we start the procedure from the pair of layers (K-2,K-1} and work

upwards, only one pass is required.
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6.0 INITIALIZATION

To begin jntegration of the model initial conditions on the prog-
nostic variables wn, u, v, T and q must be specified. We shall assume
that initially there is no transverse circulation, i.e. u = 0 every-
where, that the =, v and T fields are in gradient wind balance, and that
g is a function of the vertical coordinate only and corresponds to some
mean tropical sounding. Since the w, v, T and & fields are initially
related by hydrostatic and gradient wind balance, specification of the
initial v field allows computation of the initial = and T fields. Alter-
natively, specification of the initial = and T fields allows computation
of the initial v field. Although neither of these is as straightforward
as might first appear, we have chosen the first alternative as being the
most convenient. Applying gradient wind balance at the sea surface we

obtain

v BLp
fop2jvg = RTg > ato=1, (6.1)

where %%-disappears since ¢ is zero in our model everywhere along the

g = 1 surface. Knowing v. and TS everywhere, (6.1) allows us to compute

S
Pgs and hence w, provided we specify an outer boundary condition on pe.

The gradient wind equation at an interior point takes the form

(f+¥-)v=%§+ca% . (6.2)

Differentiating (6.2) with respect to sigma and using the hydrostatic

equation, we obtain
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g@_za_a-ﬂiu_g_[uxv]. (6.3)

Since we know v and = we can regard {6.3) as a first order partial

differential equation in a. Knowledge of o at the sea surface and at

the outer boundary allows us to solve for o at all interior points, after

which T can be determined from the equation of state.

Let us now consider the initialization procedure in discrete form.

The discrete analogue of (6.1) can be written

_ (€5 oy ¥ Cong i) Vi .
,Q,VLpS - ,Q,les - 2}"- RT 3 (6'4)
i i+l it 'S

allowing us to determine the surface pressure inward from the outer
boundary of the model.

The discrete analogue of (6.2) can be written

+C

o (Cik * Chan,id Vienk

= @, - &, +
®1+1,k <i>1,k s + T,

T, - . T. T. \
i+1 (s i,K +1,k
i+l

L + ooy T, —=21 (6.5)
K Py ki pi+1,k)

/

Taking the difference of (6.5) applied at k and k + 1, and using the

form of the hydrostatic equation given by1

® (6.6}

1ok 7 %k " %00 e Taoken * Bk Tk

1 (6.6),u1 , and B | are given by (4.65).
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we obtain
Tie1™ " T3kl T k]
c (a, T, +8.  T. )+ 21 oRle 2 - g, —2=
Mo ) q=T. T. T.
i+l i i+l.k i+l k+1]
= 0. - O, Fo—— T, R g —tT g LRSS SAALN
Lk Tk gty i [ KPisgk K Pk

, .
o [(Ci,k+1 * Gk Vi er 7 Gyt Ci+1,k)vi+%,k|'(6’7)
d

The gradient wind balance in the Towest layer is

Mo o= T. T.
itl i i,K i+1,K
d. -_—_—‘—RO'TT."‘—’_"!'O' . '_—L—)
TR by ( K ps kK1 payg

1

ok T Gk T Gk Yk (6.8)
2

where 2 ¢ is given by the vertically integrated form of the hydrostatic

equation
K

R
6. = Z T.0
oK |@1[‘ K P,k

AO’k - Cp(O'k_l/z Otk + 0’k+1/2 Bk)]T'l,k . (6-9)

Equations (6.7) and (6.8) can thus be written
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me =T, o M -T. (0]
i+l i k ] { i+l i, k+1 1
c.B. - m.R T. +)cC o =R T,
[ p~i,k ni+n1+1 i pisk i,k p 1yk+l Mty pi5k+1J i,kt+l

= ¢ -~ o N L WA Y Tislk o Til kel
Bk TLKL gy TR P KR Py e

1

oy [(Ci,k+1 * Ot Vi ke - (€
2

i,k

T =T N
i+1774 R T .K

K
R
Z[TI’.O’ —— Ag, - ¢ (o a, + o ,B):]T. S Lt S R P GLE L
=y LT k Pi k k p' k- Tk k+s “k7| Lk T K™ Pi

417 g Tivlk 1
0, T -

= §., —_— .
i+1,K Tt K'i+1 Pi+1,K 2ri+%

(C

i,k F G,k Ve K

(6.11)

Knowing T1+1,k and 2341,k (k=1,2...K) we can solve {6.10) and
(6.11) as a linear system of K equations for Ti,k (k=1,2,...K). We then
use (6.9) to compute ®1,K and (6.6) to compute %5 k (k=K-1,K-2,...1).
This procedure is repeated for each i until we reach i=1. To initiate
the procedure we assume some vertical temperature profile at the cuter
boundary (e.g. a mean tropical sounding) and compute the resulting pro-
file of ¢ from (6.9) and (6.6).

Thus, with the specification of u, v and q and the determination of

m and T from hydrostatic and gradient wind balance, the initialization is

complete.




7.0 CONCLUSIONS

We have presented the detailed design of an axisymmetric tropical
cyclone model. The model is based on the primitive equations in the sigma
coordinate system. The cumulus parameterization used in the model follows
the theory presented by Arakawa and Schubert (1974). The finite differ-
encing schemes follow those developed by Arakawa for the UCLA GCM. Further
discussion of and experiments with the parameterization theory will be
given by P. Silva Dias and W. Schubert.1 In addition, resuits of numerical
integrations with the tropical cycione model will be given by J. Hack and
M. Schubert.®

In the present model there are two shortcomings which we are attempt-
ing to correct.

The first shortcoming of the present model is that virtual tempera-
ture effects are not incorporated into the large-scaie equations, The
incorporation of virtual temperature effects is not as straightforward as
one might think. This situation results from the fact that water vapor
effects must appear not only in V@ but alss in va.

The second shortcoming is that a mixed layer of variable depth is
not included in the present model. If a mixed layer of variable depth is
introduced into the present sigma coordinate model, certain computational
disadvantages arise because the top of the mixed layer is not necessarily
a coordinate surface. However, it is possible to design a generalized
sigma coordinate system in which both the ground and the top of the mixed
layer are coordinate surfaces. Such a generalized sigma coordinate system

is presently being incarporated into the model.

1These reports will appear in this Atmospheric Science series.
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APPENDIX

DETERMINATION OF SATURATION MIXING RATIO AND GAMMA

The saturation mixing ratio g* is given by

. _ e (T)
q*(T,p) = 0.622 EEROEE (A1)
s

where eS(T) is the saturation vapor pressure over a plane surface of

water. Teten's formula for eS(T) is

e (T) = 610.78 exp [a(TT‘_zf'm)} , (A2)

where es(T) is in Pa, T is in degrees Kelvin, a = 17.269, and b = 35.86.
The expression for the function y can be obtained from (A1) and

(A2) and is given by

7 ln e (T)
= L_. éﬂ: = P | [
Y(Tsp) - Cp <3T )p - q*(Tsp) [p - es(T)j 5T )
which can also be written
*
v(T,p) = 4098.03 - — P a*(T.p) 33)

Cp p - es(Tji(T - b)z
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