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ABSTRACT 
 

 

STOCHASTIC ANALYSIS OF FLOW AND SALT TRANSPORT MODELING 

IN IRRIGATION-DRAINAGE SYSTEMS 

Sustainability of crop production in the Lower Arkansas River Basin in Colorado 

is seriously threatened by the continuous degradation of irrigated lands by the dual 

impact of soil salinization and waterlogging problems. Integration of improved irrigation 

practices, upgrades to the irrigation systems, and subsurface drainage are essential 

components of any plan to stop the deterioration of irrigated lands. Numerical 

simulations of irrigation and drainage systems are necessary to justify the consequent 

management actions.  Despite the uncertainty of their predictions, numerical models are 

still indispensable decision support tools to investigate the feasibility of irrigation and 

drainage systems management plans. However, the uncertainties in input parameters to 

these models create a risk of misleading numerical results. That is beside the fact that the 

numerical models themselves are  conceptual simplifications of the complex reality.  

 The overarching objective of this dissertation is to investigate the impact of 

parameters uncertainty on the response of simulated irrigation-drainage systems. In the 

first part of the research, a Global Sensitivity Analysis (GSA) is conducted using a one-

dimensional variably saturated problem to prioritize parameters according to their 
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importance with respect to predefined performance indices. A number of GSA methods 

are employed for this purpose, and their comparative performances are investigated. 

Results show that only five parameters out of 18 parameters are responsible for around 

73% of crop yield uncertainty. 

The second part introduces a method to reduce the computational requirements of 

Monte Carlo Simulations. Numerical simulation of variably saturated three-dimensional 

fields is typically a computationally intensive process, let alone Monte Carlo Simulations 

of such problems. In order to reduce the number of model evaluations while producing 

acceptable estimates of the output statistical properties, Cluster Analysis (CA) is used to 

group the input parameter realizations, e.g. hydraulic conductivity. The potentials of this 

approach are investigated using different: 1) clustering schemes; 2) clustering 

configurations, and 3) subsampling schemes. . Results show that response of 400 

realizations ensemble can be efficiently approximated using selected 50 realizations.  

The third  part of the research investigates the impact of input parameter 

uncertainty on the response of irrigation-drainage systems, particularly on crop yield and 

root zone hydrosalinity. The three-dimensional soil parameters, i.e. hydraulic 

conductivity, porosity, the pore size distribution (van Genuchten �) parameter, the 

inverse of the air entry pressure (van Genuchten �) parameter, the residual moisture 

content parameter,  and dispersivity; are treated as spatial random processes. A sequential 

multivariate Monte Carlo simulation approach is implemented to produce correlated input 

parameter realizations. Other uncertain parameters that are considered in the study are 

irrigation application variability, irrigation water salinity, irrigation uniformity, 
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preferential flow fraction, drain conductance coefficient, and crop yield model 

parameters. Results show that as the crop sensitivity to salinity increases, the crop yield 

standard deviation increases.  

The fourth part of the research investigates an approach for optimal sampling of 

multivariate spatial parameters in order to reduce their uncertainty. The Ensemble 

Kalman Filter is used as instrumentation to integrate the sampling of the hydraulic 

conductivity and the water level for a two-dimensional steady state problem. The 

possibility of combining designs for efficient prediction and for efficient geostatistical 

parameter estimation is also investigated. Moreover, the effect of relative prices of 

sampled parameters is also investigated. A multi-objective genetic algorithm is employed 

to solve the formulated integer optimization problem.  Results reveal that the multi-

objective genetic algorithm constitutes a convenient framework to integrate designs that 

are efficient for prediction and for geostatistical parameter estimation.  
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1  INTRODUCTION 

1.1  General 

The ever-increasing world population causes a continuous increase in demand 

for food and fiber. The disturbance of food production processes could have 

detrimental consequences for local and global social, economic, and political stability. 

The world relies heavily on agriculture to secure these needs. Irrigated land nowadays 

constitutes 20% of the world’s cultivated land and produces up to 40% of the food and 

fiber that humans need (Hoffman, 2007). Therefore, irrigation is the largest consumer 

of water on earth, accounting for 80% of fresh water diverted for human use 

(Hoffman, 2007). The vital importance of the irrigation sector is not limited to its 

direct effects on the crop production industry, but extends to affect the social fabric 

and the income of communities, especially in arid and semi-arid regions.   

Recently, the demand for energy has increased and the cultivation of crops for 

biofuel production is gaining greater attention.  Several sources (for example, The 

Washington Post, 2011) attribute the food crisis, that affected the world in 2008, to the 

increased demand on biofuels, which uses crops that otherwise would have been used 

for human consumption.  

 Several issues have challenged the use of irrigation water in crop production. 

For instance, the irrigation sector in many parts of the world faces a real competition 
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from other water users such as municipal, industrial, and recreational demands.   

Although the fresh water resources are limited (in terms of quantity, quality and 

accessibility), the demand continues to increase at a pace that exceeds the supply. The 

improvement in the living standards in many places around the world produces an un-

proportional increase in water demand.  Namely, a two-fold increase in population 

since 1900 induced a six-fold increase in water use (World Water Council, 2011).  

Another dimension of challenges facing irrigation is the environmental 

consequences of current irrigation practices. In particular, diverting water for irrigation 

use has resulted in negative consequences in water quality, soil erosion, groundwater 

levels, and stream flow quantity and quality. The changes induced by irrigation 

activities in hydrological systems are adversely affecting aquatic and riparian 

ecosystems. As a result, strict environmental regulations aimed at protecting 

endangered species add more burden to the crop production process.  

 The general management framework of the irrigation industry can be 

summarized by the following points (Hoffman et al. 2007): 

• Secure the required water supply in terms of the quantity. 

• Conserve the soil/water quality by managing the salinity of the soil and 

water. 

• Minimize soil erosion resulting from some types of irrigation activities. 

• Maximize crop productivity for the amount and quality of the available 

water.  



3 
 

•  Achieve the above goals within economical costs and in a sustainable 

manner. Sustainability should be achieved environmentally and 

economically.  

1.2  Salinity and Waterlogging 

 The deterioration of crop production due to salinity buildup in the root zone is a 

global problem. The interactions of water with geological salt deposits results in 

dissolution of salts in water.  Using such water in irrigation adds non-native salts to the 

land where it is applied. Soil evaporation and root extraction of fresh water concentrate 

the salinity in the root zone. Accordingly, the repetition of this process over a long 

period results in the emergence of large-scale salinization problems. In order to reduce 

root zone salinity, extra water is usually applied to leach salinity out from the root zone. 

Beside the fact that this practice might increase stresses on the limited available water 

budget, it also results in the development of high saline groundwater tables, especially 

in fields with low drainage capacity. Thus, the dual impact of soil salinization and 

waterlogging (shallow water tables) causes a significant reduction in the productivity of 

crops. The high salinity increases the pressure that crops need to exert in order to 

extract fresh water, while shallow water table results in reduction of air circulation 

which cause decay to the roots. 

1.3  Site Description 

 The Lower Arkansas River basin in Colorado is part (Figure 1.1) of the 

Arkansas River Basin, the sixth longest river in the US. Irrigation activities were 
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introduced to the region in the 1870’s (Miles 1977). More than 1,000 miles of irrigation 

cannels were constructed to divert water for irrigation purposes (Gates et al. 2006).  

Irrigation activities are mainly based on open-ditch furrow irrigation, in addition to a 

limited number of center pivot sprinklers and a few drip systems (Burkhalter et al. 

2005). The major crops that are produced in the valley are alfalfa, corn, melons, onions, 

beans, and wheat (Farm Service Agency 1999-2000).  The soil type in the region is 

alluvial deposits that consist of a silty loam clay layer in the upper surface and loam to 

sandy loam substrata (USDA, 1971a; USDA, 1971b). 

Since the introduction of irrigation to the region, the salinity of the water has 

been increasing due to the accumulation of salts in the hydrologic system.  Extensive 

data collection, as part of Water Management in the Lower Arkansas Valley project 

(Gates et al. 2006; Burkhalter et al. 2005 ), show that the average groundwater table 

depth in a section of the valley upstream of John Martin Reservoir ranges between 

1.21m to 1.65m, and a minimum depth of 0.08m. The average groundwater salinity 

ranges between 2.6 dS/m to 4.62 dS/m at different times in the season.  The overall 

average extract soil salinity for the same region is around 4.1 dS/m (Morway et 

al.2011); however, the maximum soil salinity reaches over 20 dS/m. The over irrigation 

of crops to leach the root zone salinity has resulted in field scale water table increases 

in several areas of the valley. This increase became a regional problem after 

construction of John Martin Reservoir in 1948 and Pueblo Reservoir in 1975. The 

reservoirs were blamed for reducing sedimentation of fine soils in the canals, which 

reduce bed lining. Therefore, seepage from canals has been increasing, resulting in a 

shallower water table.  
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Figure 1.1: General Arial Map of the Lower Arkansas Basin (Modified from 

Morway et al. 2011) 

 

 

Figure 1.2:  Aerial Photo for Study Site, Field 17, Rocky Ford, CO 
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1.4  Research Organization 

Countering the dual impact of salinity and waterlogging requires a wide scale 

multidisciplinary intervention. As part of Water Management in the Lower Arkansas 

Valley Project, an extensive data collection effort was launch to characterize the 

regional hydrological system and to aid in developing feasible management plans. 

However, the ability to develop a set of management plans is always hampered by the 

uncertainty in our knowledge of the characteristics of the hydrologic system. This 

research is an attempt to cast light on how to approach this problem on a field scale. 

Regional scale is not included in this study due the computational difficulties associated 

with large scales. 

The research herein is organized into four parts that tackle the uncertainty issue 

from different angles. These parts are as follow:  

• The first part explores and applies a Global Sensitivity Analysis (GSA) for a 

one-dimensional variably saturated flow and transport problem. The 

sensitivities of the input parameters to crop yield and root zone hydrosalinity 

were investigated. Commensurate with the theme of this research, i.e. 

prediction uncertainty, four GSA techniques are utilized to approach the 

same problem. The comparative performances of the GSA techniques are 

studied.  

•  The second part provides an approach that alleviates the computational 

burden required by Monte Carlo Simulations. This burden is particularly 

intensive and time consuming in simulating three-dimensional variably 
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saturated problems. The approach uses cluster analysis to stratify the 

ensemble of realizations. Numbers of realizations are selected from each 

stratum to represent the entire ensemble. 

• The third part of the study investigates the effect of input uncertainly on 

crop yield and root zone hydrosalinity for a three-dimensional field scale 

problem. Multivariate Monte Carlo simulation of the soil properties is 

implemented to generate correlated realizations of the input parameters. The 

statistical properties of crop yield for two crops, i.e. alfalfa and corn, are 

obtained. 

• The fourth part applies a methodology that reduces the parameters 

uncertainty in the data collection stage. The ensemble Kalman Filter is 

utilized to provide design criteria that are optimized via a Multi-objective 

Genetic Algorithm technique. Different design schemes that are efficient for 

prediction, covariance parameter estimation, and cost are investigated.  

This research is intended to improve the understanding of the role that different 

sources of uncertainty play in soil salinity and waterlogging prediction.   
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2  GLOBAL SENSITIVITY ANALYSIS OF VARIABLY 

SATURATED FLOW AND TRANSPORT PARAMETERS AND 

ITS IMPLICATION FOR CROP YIELD AND ROOT ZONE 

HYDROSALINITY 

2.1  General 

Modeling of crop yield and root zone hydrosalinity usually requires large number of 

parameters that are often expensive to obtain and can be associated measurement errors. 

Consequently, identifying the most relevant parameters, and their contributions to the 

uncertainty of the output, might be used as a basis to focus research resources in an 

efficient manner. Global Sensitivity Analysis (GSA) is a powerful tool that can be 

employed to achieve this goal. However, some GSA methods perform better than 

others, which introduces the risk of mistakenly prioritizing a secondary parameter while 

neglecting a primary one. This paper evaluates the usage of four GSA methods to rank 

the importance of input parameters with respect to five performance indices, which 

summarize the output of a flow and transport model, and its implication for the root 

zone hydrosalinity and crop yield. Results show that 73% of crop yield variance is 

controlled by only five of eighteen parameters that were considered in this study. 

Moreover, it was found that the van Genuchten pore size parameter is very important to 

the relative crop yield prediction and the water availability index. In addition, it was 
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found that the variance decomposing method, the screening method, and the Monte 

Carlo Filtering method are generally consistent in their performance; whereas the 

partial correlation coefficient method is significantly different.   

2.2  Introduction  

Since the advent of physically based numerical models in hydrology in the early 

1960’s, their ability to simulate reality has been limited.  This has been mainly due to 

the lack of the field data required to justify a representative conceptual model of the 

system under study, and to the limited information available about the controlling 

parameters.  Furthermore, the amount and accuracy of the parameters’ field data are 

always constrained by budget and regulatory pressures.  Therefore, hydrologists usually 

find themselves faced with ill-posed hydrological problems where the size of the 

available information is not enough to produce a unique prediction (Beven and Binley 

1992).   

In spite of this chronic problem, numerical models are still vital tools in most 

research efforts, as well as in most regulatory settings.  A careful use of numerical 

models should be based on a good understanding of the model's input-output dynamics. 

Such a relationship can be efficiently revealed by sensitivity analysis investigations. 

Classically, the One At a Time (OAT) local derivative-based sensitivity analysis was 

used in groundwater modeling as a diagnostic tool of the models (Anderson and 

Woessner 1992), in calibration of groundwater models (Hill and Tiedeman 2007), and 

in optimization of groundwater systems. For instance, local sensitivity of a certain 

parameter is simply obtained by calculating the derivative of the output with respect to 
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one input parameter at a specified base point. Such measure does not mirror the prior 

knowledge of input factors and is not efficient when dealing with complex nonlinear 

models.   Moreover, sometimes it is essential to establish the comparative importance 

of input parameters with respect to a predefined output index.   

Global Sensitivity Analysis (GSA) (Saltelli et al. 2008b) provides an attractive 

alternative to the local derivative-based sensitivity approach, in which the input-output 

relationship can be established in light of the prior uncertainty of the input factors. The 

analysis is 'global' in the sense that it covers the whole uncertainty space of the input 

parameters, and apportions the uncertainty in the output indices to the uncertainty in the 

input factors. A number of approaches have recently emerged to compute the global 

sensitivity measures without computing the derivatives, for example, the sampling-

based method (Helton et al. 2006), the Bayesian method (Oakley and O’Hagan 2004), 

and variance decomposing methods (Sobol  2001; Homma and  Saltelli 1996;  Saltelli 

et al. 2008) . Another valuable method is the screening method (Morris 1991; 

Campolongo et al. 2007), which can be seen as a global sensitivity method despite its 

derivative-based root. Using this method, the mean and standard deviation of the 

derivatives of the output with respect to a sample of the input parameters are used as 

sensitivity measures.  

Typically, crop prediction models are established by simulating the complex 

plant-soil-climate system. These models are usually highly parameterized; and the 

estimation of parameters is an expensive process and is highly prone to errors (Varella 

et al. 2010).  Uncovering the relative importance of the different factors allows the 

focusing of research resources on factors that make a major contribution to the output 
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variance. Number of studies applied the global sensitivity analysis to groundwater 

problems. Specifically, Pan et al. (2011) studied the sensitivity of unsaturated flow and 

contaminant transport parameters. Mishra et al. (2009) reviewed the application of three 

GSA techniques to groundwater problems and their practical implications.  Recently, 

several studies have been conducted to study the sensitivity of crop models, for 

example  (Ruget et al. 2002; Jongschaap 2007; Makowski et al. 2006; Pathak et al. 

2007;  Varella et al. 2010).  

In this study, the relative importance of the input parameters, which control 

flow and transport in a variably saturated soil, and their impacts on crop yield and 

hydrosalinity of the root zone are investigated. Eighteen different input factors were 

considered as input parameters to the Colorado State University Irrigation and Drainage 

(CSUID) Model, a three-dimensional finite difference model (Alzraiee and Garcia 

2009). In this paper, the Global Sensitivity Analysis (GSA) is structured in a manner 

that fulfills the following major objectives: 

• Determine the relative importance of input parameters with respect to different 

root zone hydrological processes, and with respect to different GSA goals.  

• Highlight the differences among global sensitivity methods by comparing their 

performances. 

In order to achieve these goals, four GSA experiments were conducted using 

variance decomposing method, Morris method, partial correlation method, and Monte 

Carlo filtering method. These methods are used to calculate the sensitivities measures 

for five performance indices. The indices are formulated to reflect a specified 
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hydrological process. These indices are Relative Crop Yield (RCY), Water Availability 

Index (WAI), Water Excess Index (WEI), Root Zone Salinity Index (SI), and Deep 

Percolation Index (DPI). 

 

 

Figure 2.1: Illustration of the General GSA Framework 

 

2.3  Methodology 

The general approach adopted herein is illustrated in Figure 2.1. As shown in the 

figure, prior to the application of GSA, it is required to identify, firstly, the targeted 

hydrological process of concern to the modeler, e.g. crop yield prediction, root zone 

salinity prediction, among others; and, secondly, the objectives of GSA study, e.g. 

factor prioritization, factor fixing, among others. These two decisions are discussed in 

the following sections.  
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2.3.1  Targeted Hydrological Process 

Modeling variably saturated flow and transport of subsurface systems is usually 

motivated by different research and regulatory objectives. To illustrate, models can be 

used to predict the crop productivity for fields (Feddes et al. 1976; Xevi et al. 1996), to 

estimate  the deep percolation of pesticides and fertilization, to assess reclamation of 

saline soils, or to evaluate different irrigation designs. This array of modeling 

motivations might be used to formulate the indices that reflect the performance of 

targeted hydrological process.  

Normally flow and transport numerical models generate a large amount of 

outputs, i.e. at every numerical cell and at each time step.  These outputs can be 

interpreted differently by modelers according to their objectives. A summary of the 

output is essential to facilitate the sensitivity analysis. That is, a scalar-valued index 

should be formulated to accurately measure the performance of each of the modeling 

objectives. As an example, the spatio-temporal mean of moisture content in the root 

zone might be used as an index of water deficit stress. The four targeted hydrological 

processes of concern to this paper are: 

- Predicting the relative crop yield, 

- Predicting the possibility of water deficit stress throughout the growth 

season, 

- Predicting the possibility of water excess stress (waterlogging) , 

- Predicting the root zone salinity.  
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- Predicting the vertical flux entering or leaving the root zone. 

2.3.2  Global Sensitivity Analysis Goals 

This step answers the question about the objectives of the GSA study. A major 

component of the GSA framework (Figure 2.1) is to define precisely the objectives of 

the sensitivity analysis in advance of the analysis. Saltelli et al. (2008b) suggested a 

general framework, or setting as they called it, to define the objectives of the sensitivity 

analysis and, thus, determine the most suitable sensitivity method. In this study, the 

framework proposed by Saltelli (2008) is used, which can be summarized as follows: 

- The Factor Prioritization setting is a GSA framework in which the objective 

of the analysis is to identify factors that when fixed to their true values result 

in the greatest reduction in variance of the output.  For instance, to guide 

data collection, the Factor Prioritization setting could be the basis upon 

which the important factors are determined and then intensively and 

accurately sampled.  The extended Fourier Amplitude Sensitivity Test 

(FAST) is used herein to rank different parameters according to their First 

Order Sensitivities (FOS).  

- The Factor Fixing setting identifies input factors which if fixed at any value 

in their range, do not produce significant change in the output. This setting 

can be used to reduce the complexity of models by choosing a small number 

of factors without impacting the output (Parsimony Principle).  The 

Screening Method (Morris 1991) and the total effect coefficients resulting 

from the extended Fourier Amplitude Sensitivity Test (FAST) are obtained 
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to achieve this objective. Using the screening method is computationally 

more efficient, since it requires a smaller number of model evolutions.  

- The Factor Mapping (FM) setting is used in cases when the decision maker 

is interested in a certain region in the index’s CDF, e.g. rare events, extreme 

contamination, among others. The Monte Carlo Filtering method is 

employed for this purpose. The method is capable of identifying regions in 

the input space that produce a certain region in the output space.  

2.4  Model Description 

In this section, the theory of flow and transport model used herein is introduced. 

The numerical prediction of crop productivity depends on several factors; among them 

are the hydrosalinity conditions of the root zone. In this study, it is assumed that the 

agronomic conditions are excellent, and the only limiting factors are the soil 

hydrosalinity conditions.  The spatio-temporal status of the water content and salinity 

are mathematically described using the continuity partial differential equation of flow; 

i.e. modified Richard's equation (Eq. 2.1) and the dispersion-advection partial 

differential equation (Eq. 2.2), respectively.  

��
� ������ ���
�� + �� = � ��� �� + ����� ����     (2.1) 

��
�  �!�" ���
"# − ��
� ��%��� + ���� = �������     (2.2) 

Where &'�(� is the hydraulic conductivity [L/T], ( is the capillary head [L], ℎ is the 

total head [L] (( = ℎ − *), +, is the sink or source term per unit volume [T-1], - is the 
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moisture content [L3/L3], -, is the soil porosity [L3/L3], ., is the specific storage [L-1],  

/�(� is the specific capacity [L-1], 0 is a space vector [L] and 1 = 1,2,3 represents 

three-dimensional space, 6 is time [T]. 7'8 is the hydrodynamic dispersion [L/T2], / is 

the salinity concentration [M/L3], and 9' is the seepage velocity [L/T].  

Solving equations 2.1 and 2.2 requires the knowledge of the constitutive 

relationship between moisture content and capillary head which are modeled via the 

van Genuchten (1980) model in equation (2.3). 

���� = �: + ��;�:
<=>�?|�|�AB=C=A     (2.3) 

Where -D is the residual moisture content [L3/L3], � is a fitting parameter related to the 

inverse of the air entry suction, � > 0 [L-1], � is a measure of the pore size distribution, 

� > 1. 
The sinks/sources term +, is the summation of the irrigation and root extraction 

rates (Eq. 2.4), where +' is the irrigation rate [L3T-1], which is a model input parameter 

(positive value), +D is the root uptake rate [L3T-1] (negative value); and ∆H is the cell 

volume. 

+, =	 �IJ>IK�∆L      (2.4) 

While the irrigation application rate is an input parameter, the root extraction 

rate is internally computed according to equations 2.5 to 2. 8. The overall sink term that 

accounts for root density and geometry, water matric and osmotic pressure and root 
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growth stage are summarized in equation 2.5 (Hopmans and Bristow 2002;  Feddes et 

al. 1976).  

�:�M, �� = N�M, ��. OP���∆Q . ?��,�R�. �R ,   (2.5) 

where ST�6�	is the reference evaporation [L/T],	/U is the crop growth coefficient at 

time	6, ∆Q is area [L2];  and V�*, 6� is the root density equation that describes the 

density and the geometry of the root network with respect to the depth and is calculated 

using the S function as described in equation (2.6). 

N�M, �� = 	;=.WM!���X + =.Y!���  ,    (2.6) 

where * is the depth at which the root density is calculated [L]; and 7�6� is the root 

depth at current time [L]. The temporal root growth can be approximated using the 

Hanks and Hill (1980) equation (2.7).  

!��� = !Z[
�=>\� ]�[;^ ��′�� ,    (2.7) 

where 7�6� is the root depth at time	6, 7_`a is the maximum root depth, 6′ is the end of 

the third stage of the crop's growth, and a and b are empirical coefficients.  

Van Genuchten (1987) pioneered describing the sink term as a function of the 

water content and extended it to incorporate the osmotic head.  In this paper, the 

Cardon and Letey (1992) equation was modified, which is a slight modification of the 

Feddes et al. (1976) equation, to account for root uptake reduction due to waterlogging. 

Equation 2.8 is the final equation that accounts for water deficit stress, salinity stress 

and water excess stress (waterlogging). 
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?��,�R� =
cdd
e
ddf				

=
= + � ��gh + �R�Rgh�

i 												��M, �� < 	��																					�X. Y. [�			
� ����

	= + � ��gh + �R�Rgh�
i	 							h ≥ 	�� > ��M, ��																�X. Y. ^�	

l 

where m is a parameter close to 3, (no is the capillary head at which the root uptake is 

reduced by 50% and (U = 0 [L]; �Rgh is the osmotic head at which root uptake is 

reduced by 50% and ( = 0[L]; (�*, 6� [L] is the capillary head [L]; (U�*, 6� is the 

osmotic head [L]; (, is the head threshold after which oxygen deficiency starts to 

occur[L]. It is recognized that the water excess stress (near saturation cases) does not 

affect the root uptake instantaneously (Harbaugh et al. 2000), but could take the crop a 

few days (for example, 2 days) to affect the root uptake. As a result, Equation 2.8.b will 

not be active until the matric head is equal or above (, for a period of two days. 

The total actual evapotranspiration ETa is approximated by integrating the 

temporal extraction rate over the growing season and over the root zone depth 

(Equation. 2.9).  

OP[ = p p �:�M, ��!���hPh qMq�    (2.9) 

where +D�*, 6�	is the temporal root extraction [L3/T] at a vertical depth z per unit soil 

volume, T is the growing season [T], D is the root depth [L] at time t.  

Finally, the relative crop yield is approximated using equation (2.10) which is based on 

the assumption of a linear relationship between relative evapotranspiration and relative 

crop yield (Doorenbos et al. 1986) 
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. 

r�s = s[sZ = = − tu �= − OP[OPZ�   (2.10) 

Where Ya is the actual dry matter yield [M], Ym is the maximum harvested dry matter 

yield [M], ky is the yield response factor, ETa is the total (seasonal) actual 

evapotranpiration [L], and ETm is the reference evapotranpiration which can be 

obtained from climatic data [L].   

2.5  Formulation of Indices 

 The CSUID model, described in section 3, calculates the temporal and spatial 

variability of the moisture content and salt concentration at each numerical cell. These 

two variables are the major factors affecting the relative crop yield calculation as shown 

in equations 2.5 to 2.10.  

One of the objectives of the decision maker might be to maximize crop production 

while reducing long-term environmental risks, e.g. reduction of deep percolation of 

pesticides and fertilizers. Another concern for decision makers is to maintain the 

sustainability of the crop production processes, i.e. preventing root zone salinization. In 

order to put these goals in quantitative measures, the following indices are set up: 

1- Relative Crop Yield Index (RCY): This index is the numerical value of the 

simulated relative crop yield as shown in equation (2.10). This prediction is the 

resultant of temporal and spatial variability of moisture and salinity along the 

vertical dimensions of the root zone and throughout the growing season of the crop. 
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2- Water Availability Index (WAI): The availability of moisture in the root zone is a 

major factor that is used to evaluate the water deficit conditions. Since the moisture 

content in the root zone is spatially and temporally variable, the mathematical 

integration of the Readily Available Water (RAW) over the root zone depth and 

over the growing season is used as an index (Equation 2.11). By definition, RAW is 

the moisture available to the plant to extract. Equation (2.12) is widely used to 

calculate it. 

vwx = 	 yz.{ p p |wv�6, *�	}*	}6~�{~�o��z��o     (2.11) 

|wv�6, *� = -�6, *� − -��*� − 0.5� )()( zz wFC θθ − �   (2.12) 

where ),( ztθ  is the moisture content, )(zwθ  is the water content at the wilting 

point (or water content at capillary head of -15,300cm (Meyer et al. 1997) ), and 

)(zFCθ  is the moisture content at field capacity (or water content at capillary head 

of -340cm). 

3- Water Excess Index (WEI): This index measures the waterlogging condition of the 

soil profile. In other words, it calculates the total time that the moisture content of 

the root zone is close to saturation as a percentage of the total simulation time. The 

correlation between this index and crop yield can be used to estimate the 

contribution of excess water stress in crop yield reduction. 



 >

=
else
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4- Root Zone Salinity Index (SI): This index measures the average salinity status of 

the root zone during the simulation period (Eq. 2.15). 

.x = 	 yz.{ p p /�6, *�	}*	}6~�{~�o��z��o     (2.15) 

5-  Deep Percolation Index (DPI): Knowing the deep percolation fraction is of great 

importance for several reasons. The index is the cumulative temporal deep 

percolation. Note that the index can be positive when the net vertical flux is out of 

the root zone or negative when the net vertical flux is into the root zone. This index 

can be used to measure the contribution of groundwater to subirrigation and to 

upflux of salt. In addition, the design of subsurface drainage system requires the 

knowledge of the deep percolation fraction, where large deep percolation requires 

smaller drain spacing. Moreover, the transport of pesticides and fertilizers as well as 

salts carried by deep percolation into the groundwater might be an environmental 

concern.  

Beside the previously mentioned indices, it is required to identify parameters 

responsible for a particular region in the index’s CDF (Factor Mapping). These regions 

are usually of particular importance to decision makers. In this paper, the following 

thresholds in the indices’ CDFs are defined:  

• The relative crop yield ≤ 40% , used as a definition of low relative crop 

yield RCY. 

• The highest 30% region of the root zone salinity index (SI) CDF, used as a 

definition of extreme salinization.  

• The lowest 20% region of the CDF of Water Availability Index, used to 

define the dry root zone conditions.  
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2.6  Global Sensitivity Analysis Review 

Four types of sensitivity analysis methods were utilized in this research, and all 

of them are sampling-based methods. The sampled input factors were assumed 

statistically uncorrelated. The general Global Sensitivity Analysis procedures for each 

index can be outlined as follows:  

• Define the sensitivity analysis objectives or settings; e.g. Factor Prioritization, 

Factor Fixing or Factor Mapping. 

• Choose the proper sensitivity analysis method given the GSA objective (Figure 

2.1). 

• Define a probability distribution function (PDF) for each input parameter, which 

reflects the degree in uncertainty in the parameter value. 

• Choose a sampling scheme (e.g. Monte Carlo, Latin Hyper Cubic sampling, 

etc.), and generate a sample for each of the input factors. 

• Evaluate the model using the generated samples. 

• Use the produced input-output set to calculate the sensitivity coefficients using 

one of the GSA methods. 

The following sections, introduce a brief description of the theoretical 

background of each of the GSA methods used in this study.  
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2.6.1  Variance Decomposing Method 

The generic model (Eq. 2.16), describe the relation between the output (Y) and 

number n  of uncertain factors 0', where �1 = 1,… , ��. No assumption is made 

regarding the complexity of the model, namely, whether the function is linear, 

monotonic, or additive.   

)...,,,( 321 nxxxxfY =
     (2.16)

 

 The variance decomposing method suggests the decomposing of the variance of 

the output as a set of terms of increasing dimensionality. Sobol (1993) provided a 

straight forward Monte Carlo-based implementation of this method. In other words, a 

Monte Carlo sampling scheme can be set to draw realizations from the joint distribution

),..,( 21 nxxxf , and consequently, each of the realizations is evaluated in the model (Eq. 

2.16) to obtain the response Y.    Next, the variance of the output Y is decomposed into 

2n terms according to equation (2.17).  

H��� = 	∑ H' +∑ ∑ H'8 +⋯+ Hy,�,..�8�'''     

 (2.17) 

Where )(YV  is the output variance, )]|([ ii xYEVV =   is the first order (one-way) 

effect of ix , and jijiij VVxxYEVV −−= )],|([  is the second order (two-way) effect. By 

dividing both sides of the equation by )(YV , a normalized sensitivity measure can be 

obtained (Eq. 2.18). 
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∑∑∑ =+++
i j

nij

i

i SSS 1... ,..,2,1       (2.18) 

Where .' is the first order sensitivity measure of parameter 0' and .'8  is the 

second order sensitivity measure of interacting parameters 0' and 08. 
Computing all of the sensitivity measures could be computationally prohibitive. 

For example, calculating Sobol’s indices requires N(2n + 1) model evaluations, where 

N is the sample size used to estimate one individual effect.  

As an alternative, the Fourier Amplitude Sensitivity Test (FAST) (Cukier et al. 

1973; Saltelli and Bolado 1998) provides a computationally affordable approach to 

calculate the total effect of each of the parameters and the first order effect. For 

instance, the total effect of any factor xi is the summation of all sensitivity measures in 

equation (2.18) that corresponds to i and can be computed as 

)(

)]|([
1 ~

yV

XYEV
STi i−=       (2.19) 

where iX~  means all factors except i.  The extended Fourier Amplitude Sensitivity Test 

(FAST) within the SIMLAB package (Giglioli and Saltelli 2000) was used to calculate 

the first and the total effect of each factor.  

2.6.2  Elementary Effect Method (EEM) 

 Morris (1991) proposed a One At a Time (OAT) sensitivity analysis method. 

The method is known for its effective identification of a few important factors in 

models that have many factors. For the model in equation (2.16), the elementary effect 
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(EE) of any parameter xi is computed using approximations of the derivative of the 

response function at a base point.  

∆

−∆+
=

)],...,....(),...,....([ 11 nini

i

xxxfxxxf
EE      (2.20) 

The iEE  values are computed using )]1([1
−∆−

−
ppp

n
 elementary effects, 

where p is a preselected number of levels that divide the parameter space, and 

))1(2/( −=∆ pp . The mean iµ of the elementary effects is a measure of the 

importance of the factor, while the standard deviation iσ  determines whether the 

response function is nonlinear in factor i and/or if the factor is interacting with other 

factors. Campolongo et al. (2007) suggested replacing the mean iµ  with *
iµ , the mean 

of the absolute values of iEE .  

2.6.3  Monte Carlo Filtering  

The Monte Carlo Filtering Method is used within the context of the Factor 

Mapping (FM) framework. Sometimes it is important to recognize the input factors that 

produce a targeted region in the output space. In other words, the realizations of the 

input factors are categorized 'filtered' as behavioral and non-behavioral depending on 

whether the realization produces an output value within the targeted region or not. The 

discrepancy between the cumulative distribution function CDF of the behavioral 

���'|�� and non-behavioral ���'|��� realizations is used to accept or reject the 

hypothesis regarding the importance of the factor. To illustrate, if the two CDFs are 

significantly different, then this implies that the factor plays a major role in producing 
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the targeted region in the output. The statistical test used is the Smirnov two-sample test 

(Eq. 2.21).  

7��'� = max	 |���'|�� − ���'|���|     (2.21) 

2.6.4  Partial Correlation Coefficient (PCC) 

 This coefficient is a regression-based sensitivity measure (Helton 1993). 

Efficient usage of this measure requires a linear model; however, for nonlinear models, 

a rank transformation might be an effective linearizing technique.  Conceptually, a 

linear response surface is fitted between the input and output, and then a sensitivity 

analysis is performed on this fitted model. The PCC can be computed using the 

following equation:  

:
"s = ∑ <
�;	
�� B�s�;s��Z��=
�∑ <
�";
�� BXZ��= �=X�∑ �s�;s��XZ��= �=X

     (2.22) 

2.7  Method Application 

Four numerical experiments are conducted using the four GSA methods outlined in 

section 5.  Each of these methods was used to calculate the sensitivity of input 

parameters with respect to the five indices described in (section 2.5).  
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2.7.1  Model Settings   

Because of the nonlinearity of the Richard's flow equation, small cell sizes and 

small time steps are required to aid in the convergence of the solution. This, obviously, 

makes the simulation computationally extensive and a time-consuming process.  On the 

other hand, the implementation of the GSA requires a large number of model runs. 

Therefore, it was found to be extremely difficult to conduct the GSA study on the three-

dimensional space for this example. Instead, the numerical model was simplified to a 

one-dimensional vertical column (Figure 2.2).  

The number of vertical layers was set to 30 with a thickness of 10 cm each.  The 

growth period of a hypothetical crop was presumed to be 30 days. The model evaluates 

the time steps internally, and they range between a maximum time step of 0.01 days to 

a minimum time step of 0.00001 days.  

A root zone depth of 0.5 m was assumed. The initial growth stage was taken as 

10 days, the development stage as 10 days, the middle stage as 5 days, and the late 

stage as 5 days. The crop coefficients were presumed constant and equal to unity for the 

initial, middle and late crop coefficients in order to simplify the evaluation of the 

results. The initial moisture content was chosen to represent the equilibrium moisture 

content.   
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Figure 2.2: Schematic Illustration of the One-dimensional Soil Profile 

 

2.7.2  Input Factors 

Eighteen input factors were considered for the GSA study, and a prior statistical 

distribution was assigned to each of the factors, as shown in Table 2.1. The soils 

properties were obtained from the soil database provided by Schaap et al. (2001) and 

from field measurements obtained from Field 17, near Rocky Ford, Colorado. The 

distributions were truncated to prevent the sampling of computationally or physically 

unacceptable large or small values. As an example, the normal distribution of the Van 

Genuchten pore size parameter was truncated at the right side by 30% to prevent 

sampling of values less than or equal to 1.  
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The irrigation application depth and salinity statistical properties were chosen to 

be consistent with irrigation conditions in Field 17. A record of the total volume of 

water diverted to Field 17 was used to set up the statistical properties of the irrigation 

depth while the nearby canal water salinity data was used to define the statistical 

properties of the applied water salinity.  

To randomize the pattern of irrigation practices, the value of the frequency of 

irrigation events was randomly sampled from a discrete distribution, 3 to 8 events. 

After the sampling of the number of irrigation events, the irrigation date was 

determined so that the irrigation events were evenly distributed over the season. Next, 

the total applied water depth was divided by the number of irrigation events to 

determine the application depth per event.  

The initial groundwater depth was presumed to range between 0.5 m to 2.5 m, 

which was the range of the groundwater depth measured in Field 17. The water table 

can be seen as a controllable parameter, rather than a system parameter, where it can be 

controlled by the subsurface drainage system. The initial salinity of the water phase was 

determined by field measurements.  

The statistical properties of the reference evapotranspiration statistics were 

obtained by processing the climatic data for the Colorado Meteorological Agricultural 

Network at Rocky Ford for the period May 15th to June 15th, 2010 and was modeled 

using a normal distribution with a mean evapotranspiration value of 7.2 mm and a 

standard deviation of 1.3 mm. 
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The crop yield model parameters were obtained by calibrating the model to the 

dry biomass of alfalfa from Field 17 as well as from published literature such as 

Veenhof et al. (1994); Cardon et al. (1992); and Shalhevet et al. (1986). 

2.7.3  Sensitivity’s Coefficient Computation 

The SIMLAB sensitivity and uncertainty package (Giglioli et al. 2000a) interfaced 

with MATLAB was used to automate the analysis. The CSUID model used the 

randomly generated input factors (Table 2.1) to calculate the temporal water content, 

capillary heads, salt concentrations and sink terms at each time step and at all numerical 

nodes. Consequently, the performance indices are calculated using equations 2.10 to 

2.15.  

The SIMLAB package internally determines the required number of samples. The 

Extended FAST variance decomposing method, for example, requires 1,170 model 

evaluations or 65 runs per parameter for a one dimensional example. On the other hand, 

the random samples used for the screening method are obtained by the optimal 

sampling scheme suggested by Morris (1991) and implemented in the SIMLAB 

package (Giglioli and Saltelli 2000a). Thus, the input space for each input factor was 

divided into 8 levels; and 30 trajectories were used. The eight levels correspond to the 

6.25th, 18.75th, 31.25th, 43.75th, 56.25th, 68.75th, 81.25th and 93.75th quantiles of the 

input factor CDF. The number of trajectories (r) is the number of successive points 

starting from a random initial vector of input factors, where two successive elements 

differ only at one component (Giglioli and Saltelli 2000a). Accordingly using k input 
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factors (k=18 in this study), the total model evaluations required should be r(k+1), 

which  results in 570 model runs. 

To reduce the computational requirement, the combined input-output sets for both 

the Extended FAST and Morris methods were used in the regression-based sensitivity, 

as well as in the Monte Carlo filtering.  

2.8  Results and Discussion  

The results of the four experiments are presented in this section. The sensitivity 

coefficients for each of the five indices (Section 2.5) with respect to the 18 input factors 

(Table 2.1) were obtained using four sensitivity techniques. The results of analysis are 

presented for each performance index separately. This is in order to obtain the rank of 

factors for each performance index, and also to compare the performance of each GSA 

techniques at the same index.   
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Table 2.1 Statistical Distributions of Input Factors 

Input Factor Symbol 
Prior 

PDF 

PDF 

Parameters 
Right 

Truncation 

Left 

Truncati- 

on 

Hydraulic 
Conductivity, 
log[cm/day] 

K LogN 
µ = -0.20, σ 

= 0.80 
5% 95% 

Porosity θs Normal 
µ = 0.41, σ = 

0.073 
5% 95% 

Residual Moisture 
Content 

θr Normal 
µ = 0.11, σ = 

0.068 
5% 95% 

VG Air Entry 
Parameter [1/cm] 

α Normal 
µ = 0.048,σ 

= 0.015 
5% 95% 

VG Pore Size 
Parameter 

β Normal 
µ = 1.7, σ = 

1.05 
30% 95% 

Dispersivity [cm] γ Normal 
µ = 0.54, σ = 

0.28 
5% 95% 

Root  Growth 
Parameter 1 

a Uniform L = 1, U=10 _ _ 

Root  Growth 
Parameter 2 

b Uniform L = 1, U=10 _ _ 

Crop Yield Model 
suction Parameter [cm] 

ψ50 Uniform 
L = -3000, 

U=-800 
_ _ 

Crop Yield Model 
Salinity Parameter [cm] 

ψo50 Uniform 
L = -7000, 
U=-1000 

_ _ 

Crop Yield Model 
Exponent Parameter 

p Uniform L = 2, U= 4 _ _ 

Crop Model 
Waterlogging 
Parameter [cm] 

ψs Uniform 
L = -30, U = 

-1 
_ _ 

Irrigation Depth [cm] Id Normal µ = 5, σ = 1 1% 99% 

Salinity of Irrigation 
Water  [mg/L] 

Is Normal 
µ = 456, σ = 

109 
1% 99% 

Number of Irrigation 
Events 

If 
Discreet 
Uniform 

L = 3, U = 8 _ _ 

Initial Water Table 
Level [m] 

wt Uniform 
L=0.5, U= 

2.5 
_ _ 

Initial Profile 
Salinity[mg/L] 

si Normal 
µ = 1200, σ 

= 300 
2% 98% 

Reference 
Evapotranspiration 
[mm] 

ET Normal 
µ = 7.2, σ = 

1.3 
1% 99% 
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2.8.1  Sensitivity of the Relative Crop Yield 

The first order sensitivity coefficients were determined and ranked using the 

Extended FAST variance decomposing method (Figure 2.4). The results show that the 

key parameters controlling the RCY are	�, ST,�6, ��}	-,. The value of the first order 

sensitivity analysis resides in its usage within the context of the factor prioritization 

framework, where the objective of the decision maker is to determine factors that need 

further inspection.  

Although the first order sensitivity provides us with the main influence of the 

parameters, it is limited in determining the overall importance of each parameter. The 

Total Effect, estimated using the Extended FAST method, is an economical method to 

reveal the overall importance of different factors. Results show (Figure 2.3) that only 

five factors are responsible for 73% of the relative crop yield variance. These factors, in 

order of importance are:	�, ST, �6, -,, ��}	�.  Interestingly, none of the crop yield 

model parameters is among them. Of particular importance for the crop yield numerical 

prediction is the van Genuchten pore-size distribution factor (�). The results of the 

higher order effects of the parameters (Table 2.2) show that only 22.9% of	�′s total 

effect comes from the interaction with other parameters while the remaining 78.1% 

comes from the first order sensitivity. Similar results were noticed for the ST	and	�6 
factors.  In contrast, the majority of the influence of the -, 	and	� factors occurred as a 

product of the interaction with other parameters; their high order sensitivity measures 

are 66.7% and 86.5%, respectively.  
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While the previous first order and higher order sensitivity results are valuable in the 

context of the factor prioritization  setting, it is important for numerical modelers to 

exclude factors that are none influential (Factor Prioritization  setting) from any 

uncertainty analysis (the principle of parsimony). The screening method is ideal for 

such goals, given its relatively low computational demand. The average elementary 

effect (¡∗) and it's standard deviation £ are presented as bar charts in Figure (2.5). 

Although �	��}	ST preserve their high ranking, it can be seen that the irrigation depth 

(Id), van Genuchten air entry � and hydraulic conductivity K factors look more 

important in the ranked list. An interesting result is that the b factor occupies the 14th 

position in the Morris method while it occupies the 5th position in the extended FAST 

method.  

The PCC sensitivities (Table 2.3) show significantly different ranking results except 

for � which maintained its ranking as the most important parameter. The root growth 

parameters and crop yield model parameters (�, �, (no, ��}	(,) are ranked high. The 

PCC measures are more effective for linear models, which is not the case for the 

nonlinear Richard's flow equation. Rank transformation was suggested by Iman and 

Conover (1979) to reduce the effect of the nonlinearity, however; due to the 

independence of input factors, the Partial Rank Correlation Coefficient (PRCC) and the 

PCC are the same.  

To identify the input factors responsible for low crop yield, the relative crop yields 

of less than 40% were mapped to the input factor space.  The input factors were 

categorized as behavioral or non-behavioral based on this condition. The Simonov two-

sample test was used to test whether the behavioral or non-behavioral CDFs were 
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identical.  Table 4 shows the Simonov D-statistics as computed with Equation 2.21. 

The factors �, x}, ST, (Uno	��}	�6 contribute highly to the low RCY. It is worth 

noticing that the factor (Uno (osmotic head at which the root extraction was reduced by 

50%) plays a significant role in the low RCY while it has a small importance in general.  

A general notion about the RCY index is that the van Genuchten pore-size 

parameter (�) is, by far, the most influential factor in the numerical simulation of crop 

yield. Actually, this is not a surprise because � is the exponent in the van Genuchten 

equation (2.3).  

2.8.2  Sensitivity of the Water Availability Index (WAI) 

Estimating the available water in the root zone provides a numerical basis for 

verifying the proposed irrigation design, specifically the application depth and event 

frequency. Seven parameters were found to account for 78% of the WAI index 

variance. The water table factor occupies the top of the list (22% of the WAI variance); 

this shows the importance of subirrigation in providing moisture to the crop regardless 

of irrigation design efficiency. The hydraulic conductivity and � are second and third, 

respectively, on the list and their major impact is through retaining moisture in the soil 

profile and enhancing the upflux of water into the root zone.  The water table level and 

the � affect the WAI index mostly through their first order sensitivity (FO = 83.35% 

and 84.13% of the total effect, respectively), whereas the hydraulic conductivity effect 

take place primarily from interaction with other parameters (FO = 26.9% of the total 

effect). 
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Figure 2. 3: Total Effect Sensitivities Using Extended FAST Method 
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Table 2.2 Higher Order Effect as a Percentage of the Total Effect Using the 

Extended FAST Method 

Input Factor 

 Higher Order Effect (%) of the Total 

Effect 

RCY WAI WEI SI DPI 

K 91.23 73.05 87.06 85.96 88.32 

θs 66.72 51.12 0.00 55.65 37.86 

θr 81.77 15.71 87.22 85.51 76.28 

α 60.66 79.91 0.00 92.52 95.22 

β 22.88 16.65 87.19 86.02 74.70 

γ 97.49 95.88 0.00 95.95 87.32 

a 94.71 86.62 0.00 95.65 93.46 

b 86.46 84.43 0.00 99.05 96.61 

ψ50 99.07 92.56 85.89 91.39 90.31 

ψo50 80.58 95.73 0.00 85.39 84.35 

p 83.25 93.72 87.93 91.99 86.36 

ψs 92.76 97.51 87.06 96.90 94.97 

Id 84.36 92.47 0.00 63.98 70.54 

Is 89.14 95.18 86.79 97.18 87.67 

If 83.52 92.88 0.00 70.39 90.86 

wt 34.73 15.87 79.58 90.39 83.04 

si 75.25 94.10 0.00 14.34 74.95 

ET 30.29 87.43 0.00 74.41 63.65 

 

 

The Morris coefficients ¡∗ ranks � and -D at the top of the list, while the water 

table is in third place. The irrigation depth is more important according to the Morris 

Coefficients than the FAST method, but its importance is dependent on the interactions 
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with other parameters. For example, high irrigation depths at low irrigation frequency 

and for highly permeable soil should have negligible influence on the WAI index 

especially in shallow groundwater tables.  

The partial correlation coefficient measures of parameters are orderly ranked as 

�, �, �, ¤1	��}	& which is significantly different from the FAST and Morris methods. 

However, the sign of the partial correlation coefficient provides some insight about how 

the factors affect the output. For example, higher values of � produce lower WAI.  

The Monte Carlo filtering is employed to map the factors controlling the dry 

conditions. Dry conditions are defined as the lowest 20% WAI values. The factors 

-D 	��}	�6 were found to contribute significantly to the dry conditions. A possible 

explanation is that the upflux from the shallow water table keeps the moisture content 

high in the root zone, while -D resembles the ability of the soil to retain moisture.  

Moreover, the effect of weather conditions on dry conditions is evident by the 

importance of the evapotranspiration factor.   

2.8.3  Water Excess Index (WEI) 

The WEI is a quantitative predictor of waterlogging. According to the extended 

FAST method, 100% of the WEI variance results from only eight factors (Figure 2.2). 

The water table, Ψ¦ and hydraulic conductivity were identified as the most influential 

factors. This result is reasonable because the higher initial water table and the high 

hydraulic conductivity values control the capacity of the subsurface system to drain the 

water out of the root zone.  Morris average elementary effect (EE) gives more weight to 
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the residual moisture content and the irrigation frequency, however their effect is 

dependent on the interactions with other factors as indicated by the variance of the 

EE's.  The limitation of the PCC coefficient for nonlinear problems is obvious here 

because the water table occupies the 14th place which contradicts common sense that 

the water table should play a significant role in waterlogging problems.

Figure 2. 4: The First Order Sensitivities Using Extended FAST Method 
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2.8.4  Root Zone Salinity Index (SI) 

The pie chart in Figure 2.3 shows the total sensitivity of input factors with 

respect to SI.   Eight factors were found to be responsible for 80% of the SI variance. 

The hydraulic conductivity by itself contributes 22% of the index variance. A possible 

explanation is that the conductivity of the soil controls the leaching efficiency of the 

roots and the saline groundwater up flux rate. Moreover, 86% of the hydraulic 

conductivity contribution is generated through interaction with other parameters.   

Unsurprisingly, the initial root zone salinity is second in importance.  It was 

expected that the water table depth should be one of the top controlling parameters; 

however, this is only true if the groundwater salinity is also high. This notion is 

supported by the higher order sensitivity percentage of the water table factor in Table 

2.2, in which it has a value that amounts to 90.4% of the total effect.  

The crop yield model parameter ((ono) is in third place (15% of the total 

effect). Since this term determines the salinity concentration (as osmotic head), at 

which the root extraction drops by 50%; the root extraction rate should be very 

sensitive to the root zone salinity especially at high (ono values (or small absolute 

values).   For very small (ono values, the root extraction continues even at high root 

zone salinity values, and thus the driving force of the root zone salinization process 

would continue. The Partial Correlation Coefficient (PCC) ranks (ono as the most 

important parameter with a positive sign, which supports the previously mentioned 

explanation.  
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 For irrigation designers, it is seen that irrigation frequency (If) is responsible 

for only 4% of the SI variance and the FOS measure for irrigation efficiency and 

irrigation depth are the fifth and sixth positions respectively. On the other hand, the 

Morris importance factor ( ¡∗) ranks the application depth as second in importance. 

Again, it is important to recall that the Morris sensitivity results should be understood 

in the context of the Factor Fixing framework. In other words, the method is efficient in 

determining the important factors but not the relative importance of each of them.  

Filtering input factors that contribute to high root zone salinity are shown in 

Table 2.4. The Semirnov statistic ranks the initial salinity, irrigation frequency, and the 

residual moisture content as the major factors controlling extreme salinization of the 

root zone. The irrigation water salinity is in the sixth position.   

The scatter plot (Figure 2.6) shows the Relative Crop Yield and Root Zone 

Salinity. The figure does not show a strong correlation between the two indexes. This 

may be due to the higher order interactions of the crop salt tolerance factor (ono with 

other factors. 

2.8.5  Deep Percolation Index (DPI) 

The results show that eight input factors control 70% of the deep percolation 

variance as shown in Figure 2.2. The Total Effect sensitivities of factors 

(ono , �6	��}	x} are ranked as first, second and third, respectively.  It is worth noticing 

that all input factors, except for	-,, have higher order interactions of more than 63%, 

which reveals the complex dynamics of deep percolation. Take for example the 
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hydraulic conductivity, which at higher values might increase the deep percolation; 

however, the index definition does not distinguish between up flux and down flux since 

they are physically one process. As a result, the high K value might enhance up flux 

and down flux equally, which makes the K effect highly interactive with other factors. 

The high EE standard deviation and high order effect in Table 2.2 supports this result. 

 

Figure 2. 5: The Average and the Standard Deviation of the Elementry Effect 

Using Screening Method 
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Figure 2. 6: Water Avialability Index (WAI) Vs. Relative Crop Yield 

 

 

Figure 2. 7: Root Zone Average Salinity (SI) Vs. Relative Crop Yield 
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Table 2.3 Ranking the Importance of Input Factors Using Partial Correlation 
Coefficients (PCC), where R is the rank. 

Input 

Facto

r 

RCY WAI WEI SI DPI 

PCC R PCC R PCC R PCC R PCC R 

K 0.016 8 0.038 5 
0.04

1 
3 0.014 9 0.004 16 

θs 0.001 18 0.020 7 
0.01

8 
8 0.004 15 0.022 7 

θr 0.021 6 0.006 13 
0.01

1 
10 0.026 7 0.020 8 

α 0.005 15 0.024 6 
0.00

0 
18 0.001 17 0.014 10 

β 0.045 1 0.057 1 
0.06

4 
1 0.011 11 0.019 9 

γ 0.018 7 0.001 17 
0.00

1 
17 0.021 8 0.041 3 

a 0.041 2 0.043 3 
0.02

5 
6 0.013 10 0.054 1 

b 0.031 3 0.044 2 
0.01

1 
11 0.027 6 0.044 2 

ψ50 0.026 4 0.005 15 
0.03

8 
4 0.008 14 0.032 6 

ψo50 0.001 17 0.020 8 
0.02

3 
7 0.066 1 0.032 5 

p 0.008 14 0.006 14 
0.00

9 
13 0.008 13 0.013 11 

ψs 0.021 5 0.009 11 
0.04

6 
2 0.036 3 -0.007 13 

Id -0.009 13 0.012 10 
0.00

7 
15 0.045 2 0.005 15 

Is 0.009 12 0.004 16 
0.01

0 
12 0.003 16 0.012 12 

If 0.011 11 0.016 9 
0.03

0 
5 0.031 5 0.000 18 

wt 0.013 10 0.001 18 
0.00

8 
14 0.001 18 0.036 4 

si 0.014 9 0.040 4 
0.00

4 
16 0.033 4 0.002 17 

ET 0.004 16 0.007 12 
0.01

4 
9 0.009 12 0.005 14 
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Table2. 4: Monte Carlo Filtering of Low Crop Yield, Saline Root Zone and Dry 
Conditions 

Input 

Factor 

Low Crop Yield Saline Root Zone Dry Conditions 

D-stat Rank D-stat Rank D-stat Rank 

K 0.132 14 0.186 10 0.127 8 

θs 0.188 9 0.171 11 0.195 5 

θr 0.122 15 0.341 3 0.646 1 

α 0.146 12 0.085 18 0.106 10 

β 0.478 1 0.236 9 0.315 3 

γ 0.220 8 0.258 8 0.123 9 

a 0.166 11 0.106 16 0.158 7 

b 0.228 7 0.152 13 0.085 15 

ψ50 0.108 17 0.106 17 0.099 12 

ψo50 0.301 4 0.260 7 0.030 18 

p 0.121 16 0.130 15 0.186 6 

ψs 0.142 13 0.329 4 0.075 17 

Id 0.398 2 0.157 12 0.081 16 

Is 0.083 18 0.315 6 0.089 14 

If 0.251 6 0.395 2 0.103 11 

wt 0.291 5 0.139 14 0.408 2 

si 0.171 10 0.595 1 0.094 13 

ET 0.328 3 0.329 5 0.226 4 
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Figure 2. 8: Behavioral Vs. Non-behavioral CDF's of Input Factors for RCY < 40% 

2.9  Conclusion 

The strength of the Global Sensitivity Analysis resides in its ability to improve the 

overall understanding of the input-output relationship by exposing the role each factor 

plays by itself and through interactions with other factors. Such understanding can be 

employed within the factor prioritization framework to determine factors that need 

further attention during either the sampling or modeling stages. In addition, the Global 

Sensitivity Analysis could be employed within the Factor Fixing framework to reduce 

the complexity of models by fixing non-influential factors. Lastly, the Global 

Sensitivity Analysis might be used within the Factor Mapping setting to determine the 

input factors responsible for a certain output cumulative distribution function region. In 

this paper, four Global Sensitivity Analysis methods were used to obtain the relative 

importance of 18 uncertain input factors with respect to five output indices. These 
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indices reflect different research and regulation interests. A one-dimensional variably 

saturated flow and transport case was used to simulate these indices.  

Results show that a large portion of the output variance can be attributed to a few 

parameters. For example, 73% of the relative crop yield variance is contributed by only 

five factors. Similar results were obtained for other indices. Of particular importance 

for most of the indices is the pore-size van Genuchten parameter. Besides its top 

ranking, its major influence on Relative Crop Yield and Water Availability Index 

occurs through the main effect of the parameter; i.e. not through interactions with other 

parameters.   

The Monte Carlo Filtering (MCF) for extreme salinity and dry conditions reveals 

the importance of the residual moisture content. This observation was not possible 

using other Global Sensitivity Analysis methods. Roughly speaking, the MCF, 

Extended FAST, and Morris methods produce similar results while the regression-

based PCC measure is significantly different. The severe nonlinearity of the Richard's 

flow equation might be the source of the deficiency of the PCC measure; however the 

sign of the PCC ranking reveals the sign of the correlation between the input and the 

output parameters.  

2.10  Recommendations for Future Investigations  

Several assumptions were made throughout this study; e.g. the absence of 

correlation between input factors. As a result, this assumption might introduce two 
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types of errors. Unfortunately, the available data were not enough to favor neither the 

correlation nor an independence decision.  

The expensive computational demand required to simulate the variably saturated 

problem push toward simplifying the problem from a three dimensional field to a one-

dimensional soil column. Overcoming this obstacle might be achieved by parallelizing 

the models evaluations on a large cluster of computers.  

Another assumption that was made in this paper is the spatial homogeneity of the 

soil properties.  This assumption can be relaxed by considering each soil property at 

each layer as an individual parameter. Certainly, this would increase the number of 

input factors and consequently increase the computational requirements of the GSA. 
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3  USING CLUSTER ANALYSIS OF HYDRAULIC 

CONDUCTIVITY REALIZATIONS TO REDUCE 

COMPUTATIONAL TIME FOR MONTE CARLO 

SIMULATIONS 

3.1  General 

 Despite the conceptual simplicity of the Monte Carlo Simulation methods in 

assessing the uncertainty in hydrogeological systems, their use is limited by the 

expensive computational requirements in terms of the large number of realizations 

required to be processed. Cluster Analysis is applied in this paper to reduce the number 

of realizations to be processed by flow simulators while efficiently approximating the 

flow response statistics. Different clustering techniques are used to partition the 

realizations ensemble into a few clusters that are significantly different from each other 

and have maximum intra cluster similarity. The clustering step is achieved by using 

different similarity metrics. Then a subsample of the realizations is collected to 

represent the uncertainty in the whole ensemble. Two methods for collecting the 

subsample are investigated; the stratified sampling and the centriod based sampling. 

The performance of different clustering and sampling techniques is tested by evaluating 

the mismatch between the statistics of the ensemble response, the reference response, 

and the statistics of the subsample response which are estimated from the clusters. 
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Results show that 25% of the realizations in the ensemble could be sufficient to 

estimate the uncertainty in the flow responses using a suitable clustering method and 

suitable similarity measures.  

3.2  Introduction 

The application of numerical methods to solve the continuity flow and transport 

equations requires reasonable knowledge of the hydraulic properties of the porous 

media. Typically, our knowledge of the subsurface porous properties is developed by 

using scarce and expensive field or laboratory measurements. These measurements - 

limited in number and accuracy - would usually not be sufficient to provide accurate 

insight into the hydrogeological system. Moreover, the spatial variability of soil 

properties, which are essential to understanding the flow and transport processes, 

require large number of measurements to be accurately reconstructed. This is, of 

course, beside the errors in the measurements themselves.  

A more realistic approach is to consider the soil properties in a probabilistic 

framework where a soil property, for example the hydraulic conductivity field, is 

described by a random function. This certainly does not imply that the hydraulic 

conductivity field is random, but that our knowledge is incomplete. The concept of a 

spatial random field was introduced by Matern (1960) and Matheron (1962) to analyze 

the uncertainty in geological formations and for use in the mining industry and it has 

been widely adopted (Freeze 1975; Tang and Pinder 1977; Dagan 1982; Yeh 1992;  

Gotovac et al. 2009)  to quantify uncertainty in hydrogeological systems. The 
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probabilistic representation of soil properties is incorporated with the physical flow 

equation to produce the statistical properties of the hydraulic responses of the system.   

Since the mid 1970’s the uncertainty in the spatial properties of aquifers has 

been studied by researchers using either “analytical stochastic” approaches or the 

“Monte Carlo simulation” approach. The analytical approaches (Bakr et al. 1978; Tang 

and Pinder 1977)  are usually based on several restrictive assumptions that are not easy 

to relax. For example, a small variance of the log conductivity, unbounded domains, 

steady-state flow, and uniform-in-the-average flow are necessary assumptions for 

analytical solutions; and the results are limited to the first two moments (Rubin 2003).   

On the other hand, the Monte Carlo (MC) method (Freeze 1975; Smith and Hebbert 

1979) is known for its conceptual simplicity and its generality (Rubin 2003). Despite 

these advantages, large computational efforts are required in most practical problems.  

To apply the MC simulations, large numbers of realizations are normally 

generated and processed in flow or/and transport simulators to approximate the 

uncertainty in the response variables. Such methodology could be unpractical in cases 

where fine grids are used to model the spatial properties or when the unsaturated-

saturated flow numerical models are used to simulate a field scale problem.   

Specifically, solving the nonlinear unsaturated flow equation requires small time steps 

and small spatial discretizations which make the simulation time considerably longer.  

Several techniques have been used to reduce the number of realizations to be 

analyzed while producing a useful prediction of the uncertainty. A comprehensive 

review of these techniques can be found in Deutsch (2002). These techniques are more 
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popular in the oil industry than in the hydrogeology field.  Previous attempts to 

approach the problem have mainly focused on ranking the realizations based on the 

response of flow or transport models. The concept of connectivity of the porous media 

was suggested by Deutsch (2002) as a way to rank realizations. Connectivity of the 

porous media, defined as the sets of net geological numerical cells that are connected in 

a three-dimensional space (Deutsch 2002), was used in two ways, the static 

connectivity and the dynamic connectivity.  In the static connectivity, the ratio of the 

volume of geological objects; defined at a certain permeability threshold, to the total 

reservoir volume, could be used as a rank measure.  On the other hand, the dynamic 

methods use the lengths or the times that a particle needs to move between two defined 

points (for example, injection and production wells), as the index to rank the 

realizations. Another approach is to use flow simulators to rank the realizations based 

on the flow responses after upscaling the fine realizations to coarse ones 

(Kupfersberger and Deutsch 1999). Gómez-Hernández and Carrera (1994) used a linear 

approximation of the groundwater flow equation, instead of the flow models 

themselves, to approximate the rank of the realizations.    

In this paper, Cluster Analysis (CA) (Anderberg 1973; Everitt, et al. 2009) is 

implemented as a novel technique to reduce the number of realizations to be processed 

in a flow simulator while still covering the uncertainty space. The underlying 

assumption behind using clustering to group the realizations is that similar realizations 

have similar responses and there is no need to run all the realizations in the ensemble; 

instead, a subsample, a specified number of realizations, are collected from each cluster 
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and the probability (frequency) of the of the flow response is approximated based on 

the size of the cluster from which the realizations were sampled.  

The overall procedure was implemented in two major steps: (i) the realizations 

were grouped into numbers of clusters, and (ii) a number of realizations were sampled 

from each cluster.  For the first step, the hierarchal clustering (deterministic clustering) 

and the K-means clustering (iterative data partition) methods are evaluated using 

different similarity criteria to group the realizations (Anderberg 1973; Everitt, et al. 

2009). In the second step, two sampling schemes are evaluated, stratified sampling and 

centriod based sampling. A synthetic unconfined aquifer system is simulated to verify 

the feasibility of these methods. A large number of realizations (400 realizations) of the 

hydraulic conductivities are generated using a geostatistical simulation method. All of 

these realizations are processed in the flow simulator to produce the reference 

cumulative distribution function (CDF) of the response variable (i.e. the hydraulic 

heads). Then, the ability of the clustering methods to produce a good estimation of the 

reference CDFs, the reference means and variances using a subsample of realizations, is 

investigated.  

3.3  Cluster Analysis (CA) 

Clustering is a method by which the data can be grouped into clusters based on 

certain similarity measures. The data could be scalar or multi-dimensional. Different 

types of clustering can be found in the literature. In this paper two methods are utilized 

to cluster an ensemble of realizations, namely the hierarchical method and the K-means 

method.  
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3.3.1  Hierarchical Clustering  

The hierarchical clustering algorithm(Anderberg 1973; Abonyi et al. 2007;  

Everitt, et al. 2009) agglomerates similar individual realizations (leaves level) into 

small clusters and subsequently, based on the proximity of the clusters, larger clusters 

are produced by merging smaller clusters using a certain linkage criteria. The cluster 

scheme can be represented in a tree structure called a dendrogram. Based on the 

number of clusters or based on the required precision of the clustering, the tree could be 

cut at a certain level. Different types of similarity measures and linkage criteria are used 

in the literature. For example, the Euclidian distance between two realizations can be 

used as an indicator of similarity; thus small distance implies similar realizations. The 

linkage criteria is used to merge clusters; for example the single linkage criterion 

merges clusters based on the shortest distance between two clusters while the furthest 

distance linkage criteria uses the farthest distance between two clusters.  For more 

details about different distance measures and linkage criteria see Anderberg (1973); 

Everitt et al. (2009); and Jones (1997). The distance measures and linkage criteria 

available in the MATLAB’s Statistical Toolbox (Jones 1997) are used in this paper. 

Once the clustering is achieved, the dissimilarity of the produced clusters can be 

evaluated using a cophenetic correlation coefficient which produces values less than 

one.  Cophenetic correlation coefficients closer to one mean higher dissimilarity 

between clusters.  The hierarchical clustering has a deterministic clustering output and 

once a realization is set in a cluster it will stay in it.  
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3.3.2  K-means method 

The K-means method (Abonyi et al. 2007;  Everitt, et al. 2009) is an iterative 

data partitioning method in which an objective function is minimized.  The number of 

clusters is determined in advance and a random number of initial points (realizations) 

equal to the number of clusters are chosen. Each of the realizations is associated with 

one of the initial points (realizations) based on its proximity. Next, new centriods are 

calculated for each cluster and using these new centriods the association process is 

repeated. The iterations proceed until the intra-cluster variance is minimized. The K-

means method produces different clustering each time they are implemented. However, 

due to the simplicity and speed of the K-means method, it can be repeated several times 

and the clustering scheme that achieves the minimum intra cluster variance is used. 

3.4  Methodology  

The uncertainty in parameters of a given geological formation can be represented 

statistically using the joint distribution function §t�¨=, ¨X, …¨©� for the hydraulic 

parameter t and at   ¨=, ¨X, …¨© spatial positions. This joint distribution function 

demands a large amount of data to be established which is usually expensive to obtain. 

A practical approach to characterizing the random field is through the use of the first 

two moments of	§t�¨=, ¨X, …¨©�, the mean function Z�¨� and the spatial covariance 

function	�tt�¨=	, ¨X�.  The experimental covariance should be modeled using specified 

functions to ensure that the calculated variance is positive “positive definiteness 

condition”.  For stationary random fields, the covariance function can be reduced to 
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�tt��� where � = ¨= − ¨X. The final modeled covariance function takes the form 

�tt��, ªX, «
, «u, «M� where £� is the variance at the sill of the equivalent variogram and 

«
, «u, «M are the integral scale in the 
, u	and	M directions. 

In sequential Gaussian Monte Carlo simulations, the mean function and the 

spatial covariance function are used to generate ¬D number of equal probable 

realizations ­�: {t�¨�, ¨ ∈ Q} for the spatial domain Q and	� = {=, …²:}. The spatial 

position in a three-dimensional numerical grid with three coordinates	t�
, u, M� can be 

rearrange using Equation 4.1 into a one dimensional column vector ­ with dimension 

[©, =] where n is the number of nodes. 

¨ = ��M − =� ∗ ©
 ∗ ©u + ��u − =� ∗ ©
 + �
                                       (3.1) 

In Equation (4.1) �M, �u, and	�
	represent the coordinate index of the cell node in 

the 0, µ and * directions respectively; and ©
	and	©u	are the number of rows and 

columns of the grid. 

Large numbers of realizations usually need to be generated to cover the 

uncertainty space. Consider the ensemble of realizations �t = [­=, ­X, . . ­²:] where 

²:	is the number of realizations. In Monte Carlo simulations each of the realizations is 

processed deterministically in a flow simulator to produce the response: 

�� = ¶�­��                                                                     (3.2) 

The function ¶�­�� represents the flow (or transport) simulator. The hydraulic 

heads for all cells are summarized in the response vector	��. All of the vectors �� can 

be concatenated to form the response matrix	· = [�=, �X, . . �¸J]. Each row ·�:	in the 
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response matrix represents all of the possible heads at cell	�, and thus the expectations 

and the variances of the response variable at all cells can be computed using Equations 

(3.3) and (3.4):  

�¹º = O[��] = =²:∑ ·�"²:"�=                          (3.3) 

»Qr[��] = =²:;=∑ <·�" − �¹º B. �·�" − �¹º �P²:"�= 	      (3.4) 

A complete description of the uncertainty in the response variable can also be 

developed in the form of the Cumulative Distribution Function	�/7��	¼����. This 

estimation will be referred to as the reference CDF of the response variable � at node	�. 
To reduce the computational loads required in calculating the response variables 

in Equation (3.2), the realizations in the ensemble �t can be clustered into a few 

groups where realizations in each cluster ½�	: {� = =, X…²¾} are similar according to 

certain similarity measures q�:=, :X� and ²¾ is the number of clusters. The clusters 

have different sizes (number of realizations) and each has a size	r�.  Instead of 

processing all the realizations in the flow simulator, a sample of the realizations can be 

used. There are two possibilities to achieve the sampling step, the stratified sampling 

and the centriod based sampling. 

3.4.1  Stratified Sampling  

A total number of samples �²� ≪ ²:) are selected and processed in the 

simulator. The number of samples to be randomly selected (Rubinstein and Kroese 

2007; Gilbert 1987) from each cluster should be calculated according to Equation (3.5). 
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�� = r�²:²�                                      (3.5) 

The estimated first two moments should be calculated according to the 

following equations: 

�º∗ = ∑ ∑ r"²:�" ��"�"��=²¾"�=               (3.6) 

            »Qr∗��� = 	 =�²�;=�∑ ∑ <��" − �º∗B. <��" − �º∗BP�"��=²�"�=      (3.7) 

The estimated Cumulated Distribution Function	¼�∗���	at any cell can be 

determined by using the 
r"²:.�" as the probability of the head. 

3.4.2  Centriod based sampling  

In stratified sampling, realizations are randomly sampled from each cluster. This 

may raise the question about the consistency of the computed ¼�∗��� distributions each 

time the sampling is implemented. By consistency it is meant that each time the 

stratified sampling is implemented the difference |¼�∗��� − ¼����| is always less than a 

specified tolerance error. In other words, the estimated Cumulative Distribution 

Function does not significantly change if the sampling is repeated. Unfortunately this 

might not be the case especially when the cluster sizes are significantly different.   

An alternative sampling strategy is the centriod based sampling, in which the 

ensemble of realizations is clustered into ²� clusters (the same number of realizations 

to be processed in the flow simulator). Only one realization is selected from each 

cluster. This realization should represent the average of the realizations in the cluster. 
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The average of the realizations in a cluster can be thought of as the centriod of the 

cluster. For any cluster	½Z, where Z is the cluster index, the centriod can be calculated 

using Equation (3.8). 

�½Z = =²∑ ­�"rZ"�=                                                                      (3.8) 

  Since the centriod of the cluster might not carry the same statistical properties as 

other realizations generated from the sequential Gaussian simulations and it does not 

belong to the ensemble, the closest realization to the centriod of each cluster is selected.  

The Euclidian distance q��Z, ­�Z� between realization 1 and the centriod of cluster 

À	could be used to define the proximity to the centriod according to Equation (3.9), 

where � is the number of cells in the numerical domain.  

q��Z, ­�Z� = Á∑ <	�Z�"� − ­�Z�"�BX©"�= 	                                             (3.9) 

The selected realization is simulated and the response variables are associated with 

a probability value (
r"²:) proportional to the size of the cluster. 

For the purpose of verifying the method, two mismatch measures are utilized. 

Equation (3.10) provides the mismatch measure between the reference and the 

estimated CDF with equal weights given to errors in the CDF values, while the 

mismatch measure calculated using Equation (3.11), which was introduced by 

Kupfersberger and Deutsch (1999), gives higher weights to the tails of the CDF.  

Â'Ã = p |�'∗�ℎ� − �'�ℎ�|Ä'ÅÆÇÄ'ÅKÈ 	q�                                                  (3.10) 
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É� =	p Ê=;¼�∗���¼����=;¼����Ê��Z[
��Z�© q�                                                      (3.11) 

 

3.5  Experimental Example  

A synthetic aquifer system will be used as an example.  The aquifer is a two 

dimensional unconfined aquifer that extends 3,000m x 3,000m in the horizontal plane.  

A uniform cell size of 100m x 100m is used which yields a total of 900 cells. The 

statistical parameters of the hydraulic conductivity random field with a mean of 

10m/day and a coefficient of variation of 1.5 are chosen to reflect a heterogeneous 

aquifer. The spatial variability is modeled using a spherical variogram that has an 

isotropic horizontal correlation scale of 500m (1/6 of the model domain).  The 

sequential Gaussian simulation is used to generate 400 equal probable realizations. 

MODFLOW (Harbaugh et al. 2000) is used to simulate the steady state flow equation. 

The domain is bounded by two constant head boundary conditions.  Constant head 

boundary conditions of 50m and 45m are used at the upstream and downstream ends 

respectively. The side boundary conditions are taken to be no flow boundary 

conditions.  All of the realizations generated by the geostatistical simulator are 

processed to produce the reference cumulative distribution function, the reference 

mean, and the reference standard deviation for the hydraulic heads at each node in the 

numerical grid.  

Two clustering methods are used to cluster the realization ensembles, the 

hierarchical clustering and the K-means clustering methods.  Different combinations of 
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distance measures and linkage criteria are used in the hierarchical clustering. The 

cophenetic correlation coefficient for each combination of the linkage criterion and the 

distance measure is calculated to verify the dissimilarity of the produced clusters. The 

stratified sampling scheme and the centriod based sampling scheme are performed for 

each clustering set.  

Each stratified sampling was repeated 50 times (for this example) to investigate the 

consistency of the hydraulic head statistics.  The mismatches between the estimated and 

the reference CDF and the errors in the first two moments are used to verify the 

performance of each clustering setting. The hierarchical clustering with stratified 

sampling can be summarized in the following steps: 

1. Choose the distance measure and linkage criteria, 

2. Determine the number of clusters. (For this example, the analysis was started 

using ten clusters.) 

3. Determine the total number of realizations to be run in the flow simulator, 50 

realizations were chosen for this analysis, 

4. The number of realizations to be sampled	¬, (subsample size) from each cluster 

is calculated according to Equation (3.5).  

5. The sampled realizations are processed in the flow simulator to calculate the 

heads at each node. 

6. The CDF of the estimated heads, means and standard deviations are calculated. 

The CDF mismatch and errors in the first two moments are calculated.  
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7. Optionally, steps 4, 5 and 6 are repeated for a user specified number of times 

(50 times in this example) to investigate the consistency of the estimated 

hydraulic head statistics. 

To perform the hierarchical clustering with centriod based sampling the following steps 

are taken: 

a. The same step 1 as above; 

b. Determine the number of realizations, and cluster the ensemble into	¬, clusters; 

c. One realization is chosen from each cluster. This realization should be the 

closest to the centriod of the cluster according to Equations (3.8) and (3.9); 

d. The same as steps 5 and 6 above. 

To use the K-means method, the same procedures can be followed. However, since 

the K-means method produces different clustering results, the clustering procedures are 

repeated 50 times in this example and the clusters that produce the minimum intra 

cluster variances are used.  

 

Figure 3. 1: Hydraulic Conductivity Realization and the Simulated Heads 
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3.6  Results  

Upon clustering the realizations in the ensemble, the first question that might arise 

is whether the clustering scheme naturally divides the ensemble into dissimilar clusters 

with minimum dissimilarity among realizations within the same cluster. Producing 

dissimilar clusters, or significantly different clusters, ensures that the major differences 

among realizations are represented in the resulting clusters. In other words, the clusters 

produced are a coarse mirror of the fine uncertainty spectrum in the whole ensemble. 

Minimum dissimilarity among realizations within the same cluster enables us to sample 

a small number of realizations as a representative sample of the whole cluster. Table 

3.1 summarizes the cophenetic correlation coefficients for each of the distance and 

linkage combinations used in this paper. Those distance-linkages with a cophenetic 

correlation close to one produce dissimilar clusters. For example, the Standardized 

Euclidian distance combined with the Centriod linkage has the highest cophenetic 

correlation coefficients (around 0.92). Generally, the Euclidian based metrics, such as 

Euclidian, Standardize Euclidian, Cityblock and Minkowski with the Average, 

Centriod, and Single linkages, produce high cophenetic correlations, around 0.9.   

It’s straight forward to say that dividing the ensemble into a large number of 

clusters increases the chance of producing dissimilar clusters with minimum intra 

cluster dissimilarity. This, by necessity, poses the question about the number of clusters 

required to produce a good estimate of the response statistics. For the time being, the 

subsample size is taken to be 50 realizations (12.5% of the realizations ensemble). 

Later, the impact of the number of realizations in the subsample on the errors in the 

estimated statistics will be quantitatively studied.  So the initial focus is on the impact 
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of different clustering methods, different similarity measures, and different sampling 

schemes; on the accuracy of the estimated statistics of the response variable (i.e. the 

head).   

Table 3. 1: Cophenetic Correlation Coefficient for the Hierarchical Sampling 

Distance  

Euclide-

an 

Standarized 

Euclidean Cityblock 

Minko- 

wski Cosine 

Corre- 

lation 

Spea- 

rman 

Cheb- 

ychev 

   Average 0.90 0.91 N/A N/A N/A N/A N/A N/A 

   Centroid 0.91 0.92 0.90 0.91 0.28 0.28 0.27 0.68 
   
Complete 0.68 0.76 0.49 0.68 0.31 0.31 0.22 0.35 

   Single 0.90 0.91 0.88 0.90 0.22 0.25 0.25 0.56 

   Ward 0.46 0.48 N/A N/A N/A N/A N/A N/A 
   
Weighted 0.70 0.60 0.74 0.70 0.35 0.40 0.28 0.53 

N/A – Not Applicable 

For each node in the numerical grid, the mismatch measures (Equations 3.10, 3.11) 

and errors in the means and standard deviations are computed as shown in step (6) of 

the hierarchical clustering with stratified sampling procedure explained above. 

However, in order to determine the overall performance of any clustering scheme, the 

mean of the squared errors of all nodes in the grid is determined. More specifically, the 

means of the squared errors Z�ÉÉ ,Z�ÉÉÃ , Z�ÉZ , and	Z�É� 	of the estimated	É	, ÉÃ, 
mean, and the standard deviation respectively, are calculated to compare between 

different linkage-distance criteria combinations.  These single number statistics are 

used as an indicator of the performance of the methodology.  

The results of using the hierarchical clustering are summarized in Table 3.2 for both 

stratified sampling and centriod based sampling. Six linkage methods and 8 distance 

metrics, which are available in the Matlab statistical toolbox (Jones 1997), were used.  
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For the centriod based sampling, it can be noticed that the minimum equal weight 

mismatch measure (Z�ÉÉÃ) occurred at the Complete-Spearman linkage-distance 

combination, while the minimum tail weighted mismatch measure (Z�ÉÉ) was 

achieved at the Single-Spearman criteria. In some practical cases, the analyst main 

concern is on the first two moments, namely the mean and the standard deviation. The 

mean squared errors of the estimated mean and standard deviation (À¤Â_ , ��}	À¤Â,) 
show that the minimum error achieved in the estimated mean is 0.003 m2 (0.05 m) at 

the Average-Spearman; and for the estimated standard deviation is 0.004 m2 at the 

Complete-Cosine criteria.  In general, it can be seen that the errors in the estimated 

means range between 5.4 cm and 53 cm, while the errors in the estimated standard 

deviation range between 6 cm to 37 cm.    

For the stratified sampling, the averages of the calculated 

À¤ÂË,À¤ÂËÃ,À¤Â_ , ��}	À¤Â,	of the 50 repeated samplings are, also, reported in Table 

3.2.  As mentioned previously, the logic behind repeating the stratified sampling is to 

understand the consistency of the estimated statistics. The coefficient of variation (CV) 

of the equal weight mismatch (e’) can be seen as a measure of the consistency in the 

estimated parameters. For example, smaller CV values reveal more consistence 

sampling results.  From Table 3.2, the Averaged-Squared Euclidian criterion produces 

the lowest CV value.  

Table 3.3 summarizes the results of using K-means clustering. The Four distance 

metrics available in the statistical Matlab toolbox (Jones 1997) were used. For the 

centriod based sampling, the equal mismatch measures (À¤ÂËÃ�	range between 0.021 

and 0.038 and the lowest error occurred at the cosine metric. The errors in the means 
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(À¤Â_�	are between 0.002 m2 to 0.020 m2 which are equivalent to absolute residuals 

(not squared) of the errors of 4.7 cm and 13.7 cm.  The errors in the estimated standard 

deviations (À¤Â,�	range between 0.004 m2 - 0.025 m2  (equivalent absolute residuals 

are 6.3 cm -15.8 cm). The stratified sampling average errors (À¤ÂËÃ�	are roughly the 

same, which are around 0.033. The average errors in the estimated means and estimated 

standard deviations are around 0.004 and 0.008 respectively. 

Tables 3.2 and 3.3 provide different statistical measures to evaluate the overall 

performance of the different clustering methods, the error in the mean and standard 

deviation of different realization reduction methods were plotted (Figure 3.3 and 3.4) at 

each cell in the numerical grid.  The spatial distribution in the mean and standard 

deviation errors are shown in Figure 3.3 for the hierarchical method at the Complete-

Correlation criteria and for the K-means method using the Correlation distance. It can 

be seen that errors in the means range between 0.1 m to -0.23 m for the K-means 

method (Figure 3.4) and between 0.11 m to -0.20 m for the hierarchical method (Figure 

3.3).  It is worthy of mention that the errors displayed in Figures 3.3 and 3.4 appear to 

be spatially correlated.  
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Table 3. 2: Mismatch Errors for Hierarchical Clustering 

Linkage 

Type 
Distance 

Centriod sampling Stratified Sampling 

    Z�ÉÉ Z�ÉÉÃ Z�ÉZ Z�É� Z�ÉÉ Z�ÉÉÃ Z�ÉZ Z�É� CV(e’) 

Average 

Euclidean 0.262 0.044 0.169 0.100 0.425 0.026 0.023 0.011 0.090 

Seuclidean 0.249 0.044 0.177 0.122 0.424 0.025 0.024 0.011 0.085 

Cityblock 0.261 0.045 0.172 0.111 0.405 0.025 0.024 0.011 0.085 

Minkowski 0.262 0.044 0.169 0.100 0.447 0.025 0.021 0.011 0.091 

Cosine 0.345 0.026 0.005 0.009 0.583 0.027 0.016 0.007 0.120 

Correlation 0.451 0.027 0.008 0.012 0.678 0.028 0.019 0.007 0.141 

Spearman 0.293 0.024 0.003 0.007 0.525 0.028 0.018 0.006 0.136 

Chebychev 0.222 0.036 0.094 0.050 0.478 0.028 0.015 0.010 0.134 

Centroid 
Euclidean 0.238 0.045 0.179 0.123 0.427 0.027 0.025 0.011 0.134 

Seuclidean 0.242 0.044 0.181 0.126 0.388 0.027 0.026 0.011 0.135 

Complete 

Euclidean 0.422 0.036 0.064 0.016 0.539 0.026 0.014 0.007 0.126 

Seuclidean 0.309 0.038 0.065 0.025 0.498 0.026 0.011 0.007 0.124 

Cityblock 0.442 0.041 0.035 0.018 0.561 0.026 0.015 0.007 0.123 

Minkowski 0.422 0.036 0.064 0.016 0.513 0.027 0.015 0.007 0.122 

Cosine 0.333 0.022 0.009 0.004 0.479 0.027 0.020 0.008 0.126 

Correlation 0.270 0.023 0.012 0.006 0.562 0.027 0.023 0.009 0.138 

Spearman 0.226 0.019 0.004 0.007 0.577 0.027 0.019 0.008 0.143 

Chebychev 0.245 0.031 0.011 0.016 0.533 0.028 0.014 0.007 0.143 

Single 

Euclidean 0.247 0.045 0.177 0.116 0.421 0.027 0.023 0.011 0.139 

Seuclidean 0.242 0.044 0.181 0.126 0.466 0.027 0.023 0.011 0.139 

Cityblock 0.253 0.044 0.179 0.118 0.411 0.027 0.023 0.011 0.138 

Minkowski 0.247 0.045 0.177 0.116 0.440 0.027 0.024 0.012 0.137 

Cosine 0.218 0.050 0.179 0.129 0.472 0.027 0.022 0.011 0.137 

Correlation 0.940 0.066 0.279 0.097 0.444 0.027 0.027 0.011 0.136 

Spearman 0.181 0.044 0.186 0.143 0.445 0.027 0.024 0.012 0.136 

Chebychev 0.224 0.045 0.176 0.124 0.480 0.027 0.021 0.012 0.135 

Ward 
Euclidean 0.367 0.028 0.013 0.008 0.616 0.027 0.022 0.007 0.139 

Seuclidean 0.345 0.029 0.008 0.008 0.518 0.027 0.014 0.007 0.140 

Weighted 

Euclidean 1.107 0.045 0.107 0.020 0.494 0.027 0.014 0.008 0.151 

Seuclidean 0.285 0.041 0.089 0.053 0.430 0.027 0.023 0.012 0.151 

Cityblock 0.362 0.039 0.070 0.024 0.453 0.027 0.021 0.010 0.150 

Minkowski 1.107 0.045 0.107 0.020 0.445 0.027 0.015 0.008 0.150 

Cosine 0.359 0.025 0.006 0.009 0.568 0.027 0.017 0.008 0.150 

Correlation 0.410 0.023 0.007 0.007 0.698 0.028 0.021 0.007 0.151 

Spearman 0.272 0.023 0.006 0.010 0.528 0.028 0.018 0.008 0.151 

Chebychev 0.238 0.037 0.066 0.033 0.421 0.028 0.014 0.008 0.150 
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Table 3. 3: Mismatch Errors for K-means Clustering 

Distance 

Centriod Sampling Stratified Sampling 

    À¤ÂË  À¤ÂËÃ À¤Â_ À¤Â, À¤ÂË  À¤ÂËÃ À¤Â_ À¤Â, CV(e’) 

SqEuclidean 0.324 0.029 0.008 0.013 0.565 0.033 0.021 0.007 0.116 

Cityblock 1.015 0.038 0.020 0.025 0.581 0.032 0.020 0.008 0.111 

Cosine 0.312 0.021 0.002 0.004 0.541 0.033 0.025 0.010 0.114 

Correlation 0.443 0.022 0.011 0.005 0.543 0.033 0.027 0.009 0.109 

 

The impact of the distance criteria on the spatial errors are plotted for the 

hierarchical (Figure 3.5) and the K-means method (Figure 3.6). Figure 3.6 shows the 

equal weight mismatch (e’) for the K-mean method.  The mismatch errors tend to be 

highest in the middle of the model domain and gradually decrease in the proximity of 

the boundary conditions.  A possible explanation is that near the boundary conditions 

the hydraulic head variability range is narrower compared to that in the middle of the 

model domain. 

To visually evaluate the mismatch between the reference CDF and the estimated 

CDF, two points were chosen to make the comparison; the first point is point A (200 m, 

1600 m) which is adjacent to the upper stream head boundary condition, and the second 

point is point B (1600 m, 1600 m) which is in the middle of the domain. The estimated 

CDFs obtained from the hierarchical clustering and K-means method were plotted.  The 

reference CDF at point A is negatively skewed because of its proximity to the boundary 

condition while point B is approximately symmetric. As shown by Figures 3.7 and 3.8 

there appears to be good correlation between the estimated and the reference CDFs for 

both points.  
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Previous results were limited to a subsample consisting of 50 realizations (12.5% of 

the ensemble size). To evaluate the impact of the subsample size on the accuracy of the 

estimation statistics, the procedures were repeated at different sample sizes. Initially, 

the subsample size consists of 10 realizations and the size was increased gradually by 

10; at each subsample size the mismatch error was evaluated and plotted as shown in 

Figures 3.9 and 3.10 for hierarchical and K-means methods respectively. Hierarchical 

clustering using Cosine and Correlation metrics produce mismatch errors of 0.06 using 

10 realizations and dropped to 0.024 using 50 realizations. The Spearman metric 

performs better than the Cosine and Correlation metrics for sample sizes less than 150 

realizations, after which the three metrics tend to have the same performance.  The K-

means method’s performance using Cosine, Correlation and Cityblock metrics are 

plotted in Figure 3.10. The Cosine and Correlation mismatch errors at 10 realizations 

are 0.047 and 0.038 respectively, both of which are less than the hierarchical method. 

The Cityblock metric is not as efficient as the other metrics for subsample sizes less 

than 320 realizations.  
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Figure 3. 2: Clusters tree for Hierarchal Clustering Using Furthest Linkage for 

Cosine and Spearman Distances 

 

Figure 3. 3: Errors in Estimated Means and Standard Deviations Using the 

Hierarchical Method 
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Figure 3. 4: Errors in Estimated Means and Standard Deviations Using the K-

means Method 

 

Figure 3. 5: Mismatch Measures (e’) Using Different Distance Metrics in the 

Hierarchical Method 
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Figure 3. 6:  Mismatch Measures (e’) Using Different Distance Metrics in the K-

means Method 
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Figure 3. 7: Estimated and Reference CDF Using K-means Clustering at Point (A) 
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Figure 3. 8: Estimated and Reference CDF Using K-means Clustering at Point (B) 
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Figure 3. 9: Impact of Subsample Size on the Mismatch Measure (e’) Using 

Hierarchical Clustering 

 

 

Figure 3. 10: Impact of Subsample Size on the Mismatch Measure (e’) Using K-

means Clustering 
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Figure 3. 11: Cluster Tree Shows the Unbalance in the Cluster Size 

 

3.7  Discussion  

As discussed in the methodology section, the implementation of cluster analysis to 

reduce the computational effort involved in MC simulation requires the following four 

main decisions: 1) choosing the clustering method, namely the hierarchical versus the 

K-means methods; 2) choosing the similarity measure and the linkage criteria in the 

case of hierarchical clustering; 3) selecting which sampling method to use, namely the 

stratified sampling versus the centriod based sampling; and 4)  determining the size of 

the subsample. Each of these decisions affects the estimation accuracy as was presented 

in the results section.  
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3.7.1  Choosing a Clustering Method  

The comparison in this paper is limited to the hierarchical and K-means method. 

The advantage of the hierarchical method is that it produces unique and deterministic 

clusters for a specified distance-linkage combination.  This seems to be attractive, 

however the final structure of the clusters is confined to the merging of clusters at the 

leaves level (individual realizations). Once a realization is assigned to a cluster it will 

stay in it. Generally speaking, the intra variance of the realizations in each cluster 

should be at a minimum to guarantee similarity between realizations in the same 

cluster. Unfortunately this requirement is not part of the hierarchical clustering 

algorithm. On the other hand, the K-means method is an iterative clustering algorithm 

that seeks minimum intra cluster variances.  The clusters produced using the K-means 

method are different each time the realizations are partitioned. This disadvantage can be 

avoided by repeating the clustering process several times and selecting the cluster 

scheme that produces the minimum intra cluster variances. Fortunately, repeating the 

K-means clustering is not computationally intensive.  

In terms of comparison between the two methods, the K-means method 

performs slightly better than the hierarchal method. For example the errors (Z�ÉÉÃ� 
associated with the cosine metric at 10, 50 and 100 realizations are 0.038, 0.021 and 

0.012, respectively for the K-means method and 0.06, 0.023, 0.011 respectively for the 

hierarchical method.  The same error (Z�ÉÉÃ� behavior (K-means method performs 

better at low subsample sizes) can be seen for the Correlation metric.  It’s clear that the 

performance of the K-means method at small subsample sizes is better than the 
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hierarchical method and this advantage diminishes as the subsample size increases. A 

possible explanation for this is that the K-means algorithm seeks a minimum intra 

cluster variance and that for this work clustering was repeated 50 times and the 

clustering scheme that achieves the minimum intra cluster variance was selected. Since 

the objective of the analysis is to reduce the subsample size, the optimized K-means 

method performed better in this example.  

3.7.2  Choosing a Distance-linkage Criteria 

Thinking of each realization as a point in hyperspace is important to 

understanding the differences between different distance metrics.  Two points, or 

realizations, that are separated by a small Euclidian distance have similar responses, if 

it is assumed that the flow equation is continuous. Results show that the Euclidian 

distance measure and the Standard Euclidian distance measure usually produce 

dissimilar clusters (see Table 3.2).  However, by analyzing the cluster trees for them 

(Figure 3.11) it can be seen that Euclidian based distances usually produce one large 

cluster (cloud of points around the centriod) that contains most of the realizations and 

other clusters that contain fewer realizations. This unbalance in cluster sizes result in a 

poor estimation of a reference CDF. If stratified sampling is used, most of the samples 

will be taken from the large cluster, according to Equation 3.5, leaving the extreme 

realizations under represented.  

On the other hand, the Cosine, Correlation and Spearman’s distances are quite 

similar in that they provide a measure of dispersion of the realizations. The Correlation 

and Spearman’s distances provide measures of dispersion around the centriod of the 
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points while the Cosine provides the dispersion of the points around the origin point.  

The magnitude of dispersions around the centriod of the points is usually larger than the 

magnitude of dispersions around the origin point. It is worth noting that Spearman 

distances perform much better than the Cosine and the Correlation distances which are 

quite similar.  The Cityblock and Minkowski metrics are similar in that they provide the 

summation of the absolute difference between two vectors. These metrics usually have 

the same performance as the Euclidian distance metrics, namely they produce 

unbalance clustering trees.  

Choosing suitable linkage criteria has a major impact on the clusters that are 

produced. By comparing the Z�ÉÉÃ errors in Table 3.2 for different linkage methods 

but at the same distance metric, it can be seen that the Complete linkage method 

generated the smallest errors. The Average linkage method performs second best and 

the Single linkage method generated poor results in general. 

3.7.3  Choosing a Sampling Scheme 

 The major disadvantage of stratified sampling is that it produces different 

response statistics every time it is implemented. In this paper stratified sampling is 

repeated multiple times to investigate the variance in the estimated statistics. In a 

practical problem, the luxury of repeating the stratified sampling and choosing the 

minimum variance distance-linkage combination is not an option.  This is because it 

requires large amounts of CPU resources and it will render using cluster analysis, to 

reduce the effort associated with the numerical simulations, impractical. On the 

contrary, the centriod based sampling provides a practical and consistent sampling 



85 
 

scheme for three reasons: 1) sampling will be carried out only one time and the results 

are unique, 2) the number of required clusters is larger compared to the stratified 

sampling, and 3) the realizations chosen are the mean realizations and they can be 

deemed as legitimately representing the whole cluster in contrast to the stratified 

sampling where sampling is achieved randomly. The centriod based sampling is similar 

to the composite sampling; the only difference is that the closest sample to the centriod 

is collected instead of using the centriod realization itself (the composite sample). The 

mismatch errors �Z�ÉÉÃ� in using the centriod based sampling are usually larger than 

those of the stratified sampling (Tables 3.2 and 3.3). However, the reported values for 

the stratified sampling’s �Z�ÉÉÃ� mismatch errors in Table 3.2 and Table 3.3 are the 

average of 50 sampling repetitions. Despite repeating the stratified sampling 50 times, 

the centriod based sampling still produces the same �Z�ÉÉÃ� errors especially for the 

Complete linkage criteria and for the Cosine, Correlation, and Spearman distance 

metrics.  

3.7.4   Subsample Size 

 In practical applications of the cluster analysis to reduce CPU time to 

approximate the flow response uncertainty, it is required to determine the size of the 

subsample in advance. It is clear from Figures 3.9 and 3.10 that the increase in the 

subsample size reduces Z�ÉÉÃ errors significantly in the first 100 realizations (25% of 

the ensemble size) after which the decrease rate in the error is smaller. For example, in 

Figure 3.9 and at the Cosine metric, the mismatch error �Z�ÉÉÃ� dropped from around 

0.057 to 0.023 when the subsample size increased from 10 realizations to 50 
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realizations. Suggesting a subsample size that is optimum for all problems is not an 

easy task, however it can be seen that a subsample size that is 25% of the ensemble size 

could be a good estimate.  

3.8  Conclusion and summary 

The computational effort required by the MC simulation method to account for 

uncertainty in heterogeneous aquifers is the main drawback of this powerful and simple 

method. In this paper, a methodology to reduce CPU time by reducing the number of 

realizations to be processed has been outlined. Cluster analysis (CA) has been widely 

used to cluster scalar field data and multi-dimensional field data. In this study, CA is 

employed to cluster the large output of the geostatistical simulators.  To efficiently 

apply this method, the clusters generated should be significantly different from each 

other, while producing minimum intra cluster variance. 

Two clustering methods have been utilized, namely the hierarchical and the K-means 

methods. Within each method, numbers of similarity metrics have been tested. The 

hypothesis behind this paper is that similar realizations produce similar responses, and 

there is no necessity to process all realizations in the ensemble.  Strictly speaking, this 

assumption is valid if similarity measures are accurately partitioning the ensemble and 

that the governing flow equation is continuous in the clustered parameter (for example, 

the hydraulic conductivity). 

The next step following clustering the ensemble is to collect a subsample of 

realizations that represents the whole ensemble. The stratified sampling and the 
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centriod sampling were investigated. Results show that in general the centriod based 

sampling is equivalent to repeating the stratified sampling several times at Complete 

linkage with Cosine, Correlation and Spearman metrics. This result is promising in the 

sense of the practicality and consistency of the centriod based sampling.  

Results also show that different clustering methods using different similarity 

metrics have different abilities to reproduce the ensemble response. In general, we 

found out that the dispersion metrics, such as the Cosine, Correlation and Spearman 

metrics are more adequate to cluster the realizations. Results also show that sample 

sizes of more than 25% of the ensemble size can achieve a practical approximation for 

the ensemble statistical responses.  
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4  MULTIVARIATE STOCHASTIC ANALYSIS OF FLOW AND 

SALINITY TRANSPORT IN A SUBSURFACE DRAINED FIELD 

 

4.1  General 

Spatial heterogeneity of soil, flow and transport properties and uncertainty in root-

uptake model parameters make numerical prediction of crop yield prone to high degree 

of uncertainty. This paper discusses a method for accounting for the uncertainty of 

correlated regionalized soil parameters using multivariate Monte Carlo simulation.  

Sequential indicator simulation is used to generate three-dimensional correlated 

realizations for hydraulic conductivity, porosity, Van Genuchten parameters, and 

dispersivity. Other semi empirical parameters that control crop water uptake, irrigation 

efficiency, and subsurface drainage conductance were randomized. The generated 

ensembles for each of the soil parameters were processed in the variably saturated flow 

and transport model (CSUID) to obtain the spatial statistical moments of the relative 

crop yield for two crops, i.e. alfalfa and corn. Moreover, the spatial variability of 

statistical moments of root zone salinity and vertical soil flux were obtained. 

Furthermore, the statistical properties of hydrographs of drainage outflow and salinity 

were explored. Results show that parameter uncertainty significantly affects the 

predicted spatial variability of hydrosalinity responses, which consequently affects the 
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in-field relative crop yield variability. A maximum standard deviation of 30% for the 

predicted corn crop yield was observed and of 26% for alfalfa yield.  

4.2  Introduction 

 As the demand on food, fiber, and biofuel increases (Schnepf, 2010), the burden 

on agricultural crop production to fulfill these demands is increasing as well. Several 

factors make such a burden restrictive to the long-term sustainability of crop 

production. For example, despite the increase in crop production induced by modern 

irrigation practices, the continuous salinization of root zone salinity in several countries 

around the world poses a major problem for the sustainability of their production 

process. 

Leaching salts out of the root zone is commonly achieved by increasing the 

volume of irrigation water; however, this practice places pressure on the tight fresh 

water budget, particularly in arid and semi-arid regions.  Furthermore, excessive 

application of irrigation might cause a high groundwater table to develop, especially in 

regions where a shallow impermeable layer exists or where the storage capacity of the 

vadose zone is limited. Additionally, seepage losses from nearby irrigation canals, 

reservoirs, and return flow to streams make the salinity and waterlogging problem not 

only a field scale problem, but also a regional or basin scale problem.   

The combined effect of shallow groundwater table with high soil salinity is 

widely recognized as a plague that affects crop production worldwide. According to 

several resources (Tanji 1990; Postel 1989; Umali and Umali-Deininger 1993;  



92 
 

Ghassemi, et al. 1995; and  Wichelns 1999), lands affected by excessive salinity 

comprise up to 28% of all irrigated land in the US, 23% in China and 21% in Pakistan. 

Ghassemi et al. (1995) estimated annual worldwide economic losses to be around 11 

billion dollars. This number is expected to be higher today.  

Devising efficient irrigation and drainage management plans is necessary to 

counteract the current deterioration in land productivity. Consequently, the performance 

of any proposed management plan should be evaluated based on, among other factors; 

the expected improvement in the crop yield, the extent of potential environmental risks 

that might result from drain effluent; and the long-term performance of field 

productivity (i.e. the sustainability of the cultivation activities and the prevention of salt 

accumulation in the root zone). However, such evaluations could not be achieved at a 

reasonable cost without the use of numerical models, which approximate the complex 

interactions between soil, water, plants and the atmosphere, on one side, and the 

proposed management plan on the other side.   

Despite of the importance of numerical models in the decision making process, 

modelers still debate the validity of their predictions (Konikow et al. 1992; Oreskes et 

al. 1994). For example, Konikow et al. (1992) argued that calibrating the model’s 

parameters to match historical data of the system's response is usually not enough to 

guarantee the model’s validity since the number of unknowns is usually larger than the 

number of parameters to be estimated.  That is to say, it seems that one unique and 

trusted prediction of numerical models is far from being attainable, and it is more 

reasonable to deal with the issue of prediction in a probabilistic framework. In this 

framework, model inputs are described by using probability distribution functions to 
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reflect parameter uncertainty. Then, the uncertainty in the input parameters is 

propagated analytically or via Monte Carlo simulations to obtain the response's 

statistical properties.  

This study is part of a wider effort to investigate the problem of salinization and 

waterlogging in the Lower Arkansas River Basin in Colorado (Gates, et al. 2006). The 

Arkansas River is more affected by salinity than any other river in the US (Miles 1977; 

Tanji 1990). An extensive data sampling effort has been carried out from 1999 to 2009 

to characterize the spatial and temporal extent of the soil salinization and waterlogging 

problem. Burkhalter, et al. (2005)  developed a regional numerical model to investigate 

several management scenarios. Houk et al. (2004) estimated the direct average forgone 

profit to be around $4.3 million/year in Otero County ($68/acre per year); additionally, 

the indirect and induced costs associated with waterlogging and soil salinization in 

Otero County are estimated to have increased by approximately 20%. 

 In this study, the uncertainty aspect of the waterlogging and salinization 

problem is tackled on a field scale. Generally speaking, understanding the role that 

spatial variability plays in crop yield prediction is vital to guide future data-collection 

efforts and to avoid risks that arise from incomplete knowledge of the controlling 

parameters. A Multivariate Monte Carlo Analysis is implemented herein to include a 

wide array of independent and dependent input parameters that control crop yield and 

subsurface drainage. The controlling parameters are found to be either spatially random 

correlated soil properties such as hydraulic conductivity, Van Genuchten parameters, 

dispersivity, porosity, and irrigation uniformity; or semi empirical parameters that 

control root growth, water uptake and drainage outflow simulation.   
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A number of researchers have studied the spatial variability of crop yield.  For 

example, Warrick et al. (1983) studied the impact of soil heterogeneity, represented as 

field capacity, wilting point, and irrigation uniformity, on crop yield. A linear response 

function between crop yield and soil and uniformity variability was assumed. Bresler et 

al. (1988)  studied the impact of uncertainty of soil parameters and uptake model 

parameters for a one-dimensional model on yield uncertainty. The parameters are 

assumed statistically independent and uniform in the vertical direction.  Rubin et al. 

(1993) used a stochastic analytic perturbation method to study the impact of soil spatial 

variability on water uptake by plants using a one dimensional steady state unsaturated 

flow case.  Muralidharan et al. (2009) showed that the variability of spatial infiltration 

increases the applied irrigation water and deep percolation flows by very substantial 

amounts compared to uniform infiltration. Recently, Montazar (2010) studied the 

impact of irrigation spatial uniformity on the yield of alfalfa hay. 

Using numerical models to analyze the uncertainty associated with subsurface 

drainage systems is the subject of several studies. For example, Haan et al. (2003) 

studied the impact of input parameter uncertainty on the drain outflow and relative crop 

yield using DRAINMOD. Monte Carlo simulations and first order approximation 

methods were used to determine the most sensitive uncertain parameters for a 

simplified layered subsurface system. Wang et al. (2006) employed the generalized 

likelihood uncertainty estimation (GLUE) procedures to evaluate the uncertainty in 

DRAINMOD predictions of the subsurface drain flow. To the best of the authors 

knowledge, simulation of the performance of subsurface drainage systems in a fully 
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three dimensional heterogeneous aquifer system is still absent from the published 

literature.  

This study presents a comprehensive approach to dealing with crop production 

uncertainty in a subsurface drained field scale problem. More specifically, this paper 

tackles the following points: first, investigates the temporal and spatial variability of 

root zone water content, salinity, root extraction rates and groundwater table depths as a 

response to uncertainty in input parameters; second, studies the spatial variability of 

crop yield statistical moments for two crops, alfalfa and corn; and third, evaluates the 

performance of subsurface drainage in a three-dimensional random soil domain.  

The paper is organized as follows: In section 4.3, the theoretical background of 

the variably saturated flow and transport model is outlined. Then, the methodology of 

the multivariate stochastic analysis is illustrated in section 4.4. The baseline conditions 

and site description are presented in section 4.5. Next, the statistical PDF's of the input 

parameters are developed in section 4.6. Subsequently, the numerical implementation 

of the method is shown in section 4.7, followed by the results and the discussion.  

4.3  Theoretical Framework 

A large number of parameters such as soil fertility, local pests, soil chemistry, crop 

type, climate conditions and cultivation practices affects crop yield. In this study, it is 

assumed that the agronomic conditions are excellent and the only limiting factors are 

the soil hydrosalinity conditions. Crop yield is modeled using the following 
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relationship, which is based on the assumption of a linear relationship between the 

relative evapotranspiration and relative crop yield: 

s[sR = = − tu �= − OP[OPR�     (4.1) 

Where �̀  is the actual dry matter yield [M], �U is the maximum harvested dry matter 

yield [M], ÌÍ is the yield response factor, ST̀  is the total (seasonal) actual 

evapotranspiration, and STU  is the maximum seasonal evapotranpiration (The reference 

ET), which is obtained from climatic data.   

According to Equation 4.1, the calculation of the relative crop yield is 

equivalent to the calculation of actual ET. The total actual evapotranspiration ST̀  is 

approximated by double integrating the temporal root extraction rate �:�M, �� over the 

growing season and over the root zone depth (Equation 4.2).  

OP[ = p p �:�M, ��!���hPh qMq� ,     (4.2) 

where +D�*, 6�	is the temporal root extraction [L3/T] at a vertical depth	*,  T is the 

overall season length [T], 7 is the root depth [L]at time	6.  
It is appropriate in this study to adopt macroscopic modeling of the root uptake, 

in which the uptake rate is represented as a nonlinear sink term in the flow and 

transport equations. The nonlinearity of calculating the root uptake +D�*, 6� stems from 

its dependency on the capillary head and the osmotic head induced by salinity. For 

overviews of root uptake models, readers are referred to Molz (1981) and Hopmans and 
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Bristow (2002).  The overall sink term that accounts for root density, root geometry, 

capillary head, and osmotic head can be modeled via Equation (4.3).  

�:�M, �� = N�M, ��. OP���∆Q . ?��,�R�.�Î    (4.3) 

Where ST�6�	1¤	the temporal reference evapotranspiration rate [L/T],	&Ï is the crop 

growth coefficient at time	6, ∆Q   is area [L2], and V�*, 6� is the root density term that 

describes the density and the geometry of the root network with respect to the depth; 

and can be modeled using the S function (Equation 4.4). 

N�M, �� = 	;=.WM!���X + =.Y!���      (4.4) 

Where * is the depth at which the root density is calculated [L] and 7�6� is the root 

depth at time 6  [L]. The temporal root growth can be approximated using the following 

equation from Hanks and Hill (1980)  

!��� = !Z[
�=>\� ]�[;^ ��′��     (4.5) 

where 7�6� is the root depth at time	6, 7_`a is the maximum root depth, 6′ is the end of 

the crop's third stage of growth, and  �, � are empirical coefficients.  

Feddes et al. (1976) pioneered describing the sink term as a function of water 

content; and  Van Genuchten (1987) extended it to incorporate osmotic head. This 

model does not take into account yield reduction due to the long saturation of the root 

zone.   To overcome this obstacle, we modify the Cardon and Letey (1992a) equation, 

which is a slight modification of Van Genuchten (1987), to account for waterlogging. 

That is, as �  in Equation 4.6 increases, or become more saturated; the term ?��,�R� 
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is linearly reduced by multiplying it by� ��� < 1�. The final equation that accounts for 

water deficit stress, salinity stress and water excess stress (waterlogging) is  

?��,�R� =
cdd
e
ddf				

=
= + � ��gh + �R�Rgh�

i 												��M, �� < 	��																					�Ð. W. [�			
� ����

	= + � ��gh + �R�Rgh�
i	 						h	 ≥ 	��M, �� > ��																�Ð. W. ^�	

l 

Where m is an empirical parameter close to 3, (no is the capillary head at which root 

uptake is reduced by 50% when (U = 0 [L], (U 	is the osmotic head, at which root 

uptake is reduced by 50% when (no = 0[L], (�*, 6� [L]is the capillary head [L] and 

(U�*, 6� is the osmotic head [L], (, is the head threshold after which oxygen deficiency 

starts to occur[L]. It is recognized that stress due to water excess (near saturation 

conditions) does not influence root uptake instantaneously (Feddes et al. 1976), but 

could take a few days (for example, 2 days) to affect the root uptake. As a result, 

Equation 4.6.b will not be active until the capillary head is equal to or greater than (, 
for a period of two days. 

The evaluation of Equation 4.6 requires the calculation of the capillary head and 

the salt concentration. Thus, the continuity equation for flow and transport of water and 

salts in a variably saturated aquifer are mathematically modeled using two partial 

differential equations for flow and transport (Equations 4.7 and 4.8 respectively).   

��
� ������ ���
�� + �� = � ��� �� + ����� ����     (4.7) 
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��
�  �!�" ���
"# − ��
� ��%��� + ���� = �������     (4.8) 

Where &'�(� is the hydraulic conductivity [L/T], ( is the capillary head [L],  ℎ	is the 

total head [L] (( = ℎ − *), +, is the sink or source term per unit volume [T-1], - is the 

moisture content [L3/L3], -, is the soil porosity [L3/L3], ., is the specific storage [L-1],  

/�(� is the specific capacity [L-1], 0 is a space vector [L] and 1 = 1,2,3 represents 

three-dimensional space, 6 is time [T]. 7'8 is the hydrodynamic dispersion [L/T2], / is 

the salinity concentration [M/L3], 9' is the seepage velocity [L/T].  

The sink term +, is the net sinks/sources term [T-1].  +' is the irrigation rate 

[L3T-1] which is a model input parameter, +Ñ is the drain outflow, +D is the root uptake 

[L3T-1] calculated from equation (4.3). Source terms have a positive sign whereas the 

sink terms have negative sign. 

+, =	 �IJ>IK>IÒ�∆L      (4.9) 

It can be noted that +D is function of the head and concentration.  The +Ñ sink 

term depends on the head at the drain pipe and is calculated using Equation 4.10 

(Harbaugh et al. 2000) 

+Ñ = /Ñ�ℎ − ÓÑ�     (4.10) 

Where +Ñ 	is the drain outflow [L3/T], /Ñ is the conductance [L2/T], ℎ	is the hydraulic 

head [L] at the drain pipe and ÓÑ is the drain elevation [L]. 
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Solving Equations 4.7 and 4.8 requires knowledge of the constitutive 

relationship between moisture content and capillary head, which is represented by the 

van Genuchten (1980) model, 

���� = �: + ��;�:
<=>�?|�|�AB=C=A     (4.11) 

Where -D is the residual moisture content [L3/L3], � is a fitting parameter related to the 

inverse of the air entry suction, � > 0 [L-1], � is a measure of the pore size distribution, 

� > 1. 

4.4  The Stochastic Analysis 

The uncertainty in the predictions made by the set of deterministic Equations 4.1 to 

4.11 in the preceding section is assumed to stem mainly from uncertainty of the 

parameters. Other sources of uncertainty, such as geostatitical parameters uncertainty 

and conceptual uncertainty (simplification to mathematical models), are not considered 

in this study. The input parameters are grouped into four categories. The first is the 

three-dimensional soil properties, which include the hydraulic conductivity	&; the 

porosity; the Van Genuchten Model's parameters	-D , �, �; soil specific storativity . and 

dispersivity	�~. The second group is the two-dimensional parameters such as irrigation 

weight �' (irrigation uniformity) and preferential flow fraction	m' (i.e. the fraction of 

irrigation water that reaches the water table instantaneously). The third group comprises 

the irrigation system parameters such as the amounts of diverted water, its salinity, and 

the fraction of infiltrating water. The fourth group includes the semi-empirical 

parameters that control yield, water uptake and drainage flow. This group includes 
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parameters such as the yield response factor	&Í, uptake model 

parameters	(no , 	(Uno, (,, Ô; root growth rate parameters	�, �; crop growth parameter 

&Ï, and drain conductance coefficient	/Ñ.  

The following section illustrates the methodology of the Multivariate Monte Carlo 

Analysis of the correlated soil properties within the first group.   

4.4.1  Multivariate Simulation of the Soil Properties 

Generally speaking, consider  ¬ regionalized and correlated soil properties. Also, 

assume that each soil property has a number of field measurements 7y, 7�, …7¸ 

respectively. The correlated N soil properties are presumed to be normally distributed, 

or that they could be transformed to be normal.  Given this setting, the objective of the 

geostatistical simulation is to generate ¬ dependent realizations for each soil property.  

The Sequential Indicator Simulations (SIS) method (Deutsch et al. 1997) is 

employed herein due to its flexibility in incorporating hard and soft information about 

simulated parameters. In particular, the SIS method aims to calculate a least-squares 

estimate of the conditional cumulative distribution function F�Z×,Ø� at pre specified 

cutoffs		Z×,Ø, where �	is the soil property index and t	  is the cutoff index. The cutoffs 

are a set of <Ó', ��Ó'�B pairs that can be used to approximate the CDF of	Ó'. Usually 4 

to 10 cutoff values are sufficient to obtain a good approximation of the CDF (Deutsch 

2002).  

In order to facilitate the multivariate SIS, we used the same number of cutoffs for 

each of the soil variables	�	Zy, Z�, … ZÙ�. Moreover, the cutoff values are chosen in a 
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consistent fashion for each variable; that is, the kth cutoff is calculated for any variable 

Z× using Equation 4.12. 

Z×,Ø = ZÚ,ØσÛÜ + μÛÜ      (4.12) 

Where ÓU,Ý  is an arbitrary cutoff value in the standard normal distribution (¡U =
0, £o = 1), £ÞK and ¡ÞK  are the standard deviation and the mean of the variable	Ó'. That 

is to say, Equation 4.12 calculates cutoff values for each of the soil variables at the 

same standardized CDF cutoff	ÓU,Ý .  

Without loss of generality, the sequential simulation of the variables is initiated 

at parameter	Óy. The CDF value  ��Óy,Ý�0��  at the kth cutoff and at 0	spatial position 

must be either zero or one at locations where Óy field measurement are available 

(Equation 4.13). 

F�Zy,Ø�x�� = 	 ß 1								Zy�x� < Zy,à					0							otherwise										l    (4.13) 

 However, for any other location	0′ where no field measurements for Óyare 

available, ��Óy,Ý�0′�� can be estimated using Equation 4.14 according to Deutsch et al. 

(1997), which is the best linear unbiased estimate of the	��Óy,Ý�0′�� or Indicator 

Kriging (IK). 

 � �Óy,Ý�0Ã�� = 	∑ Va .�a�y � �Óy,Ý�0�� + [1 − ∑ Va�a�y ]��Óy,Ý�  
 (4.14) 
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where ��Óy,Ý� is the global CDF based on the data	7y, � is the number of field 

measurements, and Va is the simple kriging weight that can be calculated from a set of 

linear equations as in Equation 4.15.  

∑ VÍ�Í�y /èÞé,ê�µ − 0� = /èÞé,ê�0′ − 0�,					0 = 1, . . �   (4.15) 

The term /èÞé,ê�0′ − 0� is the indicator covariance of variable Óy	at the Ì cutoff.  

It is possible to incorporate the field measurement of the other variables, 

namely,	Ó�, . . Ó¸, as soft data to estimate � �Óy,Ý�0Ã�� from Equation 4.14. To 

illustrate, hence Óy is presumed normally distributed and correlated with Ó�, . . Ó¸, 

therefore the conditional CDF of the variable Óy, given the data Ó�, . . Ó¸, is normally 

distributed and can be exhaustively described by its conditional mean and conditional 

variance as expressed in Equations 4.16 and 4.17. 

Z�ë=�
�|!X, …!²� = 	Z�ë=�
�|!X, . . !²;=� +	ì=,²;= �ª�ë=�
�|!X,..!²�ª�ë²C=� � �ë²;= −
Z�ë²;=��          

 (4.16) 

ª�ë=�
�|!X, …!²� = 	ª�ë=�
�|!X, …!²;=�<= −	ì=,²;=Bh.g    

 (4.17) 

Accordingly, knowing the conditional mean and standard deviation is all that is 

required to determine the	�<Óy,Ý�0�|7�, …7¸ 	B, which can be used in Equation 4.14. In 

the same fashion, the CDF values at all other cutoffs are estimated resulting in an 

approximate estimate of the	�<Óy�0Ã�B.  Thereupon, it is straightforward to sample a 
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random value for the variable 	Óy	at location	0′ from the approximated CDF. Next, the 

simulation is repeated at all other cell nodes to produce a three dimensional realization 

of the variable	Óy. Recall that every new simulated 	Óy should be conditioned on 

previously simulated values by treating simulated values as hard data. The resulting 

realization can be expressed mathematically using Equation 4.18 which says that íÞéis a 

realization of the variable 	Óy conditioned on the data	7y, . . 7¸. 

íÞé: {�	Óy�0�|7y, . . 7¸ 	�	, 0 ∈ w}     (4.18) 

Given the simulated soil property realization	íÞé, it is required to continue the 

simulation to the next soil property	Ó�. The same steps can be followed, however; this 

time, the simulation of Ó�	is conditioned on the field measurement �7y, . . 7¸� as well as 

the previously simulated	Óy. To generalize the procedures, any variable	Ó' can be 

simulated by conditioning the simulation on all previously simulated 

variables	Óy, … 	Ó';y and field measurements 7', . . 7¸ as shown in Expression 4.19.  

 íÞK: {�	Ó'�0�|�Óy, . . Ó';y, 7' , . . 7¸	�	, 0 ∈ w}     (4.19) 

The order of the simulation of variables, that is adopted here, is to start simulating 

the parameter that has the largest number of field measurements; in this field, it is the 

hydraulic conductivity, followed by the pore scale parameter, which is the parameter 

that is highly correlated with the conductivity and so on. 
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4.4.2  Covariance Inference 

The solution of Equation 4.15 requires the knowledge of the covariance model at 

the kth cutoff and requires that the transformed variables using Equation 4.13 are 

stationary at the kth
 cutoff.  The assumption that the variables are statistically 

homogenous is usually difficult to verify; however, it may still be a convenient working 

assumption .Under the stationary assumption, the variogram and covariance models are 

equivalent, i.e.  î�ℎ� = /�0� − /�ℎ� .  Denoting the number of parameters as N, the 

total number of covariance models required is	¬�. For example, in our case, if five soil 

properties are intended to be simulated, then the number of variograms required is 25 

variograms.  Obviously, the inference of variograms for all the variables requires a 

large number of field measurements that are usually not available.  

However, it is possible, assuming the validity of the intrinsic coregionalization 

model (Wackernagel 2003), to make use of the abundant data for a certain variable to 

infer the variograms for other variables. For example, the abundant data for hydraulic 

conductivity can be used to infer the variogram for Van Genuchten parameters. 

Intrinsic coregionalization models can be valid if the multivariate correlation structure 

of a set of variables has the same spatial correlation scale.  This model is based on a 

Markov screening hypothesis, in which a co-located primary data screens the influence 

of distant measurements on the secondary variable (Journel 1999). As a result, the 

covariance model for any variable Ó' can be obtained from Equation 4.20. 

/ÞK�ℎ� = 	£ÞKï�ℎ�      (4.20) 
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where ï�ℎ� is the correlogram that is inferred from another variable Ó8 that has 

abundant field measurements.  

ï�ℎ� = ðñò�Ä�óñòô        (4.21) 

Therefore, Equation 4.21 reveals that all variables have the same spatial correlation 

scale, but the sill value is scaled by the variance of the variable.  

4.5  Site Description  

The site of this study (Figure 4.1), known as Field 17, is located in the 

neighborhood of the town of Rocky Ford, Colorado. The groundwater flow direction is 

from the southwest to the northeast, and the water table depths range between 0.6 m in 

the southwest to 2.4 m in the northeast. The groundwater salinity in field 17 (Figure 

4.8) was found in 2009 to range between 1.33 – 2.49 dS/m. The average groundwater 

salinity is 2 ds/m with a standard deviation of 0.44 dS/m. According to FAO report 48 

(Rhoades et al. 1992), this level of salinity is classified as slight to moderate salinity. 

The soil type in the region is alluvial deposits that consist of a silty loam clay layer in 

the upper surface and loam to sandy loam substrata (USDA, 1971a; USDA, 1971b). 

The extracted soil salinity S/Ë of the root zone ranges between 2.8-4.3 dS/m (right of 

Figure 4.7). The water table and groundwater salinity were monitored using 31 

observation wells. Part of the field was chosen for the numerical simulation. This part 

has a shallow water table and relatively high soil salinity. Additionally, a subsurface set 

of drainage pipes is intended to be installed to help alleviate the waterlogging and 

salinity problems. 
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Figure 4. 1: Field 17 Site Map, Groundwater Depth and the Numerical Domain 

4.6  Statistical Distribution of Parameters 

 The statistical properties of the input variables were inferred using field data, 

soil databases for other sites, and published literature. The following section discusses 

the statistical properties for each of the soil properties. 

4.6.1   Three-dimensional Soil Parameters  

All the three-dimensional soil parameters are randomized except for the specific 

storativity, which has a small impact especially in shallow unconfined aquifers such as 

the field under study. The multivariate Sequential Indicator Simulation, outlined in 



108 
 

section 4.4, is employed to generate equally probable three-dimensional realizations for 

(&, -,, -D , �, �), whereas dispersivity is estimated based on a regression model as will 

be shown later in section 4.6.2. Data from a Cone Penetration Test (CPT) are used to 

estimate the hydraulic conductivity vertical profiles at 15 positions in Field 17 with 

vertical depths ranging between 6m to 20m. The resulting measurements are averaged 

at 10 cm vertical intervals resulting in 665 hydraulic conductivity estimates.   A number 

of core samples (37 cores) were used to obtain the Van Genuchten parameters and 

porosity. Only eight of these core samples have hydraulic conductivity values. 

Obviously, these eight samples are not enough to obtain the correlation between the 

hydraulic conductivity and the Van Genuchten parameters. Therefore, a soil database 

(ROSSETA database) for the five parameters (&, -,, -D , �, �) (Schaap et al. 2001) 

which include 650 records are used for two purposes, first, to estimate a better 

correlation coefficients among the five parameters and, second to select a suitable 

normal transformation scheme as required by the multivariate Monte Carlo simulation 

in section 4.4. 

The soil parameters were transformed using three transformations and the one that 

produced the lowest Chi-squared Goodness of Fit Test statistic was selected (Table 

4.1).  The Johnson transformations family (Johnson et al. 1995) was used for this 

purpose.  The transformations are the Lognormal (LN), the Log Ratio (SB) (Equation 

4.22) and Hyperbolic Arcsine (SU) (Equation 4.23). 

� = í� �a;õö;a�     (4.22) 

� = −¤1�ℎ;y�0� = í��0 + �1 + 0��o.n�    (4.23) 
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where w is the minimum value of 0 and � is the maximum value. 

The statistical properties of the transformed variables are illustrated in Table 4.2. 

The transformed field measurements are simulated using the multivariate SIS using five 

cutoffs (Table 4.3 and Figure 4.2). The transformed hydraulic conductivity field 

measurements are used to calculate the experimental indicator horizontal and vertical 

variograms at each of the five cutoffs. Thus, ten experimental variograms were 

obtained, five for the horizontal variograms and another five for the vertical 

variograms; subsequently, the spherical variogram functions were fitted. A summary of 

the variogram fittings is shown in Table 4.4.  Recall that according to the intrinsic 

coregionalization model adopted in section 4.4.2 the correlation scales of the hydraulic 

conductivity indicator variograms are the same for	-,, -D , �	and	�.  The Geostatistical 

Library (GSLIB) (Deutsch et al. 1997) Sequential Indicator Simulation method is used 

successively to simulate the parameters in the following order: &, β, θ¦, θù, and	α.  
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Table 4. 1 :  Choosing the Best Normal Transformation Scheme 

Parameter Mean Variance Chistat 

θr 0.11 0.002 97.36 

θs 0.41 0.01 175.27 ? 0.05 0.006 65.95 A 2.08 1.12 320.02 

log(θr) -1.02 0.07 11.33 

log(θs) -0.39 0.01 95.82 

log(?) -1.34 0.02 33.12 

log(A) 0.27 0.04 482.12 

SB(θr) -0.47 0.29 11.69 

SB(θs) -0.35 0.2 74.35 

SB(?) -0.36 0.15 107.75 

SB(A) -0.79 0.67 55.27 

SU(θr) -1.65 0.35 11.33 

SU(θs) -0.22 0.03 95.82 

SU(?) -2.4 0.11 33.12 

SU(A) 1.31 0.2 482.12 

 

Table 4. 2 :  Statistical Properties of Transformed Data 

 Correlation Coefficients 

  Mean STD 

Transfor- 

mation Log(K) θs θr α β 

Log(K) -0.574 1.788 Log10 1.00 -0.19 -0.42 -0.26 0.77 

θs 0.451 0.047 SB -0.19 1.00 0.59 0.60 -0.36 

θr 0.160 0.050 Log10 -0.42 0.59 1.00 0.55 -0.29 

α 0.046 0.030 Log10 -0.26 0.60 0.55 1.00 -0.47 

β 1.529 0.329 SB 0.77 -0.36 -0.29 -0.47 1.00 

 

 

 

 

 

 



111 
 

Table 4. 3 :  Cutoff Values of the Transformed Parameters 

Soil Property 
θr Θs α β K 

Cutoff 

C1 -1.00 -2.09 -1.64 -2.39 -3.01 

C2 -0.93 -1.35 -1.51 -1.39 -2.00 

C3 -0.80 0.11 -1.26 0.58 0.00 

C4 -0.73 0.84 -1.13 1.57 0.99 

C5 -0.67 1.57 -1.00 2.55 1.99 

 

Table 4. 4 :  Horizontal and Vertical Indicator Variogram Parameters 

Normalized Cutoff Value (Z) -1.37 0.8 0.32 0.88 1.44 

Vertical Correlation Length (m) 1.1 1.3 1.4 1.5 1.5 

Horizontal Correlation Length (m) 126 117 153 72 75 

Sill Value 0.2 0.23 0.3 0.11 0.03 

 

 

Figure 4. 2: Normalized CDF of the Soil Properties and the Indictor Cutoffs in the 

Distribution 
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4.6.2  Hydrodynamic Dispersivity (��) 

It is expensive and time consuming to obtain site-specific dispersivity values 

(for example, tracer tests); on the other hand, laboratory column tests usually reflect 

scales that are much smaller than site scales.  Other methods are correlation methods 

(Xu et al. 1997) that use correlations between dispersivity and other easier to obtain soil 

properties. In this research, a simple correlation method from Xu et al. (1997) was 

chosen. It was found that the correlation between αû and the reciprocal of porosity is 

0.84 and the following model can describe this relationship with an r2 of 0.74, 

� = −25.47 + 12.40� yýþ�     (4.24) 

Unfortunately, the limitation of this regression model has the inability to deal 

with porosity values greater than (0.486) due to the resulting negative dispersivity. To 

circumvent this problem, the previous model was refitted to a polynomial function that 

has its root at -, = 0.668, which is a very rare event. Both models have almost the 

same performance for -, < 0.486.  

�~ = -1268.9-,3 + 1950.6-,2 - 990.64-, + 169.72   (4.25) 

Where �~ is the dispersivity value in (mm). Equation 4.25 enables us to calculate the 

vertical dispersivity at each cell using the porosity field.  
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4.6.3  Irrigation spatial depth and Uniformity 

 The uniformity of irrigation depth is significantly impacted by the irrigation 

system used. For instance, the sprinkler system usually has high uniformity 

coefficients; however, its Christiansen's Coefficient (CU) is highly sensitive to the wind 

speed and direction. Other factors that affect the CU for sprinklers are the layout and 

spraying hydraulics. In surface irrigation systems, the topography, bed geometry, 

vegetation density and soil properties affect the uniformity of the irrigation.  In this 

study, a sprinkler system is assumed to be used. The CU values of less than 84% are 

considered low according to Bliesner et al. (2001). Assuming a unity irrigation depth 

(called 'irrigation weight'), it is reasonable to statistically model this property using a 

normal distribution	¬~�¡ = 1, £���. According to Montazar (2010), the normal 

distribution is a good model for the case of sprinkler systems, but might not be proper 

for surface or drip irrigation systems due to the role of land topography affecting 

surface irrigation and due to the design and the hydraulics of drip irrigation systems.  

The actual irrigation depth can be calculated by multiplying the average 

irrigation depth by the irrigation weight. The question is how to select a value of £��   

based on the uniformity coefficient. First, it is needed to randomly select a 

Christiansen's Coefficient CU from the noninformative uniform distribution 	�~�� =
95%, � = 85%�, which is within the typical sprinklers coefficients. Next using the 

sampled CU, the irrigation depths variance can be computed from: 

£�� = �� �1 − ð�yoo��     (4.26) 
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The previous equation is derived (Appendix B) by substituting the mean absolute 

deviation, in the CU equation (Hoffman et al. 2007), by the irrigation depth variance.  

4.6.4   Irrigation Efficiency and Salinity 

The total diverted water depth (7z) to Field 17 was found to range between  56 cm- 

68 cm per meter square per summer season; noninformative uniform distribution is 

used to model its uncertainty. The fraction of infiltration water is highly impacted by 

the irrigation scheme used. Assuming a sprinkler irrigation system, the PDF of the 

infiltration fraction (x�	) is taken as	¬�¡ = 85%,£ = 7%�. This distribution was 

obtained by analyzing data for a number of sprinkler-irrigated fields in the Arkansas 

Basin (Figure 4.3). The sampling sequence starts by randomly sampling a value of the 

total diverted water from �� = 56	À, 68	À�; then the infiltration fraction is sampled 

from ¬�¡ = 85%, £ = 7%�. Consequently, the total amount of water infiltrated (x') 
can be directly calculated, i.e.x' = {
 .è�	yoo 	, and then divided on seven irrigation events.  

The salt concentration, as Total Dissolved Solids (TDS), was measured for the 

irrigation canal near Field 17 in the summer of  2005 and found to be approximately 

normal ¬�¡ = 0.76, £ = 0.18� (mmoh/cm) (Figure 4.4). 
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Figure 4. 3: Total Applied Water Depths, Tailwater Depths and Infiltration Depth 

for a Sprinkler Irrigation System 

 

 

 

Figure 4. 4: Statistical Properties of Irrigation Canal Water Salinity 



116 
 

4.6.5  Preferential flow  

 The flow and transport in porous media can be either rapid macro pores flow 

and transport (direct drainage) or matrix slow flow (general drainage) (Steenhuis et al. 

1994). The spatial distribution of shrinking cracks or bio-holes is complex and 

unpredictable. A simplified method is adopted to quantify the fraction of irrigation or 

rainfall water that rapidly reaches the water table. To the extent of the authors’ 

knowledge, there are no published data that quantify the fraction of surface water that 

rapidly reaches the groundwater table. Alternatively, it is assumed that the bypass flow 

fraction is a spatially random, uniformly distributed, and spatially independent 

regionalized variable. The uniform distribution of the bypass fraction adopted 

is	U~�a = 0,b = 10%�. This distribution reflects a high degree of uncertainty 

regarding bypass flow. 

4.6.6  Root Uptake Model Parameters 

Equation 4.6 in Section 4.3 describes the root uptake model where four semi 

empirical parameters are required to predict the root extraction ((,, (no, (Uno, m). The 

parameter  (, represents the capillary head value at which the yield will decrease due to 

oxygen deficiency. Veenhof and McBride (1994)  suggested values for (, to be 

between -1cm to -30cm. In line with these findings, a noninformative uniform 

distribution is used U~�a = −1,b = −30�cm. Cardon and Letey (1992) used a value 

for the salinity tolerance parameter  of (Uno =	−4,300 cm and then they estimated 
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water  deficit  parameter (no to be within the range of −2,500	6�	 − 6,500 cm. 

Shalhevet et al. (1986) used a (Uno =	−6,400	À  for alfalfa. 

 In this paper, dry biomass data for alfalfa that were collected from Field 17 and 

used to calibrate the parameters using Equation 4.6. Using (Uno =	−6,400	À as in 

Vinten and Meiri (1986) the values of  (no are estimated at different capillary heads. 

The value of (no was plotted versus the summed square errors of alfalfa yield 

estimation at different capillary heads (Figure 4.5). From Figure 4.5 it can be seen that 

a reasonable distribution of  (no is  U~�a = −800	, �	 − 3,000� cm. The value for the 

corn maize (Zea Mays) is taken as (Uno = −4,100	À. The parameter p is taken as a 

deterministic value equal to 3 (Ayers and Westcot 1994). 

 

 

Figure 4. 5: Estimating �gh Values Using Dry Alfalfa Biomass Data 
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4.6.7  Drain Conductance 

The drain outflow in Equation 4.10 is a head dependent flow. The conductance 

[L2/T] quantifies the resistance that water flow experiences to enter the drain. 

Specifically, the value of conductance reflects entrance resistance and gravel envelop 

resistance. Usually the values of conductance are determined during model calibration 

procedures. Deverel et al. (1991)  used field data of head at the drain and outflows to 

calculate conductance values based on Equation 4.10. The values obtained were within 

the range of 0.27 m2/day/m to 0.44m2/day/m for different type of soil, gravel and drain 

pipe materials..   Conductance values estimated via calibration by Goswami and Kalita 

(2009) are within the range of 0.15 and 0.58 m2/day/m.  In this study and in accordance 

with published conductance values, a wide uniform distribution is used	�~�� =
0.01, � = 2� m2/day/m. 

4.7  Numerical Simulation 

The Equations 4.1 to 4.11 are solved using the CSUID model (Alzraiee et al. 

2009). This model is a three-dimensional variably saturated flow and transport model in 

a heterogonous porous media. The resulting nonlinear finite difference equations of 

flow and transport are solved using the precondition conjugate gradient method 

(Harbaugh et al. 2000). The horizontal cell sizes used is 10m x 10m and the vertical cell 

size is 0.25m. The number of cells in the horizontal plane is 30 for the east-west 

direction and 38 cells in the north-south direction (Figure 4.6). Twenty layers, each 

25cm, were used. The general boundary conditions are used to describe the boundary of 
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the field. The upstream and downstream boundaries are each divided into 3 sections to 

represent the head variability along the boundary. The salinity of the lateral flux 

induced by the general boundary condition was chosen to be consistent with 

groundwater salinity measurement at these boundaries.  

 

 

Figure 4. 6: Dimensions and Spatial Discretization of the Numerical Domain 

 

The simulation periods are chosen to be 60 days for alfalfa first cycle  and 125 

days for corn  . A root zone depth of 1.5 m is used for alfalfa crop and 1.3 m for the 

corn. Table 4.5 shows alfalfa and corn growth properties. The reference 

evapotranspiration was obtained from the weather data for Rocky Ford between May 1, 

2010 and July 15, 2010 (Figure 4.7). 
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Table 4. 5 : Crops growth properties (Hoffman 2007) 

Crop 

Type  

Growth 

Period 

(days) 

Kc ini 
Kc 

mid 

Kc 

end 

Depth of Root 

Zone (m)  

%50 

Yield 

Reduction 

Osmosis 

Pressure 

(cm) 

Alfalfa 60 0.4 0.95 0.9 1.5 -6500 

Corn  125 0.3 1.15 0.4 1.3 -4100 

 

The initial water table is treated as a deterministic surface and kriged using 31 

observation wells. The initial salt concentration is obtained by kriging the salinity 

measurements, and it is assumed that the vertical salinity profile is uniform due to the 

lack of information about the salinity stratification.   

 

Figure 4. 7: Dialy Reference Evapotranspiration in Rocky Ford, CO (May 1, 2010 

– June 15 ,2010) 
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4.8   Results and Discussion 

The hydrological responses of the aquifer systems, which include water table level, 

root zone salinity, relative crop yield, and deep percolation, are obviously spatial and 

temporal variables. Due to the large amount of numerical outputs, i.e. at each time step 

and at each numerical node, the discussion of the results, herein, is limited only to the 

output at the end of the modeled crop season. In addition, time series for water content 

salinity, root extraction and vertical flux are presented.  At first, the baseline condition 

(before drain installation) of the field is outlined; therefore, the impact of installing a 

subsurface drainage system to help alleviate the problems of waterlogging, root zone 

salinity, deep percolation and relative crop yield is investigated. 

4.8.1  Pre-Drainage Water Table Conditions  

Waterlogging spatial delineation requires the spatial interpolation of groundwater 

table depths, computed as the difference between the ground surface elevations and the 

groundwater table elevations. Figure 4.8 shows that groundwater table depth, prior to 

drain installation, ranges between 0.66m to 2.43m. In this paper, the field is classified 

as (i) waterlogged area of groundwater table depth < 1.0m, (ii) partially waterlogged 

area with groundwater table depth between 1m	and	2m, and (iii) waterlogging free area 

with groundwater depth ≥ 2m. The first category of waterlogged areas constitutes 

33% of the field, and partially waterlogged areas constitute 58% of the field.  

The existing conditions (no drainage system) is simulated in CSUID to predict the 

relative crop yield for alfalfa crop. Results presented in figure 4.10 show that the 
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relative crop yield is between 20% and 62%. The lowest yield occurs in region with 

high salinity and shallow groundwater table, which demonstrate the negative impact of 

waterlogging and high soil salinity on crop yield. 

 

Figure 4. 8: Initial Groundwater Table Depths and Ground Surface Soil 

Salinity 

 

Figure 4. 9: Initial Groundwater Salinity ECw (dS/m) 
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Figure 4. 10: Simulated Relative Crop Yield before Drain Installation 

 

4.8.2  Expected Post-Drainage Groundwater Table Depths  

 The spatial distribution of the first and the second statistical moments of the 

water depth at the end the growing season are shown in Figures 4.11. The average 

water table depth range between 1.05 m and 2.37 m, and the standard deviation of the 

of water table depths ranges between 0.018 m in the field downstream and 0.37 m in 

the field upstream(south boundary of the field). The overall average groundwater depth 

was 1.42 m before installing the drains and is expected to be 1.79 m after installing the 

drains. This means that the water depth before and after installing the drains is reduced 

and the waterlogging problem in the southern west part of the field has disappeared; in 

particular, groundwater table depth is greater than 1 m in the entire field.  
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  Coefficient of variation is in the range of 0.01 to 0.21, which reflects a narrow 

range of variability. This is due, in part, to the impact of the drains, which fix the 

groundwater table elevation approximately at the drains elevation. The highest 

groundwater table depth variability occurs at the upstream end of the middle drain 

where the general boundary condition and the drain meet. Working as an interceptor of 

the lateral groundwater flow, the drainage system reduced the water table in 

downstream (south of the field) region but has a limited impact on the upstream region 

(north of the field).  

 

Figure 4. 11: Mean and Standard Deviation of Groundwater Table Depth at the 

End of the Season 

 

4.8.3  The Expected Root Zone Salinity 

The simulated average root zone soil water salinity (S/Â) (Figure 4.13) is found to 

range between 1.05 dS/m and 2.3 dS/m. The initial salinity �S/Â� before the 
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installation of the drain was within the range of 2.8-4.3 dS/m. The highest salinity 

occurs mainly in the upstream of the drain pipes (south of the field) where the 

groundwater table is relatively high (shallow). This might be explained by the limited 

leaching capacity of shallow water table, which also contribute to the upflux that 

mobilizes salt from the groundwater to the root zone. 

The overall simulated average S/Â ≈ 1.6 dS/m whereas the overall initial soil 

salinity was S/Â ≈3.5 dS/m. This demonstrates the drainage systems ability to remove 

the salts from the soil water profile in most of the field, particularly downstream of the 

drain.  

The soil water salinity �S/Â�	spatial standard deviation (right of Figure 4.12) 

ranges between 0.18 and 0.45 dS/m, and the coefficient of variations (CV) ranges 

between 0.12 and 0.31, which are higher than the variability of the water table depth. 

The highest salt concentration standard deviation occurs in the upstream section of the 

field and coincides with the region of the highest variability of the vertical cumulative 

flow as shown in Figure 4.15. This might reflects the role of upflux in the soil 

salinization of fields underlain by shallow groundwater table. 
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Figure 4. 12: Mean and Standard Deviation of the Root Zone Salinity at the End 

of the Season 

 

4.8.4  Expected Relative Crop Yield 

 The simulated relative crop yield is the result of the interaction between plant 

and hydrosalinity conditions of the root zone as summarized by Equation 4.6.  Figures 

4.13 and 4.14 show the simulated ensemble mean and standard deviation of the relative 

crop yield for the alfalfa and corn over the field, respectively. The mean alfalfa relative 

yield are found to between 91 % and 67% and for the corn between 89% and 64%, 

which are similar in value and spatial distribution.  This observation might seem to 

contradict the fact that alfalfa and corn have different salinity tolerance (the salinity 

tolerance parameter for alfalfa is (Uno =	−6,400	À, and for the corn (Zea Mays) is 

(Uno =	−4,100	À). However, this disagreement can be explained by noting that the 

average soil water salinity in the field is around 3 dS/m, which corresponds to osmotic 
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pressure of around -1,070 cm, calculated using the equation Φ�	À� = 356.89S/. 

Obviously, this osmotic pressure is significantly smaller than the 50% reduction 

threshold for both alfalfa and corn; in other words, the salinity condition in the field 

after drainage installation is not, on the average, the major factor affecting the crop 

yield.  

  As the concentration of salts in the root zone deviates from the average, its 

impact on the crop becomes apparent. This observation can be seen by the different 

yield standard deviation for alfalfa and corn. The spatial standard deviations (right of 

Figures 4.13 and Figures 4.14) are found to be between 26% and 11% for alfalfa, and 

30% and 11% for corn (Zea Mays), which reflects slight higher corn sensitivity to 

salinity. 

 It is worth noting that the maximum relative crops yield for both alfalfa and 

corn coincide in south of the field which has cumulative deep percolations 0.25m. This 

indicates the contribution of subirrigation that provides water to crops despite the high 

salinity concentration in this part which is ECe = 2.2 dS/m (less than the 50% yield 

reduction of corn and alfalfa). 
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Figure 4. 13: Spatial Expectation and Spatial Standard Deviation of the Relative 

Crop Yield of Alfalfa 

 

Figure 4. 14: Mean and Standard Deviation of the Relative Crop Yield for Corn 
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4.8.5  Expected Vertical Flux 

 Reclamation of fields with high root zone salinity or maintaining root zone 

salinity within a tolerable range for the crop requires quantifying of the vertical flux. It 

is important to note that we define the vertical flux as the portion of irrigation water 

that leaves (or enters) the root zone and that does not necessarily reach the groundwater 

table. Other environmental implication for the vertical flux calculation is quantifying 

the loading of pesticides or/and fertilizers to the groundwater.  

The spatial expectation and the standard deviation of the vertical flux (defined 

as the cumulative vertical flux) are shown in Figure 4.15. Net vertical flux mean values 

klrange between -0.11m and 0.28m with low absolute values in the southern part of the 

field. The negative sign indicates a downward flow while the positive sign indicates an 

upward flow. The shallow water table in the southern part seems to be the factor behind 

the low downward cumulative vertical flux value. The standard deviation values range 

between 0.065 m and 0.11 m.  It is noticed that the standard deviation is very small at 

region underlain by the drains. 
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Figure 4. 15: Spatial Expectation and Spatial Standard Deviation of the Simulated 

Cumulative Vertical Flux 
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4.8.6  Expected Drain's Flow and Salinity Hydrograph 

 Investigating the drainage effluent, in terms of quantity and quality, is important 

to determine the feasibility of drainage water reuse and to assess the environmental 

risks (for example, disposal of salt loads to streams ) associated with the drain 

installation. The uncertainties in drain conductance, soil hydraulic properties are 

certainly impact the predicted hydrographs.  In order to illustrate the statistical 

properties of the hydrographs, the flow rate mean �	and �∓ ª, where ª is the standard 

deviation of flow rate, are plotted in Figures 4.15. The same results are plotted for the 

salinity of the effluent.  The drainage flow rate mean fluctuates around 120m3/day 

while the mean of the drainage effluent salinity fluctuates around 2 dS/m.  

It is worth noting that the average salinity of the effluent is slightly above the 

salinity of the lateral flow from the southern boundary condition, which emphasizes the 

belief that the major source for salinity load in Field 17 is from the lateral saline flow.  

The change in flow rate due to irrigation events can be observed as local spikes 

in the flow that last for around 1 day after which the flow approaches the same rate of 

the lateral flow. The same observation can be seen for the effluent salinity that 

experiences a drop in its value due to the application of irrigation water that has salt 

concentration less than the groundwater.   
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Figure 4. 16: Drain Outflow Hydrographs Include the Mean �	and � ∓ ª, where ª 

is the Standard Deviation 

 

Figure 4. 17: Drain's Effluent Salinity Hydrographs Include the Mean �	and	� ∓�, where � is the Standard Deviation 
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4.8.7  Temporal Variability of Root Zone Hydrosalinity 

The statistical properties of the root zone hydrosalinity shown in section 4.8.1 to 

4.8.5 illustrate their spatial variability; however, the root zone hydrosalinity varies 

across time as well. It is difficult to visualize the change across time for the two-

dimensional root zone without resorting to animation. Alternatively, the simulated 

hydrograph of root zone variables are plotted for a point that is located middle of the 

field at the coordinate (150m, 150m).  Figure 4.18 shows the simulated hydrographs of 

the root zone moisture content. The effect of the biweekly irrigation events can be 

easily noticed. The median (50% percentile) of the water content fluctuate between a 

maximum water content of 0.37 and a minimum of 0.17.  

The driving force of the moisture content change, from the model perspective, is 

the root extraction of fresh water, which also drives the temporal change of salt 

concentration in water phase (Figure 4.19). The potential of salt build-up can be clearly 

noticed from the 95% percentile salinity hydrograph and to a lesser degree from the 

50% percentile salinity hydrograph. On the other hand, the 5% percentile salinity 

hydrograph experience a slight decrease in the trend of salinity with time.  Modifying 

the irrigation schedule and the application rate might alleviate the salt build-up 

demonstrated by the 95% and 50% percentile.  

The temporal root extraction rate is shown in Figure 4.20. The impact of the daily 

reference evapotranspiration can be noticed from the high fluctuation of the uptake rate; 

though, the impact of irrigation events can be seen as a spike in the uptake rate. 
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 An interesting aspect of the root zone hydrology is the time variability of the 

vertical flux (Figure 4.21), which experiences a change not only in magnitude of the 

flow, but also its direction. Directly following the irrigation event, the downward flow 

is dominant. Then, the vertical flow reverses to the upward direction in a response to 

the high root extraction following an irrigation event. An up-flux rate of 8mm/day is 

highly probable in periods between subsequent irrigation events. The variability of the 

up-flux rate is a reflection to the variability of the evapotranspiration.  One can notice 

that immediately before an irrigation event, the up-flux rate reached its lowest value; 

this might be due to the relatively dry condition that the root zone experienced, which 

results in a low conductivity of the porous media.  

 

Figure 4. 18: The Temporal Variability of the Root Zone Average Water Content 
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Figure 4. 19: The Temporal Variability of the Root Zone Average Salinity 

 

Figure 4. 20: The Temporal Variability of the Root Extraction Rates 
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Figure 4. 21: The Temporal Variability of the Vertical Water Flux 

 

4.9  Conclusion and Summary 

The prediction of the relative crop yield under irrigation and drainage conditions 

using numerical models requires the knowledge of a large number of input parameters 

that are usually sparse and contaminated with measurement errors. This paper attempts 

to quantify the impact of parameter uncertainty on the prediction of crop yield and the 

hydrosalinity conditions of the root zone. The input parameters are categorized into 

four groups, 1) three-dimensional soil properties, 2) two dimensional parameters such 

as irrigation uniformity and preferential flow fraction, 3) irrigation application 

parameters such as diverted volumes, irrigation efficiency, and irrigation water salinity, 

and finally 4) semi empirical scalar parameters that control drainage flow, root water 

uptake, and crop yield. The three-dimensional parameters are randomized using the 
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multivariate Sequential Indicator Simulation of the correlated soil properties. Other 

parameters are assumed independent and sampled from their respective PDFs, which 

were inferred from field data and published data. The statistical moments of model’s 

responses are evaluated spatially, such as groundwater depths, relative crop yield, root 

zone salinity, and deep percolation.  

As interceptor of the lateral flow, the subsurface drainage system controls the 

groundwater table efficiently in the downstream; while the upstream area is only 

slightly affected by the drain. The reduction in the groundwater table in the field's 

downstream area improves the leaching capacity of salts, while upstream salinity 

increased due to poor leaching.  Results show that the installation of the subsurface 

drainage is necessary to intercept the saline lateral flow from the southwestern direction 

and, consequently, improves the field crop yield. The crop yield standard deviations for 

corn are almost the same of alfalfa. 

 It is vital to note that the simulated crop yield and hydrosalinity conditions 

presented in this paper are  responses of a specific assumed irrigation design, a 

sprinkler irrigation system that applies irrigation water  regularly. Undoubtedly, these 

assumptions are not applicable to the entire basin. Although expanding the study to 

account for the entire Lower Arkansas River basin sounds appealing to decision 

makers, it is faced by major obstacles. For instance, simulating the variably saturated 

flow and transport on a regional scale could be computationally prohibitive. A 

simplified conceptualization of the unsaturated zone, e.g. the unsaturated zone package 

in MODFLOW (UZF1 package, Niswonger et al. (2006)), might be a pragmatic 
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response of modelers, though the conceptual model uncertainty introduced by this 

simplification still needs to be quantified.  
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Appendix A: Convertion Equations 

- S/,� = ���þ � �y;�� yýS/Ë 
- Conversion from salinity concentration to osmotic head Φ�	À� = 356.89S/ 

- Conversion from salinity concentration to osmotic head Φ�	À� = −339.0 ∗
�//640�y.on 

Appendix B: Relationship between Christiansen's Uniformity Coefficient  

The uniformity of a system can be defined for a sprinkler using the 

Christiansen's Uniformity Coefficient CU using the following equation: 

/� = 100 �1 − ∑ |0' − 0_|∑ 0' � 
where the variables {0y, … , 0�} are measured depth of water in equally spaced cans on a 

grid 

The average absolute deviation is defined as  

7 = 	 1�� |0' − 0_|'��
'�y

 

The relationship between standard deviation and average absolute deviation can 

described as follows: 

1�� |0' − 0_|'��
'�y

= £�2� 
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/� = 100
��
��1 − �£Á2�∑0'  !

!" 

Assume that the average irrigation depth is unity, then  

�0' = � 

Then the standard deviation as a function of CU is given by the following equation: 

£� = �2 �1 − /�/100�� 
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5  MULTI-OBJECTIVES AQUIFER SAMPLING USING 

ENSEMBLE KALMAN FILTER FOR OPTIMAL SPATIAL 

PREDICTIONS AND COVARIANCE-PARAMETERS 

ESTIMATION 

5.1  General 

Effective sampling of groundwater systems is an essential effort toward gaining 

insight into the system’s behavior. Data collection is usually motivated by different 

objectives; for example, minimizing prediction errors at unsampled locations; 

estimating the spatial covariance parameters; using minimum cost of installing and 

operating the monitoring network. Essentially, sampling of a groundwater system is not 

limited to a single parameter but multiple parameters (multivariate sampling problem) 

that fully characterize the system. This paper employs the Ensemble Kalman Filter as a 

flexible tool to incorporate the sampling of different system parameters (e.g. hydraulic 

conductivity) and system variables (e.g. hydraulic head).  The approach is investigated 

by applying it to a two-dimensional steady state groundwater problem. The formulated 

objective function is a multi-objective integer optimization where the decision variables 

include the number of hydraulic conductivity measurements, the number head 

measurements, and their spatial locations. The optimization problem is searched using 
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the multi-objective Genetic Algorithm. Several design scenarios are investigated; and 

the implications of different sampling cost are also studied.  Results show that the 

Ensemble Kalman Filter is a very flexible tool for tackling multivariate sampling 

problems.  Moreover, a tradeoff design for minimizing prediction errors and spatial 

covariance parameters estimation can be approached as a multi-objective optimization 

problem.  

5.2  Introduction 

The unknown spatial variability of the hydrogeological controlling parameters, e.g. 

hydraulic conductivity, contributes significantly to the uncertainty of the flow and 

transport model predictions. The geostatistical method (Matheron 1962, Isaaks and 

Srivastava 1990, Diggle and Ribeiro 2007) has been widely used to model spatial 

variability. Within the geostatistical framework, the field measurements are typically 

analyzed to infer a spatial statistical model as well as its geostatistical parameters, i.e. 

spatial correlation length, variance, nugget effect, and trend surface. This inferred 

model is supposed to serve the ultimate objective of geostatistics analysis, which is to 

provide unbiased predictions at unsampled locations (Kriging).  Obviously, the 

accuracy of the predictions is substantially affected by the relevancy of the inferred 

structural parameters.  

Bridging the gap between the unknown reality of groundwater systems and our 

status of knowledge can solely be achieved by collecting more data. In particular, 

groundwater monitoring networks are supposed to provide insight into the behavior of 

groundwater systems. A quantitative characterization of the behavior of the 
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groundwater systems might be determined by identifying the spatial and temporal 

variability of the system's variables, e.g. piezometeric levels, groundwater velocities 

and water chemistry, etc.; and the system's parameters, e.g. the hydraulic conductivity, 

storativity, porosity, etc.  

Unfortunately, the amount of data collected is usually constrained by logistical and 

budgetary considerations. This is beside the fact that groundwater systems are 

distributed parameter systems (DPS) that cannot be determined uniquely using a finite 

set of measurements. Several studies explore the optimal design scheme for distributed 

systems (Ucinski 2004). The kriging-based design is one of the widely used methods to 

optimize spatial data collection. Specifically, the optimal sampling design of a 

univariate spatial variable might be achieved by minimizing the prediction variance 

(Kriging Variance), which is a function of the spatial locations of the data (See for 

example (Yfantis, Flatman, and Behar 1987); (Cressie, Gotway, and Grondona 1990). 

The optimization criterion in these works is either the maximum kriging variance or the 

average kriging variance. 

Although the term optimal designs usually refers to efficient prediction design, 

another design objective might be to provide optimal estimates of the random field's 

model; more specifically, the spatial covariance function’s parameters. (Bogaert and 

Russo 1999) provided a methodology for variogram parameters estimation based on the 

generalized least square approach and under the hypothesis that the random field is 

Gaussian second-order stationary. Other works on design for variogram estimation 

include (Müller et al. 1997,  Zhang et al. 2010). Zhu et al. (2005) introduced a design 

that is optimal for the maximum likelihood estimation of the covariance parameters. 
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The geostatistical design (Diggle and Ribeiro 2007) incorporate the uncertainty of the 

geostatistical parameters in design using a Bayesian weighted average of predictive 

distribution as a design criterion.    

Combining a design that is efficient for prediction as well as for covariance 

parameter estimation in one design scheme seems to be natural and promising.  

Zimmerman (2006) proposed a design that is optimal for both prediction and 

covariance-parameters estimation using the Empirical Best Linear Unbiased Estimation 

(Empirical Kriging). Zimmerman (2006) noticed that design for prediction and for 

covariance-parameters estimation is antithetical. In other words, while optimal 

prediction requires a wide and uniform spread of measurements, the optimal design for 

covariance-parameters estimation requires spatial clustering of the measurements.  

The increased awareness of environmental issues in 1970's, crowned by the passing 

of the Clean Water Act 1972, focused more attention on optimal data collection, 

particularly water quality data.  In the field of groundwater, several studies have been 

conducted with the goal of optimally designing groundwater-monitoring systems 

(Loaiciga et al. 1992). As an example, Carrera et al. (1984) used a kriging-based 

approach to optimally sample fluoride concentrations. Hsu et al. (1989) proposed an 

experimental design for parameter identification of groundwater system to identify the 

number and the locations of pumping and observation wells. 

The inability of kriging-based methods to provide a design that monitors the 

physical process across space and time increased interest in the Kalman Filter (Kalman 

1960) . In groundwater hydrology, the filter was used as a framework to determine the 
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spatiotemporal distribution of the sampling of groundwater systems (Van Geer 1987, 

Wu 2004).  Andricevic (1990) employed a branch and bound technique and Kalman 

Filtering to obtain optimal solution for a discrete set of samples. Herrera et al. (2005) 

used the Kalman filter coupled with a stochastic transport model to provide a minimum 

cost design.  Zhang et al. (2005) combined the genetic algorithm with a static Kalman 

filter and a stochastic groundwater flow and contaminant transport model to obtain a 

least cost design for groundwater quality monitoring. Recently, Kollat et al. (2011)  

employed the bias-aware ensemble Kalman filtering to improve the long-term 

monitoring while accounting for model errors.  

In this research, the optimal design theory is applied to obtain the optimal number 

and locations of hydraulic conductivity and hydraulic head. This can be seen as a 

multivariate optimal sampling problem. Fortunately, the Ensemble Kalman Filter 

(Evensen 2009) provides a natural instrumentation for the multivariate sampling design 

algorithm. The advantage of this instrumentation is that the designer can include the 

measurement errors associated with a given measurement method.  Moreover, cross-

covariance of conductivity and head can be approximated using ensembles produced 

from numerical simulations, that is to say no field data is required to establish the cross-

covariance of conductivity and head.  

 Another objective of this paper is to seek a local optimal design for prediction and 

conductivity covariance parameters estimation as a multi-objective optimization 

problem. This differs from Zimmerman (2006) in that the Empirical Kriging 

approximate criterion is not used; instead both objectives are competing equally to 

produce a tradeoff design. This approach enables decision makers to choose a design 
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from a set of optimal designs that have different efficiencies for prediction and 

covariance parameter estimation. The classical tradeoff between performance and cost 

is also investigated at different relative pricing of measurements. The multi-objective 

genetic algorithm is utilized to solve the optimization problem. 

This approach is applied to augment the existing monitoring network in Field 17 in 

Rocky Ford, Colorado. The existing network consists of a number of observation wells 

and Cone Penetration Test (CPT) measurements of hydraulic conductivity.  

The paper is organized as follows: a brief review of deign paradigms are outlined in 

section 5.3; section 5.4 outlines the methodology used and the setting of the multi-

objective GA optimizations. Section 5.5 illustrates the setup of the computational 

experiments and the different scenarios investigated.  Results are shown and discussed 

in section 5.6. Final notes and conclusion are presented in section 5.7. 

5.3  Network Design Paradigms  

A suitable design framework depends on the particular circumstances of the 

problem to be tackled. There is a rich published literature about optimal experimental 

designs. A comprehensive treatment of spatial data collection appears in Müller (2007) 

and Ucinski (2004).  In terms of design methodology (Zidek et al. 2010), the design 

could be geometry-based, probability-based, or model-base design. In the geometry-

based design, the sample locations can be chosen to optimize a specified geometrical 

pattern; one the other hand, the probability-based method is based on sampling of an 

assumed PDF of the underplaying process. The model-based design optimizes a 
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specified statistical criterion; this method is widely used in environmental monitoring 

network design.  

Another perspective on categorizing experimental designs is based on the status 

of prior knowledge about the field (Diggle et al. 2007).  The design can be retrospective 

design if an existing monitoring network is required to be augmented by deleting some 

sensors or adding new ones; or   prospective design if the design does not consider any 

prior knowledge about the field. Sometimes the concern of the monitoring network is 

not limited to one variable, i.e. univariate optimal design, but requires sampling several 

spatial variables, i.e. multivariate optimal design (Li 2009).  In terms of the design 

objective, the design goal could be to optimize prediction, estimate the random process 

geostatistical parameters, determine the trend of spatial process, and determine the 

extreme values for spatial process, among others. 

5.4  Methodology 

The general continuity Equation (5.1) is typically used to describe the flow of fluids 

in porous media.  This equation establishes the relationship between aquifer soil 

parameters, e.g. hydraulic conductivity and storativity, and the response variables, e.g. 

head field and flow rate. 

#. ��.#�� + � = � ����       (5.1) 

Where & is the hydraulic conductivity [L/T] , ℎ the hydraulic head [L], + is a sink 

or source term per unit volume of the porous media [1/T], and . the storativity term 

[1/L]. 
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The numerical solution of Equation (5.1) requires the knowledge of the hydraulic 

conductivity field within a discretized domain of field under study	7, as well as the 

boundary conditions and initial conditions of the state variable. In other words, the 

random field	.�0�, where	.�0� = log	K�0�, should be defined at every numerical node, 

the vector 0 = �0y, … , 0��z , 0' ∈ 7, where � is the number of active cells in the 

domain	7.  

It is convenient to decompose .�0�  into a deterministic component (trend model) 

and a stochastic component such that the term ', is stationary and has a Gaussian 

distribution	',~¬�0,Σ�-��. 
� = )A + *�,      (5.2) 

In equation 5.2, [��]  is the vector form of the trend surface. To simplify the 

analysis further, it is presumed that	[��] 		= ¡; as a result, the spatial random process is 

modeled as	.�0�~¬�¡, Σ�-��; where ¡	 is the stationary average of log	K�0� and Σ�-� 
is the spatial covariance matrix. Several functional forms of the spatial covariance have 

been used; herein the spherical covariance function is adopted to model the spatial 

correlation. Accordingly, the �1, +�6ℎ element of the covariance matrix might be 

computed using Equation 5.3 (assuming a zero nugget effect). 

 ª�"��� = ,¾ − ¾  =. g �[ − h. g ��[�-# � ≤ [h � ≥ [l    (5.3) 

Where - = �	, �� is the structural parameters vector, 	 is the stationary variance, � 

is the correlation length, and ℎ is the Euclidian distance between two points 0' and	08. 
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The assumption of the zero nugget effect is compensated for by allowing specified 

measurement errors in the Kalman Filter in section 5.4.1, instead of dealing with it as 

unknown parameters.  

In the multivariate optimal design setting, the intent is to sample �. hydraulic 

conductivity measurements and �Ä head measurements, as well as their spatial 

locations, in order to optimize a specified statistical inference about the multivariate 

random field of the conductivity and head. In the next section, the Ensemble Kalman 

Filter is utilized as an instrument to calculate cross-covariance of the log�&� and	ℎ, 

which will be used later in calculating the design criteria. 

5.4.1  Ensemble Kalman Filter 

The Kalman Filter was initially proposed by (Kalman 1960) and was widely used as 

a data assimilation technique. The underlying hypothesis for the use of the filter, in the 

estimation of linear dynamic systems, is that the systems noises are multivariate 

Gaussian processes. Consider the state of an evolving in time model (5.4)  


t>= = §�i;
t; 0t;1t�,     (5.4) 

In the context of groundwater modeling, this transition function may resemble the 

flow in the porous media (Equation 5.1), where 0Ý>y is the forecasted hydraulic head 

vector (The state), Ô is hydraulic conductivity parameter vector,	2Ý, and	�Ý  represent 

deterministic and stochastic stressing terms. Note that Ì represents the time index. The 

predictions made by the transition function (5.4) are usually in discrepancy with field 
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measurements. Conveniently, the relation between model predictions and field 

measurement is described in the following equation: 

Mt>= = ·t>=. 
t>= + %t>=     (5.5) 

In equation (5.5), *Ý>y ∈ |_×y is the field measurements vector, 4Ý>y ∈ |_×� is 

the incident matrix of binary constants, which maps the state vector space to the 

measurements vector space. The term À represents the number of measurements while 

� is the number of active numerical cells in the simulated domain. The vector 9Ý>y 

∈ |_×yis a measurement noise vector. The process noise �Ý  and the measurement 

noise 9Ý are assumed Gaussian with the following PDFs:  

5�1t�~²�h,��     (5.6) 

5�%t�~²�h,r�     (5.7) 

With the ensemble Kalman Filter approach (Evensen 2009), data assimilation is a 

two-stage process. In the first stage (the forecast stage), an ensemble of the system's 

parameters Ô	is used as an approximation to the probability distribution. Each 

realization in the parameter ensemble is processed to obtain the state vector.  At the end 

of the forecast stage, the parameters ensemble and state are augmented as follows: 

)t>=/t =
��
��
��

== ⋯ 
=©:⋮ ⋱ ⋮
©= ⋯ 
©.©:i== ⋯ i=©:⋮ ⋱ ⋮i©= ⋯ i©.©: !

!!
!"
    (5.8) 
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The term �D in equation (5.8) is the number of realization; and � is the number of 

active numerical cells. The expectation of the augmented state ensemble and forecast 

error covariance are calculated as follows: 

)ºt>=/t = O[)t>=/t]     (5.9) 

�t>=/t = O �<)t>=/t − )ºt>=/tB. <)t>=/t − )ºt>=/tBP�   (5.10) 

In the second stage (update stage), the expected state �8Ý>y/Ý  ∈ |��×y	can be further 

improved by assimilated newly collected data, following a Bayesian least-square 

estimate: 

)ºt>=/t>= = )ºt>=/t +�t>=�Mt>= −·t>=.)ºt>=/t�   (5.11) 

�t>= = �t>=/t. ·t>=P . <·t>=. �t>=/t. ·t>=P +rt>=B;=
   (5.12) 

Where &Ý>y ∈ |��×_is a gain matrix, /Ý>y/Ý  ∈ |��×��	 is the forecasted 

covariance matrix, and |Ý>y ∈ |_×_ is the measurement errors covariance matrix. 

Note that in this case of augmented matrix	4Ý>y ∈ |_×��. The covariance of update 

error is calculated as: 

�t>=/t>= = [« − �t>=. ·t>=]. �t>=/t. [« − �t>=. ·t>=]P +�t>=. rt>=. �t>=P
  (5.13) 

The updated covariance matrix (Equation 5.13) will be used in the next section to 

calculate the design criterion. The calculation of the gain matrix in equation 5.12 

requires the inversion of the term�4Ý>y. /Ý>y/Ý.4Ý>yz + |Ý>y�, which could be singular 
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matrix. This singularity results from the inclusion of measurements (e.g. conditioning 

the realizations to field measurements) that have zero or very small measurement error, 

which results in a row and a column that is close to zero.  In order to circumvent this 

obstacle, the known matrix inversion was substituted with the Moore–Penrose 

pseudoinvers (Moore 1920, Penrose et al. 2008). 

5.4.2  Monitoring Network Design 

Equation (5.13) represents the updated covariance matrix of the estimation error. 

Since  /Ý>y/Ý>y is independent of the measurement value	*Ý>y, it is possible to design a 

monitoring network (spatial locations) and measurements frequency (time schedule) 

that minimizes the estimation error based on a specified statistical criterion.  

Several alphabetical optimality criteria were traditionally used (Steinberg and 

Hunter 1984); for example, the A-optimality minimizes the trace of the inverse 

information matrix, the D-optimality maximizes the determinant of the information 

matrix, and E-optimality maximizes the minimum eigenvalue of the information 

matrix. Herein, the A-optimality is used: 

[:9Z�©¶⊂! 	§=�¶� = �:<�t>=/t>=B     (5.14) 

Since the updated covariance matrix (5.13) is the augmented covariance matrix for 

state variable and parameter vectors (for example conductivity and head), then the 

optimal design seeks the optimal number of hydraulic conductivity and head 

measurements as well as their optimal spatial locations. This design is efficient for 

spatial prediction. However, the drawback of this design is the implicit assumption that 
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the spatial covariance parameters (-) which, were used to generate number of 

realizations for the hydraulic conductivity, are known.  

From the several studies that attempted to provide designs for variogram parameter 

estimation, Zhu and Stein (2005) is of particular importance to this study. Zhu and 

Stein (2005) suggested using the maximum likelihood method to approximate the 

covariance of 	- .This method suggests that under certain regularity conditions, the 

maximum likelihood is asymptotically efficient and the asymptotic covariance matrix 

of the estimators is given by the inverse of the Fisher information matrix. The 1+th 

element of information matrix x�-� is given by: 

«�,"��� = h. g	�:  ;;= <;<=> ;;= <;<=?#    (5.15) 

The D-optimal design for minimizing the determinant of the inverse of the 

information matrix can be given by: 

[:9Z�©¶⊂!	§X = −@AB	C\D « ��,¶�    (5.16) 

Since the design criterion depends on the parameter vector	-, the maximum 

likelihood estimation of the parameters   -8 is used; and the design obtained is 

considered, consequently, as locally optimum.  

It is intuitive to conclude that more field measurements results in a better 

prediction; however the budget resources are usually limited. Therefore, the 

measurements cost can enter the tradeoff through a third objective function, 

[:9Z�©¶⊂!	§- = ¾t. ©t + ¾�. ©�    (5.17) 
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Objective functions in equations 5.14, 5.15 and 5.17 can be combined to find the 

optimal M design variables that minimize the multi-objective problem 

[:9Z�©¶⊂!	¼�¶� = E§=§X§-
F     (5.18) 

Where the decision variables vector 	G = {0yÝ, . . , 0�Ý, 0yÄ , . . , 0�Ä} , such that 0'Ý is 

the spatial location of the 1�Ä conductivity measurement, 0'Ä spatial location of the 1�Ä 

head measurement, and �Ì and �ℎ are the number of conductivity measurements and 

head measurements respectively.  

5.4.3  Multi Objective Genetic Algorithm  

Optimizing the design objective function (Equation 5.18) is an NP hard problem 

where it is usually not possible to find exact solution in a reasonable time. Some 

researchers used the Simulating Annealing Algorithm (Zhu et al. 2005,  Zimmerman 

2006 ).  Note that the optimizing problem herein is an integer-optimization problem 

where the solution space consists of spatial indices and the number of & and	ℎ 

measurements, which are also integers. The Genetic Algorithm (GA) is a promising 

heuristic search algorithm for optimization of such problems, as well as the multi 

objective problems that are too complex to be solved using deterministic techniques 

such as gradient-based methods.  

A multi objective optimization approach seeks to find optimal trade-offs to obtain 

solutions that are optimal in some sense or acceptable to a decision maker (Coello et al. 

2002).  Normally, there is no unique solution to this problem, but rather a set of 
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solutions called the Pareto optimal set. The Pareto Optimality concept is essential to 

approach the problem. In non-formal language, the Pareto optimal solution is one 

wherein improvement in one objective function results in degradation in another.  In 

this paper, the nondominated sorting genetic algorithm (NSGA-II) (Deb et al. 2002) is 

applied to obtain a set of trade-offs. The method is known for its computational 

efficiency, and it uses elitism and a crowded comparison operator to produce diverse 

solutions.     

5.4.4  Genetic Algorithm Setting  

The vector of decision variables  G is coded using a chromosome (Figure 5.1) in 

which the first two genes carry the number of conductivity measurements �Ý	and the 

number of head measurements �Ä respectively. The next �Ý	 genes carry the spatial 

location indices of conductivity measurements followed by �Ä genes for the spatial 

location indices of head measurements.  The initial population is generated such that 

measurement locations are within the active cells domain and that spatial location 

indices of measurements are integers. The initial population creation was so that the 

chromosome does not replicate the same genes; and the locations of existing 

measurements excluded. 

 The selection process is based on Roulette wheel selection where each parent is 

proportionally represented in the wheel according to the rank of its fitness value. The 

crossover is designed to occur at a single point such that the crossover occurs at any 

location as long as the total length of the chromosome is constant. A crossover rate of 

0.8 was used.  The mutation rate was chosen to be 0.11 and to produce only locations 
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within the active domain. Elite selection was allowed so that the best three solutions 

will survive in each evolution step in order to guarantee not losing the best solutions.   

 

Figure 5. 1: The Scheme for Decision Variables Vector (Chromosome) 

 

5.5  Computational Experiments 

The methodology outlined in section 5.3 is applied to two examples. The first 

example is a one-dimensional synthetic groundwater steady-state flow problem. This 

example serves as simple illustrative problem. Moreover, the obtained design can be 

easily compared to exact theoretical designs. The second example is a two-dimensional 

steady-state groundwater flow problem, which is a conceptual simplification of the 

groundwater flow regime in Field 17 in Rocky Ford, Colorado.   

5.5.1  One-Dimensional Synthetic Case 

The purpose of this example is to examine the validity of the GA coupled with the 

Ensemble Kalman Filter approach to obtain optimal sampling design for a one-

dimensional groundwater flow problem. The system is 1500m in length with a constant 

upper stream head of 50m. The flow path is divided into 150 cells. The hydraulic heads 

(Figure 5.2) at each cell were computed using equation (5.19) 
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�� = �R + 0∑ #
"��
"��"�h      (5.19) 

The term ℎU = 50À is the upstream constant head,  2 is the specific flow [L/T] and 

is assumed to equal 4.3× 10;H m/day. The unconditional hydraulic conductivity 

realizations were generated using Gaussian Sequential Simulation (Deutsch and Journel 

1997), where log	�&�~¬�0,1�  and the correlation scale is 300m (Figure 5.2). To be 

consistent with the theoretical requirements of the Kalman Filter, the head field should 

be transformed to normality before using the filter. Consequently, the conductivity 

ensemble and head ensemble are used to calculate the forecasted cross-covariance 

matrix (Left of Figure 5.3). It can be seen that the diagonal of the conductivity 

covariance matrix is almost uniform since the simulation is unconditional. On the other 

side, the covariance diagonal of the head is zero at the upper stream end, and increases 

as it approaches the downstream; this is because of the constant head boundary 

condition imposed upstream and the high variability of the head downstream. 

The GA optimization is implemented to minimize the trace of the cross-covariance. 

The simulation converged within a relatively short time (50 generations). The resulting 

design was found to have almost regular spatial intervals in the hydraulic conductivity 

field. This result is consistent with the theoretical work by Papageorgiou et al. (1998) 

for finite correlated samples. The updated cross-covariance matrix shows the relatively 

regular pattern of the design in the hydraulic conductivity field. 
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Figure 5. 2: Hydraulic Conductivity and Head Realization for One-dimensional 

Groundwater Flow 

 

 

Figure 5. 3: The Forecasted and the Updated Cross Covariance for One-

dimensional Flow Problem 
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5.5.2  Two-Dimensional Field Application  

 This section outlines the redesign of the monitoring network in Field 17 in Rocky 

Ford, Colorado. The east-west dimension of the field is 600m and the north-south 

dimension is 420m. The Cone Penetration Test (CPT) was used to obtain the hydraulic 

conductivity vertical profile at 15 locations.  In addition, 31 observation wells were 

used to monitor the groundwater table (Figure 5.4).  MODFLOW (Harbaugh et al. 

2000)  is used to simulate the groundwater flow regime in the field. The model domain 

is discretized into 60 columns and 42 rows (10m by 10m). The upstream boundary 

condition is assumed to be constant head and was divided into 5 sections to capture the 

variability of the head at the boundary condition. The same thing is assumed for the 

downstream constant head boundary condition. The in-field yearly averaged 

evapotranspiration map was obtained using the ReSET model (Remote sensing of 

evapotranspiration, Elhaddad et al. 2011).  

The vertically averaged conductivity measurements are used to generate 500 

conditional realizations, where each is processed in the flow model to obtain the head 

field. Prior to the calculation of  the forecasted cross-covariance matrix, the 

conductivity realizations and the head realizations were transformed to normal 

distribution ¬~�¡ = 0, £ = 1�	using a normal score transformation. The spatial 

random field is assumed isotropic with horizontal correlation length of around 95m. 

The simulation study is divided into four experiments; the objective of the first is to 

obtain optimal design that is efficient for prediction only. The second seeks optimal 

design that is efficient for covariance parameter estimation (CPE) and prediction. The 
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third experiment seeks cost effective design for prediction, and the fourth experiment 

combines prediction, CPE and cost objectives in one general formulation.  

 

Figure 5. 4: Existing CPT Conductivity Measurements and Observation Wells 

 

5.5.2.1 Design for Prediction  

In this experiment, ten new measurements (Conductivities and Heads) are 

intended to be optimized.  The optimal design is investigated using the following 

scenarios: 
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- Single Objective Optimization (Scenario A-1): This scenario seeks the 

optimal design for minimum prediction error using equation (5.14) as the 

objective function. Since the single objective genetic algorithm does not 

guarantee a global optimal solution, and in order to ensure a better scan of the 

solution space, the optimization procedures are repeated eight times, and the one 

that achieves the minimum fitness value is taken as the best design. The initial 

population size is chosen to be 32 possible solutions, which were left to evolve 

for 500 generations. In the event that the best solution remains unchanged 

continuously for 150 consecutive generations the optimization is stopped.  

- Multi Objective Optimization (Scenario A-2): In the previous scenario, the 

objective function was the trace of the cross-covariance matrix. In this scenario, 

the trace of conductivity covariance matrix and the trace head covariance matrix 

are treated as two separate objectives. Scenarios A-1 can be seen as aggregation 

of the two objectives; this might result in a design that favors one objective over 

the other. Within the multi objective optimization, each of the objectives will be 

equally contributing to the tradeoff.  

5.5.2.2 Design for Prediction and Covariance Parameter 

Estimation (Scenario B-1) 

This optimization experiment seeks an optimal tradeoff design for minimum 

prediction error (equation 5.14) and minimum structural parameters estimation error 

(equation 5.16). The design for the covariance parameters estimation applied in this 

paper is a local optimal design, in which an estimate of the covariance parameters is 
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used. This is to distinguish it from the global optimal design where no estimates of the 

parameters are available. Zhu and Stein (2005) applied a minimax approach to provide 

a global optimal design, where they initially obtain the covariance parameters that 

maximize equation 5.16, and then the same equation is minimized to obtain the best 

design. This approach is computationally intensive as it requires searching the 

covariance parameter space as well as the decision variables space. Alternatively, the 

designs presented in this work were obtained at correlation 

scale	� ∈ {ghZ, =hhZ, XhhZ}. In all of these designs the variance is assumed the 

same. The multi-objective GA optimization is employed to determine a total number of 

20 new measurements (conductivities and heads) and their spatial locations. The 

population size is assumed 30 and the maximum number of generations is 500.  

5.5.2.3 Design for Prediction and Cost (Scenario C-1) 

A practical concern for sampling designs is how the cost of each variable’s 

sampling affects the tradeoff. In this paper, it is assumed that the cost of conductivity 

measurement is 1 monetary unit and the cost of the head measurement is a ratio (�) of 

the conductivity cost. So equation 17 is replaced by the following equation: 

[:9Z�©¶⊂!	§- = ©t + ?.©�    (5.20) 

where = ¾�¾t . The cost function could be complex if the measurement cost is also a 

function of its location.  Herein, it is assumed that the cost does not change with 

location; and the design is repeated at ratios	? ∈ {h. =, h. g, h.I}. The multi-objective 

GA optimization is employed to determine a total number of 10 new measurements 
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(conductivities and heads) and their spatial locations. The population size and the 

maximum number of generations are as in scenario B-1.  

5.5.2.4 Design for Prediction, Covariance Parameter Estimation 

and Cost (Scenario D-1) 

In this experiment, the three objective functions (Equation 5.18) are combined. 

The Covariance parameter estimation objective function is at local correlation scale 

equal to 100m; and the relative cost objective is evaluated at price ratio	� = 0.1. Note 

that the Pareto front in this case is a three-dimensional surface.  

5.6  Results and Discussion 

The computations were executed on two four-core computers where the MATLAB 

Parallel toolbox was used to parallelize the computational tasks. The Genetic 

Algorithmic function in MATLAB (Chipperfield et al. 1994) was modified to fit the 

needs of integer programming required to solve the design optimization. The results of 

the numerical experiments and the obtained designs for each of the scenarios outlined 

in Section 5.4.2, are illustrated and discussed in the flowing subsections.  

5.6.1  Optimal Prediction Designs (Scenario A-1) 

Figure 5.5 shows the evolution of the eight GA simulations. The lowest fitness 

values are found ranging between 535.98 and 529.48. The corresponding designs for 

the eight simulations are shown in Figure 5.6. The best design is shown separately in 
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Figure 5.7. One might observe that the eight designs are roughly similar; this might 

indicate a consistent result of the GA simulations. An obvious observation is that the 

proposed hydraulic conductivity measurements are larger in number than the proposed 

head in the eight designs. The reason for that might be that the number of the existing 

water level wells is double the number of conductivity measurements. Another possible 

explanation is that the head field is bounded from downstream and upstream by 

constant heads; this might restrict the variability of the head comparing to the 

conductivity.  

Another observation about the resulting designs is that the measurements are 

concentrated in the southern part of the field. There are 5 conductivities measurements 

along the 530m southern border, whereas the 700m northern border also has 5 

measurements. No measurements for conductivity are taken on western boundary. 
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Figure 5. 5: Multi Evaluations of GA Optimization Problem and Their Best 

Fitness Value Evolutions 
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Figure 5. 6: Design Results for Multiple Evaluations of GA Optimization 

 

 

Figure 5. 7: The Best-fitness Design that Minimizes Prediction Errors 

 

5.6.2  Optimal Prediction Designs (Scenario A-2) 

The design criterion in Scenario A-1 is based on the trace of the cross-covariance 

matrix, which can be seen as an aggregation of two objective functions, i.e. the traces of 

the conductivity covariance matrix and the head covariance matrix. Aggregation of the 

two traces might mask contribution of one of the variables to the final design. In this 

scenario each of these traces is presented as a separate objective function.  Figure 5.8 

shows the objective function evaluations for each objective function as well as the 

Pareto optimal front. The multi-objective GA typically produces a set of optimal 
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designs that have different preferences for each objective function. Take, for example, 

design point A, which represents an optimal design for the conductivity, while the 

design point C produces an optimal design for the heads; point B, on the other hanf, is 

the midpoint design that places equal emphasis on both functions. The three designs are 

plotted in Figures 5.9, 5.10 and 5.11; it can be noticed that the number of conductivity 

measurements for design A is dominant while the number of head measurements in 

design C is dominant. Design B has an equal number of conductivity and head 

measurements.  

 

 

Figure 5. 8: Pareto Optimal Set for the Tradeoff of Conductivity and Head 

Predictions 
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Figure 5. 9: Resulting Design for Point A in Figure 5.8 

 

 

Figure 5. 10: Resulting Design for Point B in Figure 5.8 
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Figure 5. 11: Resulting Design for Point C in Figure 5.8 

 

5.6.3  Optimal Prediction and CPE design (Scenario B-1) 

The results of integrating the prediction and CPE objective functions are shown in 

Figures 5.12 to 5.16. Figure 5.12 shows the optimal Pareto set. It can be seen that as 

prediction function decreases the CPE objective is deteriorating; this is consistent with 

the observations of  Zimmerman (2006).  Note that the designs provided here are at 

local estimate of the correlation scale. In order to investigate different possibilities for 

the design, the design is repeated at correlation scales of the conductivity field,	� ∈
{50À, 100À, 200À}. Figure 5.13 shows the Pareto front for each correlation scale. It is 

possible to notice that at minimum prediction error, the three curves get closer to each 

other and the differences become bigger at high prediction error (or at smaller CPE 

error). This might be attributed to the fact that as the objective function of CPE 
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increases, i.e. the design deteriorates, and the design converges to the prediction only 

design (Scenario A-1). Another observation is that as the correlation scale decreases, 

the prediction function general deteriorates. This is because small correlation scale 

requires small spatial sampling intervals to be detected, in contrast to the wide sampling 

spread required for optimal prediction. On the other hand, the large correlation scale 

makes the design widely spread, which is required for good prediction sampling.  

 

 

Figure 5. 12: Pareto Front Optimal Set for the Combined Prediction and CPE at 

Local Scale of 200m 
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Figure 5. 13: Pareto Front Optimal Set for the Combined Prediction and CPE at 

Local Correlation Scale of 50m, 100m, and 200m 

 

 

Figure 5. 14: Design at Point (A) in Figure 13 at Correlation Scale = 50m 
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Figure 5. 15:  Design at Point (B) in Figure 13 at Correlation Scale = 100m 

 

 

Figure 5. 16: Design at Point (C) in Figure 13 at Correlation Scale = 200m 
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5.6.4  Optimal Prediction and Relative Cost (Scenario C-1) 

In scenario A-1, it was noticed that the obtained design suggests sampling more 

conductivity than heads measurements; however, the relative cost might produce a 

different preferred design than in scenario A-1. That is, if the cost of conductivity 

measurements is high compared to that of head measurements, then an economical 

design will prefer sampling more heads. Obviously, this case does not minimalize 

prediction errors. This notion is explored quantitatively by optimizing the multi-

objective problem that consists of equation 5.14 and equation 5.20.  The Pareto front is 

plotted in Figure 5.17 for the three cost ratios. It can be seen that as the ratio between 

head measurement cost and conductivity measurement cost approach unity, the Pareto 

front tends to be flat. In other words, the cost objective function will be neutral and the 

solution will be equivalent to a single objective function as in scenario A-1.  It is worth 

noting that in practical problems, the cost might appear as a constraint rather than a 

separate objective function; as the proposed design cost must not exceed a 

predetermined budget.   

 



178 
 

 

Figure 5. 17: Pareto Front Optimal Set for the Combined Prediction and Cost 

Objective Functions 

 

5.6.5  Optimal Design for Prediction, CPE, and Relative Cost 

(Scenario D-1) 

The objective of this experiment is to explore the designs that result from the 

interaction of the three objective functions. Figure 5.18-A shows the resulting Pareto 

front surface.  The Side view (5.18-C) in the figure, shows that the relationship between 

optimal cost and optimal prediction can be clearly seen; however, no distinct 

relationship is apparent for the CPE objective and the cost as shown in Figure 5.18-D. 

The relationship between optimum prediction and optimum CPE, such as was shown in 

figure 5.12, is distorted after including the cost objective function (Figure 5.18-B).  
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Figure 5. 18: Pareto Front Optimal Set for the Combined Prediction, Covariance 

Parameter Estimation and Cost Objective Functions in Figure (A) and the 

Corresponding Side Views in B, C and D 

 

5.7  Conclusions 

This paper investigated the use of the Ensemble Kalman Filter (EKF) to optimally 

sample multiple spatial variables that represent groundwater systems. These variables 

can be system parameters (e.g. conductivity, storativity, porosity, etc.) and state 

variables (head field, pollutant concentrations, velocities, etc.). 

The efficiency of EKF stems from the ease of incorporating the physical 

relationships among the system variables in order to calculate the cross-covariance of 

systems variables. Moreover, the measurement’s error of each variable can be included 
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in the design process. The possibility of obtaining the spatial and the temporal 

frequency of new samples further increases the efficiency.   

The major drawback of the EKF approach is that the covariance matrix doubles for 

each new variable considered in the design. In cases of transient sampling schemes, the 

cross-covariance matrix size is the number of cells in the numerical domain multiplied 

by the number of variables, which change with time, multiplied by the number of time 

steps.  The optimization procedures require multiple evaluations of equation 5.12, 

which includes the inversion of the cross-covariance matrix.  

Integrating different design objectives, e.g. minimizing prediction errors and 

optimal design for CPE, was achieved through usage of multi-objective GA. The 

advantage of multi-objective optimization is that a range of good designs (optimal 

Pareto set) are obtained; each of these designs has different performance with respect to 

the objective functions. This might give decision makers more flexibility in preferring a 

specific design given a specific case.  
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6  CONCLUSIONS AND RECOMMENDATIONS 

Specific conclusions about each chapter are described in chapters 2, 3, 4 and 5. This 

chapter outlines some remarks and thoughts that were not explicitly mentioned, this is 

in addition to some recommendation for future work. 

6.1  Expansion from Local Scale to Regional Scale models 

The study herein was conducted on a relatively small field, which can be seen as 

representative of conditions in the whole Lower Arkansas Basin in Colorado. However, 

the expansion of the study to the regional scale is not a linear transition; and some 

major concerns should be tackled beforehand.  

In regional models, the uncertainty of input parameters will not be only limited 

to errors in the absolute value of the measurements, but also include the scale effect of 

parameters.  It is widely recognized that soil properties generally depend on the support 

volume of the measurement experiment. For example, for the same soil type, it was 

found that dispersivity changes by orders of magnitude as the scale of measurement 

change. This poses a challenge for modelers in terms of interpreting the available 

measurements. Moreover, large numerical cell sizes are usually needed to reduce the 

computations required by regional models; and upscaling measurements to represent 

the whole numerical cell should be addressed. 
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The conceptual uncertainty resulting from wrongly adopting an optimistic 

simplification of reality might have a detrimental effect on the accuracy of predictions 

made by models. Usually such errors produce systematically biased predictions. 

Developing several conceptual models for the same system is one of the options that 

modelers should consider.  

6.2  Future of Numerical Modeling  

 Advancements in numerical computation capabilities in terms of hardware, e.g. 

multi-core PCs and cloud computing, and in terms of software, e.g. parallel  

programming; open the door wide for a new era of numerical simulations in the field of 

hydrology. An example of such efforts is the ParFlow project by Colorado School of 

Mines (Kollet et al. 2006); however, it is too early to talk about practical employment 

of these models. 

 In light of these advancements, integrating multi-disciplinary models, such as 

groundwater models, surface water models, atmospheric models, among others, seems 

to be a possible task in the near future. 

6.3  Future of Data Collection 

 Use of the new computationally efficient models is of no value if the resolution 

of the available data does not match the high capacity of the models. As a result, a wide 

scale and comprehensive characterization of watershed (surface and subsurface 

systems) parameters is a necessity that is far from being achieved, especially for 

subsurface parameters. For example, the classical way of measuring hydraulic 
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conductivity is through a pumping test or slug test, which yields a local measurement of 

the wide scale process; and it is expensive to conduct sufficient numbers of them. The 

hope is in a new geophysical technology that might thoroughly image the subsurface 

system in a short time and for a reasonable price. Assimilation and inversion of seismic 

data, geoelectric methods, and subsurface electromagnetic methods might be a 

promising topic of the research in the effort to revolutionize aquifer characterization in 

the future. 

6.4  Decision Making under Uncertainty 

 Usually, the uncertainty analysis of a system prediction is reported to decision 

makers in the form of a statistical distribution of the response, which might be wide and 

non-informative. This undoubtedly makes the decision making process a challenge.  A 

different way of seeing the decision process can be illustrated as follows: assuming that 

the decision making process can be conceptualize as a game theory problem, and 

assuming that the modeler and the decision maker are two separate players, then it is 

the goal of the modeler to provide the decision maker with a wide range predictions of 

the system response to avoid any future blame. As an extreme example, if the goal is to 

determine a contamination concentration at a point, then it is very safe for the modeler 

to report a range of 0 to infinity, which of course will be of no help to the decision 

maker. While narrowing this range from the modeler perspective means collecting 

more data about the field, the decision maker can see this as unacceptable increase on a 

limited budget. In reality, the interplay between the technical and the political aspects 

of the problem could be extremely complex, which, in turn, makes the decision making 
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a challenging process. A decision support system that acknowledges the diverse 

interests of players, and that encourages players to adopt a positive cooperation 

scenario of the game and share the risk, cab be an important component of decision-

making process under uncertainty.  

6.5  Other Options for Drainage System Design 

The subsurface drainage system is redesigned herein using the design-

simulation approach. Different drainpipes layout (figures 6.2 to 6.6) and drain depths 

are investigated, and for each the average groundwater depth and the drainage effluent 

rate are reported (Table 6.1). Changing the number of drains and their layout did not 

result in significant change in the average groundwater depth because the most 

important part of the drain is the one that first intercept the lateral flow (adjacent to the 

southern boundary).  

 In reality, however, other factors make the design options limited to few ones. 

For example, in field 17 case the elevation of manhole outlet must be the lowest point 

in the system. This of course limits our ability to change the drain depth.  The previous 

design (Figure 6.7) shows that slope of 0.2% (20cm in 100m) are the smallest that 

could be achieved.  Small slopes are typically difficult to achieve in field due the 

flexibility of the drainpipe.  

Deeper drains usually results in larger outflow rates due to high groundwater 

head on top of the drainpipes. This might raise some environmental concerns, 

especially about the disposal of the large volumes of saline groundwater. The major 
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function of the drainage system in Field 17 is to intercept the lateral saline groundwater 

flow. As a result, installing drainage pipes in the southern part of the field might the 

best option to intercept the flow and ensure low water table in the remaining of the 

field.  

Table 6. 1 : Average groundwater depth, standard deviation, drainage outflow 

rate, and depth of drain for each design option 

Design  
Average GW 

Depth(m) 

Standard 

Deviation of GW 

Depth (m) 

Drainage 

outflow Flow 

Rate (m/day) 

Depth of 

Drain Pipe 

(m) 

          

A 1.98 0.313 605.6 3 

B 1.95 0.317 620.5 3 

C 1.94 0.317 595.3 3 

D 1.86 0.321 426.8 2.5 

E 1.52 0.218 216.2 2 

     Depth of drainage Pipe are measured from Ground surface level in the southwest 

Corner 

 

Figure 6. 1 : Drainage Outflow for Different Design Options 
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Figure 6. 2 : Layout of Design (A) and the resulting groundwater elevations 
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Figure 6. 3 : Layout of Design (B) and the resulting groundwater elevations 

 

  

Figure 6. 4 : Layout of Design (C) and the resulting groundwater elevations 
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Figure 6. 5 : Layout of Design (D) and the resulting groundwater elevations 

  

Figure 6. 6 : Layout of Design (E) and the resulting groundwater elevations 
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Figure 6. 7 : Actual proposed design drainage system showing pipe slopes 
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