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ABSTRACT 

 
 
 

MODELING THE FORMATION AND COMPOSITION OF SECONDARY ORGANIC 

AEROSOL FROM DIESEL EXHAUST USING PARAMETERIZED AND SEMI-EXPLICIT 

CHEMISTRY AND THERMODYNAMIC MODELS 

  
 

Laboratory-based studies have shown that diesel-powered sources emit volatile organic 

compounds that can be photo-oxidized in the atmosphere to form secondary organic aerosol 

(SOA); in some cases, this SOA can exceed direct emissions of particulate matter (PM); PM is a 

criteria pollutant that is known to have adverse effects on air quality, climate, and human health. 

However, there are open questions surrounding how these laboratory experiments can be 

extrapolated to the real atmosphere and how they will help identify the most important species in 

diesel exhaust that contribute to SOA formation. Jathar et al. (2017) recently performed 

experiments using an oxidation flow reactor (OFR) to measure the photochemical production of 

SOA from a diesel engine operated at two different engine loads (idle, load), two fuel types 

(diesel, biodiesel) and two aftertreatment configurations (with and without an oxidation catalyst 

and particle filter). In this work, we will use two different SOA models, namely the volatility 

basis set (VBS) model and the statistical oxidation model (SOM), to simulate the formation, 

evolution and composition of SOA from the experiments of Jathar et al. (2017). Leveraging 

recent laboratory-based parameterizations, both frameworks accounted for a semi-volatile and 

reactive POA, SOA production from semi-volatile, intermediate-volatility and volatile organic 

compounds (SVOC, IVOC and VOC), NOx-dependent multigenerational gas-phase chemistry,  
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and kinetic gas/particle partitioning. Both frameworks demonstrated that for model predictions of 

SOA mass and elemental composition to agree with measurements across all engine load-fuel-

aftertreatment combinations, it was necessary to (a) model the kinetically-limited gas/particle 

partitioning likely in OFRs and (b) account for SOA formation from IVOCs (IVOCs were found 

to account for more than four-fifths of the model-predicted SOA). Model predictions of the gas-

phase organic compounds (resolved in carbon and oxygen space) from the SOM compared 

favorably to gas-phase measurements made using a Chemical Ionization Mass Spectrometer 

(CIMS) that, qualitatively, substantiated the semi-explicit chemistry captured by the SOM and 

the measurements made by the CIMS. Sensitivity simulations suggested that (a) IVOCs from 

diesel exhaust could be modeled using a single surrogate species with an SOA mass yield 

equivalent to a C15 or C17 linear alkane for use in large-scale models, (b) different diesel exhaust 

emissions profiles in the literature resulted in the same SOA production as long as IVOCs were 

included and (c) accounting for vapor wall loss parameterizations for the SOA precursors 

improved model performance. As OFRs are increasingly used to study SOA formation and 

evolution in laboratory and field environments, there is a need to develop models that can be 

used to interpret the OFR data. This work is one example of the model development and 

application relevant to the use of OFRs. 
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PREFACE 

 
 
 

Fine particles or aerosols have been recognized for their negative impact on air quality, climate, 

and human health. Secondary organic particulate matter, or secondary organic aerosol (SOA), 

account for a significant fraction of ambient fine particulate matter yet there are large 

uncertainties surrounding the formation and evolution of SOA, which eventually determines their 

atmospheric burden and environmental impact. This work uses numerical models to study the 

formation, composition, and properties of SOA arising from diesel engines.  
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INTRODUCTION 

 
 
 
Combustion sources such as motor vehicles, wood stoves, and wildfires emit fine-mode aerosols 

as products of incomplete combustion. Combustion-related aerosols are an important contributor 

to urban and global air pollution and have strong implications for climate (Pachauri et al., 2014), 

the environment (Jacobson et al.,2000), and human health (Anderson et al., 2012). While direct 

emissions from combustion sources are dominated by primary organic aerosol (POA) and black 

carbon (Bond et al., 2013), these sources also emit volatile organic compounds that can 

photochemically react in the atmosphere to form secondary organic aerosol (SOA) (Robinson et 

al., 2007). SOA, like POA, is a complex mixture of thousands of compounds with very different 

physical and chemical properties, some that vary over logarithmic scales (Goldstein and 

Galbally, 2007). Laboratory experiments have shown that when photochemically processed for a 

few hours, combustion emissions can produce enough SOA to exceed primary aerosol emissions 

(Jathar et al., 2014). However, this SOA production and the concurrent evolution of POA from 

combustion emissions is not very well represented in models in terms of its sources, gas/particle 

partitioning, composition and properties (Fuzzi et al., 2015). Further, three-dimensional air 

quality models frequently under-predict SOA mass concentrations during strong photochemical 

episodes in urban areas (Carlton et al., 2010), which likely highlights the deficiency in modeling 

the SOA contributions from urban, combustion-related emissions.  

 

Robinson et al. (2007) performed one of the first environmental chamber experiments to measure 

photochemical production of SOA from diesel exhaust. They found that within a few hours of 

photochemical processing, SOA production doubled the primary aerosol mass. Although novel, 
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the diesel exhaust source used by Robinson et al. (2007) (small non-road diesel generator) was 

unrepresentative of sources found in the real world. Chirico et al. (2010) and Gordon et al. 

(2014) performed similar chamber experiments to measure photochemical production of SOA 

from diesel exhaust, although these were performed on tailpipe emissions from in-fleet, on-road 

diesel vehicles run on chassis dynamometers. Both found that their SOA production was roughly 

consistent with the findings from Robinson et al. (2007) but they also developed additional 

insights. They found that the use of aftertreatment devices (diesel oxidation catalysts and diesel 

particulate filters) substantially reduced SOA production (mimicking the reduction in primary 

aerosol emissions), but both also observed some SOA production during cold starts and/or 

regeneration events when the aftertreatment devices’ functioning was limited. Gordon et al. 

(2014) also found negligible differences in the SOA formation between diesel and biodiesel fuel. 

To simulate longer timescales, Tkacik et al. (2014) measured SOA formation using an oxidation 

flow reactor (OFR) from air sampled from a highway tunnel in Pittsburgh, PA used by both on-

road gasoline and diesel vehicles. Tkacik et al. (2014) measured much stronger SOA formation 

(SOA: POA was 10:1) over photochemical exposures equivalent to 2 to 3 days, but found that 

the SOA was lost or destroyed as the mixture continued to age over the timescale of a week. 

Recently, Jathar et al. (2017) performed experiments using an OFR similar to Tkacik et al. 

(2014) to measure the photochemical production of SOA from a diesel engine operated at 

various engine load-fuel-aftertreatment configurations. Efficient combustion at higher engine 

loads coupled to the removal of SOA precursors by aftertreatment systems reduced SOA 

production by factors of 2-10. The only exception was that the aftertreatment system did not 

reduce SOA production at idle loads possibly because the exhaust temperatures were low enough 

to limit removal of SOA precursors in the oxidation catalyst. In summary, it is clear that diesel 



 
 
 
 

 
3 
 
 

exhaust contributes to atmospheric SOA production although the precise production of SOA 

varies across dimensions of photochemical age, engine duty cycle, use of alternative fuels, and 

aftertreatment devices. 

 

Most OFRs used to study SOA production have been 10-15 L, flow-through metal reactors with 

lamps that can produce high concentrations of atmospheric oxidants to simulate photochemical 

processing (e.g., Lambe et al., 2011). Flows through an OFR allow for residence times between 

one to three minutes but given the high oxidant concentrations, OFRs can simulate up to two 

weeks of photochemistry (Palm et al.,2016). OFRs have three distinct advantages over 

environmental chambers. First, OFRs are smaller in size and easier to operate than 

environmental chambers, which allows for shorter experiments and makes them ideal for field 

deployments (Palm et al., 2016). Second, production of high oxidant concentrations in OFRs 

allows for much longer photochemical exposures (~factor of 10) than those possible with 

chambers (Lambe et al., 2012). Third, OFRs have much smaller surface area-to-volume ratios 

when compared to conventional chambers (factor of ~10 lower) and hence are less susceptible to 

gas and particle losses (less than 10%(Palm et al., 2015) that are known to strongly influence 

SOA formation (Zhang et al., 2014; Krechmer et al., 2015). These advantages can be linked to 

the increasing use of OFRs in both laboratory and field experiments to study the formation and 

transformation of SOA (Ortega et al., 2016, Bruns et al., 2016, Palm et al., 2016). Despite these 

advantages, researchers are concerned that the accelerated chemistry (Palm et al., 2016) and 

limitations to gas/particle partitioning (Palm et al., 2016; Jathar et al., 2017) may affect the 

formation and composition of SOA in OFRs and question their relevance in understanding SOA 

formation in the real atmosphere. For instance, high oxidant concentrations in OFRs can enhance 
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fragmentation (or scission) of carbon-carbon bonds and lead to formation of higher volatility 

products (Kroll et al., 2009) that would consequently underpredict SOA production. In addition, 

the short residence times in OFRs and/or the small condensation sinks from preexisting aerosol 

may not allow for complete condensation of the SOA and also underpredict SOA formation. 

With the increased use of OFRs, there appears to be a need to develop modeling tools that for 

instance, can account for fragmentation reactions and kinetic gas/particle partitioning and allow 

us to accurately interpret the OFR data and make projections for the real atmosphere.  

 

Models used to simulate the photochemical production of SOA from VOCs in combustion 

emissions have traditionally used the two-product (Odum et al., 1996) or the more generalized n-

product volatility basis set (VBS) framework (Donahue et al., 2006). In this framework, VOC 

oxidation products are lumped into volatility bins based on their effective saturation 

concentrations (C*; saturation vapor pressure converted into mass concentration units) where the 

saturation concentration determines the partitioning of the products between the gas and particle 

phases (Pankow et al., 1994). Each VOC that forms SOA produces a unique product distribution 

in volatility space and these product distributions that essentially represent stable first-generation 

products have been determined for more than two dozen compounds using chamber experiments 

(e.g., Ng et al., 2007; Chhabra et al., 2010). The VBS framework has been widely used in both 

box (Dzepina et al., 2009; Hodzic et al., Jathar et al., 2014) and three-dimensional (Murphy and 

Pandis, 2009; Tsimpidi et al., 2010; Jathar et al., 2011; Ahmadov et al., 2014; Konovalov et al., 

2015) models to simulate the chemistry and gas/particle partitioning of OA. In box models SOA 

production from each precursor can be tracked separately but in three-dimensional models where 

computational costs need to be considered, precursors that are similar in their potential to form 
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SOA are frequently lumped together. While the VBS approach offers an elegant and 

computationally efficient framework to model SOA formation, the VBS through a representation 

of volatility only neither tracks the molecular composition nor informs the continued multi-

generational chemistry that will determine the atmospheric evolution and properties of SOA. For 

instance, VBS-type models have not been able to leverage observations of the elemental 

composition of SOA (e.g., atomic O:C ratios) that have become possible through the use of the 

aerosol mass spectrometer (AMS) to constrain VBS parameterizations or test VBS predictions. 

Further, most VBS-type models have employed ad hoc parameterizations to model multi-

generational chemistry that do not account for fragmentation reactions (Robinson et al., 2007) 

and possibly double count SOA formation (Jathar et al., 2016). Therefore, there is a demand to 

develop models that can provide an improved representation of the chemistry that governs the 

formation, composition and properties of SOA. 

 

Previously, VBS models have been used to predict photochemical production of SOA from 

diesel exhaust (Robinson et al., Jathar et al., 2014; Tkacik et al., 2014). These modeling studies 

have shown that traditionally speciated SOA precursors such as long alkanes (C6-12) and single-

ring aromatics (e.g., benzene, toluene) explain less than 20% of the observed SOA and have 

argued that the remainder of the SOA (more than 80%) arises from the photooxidation of 

typically unspeciated organic compounds. These unspeciated compounds, also referred to as 

intermediate volatility organic compounds (IVOCs), are likely species with carbon numbers 

larger than 12 and appear as an unresolved complex mixture on using traditional gas 

chromatography mass spectrometry (GC-MS) techniques (Presto et al., 2011). Early estimates of 

IVOC emissions and their SOA potential have significantly improved predictions of the SOA 
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formed from diesel exhaust (Jathar et al., 2014) and broadly, improved OA model performance 

in three-dimensional large-scale models (Murphy and Pandis, 2009; Pye and Seinfeld, 2010; 

Jathar et al., 2011; Tsimpidi et al., 2010). Very recently, Zhao et al. (2015) used a thermal 

desorption GC-MS to provide a detailed speciation of the carbon-number resolved linear, 

branched, and cyclic alkane IVOCs in diesel exhaust and found that these species accounted for 

up to 60% of the non-methane organic gas emissions; speciation in Zhao et al., (2015) was 

derived based on the carbon number, not the molecular structure. While IVOCs have been 

recognized as an important class of SOA precursors for diesel (and even for gasoline and 

biomass burning) sources, updated emission and speciation estimates from Zhao et al. (2015) 

have not been tested against observations of photochemically produced SOA from diesel 

exhaust.  

 

Recently, several model frameworks have been developed to provide an improved representation 

of SOA formation that consider dimensions of SOA beyond just volatility. The statistical 

oxidation model (SOM) developed by Cappa and Wilson (2012) is one such example. The SOM 

is a semi-explicit, parameterizable mechanism that uses a two-dimensional carbon-oxygen grid 

to simulate the multigenerational chemistry and gas/particle partitioning of organic compounds. 

The SOM is semi-explicit in that it provides a statistical representation of the SOA composition, 

chemistry and thermodynamic properties. It is parameterizable in that parameters for a 

generalized chemical mechanism can be fit (e.g., probability of fragmentation) to reproduce 

measured data. Although the SOM does not explicitly track the product molecule’s composition 

(e.g., functional groups), the carbon- and oxygen-number representation provides adequate detail 

to represent key atmospheric processes, e.g., reactions with oxidants, formation of functionalized 



 
 
 
 

 
7 
 
 

products, scission of carbon backbones or fragmentation, surface and condensed-phase chemistry 

and gas/particle partitioning. The two-dimensional VBS (2D-VBS) of Donahue et al. (2011) and 

the carbon-polarity grid of Pankow and Barsanti (2009) are examples of similar frameworks. 

These more sophisticated models have not yet been employed to study SOA formation from 

complex mixtures such as combustion emissions.  

 

To summarize, energy and combustion sources (e.g., diesel engines) emit precursors that can 

photooxidize in the atmosphere to produce SOA. The SOA production is dependent not only on 

the precursor composition that could vary by combustion mode and fuel type and the 

photochemical age but affected by experimental artifacts (e.g., short condensation timescales) 

introduced through the use of oxidation flow reactors. There is, hence, a need to develop and 

apply sophisticated, yet computationally efficient, numerical models to simulate and study SOA 

formation from combustion emissions. In this work, we apply two different SOA model 

frameworks (VBS and SOM) to simulate the photochemical production of SOA in an OFR from 

diesel exhaust. The models are evaluated by comparing model predictions (OA and O:C) to the 

recent measurements made by Jathar et al. (2017) where SOA production was quantified for 

different photochemical ages under varying engine loads, fuels and aftertreatment devices. Both 

models accounted for: (i) semi-volatile and reactive POA, (ii) NOx-dependent SOA production 

from IVOCs and VOCs, (iii) multi-generational aging, and (iv) kinetic gas/particle partitioning. 

The model-measurement comparison is used to highlight the importance of modeling the kinetic 

gas/particle partitioning of SOA in OFRs, the contribution of IVOCs to the total SOA 

production, and the ability of the SOM to accurately track the composition of SOA. 
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METHODS 

 
 

2.1 EXPERIMENTS AND DATA 

 
Jathar et al. (2017) performed photooxidation experiments using an OFR to measure SOA 

production from the exhaust of a 4.5L, John Deere diesel engine; the stock engine met Tier 3 

emissions standards for non-road diesel engines. The OFR used herein was described in detail by 

Lambe et al. (2011) and the experimental setup and OA measurements from these experiments 

are described in detail by Jathar et al. (2017). To provide context for our modeling, we have very 

briefly summarized the experimental setup, measurements, and findings. Diesel exhaust was 

diluted by a factor of 45-110 before being pulled through an OFR. The intensity of the mercury 

lamps inside the OFR was varied to produce different hydroxyl radical (OH) concentrations and 

simulate different photochemical exposures. OFR used in the Jathar et al., 2017 was operated at 

wavelengths 185 and 254 nm.  A suite of instrumentation was used to measure gas- (CO2, CO, 

total hydrocarbons, NOx, O2, oxygenated organic compounds) and particle- (aerosol size and 

composition) phase concentrations. A total of fourteen experiments (see Table 1 for more details) 

were performed at varying engine loads, fuels and aftertreatment configurations (DPF: diesel 

particulate filter, designed to remove diesel particulate matter or soot from the exhast and DOC: 

diesel oxidation catalyst, designed to oxidize gas-phase hydrocarbons) where the OH exposure 

was varied between 0 and a maximum of 9.2×107 molecules-hr cm-3 (or equivalent to 2 days of 

photochemical aging at an OH concentration of 1.5×106 molecules cm-3). On average, each 

experiment included sub-experiments at 6-7 different photochemical exposures. Jathar et al. 

(2017) quantified the mass concentrations and elemental composition of the POA (measured 

when OFR lights were off) and SOA (at varying OH exposures) as measured by the high-
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resolution aerosol mass spectrometer (HR-AMS) and Friedman et al. (in preparation) quantified 

the gas-phase concentrations of oxygenated organic compounds as measured by the acetate 

reagent ion-based chemical ionization mass spectrometer (CIMS). At all engine configurations, 

SOA production more than exceeded the POA emissions after the equivalent of a few hours of 

atmospheric photochemical aging. SOA production was particularly strong at idle (or less fuel-

efficient) engine loads and/or when exhaust temperatures were low and the aftertreatment’s 

function may have been limited. Further, POA emissions and SOA production were nearly 

identical between diesel and biodiesel fuels. A synopsis of the THC (that includes all SOA 

precursors), POA, SOA, O:C, OH, and size distribution data is presented in Table 1. 

 

Table 1: Primary emissions of THC and POA, maximum photochemical production of SOA, 
maximum O:C of the OA, maximum OH exposure, and size distribution data. 

Load-Fuel-
Aftertreatmen
t Experiment 

Date 
THC 

(µg m-

3) 

POA 
(µg m-

3) 

SOA# 
(µg m-3) 

O: C# 
OH # 

(molec.-
hr cm-3) 

Surf. Area 
Mean Dia.*  

(nm) 

Number 
Conc.& (# 

cm-3) 

Idle-Diesel-
None 

June 3 
June 5 
June 12 

1519 
1810 
2554 

38±15 
35±11 
85±17 

209±66 
875±288 
877±277 

0.23±0.01 
0.46±0.07 
0.57±0.09 

2.1×107 
6.67×107 
3.61×107 

67 3.73×105 

Idle-
Biodiesel-
None 

June 4 
June 8 

1118 
2160 

22±12 
69±20 

999±316 
1415±46

8 

0.52±0.07 
0.36±0.03 

9.17×107 
4.72×107 

67@ 3.73x105@ 

Load-Diesel-
None 

June 3 
June 5 

959 
711 

19±11 
37±13 

181±58 
253±100 

0.37±0.01 
0.32±0.04 

3.6x107 
2.61x107 

75 5.38x105 

Load- 
Biodiesel-
None 

June 4 
June 8 

1634 
518 

29±18 
46±22 

645±204 
284±106 

0.38±0.05 
0.30±0.04 

2.78x107 
1.42x107 

75@ 5.38x105 @ 

Idle-Diesel-
DPF+DOC* 

June 9 2135 
1.5±0.

6 
1040±33

5 
0.37±0.02 5x107 65 630 

Load-Diesel-
DPF+DOC* 

June 9 303 1.6± 146±48 0.29±0.01 1.31x107 75 963 

Idle-
Biodiesel-
DPF+DOC* 

June 10 1773 2.6±1 787±250 0.44±0.04 5.28x107 65@ 630@ 

Load-
Biodiesel-

June 10 261 2±0.14 107±9 0.29±0.01 1.39x107 75@ 963@ 
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DPF+DOC* 
DPF=diesel particulate filter, DOC=diesel oxidation catalyst 
#maximum values measured in each experiment 
*values measured at no OH exposure in each experiment 
@No data, assumed to be similar to the equivalent diesel experiment 

 

2.2 ORGANIC AEROSOL MODELS 

 
In this work, we use two different OA models to predict the mass concentrations and chemical 

composition of SOA and compare predictions against the SOA measurements from Jathar et al. 

(2017) and Friedman et al. (in preparation). In this section, we briefly describe the two model 

frameworks, namely the Volatility Basis Set and the Statistical Oxidation Model, used to 

simulate the coupled chemistry, thermodynamic properties, and gas/particle partitioning of OA.  

  
Figure 1: Schematic of the (a) VBS and (b) SOM model frameworks to model the VOC oxidation, 
product formation/loss, thermodynamic properties, and gas/particle partitioning of POA and 
SOA. In the VBS model, benzene reacts with the OH radical to form three oxidation products. In 
the SOM, a hydrocarbon with carbon number 8 (highlighted) reacts with the OH radical to form 
four functionalized products with 1 to 4 oxygens. One of the products reacts with OH to either 
form four new functionalized products or fragment into smaller products.  
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2.2.1 VOLATILITY BASIS SET (VBS) 
 
The Volatility Basis Set (VBS) model, developed by Donahue et al. (2006), is a parameterizable 

model that allows for a volatility-based representation of the coupled chemistry, thermodynamic 

properties, and gas/particle partitioning of OA. The VBS uses logarithmically spaced basis sets 

based on the effective saturation concentration (C*); C* of a species determines the partitioning 

between the gas and particle phases (Pankow et al., 1994). In the VBS model, VOCs are allowed 

to react with OH to yield a unique product distribution in C* space that represents stable first-

generation products. Subsequent gas-phase oxidation or so-called ‘aging’ of the VBS products 

was modeled using the scheme of Robinson et al. (2007) where reaction of the precursor with 

OH was assumed to yield a product with a C* that is an order of magnitude lower than the 

precursor. This scheme does not consider fragmentation reactions. The following equations are 

used to represent the VOC oxidation (equation 1) and formation of products from VOC oxidation 

and aging reactions (equation 2): 

ௗ௏೔ௗ௧ = −݇ை�,௜[ ௜ܸ][ܱ�]          (1) 

ௗ஼೔,ೕ೒+�ௗ௧ = [�ܱ][ܸ]௜,௝݇ை�,௜ߙ + ௜,௝+ଵ௚ܥ]ை�,௔௚௜௡௚݇ߚ ][ܱ�] − ௜,௝௚ܥ]ை�,௔௚௜௡௚݇ߛ ][ܱ�]  (2) 

Where ܸ ௜ is the i th VOC (μg m-3; here, VOC includes VOCs, IVOCs and SVOCs), ݇ை�,௜ ( cm3 

mol-1 s-1 )is the reaction rate constant between the i th VOC and OH, ܥ௜,௝௚+� is the gas + particle-

phase concentration of the i th VOC in the j th bin,ߙ௜,௝ is the mass yield of the first-generation 

oxidation product of the i th precursor of the j th bin (Table 2), kOH,aging is the reaction rate constant 

to represent multi-generational aging of the oxidation products, and ߚand ߛare the mass yields 

associated with the production and loss terms from multi-generational aging. For the j th bin, the 

second term in equation (2) represents the formation of oxidation products from the j+1 th 
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volatility bin and the third term in equation (2) represents the loss of precursor from the j th bin. ߚand ߛ are assumed to have a value of 1 (meaning no fragmentation) but are zero for the last and 

the first bins respectively. 

 

The condensation (or mass transfer) of the VBS products to the particle phase was assumed to be 

kinetically-limited in the oxidation flow reactor (Jathar et al., 2017; Palm et al., 2016); Section 

2.3 describes the condensation/evaporation equation used to model kinetic gas/particle 

partitioning. Product distributions for 2 different VOCs for C* bins ranging from 10-2 to 106 µg 

m-3 were refit based on parameterizations published in the literature; VOCs, their VBS mass 

yields, and the relevant references are listed in Table 2. Each VOC species in the emissions was 

assigned a surrogate from Table 2 to model SOA formation in the VBS model. The higher(C12-

C22) branched and cyclic alkanes were assigned surrogates of linear alkanes. For example, C12 

branched alkane was given a surrogate of C10 linear alkane and for C12 cyclic alkane, C14 linear 

alkane was given as surrogate. Since we have mass yields up to n-heptadecane only, we 

considered n-heptadecane as surrogates for alkanes C17-C22. 

 

Table 2: SOA precursors and VBS mass yields used in the VBS model. 

Species log10C* Reference 
0.1 1 10 100 1000 

toluene 
0.0000 0.0100 0.2400 0.4500 0.7000 

Hildebrandt et 
al.,2009 

benzene 0.0392 0.0315 0.0000 0.8230 0.0957 Ng et al., 2007 
m-xylene 0.0032 0.0106 0.0633 0.0465 0.0000 Ng et al., 2007 
p-xylene 0.0000 0.0022 0.0764 0.0000 0.0000 Song et al.,2007 
o-xylene 0.0000 0.0132 0.1140 0.0000 0.0000 Song et al.,2007 
naphthalene 0.0000 0.1660 0.0000 0.5400 0.8130 Chan et al.,2009 
1-methylnaphthalene 0.0000 0.0170 0.4860 0.0000 0.0000 Chan et al.,2009 
2-methylnaphthalene 0.0000 0.0531 0.5040 0.0000 0.0000 Chan et al.,2009 
1,2-dimethylnaphthalene 0.0000 0.3100 0.0000 0.0000 0.0000 Chan et al.,2009 
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1-methyl-3-n-propylbenzene 0.0000 0.0000 0.0405 0.0694 0.1140 Odum et al.,1997? 
n-decane 0.0000 0.0000 0.0110 0.1280 0.2420 Presto et al.,2010* 
n-undecane 0.0000 0.0040 0.0720 0.1760 0.1450 Presto et al.,2010* 
n-dodecane 0.0000 0.0140 0.1100 0.1600 0.0000 Presto et al.,2010 
n-tridecane 0.0140 0.0590 0.0940 0.0710 0.0000 Presto et al.,2010 
n-tetradecane 0.0940 0.3000 0.3500 0.0000 0.0000 Presto et al.,2010 
n-pentadecane 0.0440 0.0710 0.4100 0.3000 0.0000 Presto et al.,2010 
n-hexadecane 0.0530 0.0830 0.4600 0.2500 0.0000 Presto et al.,2010 
n-heptadecane 0.0630 0.0890 0.5500 0.2000 0.0000 Presto et al.,2010 
* estimated from the Presto et al. (2010) data 

 

2.2.2 STATISTICAL OXIDATION MODEL (SOM)  
 
The Statistical Oxidation Model (SOM), developed by Cappa and Wilson (2012) is a semi-

explicit, parameterizable model that allows for a statistical representation of the coupled 

chemistry, thermodynamic properties, and gas/particle partitioning of OA; the SOM does not 

explicitly track functional groups or molecular structure. The SOM uses a 2-dimensional carbon-

oxygen grid to track gas- and particle-phase precursors and products from VOC oxidation. Each 

cell in the SOM grid represents a model organic species with a molecular weight defined by the 

formula CxHyOz. A SOM species reflects the average properties (e.g. C*, reactivity) of all actual 

species with the same number of carbon (NC) and oxygen (NO) atoms that are produced from a 

given precursor class (e.g., aromatics, alkanes). In the SOM, all gas-phase species are assumed to 

be reactive towards OH and the OH reactivity (kOH) is calculated using equation 3 as follows: ݈݋�ሺ݇ை�ሻ  =  �ଵ  +  �ଶ  × ሺ ஼ܰ��ሻ  × ሺ−ͳ݌�݁  × ா�଼.ଷଵସ × ்ሻ  × [ͳ +
௕భ�√ଶ� −ሺ݌�݁ ଵሺ௟௡ሺே�+଴.଴ଵሻ−௟௡ሺ௕మሻమଶ�మ ሻ]          (3) � ሺ ஼ܰ ൑ ͳͷሻ  = Ͳ.ͲʹͳͶ × ஼ܰ + Ͳ.ͷʹ͵ͺ � ሺ ஼ܰ ൒ ͳͷሻ = −Ͳ.ͳͳͷ × ஼ܰ + ʹ.͸ͻͷ �ଵ = −Ͳ.ʹͷͺ͵ × ஼ܰ + ͷ.ͺͻͶͶ 
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�ଶ ሺ ஼ܰ ൑ ͳͷሻ = Ͳ.Ͳ͵ͳͶ × ஼ܰ + Ͳ.ͻͺ͹ͳ; �ଶ ሺ ஼ܰ > ͳͷሻ = Ͳ.ʹͷ × ஼ܰ − ʹ.ͳͺ͵ 

Where A1=15.1, A2=3.94, and A3=0.797. kOH for a specified NC and NO is assumed to be the same 

for species in all the SOM grids. 

 

The reactions with OH lead to either functionalization or fragmentation, resulting in movement 

through the carbon-oxygen grid. Six precursor-specific adjustable parameters are assigned for 

each SOM grid: four parameters that define the molar yields of the four functionalized, oxidized 

products (pO,k, ΣpO,k=1), one parameter that determines the probability of functionalization or 

fragmentation (PFrag,, PFunc=1-PFrag) and one parameter that describes the change in C* 

associated with the addition of one oxygen atom (ΔLVP). The following equation represents the 

evolution of species in the SOM grid. ݀[ܥ௑ܱ௓]݀� =  −݇ை�௑,௓[ܱ�][ܥ௑ܱ௓], 
+[ܱ�] ∑ ݇ை�௑,௓−௞ସ

௞=ଵ ௙ܲ௨௡௖௑,௓−௞݌ை,௞[ܥ௑ܱ௓−௞] + [ܱ�] ∑ ∑ ݇ை�௑+௝,௓−ଵ+௞௞���−௓
௞=଴ ௙ܲ௥௔௚௑,௓−ଵ+௞

௙ܰ௥௔௚௠௘௡௧௦௑,௓௝���
௝=ଵ  [௑ܱ௓−ଵ+௞ܥ]

-

(5) 

where CXOZ is the SOM species with X carbon atoms and Z oxygen atoms and Nfragments is the 

SOM species specific number of possible fragments. The probability of fragmentation is 

modeled using equation 6 as a function of the O:C ratio because higher O:C ratio compounds are 

expected to have a higher probability of fragmentation (Chacon-Madrid and Donahue, 2011): 

௙ܲ௥௔௚ = ሺே�ே�ሻ௠೑��೒           (6) 

The C* for each SOM species is calculated using equation 7 as follows: ݈݋�ଵ଴ܥ∗ = −Ͳ.͵͵͹ܯ �ܹ஼ + ͳͳ.ͷ͸ − ሺ ைܰ ×  ሻ      (7)ܸܲܮ�
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Where MWHC is the molecular weight of the hydrocarbon backbone (accounting only for the 

carbon and hydrogen atoms) and ΔLVP is change in the C* associated with the addition of one 

oxygen atom. The parameters used to model SOA formation from VOCs in this work are based 

on those published in Jathar et al. (2015) and are listed in Table 3. Each VOC species in the 

emissions was assigned a surrogate from Table 3 to model SOA formation in the SOM model. 

However, unlike the VBS where the SOA mass yield between the VOC species and the surrogate 

is identical, the surrogate in the SOM model defines the statistical pathway for multi-

generational oxidation and could very likely have different SOA mass yields than the VOC 

species. 

 

Table 3: SOA precursors and parameters used in the SOM model.  

Species mfrag ΔLVP pO,1 pO,2 pO,3 pO,4 Primary 
Reference 

n-dodecane 0.0980 1.3900 0.9270 0.0101 0.0180 0.0445 Loza et al. 
(2014) 

methylundecane 0.0100 1.2100 0.7419 0.0011 0.1820 0.0750 Loza et al. 
(2014) 

hexylcyclohexane 0.0477 1.5700 0.7313 0.0381 0.2101 0.0205 Loza et al. 
(2014) 

toluene 0.2220 1.2400 0.0029 0.0010 0.0010 1.0100 Zhang et al. 
(2014) 

benzene 0.5350 1.7000 0.0792 0.0010 0.9190 0.0010 Ng et al. 
(2007) 

m-xylene 0.0100 1.6800 0.9360 0.0010 0.0021 0.0609 Ng et al. 
(2007) 

naphthalene 0.1210 1.3100 0.6440 0.0010 0.0460 0.3080  Chan et al. 
(2009) 

 

2.3 KINETIC GAS-PARTICLE PARTITIONING  

 
Palm et al. (2016) and Jathar et al. (2017) have argued that the short residence times in the OFR 

may not permit all low-volatility products formed from VOC oxidation to condense onto 
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preexisting aerosol. Hence, unlike earlier work that has assumed equilibrium partitioning to 

model OFR-produced OA (Tkacik et al., 2014, Chen et al., 2013), we model the kinetic 

partitioning of OA using equation 9 (Zhang et al., 2014): 

ௗ஼೔,ೕ�ௗ௧ = �ܦ௝ܦ�ʹ �ܰ�ிௌሺܥ௜,௝௚ − ஼೔,ೕ� ஼ೕ∗஼�� ሻ        (9) 

Where ܥ௜,௝�  is the particle-phase mass concentration for the i th VOC and j th organic species, Dj is 

the gas-phase diffusion coefficient of the j th organic species, Dp is the number mean particle 

diameter, Np is the total particle number concentration, FFS is Fuchs-Sutugin correction for non-

continuum mass transfer, ܥ௜,௝௚  is the gas-phase mass concentration for the i th VOC and j th organic 

species, ܥ௝∗ is the effective saturation concentration of the j th organic species, and COA is the total 

OA mass concentration. The prefix ʹ�ܦ௝ܦ� �ܰ�ிௌ is referred to later as the condensation sink. 

The j th organic species refers to the organic compounds tracked in the VBS bins and the SOM 

grids. The gas-phase diffusion coefficient is calculated for each organic species as follows: ܦ௝ = ஼ைమܦ ெௐ��మெௐೕ             (10) 

Where ܦ஼ைమ is the gas-phase diffusion coefficient of CO2 (1.38×10-5 m2 s-1), ܯ ஼ܹைమ (g mole-1) is 

the molecular weight of CO2, and MWj (g mole-1) is the molecular weight of the j th species. In the 

VBS model where the SOA is anonymized, we assume all condensing species to have a 

molecular weight of 300 g mole-1; we test the sensitivity of this assumption on model 

predictions. The Fuchs-Sutugin correction is calculated as follows: �ிௌ = ଴.଻ହ�ሺଵ+�௡ሻ�௡మ+�௡+଴.ଶ଼ଷ⋅�௡⋅� +଴.଻ହ�          (11) 

݊ܭ = ଶ�ೕ஽�              (12) 

�௝ = ଷ஽ೕ஼ೕ              (13) 



 
 
 
 

 
17 
 
 

௝ܥ = √଼ே�௞்�ெௐೕ              (14) 

Where Kn is the Knudsen number, α is the mass accommodation coefficient, λj is the mean free 

path of the j th organic species in air (m), Cj is the root mean square speed of the gas (m s-1), NA is 

Avogadro's Number, k is Boltzmann constant (m2 kg s-2 K-1) and T is the temperature (K). 

 

2.4 MODEL INPUTS 

 

2.4.1 SEMI-VOLATILE AND REACTIVE POA  
 
Jathar et al. (2017) measured emissions of POA at no OH exposure and these measured 

concentrations were used to initialize the preexisting OA available for absorptive partitioning in 

the model simulations. Previous work has conclusively shown that POA is semi-volatile and 

exists in an equilibrium with gas-phase vapors (Robinson et al., 2007; May et al., 2013a,b,c); 

POA and its vapors are hereafter collectively referred to as primary organic carbon (POC). Mass 

concentrations of the POC vapors were determined by assuming that the POC mixture in the 

experiments modeled in this work was consistent with the normalized, volatility-resolved 

distribution of POC products estimated by May et al. (2013) from a suite of on- and off-road 

diesel vehicles. The volatility distribution of May et al. (2013) for diesel POC is listed in Table 

4(a). For the SOM, we assumed that the POC could be represented using a distribution of n-

alkanes and we refit the volatility distribution in Table 4(a) to develop a carbon-number resolved 

distribution of n-alkanes; this distribution is listed in Table 4(b). The POA and POC vapors 

estimated for the VBS and SOM models for all the experiments are listed in supplementary 

information. 
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Table 4: (a) Volatility- and (b) carbon-number resolved distributions used to determine mass 
concentrations of POC vapors in the VBS and SOM models 

 
C*

 (µg m-

3) 
10-2 10-1 101 102 103 104 105 106 

fi 0.03 0.25 0.37 0.23 0.06 0.03 0.01 0.01 
 

Carbon  
No. 

<16 16 17 18 19 20 21 22 23 24 25 26 >26 

fi 0.003 0.000 0.058 0.043 0.055 0.094 0.146 0.181 0.178 0.137 0.078 0.026 0.001 

 

2.4.2 SOA PRECURSOR EMISSIONS  
 
Jathar et al. (2017) did not speciate the THC (that includes the SOA precursors) emissions for the 

different tests and hence we had to develop our own emissions profiles based on previously 

published literature to speciate the THC emissions. In this work, we used four different 

emissions profiles listed in EPA SPECIATE version 4.3 that are commonly used to speciate 

THC emissions from diesel engines for emission inventories used in atmospheric modeling 

(Woody et al., 2016): Profile #s 3161 (Diesel Exhaust- Farm Equipment), #8777 (Heavy duty 

diesel exhaust), 4777 (Biodiesel Exhaust- Light Duty) and 4771 (Biodiesel Exhaust - Light 

Duty). Profile #3161 best matches the diesel engine source and diesel fuel used by Jathar et 

al.,2017 and was used as the baseline emissions profile to speciate THC emissions; we examined 

the sensitivity of using Profile #8774 on model predictions. Profile #4777 was used as the 

baseline emissions profile to speciate THC emissions for tests performed using the biodiesel fuel 

and we used Profile #4771 to test sensitivity to model predictions. We were unable to find a 

comprehensive emissions profile for THC emissions from the use of straight biodiesel fuel (as 

used by Jathar et al. (2017)) in the literature and hence we had to rely on emissions profiles that 

were determined for biodiesel-diesel blends.  
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Prior work in studying SOA formation has revealed that traditional speciation of THC emissions 

does not include emissions of high molecular-weight organic compounds such as IVOCs that are 

important SOA precursors (Jathar et al., 2014). In Profile #3161 and #8774 these are partially 

accounted for in the ‘unknown’ species category. Zhao et al. (2015) recently estimated the 

magnitude of IVOC emissions in THC emissions found in a suite of on- and off-road diesel 

engines and provided a semi-explicit speciation of the IVOC emissions as a carbon-number 

distribution of linear, branched and cyclic alkanes. To account for these IVOC emissions, we 

assumed that the baseline emissions profiles contained 60% (based on the median estimate in 

Zhao et al. (2015)) IVOCs on a mass-basis. We performed sensitivity simulations using 0% 

(assuming that the THC emissions contained no IVOCs) and 13.6% (based on the ‘unknown’ 

category in Profile #3161) IVOCs on a mass-basis. Addition of IVOCs to the baseline emissions 

profile meant that the traditional species had to be renormalized to accommodate the IVOCs. 

Table 5 lists the normalized baseline emissions profiles for SOA precursors used for diesel and 

biodiesel exhaust with 60% IVOCs including the reaction rate constants with OH (kOH) and 

surrogates (or model compound) used to model SOA formation for the VBS and SOM models. 

Concentrations for each species for any experiment were determined by simply multiplying the 

THC mass concentrations with the normalized emissions profile. 

 

Table 5: Mass fraction, VBS and SOM surrogates for SOA forming precursors 

Species 
kOH (cm3 

molecules-1 
s-1) 

Mass Fraction 
VBS Surrogate SOM Surrogate 

Diesel Biodiesel 

ethylbenzene 7.0E-12 0.144 0.071 toluene toluene 

indan 
1.9E-11 
 

0.087 - naphthalene naphthalene 

butylbenzene 
4.5E-12 
 

0.065 0.405 m-xylene m-xylene 
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diethylbenzene 8.11E-12 0.101 - m-xylene m-xylene 
isopropyltoluene 8.54E-12  - 0.308 toluene toluene 

m-xylene 2.31E-11 0.282 0.318 m-xylene m-xylene 
o-xylene 1.36E-11 0.157 0.338 o-xylene  m-xylene 
p-xylene 1.43E-11 0.046  - p-xylene  m-xylene 
n-decane 1.1E-11 0.245 1.460 decane Decane 

n-undecane 1.23E-11 0.120 1.660 undecane Undecane 
toluene 5.63E-12 1.405 0.680 toluene Toluene 

n-tridecane 1.68E-11  - 0.525 tridecane tridecane 
benzaldehyde 1.2E-11 0.324 -  benzene benzene 

benzene 1.22E-12 0.925 1.370 benzene benzene 
C10 aromatics 2.3E-11 0.037 -  m-xylene m-xylene 
C9 aromatics 2.31E-11 0.230  - m-xylene m-xylene 

1,2,3-
trimethylbenzen

e 
3.27E-11 0.056  - m-xylene m-xylene 

1,2,4-
trimethylbenzen

e 
3.25E-11 0.245 0.404 m-xylene m-xylene 

1,2-
diethylbenzene 

8.11E-12 0.041  - toluene toluene 

1,3,5-
trimethylbenzen

e 
5.67E-11 -  0.162 m-xylene m-xylene 

1,2-dimethyl-4-
ethylbenzene 

1.69E-11 -  0.176 m-xylene m-xylene 

1,3-dimethyl-2-
ethylbenzene 

1.76E-11 - 0.283 m-xylene m-xylene 

1,4-dimethyl-2-
ethylbenzene 

1.69E-11 -  0.370 m-xylene m-xylene 

1-(1,1-
dimethylethyl)-

3,5-
dimethylbenzen

e 

3.01E-11 -  0.318 m-xylene m-xylene 

1-methyl-2-
ethylbenzene 

7.44E-12 0.065 0.328 toluene toluene 

1-methyl-3-
ethylbenzene 

1.39E-11 0.116 0.616 toluene toluene 

1-methyl-2-tert-
butylbenzene 

6.74E-12 -  0.369 toluene toluene 

1-tert-butyl-4-
ethylbenzene 

7.42E-12 -  0.166 m-xylene m-xylene 

2-methyl-butyl-
benzene 

1.02E-11 -  0.945 m-xylene m-xylene 
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3,3-
dimethyloctane 

7.21E-12 -  0.262 decane 
C10 branched 

alkane  

3-ethyloctane 1.18E-11 -  0.162 decane 
C10 branched 

alkane 

3-methylnonane 1.14E-11 -  0.227 decane 
C10 branched 

alkane 
C12 branched 

alkane 
1.82E-11 2.268 2.268 decane decane 

C13 branched 
alkane 

1.68E-11 1.623 1.623 undecane undecane 

C14 branched 
alkane 

1.39E-11 1.052 1.052 dodecane dodecane 

C15 branched 
alkane 

1.82E-11 0.939 0.939 tridecane tridecane 

C16 branched 
alkane 

1.96E-11 0.988 0.988 tetradecane tetradecane 

C17 branched 
alkane 

2.1E-11 0.440 0.440 pentadecane pentadecane 

C18 branched 
alkane 

2.24E-11 0.573 0.573 hexadecane hexadecane 

C19 branched 
alkane 

2.38E-11 0.343 0.343 heptadecane heptadecane 

C20 branched 
alkane 

2.52E-11 0.194 0.194 heptadecane heptadecane 

C21 branched 
alkane 

2.67E-11 0.128 0.128 heptadecane heptadecane 

C22 branched 
alkane 

2.81E-11 0.121 0.121 heptadecane heptadecane 

C12 cyclic 
alkane 

1.82E-11 8.690 8.690 tetradecane tetradecane 

C13 cyclic 
alkane 

1.68E-11 8.858 8.858 pentadecane pentadecane 

C14 cyclic 
alkane 

1.39E-11 6.299 6.299 hexadecane hexadecane 

C15 cyclic 
alkane 

1.82E-11 5.723 5.723 heptadecane heptadecane 

C16 cyclic 
alkane 

1.96E-11 4.372 4.372 heptadecane heptadecane 

C17 cyclic 
alkane 

2.1E-11 3.711 3.711 heptadecane heptadecane 

C18 cyclic 
alkane 

2.24E-11 3.382 3.382 heptadecane heptadecane 

C19 cyclic 
alkane 

2.38E-11 2.115 2.115 heptadecane heptadecane 

C20 cyclic 2.52E-11 1.181 1.181 heptadecane heptadecane 
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alkane 
C21 cyclic 

alkane 
2.67E-11 0.748 0.748 heptadecane heptadecane 

C22 cyclic 
alkane 

2.81E-11 0.629 0.629 heptadecane heptadecane 

dodecane 1.82E-11 1.167 1.167 dodecane dodecane 
tridecane 1.68E-11 1.094 1.094 tridecane tridecane 

tetradecane 1.39E-11 0.730 0.730 tetradecane tetradecane 
pentadecane 1.82E-11 0.613 0.613 pentadecane pentadecane 
hexadecane 1.96E-11 0.456 0.456 hexadecane hexadecane 
heptadecane 2.1E-11 0.331 0.331 heptadecane heptadecane 
octadecane 2.24E-11 0.296 0.296 heptadecane heptadecane 
nonadecane 2.38E-11 0.145 0.145 heptadecane heptadecane 

eicosane 2.52E-11 0.073 0.073 heptadecane heptadecane 
heneicosane 2.67E-11 0.044 0.044 heptadecane heptadecane 

docosane 2.81E-11 0.029 0.029 heptadecane heptadecane 

pristane 2.44E-11 0.287 0.287 heptadecane 
C19 branched 

alkane 

phytane 2.61E-11 0.160 0.160 heptadecane 
C20 branched 

alkane 
naphthalene 2.3E-11 0.208 0.208 naphthalene naphthalene 

phenanthrene 1.3E-11 0.024 0.0235  naphthalene naphthalene 
 

2.4.3 PARTICLE SIZE DISTRIBUTION  
 
For the sake of numerical simplicity, we considered a monodisperse size distribution to model 

the kinetic gas/particle partitioning. Model simulations were initialized with the surface area 

mean diameter and number concentration measured by Jathar et al. (2017) at no OH exposure for 

the non-DPF+DOC experiments. We used the OH-specific surface area mean diameter-number 

concentration pairs for the DPF+DOC experiments. The rationale for this is discussed in Section 

3.5.3. The condensing SOA mass was used to calculate the change in particle size but the 

number concentration was conserved. These data are listed in Table 1. We also examined the 

sensitivity of different particle size distribution inputs on model predictions. 
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2.5 MODEL SIMULATIONS 

 
The VBS and SOM models were run separately for each photochemical exposure simulated for 

each experiment listed in Table 1. We assumed that as the diluted exhaust mixture traveled from 

one end to the other of the OFR over a period of 100 seconds, the mixture was exposed to a 

constant OH concentration that oxidized the mixture to form SOA. The constant OH 

concentration was calculated by dividing the OH exposure estimated by Jathar et al. (2017) by 

100 seconds. In each VBS model simulation, POC was tracked in a separate basis set while 

products from each SOA precursor were tracked in separate basis sets. In each SOM model 

simulation, we only tracked the SOM grid of the surrogate instead of tracking each precursor. 

Model simulations were performed in phases to answer specific questions. First, we performed 

simulations with the VBS and SOM models using a base set of inputs for one of the Diesel-Idle-

None experiments. Our base set of inputs included: Profile #3161 for diesel experiments and 

Profile #4777 for biodiesel experiments, a 60% IVOC mass fraction, kinetic gas/particle 

partitioning with a mass accommodation coefficient of 0.1, and particle size calculated using the 

surface area mean diameter. These simulations provided a general overview of the model 

predictions. Second, we performed simulations with the VBS model assuming equilibrium and 

kinetic gas/particle partitioning for the Diesel-Idle-None experiment performed on June 5. These 

were performed to examine the validity of the equilibrium gas/particle partitioning assumption to 

model OFR data. Third, we performed simulations with the VBS and SOM models with different 

IVOC mass fractions for all the experiments listed in Table 1. These allowed us to investigate the 

importance of IVOCs to model the formation and, in case of the SOM, model the elemental 

composition of the SOA. Finally, we performed simulations with the VBS and SOM models to 

explore the sensitivity of the model predictions to the following key inputs: IVOC 
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parameterization, choice of emissions profile, particle size distribution inputs, vapor wall losses 

and molecular weight of the condensing species in the VBS model. Model runtime of SOM (in 

Igor version) is 500 seconds and VBS (in MATLAB) is 10 seconds in an Intel 4th generation i5 

processor at 1.7GHz. 
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RESULTS 

 
 

3.1 GENERAL RESULTS 

 

 
Figure 2: VBS and SOM model predictions of OA when run assuming the base case inputs 

compared to measurements from the experiment performed on June 5(Diesel-Idle-None) as a 
function of photochemical age. Panel (a) has comparisons in µg m-3 and panel (b) has 

comparisons in g kg-fuel-1. Panel (c) shows the modeled and measured OA composition at the 
highest photochemical exposure.  

 

We compare predictions of OA from the VBS and SOM models to the measurements in Figure 2 

for the Diesel-Idle-None experiment performed on June 5. Figures 2(a) and 2(b) compare 

predictions to the measurements in units of µg m-3 and g kg-fuel-1 respectively; hereafter we 

present all OA mass predictions in units of g kg-fuel-1. Figure 2(c) compares the VBS and SOM 

predicted composition of OA at the maximum photochemical exposure to the measured 

composition of OA. The VBS and SOM models seemed to slightly overpredict the OA evolution 

at photochemical exposures lower than half a day. For photochemical exposures larger than half 

a day, the VBS model performed very well in reproducing the OA evolution but the SOM 
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underpredicted the OA mass by about a factor of two at the highest photochemical exposure. The 

overprediction by both models at lower photochemical ages and the underprediction by the SOM 

at higher photochemical ages can be attributed to the choice and uncertainty in the various inputs 

for the two models. These assumptions and inputs will be explored in the sections below. The 

VBS and SOM models predicted that the OA at the maximum photochemical exposure was 

dominated (90-94%) by SOA produced from VOC and IVOC oxidation, which agreed well with 

the measured composition. Furthermore, both models suggested that most of the SOA emanated 

from the oxidation of IVOCs with only about 3% resulting from the oxidation of aromatic VOCs 

and less than 1% resulting from C12 and lower alkane VOCs. This dominance of IVOCs in 

explaining the photochemically produced SOA is in line with previous studies that have modeled 

SOA formation from diesel exhaust (Tkacik et al., 2014; Jathar et al., 2014).  

 

3.2 EQUILIBRIUM VERSUS KINETIC GAS/PARTICLE PARTITIONING 

 

 

Figure 3: VBS model predictions of OA as a function of photochemical age assuming 
instantaneous equilibrium (green) and kinetic gas/particle partitioning (blue; run at three 

accommodation coefficients, α = 1(dashed) ,0.1(solid) and 0.01(dash-dot)) 
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Large-scale models commonly assume instantaneous or equilibrium gas/particle partitioning 

since the timescales of other atmospheric processes (e.g., chemistry, transport, deposition) are 

typically much slower than those required for gases and sub-micron particles to achieve 

equilibrium (Meng and Seinfeld, 1996; Zhang et al., 2012). Hence, models applied to simulate 

SOA production in environmental chambers, and even in OFRs, have also assumed equilibrium 

partitioning. Here, we examine the validity of assuming equilibrium partitioning to model OFR 

data by performing model simulations assuming equilibrium and kinetic gas/particle partitioning 

and comparing model predictions against measurements from the Diesel-Idle-None experiment 

performed on June 5. The simulations were performed with the VBS model used in Section 2.1 

using three different mass accommodation coefficients (α=0.01, 0.1, 1) to capture the uncertainty 

in modeling the kinetic gas/particle partitioning; the mass accommodation coefficient (α) is 

defined as the probability that the collision of a condensing molecule will result in mass transfer 

from the gas to the particle phases. We only used the VBS model here since it offered good 

comparison of model predictions against measurements for the experiment performed on June 5. 

Results from the simulations are shown in Figure 3. We find that the VBS model on assuming 

equilibrium partitioning significantly over-predicted the photochemical production of SOA by as 

much as a factor of two. This comparison indicates that assuming equilibrium partitioning to 

model OFR data will likely over-predict the condensation and formation of SOA. Additionally, 

the results suggest that the model predictions were relatively insensitive to α values of 0.1 and 1 

but were dramatically lower (factor of ~4) for an α value of 0.01. Given the reasonable model-

measurement comparison of the VBS model at an α value of 0.1 and 1, we argue that 

condensation in an OFR may not be well represented by an α value lower than 0.1.  
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3.3 INFLUENCE OF IVOCS ON SOA FORMATION 
  

 

Figure 4: SOA Predictions from the VBS and SOM models assuming 0%, 13.6% and 60% IVOC 
mass fractions compared to measurements at α=0.1 with Zhao et al., (2015) speciation for 

IVOCs. 

 
Previous work has shown that combustion-related IVOCs are important precursors of SOA 

(Robinson et al., 2007; Gordon et al., 2014 a,b; Jathar et al., 2014; Dzepina et al., 2009). In 

Figure 4, we use scatter plots to compare predictions of SOA from the VBS and SOM models 

against measurements for all the experiments listed in Table 1 and at all photochemical ages. The 

three panels in Figure 4 show model-measurement comparisons assuming three different 

fractions of IVOCs: 0%, 13.6% and 60%. The model performance is also captured using 

statistical metrics of fractional bias, fractional error (gives equal weight to underestimations and 

overestimations, fractional bias varies between +2 to -2 and has value zero for an ideal model), 

and R2 in Table 6. Traditional emissions inventories rarely include IVOCs and hence the 0% case 

reflects the SOA treatment in traditional models. The 13.6% IVOC case reflects the unspeciated 

fraction listed in diesel exhaust emissions profiles, which is typically neglected by emissions 

models and not considered to form SOA. The 60% IVOC case reflects the latest estimate from 
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Zhao et al. (2015) based on measurements from on- and off-road diesel vehicles. The model-

measurement comparison and the model skill was very poor when no IVOCs were included 

(fractional bias>70% and fractional error>73%). The model performance improved with 13.6% 

IVOCs (fractional bias>40% and fractional error>60%) but was better still with 60% IVOCs 

(fractional bias>15% and fractional error>35%) where there was very little bias in the model 

predictions. The optimal model performance that produced the lowest fractional bias and 

fractional error was found at an IVOC mass fraction of 40% (fractional bias=-4% and fractional 

error=48%). These comparisons indicate that it is critical that IVOCs be included when modeling 

the SOA formation from diesel exhaust. In Figure 5(a), we plot the relative contribution of 

precursors and POA to the OA mass at the highest photochemical exposure for all the 

experiments and we also plot the precursor mass fractions for all the experiments in figure 5(b). 

Cyclic alkane IVOCs were found to contribute the most (40-75%) to SOA formation. Since the 

speciation of cyclic alkane IVOCs in Zhao et al. (2015) did not include any specificity in terms 

of the molecular structure and that the parameterizations to model SOA formation from cyclic 

alkane IVOCs for both models was non-specific (in the VBS model the surrogate for a cyclic 

alkane IVOC was determined through equivalence with a straight alkane IVOC; in the SOM 

model the cyclic alkane IVOCs were tied to parameterizations for hexylcyclohexane), the SOA 

predictions from the oxidation of cyclic alkane IVOCs are relatively uncertain. We recommend 

that future work focus on more detailed speciation of the cyclic alkane IVOCs as well as on 

chamber experiments on those speciated compounds to improve quantification of their SOA 

mass yields.  
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(a) 

(b)   

 

Figure 5: (a) SOM predictions of precursor contribution to the total OA at the highest 
photochemical age for all the experiments from Table 1. (b) mass fractions of the precursors 
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Table 6:VBS and SOM model performance for OA mass at 0%,13.6%, and 60% IVOC mass 
fractions 

Aftertreatment Model 
Fractional Bias Fractional Error R2 
0% 13.6% 60% 0% 13.6% 60% 0% 13.6% 60% 

None 
VBS -73%  -49% 27% 78% 50% 61% 0.76 0.82 0.84 
SOM -73% -33% 43% 78% 61% 55% 0.71 0.91 0.89 

DPF+DOC 
VBS -96% -73% -17% 104% 85% 36% 0.86 0.98 0.99 
SOM -127% -79% 13% 132% 97% 89% 0.87 0.99 0.97 

 

3.4 ELEMENTAL COMPOSITION 

 
The SOM tracks both the carbon and oxygen number of the oxidation products and hence this 

allowed us to predict the O:C ratio of the OA. In Figure 6, we use scatter plots to compare 

predictions of the O:C of OA from the SOM model against measurements for all the experiments 

listed in Table 1 and at all photochemical ages; the O:C measurements were estimated from the 

aerosol mass spectrometer data collected by Jathar et al. (2017). The model performance for O:C 

is also captured using statistical metrics of fractional bias, fractional error, and R2 in Table 7. We 

note that the O:C of the OA was calculated by combining the measured O:C of the POA with the 

modeled O:C of the SOA. The model-measurement comparison for the no IVOC case suggests 

that with very little SOA, the O:C of the OA was dominated by the O:C of the POA and hence 

the model under-predicted the O:C (fractional bias> -145%and fractional error>147%) and had 

very little skill. The 13.6% and 60% IVOC cases offered similar model performance (fractional 

bias>-42% and fractional error>43%) although both cases still under-predicted the OA O:C by 

about a factor of two. We were also able to compare model predictions of normalized gas-phase 

species concentrations from the SOM to normalized gas-phase measurements made by Friedman 

et al. (in preparation), during the same set of experiments, using a chemical ionization mass 

spectrometer (CIMS). The comparison at the highest photochemical exposure for June 5 is 
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shown in Figure 7. There are three interesting findings of note: (1) The CIMS measured organic 

compounds with high O:C ratios (e.g., C12O7), implying mechanisms at play where the reaction 

chemistry rapidly adds functional groups to the carbon backbone (Ehn et al., 2014). (2) The 

CIMS was able to measure C12+ species, which indicate possible products of IVOC oxidation. (3) 

The SOM offered a surprisingly reasonable comparison against the CIMS measurements across 

all carbon-oxygen combinations that span more than four orders of magnitude. Qualitatively, this 

finding validates the OA evolution tracked through the generalized SOM mechanism. (4) The 

SOM under-predicted the fractional contribution of high oxygen number species, but slightly 

over-predicted the fractional contribution of low-oxygen number species. One of the reasons for 

this discrepancy is that the SOM, in its current representation, does not explicitly model 

autooxidation-type reactions and cannot rapidly form species that are highly oxygenated. Based 

on these comparisons with measurements, it is likely that the SOM model, which is currently 

designed to add a maximum of four oxygen atoms per reaction step, may need to be extended in 

terms of its statistical scheme to add more oxygens during each reaction step. The SOM-CIMS 

comparison is preliminary and we intend to explore the implications of this comparison in future 

work. 

 

Table 7: SOM model performance for O:C predictions at 0%,13.6%, and 60% IVOC mass 
fractions. 

Aftertreatment 
Fractional Bias Fractional Error R2 

0% 13.6% 60% 0% 13.6% 60% 0% 13.6% 60% 
None -145% -75% -62% 147% 77% 69% 0.71 0.73 0.82 
DPF+DOC -42% -52% -42% 43% 52% 43% 0.066 0.069 0.01 

 



 
 
 
 

 
33 
 
 

 

Figure 6: OA O:C predictions from the SOM model assuming 0%, 13.6% and 60% IVOC mass 
fractions compared to measurements. 
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Figure 7: Normalized gas-phase concentrations from the SOM model for the Diesel-Idle-None 
and Diesel-Load-None experiments compared to normalized gas-phase concentrations measured 

by the CIMS. 
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3.5 SENSITIVITY 

 
In this section, we performed sensitivity analyses to examine the influence of key inputs on 

predictions from both the VBS and SOM models. All the sensitivity simulations were performed 

on two of the following three experiments: Diesel-Idle-None experiment from June 5, Biodiesel-

Idle-None experiment from June 4, Diesel-Idle-DPF+DOC experiment from June 9. When we 

examined the sensitivity to each model input, we kept all the other inputs the same as those listed 

in the base set.  

 

3.5.1 IVOC SPECIATION  
 

 

Figure 8: VBS and SOM predictions from using different single surrogates to model SOA 
formation from IVOCs. Simulations were performed for the (a) Diesel-Idle-None and (b) Diesel-

Idle-DPF+DOC experiments. 

 
In Section 3.3, we found that IVOCs were the dominant precursor of SOA production and the 

model required 40% of the THC emissions to be composed of IVOCs to allow for a good model-

measurement comparison. However, the IVOC speciation included 37 unique species, each of 
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which required a unique surrogate to model the SOA formation from that species. Tracking these 

many IVOC species in a large-scale model may be intractable and hence we used a strategy 

previously suggested by Jathar et al. (2014) where we model SOA formation from IVOCs using 

a single surrogate. We modeled SOA from IVOCs assuming that all the IVOCs together could be 

modeled as a linear C13, C15, C17 or C19 alkane. Results from these simulations are shown in 

Figure 8. For the VBS model, the use of a linear C15, C17 and C19 alkane parameterization for 

IVOCs reproduced the measurements well while for the SOM model, the use of a linear C17 

alkane parameterization produced good agreement with the measurements. These results indicate 

that in cases where computationally efficiency is demanded, the SOA formation from IVOCs in 

diesel exhaust could be modeled using a surrogate linear alkane. 

 

3.5.2 EMISSIONS PROFILE 
 

 
Figure 9: VBS and SOM predictions from using different emission profiles to model SOA 

formation. Simulations were performed for the (a) Diesel-Idle-None and (b) Biodiesel-Idle-None 
experiments. 
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Since there were no direct measurements of the SOA precursors in the study of Jathar et al. 

(2017), we had to rely on previously published emissions profiles for diesel and biodiesel 

exhaust to determine initial concentrations of the SOA precursors. Here, we examined the 

sensitivity of model predictions to Profile #8777 and Profile #4771 for diesel and biodiesel 

respectively; these profiles are listed in detail in Tables 13 and 14 of the supplementary 

information. These emissions profiles do not include IVOCs. As there is only a single study so 

far that has provided a speciation for IVOCs in diesel exhaust (Zhao et al., 2015), we keep the 

IVOC speciation the same in these simulations. Results from these simulations are captured in 

Figure 9 where we found that the choice of the emissions profile has very little influence on the 

OA evolution. This demonstrates that IVOCs, rather than VOCs, play an important role in 

controlling the SOA formation from diesel exhaust and it is important that future studies work 

towards understanding the composition of IVOCs. 

 

3.5.3 PARTICLE SIZE DISTRIBUTION 
 

 

Figure 10 VBS and SOM model predictions from using different particle size distribution inputs. 
Simulations were performed for the (a) Diesel-Idle-None and (b) Diesel-Idle-DPF+DOC 

experiments. Legend: (i) surface area mean diameter and measured number concentration at no 
OH exposure, (ii) surface area mean diameter and measured number concentration at the 
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highest OH exposure, (iii) surface area mean diameter and measured number concentration at 
the given photochemical exposure, (iv) number mean diameter and measured number 
concentration at no OH exposure, (v) number mean diameter and measured number 

concentration at the highest OH exposure, (vi)average of (i) and (iii) 

The particle size distribution inputs, namely the particle diameter and number concentration, 

control the condensation sink and condensation timescale and given the short residence times in 

the OFR can control the amount of SOA produced in the OFR. Hence, we investigated the 

sensitivity of particle size distribution inputs to model predictions of OA. There were two 

reasons why the particle size distribution inputs specified with our base model ((i) for Diesel-

Idle/Load-None experiments and (iii) for Diesel-Idle/Load-DPF+DOC experiments) were not 

necessarily representative. First, it was unclear how the input particle diameter needed to be 

calculated given that our model formulation assumed a monodisperse distribution; future work 

needs to investigate this assumption. And second, in most experiments, Jathar et al. (2017) 

observed strong nucleation and growth events at the highest photochemical exposure that 

dramatically increased (by a factor of ~4) the number concentration. These higher concentrations 

at the high photochemical exposures could possibly have increased the condensation sink to 

influence the partitioning of SOA. To address uncertainties in the calculation of the initial 

particle diameter and account for the increased number concentration at high photochemical 

exposures, we performed five different simulations with each model (VBS and SOM) where we 

used different particle diameter-number concentration pairs as inputs to the simulation. The five 

different particle diameter-number concentration inputs were: (i) surface area mean diameter and 

measured number concentration at no OH exposure, (ii) surface area mean diameter and 

measured number concentration at the highest OH exposure, (iii) surface area mean diameter and 

measured number concentration at the given photochemical exposure, (iv) number mean 

diameter and measured number concentration at no OH exposure, (v) number mean diameter and 
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measured number concentration at the highest OH exposure, (vi) average of (i) and (iii). Results 

from these model simulations are shown in Figure 10. We find that the different particle size 

distribution inputs had very little influence on the VBS model predictions of OA and some 

influence on the SOM model predictions of OA for the Diesel-Idle-None experiment. The SOM 

model that used the particle diameter-number concentration pair from no OH exposure produced 

slightly lower OA estimates (20%) because of a smaller condensation sink. In contrast, for both 

models we find large differences in the model predictions of OA for the Diesel-Idle-DPF+DOC 

experiment. The use of the particle diameter-number concentration pair at no OH exposure, 

where the aftertreatment system significantly reduced number concentrations and hence the 

available condensation sink, produced much lower OA mass. It appears that the particle size 

distribution inputs are more important when the condensation sink associated with the initial 

concentrations are small (>0.00004s-1). 

 

3.5.4 VAPOR WALL LOSSES 
 

 
 

Figure 11 SOM model predictions from using different vapor wall-loss rates. Simulations were 
performed for the (a) Diesel-Idle-None and (b) Diesel-Idle-DPF+DOC experiments. 
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Previous research has highlighted the influence vapor wall losses exert on the calculation of SOA 

mass yields from chamber experiments (Zhang et al., 2014; Krechmer et al., 2015). Cappa et al. 

(2016), based on the chamber work of Zhang et al. (2014), recently published parameterizations 

for the SOM model that accounted for vapor wall losses assuming wall loss rates of 1×10-4 and 

2.5×10-4 s-1; these parameters are reproduced in Tables 15 and 16 in the supplementary 

information. We performed model simulations with the SOM model assuming no wall losses and 

using the low (1×10-4) and high (2.5×10-4) estimates for vapor wall losses. The results from those 

simulations are shown in Figure 11. We found that the inclusion of vapor wall losses increased 

model predicted of OA mass (OA mass assuming high wall loss rates was about 1.8 to 2.4 times 

higher than those without considering wall losses) and provided the best performance for the 

high estimate for vapor wall losses. These comparisons further demonstrate that vapor wall 

losses need to be accounted for in SOA models that are used to interpret chamber and OFR 

experiments.  

 

3.5.5 MOLECULAR WEIGHT ASSUMPTION 
 

 

Figure 12: VBS predictions from using different molecular weights for the condensing species. 
Simulations were performed for the Diesel-Idle-None experiment.  
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The VBS model does not track the molecular composition of the oxidation products and hence 

we assumed that all oxidation products had a molecular weight of 300 g mole-1. To investigate 

the sensitivity on model predictions, we performed simulations with three different molecular 

weights (i) 100 g mole-1 ii) 300 g mole-1 and iii) 500 g mole-1. We found that a molecular weight 

of 100 g mole-1 resulted in higher OA mass, especially at lower photochemical ages, since the 

condensation sink linked to a smaller molecular weight species is larger (see equations in Section 

2.3). However, there were few differences in model predictions that used molecular weights of 

300 and 500 g mole-1. Since most condensing SOA species are expected to have molecular 

weights larger than 150 g mole-1 (Cappa et al., 2011), we conclude that value used for the 

molecular weight of the condensing species in the VBS model has little influence on model 

predictions.  

 

3.5.6 OH VARIATION IN OFR 
 

 
Figure 13: VBS and SOM model predictions of OA as a function of photochemical age by 

varying the OH concentration. Simulations were performed for: (i)1/4 VOC at 1/3 OH 
concentration, (ii)1/4 VOC at 2/3 OH concentration, (iii) 1/3 VOC at 1/3 OH concentration, (iv) 
1/3 VOC at 2/3 OH concentration, (v)1/2 VOC at 1/3 OH concentration and (vi)1/2 VOC at 2/3 

OH, Dashed- Constant OH concentration 
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In this work, for all the simulations we assumed that the concentration of OH is constant 

throughout the OFR. Jathar et al.,2017 used one mercury lamp in the OFR that can have impact 

in the results since the area near the light will have higher exposure compared to the rest of the 

reactor. To test this, we performed simulations for SOM and VBS by running the models at 1/3 

and 2/3 of the OH concentration and we assumed the VOC reacted to be 1/4,1/3 and 1/2 of the 

overall VOC and did the weighted average to calculate the total OA predicted. Simulations 

performed were: (i) 1/4 VOC at 1/3 OH concentration, (ii) 1/4 VOC at 2/3 OH concentration, 

(iii) 1/3 VOC at 1/3 OH concentration, (iv) 1/3 VOC at 2/3 OH concentration, (v) 1/2 VOC at 

1/3 OH concentration and (vi) 1/2 VOC at 2/3 OH concentration. For all the simulations, we 

conserved the OH to be consistent with the calculated OH concentration. Results are plotted in 

figure (13) in which the dashed lines are default assumption of this work, which is, considering 

OH concentration constant throughout the OFR. We found that for VBS, the variation did not 

have much difference compared to the default assumption but in the case of SOM, considering 

the variation in OH did improve the predictions. 

 

3.5.7 GAS-PHASE DIFFUSION COEFFICIENT 
 
The gas-phase diffusion co-efficient for the species used in VBS and SOM were calculated by 

scaling the diffusion coefficient of CO2.  To study the sensitivity on model predictions, we 

performed simulations with VBS model by choosing the literature values of gas-phase diffusion 

coefficients (Tang et al.,2015) for the species in the emission profile and compared to those 

calculated based on scaling CO2 (equation 10). Figure (a) shows the comparison of OA 

predictions as a function of photochemical age for the two different simulations. We found that 

the model predictions of OA by following the assumption of gas-phase diffusion coefficients of 
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species by scaling CO2 value did not have large difference compared to the OA predictions when 

used literature values for diffusion coefficients. Figure (b) shows the scatter plot of the diffusion 

coefficients for the few species measured in Tang et al compared to those calculated using 

equation 10. We can say from the figure (b) that there is no great difference in the diffusion 

coefficient values based on (i) and (ii) methods. 

 

Figure 14: (a) VBS predictions of OA from using different approaches in gas-phase diffusion 
coefficients as a function of photochemical age. (b) Scatter plot. Simulations were performed for 
(a): (i) gas-phase diffusion coefficients of species from scaling the diffusion coefficient of CO2 

(solid) and (ii) gas-phase diffusion coefficients for species using literature values (dashed) 

 

3.5.8 YIELDS OF HIGHER ALKANES (C17-C22): 
 
In VBS, since we did not have the product distributions for higher alkanes (C18 – C22) we 

considered mass yields of C17 for higher alkane numbers for all the simulations of this work. 

Presto et al., 2010 found that for n-alkanes, addition of 2 carbon atoms shifted the corresponding 

product distribution by one C* bin or one order of magnitude in C* base. Based on this, we 

calculated the product distributions of higher alkanes and performed simulations to test the 
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sensitivity in OA formation from the two approaches. We found that there was no large influence 

seen in the model predictions following the two approaches. 

 
Figure 15: VBS predictions of OA as a function of photochemical age. Simulations performed 
for: (i) C17 product distribution for C18 - C22 (solid) and (ii) Using the corresponding product 

distributions for C18-C22 alkanes (dashed) 
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SUMMARY, CONCLUSIONS AND FUTURE WORK 

 
 
 
Recently, Jathar et al. (2017) performed experiments using the oxidation flow reactor (OFR) to 

measure the photochemical production of secondary organic aerosol (SOA) from diesel exhaust 

under varying engine loads, fuel types, and emissions control systems. These data present an 

opportunity to test SOA models and project their relevance for the atmosphere. However, most 

traditional treatments of SOA models do not include (i) emissions and a detailed speciation of 

intermediate volatility organic compounds (IVOCs) that have been recognized to be important 

SOA precursors and (ii) kinetic gas/particle partitioning, which is likely to be relevant for 

processes inside an OFR. In this work, we developed and applied two different SOA model 

frameworks (VBS and SOM) to simulate the photochemical production of SOA in an OFR from 

diesel exhaust and evaluated those model frameworks using the data from Jathar et al. (2017). 

The volatility basis set (VBS) model is a parameterized model that allows for a volatility-based 

representation of OA while the statistical oxidation model (SOM) is a semi-explicit 

parameterized model that uses a carbon-oxygen grid to track OA species. Both simulate the 

coupled chemistry, thermodynamic properties, and gas/particle partitioning of OA and in this 

work accounted for: (i) semi-volatile and reactive emissions of primary organic aerosol (POA), 

(ii) NOx-dependent SOA production from IVOCs and VOCs, (iii) multi-generational aging, and 

(iv) kinetic gas/particle partitioning. 

 

On including IVOCs as SOA precursors, both the VBS and SOM models were able to reasonably 

predict the OA evolution reported by Jathar et al. (2017) across different engine loads, fuel types, 

and emissions control systems. Model predictions suggested that at least 40% of the unburned 
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hydrocarbon emissions were IVOCs and that these IVOCs (regardless of the emissions profiles 

used to determine non-IVOC emissions) accounted for most (>90%) of the SOA formed from 

diesel exhaust. These findings are consistent with those from prior work performed on chamber 

experiments (Jathar et al., 2014). Simulations performed using single surrogates to model SOA 

formation from IVOCs suggested that the complex mixture of IVOCs in diesel exhaust could be 

well represented using a linear C15 or C17 alkane. These offer a computationally-efficient strategy 

to model SOA formation from IVOCs in large-scale three-dimensional models.  

 

While the inclusion of IVOCs allowed for good model-measurement comparison on OA mass, 

model predictions were unable to accurately predict the elemental composition of OA. The SOM 

model tracks the carbon and oxygen numbers of the oxidation products and hence model 

predictions were used to calculate atomic O:C ratios for OA, which were then compared to 

measurements. The current formulation of the SOM under-predicted the O:C ratio of the OA by 

a factor of two. Comparisons of model predictions in the gas-phase to those measured using a 

chemical ionization mass spectrometer (CIMS) suggested that the SOM may need to be modified 

to include mechanisms for rapid addition of oxygen-based functional groups to the carbon 

backbone to improve model performance.  

 

Model predictions suggested that kinetic gas/particle partitioning and inclusion of vapor wall-

losses was necessary to model OFR SOA data. Specifically, the mass accommodation coefficient 

could not be much smaller than 0.1 and the vapor wall-loss rates needed to be at least 2.5x10-4 s-1 

to reproduce the observed evolution of OA. We also discovered that the instantaneous or 
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equilibrium gas/particle partitioning assumption led to over-predictions of the condensation and 

formation of SOA and may not be suitable to model OFR data. 

 

As OFRs are increasingly used to study SOA formation and evolution in laboratory and field 

environments, there is a need to develop models that can be used to interpret the OFR data. This 

work is one example of the model development and application relevant to the use of OFRs. 

There are several instances where the model development was insufficient and will likely be 

addressed in future work. For example, the model could benefit from the use of a polydisperse 

size distribution, explicit treatment of nucleation, and the inclusion of Kelvin effects to improve 

predictions of the size distribution evolution. Confidence in the models developed here could 

also be built by testing the models against other OFR data (Palm et al., 2015). Finally, simple 

parameterizations could be developed based on this model to represent SOA formation in large-

scale models where it may not be possible to track the hundreds of precursor species dealt in this 

work. 
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APPENDIX 

 
 
 
Table 8:Estimated volatility-resolved POA (POC particle) and POC vapor concentrations in µg 

m-3 used as inputs in the VBS model. 

Load-Fuel-
Aftertreatment 
Experiment 

 
C* (µg m-3) 

10-1 100 101 102 103 104 105 106 

Idle-Diesel-None  

POA 1.13 9.45 13.99 8.70 2.27 1.13 0.38 0.38 
POC 
vapor 

0.66 5.52 8.16 5.07 1.32 0.66 0.22 0.22 

POA 1.05 8.71 12.89 8.01 2.09 1.05 0.35 0.35 
Vapor 0.64 5.29 7.83 4.87 1.27 0.64 0.21 0.21 
POA 2.55 21.25 31.45 19.55 5.10 2.55 0.85 0.85 
Vapor 1.00 8.32 12.31 7.65 2.00 1.00 0.33 0.33 

Idle-Biodiesel-None 

POA 0.66 5.54 8.20 5.09 1.33 0.66 0.22 0.22 
Vapor 0.51 4.23 6.26 3.89 1.01 0.51 0.17 0.17 
POA 2.07 17.24 25.51 15.86 4.14 2.07 0.69 0.69 
Vapor 0.90 7.48 11.07 6.88 1.79 0.90 0.30 0.30 

Load-Diesel-None 

POA 0.56 4.63 6.85 4.26 1.11 0.56 0.19 0.19 
Vapor 0.46 3.87 5.73 3.56 0.93 0.46 0.15 0.15 
POA 1.12 9.33 13.80 8.58 2.24 1.12 0.37 0.37 
Vapor 0.66 5.48 8.11 5.04 1.31 0.66 0.22 0.22 

Load-Biodiesel-None 

POA 0.86 7.17 10.62 6.60 1.72 0.86 0.29 0.29 
Vapor 0.58 4.80 7.11 4.42 1.15 0.58 0.19 0.19 
POA 1.37 11.41 16.89 10.50 2.74 1.37 0.46 0.46 
Vapor 0.73 6.07 8.98 5.58 1.46 0.73 0.24 0.24 

Idle-Diesel-DPF+DOC 
POA 0.04 0.37 0.55 0.34 0.09 0.04 0.01 0.01 
Vapor 0.15 1.25 1.86 1.15 0.30 0.15 0.05 0.05 

Load-Diesel-DPF+DOC 
POA 0.05 0.41 0.61 0.38 0.10 0.05 0.02 0.02 
Vapor 0.16 1.30 1.93 1.20 0.31 0.16 0.05 0.05 

Idle-Biodiesel-
DPF+DOC 

POA 0.08 0.65 0.96 0.60 0.16 0.08 0.03 0.03 
Vapor 0.19 1.57 2.33 1.45 0.38 0.19 0.06 0.06 

Load-Biodiesel-
DPF+DOC 

POA 0.06 0.53 0.78 0.49 0.13 0.06 0.02 0.02 
Vapor 0.17 1.44 2.14 1.33 0.35 0.17 0.06 0.06 

 
 
Table 9:Estimated carbon number-resolved POA (POC particle) and POC vapor concentrations 

in µg m-3 used as inputs in the SOM model 

Load-
Fuel-
Aftert

 
Carbon Number 

<16 16 17 18 19 20 21 22 23 24 25 26 >26 
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reatm
ent 
Exper
iment 

Idle-
Diesel
-None  

POA 0.13 0.005
  2.20 1.61 2.07 3.57 5.53 6.84 6.71 5.17 2.93 0.99 0.05 

POC Vapor 0.07 0.00 1.28 0.94 1.20 2.07 3.20 3.96 3.89 3.00 1.70 0.57 0.03 
POA 0.12 0.01 2.03 1.49 1.91 3.29 5.09 6.30 6.19 4.77 2.70 0.91 0.05 
POC Vapor 0.07 0.00 1.23 0.90 1.15 1.99 3.08 3.81 3.74 2.88 1.63 0.55 0.03 
POA 0.29 0.01 4.95 3.63 4.66 8.02 12.43 15.34 15.09 11.63 6.59 2.23 0.11 
POC Vapor 0.11 0.01 1.91 1.40 1.80 3.09 4.79 5.93 5.82 4.49 2.54 0.86 0.04 

Idle-
Biodie
sel-
None 

POA 0.07 0.00 1.29 0.95 1.21 2.09 3.24 4.01 3.93 3.03 1.72 0.58 0.03 
POC Vapor 0.06 0.00 0.99 0.72 0.93 1.59 2.47 3.06 3.00 2.31 1.31 0.44 0.02 
POA 0.23 0.01 4.02 2.94 3.78 6.50 10.08 12.47 12.24 9.43 5.34 1.81 0.09 
POC Vapor 0.10 0.00 1.72 1.26 1.62 2.78 4.31 5.34 5.24 4.04 2.29 0.77 0.04 

Load-
Diesel
-None 

POA 0.06 0.00 1.08 0.79 1.02 1.75 2.71 3.35 3.29 2.53 1.44 0.49 0.02 
POC Vapor 0.05 0.00 0.90 0.66 0.85 1.46 2.27 2.81 2.76 2.12 1.20 0.41 0.02 
POA 0.13 0.01 2.17 1.59 2.05 3.52 5.46 6.75 6.62 5.11 2.89 0.98 0.05 
POC Vapor 0.07 0.00 1.27 0.93 1.19 2.05 3.18 3.94 3.86 2.98 1.69 0.57 0.03 

Load-
Biodie
sel-
None 

POA 0.10 0.00 1.67 1.23 1.57 2.71 4.20 5.19 5.09 3.93 2.22 0.75 0.04 
POC Vapor 0.06 0.00 1.12 0.82 1.05 1.81 2.80 3.46 3.40 2.62 1.48 0.50 0.03 
POA 0.15 0.01 2.66 1.95 2.50 4.31 6.68 8.26 8.10 6.25 3.54 1.20 0.06 
POC Vapor 0.08 0.00 1.40 1.03 1.32 2.27 3.52 4.35 4.27 3.29 1.86 0.63 0.03 

Idle-
Diesel
-
DPF+
DOC 

POA 0.01 0.00 0.09 0.06 0.08 0.14 0.22 0.27 0.27 0.20 0.12 0.04 0.00 

POC Vapor 0.02 0.00 0.30 0.22 0.29 0.49 0.76 0.94 0.93 0.71 0.40 0.14 0.01 

Load-
Diesel
-
DPF+
DOC 

POA 0.01 0.00 0.10 0.07 0.09 0.16 0.24 0.30 0.29 0.22 0.13 0.04 0.00 

POC Vapor 0.02 0.00 0.32 0.23 0.30 0.51 0.79 0.98 0.96 0.74 0.42 0.14 0.01 

Idle-
Biodie
sel-
DPF+
DOC 

POA 0.01 0.00 0.15 0.11 0.14 0.24 0.38 0.47 0.46 0.35 0.20 0.07 0.00 

POC Vapor 0.02 0.00 0.38 0.28 0.35 0.61 0.95 1.17 1.15 0.89 0.50 0.17 0.01 

Load-
Biodie
sel-
DPF+
DOC 

POA 0.01 0.00 0.12 0.09 0.12 0.20 0.31 0.38 0.38 0.29 0.16 0.06 0.00 

POC Vapor 0.02 0.00 0.35 0.25 0.33 0.56 0.87 1.08 1.06 0.82 0.46 0.16 0.01 
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Table 10:Profile numbers form EPA SPECIATE version 4.3 commonly used to speciate THC 
emissions in diesel exhaust. 

EPA Profile Number Type 
3161 Farm Equipment- Diesel 
8774 Heavy duty diesel exhaust 
4777 Biodiesel Exhaust-Light Duty 
4771 Biodiesel Exhaust- Light Duty 

  
 

Table 11:VOC emissions profile #3161 -Diesel Exhaust-Farm Equipment 

Species Name kOH (cm3 molecules-1s-1) Mass Percent 
(1-methylpropyl) benzene 8.5e-12 0.023 
(2-methylpropyl) benzene 8.71e-12 0.060 

1,2,3-trimethylbenzene 3.27e-11 0.056 
1,2,4-trimethylbenzene 3.25e-11 0.246 

1,2-diethylbenzene 8.11e-12 0.042 
1,2-propadiene 9.82e-12 0.218 

1,3,5-trimethylbenzene 5.67e-11 0.088 
1,3-butadiene 6.66e-11 0.088 

1-butene 3.14e-11 0.311 
1-methyl-2-ethylbenzene 7.44e-12 0.065 
1-methyl-3-ethylbenzene 1.39e-11 0.116 

1-pentene 3.14e-11 0.148 
2,2,4-trimethylpentane 3.34e-12 0.139 

2,2-dimethylbutane 2.23e-12 0.028 
2,3,4-trimethylpentane 6.6e-12 0.009 
2,3-dimethyl-1-butene 5.38e-11 0.014 
2,3-dimethylhexane 8.55e-12 0.005 
2,3-dimethylpentane 7.14e-12 0.032 
2,4-dimethylhexane 8.55e-12 0.019 
2,4-dimethylpentane 4.77e-12 0.009 

2-methylheptane 8.28e-12 0.028 
2-methylhexane 6.86e-12 0.056 
2-methylpentane 5.2e-12 0.181 

3,3-dimethyl-1-butene 2.8e-11 1.308 
3-ethylhexane 8.97e-12 0.028 

3-methylhexane 7.15e-12 0.162 
3-methylpentane 5.2e-12 0.056 

acetaldehyde 1.5e-11 3.409 
acetone 1.7e-13 3.483 

acetylene 8.15e-13 1.971 
alkene ketone 1.7e-13 0.812 

b-methylstyrene 3.12e-11 0.023 
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benzaldehyde 1.2e-11 0.325 
benzene 1.22e-12 0.928 

butyraldehyde 2.4e-11 0.867 
c10 aromatics 2.3e-11 0.037 
c5 aldehyde 2.88e-11 0.051 
c6 aldehydes 2.88e-11 1.763 
c9 aromatics 2.31e-11 0.232 
cis-2-butene 5.64e-11 0.042 
cis-2-pentene 6.5e-11 0.014 
cyclohexane 6.97e-12 0.014 

cyclohexanone 6.4e-12 0.051 
cyclopentane 4.97e-12 0.005 

ethane 2.48e-13 0.264 
ethyl alcohol 3.58e-12 0.005 
ethylbenzene 7e-12 0.144 

ethylene 8.52e-12 6.670 
formaldehyde 9.37e-12 6.823 

indan 1.9e-11 0.088 
isobutane 2.44e-12 0.566 

isobutylene 5.14e-11 0.427 
butylbenzene 4.5e-12 0.060 

diethylbenzene 8.11e-12 0.065 
isopentane 3.6e-12 0.278 

isopropylbenzene 6.9e-12 0.009 
m-xylene 2.31e-11 0.283 
methane 6.4e-15 1.892 

methyl alcohol 6.16e-13 0.014 
methyl ethyl ketone 1.22e-12 0.686 

2-hexanone 9.1e-12 0.417 
methylcyclohexane 9.64e-12 0.032 
methylcyclopentane 5.66e-12 0.070 

n-butane 2.36e-12 0.046 
n-decane 1.1e-11 0.246 
n-heptane 6.76e-12 0.032 
n-hexane 5.2e-12 0.074 
n-nonane 9.7e-12 0.107 
n-octane 8.11e-12 0.065 
n-pentane 3.8e-12 0.083 

n-propylbenzene 5.8e-12 0.056 
n-undecane 1.23e-11 0.121 
naphthalene 2.3e-11 0.042 

o-xylene 1.36e-11 0.158 
p-xylene 1.43e-11 0.046 
propane 1.09e-12 0.088 

propionaldehyde 2.2e-11 0.450 
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propylene 2.64e-11 1.206 
styrene 5.8e-11 0.028 

t-butylbenzene 4.5e-12 0.005 
unknown 1.23e-11 0.093 

trans-2-butene 6.4e-11 0.019 
trans-2-pentene 6.7e-11 0.682 

toluene 5.63e-12 2.268 
C12 branched alkane 1.82E-11 1.623 
C13 branched alkane 1.68E-11 1.052 
C14 branched alkane 1.39E-11 0.939 
C15 branched alkane 1.82E-11 0.988 
C16 branched alkane 1.96E-11 0.440 
C17 branched alkane 2.1E-11 0.573 
C18 branched alkane 2.24E-11 0.343 
C19 branched alkane 2.38E-11 0.194 
C20 branched alkane 2.52E-11 0.128 
C21 branched alkane 2.67E-11 0.121 
C22 branched alkane 2.81E-11 8.690 

C12 cyclic alkane 1.82E-11 8.858 
C13 cyclic alkane 1.68E-11 6.299 
C14 cyclic alkane 1.39E-11 5.723 
C15 cyclic alkane 1.82E-11 4.372 
C16 cyclic alkane 1.96E-11 3.711 
C17 cyclic alkane 2.1E-11 3.382 
C18 cyclic alkane 2.24E-11 2.115 
C19 cyclic alkane 2.38E-11 1.181 
C20 cyclic alkane 2.52E-11 0.748 
C21 cyclic alkane 2.67E-11 0.629 
C22 cyclic alkane 2.81E-11 1.167 

n-dodecane 1.82E-11 1.094 
tridecane 1.68E-11 0.730 

tetradecane 1.39E-11 0.613 
pentadecane 1.82E-11 0.456 
hexadecane 1.96E-11 0.331 
heptadecane 2.1E-11 0.296 
octadecane 2.24E-11 0.145 
nonadecane 2.38E-11 0.073 

eicosane 2.52E-11 0.044 
heneicosane 2.67E-11 0.029 

docosane 2.81E-11 0.287 
pristane 2.44E-11 0.160 
phytane 2.61E-11 0.208 

naphthalene 1.3E-11 0.023 
phenanthrene 1.30E-11 0.023 
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Table 12:VOC emissions profile #4777- Biodiesel Exhaust-Light Duty Truck; Cold Start 

Species Name kOH (cm3 molecules-1s-1) Mass Percent 
1,1,4-trimethylcyclohexane 9.09E-12 0.081 

1,2,4-trimethylbenzene 1.67E-11 0.405 
1,2-dimethyl-4-
ethylbenzene 

1.69E-11 0.177 

1,3,5-trimethylbenzene 3.51E-11 0.162 
1,3-dimethyl-2-
ethylbenzene 

1.76E-11 0.283 

1,4-dimethyl-2-
ethylbenzene 

1.69E-11 0.374 

1-(1,1-dimethylethyl)-3,5-
dimethylbenzene 

3.01E-11 0.319 

1-butene 3.14E-11 0.521 
1-ethyl-1-

methylcyclopentane 
6.33E-12 0.035 

1-hexene 3.02E-11 0.152 
1-methyl-2-ethylbenzene 7.44E-12 0.329 

1-methyl-2-tert-
butylbenzene 

6.74E-12 0.369 

1-methyl-3-ethylbenzene 1.39E-11 0.617 
1-methyl-3-

isopropylbenzene 
1.45E-11 0.379 

1-methyl-3-propylbenzene 1.52E-11 0.233 
1-methyl-4-ethylbenzene 7.44E-12 0.182 

1-nonene 3.44E-11 0.061 
1-pentene 3.14E-11 0.273 

1-tert-butyl-4-ethylbenzene 7.42E-12 0.167 
2,2,4-trimethylpentane 3.16E-11 0.197 

2,2-dimethylbutane 1.82E-12 0.101 
2,2-dimethylpropane 6.69E-13 0.051 

2,3,4-trimethylpentane 8.54E-12 0.046 
2,3-dimethylbutane 5.44E-12 0.020 
2,3-dimethylhexane 5.09E-12 0.106 
2,3-dimethylpentane 7.14E-12 0.015 
2,4-dimethylhexane 4.92E-12 0.051 
2,4-dimethylpentane 6.85E-12 0.010 
2,5-dimethylheptane 9.97E-12 0.071 
2,5-dimethylhexane 7.24E-12 0.025 

2-methyl-butyl-benzene 1.02E-11 0.946 
2-methylhexane 6.86E-12 0.293 
2-methylnonane 1.11E-11 0.273 
2-methyloctane 9.97E-12 0.091 
2-methylpentane 5.45E-12 0.040 
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3,3-dimethyloctane 7.21E-12 0.263 
3,3-dimethylpentane 2.97E-12 0.081 
3,5-dimethylheptane 1.02E-11 0.076 

3-ethyloctane 1.18E-11 0.162 
3-ethylpentane 7.56E-12 0.030 

3-methyl-1-butene 2.86E-11 0.111 
3-methyl-cis-2-pentene 8.83E-11 0.071 

3-methylheptane 8.56E-12 0.056 
3-methylhexane 7.15E-12 0.020 
3-methylnonane 1.14E-11 0.228 
3-methylpentane 5.73E-12 0.071 

4-methyl-1-pentene 3.02E-11 0.061 
4-methylheptane 1.02E-11 0.475 

acetaldehyde 1.5E-11 2.710 
acetone 1.7E-13 3.828 

acetylene 8.15E-13 2.346 
acrolein 2.58E-11 0.759 
benzene 1.22E-12 1.370 

cis,trans-1,2,4-
trimethylcyclohexane 

1.35E-11 3.580 

cis-2-butene 5.64E-11 0.056 
cis-2-nonene 6.32E-11 0.096 
cis-2-octene 6.18E-11 0.046 
cis-3-hexene 2E-10 0.066 

crotonaldehyde 3.62E-11 0.228 
cyclohexane 6.97E-12 0.015 
cyclohexane 6.97E-12 0.071 
cyclopentane 4.97E-12 0.030 
cyclopentene 5.88E-11 0.046 

ethane 2.48E-13 0.172 
ethylbenzene 7E-12 0.071 

ethylene 8.52E-12 10.013 
formaldehyde 9.37E-12 9.330 

isobutane 2.44E-12 0.030 
isopentane 3.6E-12 0.344 

isopropylcyclohexane 1.34E-11 0.126 
isopropyltoluene 8.54E-12 0.308 

m & p-xylene 2.31E-11 0.319 
2-butanone 1.22E-12 1.643 

methylbutadiene 1.05E-10 0.091 
methylcyclohexane 5.09E-12 0.086 
methylcyclopentane 5.66E-12 0.030 

n-butane 2.36E-12 0.081 
n-butylcyclopentane 1.01E-11 0.137 

n-decane 1.1E-11 1.461 
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n-dodecane 1.39E-11 1.193 
n-heptane 6.76E-12 0.040 
n-hexane 5.2E-12 0.152 
n-nonane 9.7E-12 0.738 
n-octane 8.11E-12 0.415 
n-pentane 3.8E-12 0.076 

n-pentylbenzene 1.01E-11 0.182 
n-propylbenzene 5.8E-12 0.137 

n-tridecane 1.53E-11 0.526 
n-undecane 1.23E-11 1.664 

o-xylene 1.36E-11 0.339 
propane 1.09E-12 0.025 

propionaldehyde 2.2E-11 0.541 
propylcyclopentane 1.2E-11 0.051 

propylene 2.64E-11 2.195 
toluene 5.63E-12 1.406 

trans-1,2-
dimethylcyclopentane 

6.8E-12 1.310 

trans-1,4-
dimethylcyclohexane 

1.19E-11 0.056 

trans-2-butene 6.4E-11 0.076 
trans-2-heptene 6.8E-11 0.030 
trans-2-octene 6.94E-11 0.071 
trans-2-pentene 6.7E-11 0.046 
trans-3-nonene 7.04E-11 0.000 

C12 branched alkane 1.82E-11 1.623 
C13 branched alkane 1.68E-11 1.052 
C14 branched alkane 1.39E-11 0.939 
C15 branched alkane 1.82E-11 0.988 
C16 branched alkane 1.96E-11 0.440 
C17 branched alkane 2.1E-11 0.573 
C18 branched alkane 2.24E-11 0.343 
C19 branched alkane 2.38E-11 0.194 
C20 branched alkane 2.52E-11 0.128 
C21 branched alkane 2.67E-11 0.121 
C22 branched alkane 2.81E-11 8.690 

C12 cyclic alkane 1.82E-11 8.858 
C13 cyclic alkane 1.68E-11 6.299 
C14 cyclic alkane 1.39E-11 5.723 
C15 cyclic alkane 1.82E-11 4.372 
C16 cyclic alkane 1.96E-11 3.711 
C17 cyclic alkane 2.1E-11 3.382 
C18 cyclic alkane 2.24E-11 2.115 
C19 cyclic alkane 2.38E-11 1.181 
C20 cyclic alkane 2.52E-11 0.748 



 
 
 
 

 
60 
 
 

C21 cyclic alkane 2.67E-11 0.629 
C22 cyclic alkane 2.81E-11 1.167 

n-dodecane 1.82E-11 1.094 
tridecane 1.68E-11 0.730 

tetradecane 1.39E-11 0.613 
pentadecane 1.82E-11 0.456 
hexadecane 1.96E-11 0.331 
heptadecane 2.1E-11 0.296 
octadecane 2.24E-11 0.145 
nonadecane 2.38E-11 0.073 

eicosane 2.52E-11 0.044 
heneicosane 2.67E-11 0.029 

docosane 2.81E-11 0.287 
pristane 2.44E-11 0.160 
phytane 2.61E-11 0.208 

naphthalene 1.3E-11 0.023 
phenanthrene 1.30E-11 0.023 

 
 

Table 13:EPA #4771 Biodiesel Exhaust-Light Duty Truck; Cold Start 

Species Name kOH (cm3 molecules-1s-1) Mass Percent 
1,1,2-trimethylcyclohexane 9.09E-12 0.043 

1,2,3-trimethylbenzene 1.67E-11 0.495 
1,2,4-trimethylbenzene 1.67E-11 0.319 

1,2-dimethyl-4-ethylbenzene 1.69E-11 0.229 
1,3,5-trimethylbenzene 3.51E-11 0.125 

1,4-dimethyl-2-ethylbenzene 1.69E-11 0.312 
1-(1,1-dimethylethyl)-3,5-

dimethylbenzene 3.01E-11 0.262 
1-butene 3.14E-11 0.269 
1-hexene 3.02E-11 0.072 

1-methyl-2-ethylbenzene 7.44E-12 0.272 
1-methyl-2-tert-butylbenzene 6.74E-12 0.244 

1-methyl-3-ethylbenzene 1.39E-11 0.244 
1-methyl-3-propylbenzene 1.52E-11 0.215 
1-methyl-4-ethylbenzene 7.44E-12 0.036 

1-nonene 3.44E-11 0.032 
1-octene 3.30E-11 0.032 
1-pentene 2.88E-11 0.147 

1-tert-butyl-4-ethylbenzene 7.42E-12 0.161 
2,2-dimethylbutane 1.82E-12 0.032 

2,2-dimethylpropanal 2.24E-11 0.344 
2,3-dimethylhexane 2.24E-11 0.061 
2,5-dimethylheptane 9.97E-12 0.054 
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2-methyl-2-butene 8.73E-11 0.025 
2-methyl-butyl-benzene 1.02E-11 0.380 

2-methylhexane 6.86E-12 0.047 
2-methylnonane 1.11E-11 0.133 
2-methyloctane 9.97E-12 0.079 

3,3-dimethylheptane 1.02E-11 0.054 
3,3-dimethyloctane 7.21E-12 0.165 

3-ethylpentane 7.56E-12 0.025 
3-methyl-1-butene 2.86E-11 0.043 
3-methylhexane 7.15E-12 0.004 
3-methylnonane 1.14E-11 0.412 
3-methylpentane 5.73E-12 0.022 

4-methyl-1-pentene 3.02E-11 0.047 
4-methylheptane 1.02E-11 0.272 

acetaldehyde 1.5E-11 2.320 
acetone 1.7E-13 2.015 

acetylene 8.15E-13 1.334 
acrolein 2.58E-11 0.907 

benzaldehyde 1.2E-11 0.190 
benzene 1.22E-12 0.767 

1,2,4-trimethylcyclohexane 1.35E-11 2.309 
cis-2-nonene 6.32E-11 0.065 
cis-3-hexene 2E-10 0.043 

crotonaldehyde 3.62E-11 0.272 
cyclohexane 6.97E-12 0.011 
cyclohexane 6.97E-12 0.068 
cyclopentane 4.97E-12 0.022 
cyclopentene 5.88E-11 0.018 
ethylbenzene 7E-12 0.337 

ethylene 8.52E-12 5.532 
formaldehyde 9.37E-12 7.594 

isobutane 2.44E-12 0.004 
isopropylcyclohexane 1.34E-11 0.068 

isopropyltoluene 8.54E-12 0.208 
m & p-xylene 2.31E-11 0.229 
2-butanone 1.22E-12 0.660 

methylbutadiene 1.05E-10 0.068 
methylcyclohexane 5.09E-12 0.050 
methylcyclopentane 5.66E-12 0.018 
n-butylcyclopentane 1.01E-11 0.061 

n-decane 1.1E-11 0.861 
n-dodecane 1.39E-11 0.674 
n-heptane 6.76E-12 0.100 
n-hexane 5.2E-12 0.068 
n-nonane 9.7E-12 0.477 
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n-octane 8.11E-12 0.197 
n-pentane 3.8E-12 0.011 

n-propylbenzene 5.8E-12 0.022 
n-tridecane 1.53E-11 0.491 
n-undecane 1.23E-11 1.223 
o-xylene 1.36E-11 0.179 
propane 1.09E-12 0.011 

propionaldehyde 2.2E-11 0.409 
propylcyclopentane 1.2E-11 0.032 

propylene 2.64E-11 2.273 
toluene 5.63E-12 0.925 

trans-1,2-dimethylcyclopentane 6.8E-12 0.717 
trans-1,4-dimethylcyclohexane 1.19E-11 0.039 

trans-2-octene 6.94E-11 0.039 
trans-2-pentene 6.7E-11 0.029 
trans-3-nonene 7.04E-11 0.039 
valeraldehyde 2.74E-11 0.305 

C12 branched alkane 1.82E-11 1.623 
C13 branched alkane 1.68E-11 1.052 
C14 branched alkane 1.39E-11 0.939 
C15 branched alkane 1.82E-11 0.988 
C16 branched alkane 1.96E-11 0.440 
C17 branched alkane 2.1E-11 0.573 
C18 branched alkane 2.24E-11 0.343 
C19 branched alkane 2.38E-11 0.194 
C20 branched alkane 2.52E-11 0.128 
C21 branched alkane 2.67E-11 0.121 
C22 branched alkane 2.81E-11 8.690 

C12 cyclic alkane 1.82E-11 8.858 
C13 cyclic alkane 1.68E-11 6.299 
C14 cyclic alkane 1.39E-11 5.723 
C15 cyclic alkane 1.82E-11 4.372 
C16 cyclic alkane 1.96E-11 3.711 
C17 cyclic alkane 2.1E-11 3.382 
C18 cyclic alkane 2.24E-11 2.115 
C19 cyclic alkane 2.38E-11 1.181 
C20 cyclic alkane 2.52E-11 0.748 
C21 cyclic alkane 2.67E-11 0.629 
C22 cyclic alkane 2.81E-11 1.167 

n-dodecane 1.82E-11 1.094 
tridecane 1.68E-11 0.730 

tetradecane 1.39E-11 0.613 
pentadecane 1.82E-11 0.456 
hexadecane 1.96E-11 0.331 
heptadecane 2.1E-11 0.296 
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octadecane 2.24E-11 0.145 
nonadecane 2.38E-11 0.073 

eicosane 2.52E-11 0.044 
heneicosane 2.67E-11 0.029 

docosane 2.81E-11 0.287 
pristane 2.44E-11 0.160 
phytane 2.61E-11 0.208 

 
 

Table 14:VOC emissions profile #8774- Diesel Exhaust Emissions from Pre-2007 Model Year 
Heavy-Duty Diesel Trucks 

Species Name kOH (cm3 
molecules-1 s-1) 

Mass Percent 

1,2,3,5-tetramethylbenzene 4.30705E-10 0.069 
1,2,3-trimethylbenzene 3.27E-10 0.050 

1,2,4,5-tetramethylbenzene 2.05132E-10 0.033 
1,2,4-trimethylbenzene 3.25E-10 0.021 

1,2-butadiene 6.66E-10 0.010 
1,3,5-trimethylbenzene 5.67E-10 0.042 

1,3-butadiene 6.66E-10 0.344 
1,3-diethylbenzene 1.42418E-10 0.068 

1,3-hexadiene 1.06101E-09 0.015 
1,4-diethylbenzene 8.1054E-11 0.091 

1-butene 3.14E-10 0.872 
1-heptene 3.159E-10 0.152 

1-methyl-2-ethylbenzene 7.4388E-11 0.078 
1-methyl-3-ethylbenzene 1.388E-10 0.047 
1-methyl-4-ethylbenzene 7.4388E-11 0.039 

1-methylindan 9.1645E-11 0.028 
1-pentene 3.14E-10 0.183 
1-propyne 7.136E-11 0.089 

2,2,4-trimethylpentane 3.34E-11 0.262 
2,2,5-trimethylhexane 6.0487E-11 0.057 
2,2-dimethylbutane 1.8179E-11 0.043 

2,3,4-trimethylpentane 6.6E-11 0.032 
2,3-dimethyl-2-pentene 1.11509E-09 0.002 

2,3-dimethylbutane 5.4415E-11 0.067 
2,3-dimethylhexane 8.5522E-11 0.007 
2,3-dimethylpentane 7.13E-11 0.078 
2,4-dimethylpentane 4.77E-11 0.243 
2,6-dimethylheptane 9.6807E-11 0.000 
2-methyl-1-butene 5.26373E-10 0.103 
2-methyl-1-pentene 5.40009E-10 2.833 
2-methyl-2-butene 8.7308E-10 0.117 
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2-methyl-2-pentene 8.82733E-10 0.012 
2-methylheptane 8.276E-11 0.062 
2-methylhexane 6.863E-11 0.070 
2-methylindan 9.419E-11 0.017 

2-methylpentane 5.2E-11 0.039 
3-methyl-cis-2-pentene 8.8273E-10 0.009 

3-methyl-trans-2-pentene 8.82733E-10 0.111 
3-methylheptane 8.5606E-11 0.054 
3-methylhexane 7.1476E-11 0.130 
3-methyloctane 9.9737E-11 0.142 
4-methylheptane 8.276E-11 0.018 

acetaldehyde 1.5E-10 2.228 
acetylene 8.15E-12 2.675 

alpha-pinene 9.07477E-10 0.035 
benzaldehyde 1.2E-10 0.231 

benzene 1.22E-11 1.281 
beta-pinene 5.65247E-10 0.001 

butyraldehyde 2.4E-10 0.514 
cis-2-butene 5.64E-10 0.098 
cis-2-hexene 5.90009E-10 0.021 
cis-2-pentene 6.5E-10 0.053 

crotonaldehyde 3.619E-10 0.128 
cyclohexane 6.97E-11 0.120 
cyclohexene 6.15237E-10 0.051 
cyclopentane 4.97E-11 0.038 
cyclopentene 5.87748E-10 0.060 
dl-limonene 1.45218E-09 0.012 

ethane 2.48E-12 0.739 
ethylbenzene 7E-11 0.147 

ethylene 8.52E-11 8.180 
formaldehyde 9.37E-11 3.554 

glyoxal 2.5317E-10 0.296 
indan 8.2777E-11 0.028 

isobutane 2.4418E-11 0.305 
isopentane 3.6E-11 1.721 
isoprene 1.05E-09 0.061 

isopropylbenzene 6.9E-11 0.013 
isopropylcyclohexane 1.33E-10 0.150 

isopropyltoluene 8.536E-11 0.062 
m & p-xylene 2.31E-10 0.252 
2-butanone 1.22E-11 1.198 

methylcyclohexane 9.64E-11 0.115 
methylcyclopentane 5.66E-11 1.786 

n-butane 2.36E-11 0.573 
n-butylbenzene 8.723E-11 0.021 
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n-decane 1.1E-10 0.404 
n-heptane 6.76E-11 0.125 
n-hexane 5.2E-11 0.307 
n-nonane 9.7E-11 0.159 
n-octane 8.11E-11 0.145 
n-pentane 3.8E-11 0.313 

n-propylbenzene 5.8E-11 0.026 
n-undecane 1.23E-10 0.417 
o-xylene 1.36E-10 0.104 
propane 1.09E-11 0.890 

propionaldehyde 2.19E-10 0.257 
propylene 2.64E-10 2.347 

propyltoluene 8.80E-11 0.050 
styrene 5.8E-10 0.129 

tolualdehyde 1.86E-10 0.016 
toluene 5.63E-11 0.588 

trans-1,3-dichloropropene 9.35E-11 0.002 
trans-2-butene 6.4E-10 0.121 
trans-2-hexene 6.66E-10 0.036 
trans-2-pentene 6.7E-10 0.054 

unknown 2.7E-10 0.000 
valeraldehyde 2.74E-10 0.023 

C12 branched alkane 1.82E-11 1.623 
C13 branched alkane 1.68E-11 1.052 
C14 branched alkane 1.39E-11 0.939 
C15 branched alkane 1.82E-11 0.988 
C16 branched alkane 1.96E-11 0.440 
C17 branched alkane 2.1E-11 0.573 
C18 branched alkane 2.24E-11 0.343 
C19 branched alkane 2.38E-11 0.194 
C20 branched alkane 2.52E-11 0.128 
C21 branched alkane 2.67E-11 0.121 
C22 branched alkane 2.81E-11 8.690 

C12 cyclic alkane 1.82E-11 8.858 
C13 cyclic alkane 1.68E-11 6.299 
C14 cyclic alkane 1.39E-11 5.723 
C15 cyclic alkane 1.82E-11 4.372 
C16 cyclic alkane 1.96E-11 3.711 
C17 cyclic alkane 2.1E-11 3.382 
C18 cyclic alkane 2.24E-11 2.115 
C19 cyclic alkane 2.38E-11 1.181 
C20 cyclic alkane 2.52E-11 0.748 
C21 cyclic alkane 2.67E-11 0.629 
C22 cyclic alkane 2.81E-11 1.167 

n-dodecane 1.82E-11 1.094 
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tridecane 1.68E-11 0.730 
tetradecane 1.39E-11 0.613 
pentadecane 1.82E-11 0.456 
hexadecane 1.96E-11 0.331 
heptadecane 2.1E-11 0.296 
octadecane 2.24E-11 0.145 
nonadecane 2.38E-11 0.073 

eicosane 2.52E-11 0.044 
heneicosane 2.67E-11 0.029 

docosane 2.81E-11 0.287 
pristane 2.44E-11 0.160 
phytane 2.61E-11 0.208 

naphthalene 1.3E-11 0.023 
phenanthrene 1.30E-11 0.023 

 
 

Table 15:SOM parameters from Cappa et al. (2016) to simulate SOA formation assuming a low 
estimate for vapor wall loss rates (1x10-4 s-1). 

Species mfrag ΔLVP pO,1 pO,2 pO,3 pO,4 Primary Reference 
n-dodecane 0.186 1.45 0.961 0.001 0.002 0.036 Loza et al. (2014) 
methylundecane 0.0937 1.07 0.257 0.001 0.741 0.002 Loza et al. (2014) 
hexylcyclohexane 0.155 1.86 0.907 0.001 0.091 0.001 Loza et al. (2014) 
toluene 5 1.37 0.865 0.001 0.065 0.069 Zhang et al. (2014) 
benzene 0.73 1.47 0.017 0.001 0.981 0.001 Ng et al. (2007) 
m-xylene 0.0389 1.46 0.001 0.001 0.905 0.093 Ng et al. (2007) 
naphthalene 0.643 1.41 0.835 0.001 0.001 0.162 Chan et al. (2009) 
 
 
Table 16:SOM parameters from Cappa et al. (2016) to simulate SOA formation assuming a high 

estimate for vapor wall loss rates (2.5x10-4 s-1). 

Species mfrag ΔLVP pO,1 pO,2 pO,3 pO,4 Primary Reference 
n-dodecane 0.266 1.47 0.965 0.001 0.002 0.032 Loza et al. (2014) 
methylundecane 0.254 0.94 0.377 0.001 0.622 0.001 Loza et al. (2014) 
hexylcyclohexane 0.274 1.82 0.942 0.001 0.002 0.055 Loza et al. (2014) 
toluene 4.61 1.42 0.856 0.001 0.002 0.141 Zhang et al. (2014) 
benzene 0.824 1.53 0.008 0.001 0.991 0.001 Ng et al. (2007) 
m-xylene 0.101 1.21 0.001 0.001 0.315 0.683 Ng et al. (2007) 
naphthalene 1.69 1.53 0.878 0.001 0.002 0.119 Chan et al. (2009) 
 


