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ABSTRACT

MODELING THE FORMATION AND COMPOSITION OF SECONDARY ORGANIC
AEROSOL FROM DIESEL EXHAUST USING PARAMETERIZED AND SEMI-EXPLICIT

CHEMISTRY AND THERMODYNAMIC MODELS

Laboratory-based studies have shown that digsgkred sources emit volatile organic

compounds that can be photo-oxidized in the atmosphere to form secondary organic aerosol
(SOA); in some cases, this SOA can exceed direct emissions of particulate matter (PM); PM is a
criteria pollutant that is known to have adverse effects on air quality, climate, and human health.
However, there are open questions surrounding how these laboratory experiments can be
extrapolated to the real atmosphere and how they will help identify the most important species in
diesel exhaust that contribute to SOA formation. Jathar et al. (2017) recently performed
experiments using an oxidation flow reactor (OFR) to measure the photochemical production of
SOA from a diesel engine operated at two different engine loads (idle, load), two fuel types
(diesel, biodiesel) and two aftertreatment configurations (with and without an oxidation catalyst
and particle filter). In this work, we will use two different SOA models, namely the volatility

basis set (VBS) model and the statistical oxidation model (SOM), to simulate the formation,
evolution and composition of SOA from the experiments of Jathar et al. (2017). Leveraging
recent laboratory-based parameterizations, both frameworks accounted for a semi-volatile and
reactive POA, SOA production from semi-volatile, intermediate-volatility and volatile organic

compounds (SVOC, IVOC and VOC), N@ependent multigenerational gas-phase chemistry,



and kinetic gas/patrticle partitioning. Both frameworks demonstrated that for model predictions of
SOA mass and elemental composition to agree with measurements across all engine load-fuel-
aftertreatment combinations, it was necessary to (a) model the kinetically-limited gas/particle
partitioning likely in OFRs and (b) account for SOA formation from IVOCs (IVOCs were found
to account for more than four-fifths of the model-predicted SOA). Model predictions of the gas-
phase organic compounds (resolved in carbon and oxygen space) from the SOM compared
favorably to gas-phase measurements made using a Chemical lonization Mass Spectrometer
(CIMS) that, qualitatively, substantiated the semi-explicit chemistry captured by the SOM and
the measurements made by the CIMS. Sensitivity simulations suggested that (a) IVOCs from
diesel exhaust could be modeled using a single surrogate species with an SOA mass yield
equivalent to &5 or Cy7 linear alkane for use in large-scale models, (b) different diesel exhaust
emissions profiles in the literature resulted in the same SOA production as long as IVOCs were
included and (c) accounting for vapor wall loss parameterizations for the SOA precursors
improved model performance. As OFRs are increasingly used to study SOA formation and
evolution in laboratory and field environments, there is a need to develop models that can be
used to interpret the OFR data. This work is one example of the model development and

application relevant to the use of OFRs.
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PREFACE

Fine particles or aerosols have been recognized for their negative impact on air quality, climate,
and human health. Secondary organic particulate matter, or secondary organic aerosol (SOA),
account for a significant fraction of ambient fine particulate matter yet there are large
uncertainties surrounding the formation and evolution of SOA, which eventually determines their
atmospheric burden and environmental impact. This work uses numerical models to study the

formation, composition, and properties of SOA arising from diesel engines.
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INTRODUCTION

Combustion sources such as motor vehicles, wood stoves, and wildfires emit fine-mode aerosols
as products of incomplete combustion. Combustion-related aerosols are an important contributor
to urban and global air pollution and have strong implications for climate (Pachauri et al., 2014),
the environment (Jacobson et al.,2000), and human health (Anderson et al., 2012). While direct
emissions from combustion sources are dominated by primary organic aerosol (POA) and black
carbon (Bond et al., 2013), these sources also emit volatile organic compounds that can
photochemically react in the atmosphere to form secondary organic aerosol (SOA) (Robinson et
al., 2007). SOA, like POA, is a complex mixture of thousands of compounds with very different
physical and chemical properties, some that vary over logarithmic scales (Goldstein and
Galbally, 2007). Laboratory experiments have shown that when photochemically processed for a
few hours, combustion emissions can produce enough SOA to exceed primary aerosol emissions
(Jathar et al., 2014). However, this SOA production and the concurrent evolution of POA from
combustion emissions is not very well represented in models in terms of its sources, gas/particle
partitioning, composition and properties (Fuzzi et al., 2015). Further, three-dimensional air
guality models frequently under-predict SOA mass concentrations during strong photochemical
episodes in urban areas (Carlton et al., 2010), which likely highlights the deficiency in modeling

the SOA contributions from urban, combustion-related emissions.

Robinson et al. (2007) performed one of the first environmental chamber experiments to measure
photochemical production of SOA from diesel exhaust. They found that within a few hours of

photochemical processing, SOA production doubled the primary aerosol mass. Although novel,



the diesel exhaust source used by Robinson et al. (2007) (small non-road diesel generator) was
unrepresentative of sources found in the real world. Chirico et al. (2010) and Gordon et al.
(2014) performed similar chamber experiments to measure photochemical production of SOA
from diesel exhaust, although these were performed on tailpipe emissions from in-fleet, on-road
diesel vehicles run on chassis dynamometers. Both found that their SOA production was roughly
consistent with the findings from Robinson et al. (2007) but they also developed additional
insights. They found that the use of aftertreatment devices (diesel oxidation catalysts and diesel
particulate filters) substantially reduced SOA production (mimicking the reduction in primary
aerosol emissions), but both also observed some SOA production during cold starts and/or
regeneration events when the aftertreatment devices’ functioning was limited. Gordon et al.

(2014) also found negligible differences in the SOA formation between diesel and biodiesel fuel.
To simulate longer timescales, Tkacik et al. (2014) measured SOA formation using an oxidation
flow reactor (OFR) from air sampled from a highway tunnel in Pittsburgh, PA used by both on-
road gasoline and diesel vehicles. Tkacik et al. (2014) measured much stronger SOA formation
(SOA: POA was 10:1) over photochemical exposures equivalent to 2 to 3 days, but found that
the SOA was lost or destroyed as the mixture continued to age over the timescale of a week.
Recently, Jathar et al. (2017) performed experiments using an OFR similar to Tkacik et al.
(2014) to measure the photochemical production of SOA from a diesel engine operated at
various engine load-fuel-aftertreatment configurations. Efficient combustion at higher engine
loads coupled to the removal of SOA precursors by aftertreatment systems reduced SOA
production by factors of 2-10. The only exception was that the aftertreatment system did not
reduce SOA production at idle loads possibly because the exhaust temperatures were low enough

to limit removal of SOA precursors in the oxidation catalyst. In summary, it is clear that diesel



exhaust contributes to atmospheric SOA production although the precise production of SOA
varies across dimensions of photochemical age, engine duty cycle, use of alternative fuels, and

aftertreatment devices.

Most OFRs used to study SOA production have been 10-15 L, flow-through metal reactors with
lamps that can produce high concentrations of atmospheric oxidants to simulate photochemical
processing (e.g., Lambe et al., 2011). Flows through an OFR allow for residence times between
one to three minutes but given the high oxidant concentrations, OFRs can simulate up to two
weeks of photochemistry (Palm et al.,2016). OFRs have three distinct advantages over
environmental chambers. First, OFRs are smaller in size and easier to operate than
environmental chambers, which allows for shorter experiments and makes them ideal for field
deployments (Palm et al., 2016). Second, production of high oxidant concentrations in OFRs
allows for much longer photochemical exposures (~factor of 10) than those possible with
chambers (Lambe et al., 2012). Third, OFRs have much smaller surfad¢e-aobame ratios

when compared to conventional chambers (factor of ~10 lower) and hence are less susceptible to
gas and patrticle losses (less than 10%(Palm et al., 2015) that are known to strongly influence
SOA formation (Zhang et al., 2014; Krechmer et al., 2015). These advantages can be linked to
the increasing use of OFRs in both laboratory and field experiments to study the formation and
transformation of SOA (Ortega et al., 2016, Bruns et al., 2016, Palm et al., 2016). Despite these
advantages, researchers are concerned that the accelerated chemistry (Palm et al., 2016) and
limitations to gas/particle partitioning (Palm et al., 2016; Jathar et al., 2017) may affect the
formation and composition of SOA in OFRs and question their relevance in understa@ding S

formation in the real atmosphere. For instance, high oxidant concentrations in OFRs can enhance



fragmentation (or scission) of carbon-carbon bonds and lead to formation of higher volatility
products (Kroll et al., 2009) that would consequently underpredict SOA production. In addition,
the short residence times in OFRs and/or the small condensation sinks from preexisting aerosol
may not allow for complete condensation of the SOA and also underpredict SOA formation.
With the increased use of OFRs, there appears to be a need to develop modeling tools that for
instance, can account for fragmentation reactions and kinetic gas/particle partitioning and allow

us to accurately interpret the OFR data and make projections for the real atmosphere.

Models used to simulate the photochemical production of SOA from VOCs in combustion
emissions have traditionally used the two-product (Odum et al., 1996) or the more generalized n-
product volatility basis set (VBS) framework (Donahue et al., 2006). In this framework, VOC
oxidation products are lumped into volatility bins based on their effective saturation
concentrations (C*; saturation vapor pressure converted into mass concentration units) where the
saturation concentration determines the partitioning of the products between the gas and particle
phases (Pankow et al., 1994). Each VOC that forms SOA produces a unique product distribution
in volatility space and these product distributions that essentially represent stable first-generation
products have been determined for more than two dozen compounds using chamber experiments
(e.g., Ng et al., 2007; Chhabra et al., 2010). The VBS framework has been widely used in both
box (Dzepina et al., 2009; Hodzic et al., Jathar et al., 2014) and three-dimensional (Murphy and
Pandis, 2009; Tsimpidi et al., 2010; Jathar et al., 2011; Ahmadov et al., 2014; Konovalov et al.,
2015) models to simulate the chemistry and gas/particle partitioning of OA. In box models SOA
production from each precursor can be tracked separately but in three-dimensional models where

computational costs need to be considered, precursors that are similar in their potential to form



SOA are frequently lumped together. While the VBS approach offers an elegant and
computationally efficient framework to model SOA formation, the VBS through a representation
of volatility only neither tracks the molecular composition nor informs the continued multi-
generational chemistry that will determine the atmospheric evolution and properties of SOA. For
instance, VBS-type models have not been able to leverage observations of the elemental
composition of SOA (e.g., atomic O:C ratios) that have become possible through the use of the
aerosol mass spectrometer (AMS) to constrain VBS parameterizations or test VBS predictions.
Further, most VBS-type models have employed ad hoc parameterizations to model multi-
generational chemistry that do not account for fragmentation reactions (Robinson et al., 2007)
and possibly double count SOA formation (Jathar et al., 2016). Therefore, there is a demand to
develop models that can provide an improved representation of the chemistry that governs the

formation, composition and properties of SOA

Previously, VBS models have been used to predict photochemical production of SOA from

diesel exhaust (Robinson et al., Jathar et al., 2014; Tkacik et al., 2014). These modeling studies
have shown that traditionally speciated SOA precursors such as long alkeng¢sd single-

ring aromatics (e.g., benzene, toluene) explain less than 20% of the observed SOA and have
argued that the remainder of the SOA (more than 80%) arises from the photooxidation of
typically unspeciated organic compounds. These unspeciated compounds, also referred to as
intermediate volatility organic compounds (IVOCSs), are likely species with carbon numbers

larger than 12 and appear as an unresolved complex mixture on using traditional gas
chromatography mass spectrometry (GC-MS) techniques (Presto et al., 2011). Early estimates of

IVOC emissions and their SOA potential have significantly improved predictions of the SOA



formed from diesel exhaust (Jathar et al., 2014) and broadly, improved OA model performance
in three-dimensional large-scale models (Murphy and Pandis, 2009; Pye and Seinfeld, 2010;
Jathar et al., 2011; Tsimpidi et al., 2010). Very recently, Zhao et al. (2015) used a thermal
desorption GC-MS to provide a detailed speciation of the carbon-number resolved linear,
branched, and cyclic alkane IVOCs in diesel exhaust and found that these species accounted for
up to 60% of the non-methane organic gas emissions; speciation in Zhao et al., (2015) was
derived based on the carbon number, not the molecular structure. While IVOCs have been
recognized as an important class of SOA precursors for diesel (and even for gasoline and
biomass burning) sources, updated emission and speciation estimates from Zhao et al. (2015)
have not been tested against observations of photochemically produced SOA from diesel

exhaust.

Recently, several model frameworks have been developed to provide an improved representation
of SOA formation that consider dimensions of SOA beyond just volatility. The statistical

oxidation model (SOM) developed by Cappa and Wilson (2012) is one such example. The SOM
is a semi-explicit, parameterizable mechanism that uses a two-dimensional carbon-oxygen grid
to simulate the multigenerational chemistry and gas/particle partitioning of organic compounds.
The SOM is semi-explicit in that it provides a statistical representation of the SOA composition,
chemistry and thermodynamic properties. It is parameterizable in that parameters for a
generalized chemical mechanism can be fit (e.g., probability of fragmentation) to reproduce
measured data. Although the SOM does not explicitly track the product molecule’s composition

(e.g., functional groups), the carbon- and oxygen-number representation provides adequate detail

to represent key atmospheric processes, e.g., reactions with oxidants, formation of functionalized



products, scission of carbon backbones or fragmentation, surface and condensed-phase chemistry
and gas/patrticle partitioning. The two-dimensional VBS (2D-VBS) of Donahue et al. (2011) and

the carbon-polarity grid of Pankow and Barsanti (2009) are examples of similar frameworks.

These more sophisticated models have not yet been employed to study SOA formation from

complex mixtures such as combustion emissions.

To summarize, energy and combustion sources (e.g., diesel engines) emit precursors that can
photooxidize in the atmosphere to produce SOA. The SOA production is dependent not only on
the precursor composition that could vary by combustion mode and fuel type and the
photochemical age but affected by experimental artifacts (e.g., short condensation timescales)
introduced through the use of oxidation flow reactors. There is, hence, a need to develop and
apply sophisticated, yet computationally efficient, numerical models to simulate and study SOA
formation from combustion emissions. In this work, we apply two different SOA model
frameworks (VBS and SOM) to simulate the photochemical production of SOA in an OFR from
diesel exhaust. The models are evaluated by comparing model predictions (OA and O:C) to the
recent measurements made by Jathar et al. (2017) where SOA production was quantified for
different photochemical ages under varying engine loads, fuels and aftertreatment devices. Both
models accounted for: (i) semi-volatile and reactive POA, (iiy-N€pendent SOA production

from IVOCs and VOCs, (iii) multi-generational aging, and (iv) kinetic gas/particle partitioning.
The model-measurement comparison is used to highlight the importance of modeling the kinetic
gas/particle partitioning of SOA in OFRs, the contribution of IVOCs to the total SOA

production, and the ability of the SOM to accurately track the composition of SOA.



METHODS

2.1 EXPERIMENTS AND DATA

Jathar et al. (2017) performed photooxidation experiments using an OFR to measure SOA
production from the exhaust of a 4.5L, John Deere diesel engine; the stock engine met Tier 3
emissions standards for non-road diesel engines. The OFR used herein was described in detail by
Lambe et al. (2011) and the experimental setup and OA measurements from these experiments
are described in detail by Jathar et al. (2017). To provide context for our modeling, we have very
briefly summarized the experimental setup, measurements, and findings. Diesel exhaust was
diluted by a factor of 45-110 before being pulled through an OFR. The intensity of the mercury
lamps inside the OFR was varied to produce different hydroxyl radical (OH) concentrations and
simulate different photochemical exposures. OFR used in the Jathar et al., 2017 was operated at
wavelengths 185 and 254 nm. A suite of instrumentation was used to measure ga€QCO

total hydrocarbons, NQO,, oxygenated organic compounds) and particle- (aerosol size and
composition) phase concentrations. A total of fourteen experiments (see Table 1 for more details)
were performed at varying engine loads, fuels and aftertreatment configurations (DPF: diesel
particulate filter, designed to remove diesel particulate matter or soot from the exhast and DOC:
diesel oxidation catalyst, designed to oxidize gas-phase hydrocarbons) where the OH exposure
was varied between 0 and a maximum of 9.2xi6lecules-hr cm (or equivalent to 2 days of
photochemical aging at an OH concentration of 1.8xi6lecules cr). On average, each

experiment included sub-experiments at 6-7 different photochemical exposures. Jathar et al.
(2017) quantified the mass concentrations and elemental composition of the POA (measured

when OFR lights were off) and SOA (at varying OH exposures) as measured by the high-



resolution aerosol mass spectrometer (HR-AMS) and Friedman et al. (in preparation) quantified
the gas-phase concentrations of oxygenated organic compounds as measured by the acetate
reagent ion-based chemical ionization mass spectrometer (CIMS). At all engine configurations,
SOA production more than exceeded the POA emissions after the equivalent of a few hours of
atmospheric photochemical aging. SOA production was particularly strong at idle (or less fuel-
efficient) engine loads and/or when exhaust temperatures were low and the aftertreatment’s

function may have been limited. Further, POA emissions and SOA production were nearly
identical between diesel and biodiesel fuels. A synopsis of the THC (that includes all SOA

precursors), POA, SOA, O:C, OH, and size distribution data is presented in Table 1.

Table 1: Primary emissions of THC and POA, maximum photochemical production of SOA,
maximum O:C of the OA, maximum OH exposure, and size distribution data.

L oad-Fuel- THC | POA | ¢ u OH# | Surf. Area | Number

Aftertreatmen Date | (ug nt (ugm( md) O: C# |(molec.{ Mean Dia." | Concé (#

t Experiment 3) 3) HY hr cm3) (nm) cnd)

dle-Diesel. | June 3 1519 [38x15/ 209+66(0.23+0.0] 2.1x10

None June 5 1810 |35+11[875+2840.460.076.67x10 67 3.73x1G
June 1] 2554 |85+17|877+27710.57+0.093.61x10

dle- 999+31¢ i

o June 4 1118 |22+12 0.52+0.079.17x10 @

ﬁ'(‘)’r?('fse" June § 2160 69120141§i4€0.3610.024.72><1G 67¢  |3.73x10

Load-Diesel- | June 3 959 [19+11]181+58|0.37+0.013.6x10 - & 38x16

None June§ 711 |37+13[253+10(0.32+0.042.61x10| '

Load-

oad June 4 1634 |29+18|645+2040.38+0.052.78x10 @ @

ﬁ'(‘)’r?('fse" June 8 518 |46422284+1040.30£0.041.42x16]  7° 5.38x10

Idle-Diesel- 1.5+0.[1040+3: j

DPE+DOC | June 9 2135 | 7L = 0-370.03 5x100 65 630

Load-Diesel-

DPE+DOC | Juned 303 | 1.6+ 146+48|0.29+0.011.31x10 75 963

Idle-

Biodiesel- |June 1( 1773 | 2.6+1|787+25(0.44+0.045.28x10 652 6309

DPF+DOC

Load- June 1( 261 [2+0.14 107+9 |0.29+0.011.39x16]  75@ 0632

Biodiesel-




[DPF+DOC | | | | | | |
DPF=diesel particulate filter, DOC=diesel oxidation catalyst
#maximum values measured in each experiment

“values measured at no OH exposure in each experiment

@No data, assumed to be similar to the equivalent diesel experiment

2.2 ORGANIC AEROSOL MODELS

In this work, we use two different OA models to predict the mass concentrations and chemical
composition of SOA and compare predictions against the SOA measurements from Jathar et al.
(2017) and Friedman et al. (in preparation). In this section, we briefly describe the two model
frameworks, namely the Volatility Basis Set and the Statistical Oxidation Model, used to

simulate the coupled chemistry, thermodynamic properties, and gas/particle partitioning of OA.

(a) Volatility Basis Set (b) Statistical Oxidation Model

C;-alkane +OH

. m-xylene +OH

‘*'—ﬁ Cg-alkane + OH
\ i

multi-gengrational aging

Total
« Concentration
(gas + particle

Oxygen Number
S

Effective Saturation
Concentration (ug m3) 12 3 4 5 6 7 8 9 10 11 12 13

Carbon Number

Figure 1. Schematic of the (a) VBS and (b) SOM model frameworks to model the VOC oxidation,
product formation/loss, thermodynamic properties, and gas/particle partitioning of POA and
SOA. In the VBS model, benzene reacts with the OH radical to form three oxidation products. In
the SOM, a hydrocarbon with carbon number 8 (highlighted) reacts with the OH radical to form
four functionalized products with 1 to 4 oxygens. One of the products reacts with OH to either
form four new functionalized products or fragment into smaller products.
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2.2.1 VOLATILITY BASIS SET (VBS)

The Volatility Basis Set (VBS) model, developed by Donahue et al. (2006), is a parameterizable
model that allows for a volatility-based representation of the coupled chemistry, thermodynamic
properties, and gas/particle partitioning of OA. The VBS uses logarithmically spaced basis sets
based on the effective saturation concentrat@i; C" of a species determines the partitioning
between the gas and particle phases (Pankow et al., 1994). In the VBS model, VOCs are allowed
to react with OH to yield a unique product distributiorCinspace that represents stable first-
generation products. Subsequent gas-phase oxidatiornceli@baging’ of the VBS products

was modeled using the scheme of Robinson et al. (2007) where reaction of the precursor with
OH was assumed to yield a product wit@ ahat is an order of magnitude lower than the
precursor. This scheme does not consider fragmentation reactions. The following equations are
used to represent the VOC oxidation (equation 1) and formation of products from VOC oxidation

and aging reactions (equation 2):

L = —kop,[Vi][OH] (1)

g+p
dCi]-

d't = ai,jkOH,i [V] [OH] + ﬁkOH,aging [ijﬂ][OH] - VkOH,aging [Clg]] [OH] (2)

WhereV; is thei™ VOC (ug m™®; here, VOC includes VOCs, IVOCs and SVOGsg), ; ( cn?®

mol? st)is the reaction rate constant betweenithéOC andOH, Ci%+p is the gas + particle-

phase concentration of tifeVOC in thej™ bin,a; jis the mass yield of the first-generation
oxidation product of thé" precursor of th¢" bin (Table 2)kon.agingiS the reaction rate constant
to represent multi-generational aging of the oxidation productsfandyare the mass yields
associated with the production and loss &inmm multi-generational aging. For tfiebin, the

second term in equation (2) represents the formation of oxidation products frprh'the
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volatility bin and the third term in equation (2) represents the loss of precursor friifrbihe
pandy are assumed to have a value of 1 (meaning no fragmentation) but are zero for the last and

the first bins respectively.

The condensation (or mass transfer) of the VBS products to the particle phase was assumed to be
kinetically-limited in the oxidation flow reactor (Jathar et al., 2017; Palm et al., 2016); Section

2.3 describes the condensation/evaporation equation used to model kinetic gas/particle
partitioning. Product distributions for 2 different VOCs @rbins ranging from 18to 1¢ ug

m™ were refit based on parameterizations published in the literature; VOCs, their VBS mass
yields, and the relevant references are listed in Table 2. Each VOC species in the emissions was
assigned a surrogate from Table 2 to model SOA formation in the VBS model. The higher(C

C»2) branched and cyclic alkanes were assigned surrogates of linear alkanes. For €&ample,
branched alkane was given a surrogat€:elinear alkane and fd€12 cyclic alkaneCialinear

alkane was given as surrogate. Since we have mass yields-tyeptadecane only, we

considered-heptadecane as surrogates for alkanesCg>

Table 2: SOA precursors and VBS mass yields used in the VBS model.

Species log10C* Reference
0.1 1 10 100 | 1000

foluene 0.00000.01000.2400 0.4500 o.7ooo:|'_'g%%r§”dt et
benzene 0.03920.0315/0.0000 0.82301 0.0957|Ng et al., 2007
m-xylene 0.00320.0106/0.0633 0.0465 0.0000Ng et al., 2007
p-xylene 0.00000.00220.0764 0.0000 0.0000Song et al.,2007
o-Xylene 0.00000.0132/0.1140 0.0000 0.0000Song et al.,2007
naphthalene 0.0000 0.1660/0.00000 0.5400/0.8130Chan et al.,2009
1-methylnaphthalene 0.0000 0.0170,0.48600.0000 0.0000Chan et al.,2009
2-methylnaphthalene 0.0000 0.0531{0.5040 0.0000 0.0000Chan et al.,2009
1,2-dimethylnaphthalene |0.000010.3100 0.0000 0.0000 0.0000Chan et al.,2009
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1-methyl-3n-propylbenzend 0.0000 0.0000, 0.0405 0.0694 0.11400dum et al.,1997?
n-decane 0.0000 0.0000/0.01100.1280 0.2420Presto et al.,2010
n-undecane 0.00000.0040/0.0720/0.1760 0.1450Presto et al.,2010
n-dodecane 0.0000/ 0.0140 0.1100 0.1600 0.0000Presto et al.,2010
n-tridecane 0.01400.0590 0.0940 0.0710 0.0000Presto et al.,2010
n-tetradecane 0.0940 0.3000] 0.3500/ 0.0000 0.0000Presto et al.,2010
n-pentadecane 0.04400.0710 0.4100 0.3000 0.0000Presto et al.,2010
n-hexadecane 0.0530 0.0830 0.4600 0.2500 0.0000Presto et al.,2010
n-heptadecane 0.06300.0890] 0.5500 0.2000 0.0000Presto et al.,2010

" estimated from the Presto et al. (2010) data

2.2.2 STATISTICAL OXIDATION MODEL (SOM)

The Statistical Oxidation Model (SOM), developed by Cappa and Wilson (2012) is a semi-

explicit, parameterizable model that allows for a statistical representation of the coupled

chemistry, thermodynamic properties, and gas/patrticle partitioning of OA; the SOM does not
explicitly track functional groups or molecular structure. The SOM uses a 2-dimensional carbon-
oxygen grid to track gas- and particle-phase precursors and products from VOC oxidation. Each
cell in the SOM grid represents a model organic species with a molecular weight defined by the
formulaCiH,0,. A SOM species reflects the average properties @2,geactivity) of all actual

species with the same number of carlgg) @nd oxygenNo) atoms that are produced from a

given precursor class (e.g., aromatics, alkanes). In the SOM, all gas-phase species are assumed to

be reactive towards OH and the OH reactiviiy] is calculated using equation 3 as follows:

Eq

A
log(koy) = Ay + A; x (N.°) x exp(—1 X 8.314><T) X [1+

1 _ 1(In(Np+0.01)~In(by)*
oV2n exp( 202 )] (3)

o (N; < 15) = 0.0214 X N + 0.5238
o (N > 15) = —0.115 X N, + 2.695

b, = —0.2583 x N, + 5.8944
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b, (N < 15) = 0.0314 X N, + 0.9871; b, (N; > 15) = 0.25 x N, — 2.183
WhereA:1=15.1,A>=3.94, andAs=0.797 .kon for a specifiedNc andNo is assumed to be the same

for species in all the SOM grids.

The reactions with OH lead to either functionalization or fragmentation, resulting in movement
through the carbon-oxygen grid. Six precursor-specific adjustable parameters are assigned for
each SOM grid: four parameters that define the molar yields of the four functionalized, oxidized
products pok Zpok=1), one parameter that determines the probability of functionalization or
fragmentation Rrrag,, Prun=1-Prrag) and one parameter that describes the chan@e in

associated with the addition of one oxygen atdi/{P). The following equation represents the

evolution of species in the SOM grid.

d[Cx 0]
o = ko [OH1[CxOz],
jmax kmax_Z XZ-1+k
e P
OH]Zk” CRE porlCOzid + O] ) D et (0,0, 4]
j=1 k=0 fragments

®)
whereCxOyz is the SOM species witk carbon atoms andoxygen atoms anBragmentsiS the
SOM species specific number of possible fragmenie probability of fragmentation is
modeled using equation 6 as a function of the O:C ratio because higher O:C ratio compounds are

expected to have a higher probability of fragmentation (Chacon-Madrid and Donahue, 2011):
Pfrag - ( )mfrag (6)

TheC" for eachSOM speciess calculated using equation 7 as follows:
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WhereMWc is the molecular weight of the hydrocarbon backbone (accounting only for the
carbon and hydrogen atoms) afid/’P is change in th€" associated with the addition of one

oxygen atom. The parameters used to model SOA formation from VOCs in this work are based
on those published in Jathar et al. (2015) and are listed in Table 3. Each VOC species in the
emissions was assigned a surrogate from Table 3 to model SOA formation in the SOM model.
However, unlike the VBS where the SOA mass yield between the VOC species and the surrogate
is identical, the surrogate in the SOM model defines the statistical pathway for multi-

generational oxidation and could very likely have different SOA mass yields than the VOC

species.
Table 3: SOA precursors and parameters used in the SOM model.
Species Miag | ALVP Po,1 Po,2 Po,3 Po,4 Primary
Reference
n-dodecane 0.0980( 1.3900| 0.9270( 0.0101| 0.0180( 0.0445 |Loza et al.
(2014)
methylundecane | 0.0100| 1.2100( 0.7419( 0.0011| 0.1820| 0.0750 |Loza et al.
(2014)
hexylcyclohexane | 0.0477| 1.5700| 0.7313| 0.0381( 0.2101| 0.0205 |Loza et al.
(2014)
toluene 0.2220( 1.2400| 0.0029( 0.0010| 0.0010( 1.0100 |Zhang et al.
(2014)
benzene 0.5350( 1.7000| 0.0792( 0.0010| 0.9190( 0.0010|Ng et al.
(2007)
m-xylene 0.0100(| 1.6800| 0.9360( 0.0010| 0.0021 | 0.0609 |Ng et al.
(2007)
naphthalene 0.1210( 1.3100| 0.6440( 0.0010| 0.0460 | 0.3080 |Chan et al.
(2009)

2.3 KINETIC GAS-PARTICLE PARTITIONING

Palm et al. (2016) and Jathar et al. (2017) have argued that the short residence times in the OFR

may not permit all low-volatility products formed from VOC oxidation to condense onto
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preexisting aerosol. Hence, unlike earlier work that has assumed equilibrium partitioning to
model OFR-produced OA (Tkacik et al., 2014, Chen et al., 2013), we model the kinetic

partitioning of OA using equation 9 (Zhang et al., 2014):

dCfi ; ijc;
= 2mD; Dy Ny Frs (€ — ) (9)

Whereij is the particle-phase mass concentration foi'®théOC andj" organic specie®); is
the gas-phase diffusion coefficient of jfleorganic specie€)pis the number mean particle
diameterNp is the total particle number concentratibpsis Fuchs-Sutugin correction for non-
continuum mass transfdffj is the gas-phase mass concentration for'théOC andj*" organic
species(; is the effective saturation concentration ofjtherganic species, arba is the total
OA mass concentration. The pre#ixD; D, N, Fr is referred to later as the condensation sink.

Thej™ organic species refers to the organic compounds tracked in the VBS bins and the SOM

grids. The gas-phase diffusion coefficient is calculated for each organic species as follows:

Dj = Deo, =gy, (10)

WhereD,,, is the gas-phase diffusion coefficient@®; (1.38x10° m? s*), MW,, (g mole') is
the molecular weight a€0O,, andMW, (g mole?) is the molecular weight of tHj& species. In the
VBS model where the SOA is anonymized, we assume all condensing species to have a
molecular weight of 300 g molewe test the sensitivity of this assumption on model

predictions. The Fuchs-Sutugin correction is calculated as follows:

0.75a(1+Kn)

Frs = Kn2+Kn+0.283-Kn-a +0.75a (11)
Kn =24 12
D
p
3D;
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_ ,SNAkT
G = MW (14)

WhereKn is the Knudsen numbaet,is the mass accommodation coefficiehts the mean free
path of thg™" organic species in air (M is the root mean square speed of the gasimNs is

Avogadro's Numbel is Boltzmann constarfin® kg s? K1) andT is the temperature (K).

2.4 MODEL INPUTS

2.4.1 SEMI-VOLATILE AND REACTIVE POA

Jathar et al. (2017) measured emissions of POA at no OH exposure and these measured
concentrations were used to initialize the preexisting OA available for absorptive partitioning in
the model simulations. Previous work has conclusively shown that POA is semi-volatile and
exists in an equilibrium with gas-phase vapors (Robinson et al., 2007; May et al., 2013a,b,c);
POA and its vapors are hereafter collectively referred to as primary organic carbon (POC). Mass
concentrations of the POC vapors were determined by assuming that the POC mixture in the
experiments modeled in this work was consistent with the normalized, volatility-resolved
distribution of POC products estimated by May et al. (2013) from a suite of on- and off-road
diesel vehicles. The volatility distribution of May et al. (2013) for diesel POC is listed in Table
4(a). For the SOM, we assumed that the POC could be represented using a distriloation of
alkanes and we refit the volatility distribution in Table 4(a) to develop a carbon-number resolved
distribution ofn-alkanes; this distribution is listed in Table 4(b). The POA and POC vapors
estimated for the VBS and SOM models for all the experiments are listed in supplementary

information.
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Table 4: (a) Volatility- and (b) carbon-number resolved distributions used to determine mass
concentrations of POC vapors in the VBS and SOM models

C(ugn| 102 | 10! | 10t 102 10° 10° 108 108
3

f 003 | 025 | 037 | 023 | 006 | 003 | 0.01 | 0.01
ﬁgrbon <16 16 | 17| 18| 19| 20 | 21| 22| 23| 24 | 25 | 26 | >26
f 0.003/0.000{ 0.058] 0.043] 0.055 0.094] 0.146| 0.181] 0.178| 0.137| 0.078| 0.026| 0.001

2.4.2 SOA PRECURSOR EMISSIONS

Jathar et al. (2017) did not speciate the THC (that includes the SOA precursors) emissions for the
different tests and hence we had to develop our own emissions profiles based on previously
published literature to speciate the THC emissions. In this work, we used four different

emissions profiles listed in EPA SPECIATE version 4.3 that are commonly used to speciate

THC emissions from diesel engines for emission inventories used in atmospheric modeling
(Woody et al., 2016): Profile #s 3161 (Diesel Exhaust- Farm Equipment), #8&avy duty

diesel exhaust), 4777 (Biodiesel Exhaust- Light Duty) and 4771 (Biodiesel Exhaust - Light

Duty). Profile #3161 best matches the diesel engine source and diesel fuel used by Jathar et
al.,2017 and was used as the baseline emissions profile to speciate THC emissions; we examined
the sensitivity of using Profile #8774 on model predictions. Profile #4777 was used as the
baseline emissions profile to speciate THC emissions for tests performed using the biodiesel fuel
and we used Profile #4771 to test sensitivity to model predictions. We were unable to find a
comprehensive emissions profile for THC emissions from the use of straight biodiesel fuel (as
used by Jathar et al. (2017)) in the literature and hence we had to rely on emissions profiles that

were determined for biodiesel-diesel blends.
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Prior work in studying SOA formation has revealed that traditional speciation of THC emissions
does not include emissions of high molecular-weight organic compounds such as IVOCs that are
important SOA precursors (Jathar et al., 2014). In Profile #3161 and #8774 these are partially
accounted for in the “‘unknown’ species category. Zhao et al. (2015) recently estimated the

magnitude of IVOC emissions in THC emissions found in a suite of on- and off-road diesel
engines and provided a semi-explicit speciation of the IVOC emissions as a carbon-number
distribution of linear, branched and cyclic alkanes. To account for these IVOC emissions, we
assumed that the baseline emissions profiles contained 60% (based on the median estimate in
Zhao et al. (2015)) IVOCs on a mass-basis. We performed sensitivity simulations using 0%
(assuming that the THC emissions contained no IVOCs) 268 (based on the ‘unknown’

category in Profile #3161) IVOCs on a mass-basis. Addition of IVOCs to the baseline emissions
profile meant that the traditional species had to be renormalized to accommodate the IVOCs.
Table 5 lists the normalized baseline emissions profiles for SOA precursors used for diesel and
biodiesel exhaust with 60% IVOCs including the reaction rate constant®wifkon) and

surrogates (or model compound) used to model SOA formation for the VBS and SOM models.
Concentrations for each species for any experiment were determined by simply multiplying the

THC mass concentrations with the normalized emissions profile.

Table 5 Mass fraction, VBS and SOM surrogates for SOA forming precursors

kon (cm? Mass Fraction
i 1
Species moliﬁ;ﬂes Diesel Biodiesel VBS Surrogate |[SOM Surrogatg
ethylbenzene| 7.0E-12 0.144 0.071 toluene toluene
indan 1.9E-11 0.087 - naphthalene naphthalene
butylbenzene 4.5B-12 0.065 0.405 m-xylene m-xylene
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diethylbenzend 8.11E-12 0.101 - m-xylene m-xylene
isopropyltoluen| 8.54E-12 - 0.308 toluene toluene
m-xylene 2.31E-11 0.282 0.318 m-xylene m-xylene
o-xylene 1.36E-11 0.157 0.338 o-xylene m-xylene
p-xylene 1.43E-11 0.046 - p-xylene m-xylene
n-decane | 1.1E-11 0.245 1.460 decane Decane
n-undecane | 1.23E-11 0.120 1.660 undecane Undecane
toluene 5.63E-12 1.405 0.680 toluene Toluene
n-tridecane | 1.68E-11 - 0.525 tridecane tridecane
benzaldehyde 1.2E-11 0.324 - benzene benzene
benzene | 1.22E-12 0.925 1.370 benzene benzene
Cioaromaitcs | 2.3E-11 0.037 - m-xylene m-xylene
Co aromatics | 2.31E-11 0.230 - m-xylene m-xylene
1,2,3-
trimethylbenzel 3.27E-11 0.056 - m-xylene m-xylene
e
1,2,4-
trimethylbenzel 3.25E-11 0.245 0.404 m-xylene m-xylene
e
1,2-
: 8.11E-12 0.041 - toluene toluene
diethylbenzene
1,3,5-
trimethylbenzel 5.67E-11 - 0.162 m-xylene m-xylene
e
1,2-dimethyl-4 1.69E-11 - 0.176 m-xylene m-xylene
ethylbenzene
1,3-dimethyl-21 4 76¢ 14 - 0.283 m-xylene |  m-xylene
ethylbenzene
1,4-dimethyl-2; 1.69E-11 - 0.370 m-xylene m-xylene
ethylbenzene
1-(1,1-
dimethylethyl)-
3,5- 3.01E-11 - 0.318 m-xylene m-xylene
dimethylbenzel
e
Lmethyl-2- | 7 44e12 0.065 0.328 toluene |  toluene
ethylbenzene
L-methyl-3- | 4 3q¢ 19 0.116 0.616 toluene toluene
ethylbenzene
L-methyl-2-tert) ¢ 2 e 1 - 0.369 toluene toluene
butylbenzene
L-tertbutyl-4-1 5 4oe 45 - 0.166 mxylene |  m-xylene
ethylbenzene
2-methyl-butyly 1 oF 14 - 0.945 m-xylene | m-xylene
benzene
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3,3-

Ciobranched

dimethyloctane 7.21E-12 ) 0262 decane alkane
3-ethyloctane| 1.18E-11 - 0.162 decane Crobranched
alkane
3-methylnonan| 1.14E-11 - 0.227 decane Crobranched
alkane
Ci2 branched 1.82E-11 2 268 2268 decane decane
alkane
Cisbranched| ; oo 14 1.623 1.623 undecane undecane
alkane
Cisbranched| ; o9 14 1.052 1.052 dodecane dodecane
alkane
Cisbranched| ; gop 49 0.939 0.939 tridecane tridecane
alkane
Cis branched 1.96E-11 0.988 0.988 tetradecane tetradecane
alkane
Ci7 branched |, ;¢ 49 0.440 0.440 pentadecane | pentadecane
alkane
Cis branched 2.24E-11 0.573 0.573 hexadecane hexadecane
alkane
Clgat?lig?]ghed 2.38E-11 0.343 0.343 heptadecane | heptadecane
Czoa?iiz?]ghed 2.52E-11 0.194 0.194 heptadecane | heptadecane
Czlat;iigrrl](;hEd 2.67E-11 0.128 0.128 heptadecane | heptadecane
Czz branched |, g1 ¢ 19 0.121 0.121 heptadecane | heptadecane
alkane
Caz cyclic 1.82E-11 8.690 8.690 tetradecane tetradecane
alkane
Cas cyclic 1.68E-11 8.858 8.858 pentadecane | pentadecane
alkane
Cucyclic |, 39r 11 6.299 6.299 hexadecane | hexadecane
alkane
Cas cyclic 1.82E-11 5.723 5.723 heptadecane | heptadecane
alkane
Ciscyclic |1 911 4.372 4.372 heptadecane | heptadecane
alkane
C17 cyclic 2.1E-11 3.711 3.711 heptadecane | heptadecane
alkane
Ciscyclic |5 5411 3.382 3.382 heptadecane | heptadecane
alkane
ngﬁgc 2.38E-11 2.115 2.115 heptadecane | heptadecane
Coo cyclic 2.52E-11 1.181 1.181 heptadecane | heptadecane
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alkane
Cacyclic 1, g7e.11 0.748 0.748 heptadecane | heptadecane
alkane
ngllgﬁlelc 2.81E-11 0.629 0.629 heptadecane | heptadecane
dodecane | 1.82E-11 1.167 1.167 dodecane dodecane
tridecane | 1.68E-11 1.094 1.094 tridecane tridecane
tetradecane | 1.39E-11 0.730 0.730 tetradecane tetradecane
pentadecane| 1.82E-11 0.613 0.613 pentadecane | pentadecane
hexadecane | 1.96E-11 0.456 0.456 hexadecane hexadecane
heptadecane| 2.1E-11 0.331 0.331 heptadecane | heptadecane
octadecane | 2.24E-11 0.296 0.296 heptadecane | heptadecane
nonadecane | 2.38E-11 0.145 0.145 heptadecane | heptadecane
eicosane | 2.52E-11 0.073 0.073 heptadecane | heptadecane
heneicosane| 2.67E-11 0.044 0.044 heptadecane | heptadecane
docosane |[2.81E-11 0.029 0.029 heptadecane | heptadecane
pristane | 2.44E-11 0.287 0.287 heptadecane | ©° branched
alkane
phytane | 2.61E-11 0.160 0.160 heptadecane Czoatl’lizrr‘]‘;hed
naphthalene | 2.3E-11 0.208 0.208 naphthalene naphthalene
phenanthrenel 1.3E-11 0.024 0.0235 naphthalene naphthalene

2.4.3 PARTICLE SIZE DISTRIBUTION

For the sake of numerical simplicity, we considered a monodisperse size distribution to model

the kinetic gas/particle partitioning. Model simulations were initialized with the surface area

mean diameter and number concentration measured by Jathar et al. (2017) at no OH exposure for
the non-DPF+DOC experiments. We used the OH-specific surface area mean diameter-number
concentration pairs for the DPF+DOC experiments. The rationale for this is discussed in Section
3.5.3. The condensing SOA mass was used to calculate the change in particle size but the
number concentration was conserved. These data are listed in Table 1. We also examined the

sensitivity of different particle size distribution inputs on model predictions.
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2.5 MODEL SIMULATIONS

The VBS and SOM models were run separately for each photochemical exposure simulated for
each experiment listed in Table 1. We assumed that as the diluted exhaust mixture traveled from
one end to the other of the OFR over a period of 100 seconds, the mixture was exposed to a
constant OH concentration that oxidized the mixture to form SOA. The constant OH
concentration was calculated by dividing the OH exposure estimated by Jathar et al. (2017) by
100 seconds. In each VBS model simulation, POC was tracked in a separate basis set while
products from each SOA precursor were tracked in separate basis sets. In each SOM model
simulation, we only tracked the SOM grid of the surrogate instead of tracking each precursor.
Model simulations were performed in phases to answer specific questions. First, we performed
simulations with the VBS and SOM models using a base set of inputs for one of the Diesel-Idle-
None experiments. Our base set of inputs included: Profile #3161 for diesel experiments and
Profile #4777 for biodiesel experiments, a 60% IVOC mass fraction, kinetic gas/particle
partitioning with a mass accommodation coefficient of 0.1, and particle size calculated using the
surface area mean diameter. These simulations provided a general overview of the model
predictions. Second, we performed simulations with the VBS model assuming equilibrium and
kinetic gas/particle partitioning for the Diesel-ldle-None experiment performed on June 5. These
were performed to examine the validity of the equilibrium gas/particle partitioning assumption to
model OFR data. Third, we performed simulations with the VBS and SOM models with different
IVOC mass fractions for all the experiments listed in Table 1. These allowed us to investigate the
importance of IVOCs to model the formation and, in case of the SOM, model the elemental
composition of the SOA. Finally, we performed simulations with the VBS and SOM models to

explore the sensitivity of the model predictions to the following key inputs: IVOC
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parameterization, choice of emissions profile, particle size distribution inputs, vapor wall losses
and molecular weight of the condensing species in the VBS model. Model runtime of SOM (in
Igor version) is 500 seconds and VBS (in MATLAB) is 10 seconds in an fAtgéderation i5

processor at 1.7GHz.
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RESULTS

3.1 GENERAL RESULTS
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Figure 2 VBS and SOM model predictions of OA when run assuming the base case inputs
compared to measurements from the experiment performed on June 5(Diesel-ldle-None) as a
function of photochemical age. Panel (a) has comparisons in{unah panel (b) has
comparisons in g kg-fuél Panel (c) shows the modeled and measured OA composition at the
highest photochemical exposure

We compare predictions of OA from the VBS and SOM models to the measurements in Figure 2
for the Diesel-ldle-None experiment performed on June 5. Figures 2(a) and 2(b) compare
predictions to the measurements in units of pgamd g kg-fuet respectively; hereafter we

present all OA mass predictions in units of g kg-fu€ligure 2(c) compares the VBS and SOM
predicted composition of OA at the maximum photochemical exposure to the measured
composition of OA. The VBS and SOM models seemed to slightly overpredict the OA evolution
at photochemical exposures lower than half a day. For photochemical exposures larger than half

a day, the VBS model performed very well in reproducing the OA evolution but the SOM
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underpredicted the OA mass by about a factor of two at the highest photochemical exposure. The
overprediction by both models at lower photochemical ages and the underprediction by the SOM
at higher photochemical ages can be attributed to the choice and uncertainty in the various inputs
for the two models. These assumptions and inputs will be explored in the sections below. The
VBS and SOM models predicted that the OA at the maximum photochemical exposure was
dominated (90-94%) by SOA produced from VOC and IVOC oxidation, which agreed well with
the measured composition. Furthermore, both models suggested that most of the SOA emanated
from the oxidation of IVOCs with only about 3% resulting from the oxidation of aromatic VOCs
and less than 1% resulting frdda. and lower alkane VOCs. This dominance of IVOCs in

explaining the photochemically produced SOA is in line with previous studies that have modeled

SOA formation from diesel exhaust (Tkacik et al., 2014; Jathar et al., 2014).

3.2 EQUILIBRIUM VERSUS KINETIC GAS/PARTICLE PARTITIONING

20 | | L |

VBS (equilibrium)
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Figure 3 VBS model predictions of OA as a function of photochemical age assuming
instantaneous equilibrium (green) and kinetic gas/particle partitioning (blue; run at three
accommodation coefficients,= I(dashed) ,0.1(solid) and 0.01(dash-dot))
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Large-scale models commonly assume instantaneous or equilibrium gas/particle partitioning
since the timescales of other atmospheric processes (e.g., chemistry, transport, deposition) are
typically much slower than those required for gases and sub-micron particles to achieve
equilibrium (Meng and Seinfeld, 1996; Zhang et al., 2012). Hence, models applied to simulate
SOA production in environmental chambers, and even in OFRs, have also assumed equilibrium
partitioning. Here, we examine the validity of assuming equilibrium partitioning to model OFR
data by performing model simulations assuming equilibrium and kinetic gas/particle partitioning
and comparing model predictions against measurements from the Diesel-ldle-None experiment
performed on June 5. The simulations were performed with the VBS model used in Section 2.1
using three different mass accommodation coefficierst6.01, 0.1, 1) to capture the uncertainty

in modeling the kinetic gas/particle partitioning; the mass accommodation coeffigiént (

defined as the probability that the collision of a condensing molecule will result in mass transfer
from the gas to the particle phases. We only used the VBS model here since it offered good
comparison of model predictions against measurements for the experiment performed on June 5.
Results from the simulations are shown in Figure 3. We find that the VBS model on assuming
equilibrium partitioning significantly over-predicted the photochemical production of SOA by as
much as a factor of two. This comparison indicates that assuming equilibrium partitioning to
model OFR data will likely over-predict the condensation and formation of SOA. Additionally,
the results suggest that the model predictions were relatively insensiivalices of 0.1 and 1

but were dramatically lower (factor of ~4) for awvalue of 0.01. Given the reasonable model-
measurement comparison of the VBS model at ealue of 0.1 and 1, we argue that

condensation in an OFR may not be well represented hyalue lower than 0.1.

27



3.3 INFLUENCE OF IVOCS ON SOA FORMATION
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Figure 4: SOA Predictions from the VBS and SOM models assuming 0%, 13.6% and 60% IVOC

mass fractions compared to measurements=0.1 with Zhao et al., (2015) speciation for
IVOCs.

Previous work has shown that combustion-related IVOCs are important precursors of SOA
(Robinson et al., 2007; Gordon et al., 2014 a,b; Jathar et al., 2014; Dzepina et al., 2009). In
Figure 4, we use scatter plots to compare predictions of SOA from the VBS and SOM models
against measurements for all the experiments listed in Table 1 and at all photochemical ages. The
three panels in Figure 4 show model-measurement comparisons assuming three different
fractions of IVOCs: 0%, 13.6% and 60%. The model performance is also captured using
statistical metrics of fractional bias, fractional error (gives equal weight to underestimations and
overestimations, fractional bias varies between +2 to -2 and has value zero for an ideal model),
and R in Table 6. Traditional emissions inventories rarely include IVOCs and hence the 0% case
reflects the SOA treatment in traditional models. The 13.6% IVOC case reflects the unspeciated
fraction listed in diesel exhaust emissions profiles, which is typically neglected by emissions

models and not considered to form SOA. The 60% IVOC case reflects the latest estimate from
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Zhao et al. (2015) based on measurements from on- and off-road diesel vehicles. The model-
measurement comparison and the model skill was very poor when no IVOCs were included
(fractional bias>70% and fractional error>73%). The model performance improved with 13.6%
IVOCs (fractional bias>40% and fractional error>60%) but was better still with 60% IVOCs
(fractional bias>15% and fractional error>35%) where there was very little bias in the model
predictions. The optimal model performance that produced the lowest fractional bias and
fractional error was found at an IVOC mass fraction of 40% (fractional bias=-4% and fractional
error=48xb). These comparisons indicate that it is critical that IVOCs be included when modeling
the SOA formation from diesel exhaust. In Figure 5(a), we plot the relative contribution of
precursors and POA to the OA mass at the highest photochemical exposure for all the
experiments and we also plot the precursor mass fractions for all the experiments in figure 5(b).
Cyclic alkane IVOCs were found to contribute the most (40-75%) to SOA formation. Since the
speciation of cyclic alkane IVOCs in Zhao et al. (2015) did not include any specificity in terms
of the molecular structure and that the parameterizations to model SOA formation from cyclic
alkane IVOCs for both models was non-specific (in the VBS model the surrogate for a cyclic
alkane IVOC was determined through equivalence with a straight alkane IVOC; in the SOM
model the cyclic alkane IVOCs were tied to parameterizations for hexylcyclohexane), the SOA
predictions from the oxidation of cyclic alkane IVOCs are relatively uncertain. We recommend
that future work focus on more detailed speciation of the cyclic alkane IVOCs as well as on
chamber experiments on those speciated compounds to improve quantification of their SOA

mass yields.
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Table 6:VBS and SOM model performance for OA mass at 0%,13.6%, and 60% IVOC mass
fractions

Fractional Bias | Fractional Error R2

0% [13.69 60%| 0% [13.6% 60% | 0% |13.6% 60%
VBS [ -73%/(-49%| 27%| 78% | 50%| 61%/| 0.76| 0.82| 0.84
SOM | -73%]-33%| 43% | 78%| 61%| 55%]| 0.71| 0.91| 0.89
VBS |-96%|-73%)]|-17%(104% 85% | 36%| 0.86| 0.98| 0.99
SOM [-127%-79%| 13%|132% 97%| 89%| 0.87( 0.99| 0.97

Aftertreatment| Model

None

DPF+DOC

3.4 ELEMENTAL COMPOSITION

The SOM tracks both the carbon and oxygen number of the oxidation products and hence this
allowed us to predict the O:C ratio of the OA. In Figure 6, we use scatter plots to compare
predictions of the O:C of OA from the SOM model against measurements for all the experiments
listed in Table 1 and at all photochemical ages; the O:C measurements were estimated from the
aerosol mass spectrometer data collected by Jathar et al. (2017). The model performance for O:C
is also captured using statistical metrics of fractional bias, fractional error2and &le 7. We

note that the O:C of the Oas calculated by combining the measured O:C of the POA with the
modeled O:C of the SOA. The model-measurement comparison for the no IVOC case suggests
that with very little SOA, the O:C of the OA was dominated by the O:C of the POA and hence

the model under-predicted the@fractional bias> -145%and fractional error>147%) and had

very little skill. The 13.6% and 60% IVOC cases offered similar model performance (fractional
bias>-42% and fractional error>43%) although both cases still under-predicted the OA O:C by
about a factor of two. We were also able to compare model predictions of normalized gas-phase
species concentrations from the SOM to normalized gas-phase measurements made by Friedman
et al. (in preparation), during the same set of experiments, using a chemical ionization mass

spectrometer (CIMS). The comparison at the highest photochemical exposure for June 5 is
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shown in Figure 7. There are three interesting findings of note: (1) The CIMS measured organic
compounds with high O:C ratios (e.g4207), implying mechanisms at play where the reaction
chemistry rapidly adds functional groups to the carbon backbone (Ehn et al., 2014). (2) The
CIMS was able to measuras£species, which indicate possible products of IVOC oxidation. (3)
The SOM offered a surprisingly reasonable comparison against the CIMS measurements across
all carbon-oxygen combinations that span more than four orders of magnitude. Qualitatively, this
finding validates the OA evolution tracked through the generalized SOM mechanism. (4) The
SOM under-predicted the fractional contribution of high oxygen number species, but slightly
over-predicted the fractional contribution of low-oxygen number species. One of the reasons for
this discrepancy is that the SOM, in its current representation, does not explicitly model
autooxidation-type reactions and cannot rapidly form species that are highly oxygenated. Based
on these comparisons with measurements, it is likely that the SOM model, which is currently
designed to add a maximum of four oxygen atoms per reaction step, may need to be extended in
terms of its statistical scheme to add more oxygens during each reaction step. The SOM-CIMS
comparison is preliminary and we intend to explore the implications of this comparison in future

work.

Table 7: SOM model performance for O:C predictions at 0%,13.6%, and 60% IVOC mass

fractions.
Aftertreatment Fractional Bias Fractional Error R2
0% (13.694 60% | 0% |13.694 60% | 0% (13.694 60%
None -1459 -75%]|-62%|147%| 77% | 69% | 0.71| 0.73| 0.82
DPF+DOC -42%| -52%(-42%| 43% | 52% | 43% [0.066|0.069| 0.01
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3.5 SENSITIVITY

In this section, we performed sensitivity analyses to examine the influence of key inputs on
predictions from both the VBS and SOM models. All the sensitivity simulations were performed
on two of the following three experiments: Diesel-ldle-None experiment from June 5, Biodiesel-
Idle-None experiment from June 4, Diesel-ldle-DPF+DOC experiment from June 9. When we

examined the sensitivity to each model input, we kept all the other inputs the same as those listed

in the base set.

3.5.1 IVOC SPECIATION
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Figure 8: VBS and SOM predictions from using different single surrogates to model SOA
formation from IVOCs. Simulationgere performed for the (a) Diesel-Idle-None and (b) Diesel-
Idle-DPF+DOC experiments

In Section 3.3, we found that IVOCs were the dominant precursor of SOA production and the
model required 40% of the THC emissions to be composed of IVOCs to allow for a good model-

measurement comparison. However, the IVOC speciation included 37 unique species, each of
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which required a unique surrogate to model the SOA formation from that species. Tracking these
many IVOC species in a large-scale model may be intractable and hence we used a strategy
previously suggested by Jathar et al. (2014) where we model SOA formation from IVOCs using

a single surrogate. We modeled SOA from IVOCs assuming that all the IVOCs together could be
modeled as a lined:3, Ci5, Ci70r Croalkane. Results from these simulations are shown in

Figure 8. For the VBS model, the use of a linéay C17 and G alkane parameterization for

IVOCs reproduced the measurements well while for the SOM model, the aiBrezfr C17

alkane parameterization produced good agreement with the measurements. These results indicate
that in cases where computationally efficiency is demanded, the SOA formation from IVOCs in

diesel exhaust could be modeled using a surrogate linear alkane.

3.5.2 EMISSIONS PROFILE
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Figure 9: VBS and SOM predictions from using different emission profiles to model SOA
formation. Simulationsvere performed for the (a) Diesel-ldle-None and (b) Biodiesel-ldle-None
experiments
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Since there were no direct measurements of the SOA precursors in the study of Jathar et al.
(2017), we had to rely on previously published emissions profiles for diesel and biodiesel
exhaust to determine initial concentrations of the SOA precursors. Here, we examined the
sensitivity of model predictions to Profile #8777 and Profile #4771 for diesel and biodiesel
respectively; these profiles are listed in detail in Tables 13 and 14 of the supplementary
information. These emissions profiles do not include IVOCs. As there is only a single study so
far that has provided a speciation for IVOCs in diesel exhaust (Zhao et al., 2015), we keep the
IVOC speciation the same in these simulations. Results from these simulations are captured in
Figure 9 where we found that the choice of the emissions profile has very little influence on the
OA evolution. This demonstrates that IVOCs, rather than VOCs, play an important role in
controlling the SOA formation from diesel exhaust and it is important that future studies work

towards understanding the composition of IVOCs.

3.5.3 PARTICLE SIZE DISTRIBUTION
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Figure 10 VBS and SOM model predictions from using different particle size distribution inputs.
Simulationsvere performed for the (a) Diesel-ldle-None and (b) Diesel-ldle-DPF+DOC

experimentsLegend: (i) surface area mean diameter and measured number concentration at no
OH exposure, (ii) surface area mean diameter and measured number concentration at the
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highest OH exposure, (iii) surface area mean diameter and measured number concentration at
the given photochemical exposure, (iv) number mean diameter and measured number
concentration at no OH exposure, (v) number mean diameter and measured number
concentration at the highest OH exposy(vi)average of (i) and (iii)

The particle size distribution inputs, namely the particle diameter and number concentration,
control the condensation sink and condensation timescale and given the short residence times in
the OFR can control the amount of SOA produced in the OFR. Hence, we investigated the
sensitivity of particle size distribution inputs to model predictions of OA. There were two

reasons why the particle size distribution inputs specified with our base model ((i) for Diesel-
Idle/Load-None experiments and (iii) for Diesel-ldle/Load-DPF+DOC experiments) were not
necessarily representative. First, it was unclear how the input particle diameter needed to be
calculated given that our model formulation assumed a monodisperse distribution; future work
needs to investigate this assumption. And second, in most experiments, Jathar et)al. (2017
observed strong nucleation and growth events at the highest photochemical exposure that
dramatically increased (by a factor of ~4) the number concentration. These higher concentrations
at the high photochemical exposures could possibly have increased the condensation sink to
influence the partitioning of SOA. To address uncertainties in the calculation of the initial

particle diameter and account for the increased number concentration at high photochemical
exposures, we performed five different simulations with each model (VBS and SOM) where we
used different particle diameter-number concentration pairs as inputs to the simulation. The five
different particle diameter-number concentration inputs were: (i) surface area mean diameter and
measured number concentration at no OH exposure, (ii) surface area mean diameter and
measured number concentration at the highest OH exposure, (iii) surface area mean diameter and
measured number concentration at the given photochemical exposure, (iv) number mean

diameter and measured number concentration at no OH exposure, (v) number mean diameter and
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measured number concentration at the highest OH exposure, (vi) average of (i) and (iii). Results

from these model simulations are shown in Figure 10. We find that the different particle size

distribution inputs had very little influence on the VBS model predictions of OA and some

influence on the SOM model predictions of OA for the Biddle-None experiment. The SOM

model that used the particle diameter-number concentration pair from no OH exposure produced

slightly lower OA estimates (20%) because of a smaller condensation sink. In contrast, for both

models we find large differences in the model predictions of OA for the Diesel-ldle-DPF+DOC

experiment. The use of the particle diameter-number concentration pair at no OH exposure,

where the aftertreatment system significantly reduced number concentrations and hence the

available condensation sink, produced much lower OA mass. It appears that the particle size

distribution inputs are more important when the condensation sink associated with the initial

concentrations are small (>0.0000%s

3.5.4 VAPOR WALL LOSSES
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Figure 11 SOM model predictions from using different vapor wall-loss rates. Simubatmns
performed for the (a) Diesel-Idle-None and (b) Diesel-Idle-DPF+DOC experiments
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Previous research has highlighted the influence vapor wall losses exert on the calculation of SOA
mass yields from chamber experiments (Zhang et al., 2014; Krechmer et al., 2015). Cappa et al.
(2016), based on the chamber work of Zhang et al. (2014), recently published parameterizations
for the SOM model that accounted for vapor wall losses assuming wall loss rates tfh&10
2.5x10% s1; these parameters are reproduced in Tables 15 and 16 in the supplementary
information. We performed model simulations with the SOM model assuming no wall losses and
using the low (1x18) and high (2.5x10) estimates for vapor wall losses. The results from those
simulations are shown in Figure 11. We found that the inclusion of vapor wall losses increased
model predicted of OA mass (OA mass assuming high wall loss rates was about 1.8 tcs2.4 time
higher than those without considering wall losses) and provided the best performance for the
high estimate for vapor wall losses. These comparisons further demonstrate that vapor wall
losses need to be accounted for in SOA models that are used to interpret chamber and OFR

experiments.

3.5.5 MOLECULAR WEIGHT ASSUMPTION

Diesel-Idle-None

2

Figure 12: VBS predictions from using different molecular weights for the condensing species.
Simulationsvere performed for the Diesel-ldle-None experiment.
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The VBS model does not track the molecular composition of the oxidation products and hence
we assumed that all oxidation products had a molecular weight of 300 ¢. Molavestigate

the sensitivity on model predictions, we performed simulations with three different molecular
weights (i) 100 g mol&ii) 300 gmole* and iii) 500 g molé. We found thatmolecular weight

of 100 g molé resulted in higher OA mass, especially at lower photochemical ages, since the
condensation sink linked to a smaller molecular weight species is larger (see equations in Section
2.3). However, there were few differences in model predictions that used molecular weights of
300 and 500 g motfe Since most condensing SOA species are expected to have molecular
weights larger than 150 g mdi¢Cappa et al., 2011), we conclude that value used for the

molecular weight of the condensing species in the VBS model has little influence on model

predictions.

3.5.6 OH VARIATION IN OFR
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Figure 13: VBS and SOM model predictions of OA as a function of photochemical age by
varying the OH concentration. Simulations were performed for: (i)1/4 VOC at 1/3 OH
concentration, (ii))1/4 VOC at 2/3 OH concentration, (iii) 1/3 VOC at 1/3 OH concentration, (iv)
1/3 VOC at 2/3 OH concentration, (v)1/2 VOC at 1/3 OH concentration and (vi)1/2 VOC at 2/3

OH, Dashed- Constant OH concentration
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In this work, for all the simulations we assumed that the concentration of OH is constant
throughout the OFR. Jathar et al.,2017 used one mercury lamp in the OFR that can have impact
in the results since the area near the light will have higher exposure compared to the rest of the
reactor. To test this, we performed simulations for SOM and VBS by running the models at 1/3
and 2/3 of the OH concentration and we assumed the VOC reacted to be 1/4,1/3 and 1/2 of the
overall VOC and did the weighted average to calculate the total OA predicted. Simulations
performed were: (i) 1/4 VOC at 1/3 OH concentration, (ii) 1/4 VOC at 2/3 OH concentration,

(iif) 1/3 VOC at 1/3 OH concentration, (iv) 1/3 VOC at 2/3 OH concentration, (v) 1/2 VOC at

1/3 OH concentration and (vi) 1/2 VOC at 2/3 OH concentration. For all the simulations, we
conserved the OH to be consistent with the calculated OH concentration. Results are plotted in
figure (13) in which the dashed lines are default assumption of this work, which is, considering
OH concentration constant throughout the OFR. We found that for VBS, the variation did not
have much difference compared to the default assumption but in the case of SOM, considering

the variation in OH did improve the predictions.

3.5.7GAS-PHASE DIFFUSION COEFFICIENT

The gas-phase diffusion co-efficient for the species used in VBS and SOM were calculated by
scaling the diffusion coefficient @0O». To study the sensitivity on model predictions, we
performed simulations with VBS model by choosing the literature values of gas-phase diffusion
coefficients (Tang et al.,2015) for the species in the emission profile and compared to those
calculated based on scaling £@quation 10figure (a) shows the comparison of OA

predictions as a function of photochemical age for the two different simulations. We found that

the model predictions of OA by following the assumption of gas-phase diffusion coefficients of
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species by scaling GQ@alue did not have large difference compared to the OA predictions when
used literature values for diffusion coefficients. Figure (b) shows the scatter plot of the diffusion
coefficients for the few species measured in Tang et al compared to those calculated using
equation 10. We can say from the figure (b) that there is no great difference in the diffusion

coefficient values based on (i) and (ii) method
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Figure 14 (a) VBS predictions of OA from using different approaches in gas-phase diffusion
coefficients as a function of photochemical age. (b) Scatter plot. Simulations were performed for
(@): () gas-phase diffusion coefficients of species from scaling the diffusion coefficient of CO
(solid)and (ii) gas-phase diffusion coefficients for species using literature values (dashed)

3.5.8 YIELDS OF HIGHER ALKANES(&22):

In VBS, since we did not have the product distributions for higher alkangs (22 we

considered mass yields ofQor higher alkane numbers for all the simulations of this work.

Presto et al., 2010 found that for n-alkanes, addition of 2 carbon atoms shifted the corresponding
product distribution by one C* bin or one order of magnitude in C* base. Based on this, we

calculated the product distributions of higher alkanes and performed simulations to test the
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sensitivity in OA formation from the two approaches. We found that there was no large influence

seen in the model predictions following the two approaches.

14
12 |

—_
o

OA (g kg-fuel™1)

o NNk~ o o

0.5 1 1.5 2
Photochemical Aging (days)
Figure 15: VBS predictions of OA as a function of photochemical age. Simulations performed
for: (i) C17 product distribution for @ - Cy2(solid) and (ii) Using the corresponding product
distributions for Gs-Cz2alkanes (dashed)

o
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SUMMARY, CONCLUSIONS AND FUTURE WORK

Recently, Jathar et al. (2017) performed experiments using the oxidation flow reactor (OFR) to
measure the photochemical production of secondary organic aerosol (SOA) from diesel exhaust
under varying engine loads, fuel types, and emissions control systems. These data present an
opportunity to test SOA models and project their relevance for the atmosphere. However, most
traditional treatments of SOA models do not include (i) emissions and a detailed speciation of
intermediate volatility organic compounds (IVOCSs) that have been recognized to be important
SOA precursors and (ii) kinetic gas/particle partitioning, which is likely to be relevant for
processes inside an OFR. In this work, we developed and applied two different SOA model
frameworks (VBS and SOM) to simulate the photochemical production of SOA in an OFR from
diesel exhaust and evaluated those model frameworks using the data from Jathar et al. (2017).
The volatility basis set (VBS) model is a parameterized model that allows for a volatility-based
representation of OA while the statistical oxidation model (SOM) is a semi-explicit
parameterized model that uses a carbon-oxygen grid to track OA species. Both simulate the
coupled chemistry, thermodynamic properties, and gas/particle partitioning of OA and in this
work accounted for: (i) semi-volatile and reactive emissions of primary organic aerosol (POA),
(i) NOx-dependent SOA production from IVOCs and VOCs, (iii) multi-generational aging, and

(iv) kinetic gas/particle partitioning.

On including IVOCs as SOA precursors, both the VBS and SOM models were able to reasonably

predict the OA evolution reported by Jathar et al. (2017) across different engine loads, fuel types,

and emissions control systems. Model predictions suggested that at least 40% of the unburned

45



hydrocarbon emissions were IVOCs and that these IVOCs (regardless of the emissions profiles
used to determine non-1IVOC emissions) accounted for most (>90%) of the SOA formed from
diesel exhaust. These findings are consistent with those from prior work performed on chamber
experiments (Jathar et al., 2014). Simulations performed using single surrogates to model SOA
formation from IVOCs suggested that the complex mixture of IVOCs in diesel exhaust could be
well represented using a lineats©@r Ci7 alkane. These offer a computationally-efficient strategy

to model SOA formation from IVOCs in large-scale three-dimensional models.

While the inclusion of IVOCs allowed for good model-measurement comparison on OA mass,
model predictions were unable to accurately predict the elemental composition of OA. The SOM
model tracks the carbon and oxygen numbers of the oxidation products and hence model
predictions were used to calculate atomic O:C ratios for OA, which were then compared to
measurements. The current formulation of the SOM under-predicted the O:C ratio of the OA by

a factor of two. Comparisons of model predictions in the gas-phase to those measured using a
chemical ionization mass spectrometer (CIMS) suggested that the SOM may need to be modified
to include mechanisms for rapid addition of oxygen-based functional groups to the carbon

backbone to improve model performance.

Model predictions suggested that kinetic gas/particle partitioning and inclusion of vapor wall-
losses was necessary to model OFR SOA data. Specifically, the mass accommodation coefficient
could not be much smaller than 0.1 and the vapor wall-loss rates needed to be at lea$ts2.5x10

to reproduce the observed evolution of OA. We also discovered that the instantaneous or
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equilibrium gas/particle partitioning assumption led to over-predictions of the condensation and

formation of SOA and may not be suitable to model OFR data.

As OFRs are increasingly used to study SOA formation and evolution in laboratory and field
environments, there is a need to develop models that can be used to interpret the OFR data. This
work is one example of the model development and application relevant to the use of OFRs.
There are several instances where the model development was insufficient and will likely be
addressed in future work. For example, the model could benefit from the use of a polydisperse
size distribution, explicit treatment of nucleation, and the inclusion of Kelvin effects to improve
predictions of the size distribution evolution. Confidence in the models developed here could

also be built by testing the models against other OFR data (Palm et al., 2015). Finally, simple
parameterizations could be developed based on this model to represent SOA formation in large-
scale models where it may not be possible to track the hundreds of precursor species dealt in this

work.
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APPENDIX

Table 8:Estimated volatility-resolved POA (POC particle) and POC vapor concentrations in jug
m-3 used as inputs in the VBS model.

Load-Fuel- C" (ug nd)

Aftertreatment 1

Experiment 101 | 10° | 10 | 1¢? | 1C¢° | 10* | 10° | 1OP
POA 1.13 [9.45 [13.99 |8.70 [2.27 ]1.13 [0.38 |0.38
POC 0.66 [5.52 [8.16 [5.07 [1.32 [0.66 [0.22 [0.22
vapor

Idle-Diesel-None POA 1.05 [8.71 |12.89 [8.01 [2.09 [|1.05 [0.35 [0.35
\Vapor [0.64 [5.29 [7.83 |4.87 |1.27 |0.64 (0.21 [0.21
POA 2.55 [21.25 [31.45 |19.55 5.10 [2.55 0.85 [0.85
\Vapor [1.00 [8.32 [12.31 7.65 [2.00 |1.00 [0.33 [0.33
POA 0.66 [5.54 [8.20 [5.09 [1.33 [0.66 [0.22 [0.22
Vapor [0.51 [4.23 [6.26 [3.89 |1.01 |0.51 (0.17 [0.17
POA 2.07 [17.24 [25.51 |15.86 4.14 [2.07 [0.69 [0.69
\VVapor [0.90 (7.48 [11.07 |6.88 |1.79 [0.90 [0.30 [0.30
POA 0.56 K4.63 [6.85 K4.26 |1.11 |0.56 [0.19 [0.19
\VVapor [0.46 [3.87 [5.73 [3.56 |0.93 [0.46 [0.15 [0.15
POA 1.12 [9.33 [13.80 {8.58 [2.24 [1.12 [0.37 [0.37
\Vapor [0.66 [5.48 [8.11 [5.04 |1.31 |0.66 [0.22 [0.22
POA 0.86 |[7.17 [10.62 |6.60 |1.72 [0.86 [0.29 [0.29
\VVapor 0.58 [4.80 (7.11 |4.42 (1.15 |0.58 |0.19 [0.19
POA 1.37 |11.41 [16.89 [10.50 |2.74 [(1.37 1[0.46 [0.46
\VVapor [0.73 [6.07 [8.98 [5.58 |1.46 [0.73 [0.24 [0.24
POA 0.04 [0.37 [0.55 |0.34 [0.09 [0.04 |0.01 [0.01
\Vapor [0.15 [1.25 [1.86 |1.15 |0.30 [0.15 [0.05 [0.05
POA 0.05 [0.41 [0.61 |0.38 [0.10 [0.05 [0.02 [0.02
\Vapor [0.16 [1.30 [1.93 [1.20 |0.31 [0.16 [0.05 [0.05

Idle-Biodiesel-None

Load-Diesel-None

Load-Biodiesel-None

Idle-Diesel-DPFPOC

Load-Diesel-DPFBOC

ldle-Biodiesel- POA 0.08 [0.65 [0.96 [0.60 [0.16 [0.08 |0.03 [0.03
DPF+DOC Vapor 0.19 |1.57 [2.33 [1.45 |0.38 [0.19 [0.06 [0.06
Load-Biodiesel- POA 0.06 |0.53 [0.78 [0.49 [0.13 [0.06 [0.02 |0.02
DPF+DOC Vapor [0.17 [1.44 [2.14 [1.33 |0.35 [0.17 [0.06 [0.06

Table 9:Estimated carbon number-resolved POA (POC patrticle) and POC vapor concentrations
in pg m-3 used as inputs in the SOM model

Load- Carbon Number
Fuel-
Aftert <16 16| 17| 18 19| 20| 2122|123 | 24| 25| 26 |>26
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Freatm
ent
Exper
ment
POA 013 [299% 50 [1.61 [2.07 3.57 [5.53 [6.84 |6.71 [5.17 [2.93 [0.99 [0.05
dle- [POC Vapof0.07 [0.00 |1.28 [0.94 |1.20 [2.07 [3.20 [3.96 [3.89 |3.00 |1.70 [0.57 [0.03
DieselPOA 0.12 [0.01 2.03 [1.49 [1.91 [3.29 [5.09 6.30 |6.19 [4.77 [2.70 |0.91 [0.05
'NonelPOC Vapof0.07 [0.00 [1.23 [0.90 [1.15 |1.99 [3.08 [3.81 [3.74 [2.88 |L.63 [0.55 [0.03
POA 0.29 [0.01 [4.95 [3.63 4.66 [8.02 [12.4315.3415.0911.636.59 |2.23 0.11
POC Vapof0.11 [0.01 [1.91 [1.40 |1.80 [3.09 [4.79 [5.93 [5.82 [4.49 [2.54 [0.86 [0.04
ldie- |POA 0.07 [0.00 |1.29 [0.95 [1.21 [2.00 [3.24 |4.01 |3.93 [3.03 [1.72 |0.58 [0.03
BiodidPOC Vapof0.06 [0.00 [0.99 [0.72 0.93 [1.59 [2.47 [3.06 [3.00 [2.31 |.31 [0.44 [0.02
sel- [POA 0.23 [0.01 |4.02 [2.94 [3.78 [6.50 [10.0812.47112.249.43 [5.34 |L.81 [0.09
None [POC Vapof0.10 [0.00 |1.72 [1.26 [1.62 [2.78 [4.31 [5.34 [5.24 [#.04 [2.29 [0.77 [0.04
o IPOA 0.06 [0.00 |L.08 [0.79 [1.02 |L.75 [2.71 B.35 [3.29 [2.53 [1.44 [0.49 [0.02
D?;‘Sé POC Vapoi0.05 [0.00 [0.90 [0.66 0.85 |1.46 [2.27 2.81 [2.76 [2.12 [L.20 [0.41 [0.02
NongPOA 0.13 0.0l 2.17 [1.59 2.05 B.52 [5.46 16.75 16.62 |5.11 [2.89 |0.98 [0.05
“IPOC Vapol0.07 [0.00 [1.27 0.93 [L.19 [2.05 [3.18 [3.94 [3.86 [2.98 [1.69 [0.57 [0.03
Load-|POA 0.10 [0.00 |1.67 [1.23 1.57 [2.71 [4.20 [5.19 [5.00 [3.93 [2.22 [0.75 [0.04
BiodiePOC Vapoi0.06 [0.00 |1.12 [0.82 [1.05 [1.81 [2.80 [3.46 [3.40 [2.62 |L.48 [0.50 [0.03
sel- [POA 0.15 [0.01 [2.66 [1.95 [2.50 |4.31 [6.68 8.26 [8.10 [6.25 [3.54 |1.20 [0.06
None [POC Vapol0.08 [0.00 [L.40 [L.03 [L.32 [2.27 [3.52 [4.35 [4.27 [3.29 |1.86 [0.63 [0.03
Idle- |POA 0.01 |0.00 [0.09 [0.06 [0.08 [0.14 [0.22 [0.27 [0.27 [0.20 [0.12 [0.024 [0.00
Diese
pE+|[POC Vapoi0.02 [0.00 [0.30 [0.22 (0.29 [0.49 [0.76 (0.94 [0.93 [0.71 (0.40 [0.14 [0.01
DOC
Load-|POA 0.01 |0.00 [0.10 [0.07 [0.09 [0.16 [0.24 [0.30 [0.29 [0.22 [0.13 [0.04 [0.00
Diese
pE+|[POC Vapoi0.02 [0.00 0.32 0.23 [0.30 [0.51 (0.79 (0.98 [0.96 [0.74 (0.42 [0.14 [0.01
DOC
Idle- |POA 0.01 [0.00 [0.15 [0.11 [0.14 [0.24 [0.38 [0.47 [0.46 [0.35 0.20 [0.07 [0.00
Biodig
SDeFl,'F+ POC Vapo0.02 [0.00 [0.38 [0.28 [0.35 [0.61 [0.95 |1.17 |1.15 [0.89 [0.50 [0.17 [0.01
DOC
Load-|POA 0.01 |0.00 [0.12 [0.09 [0.12 [0.20 [0.31 [0.38 [0.38 [0.29 [0.16 [0.06 [0.00
Biodig
|_
EePF+ POC Vapo10.02 [0.00 [0.35 [0.25 [0.33 [0.56 [0.87 |1.08 [1.06 [0.82 [0.46 [0.16 [0.01
DOC
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Table 10:Profile numbers form EPA SPECIATE version 4.3 commonly used to speciate THC
emissions in diesel exhaust.

EPA Profile Number Type
3161 Farm Equipment- Diesel
8774 Heavy duty diesel exhaust
A777 Biodiesel Exhaust-Light Duty
4771 Biodiesel Exhaust- Light Duty

Table 11VOC emissions profile #3161 -Diesel Exhaust-Farm Equipment

Species Name kOH (cn?® molecules's?) Mass Percent
(1-methylpropyl) benzene 8.5e-12 0.023
(2-methylpropyl) benzeng 8.71e-12 0.060

1,2,3-trimethylbenzene 3.27e-11 0.056
1,2,4-trimethylbenzene 3.25e-11 0.246
1,2-diethylbenzene 8.11e-12 0.042
1,2-propadiene 9.82e-12 0.218
1,3,5-trimethylbenzene 5.67e-11 0.088
1,3-butadiene 6.66e-11 0.088
1-butene 3.14e-11 0.311
1-methyl-2-ethylbenzene 7.44e-12 0.065
1-methyl-3-ethylbenzene 1.3%e-11 0.116
1-pentene 3.14e-11 0.148

2,2 ,4-trimethylpentane 3.34e-12 0.139
2,2-dimethylbutane 2.23e-12 0.028
2,3,4-trimethylpentane 6.6e-12 0.009
2,3-dimethyl-1-butene 5.38e-11 0.014
2,3-dimethylhexane 8.55e-12 0.005
2,3-dimethylpentane 7.14e-12 0.032
2,4-dimethylhexane 8.55e-12 0.019
2,4-dimethylpentane 4.77e-12 0.009
2-methylheptane 8.28e-12 0.028
2-methylhexane 6.86e-12 0.056
2-methylpentane 5.2e-12 0.181
3,3-dimethyl-1-butene 2.8e-11 1.308
3-ethylhexane 8.97e-12 0.028
3-methylhexane 7.15e-12 0.162
3-methylpentane 5.2e-12 0.056
acetaldehyde 1.5e-11 3.409
acetone 1.7e-13 3.483
acetylene 8.15e-13 1.971
alkene ketone 1.7e-13 0.812
b-methylstyrene 3.12e-11 0.023
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benzaldehyde 1.2e-11 0.325
benzene 1.22e-12 0.928
butyraldehyde 2.4e-11 0.867
c10 aromatis 2.3e-11 0.037
c5 aldehyde 2.88e-11 0.051
c6 aldehydes 2.88e-11 1.763
c9 aromatics 2.31e-11 0.232
cis-2-butene 5.64e-11 0.042
cis-2-pentene 6.5e-11 0.014
cyclohexane 6.97e-12 0.014
cyclohexanone 6.4e-12 0.051
cyclopentane 4.97e-12 0.005
ethane 2.48e-13 0.264
ethyl alcohol 3.58e-12 0.005
ethylbenzene 7e-12 0.144
ethylene 8.52e-12 6.670
formaldehyde 9.37e-12 6.823
indan 1.9e-11 0.088
isobutane 2.44e-12 0.566
isobutylene 5.14e-11 0.427
butylbenzene 4.5e-12 0.060
diethylbenzene 8.11e-12 0.065
isopentane 3.6e-12 0.278
isopropylbenzene 6.9e-12 0.009
m-xylene 2.31e-11 0.283
methane 6.4e-15 1.892
methyl alcohol 6.16e-13 0.014
methyl ethyl ketone 1.22e-12 0.686
2-hexanone 9.1le-12 0.417
methylcyclohexane 9.64e-12 0.032
methylcyclopentane 5.66e-12 0.070
n-butane 2.36e-12 0.046
n-decane 1.1e-11 0.246
n-heptane 6.76e-12 0.032
n-hexane 5.2e-12 0.074
n-nonane 9.7e-12 0.107
n-octane 8.11e-12 0.065
n-pentane 3.8e-12 0.083
n-propylbenzene 5.8e-12 0.056
n-undecane 1.23e-11 0.121
naphthalene 2.3e-11 0.042
o-xylene 1.36e-11 0.158
p-xylene 1.43e-11 0.046
propane 1.09e-12 0.088
propionaldehyde 2.2e-11 0.450
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propylene 2.64e-11 1.206
styrene 5.8e-11 0.028
t-butylbenzene 4.5e-12 0.005
unknown 1.23e-11 0.093
trans-2-butene 6.4e-11 0.019
trans-2-pentene 6.7e-11 0.682
toluene 5.63e-12 2.268

C12 branched alkane 1.82E-11 1.623
Cis branched alkane 1.68E-11 1.052
Ci4 branched alkane 1.39E-11 0.939
Cis branched alkane 1.82E-11 0.988
Ci6 branched alkane 1.96E-11 0.440
Ci7 branched alkane 2.1E-11 0.573
Cis branched alkane 2.24E-11 0.343
Ci9 branched alkane 2.38E-11 0.194
C20 branched alkane 2.52E-11 0.128
C21 branched alkane 2.67E-11 0.121
C22 branched alkane 2.81E-11 8.690
C12 cyclic alkane 1.82E-11 8.858
Cyz cyclic alkane 1.68E-11 6.299
C14 cyclic alkane 1.39E-11 5.723
Cys cyclic alkane 1.82E-11 4.372
Ci6 cyclic alkane 1.96E-11 3.711
C17 cyclic alkane 2.1E-11 3.382
Cyg cyclic alkane 2.24E-11 2.115
Ci9 cyclic alkane 2.38E-11 1.181
Coo cyclic alkane 2.52E-11 0.748
C21 cyclic alkane 2.67E-11 0.629
C2o cyclic alkane 2.81E-11 1.167
n-dodecane 1.82E-11 1.094
tridecane 1.68E-11 0.730
tetradecane 1.39E-11 0.613
pentadecane 1.82E-11 0.456
hexadecane 1.96E-11 0.331
heptadecane 2.1E-11 0.296
octadecane 2.24E-11 0.145
nonadecane 2.38E-11 0.073
eicosane 2.52E-11 0.044
heneicosane 2.67E-11 0.029
docosane 2.81E-11 0.287
pristane 2.44E-11 0.160
phytane 2.61E-11 0.208
naphthalene 1.3E-11 0.023
phenanthrene 1.30E-11 0.023
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Table 12:VOC emissions profile #4777- Biodiesel Exhaust-Light Duty Truck; Cold Start

Species Name

kOH (cm® molecules's?)

Mass Percent

1,1,4-trimethylcyclohexang 9.09E-12 0.081
1,2,4-trimethylbenzene 1.67E-11 0.405
1,2-dimethyl-4- 1.69E-11 0.177
ethylbenzene
1,3,5-trimethylbenzene 3.51E-11 0.162
1,3-dimethyl-2- 1.76E-11 0.283
ethylbenzene
1,4-dimethyl-2- 1.69E-11 0.374
ethylbenzene
1-(1,1-dimethylethyl)-3,5- 3.01E-11 0.319
dimethylbenzene
1-butene 3.14E-11 0.521
1-ethyl-1- 6.33E-12 0.035
methylcyclopentane
1-hexene 3.02E-11 0.152
1-methyl-2-ethylbenzene 7.44E-12 0.329
1-methyl-2-tert- 6.74E-12 0.369
butylbenzene
1-methyl-3-ethylbenzene 1.39E-11 0.617
1-methyl-3- 1.45E-11 0.379
isopropylbenzene
1-methyl-3-propylbenzene 1.52E-11 0.233
1-methyl-4-ethylbenzene 7.44E-12 0.182
1-nonene 3.44E-11 0.061
1-pentene 3.14E-11 0.273
1-tert-butyl-4-ethylbenzen 7.42E-12 0.167
2,2 ,4-trimethylpentane 3.16E-11 0.197
2,2-dimethylbutane 1.82E-12 0.101
2,2-dimethylpropane 6.69E-13 0.051
2,3,4-trimethylpentane 8.54E-12 0.046
2,3-dimethylbutane 5.44E-12 0.020
2,3-dimethylhexane 5.09E-12 0.106
2,3-dimethylpentane 7.14E-12 0.015
2,4-dimethylhexane 4.92E-12 0.051
2,4-dimethylpentane 6.85E-12 0.010
2,5-dimethylheptane 9.97E-12 0.071
2,5-dimethylhexane 7.24E-12 0.025
2-methyl-butyl-benzene 1.02E-11 0.946
2-methylhexane 6.86E-12 0.293
2-methylnonane 1.11E-11 0.273
2-methyloctane 9.97E-12 0.091
2-methylpentane 5.45E-12 0.040
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3,3-dimethyloctane 7.21E-12 0.263
3,3-dimethylpentane 2.97E-12 0.081
3,5-dimethylheptane 1.02E-11 0.076

3-ethyloctane 1.18E-11 0.162
3-ethylpentane 7.56E-12 0.030
3-methyl-1-butene 2.86E-11 0.111
3-methyl-cis-2-pentene 8.83E-11 0.071
3-methylheptane 8.56E-12 0.056
3-methylhexane 7.15E-12 0.020
3-methylnonane 1.14E-11 0.228
3-methylpentane 5.73E-12 0.071
4-methyl-1-pentene 3.02E-11 0.061
4-methylheptane 1.02E-11 0.475
acetaldehyde 1.5E-11 2.710
acetone 1.7E-13 3.828
acetylene 8.15E-13 2.346
acrolein 2.58E-11 0.759
benzene 1.22E-12 1.370
cis,trans-1,2,4- 1.35E-11 3.580
trimethylcyclohexane
cis-2-butene 5.64E-11 0.056
cis-2-nonene 6.32E-11 0.096
cis-2-octene 6.18E-11 0.046
cis-3-hexene 2E-10 0.066
crotonaldehyde 3.62E-11 0.228
cyclohexane 6.97E-12 0.015
cyclohexane 6.97E-12 0.071
cyclopentane 4.97E-12 0.030
cyclopentene 5.88E-11 0.046
ethane 2.48E-13 0.172
ethylbenzene 7TE-12 0.071
ethylene 8.52E-12 10.013
formaldehyde 9.37E-12 9.330
isobutane 2.44E-12 0.030
isopentane 3.6E-12 0.344
isopropylcyclohexane 1.34E-11 0.126
isopropyltoluene 8.54E-12 0.308
m & p-xylene 2.31E-11 0.319
2-butanone 1.22E-12 1.643
methylbutadiene 1.05E-10 0.091
methylcyclohexane 5.09E-12 0.086
methylcyclopentane 5.66E-12 0.030
n-butane 2.36E-12 0.081
n-butylcyclopentane 1.01E-11 0.137
n-decane 1.1E-11 1.461
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n-dodecane 1.39E-11 1.193
n-heptane 6.76E-12 0.040
n-hexane 5.2E-12 0.152
n-nonane 9.7E-12 0.738
n-octane 8.11E-12 0.415
n-pentane 3.8E-12 0.076

n-pentylbenzene 1.01E-11 0.182
n-propylbenzene 5.8E-12 0.137

n-tridecane 1.53E-11 0.526

n-undecane 1.23E-11 1.664
o-xylene 1.36E-11 0.339

propane 1.09E-12 0.025
propionaldehyde 2.2E-11 0.541
propylcyclopentane 1.2E-11 0.051
propylene 2.64E-11 2.195
toluene 5.63E-12 1.406
trans-1,2- 6.8E-12 1.310
dimethylcyclopentane
trans-1,4- 1.19E-11 0.056
dimethylcyclohexane
trans-2-butene 6.4E-11 0.076
trans-2-heptene 6.8E-11 0.030
trans-2-octene 6.94E-11 0.071
trans-2-pentene 6.7E-11 0.046
trans-3-nonene 7.04E-11 0.000
Ci2 branched alkane 1.82E-11 1.623
Ci3 branched alkane 1.68E-11 1.052
Ci14 branched alkane 1.39E-11 0.939
Cis branched alkane 1.82E-11 0.988
Ci6 branched alkane 1.96E-11 0.440
Ci7 branched alkane 2.1E-11 0.573
Cig branched alkane 2.24E-11 0.343
Ci9 branched alkane 2.38E-11 0.194
Cxo branched alkane 2.52E-11 0.128
C»1 branched alkane 2.67E-11 0.121
C22 branched alkane 2.81E-11 8.690
Cy2 cyclic alkane 1.82E-11 8.858
Ciz cyclic alkane 1.68E-11 6.299
Cu4 cyclic alkane 1.39E-11 5.723
Cys cyclic alkane 1.82E-11 4.372
Ci6 cyclic alkane 1.96E-11 3.711
Cy7 cyclic alkane 2.1E-11 3.382
Cis cyclic alkane 2.24E-11 2.115
Cio cyclic alkane 2.38E-11 1.181
Coo cyclic alkane 2.52E-11 0.748
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C»1 cyclic alkane 2.67E-11 0.629
C22 cyclic alkane 2.81E-11 1.167
n-dodecane 1.82E-11 1.094
tridecane 1.68E-11 0.730
tetradecane 1.39E-11 0.613
pentadecane 1.82E-11 0.456
hexadecane 1.96E-11 0.331
heptadecane 2.1E-11 0.296
octadecane 2.24E-11 0.145
nonadecane 2.38E-11 0.073
eicosane 2.52E-11 0.044
heneicosane 2.67E-11 0.029
docosane 2.81E-11 0.287
pristane 2.44E-11 0.160
phytane 2.61E-11 0.208
naphthalene 1.3E-11 0.023
phenanthrene 1.30E-11 0.023

Table 13:EPA #4771 Biodiesel Exhaust-Light Duty Truck; Cold Start

Species Name

kOH (cm?® molecules's?)

Mass Percent

1,1,2-trimethylcyclohexane 9.09E-12 0.043
1,2,3-trimethylbenzene 1.67E-11 0.495
1,2,4-trimethylbenzene 1.67E-11 0.319

1,2-dimethyl-4-ethylbenzene 1.69E-11 0.229
1,3,5-trimethylbenzene 3.51E-11 0.125

1,4-dimethyl-2-ethylbenzene 1.69E-11 0.312

1-(1,1-dimethylethyl)-3,5-

dimethylbenzene 3.01E-11 0.262
1-butene 3.14E-11 0.269
1-hexene 3.02E-11 0.072
1-methyl-2-ethylbenzene 7.44E-12 0.272

1-methyl-2-tert-butylbenzene 6.74E-12 0.244
1-methyl-3-ethylbenzene 1.39E-11 0.244

1-methyl-3-propylbenzene 1.52E-11 0.215
1-methyl-4-ethylbenzene 7.44E-12 0.036

1-nonene 3.44E-11 0.032
1-octene 3.30E-11 0.032
1-pentene 2.88E-11 0.147
1-tert-butyl-4-ethylbenzene 7.42E-12 0.161
2,2-dimethylbutane 1.82E-12 0.032
2,2-dimethylpropanal 2.24E-11 0.344
2,3-dimethylhexane 2.24E-11 0.061
2,5-dimethylheptane 9.97E-12 0.054
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2-methyl-2-butene 8.73E-11 0.025
2-methyl-butyl-benzene 1.02E-11 0.380
2-methylhexane 6.86E-12 0.047
2-methylnonane 1.11E-11 0.133
2-methyloctane 9.97E-12 0.079
3,3-dimethylheptane 1.02E-11 0.054
3,3-dimethyloctane 7.21E-12 0.165
3-ethylpentane 7.56E-12 0.025
3-methyl-1-butene 2.86E-11 0.043
3-methylhexane 7.15E-12 0.004
3-methylnonane 1.14E-11 0.412
3-methylpentane 5.73E-12 0.022
4-methyl-1-pentene 3.02E-11 0.047
4-methylheptane 1.02E-11 0.272
acetaldehyde 1.5E-11 2.320
acetone 1.7E-13 2.015
acetylene 8.15E-13 1.334
acrolein 2.58E-11 0.907
benzaldehyde 1.2E-11 0.190
benzene 1.22E-12 0.767
1,2,4-trimethylcyclohexane 1.35E-11 2.309
cis-2-nonene 6.32E-11 0.065
cis-3-hexene 2E-10 0.043
crotonaldehyde 3.62E-11 0.272
cyclohexane 6.97E-12 0.011
cyclohexane 6.97E-12 0.068
cyclopentane 4.97E-12 0.022
cyclopentene 5.88E-11 0.018
ethylbenzene 7E-12 0.337
ethylene 8.52E-12 5.532
formaldehyde 9.37E-12 7.594
isobutane 2.44E-12 0.004
isopropylcyclohexane 1.34E-11 0.068
isopropyltoluene 8.54E-12 0.208
m & p-xylene 2.31E-11 0.229
2-butanone 1.22E-12 0.660
methylbutadiene 1.05E-10 0.068
methylcyclohexane 5.09E-12 0.050
methylcyclopentane 5.66E-12 0.018
n-butylcyclopentane 1.01E-11 0.061
n-decane 1.1E-11 0.861
n-dodecane 1.39E-11 0.674
n-heptane 6.76E-12 0.100
n-hexane 5.2E-12 0.068
n-nonane 9.7E-12 0.477
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n-octane 8.11E-12 0.197
n-pentane 3.8E-12 0.011
n-propylbenzene 5.8E-12 0.022
n-tridecane 1.53E-11 0.491
n-undecane 1.23E-11 1.223
o-xylene 1.36E-11 0.179
propane 1.09E-12 0.011
propionaldehyde 2.2E-11 0.409
propylcyclopentane 1.2E-11 0.032
propylene 2.64E-11 2.273
toluene 5.63E-12 0.925
trans-1,2-dimethylcyclopentane 6.8E-12 0.717
trans-1,4-dimethylcyclohexane 1.19E-11 0.039
trans-2-octene 6.94E-11 0.039
trans-2-pentene 6.7E-11 0.029
trans-3-nonene 7.04E-11 0.039
valeraldehyde 2.74E-11 0.305
C12 branched alkane 1.82E-11 1.623
Ci3 branched alkane 1.68E-11 1.052
Cu14 branched alkane 1.39E-11 0.939
Cis branched alkane 1.82E-11 0.988
Ci6 branched alkane 1.96E-11 0.440
C17 branched alkane 2.1E-11 0.573
Cig branched alkae 2.24E-11 0.343
Ci9 branched alkane 2.38E-11 0.194
Coo branched alkane 2.52E-11 0.128
C21 branched alkane 2.67E-11 0.121
C22 branched alkane 2.81E-11 8.690
C12 cyclic alkane 1.82E-11 8.858
Ciz cyclic alkane 1.68E-11 6.299
C14 cyclic alkane 1.39E-11 5.723
Cis cyclic alkane 1.82E-11 4.372
Ci6 cyclic alkane 1.96E-11 3.711
Ci7 cyclic alkane 2.1E-11 3.382
Cis cyclic alkane 2.24E-11 2.115
Ci9 cyclic alkane 2.38E-11 1.181
Coo cyclic alkane 2.52E-11 0.748
C»1 cyclic alkane 2.67E-11 0.629
C22 cyclic alkane 2.81E-11 1.167
n-dodecane 1.82E-11 1.094
tridecane 1.68E-11 0.730
tetradecane 1.39E-11 0.613
pentadecane 1.82E-11 0.456
hexadecane 1.96E-11 0.331
heptadecane 2.1E-11 0.296
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octadecane 2.24E-11 0.145
nonadecane 2.38E-11 0.073
eicosane 2.52E-11 0.044
heneicosane 2.67E-11 0.029
docosane 2.81E-11 0.287
pristane 2.44E-11 0.160
phytane 2.61E-11 0.208

Table 14:VOC emissions profile #8774- Diesel Exhaust Emissions from Pre-2007 Model Year
Heavy-Duty Diesel Trucks

Species Name kOH (cm? Mass Percent
molecules! s?)

1,2,3,5-tetramethylbenzene 4.30705E-10 0.069
1,2,3-trimethylbenzene 3.27E-10 0.050
1,2,4,5-tetramethylbenzene 2.05132E-10 0.033
1,2,4-trimethylbenzene 3.25E-10 0.021
1,2-butadiene 6.66E-10 0.010
1,3,5trimethylbenzene 5.67E-10 0.042
1,3-butadiene 6.66E-10 0.344
1,3-diethylbenzene 1.42418E-10 0.068
1,3-hexadiene 1.06101E-09 0.015
1,4-diethylbenzene 8.1054E-11 0.091
1-butene 3.14E-10 0.872
1-heptene 3.159E-10 0.152
1-methyl-2-ethylbenzene 7.4388E-11 0.078
1-methyl-3-ethylbenzene 1.388E-10 0.047
1-methyl-4-ethylbenzene 7.4388E-11 0.039
1-methylindan 9.1645E-11 0.028
1-pentene 3.14E-10 0.183
1-propyne 7.136E-11 0.089
2,2 ,4-trimethylpentane 3.34E-11 0.262
2,2,5-trimethylhexane 6.0487E-11 0.057
2,2-dimethylbutane 1.8179E-11 0.043
2,3,4-trimethylpentane 6.6E-11 0.032
2,3-dimethyl-2-pentene 1.11509E-09 0.002
2,3-dimethylbutane 5.4415E-11 0.067
2,3-dimethylhexane 8.5522E-11 0.007
2,3-dimethylpentane 7.13E-11 0.078
2,4-dimethylpentane 4.77E-11 0.243
2,6-dimethylheptane 9.6807E-11 0.000
2-methyl-1-butene 5.26373E-10 0.103
2-methyl-1-pentene 5.40009E-10 2.833
2-methyl-2-butene 8.7308E-10 0.117
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2-methyl-2-pentene 8.82733E-10 0.012
2-methylheptane 8.276E-11 0.062
2-methylhexane 6.863E-11 0.070

2-methylindan 9.419E-11 0.017
2-methylpentane 5.2E-11 0.039
3-methyl-cis-2-pentene 8.8273E-10 0.009
3-methyl-trans-2-pentene 8.82733E-10 0.111
3-methylheptane 8.5606E-11 0.054
3-methylhexane 7.1476E-11 0.130
3-methyloctane 9.9737E-11 0.142
4-methylheptane 8.276E-11 0.018
acetaldehyde 1.5E-10 2.228
acetylene 8.15E-12 2.675
alpha-pinene 9.07477E-10 0.035
benzaldehyde 1.2E-10 0.231
benzene 1.22E-11 1.281
beta-pinene 5.65247E-10 0.001
butyraldehyde 2.4E-10 0.514
cis-2-butene 5.64E-10 0.098
cis-2-hexene 5.90009E-10 0.021
cis-2-pentene 6.5E-10 0.053
crotonaldehyde 3.619E-10 0.128
cyclohexane 6.97E-11 0.120
cyclohexene 6.15237E-10 0.051
cyclopentane 4.97E-11 0.038
cyclopentene 5.87748E-10 0.060
dl-limonene 1.45218E-09 0.012
ethane 2.48E-12 0.739
ethylbenzene 7TE-11 0.147
ethylene 8.52E-11 8.180
formaldehyde 9.37E-11 3.554
glyoxal 2.5317E-10 0.296
indan 8.2777E-11 0.028
isobutane 2.4418E-11 0.305
isopentane 3.6E-11 1.721
isoprene 1.05E-09 0.061
isopropylbenzene 6.9E-11 0.013
isopropylcyclohexane 1.33E-10 0.150
isopropyltoluene 8.536E-11 0.062
m & p-xylene 2.31E-10 0.252
2-butanone 1.22E-11 1.198
methylcyclohexane 9.64E-11 0.115
methylcyclopentane 5.66E-11 1.786
n-butane 2.36E-11 0.573
n-butylbenzene 8.723E-11 0.021
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n-decane 1.1E-10 0.404
n-heptane 6.76E-11 0.125
n-hexane 5.2E-11 0.307
n-nonane 9.7E-11 0.159
n-octane 8.11E-11 0.145
n-pentane 3.8E-11 0.313
n-propylbenzene 5.8E-11 0.026
n-undecane 1.23E-10 0.417
o-xylene 1.36E-10 0.104
propane 1.09E-11 0.890
propionaldehyde 2.19E-10 0.257
propylene 2.64E-10 2.347
propyltoluene 8.80E-11 0.050
styrene 5.8E-10 0.129
tolualdehyde 1.86E-10 0.016
toluene 5.63E-11 0.588
trans-1,3-dichloropropene 9.35E-11 0.002
trans-2-butene 6.4E-10 0.121
trans-2-hexene 6.66E-10 0.036
trans-2-pentene 6.7E-10 0.054
unknown 2.7E-10 0.000
valeraldehyde 2.74E-10 0.023
C12 branched alkane 1.82E-11 1.623
Ci3 branched alkane 1.68E-11 1.052
Cu14 branched alkane 1.39E-11 0.939
Cis branched alkane 1.82E-11 0.988
Ci6 branched alkane 1.96E-11 0.440
Ci17 branched alkane 2.1E-11 0.573
Cig branched alkane 2.24E-11 0.343
Cio branched alkane 2.38E-11 0.194
Coo branched alkane 2.52E-11 0.128
C21 branched alkane 2.67E-11 0.121
C22 branched alkane 2.81E-11 8.690
C12 cyclic alkane 1.82E-11 8.858
Cyz cyclic alkane 1.68E-11 6.299
Cu4 cyclic alkane 1.39E-11 5.723
Cys cyclic alkane 1.82E-11 4.372
Cy6 cyclic alkane 1.96E-11 3.711
C17 cyclic alkane 2.1E-11 3.382
Cig cyclic alkane 2.24E-11 2.115
Cyo cyclic alkane 2.38E-11 1.181
Coo cyclic alkane 2.52E-11 0.748
C»1 cyclic alkane 2.67E-11 0.629
C22 cyclic alkane 2.81E-11 1.167
n-dodecane 1.82E-11 1.094
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tridecane 1.68E-11 0.730
tetradecane 1.39E-11 0.613
pentadecane 1.82E-11 0.456
hexadecane 1.96E-11 0.331
heptadecane 2.1E-11 0.296
octadecane 2.24E-11 0.145
nonadecane 2.38E-11 0.073

eicosane 2.52E-11 0.044
heneicosane 2.67E-11 0.029

docosane 2.81E-11 0.287

pristane 2.44E-11 0.160
phytane 2.61E-11 0.208
naphthalene 1.3E-11 0.023
phenanthrene 1.30E-11 0.023

Table 15:SOM parameters from Cappa et al. (2016) to simulate SOA formation assuming a low
estimate for vapor wall loss rates (14€").

Species Mirag  WULVP |po,1 Po,2 Po,3 Po,4 Primary Reference
n-dodecane 0.186 (1.45 ]0.961 (0.001 |0.002 ]0.036 [Loza etal. (2014)
methylundecane (0.0937 [1.07 ]0.257 [0.001 [0.741 ]0.002 [Loza etal. (2014)
hexylcyclohexane [0.155 ]1.86 |0.907 [0.001 [0.091 |0.001 [Loza etal. (2014)

toluene 5 1.37 |0.865 [0.001 |0.065 [0.069 |Zhang et al. (2014)
benzene 0.73 |1.47 ]0.017 ]0.001 [0.981 [0.001 |Ng et al. (2007)
m-xylene 0.0389 |1.46 |0.001 |0.001 [0.905 [0.093 |Ng et al. (2007)
naphthalene 0.643 |1.41 ]0.835 |0.001 [0.001 [0.162 |Chan et al. (2009)

Table 16:SOM parameters from Cappa et al. (2016) to simulate SOA formation assuming a high
estimate for vapor wall loss rates (2.551<)).

Species Miag  ULVP |po,1 Po.2 Po.3 Po.4 Primary Reference
n-dodecane 0.266 |1.47 ]0.965 ]0.001 ]0.002 |0.032 |Loza et al. (2014)
methylundecane [0.254 10.94 |0.377 [0.001 [0.622 ]0.001 |Loza etal. (2014)
hexylcyclohexane |0.274 (1.82 ]0.942 [0.001 [0.002 [0.055 [Loza etal. (2014)

toluene 461 |[1.42 [0.856 [0.001 [0.002 [0.141 |[Zhang et al. (2014)
benzene 0.824 [1.53 [0.008 [0.001 [0.991 [0.001 |Ng et al. (2007)
mrxylene 0.101 [1.21 [0.001 [0.001 [0.315 [0.683 |Ng et al. (2007)
naphthalene 169 [153 [0.878 [0.001 [0.002 [0.119 |Chan etal. (2009)
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