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ABSTRACT 

 

QUANTIFYING BIOMARKERS IN WILDLIFE EXPOSED TO LOW DOSES OF 

ENVIRONMENTAL RADIATION PILOT STUDY  

 

 Exposure of free-ranging wildlife to environmental radiation is of concern 

following the nuclear accident at the Fukushima-Daiichi facilities in 2011. The 

uncertainty associated with exposure to chronic ionizing radiation in the vicinity of the 

accident continues to concern the general population, as well as produce seemingly 

conflicting scientific results. The risk from prolonged, low dose/low dose rate radiation 

exposures, specifically to wildlife, remains relatively uncertain. The quantification of 

chromosomal aberrations such as dicentrics and micronuclei was evaluated as a 

method of estimating radiation dose to wild boar. Dicentrics and micronuclei found in 

blood samples of humans are known as a biomarkers of radiation exposure. Blood 

samples were collected from wild boar in two towns in Fukushima prefecture in Japan 

and from Kentucky in the USA.  External dose was also estimated using soil sample 

analysis.  As a pilot study, only the feasibility of using dicentrics and micronuclei to 

estimate radiation dose in wild boar was investigated. Additional studies will be required 

to ascertain the suitability of measuring other chromosomal aberrations and/or 

decreased telomere length as a method of ascertaining wild boar radiation dose. The 

hypothesis of the pilot study was that it is possible to estimate chronic radiation dose to 

wild boar exposed to low levels of lingering environmental ionizing radiation in 

Fukushima prefecture as well as in irradiated blood from wild boar residing in areas 
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experiencing only natural background radiation with biodosimetry techniques. The data 

obtained from this investigation do not prove the feasibility of using dicentrics and 

micronuclei formation to estimate wild boar radiation dose. While the technique for 

processing wild boar blood in order to observe chromosomal aberrations was 

successful, the levels of radiation exposure to the wild boar were too low and did not 

produce biomarkers for use as an indicator of internal radiation dose indicating the 

hypothesis to be incorrect. Other methods of estimating low radiation dose to wild boar 

will need to be investigated in future studies. 
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INTRODUCTION 

 

Long-Term, Low Level Radiation Exposure 

 Due to the interest in and lack of data regarding the effect of long-term, low-level 

radiation dose, a considerable amount of public and governmental concern revolves 

around any and all human exposure to radiation. Beginning with the research supported 

by the Manhattan District to researchers at Argonne and Oak Ridge, who began studies 

before 1943, there has been interest in the effects of low-level, long-continued 

irradiation from external sources and the tolerance of man to the irradiation (Brues et 

al.1959). There are available data on the human biological effects of short-term, high-

dose radiation exposure from multiple radiation incidents, such as the atomic bomb 

survivors, and accidents in the twentieth century. While radiation worker studies where 

workers have been exposed to low levels of radiation are very informative due to the 

objective measurement of a large range of cumulative doses through personal 

dosimeters, the studies are subject to important limitations such as statistical 

uncertainty and potential confounding (Gilbert, 2001). The limitations make the worker 

studies unadvisable for replacing atomic bomb survivors as the primary source of data 

for cancer risk estimation from radiation exposure (Gilbert, 2001). Most of the current 

data analyses involving human exposure to low levels of radiation (both acute exposure 

and long-term exposure) have been from the atomic bomb survivors in Japan in 1945 

and the Chernobyl nuclear accident in 1986.  
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The atomic bomb survivors’ radiation dose estimates have been carefully 

evaluated and all the health effects in comparison to the radiation doses received have 

been analyzed and included in the BEIR VII report (BEIR VII). Careful analysis of the 

atomic bomb survivor dose versus cancer incidence data has indicated that the overall 

occurrence of solid cancers increases in proportion to radiation dose (BEIR VII). 

However, the specific amounts of radiation dose for which any type of cancer can or will 

occur in the individuals exposed to radiation are unknown due to lack of data.  The rate 

of incidence of specific cancers in the atomic bomb survivors has been analyzed and 

deviances from the rate of incidence for cancers within the general population have 

been noted. The incidence of cancer has been higher in the atomic bomb survivors than 

in the general population (BEIR VII). Also, in the BEIR VII report, Preston and 

colleagues (2003) presented lifetime cancer risk estimates for atomic bomb survivors 

exposed to 1 Sievert (Sv) of radiation. For a person exposed at age 10, the lifetime 

cancer risk estimate was 18–22%, 9% for a person exposed at age 30, and 3% for a 

person exposed at age 50 (BEIR VII). The BEIR VII report attempts to develop the best 

possible risk estimate for human exposure to low-dose, low-LET radiation from the 

collection and analysis of data of individuals exposed to low levels of radiation. The 

BEIR VII report also develops risk estimates from exposure to higher levels of radiation. 

The three different models that have been argued to be used to depict low-levels of 

radiation exposure are the threshold model, the linear-quadratic model, and the linear 

no threshold model (LNT).  
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While there is discussion in the BEIR VII report regarding how the LNT model 

best represents the low-dose human exposure to radiation by depicting how the risk of 

cancer proceeds in a linear fashion at lower doses without a threshold and how the 

smallest dose has the potential to cause a small increase in risk to humans (BEIR VII, 

2006), there is not enough scientific evidence proving the validity of the LNT model as 

the atomic bomb survivors are too small of a sample size with which to form 

generalizations about human effects to low-dose radiation and the exposure of the 

survivors to other health hazards have the potential to result in the same health effects. 

The BEIR VII report concludes that while it is unlikely that there is a threshold of 

exposure to low-dose radiation below which cancers are not induced, the number of 

radiation-induced cancers will be small at low radiation doses (BEIR VII, 2006). While 

moderate radiation doses cause well-documented, non-stochastic (acute) effects, one 

cannot measure significant effects at low-level radiation dose.  

 

However, one of the problems that arises in studying low-level radiation is 

defining low-level radiation (Brues et al.1959). One way of clarifying the idea of low-level 

radiation exposure is by establishing how any radiation exposure, regardless of how the 

exposure is received over a period of years, is low-level if the effects of the exposure 

require many years to become apparent (Brues et al.1959).  The BEIR VII report 

defines low-level radiation doses from zero up to about 100 milliSievert (0.1 Sievert) of 

low-LET radiation (BEIR VII, 2006). The Sievert is a unit of radiation that is a 

combination of the absorbed dose deposited within the tissue and the type of radiation 

providing the energy (i.e. gamma, beta, or alpha). The BEIR VII report also provides 
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conclusions regarding the humans exposed to radiation during the incident in 

Chernobyl.  

 

There were multiple communities near the Chernobyl nuclear accident exposed 

to low-levels of radiation. In Chernobyl, the estimated incidence of radiation-induced 

cancer rose by 3% in the affected areas while there was a 99% survival rate for the 

thousands of children who contracted thyroid cancer with the implication that poverty 

and stress posed a much greater threat to the local communities than radiation fallout 

(Valeska, 2005). The increased incidence of thyroid cancer was radiation dose 

dependent within the population around the Chernobyl areas (BEIR VII, 2006). 

 

Psychological Effects of Radiation Exposure 

The Chernobyl nuclear power plant explosion on April 26, 1986 was one of the 

largest releases of radioactive material from a reactor accident in the twentieth century 

(Adams et al. 2011). Radioactivity from the high-yield fission products Mo-99, Ru-

103&106, I-131&132, Te-132, Cs-134&136&137, and Ba-140 was detected by many 

countries in the northern hemisphere in the first two weeks of May 1986 due to the 

fallout from the Chernobyl Nuclear Power Plant (Chung et al. 1986). While the long-term 

human physical health impact and cancer risk was not as drastic as was originally 

expected at the time of the incident, the long-term mental health consequences have 

been great (Adams et al. 2011). Poorer psychological well-being among the evacuees 

(twenty years after the accident) due to the continued non-resolvable concerns about 

the physical health risks from the accident has also been an ongoing consequence 
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(Adams et al. 2011). While there was a dramatic increase in thyroid cancer among 

exposed children ten years after the Chernobyl accident, there were no other serious 

health effects observed with the exception of the long-term mental health effects 

(Havenaar et al. 1997).  

 

In addition to the higher levels of psychological distress in the affected 

population, there was a high prevalence of DSM-III-R disorders in the severely affected 

Gomel region in Belarus, with a significantly higher risk among evacuees and mothers 

with young children (Havenaar et al. 1997). More evacuee teens from areas of 

Chernobyl reported negative risk perceptions than the controls from other areas had 

reported (Bromet  et al. 2011). Additionally, there is mounting evidence that many 

lifetime psychiatric disorders will first appear in childhood or adolescence (Costello et al. 

2006). The children who are exposed to such higher levels of psychological distress 

following a disaster are more likely to succumb to a psychiatric disorder that will affect 

them in their adult lives. The most common mental health consequences of disasters 

are depression, anxiety, post-traumatic stress disorder, medically unexplained somatic 

symptoms, and stigma (Bromet, 2012). Unfortunately, the long-term psychological 

effects of disasters have not been well studied and more research is necessary (Boice, 

2012).  

 

Disasters involving radiation are particularly pernicious because the exposure is 

invisible and universally dreaded, and the consistent psychological distress of the 

exposure can pose a long-term threat to health (Bromet, 2012). After the Chernobyl 
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disaster, studies of clean-up liquidator workers and adults from contaminated areas 

found a two-fold increase in post-traumatic stress (along with other mood and anxiety 

disorders) and significantly poorer subjective ratings of health (Bromet, 2012). While the 

most important risk factor was severity of exposure among clean-up workers, the major 

risk factor in the general population was perceived exposure to harmful levels of 

radiation (Bromet, 2012). Due to the comorbidity of mental health and physical illness, 

the higher rates of mental health issues within a population exposed to a radiation 

disaster are a concern and must be further examined to eventually reduce the impact of 

the psychological distress. Survivors of the atomic bombings in Hiroshima and Nagasaki 

also reported higher rates of anxiety and physical illnesses not specifically related to 

any disease twenty years after the 1945 bombings (Boice, 2012). 

 

Since mental health is a leading cause of disability, physical morbidity, and 

mortality, health monitoring after radiation accidents like Fukushima should include 

standard measures of well-being (Bromet, 2012). Unfortunately, due to a common 

Japanese stigma towards individuals who admit to having mental health issues, there is 

a great deal of difficulty in addressing the psychological distress caused by the 

Fukushima incident and the subsequent mandatory evacuation. The Fukushima 

residents affected by the nuclear power plant disaster have been reticent in obtaining 

the mental health services they need to reduce their fears regarding the radiation 

contamination from the incident and alleviate the stress from their lifestyle changes after 

moving from their homes. 
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The common fear within the general public regarding any radiation incident has 

also greatly affected the outcome of governmental efforts in Fukushima, Japan. One of 

the many problems that make the evaluation of cancer and non-cancer disease risk in 

Fukushima difficult is the lack of trust of the Fukushima residents due to the common 

theory that the Japanese government and local authorities are hiding important 

information (Akiba, 2012). The estimated doses to workers and to the public in 

Fukushima are too small and have too many sources of confounding bias (i.e. Hepatitis 

C virus, cigarette smoking, medical x-rays, CT/nuclear medicine imaging, etc.) that 

result in the same health effects as radiation exposure and are interfering in the creation 

of a study that would result in a detectable increase in cancer (Boice, 2012). Extensive 

screening of the Fukushima residents with diagnostic radiation procedures for 

discovering incidents of cancer should not be performed as the extensive medical 

screening can result in more radiation exposure than from the Fukushima accident 

(Boice, 2012).  

 

Fukushima Daiichi Nuclear Power Plant Disaster 

An earthquake registering 9.0 on the Richter scale occurred at 2:46 p.m. on 

March 11, 2011 off the Pacific coast of Japan and hit the northeast of Japan (Hazama et 

al. 2013). The three operating reactors at Fukushima Daiichi nuclear power plant shut 

down automatically (Hazama et al. 2013). The earthquake was followed by several 

tsunamis (Hazama et al. 2013) and a large tsunami 41 minutes after the earthquake 

provided a massive wall of rolling water that flooded the emergency generators, leaving 

the plant without power for the cooling systems for the plant cores (Hazama et al. 2013). 
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The three reactors melted down several days later (Unit 1 at 3:36 p.m. on March 12, 

Unit 3 at 11:01 a.m. on March 14, and Unit 2 at 6 a.m. on March 15) due to lack of 

electrical power to cool the radioactive cores (Ishikawa, et al. 2012). The reactor 

meltdown induced the release of hydrogen gas, causing explosions in the reactor 

buildings, and the release of I-131, Cs-134, and Cs-137 into the atmosphere (Ishikawa, 

et al. 2012).  Due to potential concerns of human over-exposure to radioactive 

contamination, all residents within a 3 km radius of the Fukushima Daiichi power plant 

were ordered to evacuate on March 11, 2011, and residents within a 20 km radius were 

ordered to evacuate on March 12, 2011 (Evacuation Orders and Restricted Areas, 

2017).  

 

Radionuclides in Environment after Nuclear Accidents 

After the Fukushima Daiichi reactors meltdown and subsequent explosions, the 

contaminated tsunami water within the reactors were released into the ocean to dilute 

the concentration of the radionuclides and remove the contaminated water from the 

reactor area to avoid further contamination of humans. Although some radionuclides 

were significantly elevated in the ocean water near the discharge point of the 

Fukushima-Daiichi nuclear power plant after the nuclear accident, dose calculations 

suggest minimal impact on marine biota or humans (Buesseler et al. 2011). The minimal 

radioactive impact from direct exposure in the surrounding ocean waters is due to the 

lack of humans and marine biota in the immediate vicinity of the discharge point and the 

dilution of the contaminated water within the ocean body (Buesseler et al. 2011).  
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In order to properly model the radiation doses received in an area with long-term 

radiation exposure, it is necessary to evaluate which contributions to dose are important 

and which are not (Anderson, 2006).  The external radiation dose of the animal species 

in question needs to include approximate doses of the types of vegetation the animal is 

externally exposed to, the amount of radiation available within the specific vegetation, 

and the radiation activity levels in soil. The trees, grasses, shrubs, etc. the animal is 

externally exposed to can provide a radiation dose to the animal if the radionuclides 

present on the surfaces of the vegetation emit beta or gamma energies to the animal as 

the animal walks by the vegetation or by depositing radionuclides on the surface of the 

animal during contact. The external doses also need to include the changing external 

environment and the transport of the radionuclide(s) providing the radiation dose. The 

consistently changing ecological systems in the areas of long-term radiation 

contamination have a considerable effect on the radionuclides of interest through the 

amount of dose from the nuclide and the availability of the nuclide in transferring from 

one area to another. The significance of ecological processes was seen from the fact 

that contamination of agricultural products in Austria was decreasing continuously since 

the Chernobyl accident, whereas the Cs-137 activity measured in plants and wild 

animals in the forest was still elevated (Bossew et al. 2001). A similar effect was seen in 

Fukushima where the preliminary estimated dietary dose levels among Fukushima 

residents were much lower than the maximum permissible dose 1 mSv/year, based on 

new Japanese standard limits for radiocesium in foods (100 Bq/kg for general foods) 

(Harada et al. 2013).  
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While Cs-137 becomes trapped in certain kaolinite clay soils and will not easily 

transfer out of the soil, the radionuclide has a great affinity for water and can transfer 

from one water-based plant or organism to another. The measurement of Cs-137 in 

plants can give an estimate of radiation available in the environment. The radioactivity 

of various terrestrial and aquatic vegetation characteristic of Mediterranean countries 

was measured after the Chernobyl accident as lichens and seaweeds are considered as 

bioindicators of radioactive contamination do to the ability of the plants to uptake and 

store radioactive nuclides such as Cs-137 (Barci et al. 1988). The concentration of long-

lived fission nuclides remaining three months after the Chernobyl accident was found to 

be enhanced in leaves with a needle shape and in lichens (Barci et al. 1988). However, 

differing plant species have differing affinities for differing radionuclides. For example, 

the seaweed Sphaerococcus exhibits a strong specific activity for iodine and ruthenium 

elements and poor concentration for cesium nuclides (Barci et al. 1988).  

 

Research of the radioactive contamination after the Chernobyl accident also 

indicated a differing radionuclide deposition within different animal species. Cs-137 and 

K-40 activities were determined by the gamma-spectrometric method in 49 meat 

samples of five large game species (brown bear, wild boar, roe deer, red deer, and 

chamois) in the mountain forest region of Gorski Kotar in Croatia approximately 25 

years after the Chernobyl accident (Sprem et al. 2013). The results indicated that the 

roe deer, red deer, and chamois (herbivore game species) showed significantly lower 

cesium concentrations than the brown bear and the wild boar (omnivore species) 

indicating that different dietary methods impacted cesium concentrations in meat 



11 

(Sprem et al. 2013). Analysis of the estimated effective dose equivalent from each of 

the large game species showed that the uptake of the highest cesium doses was from 

the consumption of omnivore species meat, while much lower doses was incorporated 

with the consumption of meat from herbivore species (Sprem et al. 2013). The 

components of and the state of the ecosystem within the radiological release area must 

be thoroughly analyzed in terms of radionuclide transport in order to obtain a more 

complete understanding of the potential sources of external radiation dose for any 

human and/or animal species of interest so the possible extent of the types of radiation 

damage can be evaluated.  

 

Ionizing Radiation Effects 

Ionizing radiation can cause biological changes within a living system by 

interacting with multiple targets at the cellular level, such as DNA. Radiation levels of 

0.100 Gy can cause the onset of deterministic effects in humans. Higher levels of 

ionizing radiation (upwards of 1 Gy) can overcome the human body’s natural healing 

protocols and result in specific deterministic effects such as cataracts, erythema, 

nausea, vomiting, and diarrhea (acute radiation sickness). The deterministic effects of 

radiation exposure to humans occur immediately and are a result from a specific range 

of higher doses of exposure and have specific radiation dose thresholds which have 

been accepted by the scientific community. The stochastic effects of radiation exposure 

are long term effects such as cancer and can result from low doses of radiation 

exposure.  
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The stochastic effects of radiation occur many years after radiation exposure and 

are caused by DNA damage. Ionizing radiation can directly cause double strand breaks 

(DSBs) or single strand breaks (SSBs) in the DNA chain or create hydroxyl water 

molecules that damage DNA strands. Differing types of radiation generate distinct 

classes of DSBs, interact with cellular repair proteins in different ways, and the repair 

kinetics of high-linear energy transfer (LET) radiation induced DSBs are different from 

those created by low-LET gamma radiation (Bekker-Jensen, 2006).  

 

Low-LET radiation includes radiation from beta particles and gamma rays while 

high-LET radiation is from alpha particles and neutrons. Alpha particles are considered 

to have a somewhat higher efficiency than the other radiations (beta or gamma) in 

producing many types of biological damage (Brues, et al. 1959). Alpha particles are 

much larger and heavier than beta particles or gamma rays and result in greater 

damage to DNA during impact. While alpha particles travel short distances, cannot 

penetrate skin, and are most hazardous when ingested, gamma rays and beta particles 

can penetrate skin to damage DNA within an organism. DNA damage is related to 

detrimental health effects, but the extent and type of the health effects are not clear for 

low dose radiation. There are many challenges associated with understanding the 

health effects of low doses of low-LET radiation (BEIR VII, 2006).   

 

Disagreements about the stochastic effects from low doses of ionizing radiation 

stem from two problems with the interpretation of observational data (Land, 1980). The 

precise direct estimation of small risks requires impracticably large samples (Land, 
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1980). Also, the precise estimates of low-dose risks based largely on high-dose data, 

(where the sample size requirements are easily satisfied) must depend heavily on 

assumptions about the shape of the dose-response curve (Land, 1980). The sample 

size requirements are easily satisfied for high radiation dose risk estimates because 

higher cancer risks are associated with higher radiation dose and smaller samples sizes 

are needed for higher statistical power. As the radiation risk decreases due to a lower 

radiation dose, a larger sample size is necessary in order to detect the resulting 

radiation effect (Land, 1980). Due to the lack of data on biological effects from low-level 

radiation exposure and the many other variables involved in producing the same health 

effects, there has been considerable debate over the existence of low-level threshold 

radiation doses resulting in future illnesses. Due to the inability to determine the 

existence of a threshold for stochastic effects of radiation, the LNT model is utilized in 

order to protect radiation workers and the public against any long-term health effects of 

radiation. 

 

There are many compounding variables that can affect an individuals’ state of 

health when exposed to an outside stressor that causes biological damage such as 

radiation. As individuals age, the older organs within the individual have a diminished 

capacity to cope with diverse acute and chronic stresses (Jazwinski, 1996). Potential 

confounding between radiation dose and the severity of cancerous disease may explain 

some of the increased cancer risk observed (Doody et al. 2000). The healing 

capabilities of humans also vary across the population and can be markedly different 

than that of other species due to different environmental and man-made stressors such 
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as radiation. The healing capabilities of humans and animals are controlled by the 

genes within DNA. The diverse genes involved in gene silencing, DNA repair, genomic 

stability, and growth factor signaling are strong determinants of life span in a variety of 

species (Dorman et al., 1995; Guarente, 1996; Wright et al., 1996; Smeal and 

Guarente, 1997) (Rudolph et al. 1999). The analysis of the deviations of these genes in 

DNA exposed to radiation from the normal appearance can be used as a surrogate for 

radiation exposure and is a field known as biodosimetry. 

 

Biomarkers of Ionizing Radiation 

Biodosimetry is the estimation of received doses by determining the frequency of 

radiation-induced chromosomal aberrations and is widely applied in humans acutely 

exposed to radiation as a result of accidents or for clinical purposes (Ulsh et al. 2003). 

The technique of biodosimetry in humans can be utilized to determine an estimated 

radiation dose within three days of a radiological event. In biodosimetry, no assumptions 

are required regarding external exposure rates and the movement of organisms into 

and out of contaminated areas (Ulsh et al. 2003). Biodosimetry provides a genetically 

relevant biomarker of cumulative lifetime radiation exposure (Ulsh et al. 2003). Specific 

biodosimetric techniques can be performed to determine if an organism experienced 

significant chromosomal changes from a single or prolonged radioactive exposure.  

 

At the present time, chromosome aberrations observed in the peripheral blood 

lymphocytes of an individual may be used in biodosimetry as an indicator of radiation 

exposure (Hall et al. 2003). Chromosomal aberrations such as dicentric chromosomes 
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and acentric fragments are a result from a break in two chromosomes in the DNA of a 

cell during interphase and the rejoining of the DNA into a distorted chromosome and 

fragments (Hall et al. 2003). The dicentric rejoining eventually leads to the reproductive 

death of the cell (Hall et al. 2003). However, research has shown the prolonged 

existence of dicentrics chromosomes in cancer cells (MacKinnon et al. 2011) and the 

persistence of dicentric chromosomal aberrations in atomic bomb survivors (Awa et al. 

1978). The stability of dicentrics also depends on the organism (Stimpson et al. 2012). 

The lymphocytes in a blood sample can be cultured; forced to divide via mitogens; have 

cell division arrested; and have the resulting chromosomes viewed via microscope so 

that the dicentrics and acentrics can be scored (Hall et al. 2003). The number of 

dicentrics observed from a blood sample of an individual exposed to an unknown 

amount of radiation can be compared to in-vitro cultures exposed to known doses (dose 

response curve) and an estimated dose can be obtained for the unknown amount of 

radiation exposure (Hall et al. 2003).  

 

A dose response curve is a graph of observed chromosomal aberrations versus 

specific radiation doses. While there are multiple variations within dicentric dose 

response curves for humans due to confounding variables such as genetics, other 

environmental toxicities, diet, etc., and type or duration of radiation exposure, a study 

creating a dicentric dose response curve for human blood irradiated with 1 Gy dose of 

250 kVP x-rays found 304 dicentric and ring chromosomes for a total of 2,800 cells that 

were analyzed (Pajic et al. 2014). The dose response curve forms a linear quadratic 
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relationship when the two chromosome breaks are a result of two particle hits 

(Catchside et al. 1946). 

 

Using a similar technique, the existence of micronuclei, a small chromosomal 

fragment that was not incorporated into a dividing cell during cell division, can be 

observed and can also be used to estimate radiation dose via an established dose 

response curve. The micronucleus technique is a method for measurement of 

chromosomal damage in mitogen-stimulated human lymphocytes (Fenech et al. 1985). 

Micronuclei require one cell division to be expressed (Fenech et al. 1985). For human 

lymphocytes irradiated in vitro, there is a linear relationship between dose of radiation 

and number of induced micronuclei which was observed due to the success of 

quantifying micronuclei in lymphocytes via the cytokinesis-block method (Fenech et al. 

1985).  

 

Since the number of dicentrics/acentrics and micronuclei decline as time 

progresses, dicentrics and micronuclei are known as “unstable” chromosomal 

aberrations and radiation biomarkers of effect (Hall et al. 2003). Dicentrics and 

micronuclei will eventually provide an underestimation of dose as time progresses after 

radiation exposure (Hall et al. 2003). Translocations are chromosomal aberrations that 

are a result of chromosomal breaks and subsequent rearrangement of non-homologous 

chromosomes and have the ability to continue to exist after subsequent cell divisions 

(Hall et al. 2003). As translocations continue to exist for many years after radiation 

exposure, translocations are considered to be “stable” chromosomal aberrations and 
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are considered a radiation biomarker of exposure which can be used to provide a more 

accurate dose estimate years after radiation exposure (Hall et al. 2003). 

 

The fact that many of the radiation exposed cells can survive in the body of an 

irradiated human for twenty and more years is now well established (Buckton et al. 

1978). What correlation may exist between the irradiation-damaged cells and possible 

late effects of the irradiation, such as the increased frequency of mid-line cancers and 

leukemia, still remains an enigma (Buckton et al. 1978). For example, when a sister 

chromatid exchange (SCE) occurs as the breakage of four strands of DNA, a switch of 

the strands from one to the other arm of the same chromosome, and the rejoining of 

those strands in their new location, the question that remains to be answered is whether 

the breakage and rejoining occurs without producing any modifications in the genetic 

code (Carrano, 1986). Further research on the sites of radiation-induced chromosome 

exchange in cells that can survive in-vivo, on the chromosome sites involved in cells 

that are observed to form clones, and on the cytogenetics of radiation-induced 

malignancies, can reveal patterns of chromosomal changes that can be interpreted as 

either harmless or as the commencement of dangerous malignancies (Buckton et al. 

1978). The analysis and subsequent correlation of chromosomal aberrations with 

radiation dose is a bio-dosimetric technique that can one day be used to reveal the 

incidence of malignant health concerns from radiation exposure. 

 

The analysis of dicentric chromosomes in human peripheral blood lymphocytes 

by Giemsa staining is the most established method for biological dosimetry (Shi et al. 
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2012). However, the dicentric analysis via the Giemsa staining method requires a well-

trained investigator due to the difficulty in detecting aberrations quickly and accurately 

(Shi et al. 2012). Additionally, the Giemsa staining method is very time consuming due 

to the high number of chromosomal metaphases that need to be analyzed in order to 

obtain statistically relevant results. For example, at low radiation doses, only 15 

dicentrics were found per 2800 human lymphocyte metaphase spreads analyzed (Pajic 

et al. 2014). Another technique for analyzing dicentric aberrations in metaphase 

chromosome spreads is via FISH (Fluorescence In-Situ Hybridization). Although 

accuracy in detection of chromosome abnormalities by FISH techniques is higher than 

that by Giemsa analysis, the acquisition of consistent results with multi-color FISH 

analysis requires high-quality FISH techniques which require expensive fluorescent dye 

creations (Shi et al. 2012). The analysis of translocations within the chromosome of 

human blood exposed to low-LET gamma rays indicates a higher frequency of 

translocations in comparison to dicentrics due to limitation of the number of centromeres 

for the dicentrics, whereas there is no such limitation for the induction of translocations 

(Matsumoto et al. 1998).  

 

Analysis of chromosomal aberrations was performed on blood lymphocytes of 

human blood exposed to Co-60 gamma rays and dose response curves were created 

for dicentric aberrations seen via Giemsa staining and FISH painting (Lindholm et al. 

1998). Differences in chromosomal aberrations scoring criteria resulted in large 

uncertainties surrounding the linear component of the dose response at the low doses 

(Lindholm et al. 1998). Dose reconstruction of past radiation exposures for humans in 
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cases of low doses is very dependent on the linear coefficient of the equation fitting the 

control dose-response curve (Lindholm et al. 1998). Due to the lack of observable 

chromosomal aberrations from low levels of radiation, the dose-response curve section 

at the low radiation doses is inconsistent and can affect the dose estimate ascertained. 

The dose-response curve for higher levels of radiation is well established. Other 

radiation dosimetry analysis techniques that have been used for higher radiation activity 

samples include liquid-scintillation counting, inductively coupled plasma mass 

spectrometry (ICP-MS), laser resonance ionization mass spectrometry (RIMS), and 

surface ionization mass spectrometry (SIMS) (Straume et al. 2006). The biodosimetry 

technique of chromosomal aberration analysis has been used extensively for low dose 

radiation exposure.  

 

The biodosimetry technique of measuring chromosomal abnormalities to 

estimate radiation dose has been used in studies involving radiation workers. A FISH 

method was used to measure chromosome aberration rates in lymphocytes of 30 retired 

plutonium workers with combined internal and external radiation doses greater than 0.5 

Sv along with 17 additional workers exposed to hazardous substances during the 

course of employment (Livingston et al. 2006). Radiation exposures to the plutonium 

worker group were primarily the result of internal depositions of plutonium and 

plutonium’s radioactive decay products resulting from various work-related activities and 

accidents (Livingston et al. 2006). The study discovered that elevated rates of stable 

chromosome aberrations were found in lymphocytes of former workers decades after 

plutonium intakes, providing evidence that chronic irradiation of bone marrow stem cells 
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induces cytogenetically altered cells that persist in peripheral blood (Livingston et al. 

2006). While research involving radiation exposure to humans has provided consistent 

results with damaged DNA, radiation research on other wildlife forms has provided 

differing conclusions.  

 

When Fuma et al. in 2010 conducted radiation exposure research on aquatic 

microbial populations, the population decrease effects were not dependent on radiation 

doses, as some microbial populations in the irradiated microcosm were larger than 

those of the control (Fuma et al. 2010). The unexpected results were regarded as 

indirect effects through interspecies interactions from population changes in other 

organisms co-existing in the irradiated microcosm (Fuma et al. 2010). The conclusion 

was that some indirect effects on consumers and decomposers likely arose from inter-

species competition within each trophic level and that prey-predator relationships 

between producers and consumers caused some indirect effects on producers (Fuma et 

al. 2010). Another extensive radioecological study conducted by Zaitsev et al. in 2013 

around Chernobyl discovered that despite the high resistance of most of the soil-

dwelling organisms (Tardigrada, Nematodes, millipedes, collembolans, and oribatid 

mites) to ionizing radiation, some soil animals (earthworms) were very vulnerable to 

radioactive contamination due to low motility, direct contact with hot particles, and 

radioisotope accumulation in soil. Other experiments using extremely high doses of 

radiation (from Pu-239 up to 50 Gy) did not produce a lower population response 

among amoebae and the same effect was observed for other protists at higher doses at 

500 Gy (Krivolutsky et al., 1988). In an ecosystem exposed to a new or foreign influence 
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that can potentially affect multiple species within the environment, the analysis of the 

interaction and effects of the relationships the species have with the surroundings are 

vital in order to determine the future effects of the foreign influence on the species in 

question. 

 

Wild Boar Information 

Wild boar are an animal species that are considered to be very intricately 

involved within the ecosystem and are very similar biologically to humans which make 

them useful as a model species for study (Kobayashi et al. 2012). Wild boar are a 

sentinel species to humans due to morphological and metabolic similarities. The 

transplantation of pig organs into humans are currently being investigated as a solution 

for the increasing shortage of human donor organs (Ekser et al. 2009). After the 

disaster at Fukushima Daiichi and the subsequent evacuation of the humans in the local 

area, the Japanese wild boar have increased in population and have invaded the vacant 

towns in the prefecture (Tanoi, 2016). As there are no humans living within the areas of 

the Fukushima prefecture that still have annual radiation doses above 50 mSv, a human 

study investigating the effects of low-level, lingering radiation at Fukushima cannot be 

accomplished and a suitable animal model is necessary. One of the merits of biological 

monitoring is that the condition of a resident population of plants or animals can be used 

to survey improvement or deterioration of the environment at a specific site, or to 

compare resident populations with those at reference sites (Loar et al. 1992). A detailed 

study involving Japanese wild boar living within the exclusion zone in the Fukushima 

prefecture can not only indicate the effects of low-level, persistent radiation, but can 
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also provide information regarding the overall state of the ecosystems with the 

encompassing areas.  

 

Unfortunately, while the physical and morphological aspects of most wild boar 

species and sub-species have been thoroughly investigated, there are little data on the 

Japanese wild boar (Sus scrofa leucomystax). Many wild boar species have been 

known to traverse territories spanning several miles, but published data on the territory 

size of the Japanese wild boar are not yet available. Wild boar are omnivores and are 

known to burrow through topsoil in order to obtain plants and to hunt in order to eat 

small rodents. The wild boar top soil burrowing is a trait that exposes the Japanese wild 

boar living within the Fukushima prefecture to available radionuclides (Cs-134 and Cs-

137) in the ground.  

 

The internal digestion and retention of radionuclides by the wild boar can affect 

the wild boar DNA within the blood. Wild boar generally have 36 chromosomes (18 

chromosome pairs) while some species of wild boar can have 37 chromosomes (Silva 

et al. 2011). There are current investigations underway that are performing detailed 

chromosomal karyotyping of the Japanese wild boar as there have not been any 

previous investigations on Japanese wild boar chromosomes. There are no published 

data on analyzing any wild boar blood exposed to radiation for chromosomal 

aberrations, irradiating wild boar blood, or the specific techniques to process wild boar 

blood for chromosomal analysis.  One study involving Japanese wild boar was 

conducted by Tanoi et al. in 2016. 
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The concentrations of radioactive cesium in different organs of wild boar 

inhabiting the town of Iitate, Fukushima were measured after the Fukushima Daiichi 

nuclear power plant accident by collecting 24 wild boar samples and measuring 

radiation concentration using a NaI gamma ray counter in 2012 (Tanoi et al. 2016). The 

radiocesium concentration (Cs-134 and Cs-137) in the wild boar samples was highest in 

muscle (approximately 15,000 Bq/kg) and low in ovary, bone and thyroid gland, 

indicating a large variation among tissues within the wild boar (Tanoi et al. 2016). The 

wild boar in the Fukushima prefecture of Japan will have higher radiocesium muscle 

concentrations if the wild boar have habitats that have not been decontaminated from 

radionuclides (Anderson et al. 2017). The variation of muscle wild boar radiocesium 

concentrations is a combination of environmental exposure to radiation and the ability of 

the wild boar to internally processes and remove radiocesium. Different components of 

the Japanese wild boar collect varying levels of radioactive cesium which can affect the 

internal radiation dose the wild boar receives and subsequently affect the chromosomal 

aberrations. 

 

Pilot Study Goals 

The goal of the study was to determine if blood biomarkers in wild boar were 

suitable for determining radiation dose.  

The objectives of the pilot study were as follows: 

1. Collect wild boar blood and ascertain if a dose response relationship is present in 

wild boar 
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2. Creation of wild boar dose response curve from control data 

3. Compare estimated wild boar dose with acentric/dicentric measurement 

 

For the Quantifying Biomarkers in Wildlife Exposed to Low Doses of 

Environmental Radiation pilot study, control wild boar blood was collected from 

Kentucky, USA and irradiated at Colorado State University. The control wild boar blood 

was obtained by USDA hunters in Kentucky from six wild boar euthanized for research 

purposes and shipped overnight to Colorado State University. The six control wild boar 

blood samples were then irradiated at varying low doses of radiation.  

 

The irradiated wild boar blood was processed via human cell culture 

chromosome stimulation protocols to initially determine if the blood cell processing 

protocols would be effective in ensuring cell progression through the cellular cycle, 

through the creation of metaphase cellular spreads, and through cell division. When the 

blood processing protocols were effectively utilized, a dose response relationship was 

created via dicentric analysis within metaphase chromosomal spreads in the control wild 

boar blood exposed to gamma ray radiation dose. Another dose response relationship 

was also created via micronuclei analysis within bi-nucleated cells in the control wild 

boar blood exposed to gamma ray radiation dose.  

 

Wild boar blood from areas of the Fukushima Prefecture in Japan was collected, 

processed via the blood cell processing protocols that were determined to be effective 

in obtaining metaphase spreads and bi-nucleated cells, and analyzed for chromosomal 
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aberrations. The chromosomal aberrations were compared with the chromosomal 

aberrations observed in the irradiated control wild boar blood in order to verify the 

feasibility of the biodosimetry technique and to potentially estimate the radiation dose to 

the Japanese wild boar in Fukushima.  

 

 The hypothesis of the pilot study was that it is possible to estimate chronic 

radiation dose to wild boar exposed to low levels of lingering environmental ionizing 

radiation in Fukushima prefecture as well as in irradiated blood from wild boar residing 

in areas experiencing only natural background radiation with biodosimetry techniques. 
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MATERIALS AND METHODS 

 

Institutional Animal Care and Use Committee (IUCAC) Exemption 

The quantifying biomarkers in wildlife exposed to low doses of environmental 

radiation pilot study has an animal use authorization1.  

 

Obtaining Wild Boar Blood Samples from Fukushima Prefecture, Japan 

Wild boar blood was obtained inside the Fukushima Prefecture via assistance of 

professional Japanese boar hunters.  Japanese boar hunters lay traps to capture 

Japanese Wild Boar for governmental purposes of culling the nuisance population. The 

traps are checked every morning by the Japanese boar hunters. The hunters 

dispatched the Wild Boar either through electrical shock or rifle bullet through the head. 

Researchers from the International Institute of Environmental Radioactivity (IER) at 

Fukushima University, Japan are then contacted to collect the wild boar blood. The wild 

boar blood was collected through a vein in the neck of the boar via a syringe and an 18 

gauge needle and placed into a heparinized tube for transport to the microbiology lab at 

the IER. The blood was then processed either for dicentric analysis via creation of 

metaphase spreads or micronuclei analysis via creation of bi-nucleated cells, dropped 

onto slides, sealed with DPX mounting media and coverslip, and prepped for shipment 

to Colorado State University with the approved USDA United Stated Veterinary Permit 

for Importation and Transportation of Controlled Materials and Organisms and Vectors 

Number 132546 (see Appendix H). 
                                                        
1 The IACUC (Institutional Animal Care and Use Committee) of Colorado State 
University approved the pilot study on May 5, 2016 (See Appendix A). 
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Obtaining and Irradiating Control Wild Boar Blood Samples from Kentucky, USA 

Wild boar blood (as a control) was donated by USDA hunters from Kentucky, 

USA. The Wild Boar Blood was obtained immediately post-mortem. The control blood 

was obtained with syringes via a vein in the neck and stored at room temperature in 

heparinized vials from six wild boar. After overnight shipment to Colorado State 

University (CSU) via FedEx, the blood was separated into 7 vials per wild boar (42 vials 

total) and irradiated at the irradiator in Room 4 at the Molecular and Radiological Health 

Sciences Building at CSU to 0 Gy (as control), 0.1 Gy, 0.2 Gy, 0.3 Gy, 0.5 Gy, 1 Gy and 

2 Gy. The blood was irradiated for the times depicted in Table 1 by Cs-137 gamma rays 

at a dose rate of about 6 Gy/hr inside the irradiator on a table 41.75 cm from the source 

(Marcinko et al. 2017).  

 

Table 1: Control Wild Boar Blood Irradiation Times and Doses 

Control Blood Time 
in Irradiator 

Dose to 
Control Blood 

0 minutes 0 Gray 
1 minutes 0.1 Gray 
2 minutes 0.2 Gray 
3 minutes 0.3 Gray 
5 minutes 0.5 Gray 
10 minutes 1 Gray 
20 minutes 2 Gray 

 

The irradiated blood was then processed for dicentric analysis via creation of 

metaphase spreads or micronuclei analysis via creation of bi-nucleated cells at Dr. 
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Susan Bailey’s Biological Safety Cabinet 1 Laboratory at the Molecular and Radiological 

Health Sciences building at Colorado State University. 

 

Metaphase Spread Analysis for Dicentrics (see Appendix B, C, D, and G) 

The wild boar blood was cultured in RPMI-1640 medium supplemented with 1% 

L-glutamine, 30% FBS and 1% antibiotic-anti-mycotic at 37°C for 68 hours. The 

following primary antibodies were used to induce cell division: 50 μg/mL PMA and 1 

μg/mL Ionomycin. At 68 hours, 0.1 μg/mL of Colcemid was added to the cultures to stop 

cell division at metaphase and the cultures were placed back into the incubator. At 72 

hours, the cells were washed with 3:1 methanol:acetic acid solution and treated with a 

hypotonic solution (75mM KCl) for 30 min at 23°C. The cells were washed and 

centrifuged five times with 3:1 methanol: acetic acid fixative to remove all the red blood 

cells from the lymphocytes. Cells were dropped onto slides wet with cold, deionized-

water and stored in a humidity chamber for 24 hours to age. After 24 hours, slides were 

immersed in 5% Giemsa stain in Gurr buffer solution for 8 min, rinsed in deionized water 

for 10 minutes, and allowed to dry. Coverslips were placed onto slides via DPX 

Mounting Serum. For the Kentucky Wild Boar control samples, 100 metaphase spreads 

per sample/dose were analyzed for all observable dicentrics under a bright field 

microscope at 1000x magnification. For Fukushima wild boar blood samples, 200 

metaphase spreads per sample/dose were analyzed under a bright field microscope at 

1000x magnification.  
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Bi-nucleated Cell Analysis for Micronuclei (see Appendix B, E, F, and G) 

The wild boar blood was cultured in RPMI-1640 medium supplemented with 1% 

L-glutamine, 30% FBS and 1% antibiotic-anti-mycotic at 37°C for 44 hours. The 

following primary antibodies were used to induce cell division: 50 μg/ml PMA and 1 

μg/mL Ionomycin. At 44 hours, 3 μg/mL of Cytochalasin B was added to the cultures to 

stop cell division and the cultures were placed back into the incubator. At 72 hours, the 

cells were washed with 3:1 methanol:acetic acid solution. The cells were washed and 

centrifuged four times with 3:1 methanol: acetic acid fixative to remove all the red blood 

cells from the lymphocytes. Cells were dropped onto slides wet with deionized-water 

and stored at -20°C until ready for Giemsa staining. For Giemsa staining, slides were 

immersed in 5% Giemsa stain in Gurr buffer solution for 8 min, rinsed in deionized water 

for 10 minutes, and allowed to dry. Coverslips were placed onto slides via DPX 

Mounting Serum. For Kentucky Wild Boar control samples, 100 bi-nucleated cells per 

sample/dose were analyzed for all observable micronuclei under a bright field 

microscope at 1000x magnification. For Fukushima wild boar blood samples, 200 bi-

nucleated cells per sample/dose were analyzed for all observable micronuclei under a 

bright field microscope at 1000x magnification. 
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RESULTS 

 

Control Wild Boar Blood Dicentrics 

In Table 2, the number of dicentrics observed in control wild boar blood irradiated 

with radiation were depicted. Each control wild boar blood sample was assigned a 

random sample number prior to dicentrics analysis in accordance with the IAEA 

biodosimetric sampling strategy (Dosimetry, 2011).  

 
Table 2: Dicentrics in Control Kentucky Wild Boar Irradiated Blood Samples 

Wild Boar 
Number 

Radiation 
Dose 

Received 
(Gy) 

Random 
Sample 
Number 

Metaphase 
Spreads 
Analyzed 

Dicentrics 
Found 

1 0 15 0 N/A 
1 0.1 32 0 N/A 
1 0.2 82 0 N/A 
1 0.3 13 0 N/A 
1 0.5 83 0 N/A 
1 1 62 0 N/A 

1 2 46 0 N/A 

2 0 20 100 0 
2 0.1 68 100 0 
2 0.2 79 100 0 
2 0.3 70 100 0 
2 0.5 4 100 0 
2 1 10 100 1 
2 2 52 100 0 
3 0 97 100 0 
3 0.1 29 100 0 
3 0.3 92 20 0 
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3 1 26 100 1 
4 0 55 60 0 
4 0.2 36 100 0 
4 0.5 93 100 0 
4 1 12 0 0 
4 2 63 100 1 
5 0 37 100 0 
5 0.1 30 100 0 
5 0.2 41 100 0 
5 0.3 35 100 1 
5 0.5 53 100 0 
5 1 58 100 0 
5 2 99 100 1 
6 0 86 100 0 
6 0.1 90 100 0 
6 0.2 25 100 0 
6 0.3 49 100 0 
6 0.5 73 100 0 
6 1 51 100 0 
6 2 1 100 3 
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 In Figure 1, the number of dicentrics per metaphase spread were graphed versus 

the radiation dose to each of the control wild boar blood sample.  

 
Figure 1: Dicentric Dose Response Curve for Control Kentucky Wild Boar Irradiated 

Blood 
 

Figure 2 depicts a normal metaphase spread without any chromosomal 

aberrations from a control wild boar blood sample that was processed via the 

Metaphase chromosome processing protocol (see Appendix C). 

 
Figure 2: Control Metaphase Spread from Pig 73 (Wild Boar #6 irradiated to 0.5 Gy) 

without chromosomal aberrations 
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Control Wild Boar Blood Micronuclei 

In Table 3, the number of micronuclei observed in control wild boar blood 

irradiated with radiation were depicted. Each control wild boar blood sample was 

assigned a random sample number prior to micronuclei analysis in accordance with the 

IAEA biodosimetric sampling strategy (Dosimetry, 2011). 

Table 3: Micronuclei in Control Kentucky Wild Boar Irradiated Blood Samples 
Wild Boar 
Number 

Radiation Dose 
Received (Gy) 

Random Sample 
Number 

Bi-nucleated 
Cells Analyzed 

Micronuclei 
Found 

1 0.5 83 0 N/A 
2 0.1 68 7 0 
2 0.3 70 100 0 
2 1 10 100 0 
2 2 52 100 0 
3 0 97 100 0 
3 0.2 18 100 0 
3 0.5 5 100 0 
4 0.1 65 100 0 
4 0.2 36 100 0 
4 2 63 100 0 
5 0 37 100 1 
5 0.5 53 0 N/A 
5 2 99 100 2 
6 0.3 49 0 N/A 
6 0.5 73 100 0 
6 1 51 30 0 
6 2 1 100 1 
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 In Figure 3, the number of micronuclei per bi-nucleated cell was graphed versus 

the radiation dose to each of the control wild boar blood sample. 

 
Figure 3: Micronuclei Dose Response Curve for Control Kentucky Wild Boar Irradiated 

Blood 
 

In Figure 4, bi-nucleated cells from a control wild boar blood sample illustrate 

normal cell division without the presence of micronuclei.  

 

 
Figure 4: Control Bi-nucleated Cell from Pig 63 (Wild Boar #4 exposed to 2 Gy) without 

chromosomal aberrations 
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In Figure 5, bi-nucleated cells from a control wild boar blood sample illustrate the 

creation of micronuclei during cell division. 

 

 
Figure 5: Control Bi-nucleated Cell from Pig 1 (Wild Boar #6 exposed to 2 Gy) with 

micronuclei formation 
 

Fukushima Wild Boar Dicentric Biodosimetry 

In Table 4 and Table 5, wild boar blood data are shown for samples obtained from 

wild boar euthanized during governmental wild boar population control procedures in 

the Fukushima Prefecture, Japan. The wild boar blood was obtained during daily trips 

into the exclusion zones (Namie, Okuma, etc) in the Fukushima prefecture in Japan and 

obtained by researchers from the Institute of Environmental radioactivity (IER) every 

morning at 1000 hrs. At 1000 hrs, the researchers from the IER would follow the 

governmental hunters to each of the wild boar traps. The hunters would euthanize any 

wild boar in the traps, and the researchers would obtain wild boar blood samples as well 

as other biological samples (i.e. hair, teeth, organs, tissue, etc.) for other research 

projects. The wild boar blood samples were then driven to the IER by 1800 hrs the 

same day for processing via the Metaphase chromosome processing protocol (see 

Appendix C) or the Bi-nucleated cell processing protocol (see Appendix E). The 
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processed lymphocytes would then be dropped onto slides (see Appendix D) and 

Giemsa stained (see Appendix G). After successful coverslip application onto the slides, 

the wild boar slides with metaphase spreads and bi-nucleated cells were prepared for 

shipment to CSU in the USA.  

Two hundred metaphase chromosome spreads (or 200 bi-nucleated cells) were 

analyzed via 1000x magnification with the microscope and all observable chromosomal 

aberrations were counted, photographed, and resulting images saved. Table 4 depicts 

the dicentrics found within the metaphase spreads that were analyzed from the wild 

boar blood samples obtained in Fukushima, Japan. 

Table 4: Dicentrics in Fukushima Wild Boar Blood Samples 

Wild Boar 
Sample Number 

Date Wild 
Boar Blood 
Acquired 

Metaphase 
Spreads 
Analyzed 

Dicentrics 
Found 

160610-1 160610 115 0 
161208 (0-236) 161208 117 1 
161208 (0-237) 161208 75 0 
161209 (0-239) 161209 200 1 
161209 (0-240) 161209 200 2 
161209 (0-242) 161209 200 0 
161213 (0-246) 161213 200 0 
161215 (T-1) 161215 200 0 
161215 (T-2) 161215 200 0 
161216 (0-247) 161216 200 0 
161216 (F-117) 161216 200 0 

 

Figure 6 depicts a dicentric and corresponding acentric fragment from a wild boar 

blood sample obtained from the Fukushima Prefecture in Japan. 
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Figure 6: Dicentric in Metaphase Spread from Pig 161209 0239 from Fukushima 

Prefecture, Japan 
 

Fukushima Wild Boar Micronuclei Biodosimetry 

Table 5 depicts the micronuclei found within the bi-nucleated cells that were 

analyzed from the wild boar blood samples obtained in Fukushima, Japan. 

 
Table 5: Micronuclei in Fukushima Wild Boar Blood Samples 

Wild Boar 
Sample 
Number 

Date Wild 
Boar Blood 
Acquired 

Bi-nucleated 
Cells Analyzed 

Micronuclei 
Found 

160801-1 160801 200 0 
160804-1 160806 200 0 

161206 (0-228) 161206 200 1 
161206 (0-229) 161206 200 0 
161206 (0-231) 161206 200 2 

 

Figure 7 depicts micronuclei emerging from a bi-nucleated cell during cell division 

from a wild boar blood sample obtained from the Fukushima Prefecture in Japan. 
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Figure 7: Micronuclei in Bi-nucleated Cell from Pig 161206 (0-231) from Fukushima 

Prefecture, Japan 
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DISCUSSION 

 

Data Analysis 

A limited number of dicentrics were observed for all the irradiated control wild 

boar blood samples (Table 2).  The wild boar blood samples irradiated at 2 Gy also had 

minimal dicentrics observed in the metaphase spreads processed from the wild boar 

blood samples. Several wild boar blood samples were not scored for dicentrics due to 

inadequate staining or too few metaphase spreads. Due to the limited number of 

observed dicentrics in all of the samples, a dose response curve for the low radiation 

doses could not be established (Figure 1). The expected result was not observed as the 

wild boar blood samples irradiated at 2 Gy were anticipated to contain dicentric 

chromosomal abnormalities in every sample irradiated at 2 Gy.  

 

Micronuclei were virtually nonexistent in all the irradiated control wild boar blood 

samples (Table 3). While many micronuclei samples were not scored due to the non-

existence of bi-nucleated cells, the samples that were scored represented all the 

irradiation doses (0 Gy, 0.1 Gy, 0.2 Gy, 0.3 Gy, 0.5 Gy, 1 Gy, and 2 Gy). Since there was 

limited micronuclei formation, a dose response curve for the low radiation was not 

created (Figure 3). The expected result was again not observed for the micronuclei 

assessment as the wild boar blood samples irradiated at 2 Gy were anticipated to 

contain micronuclei chromosomal abnormalities. 
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Very few dicentrics were observed for all the wild boar blood samples obtained in 

the Fukushima Prefecture in Japan (Table 4).  While a higher number of metaphase 

spreads were scored (200 metaphase spreads) in comparison to the control wild boar 

blood sample analysis (100 metaphase spreads), additional dicentrics were not 

observed. Also, a limited number of micronuclei was observed for all the wild boar blood 

samples obtained in the Fukushima Prefecture in Japan (Table 5). 

 

Japan and USA Laboratory Work Difficulties 

Due to differences in equipment and lack of adequate supplies, there were 

multiple laboratory procedures that were difficult to conduct in Japan, and there are 

several recommendations for improving future studies. As all of the wild boar blood 

processing protocols require the wild boar blood to be at room temperature prior to 

processing, the timetable for acquiring the wild boar blood and the commencement of 

the laboratory protocols was vital. The wild boar blood was obtained by IER researchers 

at 1000 hrs in the morning and would not arrive at the IER laboratory until 1800 hrs in 

the evening. The lag time between wild boar blood acquisition from wild boar that had 

been euthanized and white blood cell processing caused the wild boar blood to clot. The 

clotting in the blood would reduce the ability of wild boar blood cells to culture properly 

and not produce metaphase spreads or bi-nucleated cells.  

 

In addition to the timetable of wild blood acquisition, the method of obtaining 

blood from the wild boar is also vital. When the wild boar were shot, most of the blood 

would exit the wound onto the ground and be unusable for laboratory analysis. The wild 
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boar that were electrocuted provided an adequate amount of blood for analysis of 

dicentric and micronuclei chromosomal abnormalities. While obtaining wild boar blood 

from the chest cavity also provided more blood than the carotid artery in the neck, the 

wild boar blood from the chest cavity produced mold within the samples during cell 

culturing and resulted in the incubator being infested with mold. The moldy samples 

were discarded as cell stimulation could not take place. The wild boar blood should only 

be obtained from an available artery or vein in the wild boar and not the chest cavity to 

reduce mold contamination in both the cell cultures and within the laboratory incubator. 

 

Another method to reduce mold contamination is to properly mix the media 

mixture by adding the Fetal Bovine Serum (FBS) and the antibiotic-antimycotic to the 

original 500 mL RPMI media bottle, mixing the components by inverting the tightly 

sealed bottle, and filtering the mixture with a filter attached to a laboratory integrated 

vacuum. There was no laboratory vacuum system in the IER and an external vacuum 

pump had to be adjusted to provide suction for all the laboratory procedures. The 

vacuum pump was ineffective at times and should be replaced with a better system. 

Another system for reducing mold contamination is the laboratory hood. Ideally, a 

microbiology laboratory hood with positive pressure air flow should be utilized for wild 

boar blood processing to reduce mold contamination. The IER laboratory hood that was 

utilized was not providing positive pressure or negative pressure airflow which could 

have contributed to mold contamination in the cell cultures.  
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Due to the lack of blood processing equipment in the IER in Japan, all the 

experimental equipment and chemicals were ordered and delivered to the IER two 

weeks prior to the arrival of the student researchers. The laboratory equipment and 

chemicals must be functioning and thawed prior to the acquisition and processing of the 

wild boar blood. Additionally, all the laboratory chemicals to be used in the foreign 

laboratory must be thoroughly researched and processing protocols analyzed prior to 

arrival in the foreign laboratory. For example, both the mitogens PMA and Inomocyin 

arrived at the IER laboratory in sealed vials, without instructions on how to properly 

extract the powdery chemicals. The proper method of extraction was to inject 1 mL of 

DMSO into the vial, mix, re-inject, and remove via syringe. Unfortunately, 1 mL of 

deionized water was utilized and the mitogens were not properly homogenized in 

solution which resulted in the media mixture and subsequent cell culturing to not 

produce metaphase spreads.  

 

To ensure the cell culture is properly growing, the appropriate flasks need to be 

purchased and utilized. Unfortunately, due to language barriers between the research 

students and the Japanese IER staff, flasks that had the option to be non-vented were 

purchased and were accidentally sealed during several blood sample processing 

attempts which caused the cells to die. In future studies, only vented flasks should be 

utilized in order to avoid the error. Another error to avoid is to determine the appropriate 

speed settings of the IER centrifuges. According to protocols, the metaphase spread 

samples and the bi-nucleated cell sample were to be centrifuged at 1000 RPM and 500 

RPM, respectively.  However, all of the centrifuges at the IER did not separate the cells 
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into pellet form from the solution unless speeds of 1700 RPM and 900 RPM were used. 

The speed difference may be a deviation with the Japanese centrifuges in comparison 

to the American centrifuges.  

 

Another deviation in equipment was the utilization of the IER microscope and 

camera. The microscope at the IER allowed for adequate viewing of the chromosomal 

aberrations at 1000x magnification, however, the camera attached to the microscope 

was out of focus and would not save clear images of the dicentrics or micronuclei. 

Future researchers should ensure the microscope camera can effectively take and store 

images at 1000x magnification. Future researchers should also confer with the IER staff 

in utilizing the 1000x magnification on the microscope without a coverslip on the slide. 

While the coverslip on the slide provides a barrier between the microscope lens and the 

cells making cleaning much easier with an appropriate microscope lens cleaner, the 

coverslip and the DPX mounting serum also create an additional barrier between the 

chromosomal aberrations and the microscope which can interfere with focusing the 

microscope lens clearly to observe dicentrics or micronuclei.  

 

The most effective method for counting dicentrics and micronuclei on a slide 

involves omitting the application of the coverslip and mounting media. If the processed 

wild boar blood samples can be scored with the IER microscope and recorded with the 

IER microscope camera in Japan (with the approval of the IER staff in use of the 

microscope without a slide coverslip and mounting media), the slides will not have to be 

shipped to the USA under the USDA permit guidelines to be sealed with a coverslip. 
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The wild boar blood obtained in Japan will be more easily scored for chromosomal 

aberrations without a coverslip and mounting media if the microscope analysis was 

conducted in Japan instead of the USA. 

 

In addition to proposed changes to laboratory equipment and protocols for 

working in a foreign country, a few suggestions are provided for future studies involving 

wild boar irradiated blood at CSU in the USA. Some of the control wild boar blood 

samples (wild boar 1) were processed via the metaphase cell stimulation protocol 

(Appendix C) and in addition 5% glutaraldehyde was added. The purpose of the 

addition was to determine if following the USDA protocol for shipping frozen, fixed wild 

boar blood samples (prior to dropping on a slide) would be feasible from an 

experimental standpoint. Unfortunately, the addition of the glutaraldehyde resulted in the 

inability of the cellular membranes of the cells to open after the cells were dropped onto 

a slide and no metaphase chromosomes were visible. While seven control wild blood 

samples could not be counted for dicentrics as no metaphase chromosomes were 

visible, the knowledge that the addition of glutaraldehyde would make the metaphase 

cell stimulation protocol (Appendix C) ineffective was vital as all wild boar blood samples 

obtained in Japan were required to be dropped onto slides and sealed with a coverslip 

prior to shipment. The experimentation on the control wild boar blood samples 

determined that no frozen, fixed wild boar blood samples could be shipped from Japan 

as the lack of glutaraldehyde would put the shipment in violation of the USDA permit. 
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The control irradiated blood samples should not be processed in a large amount 

at one time. Instead of processing 14 variations of blood from six wild boar (84 total 

samples) in one day, at most, 14 samples from one wild boar should be processed in 

one day. During the final day of cell culture and blood processing, the specific chemicals 

that need to be added to each sample are time dependent and deviations by an hour or 

more affect the number of white lymphocytes obtained in metaphase spread and bi-

nucleated cell form. When only one laboratory hood is available and one researcher is 

processing 84 blood samples, deviations of over two hours or more occur in the 

processing of the samples. The time deviations in processing the control micronuclei 

samples in the pilot study, caused many micronuclei samples to not properly exhibit bi-

nucleated cells and resulted in the loss of data. 

 

Implications of Results  

The wild boar in the Fukushima prefecture in Japan are not consistently exposed 

to the same low levels of radiation due to the large roaming habitat of the wild boar 

which encompass variable levels of radiation and include areas that have been 

remediated by the Japanese government. Additionally, the wild boar may be more 

resilient to radiation exposure than other animals and may not readily exhibit 

chromosomal aberrations from low-level radiation exposure. Large variability within and 

across different wild boar species is possible and can affect radiation exposure 

biomarkers. The repair mechanisms of DNA damage may be more robust in certain wild 

boar species or in all wild boar overall. Some wild boar species and some wild boars 
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within each species can give lower discernible numbers of biomarkers of radiation 

exposure.  

 

 While the dose of 2 Gy should have resulted in a consistent increase in both 

dicentrics and micronuclei formation, the data obtained did not show a consistent 

increase in chromosomal aberration formation. As there is no published literature on the 

formation of radiation biomarkers in wild boar blood after radiation exposure, future 

research is necessary to determine the multiple possibilities producing the data 

obtained in the pilot study. The wild boar as a species may have robust DNA repair 

mechanisms that allow for the accurate and rapid repair of chromosomes damaged by 

radiation. The radiation dose of 2 Gy is not high enough to cause DNA damage in wild 

boar and higher radiation doses may be used to create a radiation dose response 

curve. The sample sizes utilized in the pilot study were too small to determine a 

statistically significant increase in chromosomal aberrations after radiation exposure and 

larger samples sizes should be employed. Wild boar blood samples should be obtained 

from a wide variety of wild boar species and chromosomal aberrations should be 

analyzed after irradiation to determine if the specific species of wild boar blood 

irradiated in the pilot study provided less visible biomarkers of radiation exposure than 

other wild boar species.  

 

The scoring of dicentrics and micronuclei chromosomal aberrations are not the 

ideal method for dose assessment in wild boar due to lack of observable chromosomal 

aberrations. In the absence of more robust dose-response data it will not be possible to 
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reduce the uncertainties of assessing the environmental impacts from releases of 

nuclear facilities, nor will it be possible to confidently create appropriate safeguards that 

protect humans and the environment from low-dose, chronic exposures to radiation 

(Hinton et al. 2013). If wild boar do not portray biomarkers of radiation, biodosimetry is 

not an ideal method for radiation dose assessment to the wild boar.   

 

Future Studies 

 Unfortunately, there is a lack of published literature on wild boar chromosomal 

dicentric and micronuclei aberration investigations and there have been no current 

published studies involving the irradiation of wild boar blood for biodosimetry analysis. 

The dicentric analysis technique with the creation of a dose-response curve to estimate 

radiation dose is considered the gold standard for biodosimetry (Hall et al. 2011). For 

future studies, the feasibly of utilizing dicentrics and micronuclei as biomarkers of 

radiation exposure in wild boar should be investigated with the use of higher doses of 

radiation (higher than 2 Gy). DNA translocations should also be researched to 

determine if other biomarkers more sensitive than dicentrics or micronuclei can be 

utilized to better estimate radiation dose to wild boar. Additionally, a higher number of 

wild boar blood samples should be obtained and a larger number of metaphase spreads 

and bi-nucleated cells should be analyzed in order to determine if the results obtained 

are consistent with the results observed in the pilot study.  

 

The biological effects from a one-time, discrete radiation exposure may not 

reflect the same biological effects from a long-term exposure due to radiation hormesis 
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or other overactive biological repair mechanism from constant radiation exposure. A 

dose-response curve created from short radiation exposures may not represent a dose 

obtained from long-term exposure to radiation. Additional research must be conducted 

to determine if the wild boar residing in the low-radiation level areas in the Fukushima 

prefecture have become more resilient to radiation exposure via comparison with long-

term, irradiated blood from the same Japanese wild boar species residing in other 

islands in Japan.  

 

In future studies, the radiation dose to the wild boar can be estimated using soil 

samples from soil collected in the habitat of the wild boar. While the current pilot study 

indicates less than 1% chromosomal aberrations for single radiation exposures from 0.1 

Gy to 2 Gy and Fukushima wild boar, a more robust study that analyzes a higher 

number of metaphase cell spreads and bi-nucleated cells should be conducted to 

determine if results with larger sample sizes are also consistent with the pilot study 

results. Additionally, a long-term research study upon the variability of wild boar DNA 

within multiple wild boar populations needs to be conducted to quantify biomarkers in 

wildlife exposed to low doses of environmental radiation. The karyotyping of the 

Japanese wild boar is a current ongoing study that will provide much needed scientific 

data regarding the variability of the genes within the Japanese wild boar population in 

the Fukushima Prefecture and can be further utilized to determine the sample sizes 

needed in future studies that are adequate for the amount of variability within the 

Japanese wild boar species. All future studies will greatly impact the current knowledge 

of low level radiation exposure as consistent results with the pilot study on the lack of 
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radiation biomarkers from low level radiation in sentinel animal species can indicate the 

similarity with homo sapiens during human habitation in an environment with low level, 

lingering radiation. 
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CONCLUSION 

 

The purpose of the quantifying biomarkers in wildlife exposed to low doses of 

environmental radiation pilot study is to evaluate if wild boar blood biomarkers could be 

utilized to determine radiation dose. Two techniques for analyzing biomarkers of effects 

were utilized to determine the extent of the effects of the constant, low-dose radiation 

exposure within the Japanese wild boar. Due to the limited number of observed 

chromosomal aberrations in both the Fukushima wild boar blood samples and the 

irradiated control wild boar blood samples from Kentucky USA, a dose-response 

relationship was not validated between radiation dose and dicentric or micronuclei 

biomarkers of radiation.  

 

Obtaining wild boar blood samples from a related species of wild boar occupying 

Kentucky and irradiating the obtained blood samples did not result in the creation of a 

dose-response curve for biomarkers of low level exposure to radiation. While the 

procedures for initiating and analyzing biomarkers of radiation exposure in wild boar 

DNA are effective, the hypothesis of the pilot study was not proven valid. Chronic 

radiation dose to wild boar exposed to low levels of lingering environmental ionizing 

radiation in the Fukushima prefecture as well as in irradiated blood from wild boar 

residing in areas experiencing only natural background radiation will require further 

investigation. The low dose radiation exposures do not appear to affect the wild boar 

DNA with discernible chromosomal aberrations. Future studies need to be conducted to 

ascertain the dose to the wild boar required to increase the number of dicentrics and 
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micronuclei. Future studies that yield similar results to the pilot study can indicate the 

ability of humans to habitat areas of low level, lingering radiation with no resulting 

biomarkers of radiation exposure.  
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APPENDIX A: IACUC APPROVAL 

 

Research Integrity & Compliance Review Office  
Office of Vice President for Research  

208 University Services Center  
2011 Campus Delivery  

Fort Collins, Colorado 80523- 2011  
TEL: (970) 491- 1553  
FAX: (970) 491- 2293 

 http://ricro.research.colostate.edu  
To:   Nadia Halim, Thomas Johnson, Susan Bailey  

From:   Research Integrity and Compliance Review Office (RICRO)  

Date:   May 5, 2016  

RE:   IACUC Exemption of “Quantifying Biomarkers in Wildlife 
Exposed to    Low Doses of Environmental Radiation”  

This is to inform you that your IACUC Exemption request for “Quantifying 
Biomarkers in Wildlife Exposed to Low Doses of Environmental Radiation” has 
been reviewed by RICRO and the Attending Veterinarian (or his delegate), and is 
exempt from IACUC oversight. Therefore, an IACUC protocol does not need to be 
submitted for these activities.  

If there are any changes in this project, please submit changes via the IACUC 
Exemption Form to ensure that this exemption is still valid prior to implementation  

Thank you for your diligence in the care and use of animals at CSU. Good luck 
with your project.  

Sincerely, 
Research Integrity and Compliance Review Office (RICRO)  
 
Cc:  Terry Engle, PhD, IACUC Chair 
  Lon Kendall, DVM, PhD, CSU Attending Veterinarian  
  Karen Dobos, PhD, RICRO Director  
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APPENDIX B: MEDIA PREPARATION FOR METAPHASE AND BI-NUCLEATED CELL 

PREPARATION 

 

1. Using 10 mL syringe with a 27 gauge needle, inject 1 mL of DMSO in PMA vial. 

The PMA vial has 1 mg of PMA in powder form. 

 

Figure 8: Injecting 1 mL of DMSO into PMA vial 

 

a. Invert vial with DMSO and PMA powder to ensure mixture is 

homogeneous 

b. Re-inject syringe into vial and remove PMA mixture 
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c. Separate all PMA into 4 μL allocates each, place into tiny conicals, wrap in 

aluminum foil to avoid UV light, and place into -20°C (freezer) 

2. Using 10 mL syringe with a 27 gauge needle, inject 1 mL of DMSO in Ionomoycin 

vial (with 1 mg of Ionomoycin) 

 

Figure 9: Injecting 1 mL of DMSO into Ionomoycin vial 

 

a. Invert vial with DMSO and Ionomycin powder to ensure mixture is 

homogeneous 
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b. Re-inject syringe into vial and remove Ionomycin mixture 

 

Figure 10: Re-injecting needle into Ionomoycin vial and removing mixture 

 

b. Separate all Ionomycin into 40 μL allocates each, place into tiny conicals, wrap 

in aluminum foil to avoid UV light, and place into -20°C (freezer) 

3. RPMI-1640 medium supplemented with 1% L-glutamine should be purchased 

from Sigma Scientific.  
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Figure 11: Image of RPMI-1640 medium supplemented with 1% L-glutamine 

 

4. Create prepared medium 

a. Thaw FBS which has been previously frozen at -20°C. 
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Figure 12: Image of FBS 

 

b. Add 217 mL of FBS to 500 mL of RPMI-1640 medium already bought 

supplemented with 1% L-glutamine in original media bottle 

c. Add 7 mL of antibiotic-antimycotic 
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Figure 13: Image of antibiotic-antimycotic 

 

d. Ensure final concentrations of media is RPMI-1640 medium supplemented 

with 1% L-glutamine, 30% FBS and 1% antibiotic-antimycotic 

e. Swirl media mixture in bottle 

f. Filter media using media filter (attached to a glass bottle) with supplied air 

hose connected to a vacuum 

 Antibiotic-Antimycotic 
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Figure 14: Image of media filtration setup 

 

5. Allocate 35 mL of mixed media in 50 mL conical tubes each and freeze in -20°C. 
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APPENDIX C: WILD BOAR BLOOD STIMULATION FOR METAPHASE 

CHROMOSOME PREPARATION 

 

1. Thaw two 50 mL conical tube aliquot of medium 

2. In a T-25 vented flask, add 1mL whole blood from heparinized blood collection 

vial to 9mL prepared medium.  

 

Figure 15: Wild boar blood in heparinized blood vial 
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Figure 16: T-25 vented flask with whole blood and prepared medium 

 

3. Add 0.5 μL of 1 mg/mL PMA and 11 μL of 1 mg/mL of Ionomycin to T-25 flask 

ensuring (ensure final concentration of PMA and Inonomycin in each T-25 vented 

flask are as follows 50 ng/mL PMA, 1 μg/mL Ionomycin). 

4. For PMA, stock PMA concentration is 1 mg/mL = 1 μg/μL 

a. Ensure PMA added is at 50 μg/mL 

b. Total cell culture volume is 11 mL 

c. Need 0.5 μg of PMA from stock solution 
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i. (50 ng/mL)*(11 mL) = 550 ng = 0.5 μg 

d. (0.5 μg)/(1μg/uL) = 0.5 μL of PMA is needed per sample 

5. For Ionomycin, stock Ionomycin concentration is 1 mg/mL = 1 ug/uL 

a. Ensure Ionomycin added is at 1 μg/mL 

b. Total cell culture volume is 11 mL 

c. Need 11 μg of Ionomycin from stock solution 

i. (1 μg/mL)*(11 mL) = 11 μg 

d. (11 μg)/(1 μg/uL) = 11 μL of Ionomycin is needed per sample 

6. Incubate at 37°C and 5% CO2 for 68 hours in incubator (name and type) 

7. Add 110 μL colcemid (purchased from Sigma SKU) and incubate an additional 4 

hours.  

a. Stock colcemid concentration is 10 μg/mL 

b. Ensure colcemid added is at 0.1 μg/mL or 10 μl/mL 

c. Total cell culture volume is 11 mL 

d. Need 1.1 μg of colcemid from stock solution 

i. (0.1 μg/mL)*(11 mL) = 1.1 μg 

e. (1.1 μg)/(10 ug/mL) = 0.110 mL = 110 μL of colcemid is needed per 

sample 

8. After 72 hours of total incubation time, pipette the blood and medium several 

times to reduce clumping. 
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Figure 17: Pipetting of blood and medium in T-25 

 

9. Transfer contents of each flask to a 15mL polystyrene conical and centrifuge at 

1000 rpm for 5 minutes.  

10.  Aspirate off medium and suspend pellets by gently flicking the conical.  
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Figure 18: Aspirating off the medium to see pellet 
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Figure 19: Flicking conical to suspend pellet 

 

11. Add 6mL of 75 mM KCl (5.59 g/L of dH2O) hypotonic solution and incubate 30 

minutes at room temperature, inverting every 5 minutes.  

12. Add 1.5 mL freshly prepared 3:1 methanol to acetic acid fixative to each conical 

and invert several times. Solution should turn a dark red/brown color.  

13. Centrifuge at 1000 rpm for 5 minutes.  

14. Aspirate supernatant off, leaving about 1.5 mL solution covering the pellet.  
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a. It is difficult to see pellet, so be sure to not aspirate too close to the pellet 

and leave at least 1.5 mL of solution covering the pellet.  

15. Suspend the pellet by gently flicking the conical.  

16. While vortexing (using Fisher Guide Genie Vortex 2) at low speeds, add 5 mL 3:1 

methanol to acetic acid fixative. Add the first 2mL drop wise to minimize 

clumping.  

 

Figure 20: Adding 5 mL 3:1 methanol to acetic acid fixative while vortexing 

 

17. Pre-fix at room temperature for 20 minutes. At this point the conicals may be 

stored at -20°C until ready to fix the pellets. 
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18. Centrifuge conicals at 1000 rpm for 10 minutes.  

19. Aspirate off all fixative, leaving about 0.5 mL covering the pellets.  

20. Suspend the pellets by gently flicking the side of the conicals.  

21. Add 5 mL fixative while vortexing at low speeds then centrifuge at 1000 rpm for 

10 minutes.  

22. Aspirate off all fixative, leaving about 0.5 mL covering the pellets.  

23. Suspend the pellets by gently flicking the side of the conicals.  

24. Add 5 mL fixative while vortexing at low speeds then centrifuge at 1000 rpm for 

10 minutes.  

25. Aspirate off all fixative, leaving about 0.5 mL covering the pellets.  

26. Suspend the pellets by gently flicking the side of the conicals.  

27. Add 5 mL fixative while vortexing at low speeds then centrifuge at 1000 rpm for 

10 minutes.  

28. Repeat steps 25 - 27 until pellets do not have any red blood cells present.   

29. At this point you may place the conicals at -20°C until ready to drop the cells onto 

slides. 
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APPENDIX D: WILD BOAR BLOOD METAPHASE SLIDE PREPARATION 

 

1. Carefully place cell preparation slide with frosted side up into container with 

deionized water. 

 

Figure 21: Cell Slide inside deionized water container 

 

2. Place water container with slides at -20°C for 6 minutes (inside freezer). 

3. Remove slide from cold, deionized water and carefully label with a pencil 

4. Place slide angled up on paper towel 
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Figure 22: Cold deionized water slide angled up on paper towel 

 

5. Flick conical to re-suspended pellet 
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Figure 23: Flicking conical to re-suspend pellet 

 

6. Remove 0.5 mL of re-suspended pellet with 3:1 methanol:acetic acid fixative via 

Pasteur pipette and Pasteur pipette bulb. 
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Figure 24: Cells inside pipette ready to be dropped 

 

7. Drop cells slowly across slide horizontally starting from area underneath frosted 

portion. 

a. Drop 3 drops horizontally on top of slide, 3 drops in middle of slide 

horizontally, and drop 2 drops near bottom of slide 
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Figure 25: Drop cells onto slide 

 

8. Let slides air dry completely until no moisture is visible. 

9. Store slides for at least 24 hours inside humidity chamber  
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Figure 26: Slides inside humidity chamber 

 

a. Cover humidity chamber 

10. After 24 hours, remove slides from humidity chamber and commence Appendix 

G 
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APPENDIX E: BI-NUCLEATED CELL CULTURE PREPARATION FROM WILD BOAR 

WHOLE BLOOD  

 

1. Thaw two 50 mL conical tube aliquot of medium 

2. In a T-25 vented flask, add 1mL whole blood from heparinized vial to 9mL 

prepared medium.  

3. Add 0.5 μL of 1 mg/mL PMA and 11 μL of 1 mg/mL of Ionomycin to T-25 flask 

ensuring (ensure final concentration of PMA and Inonomycin in each T-25 vented 

flask are as follows 50 ng/mL PMA, 1 μg/mL Ionomycin). 

4. For PMA, stock PMA concentration is 1 mg/mL = 1 μg/μL 

a. Ensure PMA added is at 50 μg/mL 

b. Total cell culture volume is 11 mL 

c. Need 0.5 μg of PMA from stock solution 

i. (50 ng/mL)*(11 mL) = 550 ng = 0.5 μg 

d. (0.5 μg)/(1μg/uL) = 0.5 μL of PMA is needed per sample 

5. For Ionomycin, stock Ionomycin concentration is 1 mg/mL = 1 ug/uL 

a. Ensure Ionomycin added is at 1 μg/mL 

b. Total cell culture volume is 11 mL 

c. Need 11 μg of Ionomycin from stock solution 
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i. (1 μg/mL)*(11 mL) = 11 μg 

d. (11 μg)/(1 μg/uL) = 11 μL of Ionomycin is needed per sample 

6. Incubate at 37°C and 5% CO2 for 44 hours in incubator (name and type) 

7. At 44 hours, add 6.6 μL of Cytochalasin B from 5 mg/mL stock concentration of 

Cytochalasin B 

a. Stock Cytochalasin B was created by injecting 1 mL of DMSO into 

Cytochalasin B  5 mg vial. Stock concentration is 5 mg/mL = 5 μg/μL 

a. Ensure Cytochalasin B added is at 3 μg/mL 

b. Total cell culture volume is 11 mL 

c. Need 33 μg of Cytochalasin B from stock solution 

i. (3 μg/mL)*(11 mL) = 33 μg 

d. (33 ug)/(5 ug/uL) = 6.6 uL of Cytochalasin B is needed per sample 

8. At 72 hours, transfer blood/medium to 15 ml polystyrene conical. 

9. Centrifuge at 1200 rpm (300g) for 5 minutes. 

10.  Aspirate off medium right above red cell pellet and suspend pellet by flicking the 

conical. 

a. Be sure there are no cells still stuck to the bottom of the conical before 

adding fixative.  

11. Add 5 mL freshly prepared 3:1 methanol to acetic acid.  
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a. At this point, slides may be stored at -5°C until ready for further 

processing.  

12. Centrifuge at 500 rpm (~70g) for 10 minutes. 

13. Aspirate leaving ~0.5 mL covering the pellet. 

14. Gently flick pellet to suspend. 

15. Add 5 mL freshly prepared 3:1 methanol to acetic acid.  

16. Centrifuge at 500 rpm (~70g) for 10 minutes. 

17. Aspirate leaving ~0.5 mL covering the pellet. 

18. Gently flick pellet to suspend. 

19. Add 5 mL freshly prepared 3:1 methanol to acetic acid.  

20. Centrifuge at 500 rpm (~70g) for 10 minutes. 

21. Aspirate leaving ~0.5 mL covering the pellet. 

22. Gently flick pellet to suspend. 

23. Repeat steps 18-21 until red blood cells are not present.  

24. Slides may be stored at -5°C until ready for staining (Appendix G).  
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APPENDIX F: WILD BOAR BLOOD BI-NUCLEATED CELLS SLIDE PREPARATION 

 

1. Carefully place cell preparation slide with frosted side up into container with 

deionized water. 

a. No need to use cold slides to drop cells 

2. Remove slide from deionized water and carefully label with a pencil 

3. Place slide angled up on paper towel 

4. Gently flick conical to re-suspended pellet 

5. Remove 0.5 mL of re-suspended pellet with 3:1 methanol:acetic acid fixative via 

Pasteur pipette with Pasteur pipette bulb. 

6. Drop cells gently and slowly across slide horizontally starting from area 

underneath frosted portion. 

a. Drop 3 drops horizontally on top of slide, 3 drops in middle of slide 

horizontally, and drop 2 drops near bottom of slide 

7. Let slides air dry completely until no moisture is visible. 

8. Store slides for at least 24 hours at 4°C until ready to stain (Appendix G) 
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APPENDIX G: GIEMSA STAINING FOR CHROMOSOME ABERRATIONS  

 

1. Dissolve 1 Gurr tablet (Sigma…) in 100 mL of deionized water in 150 mL beaker 

2. Removed 47.5 mL of Gurr and deionized water solution and place into new 100 

mL beaker 

3. Add 2.5 mL Giemsa solution to the 47.5 mL of Gurr and deionized water solution  

4. Transfer 15 mL of Giemsa solution with Gurr and deionized water into Coplin Jar 

5. Fill 15 mL of deionized water into 2 clean empty Coplin jars each 

6. Submerge slides (5 at a time if needed) in Coplin Jar Giemsa solution for 8 

minutes  



86 

 

Figure 27: Coplin Jar with Giemsa staining solution with 5 slides 
 

7. Rinse slides in fresh deionized water for 6 minutes in first, deionized-water only 

Coplin Jar  
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Figure 28: Coplin Jar with deionized water with 5 slides 

 

8. Rinse slides in fresh deionized water for 4 minutes in second, deionized-water 

only Coplin Jar  

9. Place slides onto paper towels (face-up) until dry 
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Figure 29: Drying slides 

 

10. Place one drop of DPX Mounting Media via pipette and pasture pipette bulb onto 

center of front side of slide 
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Figure 30: DPX Mounting Media drop 

 

11. Place coverslip onto slide 
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Figure 31: Coverslip on slide 

 

12. Analyze chromosomes (or bi-nucleated cells) under a bright field microscope at 

1000x total magnification for chromosomal dicentrics (or micronuclei) 

13. Analyze 100 metaphase spreads (or bi-nucleated cells) per sample/dose for 

control samples  

14. Analyze 200 metaphase spreads (or bi-nucleated cells) per sample/dose for 

Fukushima Wild Boar samples 
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APPENDIX H: USDA PERMIT 
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