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Two-Dimensional Block Diagonal
LMS Adaptive Filtering

Mahmood R. Azimi-Sadjadi, Senior Member, IEEE, and Hongye Pan

The conventional LMS scheme was first extended to the 2-D
case by Hadhoud and Thomas [7]. Their 2-D LMS algorithm
is particularly useful in various image processing areas such
as image enhancement and image data compression where the
variations in local statistics of the image must be taken into
account. This method processes an image pixel by pixel using
a I-D scanning scheme, and consequently, it considers the
correlation of pixels in only one direction. Soni et al. [8]
used a 2-D adaptive LMS filter to detect and isolate small
objects with broad-band spectra from background clutter with
a narrow-band spectrum. More recently, several other authors
[9]-[11] have developed different 2-D LMS-based adaptive
algorithms. In [10], a new 2-D sequential adaptive filtering
scheme was proposed which uses variable step-size to improve
the convergence behavior. This algorithm was then extended
in [11] for block processing using a scalar adaptation rule.

This paper is concerned with the development of a 2­
D block diagonal LMS (BDLMS) algorithm based on the
application of the 2-D block processing method [12]. A
2-D diagonal scanning is employed to preserve the local
correlational information of pixels in both directions. The
convergence behavior of the 2-D BDLMS filter is studied.
To consider the nonstationarity inherent in real-world images,
a variable step size rule is given. Applications of the 2-D
BDLMS in image estimation, filtering, and detection areas are
studied. Simulation results for filtering additive noise from
a corrupted image are presented, and a comparison is made
between the proposed 2-D BDLMS and the standard Wiener

Abstract-This paper is concerned with the development of a
two-dimensional (2-D) adaptive filters using the block diagonal
least mean squared (BDLMS) method. In this adaptive filtering
scheme the image is scanned and processed block by block
in a di~gonal fashion, and the filter weights are adjusted o?ce
per block rather than once per pixel. The diagonal scanmng
is adopted to avoid the problems inherent in the 1-]) standard
scanning schemes and to account for the correlations in tw.o
directions. The weight updating equation for 2-D BDLMS IS

derived and the convergence properties of the algorithms are
investig~ted. Simulation results that indicate the etTectiv~nes~ of
the 2-D BDLMS when used for image enhancement, estimation,
and detection applications are presented.

1. INTRODUCTION

ONE-DIMENSIONAL gradient-based adaptive schemes
have found applications in numerous areas such as

system identification, adaptive control and filtering, channel
equalization, and neural network learning [1]. The least mean
squares (LMS) algorithm originally developed by Widrow and
Hopf [1], [2] uses gradient descent method to update the
weights in a transversal adaptive filter structure. In contrast
to the nonadaptive schemes, this approach takes into account
the nonstationarity inherent in practical signals. In addition, it
does not make any a priori assumptions regarding the statistics
of the data and the degradations.

A variant of the LMS algorithm known as block LMS or
BLMS was derived in [3] based on the application of the
block processing scheme [4]. Using this algorithm, the weights
of a transversal filter are updated upon the arrival of a new
block of data. This is in contrast with the conventional LMS
adaptive algorithm which adjusts the weights for each new
sample of the input data. In addition to the inherent benefits
of the block processing including parallelism (ideally suited
for systolic array implementation), reduced roundoff error
effects, improved stability performance, etc., BLMS can be
implemented very efficiently using fast transform techniques.

Mikhael and Wu [5], [6] introduced a I-D fast algorithm for
block adaptive digital filtering with application to time-varying
system identification. To track the time-varying parameters of
the unknown system, the step size is updated using the Taylor
series expansion of the error signal. This method accelerates
the convergence especially for the nonstationary signals.
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where Yi,j represents the (i,j)th output block arranged in a
row-ordered vector of size K LxI defined as

Block
i-lJ-l

Block
i-lJ

(3a)

where

where

YP = [y(p,jL) y(p,jL + 1)··· y(p,jL + L - 1)] (3b)

(4a)
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and gE[O, K - 1]. The expression for the error ei,j(k,£) :=

di,j(k,£) - Yi,j(k,£) in block form becomes

Ei,j = Di,j - Yi,j = Di,j - Xi,j Wi,j (6)

where Di,j and Ei,j are, respectively, the (i, j)th blocks of
the desired image and error image defined in a fashion similar
to Yi,j in (3).

Wi,j( q) = [Wi,j (g,0) Wi,j(g, 1) ... Wi,j(g, L - 1)] (5b)

where we have (4b), which appears at the bottom of this page,
and pE[iK - K + l,iK + K - 1]. The region in which Xi,j
is defined is shown in Fig. 2. The last row of matrix x;
represents the pth, pE[iK - K + 1, iK + K - 1] row of block
(i-I, j) or (i, j). The other rows of Xp are obtained by shifting
this row into blocks (i - l,j - 1) or (i,j - 1) one pixel at a
time. Consequently, the last row of Xi,j corresponds to block
(i,j), and the other rows are obtained by shifting this block
into other neighboring three blocks as shown in the figure. The
weight vector Wi,j of size K LxI is defined by

Wi,j = [Wi,j(O) Wi,j(l) ... Wi,j(K - 1) It (5a)

and pE[iK,iK + K - 1]. Matrix Xi,j of size KL x KL is
defined by

Fig. 2. Support region for X ,.J •

(1)

A. 2-D Block Implementation

Consider a 2-D adaptive transversal filter, as shown in
Fig. 1. In this figure, d(m, n) is the desired image of size
M by N, x(m, n) is the reference input image 01 the same
size, and 1L(m, n)' s represent the weights of the 1ransversal
(nonrecursive) filter of the order K by L.

Let us assume that the images are partitioned inn I nonover­
lapping blocks each of size K by L. The (k, £)th element of the
output block (i, j) can be obtained from the linear convolution
of the filter coefficients with the input image. Since the filter is
assumed to be linear space-invariant (LSI) within each block
and space-varying interblock wise, we can write

filter. In addition, the 2-D BDLMS was used as a predictor to
detect and isolate small objects from the backgroi md clutter
[8]. This can be particularly useful in applications such as
target detection and medical imaging where the detection of
subtle abnormalities is of special importance.

II. 2-D BLOCK DIAGONAL LMS ADAPTIVE FILTER

K-l £-1

Yi,j(k,£) = L L Wi,j(m,n) xi,j(k - m,1. - n)
m=On=O

kE[O, K - 1]
£E[O, L - 1]

where Wi,j(m, n)'s represent the weights of the filter in block
(i,j), and Yi,j(k,£) = y(iK +k,jL+£) is the (k,£)lh element
of (i, j)th output block, and similarly, we have Xi,j (.i. - m, £­
n) = x(iK + k - m,jL + £ - n). Equation (1) can easily be
written in matrix form by arranging all Yi,j(k, £)' s III a block
and the associated Wi,j(m, n)' s in row-ordered vector form
and xi,j(k -- m, n - £)'s in a matrix form. This process yields

Yi,j = Xi,j Wi,j (2)

B. Block Diagonal Adaptive Filtering

Having formulated the 2-D adaptive filter equations in
matrix form, the estimation of the parameters or weights of
the filter can be accomplished using the standard Wiener filter
theory [1], [2] by choosing the weights such that the error Ei,j
is minimized in the mean squared sense. The mean squared
value of the estimation error, which is referred to as the "index
of performance" for the 2-D block LMS adaptive filter or the
"block mean squared error" (BMSE)

BMSE =:=::= :LE[ELEi,jl· (7a)

l
x(p,jL)

x(p,jL + 1)

x(p,jL ~ L - 1~

x(p,jL - 1)
x(p,jL)

x(p,jL + L - 2)

x(p,jL - L + 1)1
x(p,jL - L + 2)

x(p,jL)

(4b)
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Fig. 3. Block diagonal processing.
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where Ri,j and Pi,j are the autocorrelation and cross­
correlation matrices defined by

n., := E[XLXi,j] (9a)

Pi,j := E[XLdi,j] (9b)

and Xi,j is the (i, j)th block of the input image given by

Xi,j = [XiK XiK+l XiK+K_l]t (lOa)

where E[·] represents the expectation operator [13], can be
minimized for the weight vector by taking its derivative with
respect to the weight vector, i.e.

d'2
.6.i ,j := dW . = -2Pi,j + 2Ri,jWi,j' (7b)

',)

and setting it equal to zero, This yields the analytical optimal
Wiener-Hopf solution [1], [2] for the weight vector of the
filter as

Fig. 6. Corrupted Lena image (SNR = 1.8 dB).

where

Fig. 5. 2-D BDLMS adaptive smoother structure.

Xp = [x(p,jL) x(p,jL + 1) .. , x(p,jL + L - 1)].
(lOb)

For this optimal choice of the weight vector, the BMSE for
the (i,j)th block takes its minimum, which is

'2m in = ;LE[DLDi,j]- pit,jWtj' (II)

Note that if the input is globally stationary, we then have
W* = R-1p.

Although the above procedure is quite straightforward in
nature, for a large amount of data, the process becomes
computationally laborious. An alternative way to minimize
the BMSE in (7a) is to use a gradient search technique such
as the steepest descent method [2], which leads to the LMS
algorithm. However, the extension of the I-D LMS rule to

(8)

Fig. 4. Original Lena image.
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(i,j) defined in (7b). The block indices (i,j) and (i',j') satisfy
the condition that the sum of i and j, and the sum of i' and j'
along each diagonal line is a constant. Six different cases for
changing the block indices exist and are given below.

For i + j an even number
i' = i + 1, j' = j - 1, when i < i max and j =I- 0
i' = i + 1, j' = i. when i < i max and j = 0
i' = i,j' = j + 1, when i = 'imax'

For i + j an odd number
i' = i-I, j' = j + 1, when j < jmax and i =I- 0
i' = i, j' = j + 1, when j < jmax and i = 0
i'=i+l,j'=j, whenj=jmax

where i max and jmax are the last row and column block
indices, respectively.

As discussed previously, the calculation of an accurate
gradient 6. i .j involves a large amount of ensemble average
computation. Based on the method of steepest descent, an
estimate of the gradient can be obtained using [2]

A 1 8[ELE i,j] -2 t

6.',j := KL 8W. = KL Xi.jEi,j, (13)
',J

(a)

(b)

Fig. 7. Processed Lena image: (a) Fixed PB (SNR = 9.1 dB) (b)variable
I'H, (SNR = 9.8 dB).

(I5)

(16)

where Amax is the maximum eigenvalue of R. In practice,
however, it is not easy to find the eigenvalues of the matrix
R. Instead, the trace of the matrix R, which represents the
power of the input image and is always greater than Amax,
i.e., tr(R) > Amax can be used [2]. Thus, we get

1
o< /IB < tr(R.):

III. CONVERGENCE PROPERTIES
OF 2-D BDLMS ADAPTIVE FILTER

The convergence properties of the 2-D BDLMS adaptive
filter to be discussed in this section include the bounds on the
step size /lB, adaptation speed, learning curve, and adaptation
accuracy [1]-[3]. For the purpose of this section, we assume
that the input image is a stationary process.

The bounds on the step size for the weight vector to
converge to the Wiener solution is given [1]-[3] by

1
0< ItB < -A-'

max

Substituting this estimate into the updating equation (12) gives
the 2-D BDLMS adaptation rule as

A 2/lB t
Wi',jl = Wi,j - /lB6. i,j = Wi,j + K L Xi,jEi,j. (14)

As in the I-D case [3], the best choice for the block size is
the filter order. In addition, matrix Xi,j in this case is doubly
Toeplitz. Thus, the operations involving this matrix such as
those in (2) and the adaptation equation (14) can be performed
efficiently using FFT algorithms [3], [12]. In the next section,
the convergence properties of the 2-D BDLMS are given.

which is more useful than that in (15).
Adaptation speed is used to measure the speed of the

adaptive process (or learning curve). In 2-D BDLMS, the
learning ability is measured by the speed at which BMSE
approaches :=:min. Usually, this adaptation speed is given in

(12)vVi, .i' = Wi,j - /IB6. i,j

images creates several problems in the adaptation process at
the end of rows (or columns) as the 2-D spatial correlations of
a group of pixels in a neighborhood are generally ignored. To
overcome these problems, the idea of 2-D diagonalorocessing
is proposed. The procedure is depicted in Fig. 3. Using
this diagonal scanning scheme, the updating equation for the
weight vector becomes

where Wi' ,J' is the updated weight vector at bloc k location
(i',j'), Ita is the step size, and 6. i,j is the gradient at block
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Fig. 8. Histograms: (a) Original; (b) corrupted; (c) processed, fixed /lB; (d) processed, variable /lB,

(17)

deviation from this minimum is caused by gradient noise or in­
accuracy inherent in the steepest descent method [2]. For the 2­
D BDLMS filter, the misadjustment was derived [3], [14] to be

(20)

(19)/lB
M = KL tr(R).

When all the eigenvalues of R are equal, the misadjustment
can be expressed in terms of the block time constant TBMSE as

M=_l_.
4TBM SEAlternatively, we can use the trace of R to determine TBMSE as

terms of 2-D BDMSE time constant, which indicates the speed
at which the weight vector converges to the Wiener solution
when the method of steepest descent is used. For the special
case in which all eigenvalues of the input auto-correlation
matrix R are equal, the block time constant TBMSE of the
2-D BDLMS adaptive filter is found [3], [14] to be

KL
TBMSE = 4/l

B)..·

Again, this shows that there is tradeoff between the adapta­
(18) tion speed and the misadjustment [1]-[3].

where tr(R) = K L).. when all the eigenvalues are equal. As
can be seen, the adaptation speed is inversely proportional
to the step size tie- Increasing the step size /lB above the
convergence range may cause the adaptation process to exhibit
instability problems.

Adaptation accuracy describes how close BMSE (or 3)
gets to the minimum BMSE 3 m in after the adaptation, The

IV. 2-D BDLMS FOR NONSTATIONARY PROCESSES

For nonstationary processes, the objective is to achieve fast
convergence and tracking and small misadjustment when the
statistical properties change in different blocks [5], [6]. In other
words, the filtering process should adapt and track fast enough
to capture the statistical changes in the image. Since the key
factor for the convergence of an adaptive process is the step
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Fig. 10. Learning curves: (a) Fixed ItB; (b) variable /lB.

size /.LB, in order to obtain better results for nonstationary
images, this parameter has to be adjusted based on the spatial
information in each block.
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Let us consider a nonstationary process in the block sense,
i.e., the block statistics-block mean, and block covariances
change from one block to another. In other words, the mean
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(24) The first term corresponds to the smoothing error in the
estimation of the original image, and the second term is the

(2la)

Fig, 11. Processed Lena image using standard Wiener filter (SNR = 7.4 dB),

vector and the block covariance matrix of the process are
functions of the spatial coordinates or block indices (i, j).
To account for the non-stationarity during the 2-D BDLMS
filtering, the filter must track the spatial changes in each block
of the input image data. This is accomplished by varying the
step size /-LB(i,j). The optimal step size /-L'B(i,j) at each block
is obtained based on minimizing the mean squared of the error
block with respect to this parameter. In this method, the idea is
to express the future error block E i , .i' in terms of the current
error block Ei,j by applying the Taylor series expansion and
trying to minimize Ei , .i' in mean squared sense [10]. Thus,
considering only the first two terms in the expansion, the error
block Ei, ,j' can be expressed as

dE- '
E', " = E' , + __',_J~W '

, ,J ',J dWi,j ',J'

where ~W;,j is given by

~Wi J' = Wi' J" = Wi J' = 2/-LB(i,j) X~ ,K J'. (2Ib), , , KL ',J.,

The differential term in (2Ia) can be obtained by taking the
derivative of (6) i.e.

dEi,j
dW ' = -Xi,j. (22)

',J

Thus, using the expression for the weight difference ~Wi,j
in (2Ib), we can write

_ 2/-LB(i,j) t
Ei',j' - Ei,j - KL Xi,jXi,jEi,j' (23)

Taking the derivative of the mean squared of the error block
with respect to the step size, and then setting it to zero, gives
the optimal step size /-L 'B (i, j) as

(
' ') KL ELXi,jXLEi,j

/-LB' v.: = -2- X EtX,'XtX,' .x: ,E- "
1.,) 1.,] 1.,J t,] 1.,1 l.,J

Now, this optimal step size at block (i, j) can be used in
conjunction with the adaptation equation (14). Obviously, this
method requires considerable computations compared with the
fixed step size method since /-LB( i, j) should be adjusted at
each block. As a result, there is a tradeoff between better
adaptation characteristic and the computational efforts. The
experimental results indicated that /-L'B (i, j) often changed
abruptly and exceeded the boundaries for convergence. In
order to overcome this problem, an acceptable upper limit for
the convergence condition for /L'B (i, j) must be determined
based on a trial-and-error procedure. In the next section, the
simulation results for both the fixed and the variable step size
cases are presented.

V. IMPLEMENTATION AND RESULTS

A. Image Estimation and Filtering

In this section, the 2-D BDLMS is used as a smoother
to remove the effects of additive noise from an image. The
test image "Lena" in Fig. 4 is of size 512 x 512 and has
256 gray levels. The size of the blocks is chosen to be 4
x 4, which is equal to the order of the filter. The block
diagram of the 2-D BDLMS when configured as smoother is
shown in Fig. 5. The desired image is formed by delaying
the reference input image by one pixel in each direction.
This is because in practical situations, the desired image is
not normally available. Additionally, it can be shown that
this provides a fixed-lag smoother with better noise removal
capabilities than the filter.

To see this, let us consider the (k, £)th element of the (i, j)th
output block. If the reference image x( m, n) consists of a clean
image s(m, n) and additive noise "I(m, n), then using (1), this
output pixel becomes

y(iK + k,jL + £)
K-1L-1

= L L s(iK + k - m,jL + £ - n)wi,j(m, n)
m=On=O

K-1 L-1

+ L L"I(iK+k-m,jL+£-n)wi,j(m,n)
m=O n=O

= s(iK + k,jL + £) + f,(iK + k,jL + f). (25)

Note that y(iK +k,jL+£) is the fixed-lag smoothed estimate
of d(iK + k,jL + f), which is actually x(iK + k - l,jL +
£ - 1). This is because in this process, all observations up
to x(iK + k,jL + £) are used to generate the estimate of
x(iK + k - l,jL + £ - 1). The error signal that is the input
to the adaptive system is

e(iK + k,jL +£)

= d(iK + k,jL + £) - y(iK + k,jL + £)

= s(iK + k - l,jL + £ - 1) - s(iK + k,jL + £)
+ "I(iK + k - l,jL + £ - 1) - f,(iK + k,jL + £)

= s(iK + k - l,jL + £ - 1) + ii(iK + k,jL + f).
(26)
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Fig. 12. (a) Histogram of the processed Lena image using Wiener filter; (b) cross profile of the processed Lena image using Wiener filter.

Fig. 13. Original image with small objects.

difference between the actual noise and the smoothed (MA
processed) noise. As a result, these feedback terms are used
to drive the adaptive system and to achieve better image
restoration.

The original image was globally corrupted by adding a white
Gaussian noise with zero mean to produce signal-to-noise ratio
(SNR) of 1.8 dB. The corrupted image is shown in Fig. 6.
The processed images using the 2-D BDLMS smoother for
both the fixed and the variable step size, are given in Fig. 7(a)
and (b), respectively. For the fixed step size case, the SNR of
the filtered image was measured to be 9.1 dB, which indicates
substantial improvement in the quality of the image, For the
variable step size case, the SNR of the image was found to be
9.8 dB, which is slightly better than that of the fixed case.

Fig. 14. Processed image after the detection.

The histograms of the original, corrupted, and processed
images are shown in Fig. 8(a)-(d), respectively, for both the
fixed and the variable step size. The cross-section profiles
of the original and corrupted images at row 256 (middle
of the image) are shown in Fig. 9(a) and (b), respectively.
The cross profiles for the processed images using both the
fixed and the variable step size are given in Fig. 9(c) and
(d), respectively. Comparison of the histograms and the cross
profiles of the corrupted and the processed images with those
of the original image shows the restoration capability of
the adaptive system. The learning curves that describe the
variation of BMSE during the operation are also shown in
Fig. lO(a) and (b) for the fixed and the variable step size
cases, respectively.
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The results of the 2-D BDLMS adaptive filter in this paper
are compared with those of the standard frequency domain .
Wiener filter [16], and the processed image is shown in
Fig. 11. The SNR of this image is found to be 7.4 dB,
which is lower than that of the 2-D BDLMS smoother. The
comparison of the histogram and cross-profile plots in Fig.
12 for the standard Wiener filter with those of 2-D BDLMS
indicates better restoration and noise removal capability of
our approach.

B. Detection of Small Objects in Clutter

The 2-D BDLMS can be configured as a predictor or a
prewhitening filter [8] to detect and separate small objects in
the background clutter. Such systems can be very useful in
medical-imaging applications such as digital mammography
where the detection of subtle abnormalities is of prime im­
portance for early detection and treatment of breast cancer.
These abnormalities usually have very small spatial spread
and are often surrounded and/or obscured by the background
clutter with considerably larger spatial extent. In the frequency
domain, these abnormalities manifest themselves in the form
of wide-band components, whereas the background will have
a narrow-band spectrum. A 2-D LMS-based adaptive filter
can be used as a prewhitening filter to separate the wide­
band components from those of the narrow-band thus isolating
the small objects. The output of the system is the estimate
of the background image, which is then subtracted from the
input image to provide the error image that captures the small
objects. The receiver operating characteristic (ROC) curves of
this system generated for detection and localization of small
objects showed significant improvements over the matched fil­
tering particularly for very low signal-to-background (clutter)
ratios [8].

Fig. 13 shows part of a digitized mammogram of size 244 x
244 for a moderately dense normal case. Several (that is, 15)
small objects or "abnormalities" of dimensions 1-2 pixels with
various intensities were synthetically generated and inserted in
the image at different locations. This image was then applied
as a reference input to the adaptive system. The desired image
in this case is formed by advancing the reference input in
both directions in order to construct a predictor system. The
block size of 4 x 4 and a two-step predictor were empirically
determined to provide acceptable results. The thresholded
resultant image (error image) is shown in Fig. 14. As can
be observed, all the objects were successfully detected in
this case. Of course, the detectibility of the objects depends
on several factors including signal-to-clutter ratio, competing
clutter with similar shapes as those of the actual objects,
obscuration of the objects in clutter, etc. A total of two false
positives were detected for this case.

Future work should focus on studying real normal/abnormal
cases and on determining the robustness and the ROC [8] of
the proposed approach.

VI. CONCLUSION

A new 2-D BDLMS adaptive algorithm is developed in this
paper by extending I-D block LMS adaptive filter to the 2-D

case. The advantage of this 2-D BDLMS algorithm over the
scalar 2-D LMS algorithm is that it takes into account image
correlations along both directions. Convergence properties of
the 2-D BDLMS are discussed. Although the convergence
behavior of the 2-D BDLMS is equivalent to that of its scalar
counterpart, the BDLMS algorithm can be implemented faster
than the scalar ones as in the I-D case [3]. To account for
nonstationarity in the image, an adaptation rule for step size is
derived using a similar approach as in [10], which adjusts this
parameter based on the spatial activities within each processing
window. This provides better tracking characteristics of the
adaptive filter. Simulation results that show the usefulness
of the proposed scheme for image filtering and detection
applications are presented.
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