DISSERTATION

DESIGN METHODOLOGY AND PRODUCTIVITY IMPROVEMENT

IN HIGH SPEED VLSI CIRCUITS

Submitted By
KM Mozammel Hossain

Department of Electrical and Computer Engineering

In partial fulfillment of the requirements
For the Degree of Doctor of Philosophy
Colorado State University
Fort Collins, Colorado

Spring 2017

Doctoral Committee
Advisor: Thomas W Chen
Yashwant Malaiya

Sudeep Pasricha
Ali Pezeshki

Copyright by Mozammel Hossain 2017

All Rights Reserved

ABSTRACT

DESIGN METHODOLOGY AND PRODUCTIVITY IMPROVEMENT IN HIGH SPEED

VLSI CIRCUITS

Recent changes in the technology market demand faster turnaround of the design, and as
a result, designers struggle to meet performance requirements under prohibitively expensive non-
recurring engineering (NRE) costs. Increasing costs for the design, validation, and time to market
are some of the most pressing issues for next generation microprocessor systems. Custom versus
synthesis VLSI circuit design has been a lively debate for the last decade. Howeveerihe e
increasing cost of designs in large-scale projects is becoming a bottleneck to the ittustry,
the wind is blowing strongly in favor of synthesis, especially when the modern synthesisengine
are becoming more and more sophisticated in closing timing, completing routings, avoiding
congestions and better interface with all the backend tools. Custom design advocates will argue
that the last pico-second and milli-watts cannot be left on the table, but the reality is, they need to
get over this mentality in favor of cost, time to market, and ability to adopt the last minute-

change of the design.

As the industry moves into the next generation of microprocessor design, it faces growing
complexity in device scaling, supporting algorithm, and time to market. The need for
customization has never been greater to address specific needs for customers. Building a
complex microprocessor system is complicated and time consuming. Thus, circuit designers
need to face the reality and move forward for more automation in the design cyclesthéhile

past generations of microprocessors had more custom circuit design to meet tighter cycle time

battle, more startups and IC companies are trying to design by moving towards common
synthesizable design methodology, and in most cases, sacrificing the desired speed in favor of

new functionality.

Needless to say, improving the synthesis methodology as an alternative to the custom
circuit design is gaining high momentum in the industry because the custom design most often
needs hand crafted schematics and layout design which are overwhelmingly time consuming
requiring as high as 2-4 times development time to the synthesis. However, the key point is to
stay within a similar area and power budget, y#ictut significant time to development cycle of
the design. Study shows, with the help of advanced Electronic Design Automation (EDA) tool
capabilities i.e. advanced algorithm for timing, power and congestion-mitigation, the synthesis-

based-design is increasing by about 30% relative to its predecessor.

With the goal of mitigating the rising cost of designing custom macros and eliminating
the limitation of the usages of smaller Random Logic Macros (RLM), in this dissertation, it is
intended to work on a methodology and algorithm development that will enable the industry to
synthesize custom and RLM macros into bigger macro, Multi-Million Logic Gate Synthesis
(MMLGS), to improve the Physical Design (PD) resource efficiency. Additionally, MMLGS
methodology most often requires embedded IP or custom components, which may require
different power supply rail(s) and (or) sync-async clocking interfac€sg of the popular
timing methodologies is to share positive slack across the latches to ease the timing burden from
one cycle to another, thereby closing time-challenged and architecturally critical paths. Similarly,
multi-power supplies are used in design to either dynamically control part of the circuits or
statically isolate a portion of the logic to different power islands to control the total power

consumptions of the chip. In a custom circuit design, designers carefully hand craft gates to

support these multi-clock and multi-power domains, satisfying the timing and methodology
requirements. However, in a higipeed synthesis design environment, designers struggle to
make sure multi-clock and multi-power interfaces are designed, placed, connected, and timed
correctly. Identifying and applying the proper timing constraints such as “no cycle stealing” at
synchronous and asynchronous (sync-async) domain interfaces in synthesis, unit, and chip
timing, are of the essence. Even though some of these concepts are available now and were used

in the past but they have very limited application to the custom design methodology only.

As the synthesis methodology for MMLGS is being developed, work in this dissertation
will also include developing algorithms and design methodologies for multi-power and multi-
clock domains to take advantage of slack sharing across all hierarchies of the chip design. The
developed algorithm and methodology will: 1) improve physical design resource efficiency; 2)
improve performance by sharing unused slacks efficiently at appropriate design hierarchies; 3)
improve logic optimization by collapsing smaller macro boundaries; and 4) enable correct
placement and connectivity of logic-gates in multi-power domain. Upon successful
implementation of the design methodology approach for MMLGS with multi-power and multi-
clock, these designs need to be functionally verified for different input stimuli at different
frequencies. At the same time, the design must comply with all backend tools such as noise,
electro-migration, timing, and of course all PD verification tools such as DRC, LVS, and YLD

etc. to demonstrate electrical and physical feasibility of the design.

Overall, a synthesis based physical design methodology using soft hierarchy, interior pin
placement, pre-placing critical logic, post-routing techniques, has been developed and proposed
in this dissertation. The effectiveness of the proposed design methodology is illustrated using a

very time and area challenged unit, the level-2 cache (L2 cache) unit. Additiotredsy based

physical design algorithms and methodologies have been developed for level translators at multi-
voltage domains and slack sharing at sync-async interface paths at all level of PEhie®ra
Proposed design methodologies show how slack sharing can be an advantage to ease timing, and
yet avoid potential meta-stability in the cificurhe developed methodolpgan save significant

number of physical design resources because millions of gates can be packed in a synthesizable
macro even in multi-clock and power domain instead of designing those macros individually in
high-cost design flow. By adopting the proposed MMLGS methodology along with multi-
voltage and clock approach in synthesis and timing methodology, development costs can be cut
by about 50%, which is substantially significant PD resource savings in high-cost VLSI circuit

design.

ACKNOWLEDGEMENTS

As much, and perhaps more than, this dissertation represents my personal abilities, it
represents how lucky | am to be surrounded by incredible people who guided me, provided a
shoulder to lean on, and examples to live by. First and foremost, | would like to thank Prof. Tom
Chen, my advisor, for his guidance, encouragement, and suggestions during my research work
with him. Prof. Chen provided me with all the tools necessary to complete my research within a
short period of time. | am ever grateful to Prof. Chen for his commitment to excellence in
research and the opportunity given to me to complete my dream! My heartfelt thanks go to all
my committee members, Prof. Yashwant Malaiya, Dr. Sudeep Pasricha, and Dr. Ali Pezeshki for

their help in shaping up my research with their invaluable critiques and suggestions.

IBM is a wonderful place to work, with many wonderful mind and people, many of
whom have become my friends, colleagues, and mentors along the way. A great arld specia
thank to my consulting advisor, Dr. Vikas Agarwal. Over the years, he enabled me to think and
look beyond the scope of the research topic and provided direction with his thoughts and ideas.
An enormous thank you and gratitude is also sent to Joshua Friedrich, my mentor, for his help
and guidance from the day one here at IBM. | am not shy to say that | would not bd ainere
today without his help and the opportunities given to me. Furthermore, | am grateful to a good
friend of mine, John Badar, for his help, honest feedback on my dissertation topics, and helping
me to stay positive all the time. | wish to extend many thanks to my managers Sam Thomas,
Mike Carlson, Gilbert Prince, and all my colleagues for theirtdaday help and providing me

shoulder to lean on when it is needed the most.

vi

When 1 look at my life, 1 go back all the way to my school life and remember very
important contributions that shaped up my life. My elementary school teacher, Abul Hossain,
and high school teachers Shushanta K. Roy, Abdul Baten Selim, Abdul Gafur and Fazlul Haque,
all played a crucial role and helped me to grow and think out of the box at very early stages of

my life. | would like to extend my sincere gratitude to these wonderful teachers of my life.

| grew up with amazing brothers and sisters, all of whom provided me unparalleled love
and affection that | cherish all the time. Mosharrof Hossain, Monzed Khan, Mokbul Hossain, and
Masud Khan are not only my brothers, but also my dearest friends. Their wives and children are
amazing family members who comforted me with their affection in my bad and good days. | am
truly honored and grateful for such a wonderful family that is second to none. | would also like
to thank my wife’s parents, Mr. Shamsul Haque and Mrs. Rabeya Begum, who supported our
decision to live on the other side of the world, even though | know how tough this was for them,

and for making constant trips to visit and help us during our need.

| am in debt to my parents for their unconditional love, sacrifices, and prayers throughout
my life. When | put my Ph.D. work on hold, | made my father upset the most. My father flatly
told me, “I did not send you to th&SA for job, | sent you for Doctoral &ree”. It is amazing
how his favorite quote, “Try and Try, Again Try, You Will Succeed,” influenced me from my
childhood until now. | am certain you, my dearest friend, mentor, and dad, looking from the

heaven and resting in peace, knowing that | never gave up and fell short to fulfill your dream!

Finally, my greatest thanks are to my sons, Mushroor and Mainur, and my daughter,
Samia, who joined us along the way and made our lives so wonderful. You all are the best gift of
our life! And to top it all, Sharmin, my love, there are not enough words to express my love and

gratitude to you-this Ph.D. is as much yours as it is mine!!

Vil

DEDICATION

To my late mother, beautiful wife Sharmin, amazing sons Mushroor and Mainur, wonderful
daughter Samia, all my brothers and sisters, especially my brother Mokbul Hossain

and

dedicated with love to the memory of my mentor, best friend and father: Abdul Latif Khan.

viii

AB S T R A T . e i

ACKNOWLEDGEMENTS ... e Vi

DE DI C ATION e e e viii
LIST OF TABLES ...ttt e e e e e e e e e e e e e r e e e e e ennna e e
LIST OF FIGURES ...ttt ettt e e e e e et e e e e et et e e e e e eenaan s
LIST OF PROPOSED ALGORITHMS ..ottt

Chapter 1 INtrOUCHIONL ... 1

Chapter 2 Overview of Existing Synthesis Methodology..............cccooeeiiiiiiiiinn. 7

2.1 Synthesis in dday’s VLSIDeSIgN.......ccooviniiiiiinceceeeeeeeeea 8

2.2 Inputto Synthesis TOOIS.........c.oiiiiiiiiii e 10

2.2.1 Register Transfer Level (RTL)......ccoeviiiiiiiiiniiiieenne, 11

2.2.2 ASSEITIONS. ...cuininii e 12

2.2.3 Macro Physal AbStract..............cuvevinineininiiiiieaeenenannns. 14

2.2.4 Control Files.o 15

2.3 Typical SynthesisS FIOW.............cooiiiiii 15

2.3.1 LogiC Re-StruCtUrNg.........ooviniiiiiiiii e 17

2.3.2 Technology Mapping........cccooeeeiiiiiiii i 19

TABLE OF CONTENTS

2.4

2.5

2.6

2.7

2.8

2.9

2.3.3 Latch Clusteringand LCB Cloning...................ccoeein, 25

2.3.4 Control LogiC StruCture.........cccouiiiiiiiiiiiiiieeiee e, 26
2.3.5 Pre-Placing LOQIC.........coviiiiiii e 28
Review of Quality of Data..............cooooiiiiiiiii e 28
SyNthesisS OQUIPUL. ... 29

2.5.1 Major Output Files.........ccccovevieceeieeceeeeieeeeieeeeenn... 30

Early Mode Padding (EMPAD)..........c.oooiiiiiiiiieiiiai, 33
ROULING .ot e 34
Post Routing Optimizations...........c.ocoviiiiiiiiecceeee 37
Y1 111 = Y/ 39

Chapter 3 Drawbacks of the Existing Synthesis Flaws.....................cocceevevevn.... 40

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Physical Design Resource Limitation..................cooooviiinnn. 43
Turn Around Time (TAT). ..o, 43
Timing OptiMIzZation...........c.oovuiii e 44
Power and Area OptimizatiQn...............o.oieiiiiiiiiieieieeeae 45
Sync-Async Interface in Synthesis..............coooiviiiiiiiiieenn. 46
Multi-Power Domain in Synthesis..............c.ccooevviiiiiiiienenn. 47
YU 0 01F:) o PP 48

Chapter 4

Chapter 5

Circuit Design of Common Library for Research Experiment............... 50

4.1 Library Cells. ... 50
4.2 LatCh DeSIgN ...t 51
4.3 ATAY DeSION. .. .o 52
4.4 Sync-Async Latch PacK...........coooiiiiiiii 53
Proposed MMLGS and Timing Methodology..............cccooiviiiiiiiin, 56
5.1 INtrOodUCHION.ut i 56
5.2 Multi-Million Logic Gate Synthesis (MMLGS) Methodology.......... 57
5.2.1 Enhancement to the Existing Synthesis for MMLGS........... 59
5.2.1.1 Soft Hierarchy Methodology & Algorithm................ 60
5.2.1.2Multi-VT insertions & Algorithm.....................eeee. 62

5.2.1.3Internal Pin, Pre-Placing Critical Logic and Algorithm .. 63

5.2.2 Proposed Multi-Power Design Methodology for MMLGS

5.2.2.1 Parameters in Synthesis for Multi-Power Design

5.2.2.2 Proposed Algorithm for Multi-Power Synthesis...... 70

5.2.3 Proposed Timing Methodology for Sync-Async Interface.... 73

5.3 Congestion Analysisin MMLGS..............ccoiiiiiiiiee 78

5.4 Noise AnalysisSIN MMLGS.............oiiiiii e, 80

Xi

5.5 Electromigration in MMLGS.........c..cooiiiiiiiiie 81

5.6 Bug Fixes and Design Change in MMLGS.............ccccocooiiinne. 82
Chapter 6 Experimental Results......................ooooi 83
6.1 Multi-Million Logic Gate Synthesis (MMLGS) Methodology......... 83

6.1.1 Experiment Setup Using the L2 Cache Unit in IBM’s Power§ .. 83

6.1.2 Placement of Macras........cccoevvveieiiiiiiiiiiiiiiiiiinenn, 85

6.1.3 POWEr ROULING. ...ttt e, 86

6.1.4 CIOCK ROULINGo, 86

6.1.5 TIMING RESUILS.........ooviii e 88

6.1.6 Silicon Area ReSUlIS.........c.coviiiiiiiiii 90

6.1.7 PoOWerData.........cc.ovviiiiiiiiiii i 91

6.1.8 Results on Wire Usages..........ccccevvriviiiiiiiiiiiaien, 92

6.2 Multi-Voltage Synthesis for MMLGScocoiiiiiiiiiiiiieee 96

6.3 Sync-Async Timing Methodology..........oovviiiiiiiiiiiiieeeee, 98

Chapter 7 Conclusions and Future Wark.............cooiiiiiiiiii e 101
BIDlOgrapNYo 104

Xii

Appendix

Al

A.2

A3

A4

A.5

A.6

... 116
RodRunner Library...........coooiiiii e 116
CoNgestion ANAlYSISouiiriei e 116
A2.1 Vertical Wiring Congestion..........cccoovviiiiiiiniiiiiiien, 117
A2.2 Horizontal Wiring Congestian...............cooooviiiiiiiiniannn, 118
ROULING ANAIYSIS 119

Distribution of Gate Array (GA) Cells...........coovvveieeiien 122

SIack DisStribULION. ... 123

Post Routing Statistical Data...............coeeeiviiiiiiiii 123

Xiii

Table 2.1
Table 2.2
Table 2.3
Table 2.4
Table 6.1
Table 6.2
Table 6.3

LIST OF TABLES

Example of PIS asSertionsccovieiiiiiiiiiiiii i 13
Example of POS for assertionscoeevieiiiiiiiiiiiiii e e, 13
Example of ETA @SSEItionsoovvieiiiiiiiitiiiiei e e ee e 14
Post processing tool to fix timing violationc.oooiiiiiiiiiiiiiiinn 38
Wire usages in L2 cache unit routingcooviiiiiiiiiiiiiiiineee e 93
Physical design resource comparison for L2 cachecooine 95

Physical design resource comparfson typical macro design 98

Xiv

Figure 1.1
Figure 1.2
Figure 1.3
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6.1
Figure 2.6.2
Figure 2.6.3
Figure 2.6.4
Figure 2.7
Figure 2.8
Figure 2.9
Figure 2.10
Figure 2.11
Figure 2.12
Figure 2.13
Figure 2.14
Figure 2.15
Figure 2.16
Figure 2.17
Figure 2.18
Figure 2.19
Figure 2.20
Figure 2.21

LIST OF FIGURES

Microprocessor road map of IBM, Intel and AMD...............cocceeeiiiinnnt. 2
IBM’s POWER microprocessor delivery roadmap..........cccoevieiiiiinn.... 3
Intel’s technology roadmap for microprocessor designcoeveeuvvniinininnn. 3

Microprocessor trend data for 35 years..........coooviviiiiiiiiii e 7

Macro customization vs design effort..............coooiiiiiiiii 9
IBM’s L2 cache macro design methodology trend.............................. 10

An example of high level function.....................coii 12

A typical synthesis flow...... ... 16

LOQIC tranSAUCHIQNL ... 17

LOQiC CUDE faCtOriNGo 18

CommON fACIONNG e 18

LOQIC MEIGING. .. ettt e e e 18

Technology MaPPINgc.ou i e 19

Gate placement optimization..............cooiiiiii i 21

Slack OptimIZation...........coiuii 22

Latch and LCB placement flow............ooiiiiiiiiii e 23

Initial latch and LCB placementccoooiiiiiiiiiiiiieeeeeee 23

Final latch and LCB placement...........cooviiiiiiiiiie i 24

Latch clustering and LCB CloNing.........c.ooviiiiiiiiiiiiie e 26

LOQIC StrUCTUr@BLIOL. ...t 27

Example of worse slack plot in synthesis............ccccooiiiiiiiiiiiiennn, 31

Example of timing path in synthesis..............c.ooiiiiiiii 32

Example of early mode padding (EMPAD)..........ccccooiiiiiiiiiiiiinis 33

Input and output of routiilgsynthesiscoooiiiiiiiiiiiiii e 36

ROULING FlOW. 36

Routed desSign........c.oriii e 37

Bad routing and fix after post-processing.............c.ooveevivineeieninnann... 39

XV

Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9

Design methodology for synthesized macrQ...............ccccooeiiiinl. 41
MMLGS usages in the indusiintel’s Ivytown Microprocessor)................. 42
Unoptimized macros at Unit............coooeiiiiiiii e, 44
Optimized macro with proposed MMLGS methodology...................... 45
Example of timing slack in 2 cycle...........cooiiii 46
Example of slack sharing.............coooiiiiii i 46
Master-slave latCh......... ... 51
Timing diagram of master-slave latChcc............ 52
Metastability example ... 54
Metastability timing diagram............ccoooiiiiiiii e, 54
Sync-async latCRREK ... 55
High level physical design flow in VLSI circuits................cocovivinene. 56
Enhanced synthesis flow for MMLGS.................cooiiiiiii 59
Soft hierarchy example in synthesis flow..........................l. 61
A sample placementfile..........ccooiiii i 65
Example of a game“Level Translator” (LT)ccooovviiiiiiiiiiiiiiieeeeeeee, 66
“Level Translator” (LT) is expected to drive gateith “VIO”...................... 67
Example of placementfile for LT..........ccoooiiiiiiiiii e 69

Expected placement and connectivity of component in multi-pgmteesis .. 70

Latch with feedback path. ... 74

Figure 5.10
Figure 5.11

No auto REAL adjust at sync-async interface...................oooovviveunn. 75

Proposed design flow at sync-async interface and multi-power domain paths ... 78

Figure 5.12 Local congestion problem in synthesis...................ocooiiiiiiiieenn. 79
Figure 6.1 IBM’S P8 MICIOPIOCESSOL. ... vttt ettt et e e eeene s 83
Figure 6.2 Floor-plan of test case: L2 cache unit.............ccoooeeiiiiiiiiiiiii i, 85
Figure 6.3 Slack buckets for syntresiethodology............ccoiviniiiiiii . 88
Figure 6.4 Area distribution of logical gates..............ooviiiei i 90
Figure 6.5 Placed gates in L2 unit with synthesis methodology.........ccc..cooenn.... 94
Figure 6.6 Use of level shifter In MMLGS.............cooiiiii e 96
Figure 6.7 Distribution of negative paths with anitchaut “Auto REAL Adjust” 99

XVi

Figure 6.8
Figure A.1
Figure A.2
Figure A.3
Figure A.4
Figure A.5
Figure A.6
Figure A.7

Slack distribution withiiout “Auto REAL Adjustccovvvvneeennn.. 100

Vertical wiring SOIUtION. ... 117
Horizontal wiring SOlUtioN............coiiii e, 118
Routing iteration to fix design violation.....................ocooiiiiin.. 120
Congestion datain L2 cache unit...............ccooooiiiiiiiiiiiiii i 121
Distribution of GA cell after synthesis................ccoooiiiiiiiiiii.. 122
Distribution of negative slack in synthesis..........................c . 123
Post routing tool improvement statistiCs................cooiiiiiiiiiinn, 124

Xvii

Algorithm 5.1
Algorithm 5.2
Algorithm 5.3
Algorithm 5.4
Algorithm 5.5

LIST OF PROPOSED ALGORITHMS

pseudo code forfsdnierarchy dutig synthesis

............................. 60
pseudo code to upgrade.Mt.........cooiiiiiiiiii 63
pseudo code for iNterior PIN...........ovvriiiiiii e, 64
pseudo code to connect multi-power................ccooeeiiiiiiinn.n.. 71
pseudo code for proposed timing methodology................cc........ 76

Xvili

Chapter 1

I ntroduction

In high-speed microprocessor design, the most concerning issue is product design and
verification costs. One direction that industry has attempted, with the goal of mitigating the
rising costs of per-application designs, is to move toward with synthesis instead of custom
design, because in custom design, major re-engineering is required when moving from one
technology/design point to the next. Thus, the focus is to find a design methodology to shorten

the design cycle and lower development costs.

In the past 20 years, microprocessors technology has experienced improvements in
circuit integration and microprocessor throughput. The technology has grown
rapidly due to transistor speed, energy scaling and core micro architecture aghoanees! by
Moore’s law. In every generation (two years), transistor density has doubled as their dimensions
have been reduced by 30% (shrinking their area 50%), and circuits have becomes#0% fa
increasing the whole system performance [1]. However, due to the battery capacity and chip
reliability (heat dissipation limits), power consumption has been one of the key limiting factors
for performance scaling in the single-core microprocessor technology. In the past , decade
multi-core microprocessors have become the major design trend. Limits in instruction level
parallelism (ILP) and power dissipation constraints have triggered the high-performance
microprocessor roadmap to enter the multi-core era, starting from the high-end server processors
and moving to the low-end hand-held mobile device processors. A multi-core micro architecture
provided an effective alternative to improve throughput performance of parallel programs while

keeping power consumption under the control. To improve efficiency, single-thread performance

was sacrificed and instead multiple cores were joined on a single chip when more transistors
became available [2]. The more threads accommodated in the application set, the more efficient
the processors becarie4]. Recently the typical pattern among multi-core CPU products

is to keep the number of cores constant within a generation and double the number of transistors
within ead core [5].By exploiting Moore’s Law to replicate cores, multi-core architectures
increased computational performance. However, there is no real benefit if the software has no
parallelisn [6]. Fig. 1.1 is an illustration of the microprocessor roadmap for industry leaders
(IBM, Intel and AMD) from technology to technology over the past 12 years in order to cope
with increasing demand for on and off chip performance including new functions within

reasonable power and manufacturing cost.

AMD: IBM:
130nm K8 POWERS

90nm Intel:
Prescott

intel: IBM: POWERG
65nm Xeon AMD:Kg

IBM:

Intel:
45nm Penryn POWER?

Feature Size

32nm Intel: AMD: |BM:
Westmere Bulldozer POWERT+

28nm AMD:

Jaguar
Intel: 1BM:
14nm Ivy Bridge POWERS

Intel:
14nm Broadwell

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Year

Fig. 1.1: Microprocessor roadapof IBM, Intel and AMD[7-9].

POWERG
2007

POWER7

2010

POWERT+
2012

POWERS
2014

Technology 130nm SOI 65nm SOI 45nm SOI 32nm SOI 22nm SOI

eDRAM eDRAM eDRAM
Cores 2 8 8 12
Threads SMT2 SMT2 SMT4 SMT4 SMT8
On-Chip Cache 1.9MB 8MB 2+32MB 2+80MB 6+96MB
Off-Chip Band Width 36MB 32MB None None 128MB
Sust. Mem. 15GB/s 30GB/s 100GB/s 100GB/s 230GB/s
Peak IO 6GB/s 20GB/s 40GB/s 40GB/s 64GB/s

Fig. 1.2: IBM’s POWER microprocessor delivery roadmggj.

i il [1 esiin) [Tri-gate-)
SiGe in Shl:lnk Hi-K Metal NMOS FII’"IFET;
PMOS with Gates; MO metal; M_O_ metal;

193nm . e-Si in NMOS
; . Hi-K Metal .
7 levels of Litho SiGe in Gates: Hi-K Metal
Cu & low-k,)) PMOS; SiGe i ! Gates;
Ni-Si SiGe in Double P'MZ'S"_ SiGe in
replaces PMOS Patterning ’ PMOS;
Co-Si Double Double
\ J \ P I) | Patterning J | Patterning |
90 nm 65 nm 45 nm 32 nm 22 nm
(248 nm) (193 nm dry)| [(193 nm dry)| (193 nm wet)| (193 nm wet)
Clarkdale-)
Prescott P Ivy Brid
Xeon enryn Westiriere vy Bridge
2004 2006 2008 2009 2012

Fig. 1.3:Intel’s technology roadmap for microprocessor de$gjn

Fig. 1.2 showdBM'’s delivery of high performing POWER microprocessors enabling
multi-thread core, bigger on and off-chip cache and higher 10 bandwidth [7]. Similayly,.&
shows the technology roadmap for Intel enabling high performing process technology which
allows to pack billions of transistors on a single die within reasonable power enveldm [8].
support the ever-increasing demand for delivering high performance microprocessor in2-3 yea
within a reasonable power and cost envelope, industry leaders are moving towards mostly
automated synthesizable design with multi-clock and multi-power design methodology. In the
current statef-the-art design methodology for microprocessor, macros (generally within same
power or clock domain) are built, timed and integrated at higher level of design hierarchy, called
unit, to make the design constraints. However, these macro boundaries can be collapsed and
turn-around-time (TAT) of current synthesis methodology can be improved even further for
better physical design efficiency, sharing of unused slack and better logic optimization in multi

power and multi-clock domain.

In this dissertation, a Multi-Million Logic Gate Synthesis (MMLGS) design methodology
is presented. The proposed design methodology differs from the methodologies used in the

existing designs with four distinctive features:

e it allows to build a macro that is 2-3 times bigger in transistor count than what is
currently donen the industry by using techniques such as soft-hierarchy, multi-

VT insertion, interior pin and preplacing critical logic gates,

e it saves around 50% physical design resources (engineering man-month) due to
higher degree of automation in MMLGS, otherwise traditional flow would require

more circuit design, unit timing and integration resources,

e it allows designers to share unused slack safely in multi-clock domain to close

timing critical paths effectively, and

e it enables designers to place and connect logic gates to proper power supply in

multi-power domain design automatically and more optimally.

The proposed design methodology explains biegtep of the physical design flow and
shows how the development cycle and custom circuit design resources can be cut down by about
50% and yet maintain the same design quality. With the proposed design flow, the timing and
integration resources can be eliminated in some cases, whidieeded in today’s design
methodology to deliver high quality routed and timing closed unit to the Sgighesis-based
design methodology can also improve power, area and timing efficiency by looking at the logic
gates and drive strength across the macro boundaries. The presented data show how localized
macro congestion can be resolved by sharing routing layer resources with a unit or chip. While
the synthesis-based design methodology for MMLGS is proposed in this dissertation, it is also
shown how techniques such as pre-routing,pfeesment, and a “soft hierarchy” (SH) can be

used as aids to resolve critical timing and routing issues that are most often encountered [10].

Similarly, out-of-phase clock and multi-voltage are two major requirements as more and
more functions are bundled on the chip to deliver high performing circuits within a reasonable
power envelope. In high speed microprocessor design, multi-clock, multi-voltage usages, and
slack sharing methodologies are very common in custom circuit design areas, but in automated
synthesis design flow, these methodologies need to be analyzed, understood, and implemented in
such a way that backend toolsets understand timing and implementation checks. Designers
generally apply the tricks of stealing time from the next cycle if there is available slack.

However, sharing slacks cannot be done between out-of-phase clocks because the likelihood of

metastability increases at synchronous and asynchronous boundaries, and can cause an unstable
state in circuits. Similarly, signals crossing from one voltage domain to another must be
interfaced through the level shifter buffer which appropriately shifts the signal levels. Design of

a suitable level shifter is a challenging job. Application of multi-voltage can be classified as: 1)
Static Voltage Scaling, 2) Multi-level Voltage Scaling, 3) Dynamic Voltage and Frequency
Scaling, and 4) Adaptive Voltage Scaling. These requirements of multi-voltage should be taken
into consideration during physical implementation of the electronic circuits. Recent trends in
physical design methodology show a big shift toward MMLGS for design productivity and time

to market. MMLGS design most often requires embedded IP or custom components, such as

arrays, inside the macros that may require different supply rail or sync-async interfaces [11].

In this dissertation, timing algorithm and synthesis methodology for MMLGS have been
developed and proposed for sync-async interface logic, allowing cycle stealing across all
hierarchies of the chip design. Also, design interfaces for multi-voltage have been dwaalgze
methodologies have been proposed to support the algorithms in automated MMLGS design flow.
The proposed design methodology provides new paths for closing timing while shortening the
design time. Developed synthesis and timing flow allow designers to share unused slack safely in
multi-clock domain and automatically place and connect logic gates to the proper power supply
in multi-power domain design. Compared to the baseline experiment, the experimental results
show that physical design development costs can be cut by about 50% using the developed

design flow.

Chapter 2

Overview of Existing Synthesis M ethodology

The technology market demands faster turnaround of IC design, and designers struggle to
meet performance requirements as shown in Fig. Thé&. microprocessor design industry has
seen increasing costs for the design, validation, and time to market for the last decade. Past
generations of microprocessors had more custom circuit design to meet the tighter cycle time
battles. However, to meet the demand for shorter turnaround time, synthesizable design
methodologies are preferred in most cases, sacrificing the desired speed of the chip in favor of

new functionality and time to market.

7
10" f Transistors
(thousands)
6l
10
5
10" ¢
Single-thread
4 Performance
10 ¢ (SpecINT)
3f
10" ¢
2 Typical Power
10 - (Watts)
1 Number of
10" ¢ Cores
0 : ;
10 ¢ e

1975 1980 1985 1990 1995 2000 2005 2010 2015

Fig. 2.1: Microprocessor trend data for 35 years [12].

To meet the design constraints such as area, timing and power, custom macros most often
need hand crafted schematics and layout design which are overwhelmingly time coresning
thus requires as high as four times development time compared to synthesis flows. In general,
custom circuit and layout designer must plan every detail including the physical placement of
design up front. One of the problems with custom design approach is to incorporate any late
design change which may sometimes cause a rip-up off previously built and timed macro. In a
full or semi-custom design flow, bug fixes and late changes in the design most often become
very expensive in terms of turnaround time. Unit like level-2 cache (L2 cache) would have more
than 50 physical partitions and thus require more man power to comply with late logic change
requests. To overcome these limitations, current industry trend shows a big shift towards
synthesis based design flow. While this dissertation is based on work done in MMLGS and its
requirements to deal with sync-asyemd multi-voltage interface, basic synthesis flow, tool and
methodology will be discussed in this chapter to lay down a good foundation for the research

topic of this dissertation.

2.1 Synthesisin Today’s VL SI Design

Synthesis is very popular in the ASIC world due to its low efforts and faster turnaround
time. The leaders in VLSI circuit design, such as IBM, Intel, and AMD are moving towards
synthesizable design at a faster pace, where most of the designs are done in ASIC methodology
and synthesis tools are being used extensively. Fig. 2.2 shows the relationship between design
effort and the level of customization for different circuit design styles [13] that justifies the need
for synthesizable design. The major advantages of synthesis-based methodology can be

summarized as follows

e Automatic logic to schematic translation

Introduction: Macro Design Spectrum

ry 5) Custom design
{conventional)

4) Custom prerouting

3) Embed custom [

components

2) Preplace Icb/latches

Design Customization

1) VHDL structuring,
parm customization ATTRIBUTE BIL OCK_DATA of addbd : label is "I OGIC_STYI E=fooxx/™;

0) “Vanilla” synthesis

A 4

Design Effort
Fig. 2.2: Macro customization vs design effort [13].
e Reduced design cost because of faster turnaround
e Easy to incorporate last minute design change and
¢ No manual layout design is needed

Synthesis has been widely used in the past in developing random logic macros in high
latency domain. However, with recent development in EDA tools such as congestion,[14-15]
timing [16], and noise [17-18] aware router, a fully automated solution provides adequate results
with much shorter Turn_Aroundiffie (TAT) and improved Quality foResults (QoR). Thus,
more and more complex units are being designed with more synthesized macro as technology
industries move from one technology to the next. Fig. 2.3 shows how macro design methodology
is changing from custom to hybrid (mixed of custom and synthesis) to RLM (Random Logic
Macro) to LBS (Large Block Synthesis) methodology over the last six generations of
microprocessor design for an IBM’s L2 cache unit [13]. As the use of automated synthesis

design flows gains popularity, better understanding of tools’ behavior under different input

Macro Design Historyin L2 Unit for las 16 Years

90%

80%]
2 70% @90nm
= 60% - m65nm
g 50% - O45nm
= 40% - 032nm
= gg:ﬁ: — ®22nm
= 0% D @ 14nm

0% T T T

Custom Hybrid im LBS
Design Methodology

Fig. 2.3: IBM’s L2 cache macro design methodology trend [13].

constraints is crucial to successful outcomes. The final design quality of synthesized macros
using modern synthesis tools can be very sensitive to inputs and design constraints given by the
designers. The quality of inputs and design constraints of synthesis tool need to be carefully
examined to achieve desired outcomes. Similarly, to use this synthesis tool (including timing
aware placement and routing and post-processing automated tools) wisely and intelligently,
designers must understand the design flow, placement of critical logic, and in some cases, wiring
to solve timing and congestions of the design. Thus, before diving deep into MMLGS, basic

synthesis flow is discussed in this chapter with examples and illustrations.
2.2 Inputsto Synthesis Tools

To have synthesis tools to deliver intended results, it typically requires at least three use

defined inputs and these are:
e HDL (Hardware Description Language) or functional logic

¢ Physical abstract information about the target macro, i.e. a physical bounding box

10

that has all the location of primary input and output of the design and routing

constraints for the macro and

e Timing constraints for the macro including the clock names and phase

information. These constraints are often referred to as assertions.

In addition to these primary requirements, tools most often need guidance from users in
the form of control files, so that they can produce timing- and routing- closed physical design
with expected resultdn this dissertation, IBM’s synthesis tool flow called PDSRTL, Placement
Driven Synthesis (PDS), has been used as an example of modern synthesis tools to analyze
experimental results. Some of the methodologies of PDSRTL have been citess hereral

background information.
2.2.1 Register Transfer Level (RTL)

The synthesizable Register Transfer Level (RTL) description, often in either Verilog or
VHDL hardware description languafE9], can be optimized with respect to various constraints,
including timing and/or area, usimgynthesis tool, wheratechnology library file is being used
to specify the components to be used by design. The RTL can contain parts of the design that a
purely combinational or sequential, such as latches and flip-flops. In many cases, top-level RTL
calls another component of the design as soft copy (i.e. another piece of logic) or hard copy
(components that are built and timed separately) of some functions. Fig. 2.4ashexesnple
of high-level function. It is the task of physical design tools (synthesis or custom design) to
translate these functions into transistor level for building the chip. Physical design engineers
spend good amount of time to study the RTL to determine the data flow of the design and plan

up-front to place the logic gates, metal usages and routing strategy of the design.

11

IN1 IN2 IN3 « IN1

select < 0; load < 1

IN3 « IN2
select=0 select « 1; load « 1
select 0
MUX 1 select=1
CLK
Bus
select IN1 on Bus IN2 on Bus
data
/\ IN3 data

| data «—— IN3 from Bus
CLK

Fig. 2.4 An example of high level function.
2.2.2 Assertions

To guide the synthesis tools to close timing at input/output interface paths at macro
boundary, timing and loading requirements are needed so that EDA tool work hard to meet the
design constraints. Assertions, in terms of arrival time at input with correct timing phase (arrival
time relative to functional clock), expected time of adri@aoutput relative to functional clocks
and loading at macro output, are three minimum inputs to the synthesi$ntaalay’s high
speed design, there might be many functional clock signals operating at different uees re
to each other and they are defined as phase. In synthesis, the assertion requirementsdae defin

bit more in details as follows:

Primary Input (PIS): To optimize the timing and gate placement, synthesis tools need to
know the data arrival time (late and early mode to cover both slow and fast design corner),
functional phase tag (data arrival time with respect to the functional clock) along with the slew

(risef/fall time) of the primary inputs, so that design constraints are met during synthesis

12

optimization. The PIS file is generally a space separated constraint file, which is being used as an

input during the synthesis flow. An example of PIS can be shown in table format in Table 2.1.

Primary Output Load (POS): The macro output requirements, in terms of arrival time

at the output, slew (or rise/fall time) and capacitive load to drive, are required so that the timing

and electrical requirements are met at higher level of the design hierarchy. POS value is given in
terms of best and worst case capacitive load so that macro is designed to meet the timing for
wide range of process corners. Similarly, POS value is also given in both lumped and effective
load so that macro is designed to drive a wide range of load to drive at the next hierarchy of the
design.The POS file is generally a space separated constraint file, which is being used as an
input to the automated tools during the synthesis flow. An example of POS can be shown in table

format in Table 2.2.

Table 2.1: Example of PIS assertions.

Input | Phase| Late Late Slew | Slew | Early Early | Slew | Slew
Pin Arrival Arrival (rise) | (fall) | Arrival | arrival | (rise) | (fall)
Name Time (rise) | Time (fall) Time time
(rise) (fall)
nclk | M- 125 0 50 50 125 0 50 50
data | M@L | 100 100 80 80 80 80 60 60
Table 2.2: Example of POS assertions.
Output Pin| Worst Case Best Case | Fan Out| Worst Case Best Case
Name Total Load Total Load Effective Load| Effective Load

(ff) (ff) (ff) (ff)
Reload_Bus 200 100 1 150 80
abist_en 150 80 1 100 60

13

Table 2.3: Example ETA assertions.

Input Pin Phase Late arrival| Late Arrival | Early Arrival | Early Arrival
Name Time (Rise) | Time (Fall) | Time (Rise) | Time (Late)
rd_data(0) M@L 200 205 150 150
scan_out S@L 400 410 200 200

Expected Time of Arrival (ETA): The ETA file is generally a space separated
constraint file, which is being used as an input during the synthesis flow. An example of ETA
can be shown in table format in Table 2.3. ETA consists of expected arrival time at the macro
output (with respect to clock) along with clock phase information. Like PIS, ETA values are also
given in terms of early and late arrival time of the signals so that macro is designed to function in

both slow and fast corner of the process.

In addition to PIS, POS and ETA, synthesis engines can be guided for better results with
additional information such as phase adjust and loading override files, where designers can
override with updated phase information and input capacitance seen by tool for multi fan-in input

of the design.
2.2.3 Macro Physical Abstract

Another necessary input to the synthesis tools is the macro bounding box with primary
input/output (PI/PO), PIN locations, and metal blockages information. Synthesis tools read the
physical placement of the macro PI/PO from the macro abstract and optimize the gate placement
with proper drive strength as per the loading in POS file and at the same time, meeting the
expected timing@sdefined in ETA file. When it comes to route the macro, router uses available

routing resources as defined in the bounding box or abstract of the macro.

14

2.2.4 Control Files

Control file(s) might be thought of as additional help to synthesis but not mandatory. This
control file(s) are called during the synthesis optimization process. However, for meeting the
timing and quality of routings of any wires and placement of logical gates, these parameters

should be considered as semi-requirements for the synthesis tools. For example:

If the design is dominated by embedded IP, then synthesis will need IP placement

information and timing rule to meet the timing and routing requirements.

e |If the design is highly timing critical, the tool will need some guidance as how to

use upgraded wires or use better VT (Threshold Voltage) gates to meet timing.

e |f the design haa congestion problem, the tool will need to know how to spread

logic to mitigate the wiring congestions.

e If certain portions of the logic needed to stay together, synthesis tool can be

guide as how to place the relevant logic gates together and so on.
2.3 Typical Synthesis Flow

Synthesis tools compile RTL design using two main phases: 1) Technology independent
phase where the design is read in and simplified in combinational logic and 2) technology
mapping where the design is mapped to available logic gatesginen physical library.
However, before that there are few sub-steps such as optimizing clock logic and logic re-
structuring in the flow. In merging clock logic step, synthesis collapses incoming clock logic into
one Local_Clock Buffer (LCB) per clock domain. Once latch placements are done, to make

wiring and timing requirements for the design, appropriate LCBs are connected for each clock

15

HDL

h 4

TECHNOLOGY
MAPPING

PI/PO PLACEMENT & . LOGIC CONSTRAINT
ROUTING RESOURCES | RE-STRUCTURE [~ INPUTS

— JLATCH CLUSTRING & @
LCB CLONING

!

DESIGN
CONSTRAINTS
MET?

NO CONTROLING LOGIC
STRUCTURE
PRE-PLACE LOGIC

DONE

Fig. 2.5: A typical synthesis flow.

domain. LCB creates clock nets for master-slave and scan clock of the latches from mesh clock
and other clock control signals as defined by methodology of each project. While inputs to
synthesis are given, as discussed in previous sections, tools process this information in several
stepsto find an optimal solution for a given design. A typical synthesis flow is shoWwigir2.5.

The flow contains many iterative steps and loops to satisfy the design constraints and timing

requirements of a design. These steps include:
e Technology mapping

e Logic re-structuring

16

e Latch clustering and LCB cloning
e Controlling logic structure
e Pre-placing logic
2.3.1 Logic Re-structuring
Logic restructuring involves the following activities in synthesis:

e Optimizations are done on technology-independent netlist of the design
e Wire load is assumed to be zero
e Restructure logic to decrease network interconnections, circuit area, and remove
logic redundancies and
e Algorithm used to minimize logic
Some examples of logic transformation and restructuring during synthesis have been

discussed as here:

a) Transduction: Replace functions with more efficient ones. In the following example,
Fig. 2.6.1, logic can be rearranged so that the delay is optimized. As oppose to cgmagct Si
“S” to the first level of gates, it can be forwarded to the second level by keeping same

functionality to meet the timing.

Fig. 2.6.1: Logic transduction (Source: EDA, IBM).

17

b) Cube Factoring: Extract a common gate from several gates as shown in Fig. 2.6.2,
where a common function for input “C” and “D” is determined and then fed into the subsequent

logic.

Fig. 2.6.2 Logic cube factoring (Source: EDA, IBM).

c) Create common factors:. Creating common factor, Fig. 2.6.3, and then feed it to rest

of the logic helps closing timing.

3 ERe
=

Fig. 2.6.3 Common factoring (Source: EDA, IBM).

N
B — - A—1

5 —* B — — D
C C—

Fig. 2.6.4: Logic merging (Source: EDA, IBM).

v

Tmom>»ODOM 000

-

18

d) Merging logic: Sometimes merging logic gates helps closing timing. It also depends
on how critical is the timing for the input(s). In Fig. 2.6.4 both NAND2 gates can be merged to
create NAND3 to improve the overall timing. Howeversgsiinal “C” is critical, this type of

merging will hurt the timing on “C” because NAND3 is a slower logic-gate than NAND2.

2.3.2 Technology Mapping

Given a technology independent structural description, a target technology, and a set of
design constraints, technology mapping is the process of implementing the structural descriptions
in the physical domain at the same level of abstraction, where all design constraints are fulfilled.
In this step of synthesis, logic gates are mappedsieecified design technology library for the
project For example: “REG” is defined as state storing element “latch” in RTL, however, during
this step, tool will look for equivalent functional loggates such as “nlat”, “eslat” etc. in the
adopted project. During the technology independent phase of synthesis, the Boolean equations
representing the logic network are subject to logic optimization for minimizing the number of
literals, which have been shown to correlate well with total cell area [20]. Fig. 2.7 gives an
example how physical library is mapped to technology independent physical library gates.
Optimal gate placement is a crucial part in synthesis. A timing aware placement and optimization

algorithm has the following steps:

—p- ¢ nlat

NA%@ > c_nand)

Fig. 2.7: Technology mapping.

19

a) Initial Placement: Based on the Steiner modeling of the net [21], synthesis use
placement algorithm for initial placement of the logic gates. This step is basically based on the
wire length between the logic gates. Once initial placement is done, synthesis can be guided with
some parameter for a targeted logic-gate-placement-density in certain area of the design.
Similarly, if the design is very congestetiset of parameter can be used to spread out the logic
gates. To avoid the high pin density of certain gates, synthesis parameter could Hendgrio
avoid local congestions. Global placement is one of the most important steps in a physical
synthesis flow. The last few years have witnessed a renaissance in the research on wire length-
driven global placement, largely due to the availability of challenging benchmarks derived from

real industrial design [22-23].

b) Placement Optimization: Placement-aware synthesis attempts to use a placement tool
[24-25] to perform a partial physical design to compute more accurate interconnect loading
estimates on a nély-net basisAfter the initial placement, synthesis algorithms go through
several iterations of the placement to optimize the timing. In this phase, the tool determines
which gate-movement would result in the most benefit to resolve timing violations. In Kig. 2.8
the dotted box isa new placement of the gate that is driving three blue boxes on the right,

yielding minimum movement to solve the timing pressure.

There are several parameters being used in synthesis in order to meet timing and improve
the routability of a given design. Here are some examples of most frequently used parameters,

which can be used to guide placement of the logic gates:
e target_density: Controls the density of gate placement to avoid congestion.

e place_ xfactor: Spread out complex logic gates to avoid congestion.

20

ye

Latch

i

Gates Latch

Fig. 2.8: Gate placement optimization.
e blockage_file: Specify areas where gate placement is not allowed.

Traditionally, optimizing the wire length has been the key objective during global
placement, with routability being addressed via post-placement refinement techniques. There
have been attempts to alleviate congestion via routability-driven global placement, but they rely
on rudimentary, and most often, inaccurate techniques like pin-density or probabilistic

congestion estimatiof27-30].

In initial placement optimization, netweights (assign number to a net to define criticality)
and attractions (define which gates should be closed to each other) may be appliednand are
meant to be extensive. At this time, no placement legalization is performed to save run time.
Placement optimization is done with netweights and attraction based on the timing of the nets.
Examples of netweights and attractions concepts are shown in Fig. 2.9. Nets with higher weight
will be given higher priority to place the associated gates closer to the source gate to close the

timing for critical nets. There are several options for attraction method that can be used in

21

+5ps

Latch =
NW=10 Latch

+10ps

: 1

Latch

-15ps

s T

Latch

Fig. 2.9: Slack optimization.

synthesis to solve the timing failure. For example, synthesis can find out the worst slack for a
sink gate and can apply attraction to the instance name or pin name of the sink. Similarly, net
weight can be used on PI/PO of a gate to place them close to each other. User can control these

placementdy using a parameter in run directory. Examples:

net_weight_file— Can be used to give user-driven net weight file to place gates closer

attractions file - Can be used to specify user-driven attractions file

c) Latch and LCB Placement: Local Clock Buffer (LCB) is used to create master-slave
and scan clocking for the latches, where LCB is connectedntain mesh clock, along with
other clock control signals. These control signals are being used to either shape-up clock pulse or
mode of operation. In any design, it is common that latches could be driven by multiple clock
domains and clock gating functions. And thus, synthesis must acknowledge physically aware

clustering of latches and clock domains, where, latches cluster around the driving LCB to meet

22

Latch cluster
and LCB
cloning

the tight clock skew guidelines of the projects. However, the placements of these latches and
LCBs are very iterative placement process. Clock placement and routing optimization steps can

be pictured in Fig. 2.10.

The latch and LCB placement algorithm starts with one LCB per clock domain, followed
by cloning and power-up of LCBs with optimal latch connection to meet clock loading, delay
and other design spec. An example of LCB and latch placement with several clock-gating
domainsis shown in the following picture, Fig. 2.11, where each color represediféerent
clock domain. Once synthesis egthrough the initial LCB placement, latch clustering, LCB

legalization and finlaclock placement, the above design ends-up looking like what is shown in

Fig. 2.12.

R Initial CLK
"| Placement

A 4

LCB
Legalization

R Final CLK
"] Placement

Fig. 2.10: Latch and LCB placement flow.

Fig. 2.11 Initial latch and LCB placement (Source: EDA, IBM).

23

Fig. 2.12: Final latch and LCB placement (Source: EDA, IBM).

d) Design Violation Clean Up: At this stage, PDS will look at the connectivity and
correct any design violation. These violations typically involve gate topologies, fan-in/fan-out
restrictions, restriction on latch-input and LCB, etc., defined by the methodology of the project.
For example: 1) Driver to the latch input cannot be driven by illegal gates, 2) Driver to the latch
input cannot have more than one sink i.e. only sink is latch and 3) Macro output cannot have a
feedback loop i.e. cannot have internal logic to drive. At the end of this phase of the design, the

tool would re-do netweights and attraction steps to incorporate additional logic to place.

e) Final Placement: At this step, all the critical pieces of logic are very much locked-up.
These logic gates include LCB, Latches, driving gates of latches etc. Similarly, as ekplaine
the previous section, net-weight/attractions are also locked down. At this point and forward,
physical placement refinement is done to make timing and power spec of the design. Refinement
will perform physically aware optimizations but will not drastically change the placement

solution. Part of this refinement is to correct electrical and timing corrections. The tool would

24

swap a gate with bigger gates and all sub-sequent gatis the slew or slack violation.
Similarly, slower gates will be replaced by faster gates to meet the timing. The starting point of
this stage is a placed netlist wighclocking solution locked down. In short, refinement will
perform physically aware optimizations but will not drastically change the placement solution,

i.e., minor moves/legalizations will occur.

2.3.3 Latch Clustering and L CB Cloning

To meet the timing, loads on critical logic are separated by cloning both latch and logic
gates. A sample of such cloning is illustrated in the following example, where latches are coded
to drive different output logic, when input is the same for both émtd¢thowever, synthesis tools
need to be enabled with parameter so that PDS can clone latches, and similarly, equivalent
latches must be defined in VHDL (or Verilog) before going to the synthesis process. Parameters
must be enabled via synthesis parameter. A functional latch is described in details in Section 4.2
of Chapter 4. Following are the examples, Fig. 2.13, of two equivalent latches (cloned) in the
VHDL, where one input net is connected to both latches but those latches are driving different

outputs.

pds use cloned latches: true #parameter in constraint file

unit_control: entity latches.nlat

port map (c1 => master_clk,
c2 => dave clk,
scan_clk => scan_clk,
scan_in => funcscan_in(0),

25

scan_out => func_scan_out(0),

data in => unit_data in(0),

data_out => unit_data_out(0))

unit_control_colone: entity latches.nlat

port map (c1 => master_clk,
c2 => dave clk,
scan_clk => scan_clk,
scan _in => func_scan_out(0),
scan_out => func_scan_out(1),
data in => unit_data_in(0),
data_out => unit_data_out(1),
)

Fig. 2.13: Latch clustering and LCB cloning.

2.3.4 Control Logic Structure

To control synthesis flow, sometimes designers can hard code the logic gates with
appropriate logic style and drive-strength with some attributes in VHDL. There are some
advantages and disadvantages for such coding because in the event of hard coding, synthesis will
not optimize gates to meet the slew/slack requirements of the design. Similarly, poor coding or

lack of understanding of the optimization can cause sub-optimal design. This coding isaised as

26

hint to the tool, not a requirement. Designexsild use “Logic Style Direct” or “No
modificatior” in VHDL saurce. Here are some examples \dfiDL Logic Style Direct &

NO_MODIFICATION.

ATTRIBUTE BLOCK_DATA of example_dir_modO: label IS"LOGIC_STYLE=/DIRECT/";

ATTRIBUTE NO_MODIFICATION of example_dir_modO: signal IS"TRUE";

stall_blk1a0: example dir_mod0 <= NOT (main_eec OR main_stall);

stall_blk1b0: example dir_modl <= NOT (main_stall OR ecc_data);

Like “Logic Style Direct” or “No_modification”, synthesis understand the “structure
preserving logic” initiated by the designers. Advantage of structure preserve is: consistent logic
and synthesis determine the drive strength. However, the designers need to include realistic logic
in the design. Designers can also preserve the output drivers as cdddlin The following is
an example, Fig. 2.14f how to hardcode a NAND gate in VHDL with desired drive. These

gates belong to synthesis physical design library.

use cw_nand2_rd0 |: entity stdcell.cw_nand2

PORT MAP (vdd => vdd, #power

vss => gnd, #ground

a=> nand_inputl, #lnputl

b=> nand input2, #nput2

y=> nand_output #Output);

Fig. 2.14: Logic structure control.

27

2.3.5Pre-Placing Logic

Synthesis does very good job working on complex, Boolean equations of non-structured
control type logic macroTo save area and close timing, sometimes synthesis riaens$
holding” i.e. placement information, for the timing critical and data flow oriented logic. In
addition to hard IP and custom components, synthesis most often needs placement and logic
topology information for critical logic, such as encoder, decoder, mux select etc. to converge to
the desired solution. This pre-placement is generally a one-time job that requires understanding
of the data flow of the unit. A sample of placement file that is being called during synthesis is

given in following example

begin_place

place <inst_name> xloc yloc <rot> movetype=fixed

end_place

where, <inst_name>: name of instancein VHDL,

xloc, yloc: x-coordinate, y-coordinate of the instance in floor-plan;

<rot>: rotation of theinstance in floor-plan;

movetype: instance can be moved in synthesis or not.

2.4 Review of Quality of Data

There is a common saying in the synthesis woilghrbage in, garbage out”. Synthesis
engines heavily depends on the quality of the inputs that it gets and optimizes logic structure, and
places them to close timing. Otherwise, optimization tools will spend time unnecessarily. These

essential inputs for synthesis tools are discussed here. Good quality assertions with PIS, POS and

28

ETA are essential otherwise synthesis will work on the wrong paths. Synthesis has a direct
impact on the quality of the logic that is entered. If the slack is really negative, either assertions
are way off, or the logic still needs major work. Designers should not have too much logic

between latches or make sure that not too much logic fighting for the same physical area or 10s

are not congested to access. Otherwise, this may lead to local congestion.

Macro pin placement should be done from unit prospective to avoid extra timing penalty
and congestion. Also, input pins feeding a critical cone should be placed together, so that extra
buffering is avoided. Duplication of PINs should be considered for large fanout nets. Similarly,
PO pins fed by common critical cone(s) should have close placement. Sometimes designers can
use macro internal pins instead of edge-pin so that unit can use better performing wires to

connect input and output of the logic gates.

2.5 Synthesis Output

Each step of synthesis produ@edifferent type of output based on the tool that is being
used.In this dissertation, experiments are done in IBM’s tool flow and thus some of the steps are

discussed as follows:

Technology Mapped Netlist: The first step that produces technology mapped netlist
from RTL. At this step, no optimization and no placement is done. The tool basically maps

logical gates into available physical design gates in the library as discussed in Section 2.3.2.

Initial Optimization: At this step, the tool still has a technology-mapped netlist with
very little placement and some optimization. This optimization is based on wire length and
placement of gates. Buffer re-powering, removal, and re-placing are done at this step. Net weight

and attraction are being done.

29

Final Optimization: This placement is after clock-optimization and has very little
change in placement of the gates. Timing, electrical and power optimizations are done at this

stage. Legalization of placement is done in Final Optimization.

Refine Steps:. It is the last step in synthesis and the tool tries to deliver optimized design

with the least electrical violation and optimized power. Major optimizations include:

e Electrical violation correction

e Efficient fanout trees

e Repowering, buffering, logic restructuring, pin swapping, cloning etc.

e Vtrecovery (Remove leaky gates for better power design)

2.5.1 Major Output Files

Log Files: This file has all the run details including errors and warnings while the job

runs. This is a very helpful file to debug any problem that may occur during synthesis steps.

History: This file keep track of summary of data for all runs in same directory. These
data include: #of latches/LCB, macro utilization (logic gate density in macro), latch to latch
slacks, run time, type of gate (logic gates with different kind of threshold voltage for leakage

power) usages, CPU usages, total logic gate width in the design etc.

Plots. A routing and timing closed macro is the end goal for the designers. The provision
of writing out the mero’s internal logic gate and IP placement, vertical and horizontal wiring
congestion, slack distributions are plotted for designers to give an overall picture of the design.
Based on the plots, designers can make improvements to the quality of the design by mitigating

noise and timing violations of the design using available methodology in synthesis.

30

24676 « 3320 tracks

Fig. 2.15: Example of worse slack plot in synthesis.

Distributions of Gate Array (GA) cell: GA cells are used to fix bugs when rest of the
design is frozen. In synthesis, these information is written out as plots and thus gives a good
pictorial view to designers so that designers could take a look and decide which gates to use to
fix functional and timing bugs. An example of such a plot, worst slack, is presented here in Fig
2.15, where the source and sink latch are colored in blue and green respectively. Designer can
look at the placement of these part of the logic and consider several options, as discussed in

Section 2.3 to close timing on this macro.

Timing Reports: Tool writes out several timing reports (also known as endpoint report)

for user to look at. These includes as follows:

e Comprehensive timing report: This comprehensive timing file consists of timing

information on all nets and gates in the design for all timing phases.

e Endpoint Report: This output file of synthesis is skiosihd user friendly version
of comprehensive report. It includes both latch to latch and primary input/output

paths containing the delay information for the gates and wires on the paths.

31

Latch to Latch Endpoint Report: Out of all files that synthesites out, this file

is the most useful to the designers. It allows designer to focus on macro internal
latch to latch paths while the PI/PO paths are still in flux at the primary stage of
the project. Matter of fact it is very typical that at the early stage of project,
designer would relax the PI/PO paths so that internal paths get higher attention to
fix the timing violations. Similarly, designers also look at another latch to latch
endpoint file with “zero wire length” where there is no wire delay in the design

and thus one can quickly determine whether this logic paths can be closed in
synthesis or not or need logic fixes. An example of Endpoint file is shown in Fig.

2.16, where gate, wire delay and rise/fall time is broken down per logic gate.

Phase Rise/ Slack Delay Arr. Time Slew Load Sink
Name Fall(ps) (ps) (ps) (ps) (ps)ff) Gate

Setup MA- F 250.00 0.00 47.00 0.00 LCB
MA@L R 79.89 32.15 210.70 48.05 1.39 LATCH
MA@L R 79.89 6.07W 204.63 46.54 2.00 INV
MA@L F 79.89 22.85 181.78 11.68 0.80 INV
MA@L F 79.89 0.27W 181.51 1158 1.92 NAND2
MA@L R 79.89 9.60 171.91 17.58 0.8(NAND2
MA@L R 79.89 0.05wW 171.86 1756 0.88 XOR2
MA@L F 79.89 15.11 156.75 21.72 5.93 XOR2
MA@L F 79.89 3.29W 153.46 19.68 17.62 INV
MA@L R 79.89 12.54 140.92 27.29 3.87 INV
MA@L R 79.89 6.83W 134.10 22.65 10.37 NAND2
MA@L F 79.89 12.23 121.87 19.36 2.33NAND2
MA@L F 79.89 0.19wW 121.68 19.31 254 NOR2
MA@L F 79.89 29.40 92.28 56.12 0.45 NOR2
MA@L F 79.89 23.34W 68.93 24.62 40.07 INV
MA@L R 79.89 12.08 56.85 28.20 5.40 INV
MA@L R 79.89 0.84W 56.02 27.99 5.99 NAND2
MA@L F 79.89 15.37 40.65 11.55 1.00 NAND2
MA@L F 79.89 0.05wW 40.59 1152 1.08 LAT
MA - F 40.59 0.00 47.00 0.00 LAT

Slack: Cycle Time + LCB delay path Delay = 250 + 40.59 -210 = 79.89ps

Fig. 2.16: Example of timing path in synthesis.

32

Netlist: It is the ultimate output from the synthesis tool that has all connectivity,
placement and mapped to available physical gates of the physical design library. This text based
netlist file is converted to layout cells once imported into cadence library and at this point
physical designer can open the placed gates in GUI to analyze any timingnihifsossible
placement in the design with some parameter or customization. Another usage of this cadence
based netlist view is: designer can edit this netlist for possible logic change (ECO: Engineering
Change Order) because they can visually check the placement of other gates and come-up with

better solution to optimize routing, metal usages and timing for the design.

2.6 Early Mode Padding (EM PAD)

Hold timing violations are the fast path violations, and so it is important that the timing
represents the fastest environment in which the chip will operate (best case voltage, temp, etc.).
EMPAD is a part of placement driven synthesis where optimization is needed to fix hold timing
violation in the design. Hold violation is a violation when data arrives faster than the clock at the
sink latch. These are the ‘must’ fix in the design and involve to slow down the fast paths. In Fig.
2.17, design has back to back laskhonnected mostly to stage logic so that correct balance of
latency exists in the design. There is not enough logic gate between the left latch packs, where

the set-up and hold slacks are shown as 45.0 and -8.0ps (hold violation) respectively.

Latch Latch Latch Latch
Path Setup slack: 45 0ps Path Setup slack: 25.0ps
Path Hold slack: -5.0ps Path Hold slack: 2 Ops

Fig. 2.17: Example of early mode padding (EMPA

33

In order to fix this hold violation, an inverter-pack (two gates with blue color) has been
added on the logical path and thus the set-up and hold slacks became 25.0ps and 2.0ps, which
satisfy both the late and early mode timing check for the design. Also, to fix EM failures, gates
on the timing paths can be sized down to slow down the data arrival time. However, the
designer(s) must be very careful in downsizing gates so that noise does not become a problem
because smaller gates are more susceptible to noise. Similarly, it is also highly recommended to
place EMPAD gates at the most downstream legiminimize the usages of gates to save power

and area.

2.7 Routing

Logic design team can avoid routing problems and achieve greater success mgadopti
physical- and congestion aware synthesis methodology that reduces iterations between front- and
back end tools, which positively impacts the die size and schedule time. Given the delay impact
of wires in today’s process geometries, modern timing-aware routers will try as much as possible
to detour those routes that are non-timing critical, but this is not always possible. And given the
prominence of physical wire delays in today’s geometries, it is likely that a non-critical path
becomes critical after its route is detoured. Further compounding the problem, physical tools
tend to buffer those detoured routes in an attempt to speed them up, and this can create further
congestion [31]In the physical design stage, not only global routing, but some new placement
algorithms begin to consider the congestion minimization as one of the most important

objectives of optimization besides area and timing [32-38].

The routing tools involved in these steps are: power routing, clock routing and signal
routing. However, as data prep, the router will read the synthesized data as netlist, where all the

connectivity is already defined, along with macro-bounding box with wire allocation and

34

constraint files. In addition to the synthesized netlist, the router needs to know what layers of
metals it can use to route the macro. Abstract of the macro has PI/PO placement information and
cover cell has all blockage information that is needed during the routing steps. A constraints file
is used as an aid to the router, where any specific sugbasrol file for power routing layers,

is defined.A flow diagram for routing a synthesized macro with inpsigthown in Fig. 2.18, and
sequence of the tool executions are shown in Fig. 2.19. Routing jobs in synthesis are mainly
divided into two major steps: 1) Global Routing and 2) Detail Routing where following tasks are

performed [3%

1. Global Routing

e The logic gate placements are preserved from synthesis

Identify routing resources to be used

Identify layers (and tracks) to be used

Assign particular net to these resources and

Also, used in floor-planning and placement

2. Detail Routing

e The logic gate placements are preserved from synthesis

Define pinto-pin connections

Must understand most or all design rules and congestion issues of the design

May use a compactor to optimize result

Necessary in all applications

35

Macro Abstract

Wiring contract

DRC & Timing ———DI Initial Routed Design |
Fixes

Router

Synthesized Netlist

Fully Routed Netlist

Routing Layer

/ Assighment

\ Macro

Constraints

Fig. 2.18: Input and output of routimg synthesis.

Input

Read Netlist

<
4

Floorplanning

Floorplanning

r

Placement

Initial Placement

|

Routing Region
Definition

|

Global Routing

|

Cost Estimation

]

Routing Region
Ordering

Routing

|

Detailed Routing

I

Cost Estimation

Placement
Improvement

Routing
Improvement

Fig. 2.19: Routing flow (Courtesy: IBM EDA).

36

1.200

1700

1.030
0,350
0350 [
oain| |
0.570

0.6820

0760

0.700

0.600

0.80D

0.300

0.000

Fig. 2.20: Routed design.

To route any design in most effective way, it is very important to look at hot spots that
design may have due to the congestion. The design may get routed but in the long run designers
must be careful for back-end tool fails such as noise, electromigration, electrical rule fails, and
timing fails due to noise. Designers should also think about having some extra space for future
changes and bug fixes. There are some home-grown tools that can be used to find out hot spots
in the routing that can led to space out logic gates or allow higher layers of metals if available. In
Fig. 2.20, it is shown how congested the design is by taking a picture of metal routings and
coloring red where design is highly congested. Yellow indicates caution, while green indicates

no substantial problem to route.

2.8 Post Routing Optimizations

Once design is routed, another post processing tool can be used to fix the design violation
left by the router in a minimally disturbing way. One can perform the optimization after detail

routing to fixa postrouting timing “jump” [40]. Some usages of these tools are discussed here:

37

Electrical Quality

— Rise/Fall time fail fix

— Max loading fix

Timing Quality

— Improve both late and early mode timing fails

Improve power by replacing leaky gates with power efficient gates

Remove unnecessary routings to fix some design rule violations

Post processing tools work on already routed desfgnsbetter optimization with
incremental routings and placements to fix electrical and timing fails. However, it works on the
design that is already placed and has detailed wiring done. It fixes scenic nets and tries to make it
straight. Given a set of scenic nets, post-processing tool rips-up and re-routes these nets. Once re-
routing is done, it is much straighter than the original routings as captured in Fig. 2.21. Table 2.4,
on the other hand compares both early and late mode slacks in addition to slew and maximum

cap fails before and after running the post-processing tools once the design is routed.

Table 2.4: Post processing tool to fix timing violation.

Beginning Ending
Late Mode Slack -15 -5
Number of Negative Pat 200 88
Early mode Slack +ive +ive
Number of Negative Pat 0 0
Slope Violation 20 2
Load violations 15 0

38

Straighter route, yet

some detours

Fig. 2.21: Bad routing and fix after post-processing (Courtesy: IBM EDA).

2.9 Summary

In this chapter, industry standard synthesis flow and design methodologies are discussed.
Today's synthesis engines do a very good job in closing timing, electrical and noise constraints
for low-frequency and random lmgmacros. However, traditional synthesis flow does not do a
good job for structured, high-frequenayulti-power, multi-clock and timing-critical multi-
million logic gates which need to be packed in a tight floorplan. In an automated synthesis
design methodology, these design constraints must be analyzed, understood and implemented in
such a way that backend tsets understand the timing and implementation checks, espewially

syoporting MMLGS to optimize and gain high level of design productitatynprove TAT.

39

Chapter 3

Drawbacks of the Existing Synthesis Flows

The synthesis methodology reviewed in Chapter 2 has been the key to success for
decades, where latency goals were not too difficult to achieve due to aggressive technology
scaling and the relaxed latency demands in AST®erefore, it has been a key vehicle for
physical design and implementation mostly in ASIC areas, where area and latency requirements
are less important than other goals, such as time to market. Logic synthesis is recogmzed as a
integral part of the design process, leading to an evolution in methodology from capture-and-
simulate to describe-angnthesize. The new methodology’s advantage is that it allows us to
describe a design in a purely behavioral form, de-void of implementation details, and then to
synthesize the design structure with CAD tools. Designers can apply the describe-and-synthesize
methodology on several levels of abstraction. On the gate level, they can synthesize functional
and control unit logic by means of combinational logic synthesis. They also can synthesize
controllers from finite-state machine diagrams by means of sequential synthesis. On register-
transfer level (RTL), they can describe the behavior of ASICs with programs, algorithms, flow-
charts, dataflow graphs, instruction sets or generalized FSMs in which each state performs
arbitrarily complex computations. Then they can synthesize these ASICs by means of high-level

(or behavioral) synthesis techniques [41].

Fig. 3.1 shows the current usage of synthesis based physical design, where most of the

control macros are designed as smaller RLM or SUPER RLM, especially in a low frequency

40

>3GHz Custom Design 3-2 GHz RLM Design <2 GHz SUPER RLM Design
< 10K Gates >100K Gates >Million Gates
Transistor Ievel Design Gate Level Design Methodology

Fig. 3.1 Design methodology for synthesized macro.

domain and go through gate level design methodology. The logic gate counts in this synthesis

based design is in the range of 1 to 2 million functional gates.

Intel’s Ivytown [42-43] has 15 core designs with fairly good usages of MMLGS. As they

reveal the product, here are the summary of their large block:
e Continued the trend for Multi-Million Logic Gate Synthesis
e 2 million synthesizable gates in static timing
¢ Enhanced synthesis with 2x design complexity and
e “Special methodology for signal integrity and circuit quality.

lvytown chip floorplan with Intel’s 15-core chip design [44] is captured in Fig. 3.2,
where MMLGS usage is drawn in white dotted rectangle. However, compare to L2 cache unit for
the experiment used in this dissertation, & far smaller and high latency unit, because the L2
cache unit has around 20 million synthesizable gates and 40% of the logic is on same frequency

asthe core and the other 60% is on 2:1 frequency to the core.

Multi-Power-Supply based design is a very popular way to save chip power, especially at

the array design interface, where part of the input/output signal of the design are on higher power

41

MMLGS in lvytown

o ==

EEEES EEEED Y o VRSN PAAES ARSE s SEANsRELEaNEes Bosde Scusis -0

Fig. 3.2 MMLGS usages in the Indust(intel’s Ivytown Microprocessor).

supply than rest of the macro to maintain the desired performance. Similarly, multi-clock based
design methodology: 1) enables certain part of the chip to function at different frequency to meet
the performance requirement; and 2) reduces the power of the chip by dynamically shutting the
clock down when circuits are not in use. When the synthesis methodology for MMLGS is
considered, designers must consider the multi-voltage and multi-clocks design for functional and
design productivity requirements and still satisfy the power-performance tradeoff for the desig
The following subsections explain why current industry standard design methodology is
inefficient in many ways and provide motivations for MMLGS and the necessity of employing
multi-voltage and oubf-phase clocks in the design. These design methodologies are also

discussed in details in chapter 5.

42

3.1 Physical Design Resour ce Limitation

Even though today’s synthesis engines do a very good job in closing timing while
meeting éectrical and noise constraints, most often synthesis methodology is limited to random
logic, i.e. it does not dagood job for structured logic that needed to be packedight floor-
plan. Even for control macros, designers spend quite bit of time to work on macro size, pin
placement, routing assumptions, etc. Thus, to divide and conquer, units are broken into pieces to
define the macro boundaries. Typicaltylead designer works with a group of designers and
divides the work so that turnaround time is optimized. Since each designer works on their own
piece of design, several designers, typically 6-8 engineers, work in parallel tmteacho
design and deliver the macros for unit integration and timing work. With increased complexity,
the number of engineers needed for completing a functionainentases dramatically with the

traditional design flow.

3.2Turn Around Time (TAT)

The basic advantage of synthesis over custom des&yvely quick turnaround time. In a
traditional physical design flow for both synthesized and custom units, logic and circuit
designers along with unit integrator go over the macro portioning based on unit data flow. In a
typical design flow a lead designer will then allocate macros within the team, spending quite bit
of time analyzing macro boundary, floor-planning, metal usages, and work-load balance. The
Physical Design (PD) team will then design macros, close time, clean all PD check violations
and deliver those to the unit independent of each other. Sometimes, even though macro internal
timing is closed, the primary input and output paths will be still broken and thus designers will
need to exchange a good amount of physical design efforts for unit level work. For example

macro designers generally design macros independent of each other and thus may come-up with

43

unoptimized logic at PI/PO. If there is a timing fail between two macros at the unit, both macro
owners must work together and optimize both designs in terms iofdates, driving-strength

and wire-usages of the design. They may have to go through couple of iterations of physical
design to get the it acceptable by the unit timing and integration. Thus, required TAT is much

longer than the market dictates.
3.3 Timing Optimization

In smaller macro portioning, primary output drivers generally drive long wires, unit level
buffer(s), and then input to the sink macros. Both source and sink macros are designed and built
independent of each other, thusrthenight be inefficiencies at both macro boundaries. It is
practically impossible to get rid of these inefficiencies and thtigjing penalty is paid at these
boundaries. Since these macros are physically separated and synthesis cannot see the logic at the
same time as one macro, the timing engine cannot optimize the macro better. Fig. 3.3 is a simple
example of unoptimized design where unnecessary inverters, logic and buffers can be avoided in
MMLGS to improve the overall timing of the design. In real design, any number and types of

gates can be optimized for better optimization of the design.

Unit buffers

Macro 1 Macro 2

=R

LATCH

Unit wires

Fig. 3.3: Unoptimized macros at unit.

44

3.4 Power and Area Optimization

Both custom and synthesis flow at lower level macros are constrained by logic partition
and timing windows. Each macro is tuned individually and may not necessarily be good for the
unit. Most often, macros are designed and developed by a group of people and lack of
understanding of each other’s macro or timing constraint could lead to sub-optimal design. For
example, unnecessary drive power or redundant logic at the macro boundary could end up
wasting power and timing arc. Like timing optimization, area optimization is another important
atask for synthesis. If physical gates are placed nearby, synthesis can eliminate extra buffering
redundant logic and does not need to make driving gates bigger, and thus can use smaller gates
that have a ripple effect, as illustrated in Fig.3.3. One of the effects is area optimization. Thus, if
the design haa conventional physical partition, there will be wastage of physical areas of the
macro. However, if the macros are combined using proposed MMLGS methodology as sown in
Fig. 3.4, design can be improved for timing, power and logic optimization compared to
unoptimized design shown in Fig.3.3. Both Figs. 3.3 and 3.4 are functionally equivalent to each

other.

Combined macro
for MMLGS
LATCH

Optimized
Logic

LATCH

Fig. 3.4: Optimized macro with proposed MMLGS methodology.

45

3.5 Sync-Async Interfacein Synthesis

To meet the design cycle time, designers use a technique call cycle stealing or slack
sharing[45-46] i.e. instead of limiting design in one cycle, it is common to look ahead across
multiple cycles and make sure timing can be met without changing the micro architédhee
macro. Fig. 3.5 shows an example where logic to the left clock (CLK) has a slack of -15ps,
whereas logic to the right clock (CLK) has a slack of +20ps. Instead of looking oneatycle
time, if designers look at both cycles together then it can be found that there is a +5ps on the path
and thus designers can delay the launching clock by 17ps, Fig. 3.6, to meet the timing for both
cycles. It is worthwhile to note here that designers must pay attention to the early modatiming

these interfaces as walhen slack stealing is in place.

data ot

Fig. 3.6 Example of slack sharing.

46

Cycle stealing across cycles has been very effective and has been in use for years to
relieve timing pressure in synchronous digital circuit design. However, if a timingcpebes
out-of-phase multi-clock domains, slack cannot be shared between cycles due to the increased
chance for metastability. In an automated synthesis design: i) a methodology is needed so that
multi-clock domain interfaces are identified and designed correctly; ii) a timing methodology is
needed so that slack sharing is not performed at sync-async interfaces during macro, unit or chip
level timing; and iii) at the same time, the rest of the design can use slack sharing safely.

Available industry standard clock scheduling schefd@&s49] explain how to borrow
slack across cycles for synchronous circuits. However, these methodologies do not offer a clear
solution in automatic synthesis methodology especially when: i) the feedback path snips to the
sink latch that is transparent during slack sharing; and ii) they do not explain how to address

sync-async interface timing during slack sharing.
3.6 Multi-Power Domain in Synthesis

In a fully or semi-custom design flow, voltage translators are placed at the interface
(input/output) logic that has gates on different power supply domain. However, in fully vanilla
synthesis design methodology, generic toolsets do not support the physical placement and
connectivity of the input and output logic that is on multi-voltage domain. Recent trends in IC
design methodology shows big shift toward MMLGS methodology that most often requires
embedded IP or custom component, such as arrays inside the macros. These embedded IP may
require multi-voltage support and thus complicates generic synthesis flow and ends up
partitioning and connecting logic gate(s) to wrong power rail for input and output gates.
Therefore, in automated synthesis areas, these methodologies need to be analyzed, understood

and implemented in such a way that backend toolsets understand the timing and implementation

47

checks. Supporting level translators for multi voltage domain in synthesis methodology,
especially in MMLGS that has embedded array (IP), is a necessity for power efficient design in

today’s high speed high performing design technology.

In a full or semi-custom design flow, Level Translators (LT) are placed at the interfaces
of the input/output (IO) logics that have gates on different supply domain. In synthesis, standard
cells in a power domain may use only the primary power and ground, the power management
cells like level shifter, isolation cells, and retention registers need a second power[SQpply
This second voltage domain complicates generic synthesis flow and end up connecting to wrong
power rails for the input and output logic gates of LT unless properly attributed in VHDL and
proper algorithm in synthesis methodology is followed. Both Synopsys and Cadence have
offerings as Unified Power Format (UPF) and Common Power Format (CPF) respectively that
are available in synthesis methodology [51-53]. However, study finds these CPF and UPF
methodologies with very limited articles that are available to the public domain. Study shows
that these available methods use power-ground constraints file [5ds5&h input to the
synthesis flow. Thus, a methodology is needed which is an automatic enhancement to the
synthesis engine, especially in MMLGS domain, along with HDL attributes and without any
constraint file so that synthesis engines understand the power/ground attributes, placements and

connectivity of the level translators.

3.7. Summary

Some of the limitations of synthesis based design methodology for high-speed, multi-
clock and multi-power domains have been discussed in this chapter. As discussed in previous
sections, available industry standard methodology is ineffiaeniming, power and area

optimizations and requires more PD resources. These problems can be resolved effigiently

48

developing the synthesis-based design methodology for MMLGS, in both multi-clock and multi-
power domain, as discussed in later chapter of this dissertation. The proposed techniques for
MMLGS methodology can take advantage of breaking hierarchies for all non-array macros to
optimize the logic gates and their placement to close highly timing challenged paths. The
MMLGS methodology enables the downsizing of the PD resources for both custom and
synthesizable macros and may eliminate the need for unit integration and timer resources

some cases.

49

Chapter 4

Circuit Design of Common Library for Research Experiment

In Chapter 2, industry standard synthesis methodology and flow have been discussed
along with logic and physical design optimization. Both routing and post routing pgebes®
been discussed there as well. In Chapter 3, the limitations of design methodologies have been
discussed and foundations have been laid out for future development. Before developing new
methodologies and algorithms in the following subsequent chapters, the basic building block of
the physical design libraries are discussed in this chapter because several macros and units will

be using these library components for the test cases used in the experiments.
4.1 Library Cdls

To save chip area and power, efficient PD methodology can be used to choose desired
size of the logic gates, which provides fine device size granularity. For this disseiifaos,
RodRunner programable cell-based PD gate library is used where layout generation iscautoma
and physical design error free. For more details about RodRunner library, please refer to
Appendix Al. In addition to the RodRunner library, a few other libraries for latches, Local Clock
Buffer (LCB), buffers etc[56] are also available for illustration purpos€$aracterization and
static timing analysis with a single supply for the entire chip can be done at a single performance
point. The libraries are characterized for this point and the tools perform the analysis in a straight
forward manner. With multiple blocks running at different voltages, and with libraries that may
not be characterized at the exact voltage that being used, timing analysis becomes much more

complex[57].

50

4.2 Latch Design

Scanable master-slave flip-flops (MSFF), Fig. 4.1, which operates in pulse mode, is used
in the proposed design methodology for the test case. In normal mode, each bfSkr€seare
controlled by two opposite phases, slightly skewed clocks, C1 and C2 that drive master latch
(L1) and slave latch (L2), respectivelyp normal mode operation scan_clk is held low to isolate
scan data. To save the dynamic power, latch is operated in pulse mode, where C2 toggles and C1
is held high as shown in Fig. 4.2. The latch design methodology allows designers to operate the
latch in several modes including delaying the mesh clock at the capturing latch which enables
designers to steal time from next cycle. Local Clock Buffer (LCB) control signals can enable

shifting the cycle boundaries and tuning frequencies in the lab for frequency limiting paths.

invert_C2

o |

data_in >C
invert_C1 invert_C2

scan_clk | >> >O » Scan_out

invert_scan_clk

data_out

Fig. 4.1: Master-slave latch

51

scan_clk=0

cl=1

/ Potential Timing Adjust

c2]

data_in

hold | Peetup |
[,] 1

Fig. 4.2 Timing diagram of master-slave latch

Fig. 4.2 shows data set-up and hold requirements, where data is not allowed to change the
state, in the timing window of clock being pulsed, in order to reliably transfer data from the input
to the output of the latch. Fig. 4.2 also represents how the pulse mode timing is done in synthesis
and unit/chip timing methodology enabling cycle stealing to give designers relief to close critical

timing path at all levels of design hierarchies.
4.3 Array Design

Traditionally, SRAM arrays are designed using full custom approaches. Every transistor
is tailored for its specific application. Typically, the effort is on the order of one to two Person
Year PY) per array. While ever-increasing chip functionality drives increases in the number of
unique arrays per chip, pressure on cost, and thus resources, does not allow for the staffing of
development teams to keep p§6é]. As a rule of thumb, development of a compilable system
should be considered if the number of unique arrays exceeds five. The design point for arrays,
the growable SRM, is chosen to be an alternative for small-size register files for the L2DIR

(macro for L2 Directory aess) and L2LRU (macro for the “Least Recently Used” algorithm).

52

This SRAM cell allows independent read and write ports while offering higher area density of
the design. The primary frequency target for L2 cache applications is typically halbréhe c
speed, but certain configurations of arrays also meet the cycle time requirements of the core and
are used in high frequency clocks. A fully custom SRAM array is chosen for the L2 cache for
better performance and area saving. The application space described above drives the number
and type of options that are offered. To cover a good share of a typical register file use, the
growable SRAM system offers one write port and up to two read ports. These ports are
independent and can be hooked up to different clock domains. This flexibility also extends to
voltage domains. A growable arrays can be used in chip areas where only a single supply voltage
is distributed. In areas where Vcs (power supply for arrays) is present, a custom SRAM array can
take advantage of that and can operate with increased performance. To increase yield on small
processing nodes, the growable arrays system can build arrays that can be repaired post

production if they are affected by manufacturing defects.

4.4 Sync-Async L atch Pack

A group of latches and corresponding logic which are always clocked by a common clock
or clocks, have a common frequency and fixed phase relationship. On the other hand, two clock
domains are operating asynchronously with respect to each other if their respective clocks do not
have a fixed phase and frequency relationship. Asynchronous signals coming to a synchronous
system must be synchronized with the rest of the systém is usually done by feeding the
asynchronous signal to a latch or ffipp referred to as ‘Synchronizer’. If a clock edge from a
synchronous circuit changes too close in time to data arriving from an asynchraoaoiistbie
circuit may enter a metastable stfi8]. This can lead the system into an illegal or incorrect

state as shown in Fig. 4.3, causing the system to fail. Such an event in SPICE has been created

53

and presented in Fig. 4.4, where the cycle- and set-up time to latch are 340ps and 30ps
respectively with a stimulus for the input of MSFF, discussed in Chapter 4.2, that would change
arrival time every 1 ps at the latch input. As the simulation suggest, the set-up time to the latch is
found to be around 30ps and once the input starts to violate the set-up time, the latch starts to go

into a metastable condition.

Sees A ‘1’

Q I
clock
data Q
(Asynchronous Input) Sees A ‘0’
clock — I
Q
clock —

clock f
data f ()

/ Meta-stable state

Q

Possible output

Fig. 4.3: Metastability example

0.9v

c1
(Clock)

ns

0.9V

data_in

ns

0.9v

d_b
(Latch Point)

ns

1
y ¢
1 1
' '
1 1
1 1
T T
1
22682 22858 \j

. o . latch point (L1)
Fig. 4.4: Metastability timing diagram.

54

In Fig. 4.4, it is shown that the latch point (L1) is in metastable state i.e. unknown state
for about 206ps. During this period of unknown state, any electronic circuit would mal-function
and theoretically stays in unstable condition for an unknown period of time causing a permanent
system hang. However, this circuit does come backkimown state in about 206ps because of
process, voltage and temperature (PVT) changes in active silicon area around the latch point,

which may not happen all the time.

To avoid metastability, and support multi-clock design, the simplest approach is to
double-latch asynchronous signals being sampled by a synchronous module to creatensync-asy
latch. In sync-async latch pack, the first latch is clocked by transmitting clock domain and the
later latch is clocked by receiving clock domain as shown in Fig. 4.5. Here transmitting latch is
clocked by “NCLK” clock and receiving sync-aync latch pack is clocked by “NASYNC” clock.

This latch pack is another standard common library cell which is designed in such a way that
would reduce the chance of either latch going into metastable condition and may have stricter
timing requirements between them to reduce chance of metastability propagating from one latch

to the next.

Latch Sync-Asyne

Latch Latch
data_in

tata_out

NCLK

Fig. 4.5: Sync-async latclapk

55

Chapter 5

Proposed MMLGS and Timing Methodology

5.1 Introduction

Fig. 5.1 is an example of a typicBD flow in high-speed and high-performing VLSI

circuits, where each macro is individually built and timed to build a unit and finally the full chip.

In a typical microprocessor, due to the area and timing pressure of the design, critysaduadra

highly-structured-timing-critical-macros are designed using full and semi-custom approaches,

where every transistor is tailored for its specific application. On the other hand, all random logic

macros, to perform certain control functions, are built using automated tool flow such as

synthesis. To meet the design constraints such as area, timing and power, data flow macros most

often need hand-crafted schematics and layout design. The custom design approach requires a

Macro

Custom Macros
{Critical macro,
array, analog)

T

PD Tools

Logic
Unit
RLM Macros Unit Routing
{Control macro,
Hybrid, LBS)
»| Layout Unit Timing
Timing Rule Chip

Fig. 5.1: High level physical design flow in VLSI circuits.

56

good amount of hand holding and manual intervention and thus requires as much as four times
the development time of the synthesis flow. In general, a custom designer must plan every detalil,
including physical placement of the design, up front. The problem with a custom design
approach is incorporating any late design change may occasionally cause a majoofrg-up

previously built and timed macro and thus, become very expensive in terms of TAT.

Compared to custom macros, synthesis-based design is primarily for non-structured
control logic and is automatic tool based with faster TAT. Late changes in the design can easily
be incorporated in an automated way, keeping the rest of the design mostly unaffected. Today’s
synthesis engines do a very good job in closing design constraints for low-frequency and smaller
random-logic macros. However, synthesis does not do a good job for structured, high-frequency
and timing-critical logic that needs to be packed in a tight floorplan. In a typical synthesis flow,
each smaller macro is individually tuned to make timing and PD rule checks clean for the unit
level work, still requiring a fair number of PD resources for macro closures. This methodology

still needs same unit integration and timing support as the custom macro design flow.

5.2 Multi-Million Logic Gate Synthesis (MM L GS) Methodology

Both the custom and the traditional synthesis flow at lower level macros are constrained
by logic partitions and timing windows. In both design flows, each macro is tuned individually,
which may not necessarily be a good solution for overall unit design. Most often, macros are
designed and developed by a group of people who lack understanding of each other’s macros or
timing constraints, which can lead to a sub-optimal design. For example, redundant logic or
unnecessary drive power at macro boundaries could end up missing timing arcs and wasting
power as explained in chapter 3. Bug fixes and late changes in an individual macro design most

often become very expensive in terms of turnaround time and physical design resources.

57

Multi-Million Logic Gate Synthesis, MMLGS in short, is the way to the future physical
design for design in both high speed microprocessors and low speed ASIC design. Compared to
traditional synthesis flow, the proposed techniques for MMLGS methodology can take advantage
of breaking hierarchies for all non-array macros to optimize logic gates and their placement to
close highly timing challenged paths. MMLGS methodology enables downsizing of the PD
resources for both custom and synthesizable macros and eliminates the need for unit integration
and timer resources.

As more and more functions are packed design and dealt with faster turnaround time,
the synthesis methodology and tool sets are challenged with multi-millions of gates in multi-
clock and multi-voltage areas. In the microprocessor design, the use of multi-clock, multi-
voltage and slack sharing very common in custom circuit design technigues. However, in an
automated synthesis design methodology, these techniques should be analyzed, understood and
implemented in such a way that backend toolsets understand the timing and implementation
checks. Sharing slacks cannot be performed between out-of-phase cycles because the likelihood
of metastability increases at the synchronous and asynchronous (sync-async) boundary.
Similarly, a signal crossing multiple power-supply domains must be interfaced throagél a |
translator (LT), which appropriately shifts the signal level. The requirements of the multi-voltage
and sync-async interface should be taken into consideration during all levels of physical
implementation and timing for the electronic circuits. The demand for multi-clock, multi-power
in synthesis methodology is ever increasing, especially iti-million gate designs, MMLGS
to support multi-million logic gates for design productivity. The MMLGS designs most often
require embedded IP or custom components, which may require different power supply rail(s)

and (or) sync-async clocking interface(s). Thus, the development of MMLGS methodology

58

should be fully supported for multi-power and multi-clock enabling and disabling slack sharing
where appropriate in an automated way. The proposed MMLGS methodology shows around

50% design productivity improvement over traditional digital design methodology.

5.2.1 Enhancement to the Existing Synthesisfor MMLGS

Placement-aware synthesis is an essential component to close routing and timing of the
design. However, most often, designers will find that wiring and timing constraints alone are not
enough to meet timing and area constraints for a design, especially in MMLGS methodology.
Thus, the industry standard synthesis tools need to be enhanced with proposed modified flow as
shown in Fig. 5.2, where several key methodologies and algorithms,asistft-hierarchy,
Multi-VT insertion, internal pin and pre-placing critical logic have been added. These key

enhancements are discussed in details in the following sub-sections.

| Abstract | | VHDL | | Timing Contract
Design Synthesis |¢— Pre-placs <
Const o t > ¥ and/or Logic |
onstraints Re-structure No

No Soft-Hierarchy,
Vt upgrade, Synthesis
interior Pin

\ Yes
Yes

Routing clean? Mg Congest_ion
Analysis

Yes

iming,
Electrical

Quality
met?

No

Macro ready
for unitfchip

Fig. 5.2: Enhanced synthesis flow for MMLGS.

59

5.2.1.1 Soft-Hierarchy Methodology & Algorithm

Frequently, synthesis tools require guidance from the designers for relative placement of
the gates. In this dissertation, a methodology called Soft Hierarchy (SH) is incorporated to guide
the synthesis tools as a hint that logic within a soft hierarchy be placed relatively close to each
other. SH is a method for physically synthesizing a design of an integrated circuit that includes
compiling a logical description of the design into a flattened netlist, extracting a soft hierarchy
from the flattened netlist, wherein the soft hierarchy defines a boundary on a die across which
cells of the integrated circuit are permitted to move, and placing a cell of the integratecdnircuit
the die in accordance with the soft hierard®®]. In addition to the SH algorithm, user
parameter can be used to guide synthesis for a user-specified placement of the logic gates that are
involved in soft hierarchy. A pseudo algorithm explainingiSHeveloped and presented here in
“Algorithm 5.1”. In this algorithm, a synthesis tool traces logic gates forward and backward

along the fan-out and fan-in nets to identify the gates that should be placed together.

Algorithm 5.1: pseudo code for soft-hierarchy during synthesis

1. START

2: read netlist of the macro and mark all gates unassigned

3: group logic gates (n group) with Same Hierarchical Identifier (SHI)

4. pick group #n and place gates with SHI into logic module (s)

5: select first gate in logic module and mark as assigned

6: trace forward along fan-out nets to get instance name(s) & place them in fan-out bucket
7: trace backward along fan-in nets to get instance name(s) & place them in fan-in bucket
8. Merge fan-out and fan-in one bucket with first assigned gate

9. tag all gates in merged bucket as assigned

10. select next group (n-1) and repeat 4-9

11. if group=0 -> done assigning macros for soft hierarchy

12. place gates from each group in same physical proximity

13. END

60

Fig. 5.3: Soft hierarchy example in synthesis flow.

Fig. 5.3 shows a classical example of the application of SH to meet timing, where logic
gates in the two white boxes are placed apart but these gates are expected to be placed together.
In a typical design flow, the designer would try otitghss synthesis without any pre-placement
or SH to close timing. Once the job is done, and if timing is not met, the designer uses a GUI to
highlight the placement of critical gates that are supposed to be together for better timing, power
and congestion. If synthesis tools place them apart for any reason, designers can use simple tcl
code, as shown in the example (5.1), to createvadbgz box enabling “Algorithm 5.1” in
synthesis so that gates in the two white boxes can be placed together. Designers do not need to

wait for 1% pass synthesis if they have knowledge of logical placement of critical logic in design.
Example of soft-hierarchy parameter that can be used during synthesis flow:
name=<inst_name> prefix= <name> xlow=< > ylow=< > width= height= (5.1
where,

<inst_name>: user specified name to recognize gates

61

prefix: isthe name of logic gates used in HDL

xlow, ylow= left lower coordinates of the bound box for SH in micron

width, height: width and height of bounding box of SH in micron

Example:

name=rlctl prefix=I2rlctl xlow=50 ylow=20 width=30 height=30

5.2.1.2 Multi-VT Insertions & Algorithm

One of the goals is to deliver a timing-closed design within budgeted power that includes
both leakage and switching powés the timing-critical paths have been analyzed, it is found
that most of these failed paths have too much logic between latches. To fix these paths, there are
few choices i.e., add faster gates (Vt upgrade), re-architect the logic, delay the clock for
capturing latch, upgrade the wire, and pre-place logic gates so that wiring is minimum. While
these options are explored, synthesis parameter are also used so that synthesis can use faster
gates if needed to close timing. These parameters enable the synthesis algorithm tovtipgrade
a user-specified limit and override the project-specified lidipseudo algorithm “Algorithm
5.2’ for upgrading Vt, has been developed and presented here. In this example, two levels of
have been defined for the simplicity of the algorithm. However, the same algorithm can be
extended for moré&/t types if allowed by the technology. Definition of gates for differéint
levels (As an example):

LVT: Lower threshold voltage. Very leaky device but faster

HVT: High threshold voltage. Least leaky device but slower

62

Algorithm 5.2: pseudo code to upgratfe

1.

2.

10.

11.

12.

13.

14.

15.

l6.

17.

18.

19.

20.

START

identify all timing failed paths
identify user’s specified Vt distribution (user vt) # Ex: user can have 20% LVT devices
find current Vt distribution in the design (current vt) # Ex: current LVT usage is 0%
And all devices are on HVT
pick-up 1% path and identify all gates on it
while {current vt < user vt}{
swap 1°t complex gates to LVT
timing closed? if yes, go to 16
If no, swap Vt for next complex gate and go to 8
If no more complex gate to swap then
swap smallest inverter to LVT
timing closed? if yes go to 16
if no, go to 11 & repeat 11-12 for next sized inverter
timing closed if yes go to 16
if no, report current slack for the path and got to 16
select next path and repeat 6-15
if no more path to fix timing then go to 20
}

Exit no Vt upgrade available # Already reached limit

END

5.2.1.3 Internal Pin, Pre-Placing Critical Logic and Algorithm

Common design methodology is to use a bounding box for the macro i.e., abstract with

input and output pins around the edges having appropriate metal usages to contact with the chip.

In general, the macro gets a lower level of wires to route to the edge. However, synthesis can

come up with a sub-optimal solution or a chain of buffers on the paths, which may create timing

fails at the macro or unit boundary. The data of this experiment has been analyzed and it is found

that boundary paths can easily be improved by guiding synthesis to place the timing-critical

Primary Input (PI) and Primary Output (PO) pins right on top of the driving or receiving logic

63

gates. Although this methodology reduces a good portion of failed paths in the design, this can
be viewed as a source of two potential problems. First, it can create a local congestion i.e.,
synthesis may end up placing critical logic in the same vicinity, and the router may end up

fighting for routing channels. Second, the unit router must access the deeper part of the macro,

and thus needs a higher layer of metal and can create a routing resource conflict.

A pseudo algorithm, “Algorithm 5.3, is presented here to explain how “interior pin”

methodology is incorporated to close timing in this MMLGS test case.

Algorithm 5.3: pseudo code for interioiirp

1. START
2. PI/PO names for interior pin placement exists?

User provide a file with desired PI/PO for interior pin

3. if yes {

4. add lowest net weight value to PI/PO nets
5. interior pin=yes

6. }

7. do initial placement of the gates

8. if interior pin=yes {

9. place PI/PO PIN over the receiving/driving gates
10. Assign pins to coarse grid for routability

11. Legalize pin location (fine grid, blockage aware)
12. }

13. optimize gate placement to close timing

14. optimize drive strengths

15. continue with normal synthesis optimization flow
16. END

Synthesis does very good job working on complex, Boolean equations of non-structured
control type logic macro. To save area and close timing, synthesisi¢odl$hand holding” i.e.,

placement information for timing-critical and data-flow oriented logic. In MMLGS, embedded

64

IPs and custom or array macros are pre-placed; otherwise, synthesis would simply not be able to
complete the placement of the gates. Even in smaller MMLGS with 1 or 2 embedded IPs, pre-
placing these IPs according to their data-flow is highly recommended for better quality of results.
In addition to hard IPs and custom components, synthesis most often needs placement and logic
topology information for critical logic such as encoder, decoder, and mux select to converge to a
desired solution. This pre-placement is generally a one-time job that requires understanding the
data flow of the macro. A sample placement file that is being called during synthesis is shown in

Fig. 5.4.
begin_place
place <inst_name> xloc yloc <rot> movetype=fixed
end_place
where
<inst_name>: name of instance in VHDL
xloc: x-coordinate of the instance in floor-plan
yloc: y-coordinate of the instance in floor-plan
<rot>: rotation of the instance in floor-plan
movetype: instance can be moved in synthesis or not

Fig. 5.4: A sample placement file.

65

5.2.2 Proposed Multi-Power Design M ethodology for MMLGS

vDD VIO
VIO

o [—qg
_|q

GND

Fig. 5.5: Example of aegeric “Level Translator” (LT).

Signals that are going to a high-power dama&quire a special circuitry called “level
translator” (LT), to minimize static power loss or reliability of circuit operation because when a
signal is propagating from low to high voltage domain, the downstream circuit could stay ON if
the difference in power supply is greater than or equal to the threshold of the gate. There are
number of ways LT can be designed. However, for methodology development, a generic version
shown in Fig. 5.5 is useds an example, where input “IN” and output “OUT” are on “VDD” and
“VIO” power supply respectively with common ground pin as “GND”. The top part of middle
cross-couple logic is on VIO and lower part is on VDD power supply domain. In an automated
design flow: 1) a tool is needed to check this power domain crossing and 2) make sure level
translators have been instantiated with correct connectivity. In addition, the tool must understand
not only the voltage translator function but also placement of the gate, timing and wiring of the
path so that correct gates are connected to correct power supplies. However, the standard
synthesis tool flow has the limitation in performing this basic function as explained in Fig. 5.6,

where multiple voltage is used in the design.

66

vDD VIO Wrong Power Supply

VDD T T >'°F< vio

INPUT Level OUTPUT

LG1 Translator LG2

(LT

1 1

GND \ GND

GND Wrong Placement

Fig. 5.6:“Level Translator” (LT) is expected to drive gateith “VIO”.

In Fig. 5.6, the circuit connectivity shows how a generic synthesis tool is unable to handle
the connectivity and placement of multi-voltage gates in the design. In this example, the logic
gate “LG1” with power supply VDD is driving LT that has a VDD and VIO power supply. LT is
driving the logic gate “LG2” and thus “LG2” is expected to have VIO power supply; however,
the generic synthesis tool incorrectly place “LG2” in VDD domain area and connects it to VDD

power supply instead.
5.2.2.1 Parametersin Synthesisfor Multi-Power Design

To help the synthesis tool to understand power supply nets, designers need to add proper
“attributes” in VHDL so that synthesis can apply appropriate power names and constraints
during placement, optimization and connectivity. Examples of such “attributes” are shown as

follows in example (5.2) and (5.3) for power pins.

attribute pin_power_domain of <net_name> : signal is "vio"; (5.2)
attribute pin_power_domain of <net_name> : signal is "vdd"; (5.3)
Example:

attribute pin_power_domain of tc_pcie_wr_scan_diag_dc: signal is "vio";

67

attribute pin_power_domain of tc_pcie_wr_scan_dis_dc_b: signal is "vdd";

When it comes to placing an embedded IP, LT or any special circuits, the synthesis tool
needs “hand holding” to get placement information. In order to properly place these level
translator macros and IP, synthesis needs pre-placement for better quality of routings and timing.
This pre-placement is generadlypnetime job that requires understanding the pin placement and
macro micro architecture. In thiesign experiment the level translator that is driven by “vdd”
logic and output supply of level translator is on “vio”. This level translator is driving array logic
which is also an embedded custom component (IP) with “vio” as power supply in this design. An
example of placement file for LT or embedded IP that is being called during synthesis is given

below in Fig. 5.7.
begin_place
place <inst_name> xloc yloc <rot> movetype=fixed
end _place
where
<inst_name>: name of instance in VHDL
xloc: x-coordinate of the instance in floor-plan
yloc: y-coordinate of the instance in floor-plan
<rot>: rotation of the instance in floor-plan

movetype: instance can be moved in synthesis or not

68

Example:

begin_place

place xIvishifter_200 20664 10688 Y 180 movetype=fixed

place xlvishifter 300 28152 8592 N 0 movetype=fixed

end_place

Fig. 5.7: Example of placement file for LT.

To compensate the delay due to addition of level translator (LT), router can use higher

layers of metal with a cost function to meetitijmas shown below in example (5.4

<Flow>: <wire_code> <timegain> <routing layers> (5.4)

synthesis layer traits : W20S10L15 3 3 M2 X3

The layer directive constraint forces the timing critical nets route on the higher metal

layers since the wires on the higher layers have smaller delay in advance technology nodes [60].

In example 5.4, W20S10L15 means double wide and single spaced M1-M5 metal layers can be

used if tool finds a gain of 3ps on the net. The last argument indicates available routing layers.

Fig. 5.8 illustrates an example of the desired placement and connectivity of logic gates
(LG) in mulit-power synthesis methodology. The LG and the embedded components are
expected to be physically placed according to their power-supply attributes added in HDL. The
LTs are expected to be placed and connected properly as the interface circuit between the
signals crossing different power domains. As an example shown in Fig. 5.8, the placement

regions have been divided mainly into two regions. The components on VDD power-supply are

69

placed on the left side and the components on VIOepswpply are placed on the right side of
the macro. Based on the physical design requirements, this scheme can be easily extrapolated to

multi-voltage design.

0000 o
[] LeenvDD] |

DDD I:‘ L DDD input on VIO
T
output on VDD
LG on VDD output on VIO
input on VDD
i >[] >
VIO output on VIO
signals >
Embedded
component u > LG on VIO
With dual vDD
power-supply signals
[] Logic Gate (LG) \ } \ |
I output Y Y
I input power-supply VDD power supply VIO

Fig. 5.8: Expected placement and connectivity of component in multi-power synthesis.

5.2.2.2 Proposed Algorithm for Multi-Power Synthesis

To recognize placement, timing constraints and appropriate connectivity for LT,
including proper power and ground routings as described in Fig. 5.8 an algorithm is developed
[61] for synthesis, presented as pseudo code in “Algorithm 5.4”. This algorithm makes sure any
signals which are referenced to the alternate power supply are hidden from buffer/gates which

would be connected to the primary power supply as intended.

While the propsed “Algorithm 5.4” is used in design flow, Fig. 5.11, synthesis

parameter also being incorporated so that synthesis can use faster gates, re-structure logic gates if

70

neededto close timing on these critical nets. This parameter enable synthesis algorithm to
upgradeVvt (faster gates due to lower threshold voltage) to a user specified limit and override the

project specified limit, with an expense of allowable static power in the circuit.

Algorithm 5.4: pseudo code to connect multi-power for Level Translator (LT), pre-place
embedded IP or other component including LT if requested by user and apply wire trait if path is

timing critical during automated synthesis methodology

1: Start find multi power domain ## This code is called during synthesis
2: Define primary power supply = vdd ## Macro power supply
3: Define secondary power supply= vio

embedded IP/Level Translator (LT)/logic gate with vio supply

4: Primary Input = PI ## Primary input to the macro

5: Primary Output = PO ## Primary output to the macro

6: if pre placement file exist {

7: pre-place all instances during synthesis as requested by the user
8: }

9: read macro VHDL {

10: get power supply names: VHDL has attribute pin power domain

should have both vdd and vio as power supply
11. read all macro pins and get attributes ## collect power attributes for synthesis
12. read all embedded IP pins and get attributes

this includes level translators and embedded IP

13 }
14: if PI attribute = vdd { ## Input on primary power supply, vdd
15: all downstream logic connected to PI inherit vdd as power supply
16: if PI or logic connects to embedded IP {
IP=arrays or Level Translator (LT)
17: check PI attribute with embedded IP’s PIN attribute
18: if both attributes match {hide secondary power vio}
19: else {
20: severe errors and exit from synthesis
21: check logic for power connectivity

formal verification tool (gyzer)

71

22:

23:

24:

25:

26:

27:

28:

29:

30:

31:

32:

33:

34:

35:

36:

37:

38:

39:

40:

41:

42:

43:

44:

45:

46:

47:

48:

49:

50:

51:

52:

53:

54:

Synthesis will use power attribute to correctly place logic gates in VDD region

else |

Synthesis will use power attribute to correctly place logic gates in VIO region

1f PO attribute = vdd {

else {

}

} ## checks power connectivity
}

proceed with normal synthesis flow

}
Input on secondary power supply, vio
all downstream logic connected to PI inherit vio as power supply
if PI or logic connects to embedded IP {
IP=arrays or Level Translator (LT)
check PI attribute with embedded IP’s PIN attribute
if both attributes match {hide primary power supply vdd}
else |
severe errors and exit from synthesis

check logic for proper power connectivity

proceed with normal synthesis flow}

Output on primary power supply, vdd
check driving logic or IP’s PO attributes
If both attributes match {hide secondary power vio}
else |
Severe errors and exit from synthesis
Check logic for proper connectivity
}
proceed with normal synthesis flow
}
Primary Output with vio supply
check driving logic or IP’s PO attributes
If both attributes match {hide primary power supply vdd}
else {
severe errors and exit from synthesis
check logic for proper connectivity
}

proceed with normal synthesis flow

72

55: }
56: read timing report of the macro

57: calculate slack on the PI/PO nets of the LT
To determine whether LT is on critical path or not
58: if {slack < 5ps} { ##5ps 1is an example here.

##It is really project default or user specified slack
##target on critical nets, which varies technology to
##technology and based on circuit design topology.

59: add this net to critical net bucket
##critical net bucket consists of timing critical nets

##which are generated during synthesis’s timing run.

60: for each net in critical net buckets {

61: apply wire trait algorithm and parameter as requested by user

62: if still needed apply Vt upgrade if design is within power limit
63: }

64: }

65: end find multi power domain

5.2.3 Proposed Timing Methodology for Sync-Async I nterface

As explained in Chapter 4, to save power, latches operate in pulse mode, where only
slave clock (C2) toggles and both master clock (C1) and scan clock (scan_clk) are tied high. In
timing methodology, there are several timing methodologies and techniques available for
industry leaders to use during all levels of chip hierarchy to take advantage of slack sharing. In
this dissertation]BM’s existing methodology called “Rise Edge Adjust of Leading clock” or
“REAL” in short for latch and LCB is expaedito develop the macro and unit/chip timing
methodology for sync-async interface. In Section 4.3, it is exgddiow latches work in pulse
mode with a timing diagram. In “Auto REAL Adjust” or “ARA” mode of timing, the leading
edge of the clock virtually moves out to allow data to arrive late to give timing relief. With the
application of ARA, overall slack can be improved, i.e. the data launch in next cycle gets delayed

by same amount, which gives designers freedom to steal cycle by looking at two or more

73

consecutive cycles. Appropriate cutoffs are placed in the flow so that only a set-maximum-slack

is borrowed from a downstream path, leaving a minimum positive slack in the logic.

ARA methodology works well in the areas of synchronous design. However, ARA cannot
be done at: i) where there is an inverted feedback path to the latch as a state sevangmas
shown in Fig. 5.9, and ii) at sync-async interface as shown in Fig. 5.10. For the kepatbec
in addition to turning off ARA, there must be a “hold” test in “late-mode” timing because late
arrival “data_in” can overwrite the inverted feedback data. Thuan algorithm is proposed here
to add to the existing synchronous timing methodology to deal with paths with an inverted

feedback loop.

In Section 4.4, the need for sync-async latch pack is explained where clock crosses the
asynchronous boundary. Timing methodology at this interface must be clearly understood so that
the design is not at risk for metastability condition. Thus, the methodology of “Auto REAL
Adjust” cannot be applied as shown in Fig. 510, at sync-async interface logic. This problem
leads to develop macro synthesis and automatic timing methodology at sync-async interface for
all levels of the chip hierarchies i.e. MMLGS, unit and chip.

Inverted feedback path

Latch

UX
A

data_in A

N
B ~

P4
P d
//
N 20
N -,

/ K RS
set-up test
hold test
CLK @ju‘,.

Fig. 5.9: Latch with feedback path.

data_out

Sync-Async
Maps Latch Latch +20ps Latch

data_in

data_out

NASYNC

NASYNC

Fig. 5.10: No auto REAL adjust at sync-async interface.

An algorithm is proposed here, which would find the names of clocks the latches are
connected to and to examine the phase relationships between them. If they are out ofeslync bas
on the clock phase definition of the project, then both synthesis and timing tool would add these
latches to “Auto REAL Adjust” (ARA) exclusion list and slack will not be shared between them.

For the proposed methodology and algorithm developmi®M’s home grown tool called

“geyzer” under the umbrella of formal verification tool “simaram& [62] was used. This tool

checks for the existence of synchronous-asynchronous clock domain and makes sure that sync-
async latch packs are used at this domain crossing. Once this interface is identified, the proposed

synthesis and timing methodology da allow any “auto REAL adjust” at this interface.

To support the timing and synthesis methodology at both synchronous rarasggc
interfacesthe following “Algorithm 5.5” (pseudo code) is proposed in macro synthesis, unit and
chip timing environment. He application of “Algorithm 5.5, Fig. 5.11, allows us to apply
appropriate credits to the timing failed paths at any level of physical design hierarchy. Proposed
methodology examines the slack sharing criterions i.e. 1) make sure right clocking interfaces, 2)
non-inverting feedback loop between the input and output and 3) has enough slack to share.

Once these criterions are met, appropriate slack relief will be applied at all levelpbfytheal

75

design hierarchies during macro synthesis and timing for both synchronous and sync-async
interfaces.
Algorithm 5.5: pseudo code for proposed timing methodgl® apply “Auto REAL adjusts”

##pseudo code to identify latch path to apply Auto “REAL” adjust”

1: start chip timing run

2: start unit_ timing run

3: Start macro timing run

4: slack sharing algorithm {
5: for each latch in the design:

Tool read design netlist to identify if a candidate for real adjust

6: stepl:
7: if {inverted feedback loop exists at latch input}{
8. perform late mode hold check at latch and
add latch name to timing tool’s REAL adjust exclude list
9. }
10: else |
11: read out of clock phase output file to recognize the existence of
SyncAsync latch
#geyzer, a part of IBM’s simarama formal verification tool [62], is used in this
#exercise that creates out of clock phase output file (SyncAsync Latch) after
#reading logic code.
12: info <= split sync async latch file
13: foreach info {
14: add latch to timing tool’s REAL adjust exclude 1list
Cannot share slack across latches
15: }
16: }
17: else |
18: meets slack criteria on input (n) and output (n+l) of latch
Has enough positive slacks to share between two cycles.
19: input needs slack relief (negative slack) and output side (positive slack) 1is > cutoff

slack to provide relief?

20: step2: Determine real adjust value (X ps) at point n borrowing up to the real adjust limit
X ps (pico second) varies from design to design so that both late and
early mode timings are met

Depending on all design constraints and technology variability

76

21: step3: Credit setup test at n by X ps
22: step4: Delay clock launch segment to n+l by X ps to reflect the borrowed amount

Slack borrowing by X ps from next cycle (n+1)

23: step5: Recalculate and report slacks at n and n+l
24: re-iterate if requested

25: }

26: }

27: create macro timing rule

28: end macro timing rule

29: load unit netlist {

30: if {unit level latch exist} {apply slack sharing algorithm}
31: create unit timing rule }

32: end unit timing rule

33: load macro timing rule

34: load unit timing rule

35: run chip timing

36: end chip timing run

Fig. 5.11 represents the proposed design flow dealing with sync-async interface and
multi-power domain in MMLGS, unit and chip level timing as outlined in Sections 5.2.2 and
5.2.3. The proposed methodology steps for multi-voltage and sync-async interface have been
added as dotted box to the existing design flow. For multi-power domain synthesis, Algorithm
5.4 has been added to the traditional flow. Similarly, for multi-clock design methodology, a list
of sync-async latches is passed to synthesis and all timing steps so that slack sharing at sync-
async interface does not take place while rest of the design can take timing relidfresl in

Algorithm 5.5.

77

| indetify | © chip Macro
: out_of_clock_phase HDL ! HDL Cust
! ! R L ustom
____________ ~e - Methodology
- -l- ~ No
~ ~
4 S
,/ Macro With» Synthesizable™~,
sync-async , macro? P 1
v Latch ,I IAlgorithm 5.4 and parms;
\‘~ v :(for multi-power macro):
= L’ Yes L - 1
o=t -oy T " Rigeritim 55 7|
: Listof ! : (turn-off slack sharing 1
| SyncAsync | PDSRTL for sync-async & :
L _L_at_cf o I latch with inverted |
1 - - feedback input) _ _ |
Macro macro
. PI/PO pin
Assertions Routed placement
Macro
I Aigoritim 5.5 !
: (turn-off slack sharing
, forsync-async & ! electrical/ Layout N Extracted
: latch with inverted | timing Netlist
L _ _feedback input_ _ 1 correction l
Timing Rule
for unit/chip

Fig. 5.11 Proposed design flow at sync-async interface and multi-power domain paths

5.3 Congestion Analysisin MMLGS

In practice, different flavors of congestions can occur during physical synthesis
optimization. To guide the tools to mitigate the congestion, congestion models and metrics are
necessary. Congestion creates more routing and timing challenges than logic designers can
anticipate due to the tendency of sharing of same physical proximity. Even though congestion
problems have been considered as physical construction problem, the logic coding style can
contribute a fair amount of challenges in routing a macro. Since most of the physical designers
are not familiar with logic, fixing congestion thus take a high toll on physical implementation

and can become critical path to chip design schedule. Some detail placement techniques, such as

78

dynamic programming could be used as well for better timing and congestion. The spreading
techniqueg63-64] are used to mitigate the global and detail routing congestion. Congestion
could come from: a) Global interconnect such as 10 placement of the chip, wiring channel
allocation for global wiring to go over macros, b) Local congestion such as bad macro pin
placements and limited routing resources for macros, and c) Logic induced congestion such as
logic structure and cell selection. A common example is an extremely wide multiplexor. An
example of local congestias shown in Fig. 5.12, where input pins of the embedded hard IP are
blocked by the clock reservation. Since clock PIN reservations are fixed by methodology, in
order to fix the local congestion, the IP placement is moved around for a better PIN accessibility
to the IP. However, congestion could happen at the higher metal layers when nets are blindly

promoted to achieve best timing resyi@s].

There are few ways to address all these congestion problems by carefully coding and
placing macro pins, and allocating routing resources. The spreading techniques are used to
mitigate global and detail routing congestion for both vertical and horizontal wiring resources.
For more details about congestion analysis, please refer to Appendix A2, 2.1 and 2.2. Modern
synthesis tool has come a long way to perform congestion aware routing in short time by using

cost function when create logic structures for placement algorithm.

i GEBiiREiE d

i

Fig. 5.12 Local congestion problem in synthesis.

79

With the latest fast global router and benchmarks containing information to perform both
placement and global routing, it is now possible to perform routability-driven global placement
using accurate congestion estimation techniques. Some work in thifs@séd] have shown
promising results. In this dissertation, analysis of the routing quality of the post routed unit with
following data is done to make sure: a) design will be robust and pass all backend tools, b) still

have enough routing and physical placement allocation for future changes.

In RLM (Random Logic Macro) design methodology, the layout is expected to be clean
by construction. This means the routed design must pass all physical design verification (PDV)
checks such as DRC (Design Rule Checker), LVS (Layout vs Schematics), YIELD (defect les
chip) plus all electrical rule checks. However, it is not uncommon that due to the routing
constraints and congestion, the router would leave the design with a handful number of failures

that need manual clean-ups.

5.4 Noise Analysisin MMLGS

In general, noise is not a problem in smaller macros, especially RLM because of the
random nature of the routings. However, in a larger design, MMLGS as an example, circuit
malfunctions can occur anywhere when composite noise is greater than the noise margin of the
design because of the long run of wires digleside, especially in congested areas. Thus, noise
simulations are performed for every net of the design using a gate-level noise simulation tool,
which analyze®R(f)L(f)C data of a synthesized circuit for evaluation. To fix noise failures in the
design, an automated parameter-based solution is much more effective, where the designer can
restrict routing layers, shield nets, space out neighbors, buffer nets, if possible, to change the
timing window of the aggressors, so that composite noise amplitude is below threshold of the

noise margin.

80

5.5 Electromigration in MMLGS

Unidirectional current flow can lead to interconnect (wires and vias) degrade by causing
anopen in the circuit that is termed as Electromigration (EM) and there by shortening the time to

failure(TTF), which is model as follow35]:
TTF a exp(c/T)/Jad (5.5)
Where T is temperature and Jdc is current density.

As equation (5.5) suggests, EM gets worse very quickly at higher temperature, especially
around power and ground supply. To prevent this scenario, a power router is run to make sure
design has adequate wide strapping and VIAS (contacts between wires) for both power and
ground routing.To ensure EM reliability, global signal nets such as clock nets needed to be
looked at in MMLGS macros. The bidirectional current in global signal line causes self-heating
of interconnect because of the electrical power dissipation due to resistance of intefd@@jnect

which can be determined by following equation 5.6
| eff= SQRT((switching factor/tcycle* fiZ (t)d(t))) (5.6)
wherei(t) is instantaneous current atugicle is cycle time.

In order to limit leff for a robust design methodology, the following individual options

can be combined:
¢ Use higher layer metals for longer nets
e Add more vias on wider nets

e Divide and buffer nets to reduce loads

81

5.6 Bug Fixesand Design Changein MMLGS

While late bug fixes and new functional changes are common and expected, a fully
automated way to incorporate these Engineering Change Orders (ECO) is an important factor to
reduce turnaround time. Later in the design cycle, a fully automated way to perform these ECOs
not only saves time to implement but also allows designers to work on multiple changes
simultaneously. In a fully synthesized methodology, designers will have more flexibility to add
or change logic without ripping up the existing design. It is very common that highly complex
unit will see anywhere between 5-10 bugs to fix every week and thus will require a few
engineers to work in parallel, creating dependencies on each other for timing anttibesign
closures. However, in the proposed design methodology, one designer can incorporate all
changes in MMLGS, as high as ~500 logic gates, in one automated ECO process, giving the tool
an opportunity to optimize more efficiently across logical boundaries. It is recommended that
these ECO gates to be ~500 logical gates because beyond that, the design may start to see local
routing and timing degradation given that the ECO tool works only in areas where the design has
been changed, keeping the rest of the design fairly unchanged. Should the designer need to add
more gates, a full synthesis is recommended instead of incremental. In a regular or “vanilla”
synthesis flow, where each macro is designed independently, a big ECO of approximately 400-
500 logical gates may involve multiple macros. Thus, the designers must incorporate the changes
independently and may result in a sub-optimal solution, requiring more time to implement.
Proposed MMLGS methodology can reduce TAT significantly to incorporate this late change by
combining many ECOs together. The runtime of a big ECO depends on how the existing design
is, regarding congestion, timing, and routing resources. On the average, a timing-aware ECO in

the MMLGS can take approximately 3 to 4 hours runtime for just the synthesis part.

82

Chapter 6

Experimental Results

6.1 Multi-Million Logic Gate Synthesis (MM L GS) M ethodology
6.1.1 Experiment Setup Using the L2 Cache Unit in IBM’s Power8

Fig. 6.1 shows the flogstan of IBM’s Power8 microprocessor design, the picture on the
right is a part of the die which shows the inclusion of L2 cache unit that was used as a test case
for this research work. This MMLGS has 512 Kilo-Byte atle that interface with “core”
providing faster access rate. The L2 cache unit has interfaces with both the core and the L3
cache. Part of the L2 cache unit that interfaces with the core, operates at 1:1 (4.5 GHz) clock

frequency, i.e., the same speed as the core, supporting high-performance core logic design.

Why L2 unit as test case?

L2 Unit

Fig. 6.1: IBM's P8 Microprocessor.

83

The rest of the L2 unit’s clock operates synchronously at 2:1 (2.25 GHz) interfacing cache and
directory support; i.e., half of the core frequency. The L2 cache unit represents an interesting test

case for developing a synthesis methodology for the following reasons:
e Itis an area-challenged unit.
e It has both 1:1 and 2:1 clocking methodology.
e The paths on 1:1 clocking are timing challenged.
e It requires dual-voltage routing and clock gating.
e It uses a combination of data flow and control macros.
e Itis alarge unit to challenge tool methodology and data management.

As benchmark data for the L2 test case unit, a timing-closed and routed design that has a
hierarchical bottom-up design, i.e., each individual macro is built and timing clean, has been
studied, Fig. 6.2This benchmark data is a part of IBM’s next-generation microprocessor,
Power8M, which is already in production. Some of these maere® built as custom design,
and somavere fully synthesized with individual macro boundaries. The PD resources based on
the benchmark design have been tabulated at the end of this chapter to compare with the
proposed design methodology. Once the benchmarkn@staet,a “vanilla” synthesis flow was
tried on a minimally placed L2 cache unit to set the bar for baseline experiments and shown how
the current industry-standard synthesis flow is broken in placing timing-critical gates, routing
and closing timing of the design. After that, proposed design methodology was followed to
produce data to compare with each other. The same routing layers, wiring resources and timing

constraints were used in all subsequent experiments to compare the resulttaguéss.

84

12tm_pmac

Fig. 6.2: Floor-plan of test case: L2 cache unit.

6.1.2 Placement of M acros

The macro placement follows the uArch and data flow of the unit, keeping critical paths
in mind. To better guide synthesis for better wiring, congestion and timing, a well-planned unit
floor-plan is an essential component so that pin placement, metal usages and data flow of the
macro can be determined earlier in the design flow. In this test case, most of the critical paths
existd between the Load Store unit of the core and L2 cache to support demand load requests.
However, with a synthesis-based L2 cache design, L2 internal patbd twitrto be as critical as
the external paths. Thus, closing the timing for the L2 internal paths became one of the
challenges in this design methodology. The array-based macros such as cache and LRU were
pre-placed to align the data flow of the chip and the unit. These array macros were designed
either as full custom or growable arrays using the methodologies explained in Section 4.3. To
develop MMLGSmethodology, “black-box” methodology for these arrays, where synthesisuses
the array’s timing rule and placement information, was used to optimize the rest of the design

during the physical design flow.

85

6.1.3 Power Routing

The power grid in the unit is generally dictated by the power grid of the chip and how
units ae being architected to support power budget of the chip. However, in today’s high-speed
and high-performing chip, it is very common that a unit like the L2 cache demands two power
grids, one for regular logic (Vdd) and other for cache design (Vcs). Vcs, slightly higher than
Vvdd, is required for SRAM cells for performance and stability at low voltage operation.
Centering SRAM cell Vt higher and keeping Vcs sufficiently high mitigate these problems while
still allowing logic circuits to scale further for ac power reduction. Thus, to support multiple
voltage domains, synthesis methodology was ueesupport both power routings. Based on
certain areas of the floor-plan design, a dual-voltage domaireésst the power supply grid

was designed to support internal voltage (IR) drop requirements for the chip.

6.1.4 Clock Routing

Multistage clock buffer trees between the PLL and sector buffers of L2 cache unit were
designed as symmetrically as possible to maintain the low skew at the input to the sector buffer.
Clock routing is generally done as a pre-route for the unit. In a smaller macro, the clock PINs are
top down inside the macro and synthesis treats those PINs as a global pin and thus clock router is
not being run at macro level. However, for a big design, like L2, a clock nvasecalled once
the macro’s layout was generated with pre-reserved routing channel only for clock nets to
connect the mesh clock of LCB with clock buffers. Global clock buffer columens pre-placed
and reserved for clock buffers as shown in Fig. 6.2, three vertical columns, where symbesis
prohibited to place any functional-logic-gate i.e. these columns were reserved only for clock-
sector-buffers and clock-routings to maintain the desired clock skew of such a high- preforming

and timing challenged unit.

86

A set of well-defined synthesis constraints (parameter) is a pre-requisite to close timing
and routing of any design. It is very important to write the logic in such a way that it has good
logical boundaries to close timing afith in the macro’s physical size with reasonable utilization
for downstream Physical Design (PD) rule checks. A tool aware of power and timing
optimization engines could cut down the design cycle time and manual intervention of fixes.
PDSrtl[77], a modified version of Placement Driven Synthesis (PDS), is used to build and route
the L2 unit with user’s input such as assertions, logic and PHYSCELL (Text version of physical
abstract) as outlined in Section 2.2 of Chapter 2. PDSrtl has a list of extensive features to design
the macros, which include late and early timing, power, electrical and physical design rule check
feedback. It also provides flexibility for the designers to add some user parameter to pre-place
part of the critical logic, latches, Local Clock Buffers (LCBs), etc. As explained in Section 4.2,

LCB enables MS latches to operate in pulse mode in all phases of physical design.

In synthesis timing methodology, cycle stealing enables timing relief for the designers to
close critical timing paths, and in most cases, saves power. While closing timing, for both early
and late mode within the project- defined slew (rise/fall time) limit, is a very difficult task, this
design methodology produced excellent results with synthesis by delivering a routed unit that
was a production quality design. In conjunction with current design methodology, after the
design was routed, another post processing tool was ran on the routed unit to fix some electrical
and timing violations such as slew and slack as a part of automated design flow to make the
design ready for physical design verification, extraction and timing-rule generbbiatose the
design with developed MMLGS methodology, focus was given to the timing, area, power and

congestion of the unit as discussed in next sections.

87

6.1.5 Timing Results

A timing contract, to describe boundary condition such as arrival and departure time,
slope and loading at the input and outpuas used to allow both unit and chip level design to be
analyzed and iterated independently and thereby reducing the turnaround time. One way of
addressing timing closure of hierarchical block-based designs is to allocate timing budgets to all
the subsystem components, including the global interconié8t83]. Timing optimization
techniques, such as buffering, gate sizing, cell movement, Vt swapping, cloning, logic
decomposition, inverter merging, connection reordering, local logic remapping, can then be
applied to fix timing problems. Even though the timing outRadpids’ (IBM’s home grown tool
which fixes post routing electrical and violations if there is avag considered a first good pass
for the designers but as a golden rule both early and late case timing eoareeesalyzed with
a gate level sign-off tool. While working on the synthesis flow, several synthesis eods
used to close the timing. Fig. 6.3 shows how each bucket of negative slack cameasdown

proposed design methodologies were applied.

36,000
34,000
32,000
30,000
20,000
18,000
16,000
14,000
12,000
10,000

8,000

6,000

S || N TP PO [[P [| OO | T 1T

>40ps 40-36ps 35-31ps 30-26ps 25-21ps 20-16ps 15-11ps 10-6ps 5-0ps
Negetive Slacks

Slack Data

#of Failed Paths

= Base line Soft Hierarchy = VT Upgrade Interior PIN ®mRapids ®eFinale

Fig. 6.3: Slack buckets for synthesis methodology.

88

The slack data in Figs.3 shows that around 65000 negative paths were found in the
“pase line” experiment. As the proposed methodologies were applied sequentially,
approximately 18000, 19000, 9000, and 13000 paths were improved with Soft Hierarchy (SH),
Vt Upgrade, Interior PIN antRapids methodology, respectively. Both SH and Vt upgrade gave
the most timing benefit compared to other options just because the synthesis tool found better
optimization options to resolve timing fails. Contrary to popular belieVa# interesting to find
in this experiment that the “Vt Upgrade” option actually optimized the design better to improve
timing-failed paths. For this option, the total power of the design was monitored carefully so that
the design complies with the power requirements for the prdjeet Rapids’ option brought the
negative slacks further down by optimizing the drive load ratio of any given gate. Raques
was done, a timing tool wasmrien the routed netlist and found that ‘Rapids’ left approximately
3600 total timing paths unfixed. However, of this number, only approximately 600 were unique
paths. Analysis further found that most of these 600 paths had approximately 15 common nets;
thus, by fixing some of these common nets, the design could be closed. The design was then
loaded in a GUI environment. After a few iterations of manual effort, the timing failed paths

were closed easily.

In summary, approximately 65000 negative paths were found in the base line experiment.
However, after applying the proposed design methodology flow for SH, Vt Upgrade and Interior
PIN, the total number of failed paths were only about 18000, which was more than 70%
improvement over the base line experiment. As mentioned above, the remaining 18000 timing-
failed paths were closed using Rapids and other GUI based home-grown internal tools by the

physical design engineers.

89

Area Distribution
1500000

1400000
1300000

1200000

~_
E 1100000
5
g 1000000
g
o
é 900000
O 250000
S
=
= 200000
2
- 150000
100000
- II II || Il II |I |I II
0
AOI21 AOI22 NAND2 NAND3 NAND4 NOR2Z NOR3 OAIZ1 OAI2Z XNOR2 XOR3 XOR2

Types of Gates

= Base line = Soft Hierarchy VT Upgrade Interior PIN ®Rapids = eFinale

Fig. 6.4: Area distribution of logical gates.
6.1.6 Silicon Area Results

One of the goals of this experimemas to find out how the synthesis tool came out with
area distribution for gates used in the design. Since MMLGS has a total picture of the gates to be
used in the unit by breaking macro boundary, it can easily optimize gate usages for better timing
and power. Fig. 6.4 shows that the complex gate usagi@®tswing much but the usages of the

inverter changed in some cases as the timagjclosed with the proposed design methodology.

The usages of inverter in this desigias overwhelmingly more than any other gates,
which was expected because of longer wire run length (RC) in MMLGS. However, as the timing
critical paths were analyzed, logical and electrical efforts were taken into consideration to look at
the opportunities to make sure complex gates were utilized for minimum path delay and remove

unnecessary buffers, dangling wires etc. The opportunities to forward the logic, isolate critical

90

gate loading, isolate primary output (PO) from internal logic cone etc. were also looked at as an
aid to make timing on critical and highly architected paths in the design. As explainediam Sec

3.4 of Chapter 3, one of the advantages of MMLGS s, it can do better area optimization by
placing logic gates next to each other. It can also eliminate extra buffering or redundant logic and
thus saves silicon are®o find the area saving for L2 cache unit, an experiment with 10% less
area was conducted and experimental data yielded with acceptable design quality for power,

congestion and timing.
6.1.7 Power Data

Four major components of power consumption in VLSI circuits are:
e Clock switching
e Data switching, and
e Device leakage.

In this experiment a goalas set to stay in similar power envelope for the unit because: 1)
synthesis has a built in mechanism to balance latch loading for each LCB i.e. if latches are on
same clocking and power gating domain, synthesis can move around latches to balance timing
and thus dynamic power, 2) it is desirable to get rid of unnecessary buffering and using complex
gates to minimize logic functions by collapsing macro boundary, and 3) synthesis also optimizes
available wiring resources to balance gate loading and thus saving the driving power of gates.
Also, Local Clock Buffer (LCB) enables the latches to operate in pulse-mode, helping the design
to stay within power budget by cutting clock toggling power for the design. Experimental data
showedthat there was no significant power difference between the final solution and custom and

semi-custom based L2 cache unit design.

91

6.1.8 Resultson Wire Usages

The major challenges in high speed circuit design, L2 unit as an example here, is to route
and makeiming internally and externally. One should not only focus on successful routings of
the macro but also make sure any future design changes can be incorporated with existing wiring
resources and thus allocation of available wiring resources is a crucial step in the design. While
there exists extensive literature on repeater insertion and layer assignment lately [84-86], most of
them focus on improving the timing performance, and not much have been focused on
congestion. Designers should not only pay attention to timing and local hot spots but also global
congestions and future ECO process. In the test case design, 4 1X layers, 2 2X layers, 3 4X
layers and 3 8X layers were allocated to route L2 unit as shown in Tablevéas.found in the
experiment that the overall horizontal and vertical usages of the metals were about 56% and
44%, whichwas optimal even though the macro siwes not quite 1:1 in aspect ratio. For more
details about routing analysis, please refer to Appendix A3. There is a common misconception
that thicker or wider wires are always better but they are not, especially additional VIAs and
aggressor capacitance may cause extra delay if attention is not paid. The following

recommendation is followed in wire usageglose timing on critical paths in the design.

o Keep wire delay low by using fat wires and redundant VIAs.

e Keep wire capacitance low by placing critical logic together, increased spacing
from adjacent aggressor wires, and routing critical nets adjacent to wires with
different timing windows or routing them next to any static signals such as power
and ground.

¢ Remove any dangling wires especially for multi fan-out logic cones or share wires

wherever possibl

92

Table 6.1 Wire usages in L2 cache unit routing.

Routing Preferred Direction Total Wire Horizontal Wire Vertical Wire
Layer (Horizontal/Vertical) Length(micron) Length (micron) | Length (micron)
0 0 0

Ml (1X Layer) H/V

M2 (1X Layer) V 1514426 11655 1502771
M3 (1X Layer) H 3337125 3331592 5533
M4 (1X Layer) V 5347433 2173 5345260
M5 (1X Layer) H 5678731 5676649 2082

B1 (2X Layer) V 3889129 3401 3885728
B2 2X Layer) H 4744529 4740148 4381

El1 (4X Layer) V 1932741 1731 1931010
E2 X Layer) H 2441000 2440396 604

E3 (4X Layer) V 322024 238 321786
X1 (8X Layer) H 575473 575113 360

X2 (8X Layer) V 413396 92 413304
X3 (8X Layer) H 134745 134689 56

Total 30330752 16917877 13412875
Percent 100% 56% 44%

The test case, L2 cache unit, was routed and built in 22nm SOI technology, POWERS
(P8), with 13 layers of physical wiring. The design was mostly done in static circuit design with
pulse mode being the default working mode for the master-slave latch as a power reduction
technique, explained in Section 4.2. Fig. 6.2 shows the base-line L2 unit design with macro
partitioning, where all individual macros were designed with either custom, RLM or array design

flow and then placed manually.

93

39024 » 13568 tracks

1357L ; 3
i s J
| | |

] 3062 reen 1nrar ine1e 19512 23414 27317 31219 35122 38824

Fig. 6.5: Placed gates in L2 unit with synthesis methodology.

Unit buffering and routing were done with a mix of upper and lower layers of metals by a
dedicated unit integrator. Once completed, a unit timer would time the unit to close timing. This
whole processvas an iterative method that took many iterations for physical design verification

checks, noise and electrical and timing checks.

As a part of synthesis based methodology development, L2 cache unit was taken through
the design flow using MMLGS methodology. Fig. 6.5 shows physical placement of the gates
including ECO gates for future change, after proposed synthesis flow, where graymeoxes
pre-placed array macroBor more details about ECO process, please refer to Appendix A4. In
methodology development, it was shown how negative slacks were coming down, keeping the
design within similar (less than 2%) power budget to the conventional design. To clean-up some
post roting PDV and timing violations, “Rapids” was run to deliver error free routed design to
the chip. For more details about timing-failed-paths and post-routing-statistical-data, please refer
to Appendix A5 and A6 respectively. Compare to the baseline iexgret;, P8, newly introduced
synthesis methodology and design flow for MMLGS, L2 cache unit design took almost 50% less

resources even without dedicated unit timing and integration resources.

94

Table 6.2: Physical design resource comparison for L2 cache.

Physical Design Resources| Traditional Approach (P8) | Synthesizable Unit
(man month) Approach (man month)

Ckt. Designer 18 12

Unit Timer 6 0

Unit Integrator 6 0

Unit Ckt. Lead 6 0

Total Resources 36 12

The PD resources comparisgrsummarized in Table 6.2.

The L2 cache unit, with around 20 million synthesizable transistors (excluding all array
macros), many timing constraints, congestions and routing challenged critical nets, stretched all
front and back-end tools by 2-3 times compared to the current available methodology used at
IBM. The L2 cache unit designed with proposed design methodology was fully functional to
operate around 4.8GHz to 2.4GHz. Due to aggressive fan-out, design integrity, tight power
budget and schedules to market, the L2 cache unit had become a tremendous success for
developing a MMLGS methodology for the future microprocessor industry.

At the same time, examples were looked at to compare test case results with similar work
from other industry leaders such as Intel, AMD and others. It is found that very few published
works for high speed and high performing MMLGS. Most exampige found to be in ASIC
domain at lower frequency i.e. sub-GHz randegl’s “Superblock” design [87] used similar
concept of MMLGS, as stated in Chapter 3, but comparing to L2 cache unit for this experiment,
it is at least 23 times smaller in transistor counts. Bobcat was AMD’s first easily synthesized
CPU core area tradeoff when moving away from custom macros to more general designs but it

was deemed worthwhile, which operates in the range of 1.3-1.6 GHz in 32 nm tect{B8logy

95

Fig. 2.3 shows the comparison of macros design methodology used at IBM for last 16 years
starting from 90nm technology. In 90nm, designs were mostly based on custom flow and as time
progresseda huge shift of custom and semi-custom design towards synthesizable macros

(Random Logic Macros) was observed.

6.2 Multi-Voltage Synthesisfor MMLGS

For synthesis to understand the voltage crossing nets and instances thahactedoto
different voltage domain, proposed methodology incorporated Algorithm 5.4 along with pre-
placement parameter, Fig. 5.4, and VHDL attributes as stated in example (5.2), €aB)pie
the test case. In the experimemyIMLGS methodology was used, where array IP and LT were
instantiated inside a synthesizable macro as shown in FigTki$ arraywas a growable 8
transistor SRAM macro designed using semi-custom approach and the Level Trén§)aizas

designed as custom using custom design methodology.

In Fig. 6.6, the array is in solid gray color, LT is in solid green colorLagat Gate (LG)

driving Level Translator (LT) is in blue color. LT has both vdd and vio as power supply. LG, the

nnnnnnnn

Embedded IP
St with VIO

Fig. 6.6: Use of level shifter in MMLGS.

96

driver of LT, has vdd power supply, while IP is on vio. This maeas built successfully through

the proposed MMLGS flow with multi-voltage and routed using 22nm technology with careful
pre-placement of the LT along with related logic grouping with respect to multi-power domain in
floor-plan. Finally, equivalency check and all backend tools such as LVS, DRC, METH,
extraction and timing were ran to make sure that the quality of the design wasnmrbmised.

Due to the addition of level translator, design may see degradation of timing. An exansplg in (
of Section 5.2.2.1 shows how wire traits can be used to introduce high performingt\wirescg
critical areas. In general, when wires are upgraded or made certain wiresddude the RC
delay of the timing critical paths, wire usages should be carefully studibd design and made
sure both horizontal and vertical wire usages are at balance and does teatarrgastion in the

design.

The experimental data shedthat the proposed synthesis flow built MMLGS macro
successfully in multi-power domain with the use of the propédgdrithm 5.4. In addition to
the proposed algorithm, wire traits parameters were successfully incorporated to route critical
nets and pre-placement algorithm for level translator (LT) at the right power domains. A test case
macro, that was built in custom design flow, was used as an example and implemented as
MMLGS using the proposed design methodology for multi-power. The custom flow required
manual schematics and layout design, wleaehtransistor was hand-crafted to build the macro
and satisfy the timing and backend tool flow requirements. On the other hand, proposed
MMLGS methodology was fully automated and needed minimum intervention from the
designer. This proposed synthesis-based MMLGS methodology allowed us to cut down the
physical design efforts by more than 50%, shown in Table 6.3, in terms of physical design

resources and time to deliver the timing and routing closed design to the unit and chip.

97

Table 6.3: Physical design resource comparison for a typical macro design.

Macro Physical Design

Custom Design Approacl

Synthesis Design Approach

Activity in previous Chip Design (man week)
(man week)

Logic Study, Macro Sizing, 2 2
Input/Output Placement,
Routing Resource Study et
Schematic Design an 3 0
Equivalency Check
Logic Gate Placement 1 1 (if needed)
Schematic Based Timin 1 0
Tuning
Layout Design and Routing 4 1
Post Layout Timing Closure 1 1
Total 12 5

To take full benefit of the proposed timing methodology at sync-async interface,

three different ways:

6.3 Sync-Async Timing M ethodology

98

MMLGS macros were built with the proposed design flow shown in Fig. 5.11. For the proposed
timing methodology development, a critical unit, from POWERBicroprocessor design, was
used. It was found that 1265 negative paths (approximately 28% of the total unihpathere
failing) shifted the slack buckets and gave a huge relief to close timirgitaral paths as is
shown in Fig. 6.7. In order to find data for both ARA and exclusion of ARA for timing at sync-
async interfacas explained in Section 5.2.3, another set of examples was picked-up th&t had
chip level functional units from POWERS microprocessor design . These two sets of examples
were independent of each otheétAuto REAL Adjust” was applied across these units to take

advantage of unused cycle time. As graphed in Fig. 6.8, the failed timingwethgathered in

Auto REAL Adjust Impact

O NoRealAdjust

2500 4 B ApplyRealAdjust

2100 ~28% Paths (1265 paths) got better with Auto REAL Adjust

#of Failed Path

<160 -160 -140 -120 -100 -80 -60 -40 -20
Negative Slack Bucket

Fig. 6.7 Distribution of negative paths with andtiout “Auto REAL Adjust”.

1) Do not apply any credits as “REAL Adjust”, 2) Apply “REAL Adjust” across all macros, and

3) Do not apply “REAL Adjust” for macros with sync-async interface latch and compare data to
each other. In this exercise, it is found that in EN unit, 88% of ilesl fpaths got timing relief.

Also, only “EN” showed the presence of macros with sync-async interface latches because the

total #of failed paths went up by 8% between experiment #2 and #3.

To compensate this increase of timing failed p&tRiysical Design Solution” such as
wire traits,Vt upgrade, logic re-structure was applied. However, as shown i6.Ejdor “EN”
unit there were still some timing failed paths which required logic changes to close timing. These
data were based on fully routed, extracted and timed macros with black-dtowed and chip
timing. For sync-async interface methodology development in synthesis,1Eig:$cle stealing
was being turned-off for all frontend tools, i.e. synthesimpad (Early Mode Padding), MAR

(Routing Tool) andRapids, to make sure that macros did not have optimistic timing view before

99

120
100
80
60

#of Failed Path

40
20

Slack Distribution with/without REAL Adjust

ONoRealAdjust

#of failed path /f\

mRealAdjustAllLatches

Changes due to different

ORealAdjustAllLatchesButSyncAsyn

Physical Design Solution

(g}

Methodologies X

| N

o e

E8 EH EN
Units

ES MC EX

Fig. 6.8 Slack distribution withwithout “Auto REAL Adjust”.

the unit/chipwas timed. Experimental data clearly shemithat the“Auto REAL Adjust” can be

used across the units because the number of the failed paths improved by approximately 28% in

one unit and 88% in another. However, in reality, due to the possibility of metastabilitycat sy

async interface, the full advantage of this timing relief could not be taken in EN unit and thus

developed timing algorithm was applied to turn-off slack transfer at sync-async inteidace. F

that reason, slack improvement reduced to 80%, wivashstill a phenomenal deal with much

reduced risk factor, thereby saving a huge design efforts and most cases power for cisg beca

designers did not have to apply power hungry gates to make timing at critical paths or interfaces.

100

Chapter 7

Conclusion and Future Work

To stay in competitive performance, functions and power envelop, challenging innovative
design methodology and implementation techniques are most important to modular designs to
cut down development cost. There has been a big shift in microprocessor design in favor of
synthesis based design that needs multi-clock and multi-power support. Every power domain
requires independent local power supply and grid structure and thus both front and back-end
tools along with standard cell libraries need to optimize the design for worst case PVT (Process,
Voltage, temperature) variations. Common gate libraries needed to be characterized for different
voltage levels that are used in the design. Multi-power domains need multiple power grid
structure and a suitable power distribution amthegn. For microprocessor or ASIC/SoC more
careful floor-planning, synthesis algorithm, timing methodology to support power planning with

addition of LT, are very essential.

In Chapter 6, it was shown that MMLGS macro with 2-3 times bigger than industry
standard was designed using the proposed design flows and algorithms which were explained
and elaborated in Chapter 5. With aggressive timing closure, tight power budget and schedules to
market, the L2 cache unit was an ideal test case for developing synthesis methodology in
MMLGS for the future microprocessor industry. Experimental data stidhat the proposed
methodology enabled MMLGS in both multi-clock and multi-voltage domain and maximize
timing benefits at all level of physical design hierarchieswds successfully proven that

physical design resources can be cut down by about 50%.

101

As the MMLGS based flow for L2 cache unit suggests, there are some white space at the
wings of the unit. Another experiment with 10% less unit area was conducted with acceptable
design quality, power, and timing. Howeviris left for the future consideration of making the
unit smaller. As mentioned earlier, this unit was used as an interesting test case to prove the
proposed concept. Thus, upon successful implementation it is needless to mention that, other
units such as L3 cache unit, memory controller unit or any other timing and area criticahunit ¢
be a good candidate to adopt this methodology to cut down future development cost, and

turnaroundime significantly as it did for the test case.

While MMLGS methodology is proposed in this dissertation, there are still some areas that could
be improved further for more productivity. Future improvement on the proposed methodology

includes the following few areas.

e Whilethe MMLGS design methodology was developed, few constraint files were created
and included manually in synthesis flow as an aid to improve the quality of the results.
These constraints were: 1) wire traits file, 2) pre-placement file for embedded IP and, 3)
placement file for soft-hierarchy etc. It would be more productive and time saving for the
users if they @l not have to create these constraints files manually and future synthesis
methodology automatically incorporate the necessary steps as a part of MMLGS in both

multi- clock and power domain.

¢ As millions of gates being packed in MMLGS methodology, the physical size of the
macro gets bigger and thus longer and higher levels of metals being used in MMLGS to
route the macro within the project defined timing constraints. These longer and higher
levels of metals drive more current and may be routed next to each other, which can

cause more electromigration and noise problem in MMLGS compare to smaller RLM

102

macros. Thus, the future MMLGS methodology needs to focus more and work on better
correlation of noise and electromigration issues during the synthesis flow so that no big

surprise is found once the macro is built and extracted for all backend sign-sff tool

MMLGS methodology deals with millions of logic gates for both frontend and backend
tools to improve the design efficiency. These tools include: synthesis, routing, Test
Bench, PDV, electromigration, noise, power etc. The big data volume of MMLGS could
create potential tool runtime and data volume problem i.e. users will need more working
space to save the design data as well as more memory for the computers. To support
these requirements, a future methodology is essential so that each tool can pick-up the

data volume and machine with appropriate capacity on the fly to complete the job.

To save the runtime during ECO, MMLGS will need a methodology so that each tool in
the backend flow is ran only on the area of the design that was changed. For example, if
there was a noise fix or some logic gates being added in a particular area of the MMLGS,
backend tool sets need to have the capability of running design checks only on the area
that was changed rather than running on the whole design. This capability will reduce the

backend tool run-time and memory usages of the machines significantly.

The proposed timing methodology for sync-async interface does not share any slack
between latches at this interface. A future enhancement to this methodology can be
developed so that “some” slack can still be shared so that design does not see any chance

of metastability. This methodology development will require a “deep” study of
technology variation due to PVT (Process, Voltage and Temperature) and factor that in to

determine how much slack can be shared at sync-async interface safely.

103

Bibliography

[1] F. J. Pollack, “New microarchitecture challenges in the coming generations of CMOS process
technologies (keynote addresa)stract only),” in Proceedings of the 32nd annual ACM/IEEE

international symposium on Microarchitecture, Washington, DC, USA, 1999.

[2] S. Durairajan et at’Forecasting Microprocessor Technology in the Multicore Era Using
TFDEA,” Proceedings of PICMET '13: Technology Management for Emerging Technologies.,

pp 2108-2115, 2013.

[3] S. Borkar, “Thousand core chips: a technology perspective,” in Proceedings of the 44th
annual Design Automation Conference, New York, NY, USA, 2007, pp-7246

[4] H. P. Hofstee, “Power efficient processor architecture and the cell processor,” in 11th
International Symposium on High-Performance Computer Architecture, 2005. HPCA-11, 2005,
pp. 258262.

[5] “International Technology Roadmap for Semiconductors Edition Lithography the Itrs -
PowerPoint,” Docstoc.com. [Online]. Available:
http://www.docstoc.com/docs/72756251/International-Technology-Roadmap-for-
Semiconductors-Edition-Lithography-the-k$owerPoint. [Accessed: 07-Feb-2013].

[6] S. Borkar and A. A. Chien, “The future of microprocessors,” Communications of the ACM,
vol. 54, no. 5, p. 67, May 2011.

[7] POWERS [Online]. Available:

https://www.microway.com/download/presentation/IBM_POWERS8 CPU_Architecture.pdf

104

https://www.microway.com/download/presentation/IBM_POWER8_CPU_Architecture.pdf

[8] Technology Roadmap @NTEL’s Processors [Online]. Available:

https://www.scribd.com/presentation/253118046/Techlinsights-Technology-Roadmap-INTEL-

Processors-2014

[9] List of AMD Microprocessor [Online].

https://en.wikipedia.org/wiki/List of AMD microprocessors.

[10] M. Hossain, C. Desai, T. Chen, V. Agarw8knthesis Based Design and Implementation
Methodology of High Speed, High Rerming Unit: L2 Cache Unit Design”, Integration the

VLSI Journals, vol 49, pp. 125-136, March 2015.

[11] M. Hossain, J. Badar, J. DiLulo, T. ChgfA Practical Automated Timing and Physical
Design Implementation Methodology for the Synchronous Asynchronous Interface and Multi-
Voltage Domain in HigSpeed Synthesis”, Microprocessors and Microsystems, vol 45, pp. 241-

252, August 2016.

[12]

https://www.google.com/search?g=microprocessor+performance+trends&biw=1680&bih=900&

tbm=isch&tbo=u&source=univ&sa=X&ved=0ahUKEwj7 -

Wbw930AhVD6CYKHYVIAugQsAQIZA&dpr=1#imgrc=nc8jPQ2b3BRufM%3A.

[13] M. Hossain, E. Fluhr, A. Hall, V. Agarwal, “Physical Design and Implementation of

POWERS™ (Pg) Server Class Processor”, “Midwest Symposium on Circuits and Systems
(MWSCAS)”, August 2-5, 2015.

[14]J. Wu et al, “Congestion Aware High Level Synthesis Combined with Floorplanning”, 2008

IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application, pp. 935-

938, 2008.

105

https://www.scribd.com/presentation/253118046/TechInsights-Technology-Roadmap-INTEL-Processors-2014
https://www.scribd.com/presentation/253118046/TechInsights-Technology-Roadmap-INTEL-Processors-2014
https://en.wikipedia.org/wiki/List_of_AMD_microprocessors
https://www.google.com/search?q=microprocessor+performance+trends&biw=1680&bih=900&tbm=isch&tbo=u&source=univ&sa=X&ved=0ahUKEwj7_-Wbw93OAhVD6CYKHYVlAugQsAQIZA&dpr=1#imgrc=nc8jPQ2b3BRufM%3A
https://www.google.com/search?q=microprocessor+performance+trends&biw=1680&bih=900&tbm=isch&tbo=u&source=univ&sa=X&ved=0ahUKEwj7_-Wbw93OAhVD6CYKHYVlAugQsAQIZA&dpr=1#imgrc=nc8jPQ2b3BRufM%3A
https://www.google.com/search?q=microprocessor+performance+trends&biw=1680&bih=900&tbm=isch&tbo=u&source=univ&sa=X&ved=0ahUKEwj7_-Wbw93OAhVD6CYKHYVlAugQsAQIZA&dpr=1#imgrc=nc8jPQ2b3BRufM%3A

[15] J.Cong et al, “Multilevel approach to full-chip gridless routing”, International Conference

on Computer Aided Design. ICCAD, pp. 396-403, 2001.

[16] B. Halpin et al, “Timing driven placement using physical net constraints”, Proceedings of
the 38th Design Automation Conference, pp. 780-783, 2001.

[17] S. Thakur et al, “An optimal layer assignment algorithm for minimizing crosstalk for three
layer VHV channel routing”, IEEE International Symposium on Circuits and Systems (ISCAS),
pp. 207-210, 1995.

[18] H. Zhou et al, “An optimal algorithm for river routing with crosstalk constraints”,
Proceedings of International Conference on Computer Aided Design, pp. 310-315, 1996.

[19] R. Dekker, “Electronic design,” [Online}. Available: http://electronicdesign.com/what-s-

difference-between/what-s-difference-between-vhdl-verilog-and-systemverilog

[20] M. Lightner, and W. Wolf. “Experiments in Logic Optimization”. InProc. ACM/IEEE Intl.

Conf. on Comp. Aided Design, pages 286-289, Nov. 1988.

[21] J. Vygen, “Steiner Trees in Chip Design,” [Online]. Available: http://www.or.uni-

bonn.de/~vygen/files/hz1h.pdf

[22] Gi-Joon Nam, Charles J. Alpert, Paul Villarrubia, Bruce Winter, Mehmet Yildiz, The
ISPD2005 placement contest and benchmark suite, Proceedings of the 2005 international

symposium on Physical design, April 03-06, 2005, San Francisco, California, USA.

[23] Gi-Joon Nam, ISPD 2006 Placement Contest: Benchmark Suite and Results, Proceedings of

the 2006 international symposium on Physical design, April 09-12, 2006, San Jose, California,

USA.

106

http://electronicdesign.com/what-s-difference-between/what-s-difference-between-vhdl-verilog-and-systemverilog
http://electronicdesign.com/what-s-difference-between/what-s-difference-between-vhdl-verilog-and-systemverilog
http://www.or.uni-bonn.de/~vygen/files/hz1h.pdf
http://www.or.uni-bonn.de/~vygen/files/hz1h.pdf

[24] Jarrod A. Roy, Natarajan Viswanath&i;Joon Nam, Charles J. Alpert, Igor L. Markov,
CRISP: congestion reduction by iterated spreading during placement, Proceedings of the 2009
International Conference on Computer-Aided Design, November 02-05, 2009, San Jose,

California.

[25] Yuncheng Zhang, Chris Chu, CROP: fast and effective congestion refinement of placement,
Proceedings of the 2009 International Conference on Computer-Aided Design, November 02-05,
2009, San Jose, California.

[26] G. Kuda, "Using Physically Aware Synthesis Techniques to Speed Design Closure of
Advanced-Node SoCs[Online]. Available:

http://chipdesignmag.com/sld/blog/2015/03/23/using-physically-aware-synthesis-techniques-

speed-design-closure-of-advanced-node-socs/

[27] Chen Li, Min Xin, Cheng-Kook Koh, J. Cong, P. H. Madden, Routability-Driven Placement
and White Space Allocation, IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, v.26 n.5, p.858-871, May 2007.

[28] U. Brenner, A. Rohe, An effective congestion-driven placement framework, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, v.22 n.4, p.387-

394, November 2006.

[29] Wenting Hou, Hong Yu, Xianlong Hong, Yici Cai, Weimin Wu, Jun Gu, William H. Kao, A
new congestion-driven placement algorithm based on cell inflation, Proceedings of the 2001
Asia and South Pacific Design Automation Conference, p.605-608, January 2001, Yokohama,

Japan.

107

http://chipdesignmag.com/sld/blog/2015/03/23/using-physically-aware-synthesis-techniques-to-speed-design-closure-of-advanced-node-socs/
http://chipdesignmag.com/sld/blog/2015/03/23/using-physically-aware-synthesis-techniques-to-speed-design-closure-of-advanced-node-socs/

[30] Z Li et al, “Guiding a Physical Design Closure System to Produce Easier-to-Route Designs

with More Predictable Timing,” DAC, page 465-470, 2012.

[31] “Eliminating Routing Congestion Issues with Logic Synthesis”, [Online]. Available:

http://www.cadence.com/rl/resources/white_papers/routing_congestion_wp.pdf

[32] R.T. Hadsell and P H. Madden, "Improved global routing through congestion estimation," in

Proc. Design Automation Conference, pp 28-31, 2003.

[33] I. Cheng, W.N.N. Hung, G. Yang and X. Song, "Congestion elimination for 3D routing," in

Proc. VLSI, Proceedings. IEEE Computer Society Annual Symposium, pp. 239-240. 2004.

[34] T. Ling, X Hong, H. Bao, Y. Cai, J. Xu, Y. Wang and J. Gu, "An efficient congestion
optimization algorithm for global routing based on search space traversing technology," ASIC,

2001. Proceedings. 4th International Conference, pp.1 14-1 17. 2001.

[35] M. Wang and H. Sarrafzadeh, "Modeling and minimization of routing congestion,"

Proceedings of the ASP-DAC 2000.Asia and South Pacific, pp 185-190. 2000.

[36] Z. LI, W. Wu and X. Hong, "Congestion driven incremental placement algorithm for
standard cell layout,"” Design Automation Conference, 2003. Proceedings of the ASP-DAC

2003.Asia and South Pacific, pp. 723-728, 2003.

[37] X. Yang, R. Kastner and M. Sarmfadeh, "Congestion reduction during placement based on

integer programming,” Computer Aided Design, ICCAD 2001, pp.573-576, 2001.

[38] W. Wang, J. Bian and Y. Wang, “A Congestion Driven Re-Synthesis Method after
Fhorplanning”, Proceedings of International Conference on Communications, Circuits and

Systems.2005, pp 1220-1240.

108

http://www.cadence.com/rl/resources/white_papers/routing_congestion_wp.pdf

[39] “Iteration problems in the flow”, [Online]. Available:
http://csg.csail.mit.edu/6.375/6_375 2006_www/handouts/lectures/L05-Synthesis-Placement-

Routing.pdf

[40] B. Dougherty and M. Kazda, "Rapids: Post-Routing Timing Closuré)AG 2010 User

track Poster 1U.5.

[41] “Introduction to High-Level Synthesis,” [Online]. Available:

http://charlotte.ucsd.edu/classes/sp02/cse140/gajskil.pdf

[42] “Intel is working on 15-core ‘Ivytown’ processor for servers,” [Online]. Available:
http://www.kitguru.net/components/cpu/anton-shilov/ingalvorking-on-5-core-ivytown-

processor-for-servers/

[43] R. Varada et al, “Superblock: A method for synthesizing Large High Performance Designs

Without Hierarchy Limits”, DAC 2010.

[44] S. Rusu et al, “IEEE International Solid-State Circuits Conference Digest of Technical

Papers”, pp. 213-214, 2014.

[45] A. E. Sjogren et al, “Interfacing Synchronous and Asynchronous Modules Within a High-
Speed Pipeline,” IEEE Transaction on Very Large Scale Integration (VLSI) Systems, vol. 8, No.

5, Oct. 2000.

[46] Y. Zhi et al, “An efficient Algorithm for Multi-Domain Clock Skew Scheduling,” Design,

Automation & Test in Europe Conference & Exhibition, pp. 1-6, 2012.

109

[47] B. Tsakin and 1. Kourtev, “TIME BORROWING AND CLOCK SKEW SCHEDULING
EFFECTS ON MULTI-PHASE LEVELSENSITIVE CIRCUITS,” Proceeding of the

International Symposium on Circuits and Systems, pp. 617-6202004.

[48] R. Kaushiket al, “Multi-Domain Clock Skew Scheduling,” The international Conferenve on

Computer Aided Design, pp801-808, 2003.

[49] L. Li, Y. Lu, H. Zhou, “Optimal Multi-Domain Clock Skew Scheduling,” Design

Automation Conference (DAC), pp. 523-527, 2011.

[50] R. Méhra, “Commercial low-power EDA tools: a revigWroceedings of the 2012
ACMI/IEEE international symposium on Low power electronics and design, PP. 67-71, 2012.
[51] Synopsys Education & support (2007, December) [Online]. Available:

http://www.eda.org/p1801/hm/att-0252/LevelShifter Syntax_V1.pdf

[52] S. Karapetyan (2011, March 23). Low Power Design Methods: Design Flows and Kits
[Online]. Available: http://wwwmayr.informatik.tu-muenchen.de/konferenzen/MB-
Jass2011/courses/2/Karapetyan_2 presentation.pdf[73] K. Matt et al, (2006). Multi-Voltage
implementation flow with Synopsys tools [Online]. Available:

http://vsevteme.ru/attachments/show?content=6305

[53] Power Forward. Verification of Low Power Intent with CRF [Online].

http://www.powerforward.org/media/p/96.aspx

[54] V. Gourisetty et al, “Low power design flow based on Unified Power Format and Synopsys
tool chain” Interdisciplinary Engineering Design Education Conference (IEDEC), pp. 28-31,
2013.

[55] Multi-VDD Design Flow (2013, January) [Online]. Available:

110

http://dl.acm.org/citation.cfm?id=2333660.2333679&coll=DL&dl=GUIDE&CFID=555886189&CFTOKEN=35043669
http://www.eda.org/p1801/hm/att-0252/LevelShifter_Syntax_V1.pdf
http://wwwmayr.informatik.tu-muenchen.de/konferenzen/MB-Jass2011/courses/2/Karapetyan_2_presentation.pdf
http://wwwmayr.informatik.tu-muenchen.de/konferenzen/MB-Jass2011/courses/2/Karapetyan_2_presentation.pdf
http://vsevteme.ru/attachments/show?content=6305
http://www.powerforward.org/media/p/96.aspx
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6526754&queryText%3Dunified+power+format
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6526754&queryText%3Dunified+power+format

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/Multi-

VDD Design Flow#Multi Voltage Design

[56] B. Stolt et al, “Design and Implementation of the Power6 Microprocessor,” IEEE Journal of

Solid State Circuits, Vol. 43, NO. 1, pages 21-28, 2008.

[57] M. Keating et al, “Low Power. Methodology Manual”, pp 21-31, Springer, July, 2007.

[58] D. W. Dobberpuhl, et al, “A 200 MHz 64 bit dual-issue cmos microprocessor,” IEEE J.

Solid-State Circuits, vol. 27, pp. 1158167, Nov. 1992.

[59] M. Cho et al, “Soft hierarchy-based physical synthesis for large-scale, high-performance

circuits” U.S. Patent 8 516 412, Aug. 20, 2013.

[60] W. Liu et al, “Routing Congestion Estimation with Real Design Constraints,” DAC, pages

1-8, 2013.

[61] J. Badar, M. Hossain, D. Geiger, P. Villarrubidechnique to enable multi power

synthesi¥, U.S. Patent 9483596 B1, Nov. 01, 2016.

[62] G. Annsen et al;Circuit verification using computational algebraic geomigtty.S. Patent
8640065 B2, January 27, 2012.

[63] Taraneh Taghavi, Charles Alpert, Andrew Huber, Zhu@&iiJoon Nam, Shyam Ramiji,

“New placement prediction and mitigation techniques for local routing conge$iaceedings

of the International Conference on Computer-Aided Design, November 07-11, 2010, San Jose,

California.

[64] Jarrod A. Roy, Natarajan Viswanath&i;Joon Nam, Charles J. Alpert, Igor L. Markov,

“CRISP: congestion reduction by iterated spreading during placémReateedings of the 2009

111

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/Multi-VDD_Design_Flow#Multi_Voltage_Design
http://venividiwiki.ee.virginia.edu/mediawiki/index.php/Multi-VDD_Design_Flow#Multi_Voltage_Design

International Conference on Computer-Aided Design, November 02-05, 2009, San Jose,

California.

[65] Charles J. Alpert, Zhuo Li, Michael D. Moffitt, Gi-Joon Nam, Jarrod A. Roy, Gustavo
Tellez,“What makes a design difficult to routeProceedings of the 19th international

symposium on Physical design, March 14-17, 2010, San Francisco, California, USA.

[66] Taraneh Taghavi, Charles Alpert, Andrew Hulz#uo Li, Gi-Joon Nam, Shyam Ramiji,
“New placement prediction and mitigation techniques for local routing conge$tiaceedings
of the International Conference on Computer-Aided Design, November 07-11, 2010, San Jose,

California.

[67] Jarrod A. Roy, Natarajan Viswanath&i;Joon Nam, Charles J. Alpert, Igor L. Markov,
CRISP: congestion reduction by iterated spreading during placement, Proceedings of the 2009
International Conference on Computer-Aided Design, November 02-05, 2009, San Jose,

California.

[68] Yue Xu, Yanheng Zhang, Chris Chikast Route 4.0: global router with efficient via
minimizatiori’, Proceedings of the 2009 Asia and South Pacific Design Automation Conference,

January 19-22, 2009, Yokohama, Japan.

[69] Yen-Jung Chang(u-Ting Lee,Ting-Chi Wang,“NTHU-Route 2.0: a fast and stable global
routei’, Proceedings of the 2008 IEEE/ACM International Conference on Computer-Aided

Design, November 10-13, 2008, San Jose, California.

[70] M. Cho, Katrina Lu, Kun Yuan, David Z. Pan, BoxRouter 2.0: architecture and

implementation of a hybrid and robust global router, Proceedings of the 2007 IEEE/ACM

112

international conference on Computer-aided design, November 05-08, 2007, San Jose,

California.

[71] Huang-Yu Chen, Chin-Hsiung Hsu, Yao-Wen Chang, High-performance global routing
with fast overflow reduction, Proceedings of the 2009 Asia and South Pacific Design

Automation Conference, January 19-22, 2009, Yokohama, Japan.

[72] Hamid Shojaei, Azadeh Davoodi, Jeffrey T. Linderoth, Congestion analysis for global
routing via integer programming, Proceedings of the International Conference on Computer-

Aided Design, November 07-10, 2011, San Jose, California.

[73] Jin Hu, Jarrod A. Roy, Igor L. Markov, Completing high-quality global routes, Proceedings
of the 19th international symposium on Physical design, March 14-17, 2010, San Francisco,

California, USA.

[74] Myung-Chul Kim, Jin Hu, Dong-Jin Lee, Igor L. Markov, A Simple method for routability-
driven placement, Proceedings of the International Conference on Computer-Aided Design,

November 07-10, 2011, San Jose, California.

[75] J.R. Black, “Electromigration — A brief Survey and Some Recent Results,” IEEE

Transactions on Electron Devices, Vol. 16, 1969, pp. 338-34.

[76] R. Berridge et al, IBM POWERG6 microprocesphysical design and design methodology,”

IBM Journal of Research and Development, Vol 51, Issue 6, pages 685-714, 2007.

[77] J. Friedrich et al, “Design methodology for the IBM Power7 microprocessor,” IBM Journal

of Research and Development, Vol 55, Issue 3, pages 294-307, 2011.

113

[78] A. H. Chao, E. M. Nequist, and T. D. Vuong, “Direct solutions of performance constraints

during placement,” in Proc. IEEE Custom IC Conf., 1990, pp. 27.2.1-27.2.4.

[79] J. Frankle, “Iterative and adaptive slack allocation for performance-driven layout and FPGA

routing,” in Proc. IEEE Design Automation Conf., 1992, pp. 539-542.

[80] P. S. Hauge, R. Nair, and E. J. Yoffa, “Circuit placement for predictable performance,” in

proc. IEEE Int. Conf. Computer-Aided Design, 1987, pp-988

[81] R. Nair, C. L. Berman, P. S. Hauge, and E. J. Yoffa, “Generation of performance constraints

for layout,” IEEE Trans. Computer-Aided Design, vol. 8, no. 8, pp. 86874, 1989.

[82] M. Sarrafzadeh, D. Knol, and G. Tellez, “Unification of budgeting and placement,” in Proc.

IEEE Design Automation Conf., 1997, pp. #381.

[83] H. Youssef, RB. Lin, and S. Shragowitz, “Bounds on net delays,” IEEE Trans. Circuits

Syst., vol. 39, no. 11, pp. 81824, 1992.

[84] C. Alpert et al, “Buffer insertion for noise and delay optimization” DAC '98 Proceedings of

the 35th annual Design Automation Conference, pp. 362-367, 1998.

[85] A. Acosta et al, “Effects of buffer insertion on the average/peak power ratio in CMOS

VLSI digital circuits,” VLSI Circuits and Systems Ill, Proc. of SPIE Vol. 6590, 659007, 2007.

[86] G. Karimi, “Buffer Insertion for Delay Minimization using An Improved PSO Algorithm,”
Applied Mathematics & Information Sciences, An International Journal, pp. 2277-2285, 2014.
[87] R. Varada et al, “Superblock: A method for synthesizing Large High Performance Designs

Without Hierarchy Limits”, DAC 2010.

114

[88] ”CPU World” [Online]. Available:http://www.cpu-world.com/CPUs/Bobcat/AMD-

E%20Series%20E-350%20-%20EME350GBB22GT.html.

115

Appendix

Al RodRunner library

In this dissertation, IBM’s RodRunner based standard cell library was used to generate
the layout for actual logic gates. This pcell-based gate layout generation is automatic and
physical design error free, which reduces the cost of standard cell library design. Besagne
choose different gates with different thresholds and power levels to design power efficient
circuits. In addition, the resources required to create the full cell library were greattgdedu
because layout for each cell can be generated and updated automatically. For RLM,ofhe use
RodRunner cells allowed a very large library of standard cells to be created ginthgssy
maximum flexibility. A key benefit to RodRunner cell was the ability to make any DRC or
methodology updates in a single location within the RodRunner cell. This change is instantly

picked up across all instantiations of the cell, including standard cell library [56].
A2 Congestion Analysis

At high level design, routing resources are carefully analyzed to build bottom-up chip.
Macros, unit and chip share the routing layers and create contracts between all hierarchies and
make sure designs are routable and timing closed. Routing at highly critical areas and interfaces
must be analyzed first so that designers have freedom to upgrade or widen wires to make time.
However, widening wires of course create a congestion problem for the router. Congestion has
been discussed in chapter 2.7 and 2.8 and explained how it is important to floor-plan so that local
and global congestion can be avoided by smart PIN and IP placement inside unit and MMLGS

Also, the congestion is a function of the aspect ratio of the macro, unit and chip. Thus, when it

116

comes to floor-plan, designer should carefully analyze the data flow of the design and come-up

with smart routing to avoid congestion.

A2.1 Vertical Wiring Congestion

Vertical wiring congestion is a function of the width, PIN and internal IP placement of
the macro/unit. In L2 cache unit routing, experiment, as expected, not much congestion was
observedlue to unit’s aspect ratio and data flow structure, Fig. A.1. The green color represents
the good routing results in the design. The yellow color is of concern in the design but as
expected, those areas are due to the access to the custom arrays which are pre-placed. Thus,
routings are not expected to change at these interfaces. The other colors, purple, also represents
concern in the design because those vertical lines are pre-placed and customized with clock

sector buffers placement. And thus, these columns are also expected to be highly densed.

Fig. A.1: Vertical wiring solution.

117

Fig. A.2: Horizontal wiring solution

A2.2 Horizontal Wiring Congestion

As oppose to vertical wiring congestion, in L2 cache design, horizontal congestion is of a
concern due to aspec ration. As Fig. A.2 suggests, the test case see a fairly good number of
places with higher horizontal wiring congestion, specially at array interface areas. Designers
need to analyze the congestions at these areas and look at the routing resources available and
make sure noise is not of a concern due to high congestion. Several technigue such as wire traits,
pre-placement of logic gates can be implemented in order to close timing on critical wiring areas

as explain in section 5.3.

As previously stated, to make timing on these critical long horizontal wires, the following

techniques were followed during routing the routing of L2 cache unit.

1) Keep wire delay low by using fat wires and redundant VIAs by reducing resistance.

2) Keep wire capacitance low by placing critical logic together and increase spacing from
the adjacent aggressor wires. Also, route critical nets adjacent to wires that have different

timing window or static signals such as power and ground.

118

3) Remove any dangling wires especially for multi fan out logic cones or share wires

wherever congestion.
A3 Routing Analysis

Fig. A.3 and A.4 give us some statistical data about routing the L2 Cache unit. The more
congested the desigs, the more iterations are taken by the router to complete the job. And of
course, the routing or compute time goes-up with the congestion of the design. Both routing and
post-routing tool try to fix the DRC rules after initial routing and try to fix all during detail
routing (droute). Fig. A.3 is an example of how router was able to connect all nets but left 1440

DRC violations in the design.

As circuit designers carefully evaluate the routing of the macros for better timing and
congestion, it is highly relevant that the statistics of congested area is analyzed. isFgen
A.4, most of the congested nets are in 40-60% area, while only about 380 nets are above 100%
congested area. With these statistics, the routing for this unit does not look bad during congestion
estimation. When it comes to incremental routings to fix noise and congestion, router see these

numbers easily fixable.

119

Begin droute...
Begin cycle 1...
Begin Collection of shapes to route (unroutes and errors)...
End Collection of shapes to route (unroutes and errors) 0.0s (kernel), 0.0s (user), 0.05 (elapsed), 55198.0HB wn, 55198.0MB peak wn

[pass 1 index 1 begin] rips 6632 (unroutes 104 errors 6521 violatees 0 weak 7 offgrid 0 givelp 0
[pass 1 end] 169.55 secs, 169.55 secs total

[pass 2 index 2 begin] rips 5427 (unroutes 104 errors 4232 violatees 1081 weak 0 offgrid 0 givelp 0)
[pass 2 end] 148.51 secs, 218.06 secs total

[pass 3 index 3 hegin] rips 4149 (unroutes 104 errors 3085 viclatees 960 weak 0 offgrid 0 givelp 0
[pass 3 end] 158.33 secs, 476.80 secs total

[pass 4 index 4 hegin] rips 3216 (unroutes 104 errors 2546 viclatees 566 weak 0 offgrid 0 givelp 0
[pass 4 end] 187.52 secs, 664.41 secs total

[pass 5 index 5 hegin] rips 2655 (unroutes 104 errors 2167 viclatees 384 weak 0 offgrid 0 givelp 0
[pass 5 end] 397.31 secs, 1061.72 secs total

[pass 6 index 6 hegin] rips 2143 (unroutes 104 errors 1680 viclatees 353 weak 0 offgrid 0 givelp 0
[pass 6 end] 532.61 secs, 1594.33 secs total

[pass 7 index 7 begin] rips 1902 (unroutes 104 errors 1628 violatees 270 weak 0 offgrid 0 givelp 0
[pass 7 end] 407.93 secs, 2002.26 secs total

[pass 8 index 8 begin] rips 1702 (unroutes 104 errors 1402 violatees 196 weak 0 offgrid 0 givelp 0
[pass 8 end] 761.26 secs, 2763.52 secs total

[pass 9 index 9 hegin] rips 1729 (unroutes 104 errors 1403 viclatees 222 weak 0 offgrid 0 givelp 0
[pass 9 end] 360.00 secs, 3123.52 secs total

[pass 10 index 10 hegin] rips 1620 (unroutes 104 errors 1344 viclatees 172 weak 0 offgrid 0 givelp 0
[pass 10 end] 145.56 secs, 3269.08 secs total

[pass 11 index 6 hegin] rips 1581 (unroutes 104 errors 1300 viclatees 177 weak 0 offgrid 0 givelp 0
[pass 11 end] 99.45 secs, 3368.53 secs total

[pass 12 index 7 hegin] rips 1412 {unroutes 0 errors 1248 viclatees 164 weak 0 offgrid 0 givelp 104)
[pass 12 end] 137.24 secs, 3505.77 secs total

[pass 13 index 8 begin] rips 1421 (unroutes 0 errors 1261 violatees 160 weak 0 offgrid 0 givelp 104)
[pass 13 end] 4125.15 secs, 7630.92 secs total

=

[pass 14 index 9 begin] rips 2020 (unroutes 0 errors 1462 violatees 558 weak 0 offgrid
[pass 14 end] 16.05 secs, 7646.97 secs total

[pass 15 index 10 hegin] rips 1703 {unroutes 0 errors 1691 violatees 12 weak 0 offgrid
[pass 15 end] 11.40 secs, 7658.37 secs total

[pass 16 index 6 hegin] rips 1682 {unroutes 0 errors 1677 violatees 5 weak 0 offgrid
[pass 16 end] 23.74 secs, 7682.11 secs total

[pass 17 index 7 hegin] rips 1625 {unroutes 0 errors 1594 viclatees 31 weak 0 offgrid
[pass 17 end] 12.64 secs, 7694.75 secs total

[pass 18 index 8 hegin] rips 1594 {unroutes 0 errors 1580 violatees 14 weak 0 offgrid
[pass 18 end] 5066.63 secs, 12761.38 secs total

[pass 19 index 9 begin] rips 1908 (unroutes 0 errors 1457 violatees 452 weak 0 offgrid
[pass 19 end] 18.18 secs, 12779.56 secs total

[pass 20 index 10 begin] rips 1545 (unroutes 0 errors 1527 violatees 18 weak 0 offgrid
[pass 20 end] 22.07 secs, 12801.63 secs total

[pass 21 index 6 begin] rips 1514 (unroutes 0 errors 1508 violatees 6 weak 0 offgrid
[pass 21 end] 22.35 secs, 12823.98 secs total

[pass 22 index 7 hegin] rips 1465 {unroutes 0 errors 1442 viclatees 23 weak 0 offgrid
[pass 22 end] 12.12 secs, 12836.10 secs total

[pass 23 index 8 hegin] rips 1452 {unroutes 0 errors 1439 violatees 13 weak 0 offgrid
[pass 23 end] 9.64 secs, 12845.74 secs total

[pass 24 index 9 hegin] rips 1456 {unroutes 0 errors 1441 violatees 15 weak 0 offgrid
[pass 24 end] 5.48 secs, 12851.22 secs total

[pass 25 index 10 hegin] rips 1447 {unroutes 0 errors 1440 violatees 7 weak 0 offgrid
[pass 25 end] 4.10 secs, 12855.32 secs total

givelp 104)

=1

givelp 105)

=1

givelp 105)

=1

givelp 105)

=1

givelp 105)

=1

givelp 105)

=

givelp 108)

=1

givelp 108)

=1

givelp 105)

=1

givelp 105)

=1

givelp 105)

=1

givelp 105)

Fig. A.3: Routing iteration to fix design violation.

120

——————— Congestion Distribution e

Congestiaon # of edges # of nets
(actual congestion) (max congestion)
03 148896 140876
3 10904 623
(i 4 8845 =ln
10% 95911 2673
13% 65123 3547
162 51756 5294
20% 1516853 17908
23% 128716 13639
26% 56108 16455
20 491796 34202
33E 119114 29036
26 53086 23143
A0 519930 45686
A3 100623 23525
A6 57302 21084
50 252849 40806
53 g2434 205a0
56% 55943 1857 a
()4 27,4125 6653
a3 6Eo924 25002
Qe 25445 20531
70 o210z 40833
FEM [=1=lnjery 25864
Fax 15543 17653
0% 04323 286038
33K 44608 12902
6% 10177 5573
Q0% 3794 12405
Q3K 27827 4556
Q6% 48790 10
100% 11938 6307
103% 138 192
106% 18 36
110% 63 137
113% 2 10
116% 2 4
120% 153 a1
123K 3 a
1265 1 a
1205 1 3
133% a a
1363 a a
140 a a
143% a a
1463 a a
150 a a
Total 4651528 697720
fverage X 35.8023 42,4439
fvg 20X worst s0.4042 F9.5817

Fig. A.4: Congestion data in L2 cache unit.

121

A4 Distribution of Gate Array (GA) Célls

Another component of physical design is to look forward and plan on future design
changes once the macro is built. These changes involve addition of new logic, chansgngf ex
logic, circuit design violation fixes etc. Circuit design part includes changes such as: addition of
buffers, increasing drive strength, change logic topology to make timing, allocate better wire
resources etc. With the future changes in mind, synthesis methodology would allow designers to
add _Engineering Change Order (ECO) gates which is also called Gate Array (GA) cedls in th
design, Fig. A5, so that during the automatic or manual ECO process, these GA cells could be
used to implement desired changes in the design. These GA cells are laid out in such a way that
they could be converted easily into basic functions such as inverter, NAND, NOR, AOI etc.
Also, there are several sizes available in the design so that different strength of functional gates
can be made from these GA cells. As far as location goes, synthesis tool place function gates first
and fill out rest with GA cell even though there is another algorithm available to evenly
distribute minimum % of GA cell all over the design and rest are in empty areas. Similar to GA

cell, empty space is also filled with decoupling capacitors to compensate the droop in the design.

39024 = 13568 tracks

a 3982 Faa5s 11787 15618 19512 23414 27317 31219 35122 39624

Fig. A.5: Distribution of GA cell after synthesis.
122

39024 = 13568 tracks

13568 —— :
12211 : . = : : I

18854

9498

8141
6784
5427 : el

4876

2714—3

1357 ;
B ¢ | i
| | |

a 3g8:2 7885 41787 15618 19512 23414 27317 31219 35122 3a824

Fig. A.6: Distribution of negative slack in synthesis.
A5 Slack Distribution

Synthesis has an ability to write out the slack information in a pictorial view. Designe
can easily open the output file, Fig. A6, and look at the most timing critical places and visually
inspect them. They can look at these places where most of the negative/positive slacks are and

can take advantages of logic and placement optimization.
A6 Post Routing Statistical Data

The uses of post-routing tool (Rapids) has been discussed in Chapter 6. This tool is
basically used after routing the macro to fix the electrical violations such as slew, slack and some
DRC (Design Rule Check). This tool does not move around and rip-off placed gates rather it
work on changing the drive strength so that delay on critical paths are optimized. Some cases,
tool does re-route some scenic paths to make it straight on all routing layers. Fig. A.7 shows a
statistical dta that was produced during ‘Rapids’ run on L2 cache units. Last column of the data

shows % improve on several matric. For example: in this exercise, late mode L2L worst slack

123

(Latch to Latch) improves by ~20% and FOM (Figure Of Merit) changes by ~3%. This tool also
work on power optimization because it can swap gates with low power when drive strength is

needed.

R&PIDS Optimization Final Summary for /TECH/12 top/:

valid Routing Lavers "M2 MZ M4 M5 Bl B2 E1 E2 EZ X1 H2 HI"
Initial FPostOpt Final Ximprove
Late worst slack : -89.413 -88.0a0 —-89.9a62 -0.614
Late LZL worst slack 5 —-80.a650 -50.210 —64.650 19,839
Late FOM : —5gggs . 293 -32505.939 —-46612.676 20.844
Late negatiwves 8 2931 1868 2513 14.261
Early worst slack : —404.800 -404.800 -—404.195 0.149
Early L2L worst slack : —9999.000 -9999.000 —-9999.,000 —0.000
Early FOM I 723969937 718067 625 -F04219 .93F 2.728
Early negatiwves : 2381 2381 2381 o.000
Electrical FOM 8 177 .000 s2.000 Qo .ooo 49 153
Slew wiolations : 1374 34 750 45 415
Load wiolations H 245 225 251 —-2.022
Flacement wiolations : 35163 21a9 2189 03.832
area (icells) 5 17460647 17488594 174588594 —0.1a0
area Utilization 8 59,3200 59.200 59,200 0.169
Wire Tength (tracks) : 245049539 3450558565 345852025 0.049
Wire Tength (micraons) 8 20245768 30245509 203207559 o.049
Guides wire length {(microns) 3 3342 3342 u} 0.000
Mets with global routes : ES Frary ES o.000
Global wire length {microns) : 10 Qza0a6 7 2 _580
Scenic Mets 8 122 104 (=11 52 .000
Route opens (clock) : 433 433 176 50 _353
Route opens (signal) 3 2 1 u} 0.000
Route opens (pwrgnd) s a 18 a o.000
Route shorts (clock) : 1 335 556 -55500.000
Route shorts (signal) : Q Q3479 577 -6311.111
Route shorts (pergnd) 8 F37 488 sea781 F37 490 —0.001
ORC errors 8 FB86 Glas 1303 -65.776G
LCE max cap viols 3 32 u] ES 87 .500
LCE min cap viols : 32 o 2 93 750
Tiles Below 4% G& Density : a a o.000
Tiles Below 8% G& Density : a a o.000
Mets 8 691358 694645 694645 —0.475
Gates 8 6213328 624625 624625 -0.529
Cells resized : 46227 46227
Cell=s added : 3355 33585
Cells mowved : 2031 2031

Fig. A.7: Post routing tool improvement statistics.

124

