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ABSTRACT

MODULATED RENEWAL PROCESS MODELS WITH FUNCTIONAL PREDICTORS

FOR NEURAL CONNECTIVITIES

Recurrent event data arise in fields such as medicine, business and social sciences. In

general, there are two types of recurrent event data. One is from a relatively large number

of independent processes exhibiting a relatively small number of recurrent events, and the

other is from a relatively small number of processes generating a large number of events. We

focus on the second type. Our motivating application is a collection of neuron spike trains

from a rat brain, recorded during performance of a task. The goal is to model the intensity

of events in the response spike train as a function of a set of predictor spike trains and the

spike history of the response itself. We propose a multiplicative modulated renewal processes

model that is similar to a Cox proportional hazards model. The model for response intensity

includes four components: (1) a baseline intensity, or hazard, function that captures the

common pattern of time to next event, (2) a log-linear term that quantifies the impact of the

predictor spike histories through coefficient functions, (3) a similar log-linear term for the

response history, (4) a log-linear regression-type term for external time dependent variables.

The coefficient functions for predictor and response histories are approximated by B-spline

basis functions. Model parameters are estimated by partial likelihood. Performance of the

proposed methods is demonstrated through simulation. Simulations show that both the coef-

ficient function estimates and the asymptotic standard error function estimates are accurate

when the sample size is large. For small samples, simulations show that the smoothly abso-

lute clipped deviation (SCAD) penalty outperforms LASSO penalty and unpenalized partial

likelihood approach in identifying functional sparsity under various situations. The proposed

methods are illustrated on a real spike train data set, in which substantial non-stationarity

is identified.
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CHAPTER 1

Introduction

1.1 Background and motivation

1.1.1 Analysis of recurrent events

Recurrent event data has been widely collected in fields such as biomedicine, business,

reliability engineering and the social sciences. The recurrent event data are provided by

recurrent event processes which generate events repeatedly over time. In general, there are

two basic types of data [Cook and Lawless, 2007]. One is from a relatively large number

of processes, usually assumed to be independent, exhibiting a relatively small number of

recurrent events. Such data arise frequently in medical studies, where many individuals may

experience transient clinical events repeatedly over a period of observation. The literature on

the statistical analysis of such data has grown rapidly over the years and a variety of models

and methods has been developed, for example, Poisson models based on counts and rate

functions, Cox proportional hazards models based on gap times between events. The other

type of recurrent events is from a relatively small number of processes, each generating a large

number of events. In some cases, there is only one process that generates tens of thousands

of events over the observational period. The difference between modeling procedures of both

types of data is that the second type is much more challenging due to the possible dependence

of an event within a process on previous events as well as other processes. A few models and

methods for data from such sets of processes are available, such as the modulated renewal

process model, study of the properties and performance of these models are very limited.

In this study, we focus on the second data structure, in particular, a situation in which

several processes generate long parallel sequences of events. This study is motived by the

need for models that can capture the relationships between simultaneously recorded neuron

spike trains, which are commonly viewed as point processes. A neuron spike train is a
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sequence of event times, and in this case, an event is a “spike" also termed action potential or

neural firing. The available data usually consist of neural spike trains that record thousands

of spikes from a single subject over a period of observation. A review of neural spike train

analysis is given in Section 1.1.2 and an example of neural spike train data is given in Section

1.2.

1.1.2 Analysis of neural spike trains

Multiple electrodes are used to simultaneously record electrical activities of several neu-

rons in a single brain region or across different regions. The electrical activity of a neuron is

recorded as a neural spike train. Simultaneously recorded spike trains are used to study how

groups of neurons process information and how they interact with each other. Developing

statistical methods for the analysis of multiple neural spike-train data is an important and

challenging problem [Brown et al., 2004, Reed and Kaas, 2010].

This work involves simultaneously recorded spike trains in the hippocampus. The hip-

pocampus is a brain region that has long been known to play an important role in spatial

navigation and the consolidation of information from short-term memory to long-term mem-

ory. Damage to the hippocampus by diseases like Alzheimer’s disease can cause memory

problems and disorientation. People with extensive, bilateral hippocampal damage may ex-

perience anterograde amnesia, the inability to form or retain new memories. Developing a

neural prosthesis for the damaged hippocampus would be very helpful for people suffering

problems caused by hippocampal damage. One of the fundamental principles of cortical

brain regions, including the hippocampus, is that information is represented in the ensemble

action potentials (nerve impulses) of populations of neurons [Song et al., 2007]. Thus, the

first step of developing a neural prosthesis for the damaged hippocampus is to understand

the connectivities of the neuron firings in the hippocampus. Analysis of multiple spike trains

recorded from neurons in hippocampus allows us to understand such connectivities.

Several methods have been developed for analyzing the relationships between spike trains.

The first group of methods is focused on pairwise relationship, such as the cross-correlation

2



function (CCF) [Perkel et al., 1967], the cross-intensity function [Brillinger, 1976a, 1992, Cox,

1972a], product densities, cumulant densities, cumulant spectra, method of moments [Bartlett,

1966, Brillinger, 1975a,b], calculation of the coherence [Brillinger, 1976b, 1992], and the joint

peristimulus time histogram (JPSTH) [Aertsen et al., 1989, Gerstein and Perkel, 1969, 1972].

One drawback of these methods is that they fail to consider possible influences from other

simultaneously recorded spike trains. The second group of methods is based on multiple

regression. In particular, one spike train is chosen to be the response train and the other

spike trains are predictor trains. Multiple influences from the predictor spike trains on the

response train can be quantified by estimating the regression parameters.

Various regression models have been applied to the study of neuronal connectivities. In

general, these models belong to two classes. The first class is the generalized linear mod-

els(GLM). This approach assumes the response train is an inhomogeneous Poisson process

and the spike intensity is proportional to the exponential of the linear combination of the

predictors [Brillinger, 1988, Okatan et al., 2000, Truccolo et al., 2005]. A detailed discussion

on this approach can be found in Masud and Borisyuk [2011]. The second class is based

on the Cox proportional hazards model [Cox, 1972a]. This approach assumes that hazard

function of the time to the next spike of the response train is the product of a baseline haz-

ard function and the exponential of the linear combination of the predictors. The baseline

hazard function can be left unspecified and the model can be estimated by maximizing the

Cox partial likelihood. It was originally applied to neuroscience data by Borisyuk et al.

[1985], and its application to simultaneously recorded spike train data was further studied

by Masud and Borisyuk [2011].

To develop useful models for relationships between neural spike trains, e.g., connectivities,

several essential characteristics of neurons and their activities must be taken into account.

First, the response is a single long sequence of spikes from the same subject. Information

is carried in the times of spikes. It is not reasonable to ignore the correlations among the

response spike times. Second, neural mechanisms, such as refractory and recovery period,

3



determine whether a spike of a neuron has an impact on the neuron’s future activities.

Third, the activities of the neurons depend on the subject’s activity at time of recording.

Since a certain behavior of the subject usually extends over a time period in which a large

number of spikes occur, these spike times may have strong correlations. Based on those

three characteristics, the model formulation should reflect the dependence of the response

neuron’s activities on its own spike history.

The relationship between the response spike train and the predictor spike trains can be

very complicated due to the following reasons. The activity of the response neuron depends

not only on the current activities of other neurons but also on their histories. This requires

the model to be dynamic and the connectivities to be functional. Moreover, the connectivity

between two neurons can be direct or indirect (Figure 1.1). It is not sensible to assume that

different types of connections are the same. We would also like to point out that there is

an under-sampling problem, which is due to the fact that the observed spike trains usually

represent only a small portion of neuron population. Therefore, the functional connectivity

between neurons cannot be directly interpreted as synaptic connections. This implies that

the functional connectivities can be very complex due to the impact of the unobserved

neurons.

1.1.3 Our approaches

In this dissertation, we model the response spike train as a modulated renewal process

[MRP; Cox, 1972b], an extension of the Cox proportional hazards model that can be used to

model recurrent events whose occurrence may depend on the previous events. In Cox’s MRP

model, the conditional intensity function, which describes the rate of response events, given

the entire history of the process, is assumed to be the product of a baseline hazard function

and an exponential of a linear combination of predictors. These predictors may include not

only the previous spike activity of the other trains but also the response spike train’s own

spike history, as well as other covariates. Under the Cox MRP model, it is assumed that the

dependence of the conditional intensity function of the event on the history of the process

4



x1

Y

x2

x3

x4

x5

x6

x7

x8

Figure 1.1: Possible connections between neurons: Y is the response neuron, x1, x2, ..., x8 are
observed predictor neurons. A direct connection is represented by a solid straight line and
a indirect connection is represented by a dashed straight line. A shaded circle represents a
neuron that is not observed.

is adequately captured by the linear function of the predictors in the model. Like the Cox

proportional hazards model, the baseline hazard function can nonparametrically describe

complex firing pattern of the response neuron.

Lin et al. [2013] argued that, in practice, the dependence of the current event on the

process history may not be adequately captured by a limited number of predictors, so the

assumption of the MRP model may be too strong. Those authors used a rate function,

defined similarly to the conditional intensity function, which describes the rate of response

event occurrences, given the predictors in the model. They did not assume that the predictors

in the model can fully capture the dependence of the current event on the process history.

The partial likelihood-based inference is much more challenging under the rate model than

under the Cox MRP model. The variance of the estimator proposed in Lin et al. [2013] is

quite complicated, owing to the unknown dependence structure on the process history that

is not explained by the linear function of the predictors. To estimate that variance they

adapted block bootstrapping and cluster variance estimators to the partial likelihood.
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We believe that the Cox MRP model is appropriate if the predictors can successfully

capture a large portion of the information in the process history. The challenge in spike

train modeling is that the conditional intensity of a response spike at a given time may

depend on the spike history in various ways. Most previous studies, including Lin et al.

[2013], divided the history into subintervals and treat each subinterval as a predictor. Then,

how well the models capture the dependence of the current spike probabilities on previous

spikes depends on the size and number of the subintervals. Ideally, the subintervals can be

small enough to approximate the true form of the dependence; however, if the subintervals

are too small, the model contains too many parameters (hundreds) to adequately estimate.

Thus, important information in the spike history may be lost and the models may not capture

the dependence of the current spike on previous spikes.

In this work, we take an approach that does not require the specification of subintervals.

In our proposed model, the impact strength of the history of each spike train is modeled

by a coefficient function that is approximated by a linear combination of B-splines. Taking

this approach, we can keep the number of parameters in the model small without losing

much information in the spike history. The flexibility of the coefficient functions provides

improved ability to capture the dependence of the current spike intensity on previous spike

density. Therefore, the assumptions of the Cox’s MRP model should be closer to valid

and we can take the advantage of the better studied Cox’s MRP model. Our model also

allows extrinsic predictors, such as stimulus and behavioral variables, to affect the response

spike train. By including those predictors, the functional connections between neural spikes

can be better estimated and more interpretable. We take the penalized maximum partial

likelihood approach to address functional estimation and sparsity. Functional sparsity refers

to coefficient functions that are zero over many sub-periods or the entire period of history.

We also adapt the Kolmogorov-Smirnov test based on the time-rescaling theorem [Brown

et al., 2002, Haslinger et al., 2010] as a way to evaluate the goodness-of-fit and prediction.
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1.2 The neural spike train data

The data used in this dissertation were collected from hippocampus of Long-Evans rats.

Neural signals were recorded with an 8-shank silicon probe in layer CA1 of the right dorsal

hippocampus while the rats were chasing randomly placed drops of water on a elevated

square platform [Mizuseki et al., 2009a,b]. The raw data were preprocessed and transformed

into spike trains. Each spike train records the activity of a neuron. It is believed that

information is carried in the timings but not the waveform of the spikes, so the durations

of the spikes are ignored [Song et al., 2013]. A spike train can be characterized simply by

a series of all-or-none point events in time [Gerstner and Kistler, 2002]. In addition to the

neural activities, the positions of the rat were also identified by two LEDs on the rat’s head.

Positions of the rat were extracted from a video file that recorded the experiment. A more

detailed description of the data collection can be found in Mizuseki et al. [2009b].

The computational examples in this dissertation are all based on six spike trains from

one rat over 4500 seconds. Here we present 500 second data as an example. Denote the

six spike trains as S1, S2, S3, S4, S5, and S6. Spikes within 0.002s of the previous spike are

believed to be false signals created by the equipment, so they are removed. During this 500

second period, the 6 neurons generated 15893, 13594, 8449, 18212, 1209, and 20275 spikes,

respectively. Figure 1.2 shows a portion of the data set recorded over 20 seconds. It can be

seen that the overall spike frequencies are different across the six trains; in particular, S4 has

much lower frequency than the other five. This is further seen in the means of the inter-spike

times, i.e., the time between two successive spikes, and the number of spikes over 500 seconds

(Table 1.1). However, the first quantiles and the medians of the inter-spike time for the six

trains are not very different (Table 1.1). Figure 1.3 shows the histograms of the inter-spike

times for the inter-spike times that are not greater than 0.2 seconds. The inter-spike time

distributions are all unimodal and right skewed. The modes of the density functions are

all close to 0, but the density values at the modes are different. From Table 1.1, the 98th

percentiles of S1, S2, S3, S5 are less than 0.2 seconds, so the histograms show more than 98%
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of the data for these four spike trains. The distributions of S4 and S6 have heavier tails with

about 70% and 95% of inter-spike times less than 0.2 seconds respectively. Although S4 has

much lower overall spike frequency; its inter-spike time density still has very small mode and

its density at the mode is as large as S5, which has the highest overall spike frequency. All

these results indicate that the spikes tend to cluster together in time. Clustering could be

caused by spike rate change related to other neurons and extrinsic variables, such as stimulus

and subject’s behavior. It could also be caused by the correlation between the spikes of the

same neuron.

0 5 10 15 20

0 5 10 15 20

0 5 10 15 20

0 5 10 15 20

0 5 10 15 20

0 5 10 15 20

Figure 1.2: Spikes of six neurons (rows) over 20 seconds.

Table 1.1: Summary statistics for the inter-spike times: percentiles, means and number of
spikes (n).

S1 S2 S3 S4 S5 S6

0% 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020
25% 0.0100 0.0101 0.0082 0.0136 0.0054 0.0150
50% 0.0184 0.0198 0.0152 0.0635 0.0095 0.0348
75% 0.0371 0.0463 0.0330 0.2357 0.0235 0.0784
90% 0.0720 0.0912 0.0663 0.9355 0.0773 0.1316
93% 0.0873 0.1033 0.0795 1.4367 0.0894 0.1543
95% 0.1010 0.1149 0.0913 1.9397 0.0981 0.1821
97% 0.1226 0.1348 0.1083 3.2395 0.1105 0.2359
98% 0.1416 0.1600 0.1229 3.8878 0.1200 0.2733
99% 0.1845 0.2224 0.1497 6.1288 0.1457 0.3658
100% 1.1928 0.6983 0.7426 15.9365 0.9157 0.8639
mean 0.0315 0.0368 0.0275 0.4118 0.0247 0.0592
n 15893 13594 18212 1209 20275 8449
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Figure 1.3: Histograms of the inter-spike times for spike trains S1, S2, ..., S6, the ≤ 0.2s
portions.

1.3 Review of renewal process

In this section, we review analysis of recurrent event data based on gap time, i.e., the

time between two successive events, and we introduce notation and the framework based

on stochastic process. Approaches to modeling of recurrent events are usually described in

terms of stochastic processes. The concepts of intensity functions and counting processes

are especially useful [Cook and Lawless, 2007]. For a single recurrent event process staring

at T0 = 0, let 0 < T1 < T2 < ... denote the event times, where Tk is the time of the

kth event. For any time t ≥ 0, let N(t) denote the number of events that occur in (0, t].

Note that N(t) is a counting process, which is a right continuous function, i.e., N(t) =

N(t+), where N(t+) = lim∆→0 N(t + ∆) for ∆ > 0. N(t) jumps 1 at each event time

and is constant otherwise [Daley and Vere-Jones, 1988, Snyder and Miller, 1991]. More

generally, N(s, t) = N(t) − N(s) is the number of events occurring over the interval (s, t].

The history of the process at t, Ht = {N(u), u ∈ (0, t)} contains all information about the

sequence of event times before t. For events occurring in continuous time, one can make
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the mathematically convenient assumption that two events can not occur simultaneously

[Cook and Lawless, 2007]. Models for recurrent events can be specified very generally by

considering the conditional intensity function, which is the probability distribution for the

number of events in short intervals [t, t + ∆),∆ > 0, given the history of event occurrence

before time t. The conditional intensity function is defined formally as

λ(t|Ht) = lim
∆t→0

Pr (N((t+∆t)−)−N(t−) = 1|Ht)

∆t
, (1.1)

where N(t−) is defined as lim∆→0 N(t−∆) for ∆ > 0.

Let Yj = Tj−Tj−1 denote the gap time between the j−1st and jth events. Analyses based

on gap times are usually useful in certain settings. An important one is where an individual

or system is restored to a similar physical state after each event [Cook and Lawless, 2007].

Renewal process models are useful in such settings. A renewal process is a process whose

conditional intensity at t only depends on the time since the most recent event before t, i.e.,

λ(t|Ht) = h(t− TN(t−)), (1.2)

where t−TN(t−) is the time since the most recent event before t, or the backward occurrence

time, and h(y) is the hazard function for the gap times Yj, j = 1, 2, ..., J . For renewal

processes, the gap times Yj are independent and identically distributed; that is, Yj have

common density function f(y). Here are some useful functions for describing a renewal

process and their connections. A survival function is defined as S(y) = P (Y ≥ y), and

h(y) =
f(y)

S(y)
= lim

∆→0

Pr (Y < y +∆|Y ≥ y)

∆
. (1.3)

Note that S(y) = 1 − F (y), where F (y) is the cumulative distribution function, then

h(y) = −d(log(S(y)))/dy and S(y) = exp{−
∫ y

0
h(u)du}. CH(y) =

∫ y

0
h(u)du is called

the cumulative hazard function and is usually denoted by H; however, here we use CH

because we already use H to denote the event history. We assume that the time origin

t = 0 corresponds to an event time. This may be relaxed so Y1 is allowed to have a different

distribution from Y2, Y3, ..., with the gap times still being mutually independent.
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Covariates may be incorporated into renewal processes in straightforward ways. If fixed

covariates Z = (Z1, Z2, .., Zr)
T are associated with independent renewal processes, we can

allow the common distribution of the gap times Yj for a given process to depend on Z.

Because Yj are time-to-event variables, regression models in survival analysis may be used.

One very popular family of such models is the proportional hazards model, where the hazard

function of Yj is of the form

h(y) = h0(y) exp(Z
Tβ), (1.4)

where h0(y) is a positive-valued function referred to as the baseline hazard function, and

β = (β1, β2, ..., βr)
T is the vector of coefficients. In a model like this, the Yj for a given process

are independent but are not identically distributed. Let fj(y), Fj(y), Sj(y) denote the the

probability density function, cumulative distribution function and the survival function of Yj

respectively. Note that Sj(y) = exp
(
−
∫ tj−1+y

tj−1
λ(u|Hu)du

)
. Assume J events are observed

at times 0 < t1 < t2 < ... < tJ ≤ T . Because Yj = Tj − Tj−1 are independent, the order

of the events can be ignored, i.e., the J recurrent events can be viewed as J events from J

independent processes generating only one event. The likelihood function is of the form

L =
J∏

j=1

f(yj)(1− FJ+1(T − tJ)) (1.5)

=
J∏

j=1

λ(tj|Htj)Sj(tj − tj−1)SJ+1(T − tJ) (1.6)

=
J∏

j=1

λ(tj|Htj) exp

(
−

∫ tj

tj−1

λ(u|Hu)du

)
exp

(
−

∫ T

tJ

λ(u|Hu)du

)
. (1.7)

When the form of the baseline hazard function h0(·) is known, λ(t|Ht) is parametric and

estimate of β can be obtained by maximizing the full likelihood function L(β).

1.4 Review of Cox partial likelihood

When h0(·) is left unspecified, the use of the likelihood function becomes problematic.

Cox [1972a] proposed an approach for estimating the parameters of interest without speci-

fying the form of the baseline hazard by maximizing a component of the likelihood, which
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is called the Cox partial likelihood, instead of the full likelihood. The Cox partial likelihood

is motivated by the survival analysis example in which y1, y2, ..., yJ are failure times of J

independent experimental units observed in parallel. Conditional on the set of failure times,

the probability that the failure observed at yj is unit j is the hazard function at yj, divided

by the sum of the hazard functions of all units that had not yet failed at time yj. The risk set

is defined as R(yj) = {i : yi ≥ yj} and the contribution of failure j to the partial likelihood

is

h0(yj) exp(Z
T
j β)∑

k∈R(yj)
h0(yj) exp(ZT

k β)
. (1.8)

For a renewal process, the events are not observed in parallel but in sequence (Figure 1.4).

However, because the gap times are assumed to be independent, a sequence of J events can

be treated the same way as J parallel events that are generated by J independent processes.

Thus, the Cox partial likelihood for a renewal process model can be obtained as the product

of the ratio of the hazard value at yj of the process that is observed to generate an event at

yj and the sum of the hazard values at yj of the processes in the risk set of yj, that is

PL(β) =
J∏

j=1

h0(yj) exp(Z
T
j β)∑

k∈R(yj)
h0(yj) exp(ZT

k β)
=

J∏

j=1

exp(ZT
j β)∑

k∈R(yj)
exp(ZT

k β)
. (1.9)

The risk set of yj, denoted as R(yj), is defined as the set of the processes that do not generate

a event before yj. If we consider the real event time t instead of gap time y, the risk set R(yj)

may contain events that have already occurred before the jth event. Thus, the interpretation

of the risk set is not the same as the risk set for parallel events.

When estimate of β is obtained by maximizing the Cox partial likelihood function, the

cumulative baseline hazard CH0(y) =
∫ y

0
h0(u)du can be estimated by

ĈH0(y) =
∑

yj≤y

1
∑

k∈R(yj)
exp(ZT

k β̂)
. (1.10)

Below are some useful results for obtaining the maximizer of the Cox partial likelihood [Cox,

1972a]. The log partial likelihood function is

l(β) =
J∑

j=1



ZT

j β − log


 ∑

k∈R(yj)

exp(ZT
k β)





 . (1.11)
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Figure 1.4: A sequence of spike times.

The partial score function is

l′(β) =
J∑

j=1

{
Zj −

∑
k∈R(yj)

Zk exp(Z
T
k β)∑

k∈R(yj)
exp(ZT

k β)

}
. (1.12)

The Hessian matrix of the partial likelihood is

l′′(β) =
J∑

j=1

{
−

∑
k∈R(yj)

ZkZ
T
k exp(ZT

k β)∑
k∈R(yj)

exp(ZT
k β)

+

∑
k∈R(yj)

Zk exp(Z
T
k β)

∑
k∈R(yj)

Z ′
k exp(Z

T
k β)

(
∑

k∈R(yj)
exp(ZT

k β))
2

}
.

(1.13)

Using this score function and Hessian matrix, the partial likelihood can be maximized by

the Newton-Raphson algorithm, i.e., start with some β(0). For steps s = 0, 1, 2, ..., iterate

β(s+1) = β(s) −
l′(β(s))

l′′(β(s))
(1.14)

until convergence.

The inverse of the Hessian matrix, evaluated at β̂, can be used as an approximate

variance-covariance matrix for the estimate and used to produce approximate standard errors

for the regression coefficients [Cox, 1972a].

If the fixed covariates Z are time-dependent, i.e., Z(t), then renewal models in which

the conditional intensity function is of the form

λ(t|Ht) = h0(t− TN(t−)) exp(Z
T (t)β) (1.15)
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can be considered. In principle, for model (1.15), β can be estimated by maximizing a

similar partial likelihood function with (1.9) by replacing Zj and Zk with Z(tj) and Z(tk−1+

yj). However, when Z(t) varies continuously and the number of events is large, the model

estimation becomes very computationally intensive. We further discuss this issue in Section

3.3.

Modeling a neural spike train as a renewal process can take the advantage of the widely

used and well studied Cox proportional hazards model; however, the assumption of inde-

pendent gap times is untenable in most situations. In situations that involve more complex

relationships between event occurrence and prior event history, modulated renewal processes

are useful. A modulated renewal process is a process whose conditional intensity depends

not only on the time since the last event and the covariates but also on the past event history,

i.e.,

λ(t|Ht) = h{t− TN(t−),β, TN(t−), TN(t−)−1, ...}. (1.16)

In this study, we model the response spike train by a modulated renewal process and pro-

pose a multiplicative intensity model for a single modulated renewal process in Section 2.1.

Without the independent gap times assumption, it is questionable whether treating a se-

quence of events in the same way as parallel events is appropriate or not. In other words,

the performance of the maximum Cox partial likelihood estimator needs to be studied. We

further discuss this issue in Section 2.3.3.

1.5 Review of variable selection

Variable selection is vital to statistical modeling. In practice, many covariates are often

available that have potential effect on the response variable. At the initial stage of modeling,

many predictors are usually introduced. Failing to select significant variables would lead to

poor model prediction and interpretation. Therefore, variable selection plays a crucial role

in model building and is very challenging in the presence of a large number of predictors

[Fan et al., 2005].
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Many variable selection approaches have been developed and extended to multiplicative

intensity models such as the Cox proportional hazards model. Let us first review recent

developments in variable selection for Cox proportional hazards model. Some traditional

variable selection criteria, such as Akaike’s Information Criterion (AIC; Akaike [1973]) and

Bayesian information criterion (BIC; Schwarz [1978]) can be easily extended to Cox propor-

tional hazards model. Tibshirani [1996] proposed the LASSO variable selection procedures

for linear regression models and generalized linear models. It was further extended to the

Cox proportional hazards model in Tibshirani [1997]. Fan and Li [2001] proposed noncon-

cave penalized approaches for linear regression, robust linear models and generalized linear

models. They demonstrated the smoothly absolute clipped deviation (SCAD) possesses an

oracle property, namely, the resulting estimate can correctly identify the true model as if it

were known in advance. The LASSO does not possess this oracle property. Fan et al. [2005]

derived a nonconcave penalized partial likelihood for the Cox proportional hazards model

and the Cox frailty model, and they further illustrated the oracle property of their proposed

procedures. The following is a review of LASSO penalty and SCAD penalty.

The LASSO penalty for a scalar parameter β is defined as

pλ(β) = λ|β|. (1.17)

The LASSO penalized log-partial likelihood criterion for a regression with a vector of pa-

rameters can be expressed as

J∑

j=1

lj(β)− Jλ

r∑

i=1

|βi| =
J∑

j=1

lj(β)− Jλ‖β‖1. (1.18)

The penalty constrains the L1 norm of the coefficient vector. Maximizing the LASSO pe-

nalized log-partial likelihood is equivalent to maximizing the log-partial likelihood subject

to ‖β‖1 < s, then finding the global maximum of the penalized partial likelihood over the

values of s. Several algorithms have been developed to solve the LASSO optimization prob-

lem, such as the LARS algorithm [Efron et al., 2004], the coordinatewise gradient approach
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[Shevade and Keerthi, 2003], and the combination of full gradient ascent optimization with

the Newton-Raphson algorithm [Goeman, 2010].

The SCAD penalty for a scalar parameter β is defined as

p′λ(|β|) = λ

{
I(|β| ≤ λ) +

(aλ− |β|)+
(a− 1)λ

I(|β| > λ)

}
for some a > 2. (1.19)

It involves two unknown parameters, a and λ. Figure 1.5 shows LASSO, SCAD and another

two popular penalties, which are the bridge penalty, pλ(|β|) = λ|β|0.5 and the ridge penalty,

pλ(|β|) = λβ2. From Figure 1.5, SCAD is equivalent to LASSO when |β| is small, but

is constant when |β| is large. This guarantees that large coefficients are not excessively

penalized. The tuning parameter λ controls the range of β values in which SCAD is equivalent

to LASSO and the other tuning parameter a controls the range of β values in which SCAD

is constant. Fan and Li [2001] suggested using a = 3.7 from a Bayesian statistical point of

view; this value will be used throughout this dissertation. The SCAD penalized log-partial

Figure 1.5: Plots of penalty functions: SCAD (Black solid), bridge (gray solid), LASSO
(dashed) and ridge (dotted).
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likelihood criterion for a regression with a vector of parameters can be expressed as

J∑

j=1

lj(β)− J

r∑

i=1

pλ(|βi|). (1.20)

As seen in Figure 1.5, the SCAD penalty is non-differentiable at the origin and nonconcave

with respect to β. Therefore, maximizing the SCAD penalized partial likelihood function is

difficult. Approaches to solving this problem have been proposed by Fan and Li [2001] and

Zou and Li [2008]. Fan and Li [2001] proposed locally approximating penalty function by a

quadratic function. Suppose an initial value β(0) is given, and it is close to the true value of

β, the penalty function is locally approximated by

pλ(|βi|) ≈ pλ(|β
(0)
i |) +

1

2
{p′λ(|β

(0)
i |)/|β

(0)
j |}(β2

i − β
(0)2
i ). (1.21)

Take the unpenalized maximum partial likelihood estimate as the initial value, β(0). For

s = 0, 1, 2, ..., repeatedly solve

β(s+1) = argmax

{
J∑

j=1

lj(β)− J

r∑

i=1

p′λ(|β
(s)
i |)

2|β
(s)
i |

β2
j

}
. (1.22)

Stop the iteration if the sequence of β(s) converges.

Zou and Li [2008] pointed out that Fan and Li [2001]’s algorithm shared a drawback with

backward stepwise variable selection: if a covariate is deleted at any step in the algorithm, it

will necessarily be excluded from the final selected model. Zou and Li [2008] also proposed

locally approximating the penalty function by a linear function. This approach is as follows.

Suppose an initial value β(0) is given, and it is close to the true value of β, the penalty

function is locally approximated by

pλ(|βi|) ≈ pλ(|β
(0)
i |) + p′λ(|β

(0)
i |)(|βi| − |β

(0)
i |). (1.23)

Figure 1.6 illustrates the quadratic and linear approximations for the SCAD penalty. The

optimization problem of the penalized partial likelihood can be solved as follows. Use the
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unpenalized maximum partial likelihood estimate as the initial value, β(0). For s = 0, 1, 2, ...,

repeatedly solve

β(s+1) = argmax

{
J∑

j=1

lj(β)− J

r∑

i=1

p′λ(|β
(s)
i |)|βi|

}
. (1.24)

Stop the iteration if the sequence of β(s) converges [Zou and Li, 2008]. Note that (1.24) is a

LASSO optimization problem and can be solved by previously mentioned algorithms.

Figure 1.6: Plots of local quadratic approximation (dashed lines) and local linear approx-
imation (dotted lines) at β = 2 and 1 for SCAD penalty (black solid lines) with λ = 1,
a = 3.7.

The performance of the penalized approach depends on the tuning parameter λ, which

balances the trade-off between goodness-of-fit and model sparsity. To select an appropriate

λ, it is common to fit the model by the penalized approach using a sequence of λ values.

Then the fitted models are compared based on a selected criterion, e.g., the minimization of

the AIC, BIC, Generalized Cross Validation (GCV, Wahba [1990]) and for high dimension

models, the extended BIC (EBIC; Chen and Chen [2008]).

The penalized approach has been widely studied and gained its popularity due to simul-

taneous parameter estimation and variable selection. In addition to the widely used LASSO
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and SCAD penalties, a number of recent papers have considered penalties such as the Adap-

tive LASSO [Zhang and Lu, 2007], Dantzig selector [Candes and Tao, 2007], group LASSO

[Yuan and Lin, 2006] and group bridge [Huang et al., 2009].

1.6 Outline of the dissertation

This dissertation contains two topics of regression modeling for modulated renewal pro-

cess. In Chapter 2, we propose a multiplicative intensity model for neural spike trains. A

semi-parametric model estimation approach and a model evaluation method are covered.

The large sample performance of the model is evaluated by simulation. Methodologies are

applied on modeling a large real neural spike train data. In Chapter 3, we study penalized

approaches for the proposed model to achieving sparsity of the coefficient functions when

the sample size of the data is relatively small. LASSO and SCAD penalties are applied

to the proposed model and their performances are evaluated by simulation. Approaches to

reduce the computational complexity of model estimation are covered, too. The methods

are applied to a small real neural spike train data. Discussions of future work are in Chapter

4.
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CHAPTER 2

Modulated renewal process model for neural

connectivity

2.1 The multiplicative modulated renewal process model

In this dissertation, our interest centers on studying the relationship between different

spike trains by modeling them as point processes. Let (0, T ] denote the observation interval

and 0 < t1 < t2 < ... < tJ−1 < tJ ≤ T be a set of J spike times of a spike train. For

any time t ∈ (0, T ], let N(t) denote the number of spikes that occurred in (0, t]. Note

that N(t) is a counting process, which is a right continuous function that jumps 1 at each

spike time and is constant otherwise [Daley and Vere-Jones, 1988, Snyder and Miller, 1991].

The sample path Ht = {N(u), u ∈ (0, t)} contains all information about the sequence of

spike times up to, but not including time t [Brown et al., 2003]. Equivalently, we can write

Ht = {0 < t1 < t2 < ... < tN(t−) < t}, where N(t−) is the number of spikes that occurred

before time t. The conditional intensity function is widely used and is defined as

λ(t|Ht) = lim
∆t→0

Pr (N((t+∆t)−)−N(t−) = 1|Ht)

∆t
, for t ∈ (0, T ]. (2.1)

In survival analysis, the conditional intensity is termed the hazard function because λ(t|Ht)

measures the conditional probability density of a failure or death at time t, given that

the process has survived up to time t [Brown et al., 2002]. If the conditional intensity

function depends only on the time since the last spike, i.e., λ(t|Ht) = λ(t − tN(t−)) then

the process is a renewal process [Cinlar, 1969]. An equivalent condition is that the lengths

of interspike intervals (increments) are independent and identically distributed. Although

renewal processes are often used to model spike trains, in practice, neuronal spike trains

rarely satisfy the independent and stationary increments assumptions. The intensity of a

neural spike train usually is affected by other spike trains as well as its own history. Here,
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we choose to use a modulated renewal process to model a neural spike train because it can

reflect trends and dependencies in a point process.

To study the relationship among the neural spike trains, we select one spike train as the

response train and treat the others as predictor spike trains. Our primary goal is to develop

a regression-type model that captures the causal relationships between the response and the

predictor spike trains. The response train is modeled by a modulated renewal process; as in

most regression studies, the predictor trains are treated as fixed. Let xi be the set of spike

times of the ith predictor spike train and denote the number of spikes up to time t as nxi
(t),

i = 1, 2, ..., p. nxi
(t) defines a counting measure on the measurable space {xi,Σxi

}, where

Σxi
is the σ-field of measurable subsets consisting of all subsets of xi.

Since a stochastic point process may be characterized by its conditional intensity function,

the relationship between the response spike train and the predictor spike trains may be

modeled using the conditional intensity function. We consider a multiplicative model that

assumes the conditional intensity function of the response spike train at t is the product of

a baseline hazard function, a function that captures the impact of the predictor trains, a

function that captures the impact of the response train’s own history and other predictors

such as stimulus and behavioral variables. This model is an extension of the Cox proportional

hazards model. The model is defined as

λ(t|Ht) = λ(t, t− tN(t−), t− tN(t−)−1, .., t− t1) (2.2)

= λ0(t− tN(t−))Ψ(t)

N(t−)∏

j=1

λ1(t− tj)Φ(t). (2.3)

Equation(2.3) is the product of four factors that affect the conditional intensity. The factors

are:

(1) λ0(·)− baseline hazard function;

(2) Ψ(t)− function that captures the impact of the predictor trains;

(3) λ1(·)− function that captures the impact of the response train’s own history;
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(4) Φ(t)− function that captures the impact of extrinsic variables.

We consider the following specific model for each of these four factors.

(1) λ0(·) is an unknown baseline hazard function of the time since the most recent spike.

We do not add any constrains to the form of λ0(·).

(2) Ψ(t) is a log-linear function of integrals of unknown coefficient functions with respect

to the counting measures nxi
(t) over the most recent M seconds of t; that is

Ψ(t) = exp

{
p∑

i=1

∫ t

t−M

κi(t− u)dnxi
(u)

}
. (2.4)

Ψ(t) models the effects of the predictor spikes in [t−M, t), where M is a positive constant

that determines the length of the predictor spikes’ “history” that has an impact on the next

response spike. A sufficiently large M can be chosen for all predictor spike trains, or a

separate Mi value can be chosen for each predictor spike train. κi(·), i = 1, 2, ..., p is an

unknown coefficient function that measures the impact strength of the ith predictor spike

train. When M is sufficiently large, Ψ(t) allows the model to capture the dependence of the

response spike train on the predictor spikes’ history. Note that Ψ(t) is a function of t; that is,

the predictors are time-dependent. The coefficient function κi(t − u) represents the impact

strength of a spike in the ith predictor train at time u. Note that the impact strength of a

predictor spike at u is determined by its distance from time t. This is illustrated in Figure

2.1.

κi κi

tj t∗jt t∗
b b b b

Figure 2.1: Interpretation of κ function. Two spikes in the same predictor spike train has
the same impact on future response intensity, as long as the distance between the spike time
and the future time is the same.

(3) λ1(u) is an unknown function that reflects the effect of a response spike at time t− u

on the conditional intensity function at t. This function is evaluated for all response spikes
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in history, so the effect of any past response spike only depends on the difference between

its time and t. We further assume

λ1(u) = exp {κ0(u)} , (2.5)

where κ0(·) is a unknown coefficient function that represents the impact strength of a past

response spike on the conditional intensity at a future time and κ0(u) = 0, u > M0, which

may be taken for simplicity as equal to the previous M . Note that if a past response spike

tj is not the most recent response spike prior t, its impact is λ1(t− tj). However, if it is the

most recent response spike prior t, its impact is λ0(t − tj)λ1(t − tj). This is illustrated by

Figure 2.2. Therefore, λ0(·) describes the unique effect of the most recent response spike and

can capture neural properties such as recovery period. An alternative way of setting up the

model would be not to treat the most recent response spike as part of the response train’s

history, i.e. in (2.3), the product of λ1(·)s would not include λ1(t− tN(t−)), i.e.,

N(t−)−1∏

j=1

λ1(t− tj). (2.6)

Then the impact of the most recent response spike is described completely by λ0(·). We do

not expect the two model setups would be different in predicting future spikes. However,

the interpretations of the baseline hazard function are different. In this paper, we choose to

use the first model setup because it can show the difference between the impact of the most

recent response spike and the impact of other past response spikes directly.

(4) Φ(t) is a function of predictors that include information beyond neural spiking

activities, such as external stimulus and behavioral variables of the subject. The form

of Φ(t) depends on the nature of the predictors, Z = (Z1, Z2, ..., Zq)
T . For example, if

the predictors describe the status of the subject and do not change over time, then Φ(t)

can be as simple as exp(βBZ), where βB = (βB
1 , ..., β

B
q ) is the vector of coefficients. It

can be more complex, such as exp(βBZ(t)), when the predictors are time-dependent, or

Φ(t) = exp
(∑q

i=1

∫ t

t−M
κB
i (t− u)Zi(t)du

)
when the predictors describe information in some

time interval instead of at certain time. Here, we pick Φ(t) = exp(βBZ(t)) as an example.
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Figure 2.2: Interpretation of λ1(·) (solid curves) and the baseline hazard function λ0(·)
(dashed curves). If a response spike at tj is the most recent response spike, its impact is
represented by the product of λ1(t− tj) and λ0(t− tj); otherwise, its impact is represented
only by λ1(t− tj).

Combine the four model components, and the model can be written as,

λ(t|Ht) = λ0(t− tN(t−)) exp





p∑

i=1

∫ t

t−M

κi(t− u)dnxi
(u) +

N(t−)∑

j=1

κ0(t− tj) + βBZ(t)





= λ0(t− tN(t−)) exp

{
p∑

i=0

∫ t

t−M

κi(t− u)dnxi
(u) + βBZ(t)

}
(2.7)

where nx0(t) is the number of response spikes up to time t. Figure 2.3 illustrates the structure

of the model.

2.2 Special cases of the multiplicative modulated renewal process model

There are four special cases of our model worth noting, the first two are used in the

Section 2.5 Simulation as simple versions of the model. The third and fourth cases are

models that have been used for analyzing neuron spike train data in other studies. Special

cases:

Case 1 No response history, time independent model. The conditional intensity function is

the product of two components,

λ(t|Ht) = λ(t− tN(t−), tN(t−)) = λ0(t− tN(t−))Ψ(tN(t−))Φ(tN(t−)). (2.8)

This model does not include the response history component, i.e., it assumes that the

inter-spike times are independent. Also, note that the impact of the predictor trains’
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Neural activities
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y = x0

history

+

history

Figure 2.3: Multiplicative modulated renewal process model for neural spike trains.

history is represented by Ψ(tN(t−)) and does not vary for t > tN(t−), so for each inter-

spike time, the predictors only include the history up to the most recent response spike

time before t. We call them time-independent predictors and the “time" is referring

to the time since the most recent spike t − tN(t−), not time t. In this case, the inter-

spike times are independent random variables whose distributions are determined by

the common baseline hazard function, impact of predictor spikes and the extrinsic

variables up to the most recent response spike.

Case 2 Response history, time independent model. The difference between this model and

the model in Case 1 is that this model includes the response history component, but

the predictors are assumed to be time-independent.

λ(t|Ht) = λ0(t− tN(t−))Ψ(tN(t−))

N(t−)−1∏

i=1

λ1(tN(t−) − tN(t−)−i)Φ(tN(t−)). (2.9)

In this case, the inter-spike times are not independent.
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Case 3 Inhomogeneous renewal process model, i.e., no response history, time dependent

model. In the model (2.7), let κ0(u) ≡ 0, so the model does not include the response

history component, it becomes

λ(t|Ht) = λ(t, t− tN(t−)) = λ0(t− tN(t−))Ψ(t)Φ(t), (2.10)

then the response spike train is modeled by an inhomogeneous renewal process. The

inter-spike times are independent variables whose distributions are determined by the

common baseline hazard function, impact of predictor spikes and the extrinsic variables

up to time t. The inhomogeneous Markov interval process model proposed by Kass

and Ventura [2001] is an example of such models.

Case 4 Inhomogeneous Poisson process model, i.e. no response history, constant baseline

hazard model. In the model (2.7), let κ0(u) ≡ 0 and the baseline hazard function

λ0(u) ≡ C, C is a constant, the model becomes

λ(t|Ht) = CΨ(t)Φ(t), (2.11)

then the response spike train is modeled by an inhomogeneous Poisson process. By

including response history as predictor(s), we get an extension of the inhomogeneous

Poisson process model as,

λ(t|Ht) = CΨ(t)

N(t−)∏

j=1

λ1(t− tj)Φ(t). (2.12)

The inter-spike times are not independent. Their conditional distributions given pre-

vious response spikes are Poisson distributions. The model proposed by Truccolo et al.

[2005] is an example of these models.
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2.3 Model estimation

2.3.1 B-spline approximation to the coefficient functions

In the proposed model, estimating the coefficient functions κi is challenging, because

little information is known about the form of κi. We use a nonparametric approach that

does not require specifying the form of κi. While the form is left unspecified, it is intuitively

sensible to assume some degree of smoothness for the κi, so we assume that they have d− 1

continuous derivatives for d ≥ 1 almost everywhere on [0,M ]. A natural approximation

family for the κi, is the linear space spanned by B-splines. Another sensible assumption

is: if M is sufficiently large, κi(u) = 0, for u ≥ M , i.e., the impact of a previous spike is

neglectable if it occurs far from the current time.

B-spline basis functions are polynomial segments jointed end-to-end at argument values

called knots, breaks or join points. The segments have specifiable smoothness across these

breaks. Let η0 = 0 < η1 < · · · < ηm < ηm+1 = M be a knot sequence with m interior knots

and d be the degree of B-spline basis, a B-spline basis function can be defined recursively

using the Cox-de Boor recursion formula

Bk,d(u) =
u− ηk

ηk+d − ηk
Bk,d(u) +

ηk+d+1 − u

ηk+d+1 − ηk+1

Bk+1,d(u) (2.13)

and

Bk,0(u) =

{
1 if ηk ≤ u < ηk+1,
0 otherwise,

k = 0, 1, ...,m. (2.14)

Figure 2.4 gives an example of B-spline basis functions with degree d = 3 and 9 interior knots.

B-spline basis functions have the advantages of very fast computation and great flexibility.

For more discussion on spline functions, see Schumaker [1980] and de Boor [2001].

The proposed model can be approximated by replacing κi(t−u) with a linear combination

of B-spline basis functions, i.e.,

κi(t− u) =
K∑

k=1

βA
ikBk(t− u), v ∈ [0,M ], i = 0, 1, ...p (2.15)

27



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 2.4: B-spline basis functions in line plots. The degree d is 3 and 9 interior knots are
evenly space between 0 and 1.

where for fixed d, Bk is the kth B-spline basis function , k = 1, 2, ..., K = m + d + 1. βA
ik is

the coefficient for the ith spike train and the kth B-spline basis function. Thus,

λ(t|Ht) = λ0(t− tN(t−)) exp

{
p∑

i=0

∫ t

t−M

κi(t− u)dnxi
(u) + βBZ(t)

}
(2.16)

≃ λ0(t− tN(t−)) exp

{
p∑

i=0

∫ t

t−M

K∑

k=1

βA
ikBk(t− u)dnxi

(t) + βBZ(t)

}
(2.17)

= λ0(t− tN(t−)) exp

{
p∑

i=0

K∑

k=1

βA
ikDik(t) + βBZ(t)

}
, (2.18)

where Dik(t) =
∫ t

t−M
Bk(t − u)dnxi

(u), β = {βA
ik,β

B} is the vector of coefficients. Denote

exp
{∑p

i=0

∑K
k=1 β

A
ikDik(t) + βBZ(t)

}
by Ψ∗(t,β). Then Ψ∗(t,β) represents the combined

impact of the neural activities and the extrinsic variables. The conditional intensity can be

written as the product of the baseline hazard function and Ψ∗(t,β), that is

λ(t|Ht) ≃ λ0(t− tN(t−))Ψ
∗(t,β). (2.19)

This is similar with the Cox’s proportional hazards model with time dependent covariates.

The problem of estimating the coefficient functions becomes estimating coefficients of the

B-splines bases.
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2.3.2 The full likelihood

When the form of the baseline hazard function λ0(·) is specified, λ(t|Ht) is parametric.

Then the parameter vector β can be estimated by maximizing the likelihood function. As

in all likelihood analyses, the likelihood function for a continuous time point process is

formulated by deriving the joint probability density of the spike train. Let {0 < t1 < t2 <

... < tJ ≤ T} denote J observed response spike times. {0 < t1 < t2 < ... < tJ} can be

treated as a realization of J dependent random variables {0 < T1 < T2 < ... < TJ} with

joint density f(t1, t2, ...tJ). The joint density can be written as the product of conditional

densities:

f(t1, t2, ...tJ) =
J∏

j=1

fj(tj|Ti = ti, i ≤ j − 1) (2.20)

The conditional intensity function can be written in terms of the spike time conditional

density as,

λ(t|Ht) =
fN(t−)+1(t|H

∗
N(t−))

1−
∫ t

tN(t−)
fN(t−)+1(u|H∗

N(t−))du
. (2.21)

H∗
s = {Ti = ti, i ≤ s} contains the first s spike times, then H∗

N(t−) = {Ti = ti, i ≤ N(t−)}

contains all the spike times prior to time t. The likelihood function of {0 < t1 < t2 <

... < tJ ≤ T} is the product of the joint density of the first J spike times and conditional

probability that the J + 1th spike occurs after T given the first J spike times. It can

be written in terms of the conditional intensity functions using the relationship between the

conditional density and the conditional intensity function [Barbieri et al., 2001, Brown et al.,

2002, Daley and Vere-Jones, 1988],

L = f(t1, t2, ...tJ)Pr(Tj+1 > T |Ti = ti, i ≤ J) (2.22)

=
J∏

j=1

fj(tj|H
∗
j−1)Pr(Tj+1 > T |H∗

J) (2.23)

=
J∏

j=1

λ(tj|Htj) exp

(
−

∫ tj

tj−1

λ(u|Hu)du

)
exp

(
−

∫ T

tJ

λ(u|Hu)du

)
. (2.24)
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2.3.3 The maximum partial likelihood estimation

When λ0(·) is left unspecified, the use of the likelihood function becomes problematic.

Cox [1972a] proposed approach for estimating the parameters of interest in survival analysis

without specifying the form of the baseline hazard by maximizing a component of the likeli-

hood called the Cox partial likelihood instead of the full likelihood. In the survival analysis

context, tj is the failure time of the jth independent subject. The Cox partial likelihood is

the product of the ratio of the hazard value at tj of the subject that is observed to fail at tj

and the sum of the hazard values at tj of the subjects in the risk set of tj. The risk set of tj

is defined as the set of the subjects that survive until tj or later.

For our proposed model, the Cox’s partial likelihood approach is adapted as follows.

Define the observed inter-spike time as yj = tj − tj−1 and assume yi 6= yj for i 6= j. Define

the risk set of the jth spike as R(tj) = {i, yi ≥ yj}. Note that the risk set is defined using

the inter-spike time yj instead of the spike time t. β can be estimated by maximizing the

following Cox partial likelihood with Ψ∗ as defined in (2.18),

PL(β) =
J∏

j=1

Ψ∗(tj−1 + yj,β)∑
k∈R(tj)

Ψ∗(tk−1 + yj,β)
. (2.25)

And the cumulative baseline hazard can be estimated by

ĈH0(y) =
∑

yj≤y

1
∑

k∈R(tj)
I{yk ≥ yj}Ψ∗(tk−1 + yj, β̂)

. (2.26)

Rigorous developments of the asymptotic theory underlying the Cox’s partial likelihood

approach for independent event times were given by Andersen and Gill [1982] and Tsiatis

[1981]. However, Oakes [1981] pointed out that, for dependent event times, the reordering of

the timescales invalidates the conditioning argument underlying the partial likelihood, i.e.

when the event times are not independent, the estimators β̂ and ĈH0(t) may not have the

same limiting distributions that they would have when the event times are independent. A

more intuitive way to see this problem is that the risk set R(tj) = {i, yi ≥ yj} contains some

of the time-to-event outcomes that have already occurred at tj, so they are not really “at risk”
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at time tj. It has been shown that under certain conditions, the Cox’s partial likelihood is

valid for modulated renewal process models [Lin and Fine, 2009, Oakes and Cui, 1994, Pons

and de Turckheim, 1988]. However, those conditions are very difficult to check in practice.

Generally, the conditions require that the dependence structure of the modulated renewal

process should not be too strong, so the process is “stationary" in some sense.

2.4 Evaluation of model goodness-of-fit and prediction power

The modulated renewal process model described in this study estimates the conditional

distributions of inter-spike times. One approach to assessing model goodness-of-fit is the

Kolmogorov-Smirnov (KS) test based on the time-rescaling theorem [Brown et al., 2002,

Haslinger et al., 2010]. According to the time-rescaling theorem, if the data truly came from

the estimated distributions of the inter-spike times, they can be rescaled into an independent

uniform random variable with simple variable conversions. Therefore, the standard KS plot

of the rescaled inter-spike times should show a 45-degree diagonal line. In this case, the

standard KS plot is produced as follows,

1. For the jth response spike time, compute τj =
∫ tj
tj−1

λ̂(t|Ht)dt. This is equal to the

value of the estimated cumulative conditional intensity function of the jth inter-spike

time at yj = tj − tj−1.

2. Compute zj = 1 − exp{τj}. This is equal to the value of the estimated conditional

cumulative distribution function of the jth inter-spike time at yj.

3. Order zj from the smallest to the largest, denoting the ordered values as z(j).

4. Plot the z(j) versus J equally spaced values of the cumulative distribution function of

uniform(0,1) distribution, as bj =
j−0.5
J

for j = 1, 2, .., J

To gain better visualization of the difference between the standard KS curve and the

diagonal line, a scaled horizontal KS plot is produced by adding three more steps:
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5. Compute the differences between the values of the cumulative distribution function of

uniform(0,1) distribution defined as bj =
j−0.5
J

for j = 1, 2, .., J and z(j).

6. Scale the differences bj−z(j) by diving them by half of the width of the 95% confidence

interval, which is approximately equal to 1.36/J1/2[Johnson and Kotz, 1970].

7. Plot the scaled differences against bj.

A scaled horizontal KS plot between -1 and 1 is within the 95% confidence bounds. Since

we treat time as continuous and our model does not require that we discretize the response

spike times into bins, i.e., the distribution of the inter-spike time is continuous, this method

does not suffer the bias problem pointed out by Haslinger et al. [2010] for binned data.

We conduct a small simulation to demonstrate this. 200 data sets are generated using the

following modulated renewal process model (2.27).

λ(t|Ht) = λ0(t− tN(t−)) exp

{
p∑

i=0

∫ t

t−M

κi(t− u)dnxi
(u)

}
(2.27)

Four (p = 4) neuron spike trains are chosen from the data set described in Section 1.2 as

predictor trains. The baseline function λ0(y) is equal to 0 when y ≤ 0.002, which represents

a resting period, and a constant 2.5 when y > 0.002. The length of history M is 1 second.

The conditional intensity of the response also depends on its own history nx0 through κ0. To

reduce computational complexity, we assume that the history impact changes every 0.004

second instead of changing constantly. The true coefficient functions are in the space spanned

by a linear combination of B-spline basis functions with d = 3 degrees and 9 equally spaced

interior knots. The knots are 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. For simplicity, we

choose the same group of basis functions to represent all the coefficient functions.

The true coefficient functions are shown in Figure 2.5. κ1 is positive in a short interval

close to 0 and constant 0 elsewhere. It represents that a predictor spike close to time t

has a strong impact on the condition intensity of the response at t and the impact strength

decreases quickly as the distance between the predictor and t increases. κ2 is also positive
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in a short interval close to 0 and constant 0 elsewhere, but it has a bell shape and represents

increasing then decreasing impact strength of the predictor’s history. κ3 is constant zero, so

the third predictor train has no impact on the response train. κ4 is negative in a short interval

close to 0 followed by a positive component. It represents a more complex relationship

between the fourth predictor train and the response train. κ0 is the coefficient function of

the response’s own history. It is 0 in a short interval close to 0 followed by a bell shape

positive component. This means the response’s history is positively related to its future

activity with a short lag.

Figure 2.5: True coefficient functions of the predictor trains: κ1-κ4 and true coefficient
function of the response history, κ0.

The generated data sets and the true model with true coefficient functions and true

baseline hazard function are used to compute 200 unscaled horizontal KS plots. The mean

curve of these KS plots is shown in Figure 2.6 and is compared with 50 mean curves of

200 KS curves computed using realizations of Uniform(0,1). From Figure 2.6, the mean

KS curve comparing the model generated data with their true distributions falls within

the region spanned by the mean KS curves comparing Uniform(0,1) generated data with
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Uniform(0,1) distribution. Therefore, on average, if the estimated distribution is close to the

true distribution , the previously described method should produce a KS plot that is close

to the diagonal line. Also we do not see any bias and as expected, the horizontal KS plot is

closer to 0 as the sample size increases.

In some situations, the precision of the spike time is low, then it is reasonable to treat

it as discrete time data. A discrete version of the modulated renewal process model can be

easily obtained and applicable to discrete time data. In those situations, goodness-of-fit of

the model can be evaluated by approaches proposed by Haslinger et al. [2010] based on the

discrete time-rescaling theorem.

Since the baseline hazard function is nonparametric, using the in-sample KS plot to

evaluate the goodness of fit of the modulated renewal process model can be misleading. The

null model can have good in-sample KS plot because it under smooths the baseline hazard

function. If the purpose of the model is prediction, the out-of-sample KS plot based on a

validation data set would be useful because it shows the prediction performance of the model.

If the purpose of the model is to quantify relationships between response and predictors, the

distance between the KS plot computed using the fitted model and the KS plot computed

using only the estimated baseline function would provide a good measure of the explanatory

power of the model.

2.5 Simulation: large sample performance of the maximum partial likelihood
estimator

In this section, we use simulation to evaluate the performance of the maximum partial

likelihood estimator for the multiplicative modulated renewal process model. We focus on

three questions. (1) Can the coefficient functions be adequately estimated by using B-spline

approximations? (2) Does the performance of the maximum partial likelihood estimator for

a process that depends on its own history differ from the performance for a process that does

not depend on its own history? (3) Does the performance change when the predictors are

time-dependent? To answer these questions, we conduct simulations under three scenarios
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Figure 2.6: Mean horizontal KS plots based on 200 repetitions of 500 and 1000 response
spikes (dark curves); 50 mean horizontal KS plots based on 200 repetitions of 500 and 1000
observations generated from U(0, 1) (gray curves).
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with different true coefficient functions and in each scenario, three models are used to gen-

erate the response train. Thus, there are nine scenario and model combinations. In the first

two scenarios, the true coefficient functions are in the space spanned by a linear combination

of B-spine basis functions, but in the third scenario the true coefficient functions are not.

The first model generates a process that does not depend on its history. The other two

generate processes that depend on its history and in addition, the third model includes time-

dependent covariates. The generated data are fitted using the models that generate them.

Then the estimated coefficient functions are compared with the true coefficient functions to

evaluate the performance of the estimator.

Two neuron spike trains are chosen from the data set described in Section 1.2 as predictor

trains. Three models are used to generate the response train. The first model is the special

Case 1 of our proposed model described in Section 2.2, the no response history and time inde-

pendent model (2.8), which does not include response history component and the predictors’

histories are not time-dependent. The second model is Case 2, the response history and time

independent model (2.9). It includes response history component but the histories are still

not time-dependent. The third model is our proposed model, model (2.7), which includes

the response history component and time-dependent predictors. For all three models (Table

2.1), the baseline function λ0(y) is equal to 0 when y ≤ 0.002, which represents a resting

period, and a constant 2 when y > 0.002. The length of history M is 1 second. For the third

model, to reduce the computational complexity, we assume that the predictors change every

0.5 second.

Table 2.1: Three models considered in simulation

Model 1 Case 1 No response history, time independent predictors.
Model 2 Case 2 Response history, time independent predictors.
Model 3 Proposed Response history, time dependent predictors.

In the first two scenarios, all coefficient functions are in the space spanned by a linear

combination of B-spline basis functions. B-spline basis functions with degree d = 3 and
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16 interior knots evenly distributed on [0, 1] are used in the simulation. For simplicity,

we choose the same group of basis functions to represent or approximate all the coefficient

functions, and denote them by B1, B2, ..., B20. The true values of the B-spline coefficients are

shown in Table 2.3 and the true coefficient functions are shown in Figure 2.7 and Figure 2.8.

In Scenario 1 (S1), the coefficient functions of the predictors’ histories have large positive

values near zero and are equal to zero elsewhere. They reflect strong but short lasting history

impacts. In Scenario 2 (S2), the coefficient functions of the predictors’ histories have smaller

positive values than those in Scenario 1. But their nonzero intervals are larger. They reflect

weaker but longer lasting history impacts. The coefficient functions of the response’s history

in Scenario 1 and Scenario 2 both have large positive values near zero and short nonzero

intervals. In the third scenario (S3) the coefficient functions are outside the B-spline space.

We choose κ(u) = exp(−α(1 − u))(1 − exp(−β(1 − u)) as the true coefficient function. In

all the three scenarios (Table 2.2), the integrated absolute coefficient functions are equal to

0.02 for the predictors’ histories and 0.01 for the response’s history. In each scenario, 10,000

response spikes are generated using each of the three models. Then the data are fitted using

the true model with unknown coefficient functions and baseline hazard function. This is

repeated 100 times.

Table 2.2: Three simulation scenarios

S1 In B-spline space Strong but short lasting effects
S2 In B-spline space Moderate and long lasting effects
S3 Out of B-spline space Both strong and moderate effects

Figure 2.7 shows the estimated coefficient functions for model 1 in the three scenarios

(three columns). Model 1 does not include the response train’s history as predictors, so there

are two coefficient functions (two rows). The estimated coefficient functions for model 2 and

model 3 are shown in Figure 2.8 and Figure 2.9. These two models include the response

train’s history as predictors, so there are three coefficient functions in each scenario. For

all the 9 model and scenario combinations, the true coefficient functions lie in the middle
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Table 2.3: True coefficient values of two predictor trains and the response for Scenarios 1
and 2.

S1
κ1 0 0.341 0 0.170 0 0 0 0 0 0 0,...,0
κ2 0 0 0.124 0 0.248 0 0 0 0 0 0,...,0
κ0 0 0.179 0.108 0 0 0 0 0 0 0 0,...,0
S2
κ1 0.095 0.095 0.063 0.032 0.016 0.032 0.063 0.047 0.024 0.008 0,...,0
κ2 0 0 0.010 0.029 0.076 0 0.114 0.076 0.029 0.010 0,...,0
κ0 0 0.179 0.108 0 0 0 0 0 0 0 0,...,0

of the gray area shaded by the estimated coefficient functions and the gray area is fairly

narrow, which indicates the estimation procedure can give good estimates for the coefficient

functions.

Figure 2.7: Estimated coefficient functions and the true coefficient functions for model 1.
The black curves are the true coefficient functions and the grey curves are the estimated
coefficient functions.

38



Figure 2.8: Estimated coefficient functions and the true coefficient functions for model 2.
The black curves are the true coefficient functions and the grey curves are the estimated
coefficient functions.
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Figure 2.9: Estimated coefficient functions and the true coefficient functions for model 3.
The black curves are the true coefficient functions and the grey curves are the estimated
coefficient functions.
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Denote the estimated coefficient function of the kth repetition as κ̂j
i (u). Based on the

100 repetitions, the bias function of the estimated coefficient function is computed as

Biasi(u) =
1

100

100∑

j=1

κ̂j
i (u)− κi(u) (2.28)

We use the integrated absolute bias as a numerical measure of the overall bias of a coefficient

function. The integrated absolute bias is computed as

IBiasi =

∫ 1

0

Biasi(u)du. (2.29)

The bias functions are shown in Figures 2.10, 2.11 and 2.12. The IBias values are shown in

Table 2.4. The bias values are quite small for the two predictors and larger for the response

history component. In addition, in order to assess the usefulness of the asymptotic standard

error of the maximum partial likelihood estimator, both asymptotic and empirical standard

errors based on 100 repetitions are calculated. The empirical standard error function of the

estimated coefficient function is computed as

SDi(u) =

√√√√ 1

99

100∑

j=1

(
κ̂j
i (u)− κ̂i(u)

)2
(2.30)

For each replication, an estimated variance-covariance matrix V̂ j
i is computed for estimated

B-spline coefficients. β̂i = {β̂i1, ....β̂i19}
T. Then the asymptotic standard error function of

the estimated coefficient function is computed as:

ŜD
j

i (u) = B(u)TV̂ j
i B(u) (2.31)

where B(u) = (B1(u), ....B19(u))
T. The asymptotic standard error functions are compared

with the empirical standard error function. Figure 2.13 shows the standard error functions

for model 3 in Scenario 3 as an example. The plot indicates the estimated standard error

functions are very close to the empirical standard error function. Therefore, the standard

variance estimator can give valid variance estimates for the coefficient functions.
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Figure 2.10: Plots of the bias functions for model 1. The gray curves are for predictor 1 and
the dot dashed curves are for predictor 2.
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Figure 2.11: Plots of the bias functions for model 2. The gray solid curves are for predictor
1, the dotted black curves are for predictor 2 and the dark gray dashed curves are for the
response’s history.
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Figure 2.12: Plots of the bias functions for model 3. The gray solid curves are for predictor
1, the dotted black curves are for predictor 2 and the dark gray dashed curves are for the
response’s history.
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Figure 2.13: Asymptotic standard error functions and empirical standard error functions for
model 3 Scenario 3. The black dashed curves are the asymptotic standard error functions
and the grey curves are the empirical standard error functions.
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Table 2.4: Integrated absolute bias

Model 1 Model 2 Model 3
Scenario 1
Predictor 1 0.266 0.316 0.410
Predictor 2 0.248 0.272 0.283
Response NA 0.583 0.697
Scenario 2
Predictor 1 0.377 0.347 0.552
Predictor 2 0.348 0.291 0.353
Response NA 0.521 0.625
Scenario 3
Predictor 1 0.357 0.345 0.339
Predictor 2 0.260 0.253 0.313
Response NA 0.814 0.750

In summary, when the sample size is large, the estimation procedure for the multiplica-

tive modulated renewal process model provides good estimates of the coefficient functions.

The asymptotic standard error of the maximum partial likelihood estimator is useful as an

inference method.
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2.6 Real data analysis: large data estimation and non-stationarity

2.6.1 Application to a large neural spike train data

In this section, the proposed model is implemented on the neuron signal data described

in Section 1.2. There are six spike trains that record the times of the neuron spikes over

500 seconds from layer CA1 of the right dorsal hippocampus. We call this data set the

Real Data 1. Spike train S6 is chosen as the response and the other 5 spike trains are

treated as functional predictors. The modulated renewal process model (2.7) is used to fit

the data. This model includes the predictor trains’ histories, the response train’s history and

an additional covariate for the movement speed of the subject. The spike history is updated

every 0.004 second, which seems to be a reasonably small value relative to the minimum

inter-spike time 0.002 second. The length of the history M is chosen to be 1 second. B-

spline basis functions with d = 3 and 14 interior knots are used. The knots sequence is: 0,

0.005, 0.01, 0.015, 0.020, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 ,and the B-spline

basis function closest to the 1 end is not used so that the coefficient functions are 0 at t− 1

second.

The coefficient functions are estimated by the partial likelihood estimation procedure

described in Section 2.3.3. The result is shown in Figure 2.15. Figure 2.15 includes six plots;

the first five plots show the estimated coefficient functions of the five predictors, and the

last plot shows the coefficient function of the response’s own history. Functions κ1, κ2, κ3

show a strong positive component for short intervals (< 20 ms). κ4 is not significantly

different from 0 based on the estimated standard errors. κ5 shows a positive component

for short intervals (approximately 0-40 ms), followed by a negative component for longer

intervals (approximately 40-100 ms). κ0, the coefficient function of response’s history, is not

significantly different from 0 for short intervals (approximately 0-50 ms). However, it shows a

strong positive component for longer intervals (approximately 50-200 ms). Figure 2.14 shows

the estimated cumulative baseline function (ĈH0(y)) and the smoothed baseline function

(λ̂0(y)), which is computed by numerically taking derivative of the estimated cumulative
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baseline function. λ̂0(y) is small near 0, so the neuron tends to not fire again immediately

after a firing (i.e., there is a resting period). λ̂0(y) increases rapidly to its maximum at

approximately 15 ms then decrease slowly. Note that λ̂0(y) describes the unique effect of the

very last response spike, in additional to the effect of any response spike in the history. The

moving speed of the subject is included in the model as a time-dependent predictor. The

coefficient estimate is 0.1632 (p-value=0.0056), which implies the subject’s moving speed has

a positive effect on the response neuron’s spike activities.

Figure 2.16 shows that the in-sample KS plot for the model, which is computed using

the same data that have been used for model fitting, is within the 95% confidence bounds.

It also shows five out-of-sample KS plots computed using data over five randomly select

time intervals after the time of the data for model fitting. From Figure 2.16, all the five

out-of-sample KS plots are within the 95% confidence bounds. The KS plots show that the

model performs well in both the case of model fitting and the case of prediction.

Figure 2.14: Plots of estimated cumulative baseline hazard functions and the smoothed
estimated baseline hazard functions based on Real Data 1.

Several reduced models were also fitted. We use BIC as a criterion for comparing the

models. Table 2.5 shows the BIC values. The model with both predictors’ histories and
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Figure 2.15: Plots of estimated coefficient functions based on Real Data 1. The dashed
curves show the estimated coefficient functions +/- 2 times the estimated standard error
functions.
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Figure 2.16: Model goodness-of-fit shown with horizontal KS plots of model 1 based on Real
Data 1. The left top plot is the in-sample KS plot. The remaining five plots are out-of-
sample KS plot using five different data sets, each of which consists 1000 spikes. Dashed
black lines represent the 95% confidence bounds.
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response’s history has the lowest BIC (Model 7, BIC=129138.4). When moving speed is

also included as a predictor (Model 1), the BIC is slightly larger (129139.8). This implies

that including moving speed does not decrease the partial likelihood by a large amount

given, the presence of the neural activities in the model. Note that all models without the

predictor trains’ histories have much larger BICs. This implies that the predictor trains play

an important role in explaining the occurrences of the response spikes. The BIC is further

reduced by including the response train’s own history. So the future response spike times

are related to response train’s own history.

Table 2.5: BIC values of models with different predictors.

Model Model Predictors BIC
1 predictor trains’ and response’s histories, speed predictor 129,139.8
2 only speed predictor 129,655.2
3 only response’s history 129,471.0
4 response’s history and speed predictor 129,459.8
5 only predictor trains’ histories 129,172.9
6 the predictor trains’ histories and the speed predictor 129,164.8
7 the predictor trains’ and response’s histories 129,138.4

2.6.2 Evaluation of non-stationarity

The dataset used in the previous section is seconds 0 through 500 of a larger dataset

that records the times of the neuron spikes of six spike trains over 4500 seconds. The

1000-1100s sub-dataset is excluded in the following data analysis, because of missing speed

values. To investigate whether the relationship between the response and the predictor

trains is stationary, we fit the model using the entire dataset and evaluate goodness-of-fit

using 9 sub-datasets based on time, 0-500s, 500-1000s, 1100-1500s, 1500-2000s, 2000-2500s,

2500-3000s, 3000-3500s,3500-4000s, 4000-4500s.

Figure 2.17 shows the nine horizontal KS plots for the nine sub-datasets. It can be seen

that there is a pattern over time, the horizontal KS plots go from negative to positive as

time increases. A negative KS curve implies that the observed inter-spike time tends to be
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smaller than the expected inter-spike time based on the fitted model. A positive KS curve

implies that the observed inter-spike time tends to be bigger than the expected inter-spike

time based on the fitted model. The trend of the KS plots can be better seen when we plot

the extreme values and medians of the KS plots vs time (Figure 2.18). This trend may imply

that the relationship between the response train and the predictor trains is not stationary,

i.e., the coefficient functions changes over time, because the goodness-of-fit performance of

the model based on the entire dataset does not change randomly for sub-datasets based on

time.
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Figure 2.17: How well the model based on the entire dataset fits the nine sub-datasets,
evaluated by horizontal KS plots.
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Figure 2.18: Plots of extreme values and medians of the nine horizontal KS plots.

2.7 Discussion

In this Chapter, we formulate a modulated renewal process model for the identification

of the neural connectivity using spike train data. This modulated renewal process model

has two new features compared to the standard Cox’s proportional hazards model. (1) The

impact strengths of the spike histories of the predictor trains are modeled by coefficient

functions that can be approximated by B-splines to reduce model complexity. (2) The

conditional intensity function of the response spike train depends not only on the histories

of the predictor trains and the extrinsic covariates but also depends on its own history, i.e.,

the response spike train is modeled by a modulated renewal process instead of a renewal

process.

There are three major advantages of this modulated renewal process model. First, this

model does not require discretizing the response spike process by recording response as

presence or absence of a spike in 0.002 time interval, which may cause information loss.

Second, this model does not require dividing the history interval into subintervals to create

covariates based on the subintervals. Moreover, modeling the effect of the history by very

flexible coefficient function improves the ability to capture the dependence of the future

spikes on the previous spikes. Third, modeling the response spike process by modulated
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renewal process provides more flexibility to model the distribution of the inter-spike times

than a Poisson process.

By simulation, we show that the model estimation procedure based on the partial like-

lihood has good performance when the sample size is large. The asymptotic estimates of

the standard errors from the model are close to the standard error estimated by simulation.

They can be used to provide narrow confidence bands for the coefficient functions, which

can be used to identify important predictor trains and history intervals. However, in the

real data analysis, we see that the relationship between the response train and the predictor

trains may not be stationary, i.e., the coefficient functions may vary over the real time (the

time from the start of the observation). It may not be appropriate to fit the model using

data over a very long time period ignoring the non-stationarity. Since little is known about

the structure of the non-stationarity, it is sensible to consider the local model estimation

based on observations in a short period in which the relationships among spike trains can be

assumed to be stationary. Then, the sample size becomes smaller.

Due to non-stationarity, we need to model shorter segments of time, so we must have

efficient estimator of the coefficient functions; B-spline gives us more efficient use of param-

eters than piecewise constant functions. In Chapter 3, we look at model selection methods

to increase the efficiency of parameter usage.
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CHAPTER 3

Variable selection in modulated renewal process

model with functional predictors

3.1 Sparsity in neural connectivity

In the proposed modulated renewal process model, most of the predictors are functional,

i.e., they are observed continuously along certain trajectory such as time. The impact

strength of a functional predictor is modeled by a coefficient function instead of a scalar

coefficient. A scalar coefficient is either zero or nonzero, but a coefficient function can be

zero in some intervals and nonzero in the others. This brings potential difficulty in selecting

important functional predictor(s).

In neural network, the relationship between neurons is believed to be sparse in nature

[Song et al., 2007]. That is, in our proposed modulated renewal process model, many co-

efficient functions are constant zero or zero in many intervals. Therefore, the estimated

coefficient functions should be sparse in order to capture the true relationship between the

neurons. Tu et al. [2012] defined two types of sparsities to distinguish between two cases (1)

a coefficient function is zero in the whole interval, (2) a coefficient function is zero only in

some subintervals. They called the former global sparsity and the latter local sparsity.

Ideally, we would like to achieve both global and local sparsities of the estimates simul-

taneously. However, in some situations this goal can be very difficult to achieve. One such

situation is when the true coefficient functions are only nonzero in subintervals that are short

compared with the whole interval; then the estimated coefficient functions are highly likely

to be identified as being zero in the whole interval by enforcing the global sparsity. There-

fore, in such situations, one has to consider preference between the two types of sparsities.

In this study, the number of predictor spike trains are reasonably small, but for each train,

we consider a long period of history to capture any possible history effects. Therefore, we

55



expect the durations of the true effects are much shorter than the whole period considered

and we prefer more accurately achieving local sparsity to enforcing global sparsity.

3.2 Penalized partial likelihood estimation

Recall that after applying the B-spline approximation, the proposed modulated renewal

process model can be estimated by maximizing the following Cox’s partial likelihood.

PL(β) =
J∏

j=1

Ψ∗(tj−1 + yj,β)∑
l∈R(tj)

Ψ∗(tl−1 + yj,β)
(3.1)

where Ψ∗(t,β) = exp
{∑p

i=0

∑
k β

A
ikDik(t) + βBZ(t)

}
reflects the overall effect of the covari-

ates on the conditional intensity at time t. It is a function of β, a vector of parameters

including the coefficients of the B-spline approximation and the coefficients of the nonfunc-

tional predictor(s). R(tj) = {i, yi ≥ yj} is the risk set of response spike time tj, which is

defined using the inter-spike times yi = ti− ti−1. Maximizing (3.1) is equivalent to maximiz-

ing the following log partial likelihood,

l(β) =
J∑

j=1

{
p∑

i=0

∑

k

βA
ikDik(tj−1 + yj) + βBZ(tj−1 + yj)

}
(3.2)

−

J∑

j=1

log




∑

l∈R(tj)

exp

{
p∑

i=0

∑

k

βA
ikDik(tl−1 + yj) + βBZ(tl−1 + yj)

}
 (3.3)

Like the maximum likelihood estimator, the maximum partial likelihood estimator does

not guarantee sparsity. One way to enforce sparsity is the penalized likelihood approach,

which is very popular because it simultaneously considers model estimation and variable

selection. In general, the penalized log-partial likelihood criterion can be expressed as

J∑

j=1

lj(β)− J

r∑

i=1

pλ(|βi|) (3.4)

where lj is the log partial likelihood of the jth observation, r is the dimension of β, pλ(·) is

a penalty function for each parameter and λ is a tuning parameter. We consider two widely

used penalty functions, LASSO and Smoothly Clipped Absolute Deviation Penalty.
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The LASSO penalty is defined as

pλ(|β|) = λ|β|. (3.5)

Thus, the LASSO penalized log-partial likelihood criterion can be expressed as

J∑

j=1

lj(β)− Jλ
r∑

i=1

|βi| =
J∑

j=1

lj(β)− Jλ‖β‖1 (3.6)

The penalty constrains the L1 norm of the coefficient vector. Maximizing the LASSO pe-

nalized log-partial likelihood is equivalent to maximizing the log-partial likelihood subject

to ‖β‖1 < s, then finding the global maximum of the penalized partial likelihood over the

values of s. A few algorithms have been developed to solve the LASSO optimization prob-

lem. We choose the algorithm proposed by Goeman [2010], which is based on a combination

of gradient ascent optimization with the Newton-Raphson algorithm.

The SCAD penalty is defined as

p′λ(|β|) = λ

{
I(|β| ≤ λ) +

(aλ− |β|)+
(a− 1)λ

I(|β| > λ)

}
for some a > 2. (3.7)

It involves two tuning parameters, a and λ. The SCAD penalty is equivalent to the LASSO

penalty when θ is small, but is constant when |β| is large. This guarantees that large

estimated coefficients are not excessively penalized. The tuning parameter λ controls the

range of β values in which the SCAD penalty is equivalent to the LASSO penalty and

the other tuning parameter a controls the range of β values in which the SCAD penalty

is constant. Fan and Li [2001] suggested using a = 3.7 from Bayesian statistical point of

view, and this value will be used throughout this paper. Maximizing the SCAD penalized

partial likelihood function is difficult because the penalty is nondifferentiable at the origin

and nonconcave with respect to β. By locally approximating the penalty function with a

linear function [Zou and Li, 2008], the SCAD optimization problem can be turned into a

sequence of LASSO optimization problems as follows. Use the unpenalized maximum partial

likelihood estimate as the initial value, β(0). For w = 0, 1, 2, ..., repeatedly solve

β(w+1) = argmax

{
J∑

j=1

lj(β)− J

r∑

i=1

p′λ(|β
(w)
i |)|βi|

}
. (3.8)
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Stop the iterations if the sequence of β(w) converges (Zou and Li [2008]). The performance

of the penalized approach depends on the tuning parameter λ, which balances the trade-off

between goodness-of-fit and model sparsity. We use the BIC to select λ. For a sequence of λ

candidates, fit the model by maximizing the penalized partial likelihood, then compute BIC

for each model estimate and choose the λ value that produces the smallest BIC.

We choose LASSO and SCAD penalties instead of the group penalties, which enforce

global sparsity by shrinking parameters in the same group together, because we prefer more

accurately achieving local sparsity to enforcing global sparsity. Also these two penalties yield

more stable estimates than the group penalties.

3.3 Computation: number of B-spline knots and time-dependent covariates
updating frequency

One drawback of the maximum penalized partial likelihood methods is the high compu-

tational complexity. The proposed modulated renewal process model is more computational

intensive than the standard Cox proportional hazards model because of the B-spline approx-

imation and the time-dependent covariates. Therefore, it is important to choose the appro-

priate number of B-spline knots and the appropriate way of updating the time-dependent

covariates in order to balance the model performance and the computational complexity.

Considering the situation when all the predictors in the model are functional, then the

number of parameters in the partial likelihood function (2.25) is equal to the product of

the number of functional predictors and the number of the B-spline basis functions in each

functional predictor. Therefore, using fewer B-spline basis functions can greatly reduce the

computational complexity. However, if the number of the B-spline basis functions is too

small, the ability to accurately estimate the coefficient functions and to achieve functional

sparsity will be lost. We investigate the performance of the model based on various B-spline

basis functions by simulation in section 3.4 and compare the unpenalized partial likelihood

approach with the penalized partial likelihood approaches. We find that the estimates by

penalized partial likelihood approaches are not sensitive to the number of B-spline basis
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functions, i.e. the estimates do not change much when the number of knots in the B-spline

basis functions changes within a reasonable range. However, the estimates by the unpenalized

partial likelihood method changes significantly as the number of knots changes.

When the covariates are time-dependent, to compute the term of the Cox’s partial likeli-

hood associated with the jth event, it is necessary to compute, for all the events in the risk

set of the jth event,

Ψ∗(tl−1 + yj,β) = exp

{
p∑

i=0

∑

k

βA
ikDik(tl−1 + yj) + βBZ(tl−1 + yj)

}
(3.9)

= exp
{
βTD(tl−1 + yj)

}
, (3.10)

where β = (βA
ik, i = 0, 1, , , , p, k = 1, 2, ...K;βB) is a vector of coefficients of length d and

D(t) = (Dik(t), i = 0, 1, , , , p, k = 1, 2, ...K;Z(t)) is a vector of time-dependent covariates of

length d. To compute Ψ∗(tl−1+yj,β), we need d terms and to compute the jth component of

the Cox’s partial likelihood, for each event in the risk set, we need to compute Ψ∗(tl−1+yj,β).

The number of events in the risk set of the jth ordered event based on the ascending order

of the event time is J − j + 1, j = 1, 2, ...J . Note that for j1 6= j2, D(tl−1 + yj1) may not

be equal to D(tl−1 + yj2). Therefore, the total number of terms required for computing the

Cox’s partial likelihood is d
∑J

j=1(J − j + 1) = dJ(J + 1)/2. When J is large, this number

is large.

An alternative approach is to approximate the time-dependent D(t) with step functions.

For example, in Figure 3.1, plot (a) shows that for the response spike with the jth smallest

inter-spike time, y(j), there are J − j + 1 events in the risk set, y(j), y(j+1), ..., y(J). Let

tl∗ , l = 1, 2, ..., J denote the spike time of the response spike with the lth smallest inter-spike

time and tl∗−1 denote the spike time of the most recent response spike prior tl∗ . J − j + 1

terms, D(tl∗−1 + y(j)), l = j, j + 1, ...J , are needed for computing the partial likelihood. Plot

(b) shows that if D(t) is approximated by a step function taking three values over the interval

(y(j) +minl≥j tl∗−1, y(j) +maxl≥j tl∗−1), then only three terms are needed instead of j terms.

For neural spike train data, we take this approach by choosing a frequency of updating D(t),
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e.g., 250HZ (every 0.004s). This approximation can reduce the number of terms required

by the Cox’s partial likelihood to less than dJN , where N is the product of the maximum

inter-spike time and the updating frequency and N can be much smaller than (J + 1)/2.

However, important information can be lost by using this approximation. Therefore, it must

be used with caution. We compare the performance of models based on various updating

frequencies by simulation in Section 3.4.4, and find that it is possible to use low updating

frequency and still get good coefficient function estimates.
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Figure 3.1: Number of terms required for computing the partial likelihood is reduced by
updating the time-dependent covariates at fixed frequency.
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3.4 Simulation: comparison of PL, LASSO and SCAD

In this section, we use simulation to evaluate the performance of the unpenalized max-

imum partial likelihood (PL) estimator and the LASSO and SCAD penalized maximum

PL estimators for the modulated renewal process model. Four (p = 4) neuron spike trains

are chosen from the data set described in Section 1.2 as predictor trains. The following

modulated renewal process model (3.11) is used to generate the response train,

λ(t|Ht) = λ0(t− tN(t−)) exp

{
p∑

i=0

∫ t

t−M

κi(t− u)dnxi
(t)

}
. (3.11)

The baseline function λ0(y) is equal to 0 when y ≤ 0.002, which represents a resting period,

and 2.5 when y > 0.002. The length of history M is 1 second. To reduce computational com-

plexity, we assume that the history impact changes every 0.004 second instead of changing

continuously. The true coefficient functions are in the space spanned by a linear combina-

tion of B-spline basis functions with d = 3 degrees and m = 9 equally spaced interior knots,

which generates 13 basis functions. The knots are 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9.

For simplicity, we choose the same group of basis functions to represent all the coefficient

functions and denote them by B1, B2, ..., B13. The true values of the B-spline coefficients are

shown in Table 3.1. The true coefficient functions are shown in Figure 3.2.

Table 3.1: True coefficient values (βik) of the four predictor trains and the response.

k 1 2 3 4 5 6 7 8 9 10 11 12 13
κ1 0.3 0 0 0 0 0 0 0 0 0 0 0 0
κ2 0 0.4 0 0 0 0 0 0 0 0 0 0 0
κ3 0 0 0 0 0 0 0 0 0 0 0 0 0
κ4 0 0 -0.08 -0.2 0.3 0 0 0 0 0 0 0 0
κ0 0 0 0 0.02 0.2 0.04 0 0 0 0 0 0 0

We conduct the simulation under four scenarios (Table 3.2). To compare the performance

of the estimators under different sample sizes, in the first and the second scenarios, 500

response spikes are generated, and in the third and the fourth scenarios, 1000 response

spikes are generated. In the first and the third scenarios, the correct B-spline basis functions
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Figure 3.2: True coefficient functions of the predictor trains.

Figure 3.3: True coefficient function of the response history.
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are used to fit the model. In the second and the fourth scenarios, B-spine basis functions

with correct degree but incorrect number of knots are used. The latter two scenarios are

examples of the situation when the true coefficient functions are not in the space spanned by

the B-spline basis functions used to fit the model. For each of the four scenarios, 200 data

sets are generated. The estimated coefficient functions are compared with the true coefficient

functions to evaluate the performance of the estimators.

Table 3.2: Four scenarios

Sample size
500 1000

Number of knots Correct Scenario 1 Scenario 3
for B-splines Incorrect Scenario 2 Scenario 4

The following measures of performance are used. Denote the ith estimated coefficient

function of the jth repetition as κ̂j
i (u). The bias function for the ith estimated coefficient

function is computed as

Biasi(u) =
1

200

200∑

j=1

κ̂j
i (u)− κi(u). (3.12)

Another numerical measure of performance is the root mean integrated squared error (RMISE).

Based on 200 repetitions, RMISE is computed as

RMISEi =
√
MISEi =

√√√√ 1

200

200∑

j=1

∫ 1

0

(
κ̂j
i (u)− κi(u)

)2
du. (3.13)

In addition, we use the following summary measures for comparison of functional sparsity:

• C0: Correctly identified constant zero coefficient functions(proportion of replications

in which κ3 is correctly identified as zero),

• I0: Incorrectly identified constant zero coefficient functions(total proportion of times

κ0, κ1, κ2 and κ4 were incorrectly identified as zeros),

• Ci,0: Average length of correctly identified zero intervals for the ith coefficient function,
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• RCi,0: Average length of correctly identified zero intervals for the ith coefficient func-

tion/true length of zero interval for the ith coefficient function,

• Ii,0: Average length of incorrectly identified zero intervals for the ith coefficient func-

tion,

• RIi,0: Average length of incorrectly identified zero intervals for the ith coefficient func-

tion/true length of nonzero interval for the ith coefficient function.

Note that C0 and I0 summarize the ability of the fitting procedure to recognize global sparsity,

i.e., coefficient functions that are constant zero. Ci,0 and Ii,0 summarize the ability of the

fitting procedure to capture local sparsity, i.e., zero intervals of coefficient functions that are

partly zero [Tu et al., 2012]. RCi,0 and RIi,0 are also measures of local sparsity, and they are

comparable across the coefficient functions. Model goodness-of-fit is evaluated by horizontal

KS plot described in Section 2.4. A numerical summary of KS plot is the mean distance

between KS plot and the diagonal line,

MDis(u) =
1

200

200∑

j=1

|KSj(u)−Diag(u)|, (3.14)

where KSj(u) is the KS curve for the jth repetition , 0 ≤ u ≤ 1. The results of the

simulations are shown in Section 3.4.1-3.4.4.

3.4.1 Scenario 1: comparison of the three methods when correct B-spline basis
functions are used and the sample size is 500.

In this section, the generated response spike trains consist of 500 spikes, and the correct

B-spline basis functions are used to fit the model. Figure 3.4 and Figure 3.5 show the

bias functions of the three methods, and RMISE values for each coefficient function are

compared in Table 3.3. In general, for all predictors’ coefficient functions, SCAD has smaller

bias than PL and LASSO. LASSO has smaller bias than PL over the zero intervals of the

true coefficient functions, but PL has smaller bias than LASSO over the nonzero intervals

of the true coefficient functions. SCAD has the smallest RMISE values. PL has the largest
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RMISE values. For κ1 and κ2, the RMISE values of SCAD is about 1/3 of the PL’s RMISE

values and 1/2 of LASSO’s. For κ3, SCAD has slightly larger RMISE value than LASSO, but

its RMISE value is still very small and much smaller than PL’s. Recall that κ3 is constant

zero, estimates of SCAD and LASSO are substantially better than PL because PL estimator

does not guarantee sparsity. For κ4, the RMISE values of the three methods are close and

SCAD has the smallest value.

For the response’s history, the estimates of the three methods all have higher RMISEs

than those for predictors’ histories. This is sensible, because the effect of the response’s

own history is harder to be captured. SCAD has larger bias than LASSO near zero. This

is because it is not common to observe two response spikes occurring very close with each

other, especially when the sample size is small (J = 500). With limited information, PL

and SCAD tend to overfit and the estimates are not stable, i.e., have large variance. For the

same reason, SCAD also has larger RMISE value than LASSO. PL has the largest bias and

RMISE values. In summary, SCAD performs better than PL and LASSO except over the

interval near 0 of the response’s history.

The sparsity measures are shown in Table 3.4 and Table 3.5. PL does not guarantee

sparsity, so we focus on comparing LASSO with SCAD. From Table 3.4, SCAD successfully

identifies the constant zero coefficient function (κ3) 95.5% of the time, and this proportion

is much larger than the LASSO’s (34.5%). For each individual coefficient function, the

average length (Ci,0) of correctly identified zero intervals by SCAD is much larger than

by LASSO. For example, for κ1, the true length of the zero interval is 0.9; the average

length of correctly identified zero intervals by SCAD is 0.89, on average, SCAD is able to

correctly identify almost all the zero intervals. The average length of correctly identified

zero intervals by LASSO is 0.4, on average, LASSO is able to correctly identify less than

half of the zero intervals. Table 3.5 shows the incorrect identification results. There are four

coefficient functions that are not constant zero. The average proportion of those 4 coefficient

functions incorrectly identified as constant zero functions by SCAD is 0.045. This proportion

66



Figure 3.4: Comparison of bias of the coefficient functions of the predicator trains estimated
by PL (gray solid), LASSO (black dashed), and SCAD (black dash-dotted) when the sample
size is 500.
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Figure 3.5: Comparison of bias of the coefficient functions of the response’s history estimated
by PL (gray solid), LASSO (black dashed), and SCAD (black dash-dotted) when the sample
size is 500.

of incorrectly identification is very small. LASSO has a slightly larger value, which is 0.055.

Also, the average lengths (Ii,0) of incorrectly identified zero intervals of the five coefficient

functions individually by LASSO and SCAD are all very small. Moreover, many of these

averages are zero. In summary, SCAD has much better performance than PL and LASSO

in achieving both global and local sparsity.

Figure 3.6 shows in-sample model goodness-of-fit and out-of-sample model prediction

performance of models estimated by PL, LASSO and SCAD. The PL method performs as

well as SCAD for the in-sample case, however, its performance is much worse than SCAD

for the out-of-sample case. This is because it fails in achieving sparsity of the estimated

coefficient functions and under smooths the baseline hazard function. LASSO performs

worse than SCAD and PL for the in-sample case because it shrinks the coefficient functions.

However, its performance is closed to SCAD for the out-of-sample case.
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Table 3.3: Comparison of RMISEs when sample size is 500.

Estimator κ1 κ2 κ3 κ4 κ0

PL 0.033 0.038 0.032 0.026 0.064
LASSO 0.021 0.022 0.004 0.022 0.030
SCAD 0.010 0.012 0.005 0.017 0.037

Table 3.4: Sparsity summary measures: correctly identified when sample size is 500. The
values in the parentheses are the relative values, RCi,0.

Estimator C0 C1,0 C2,0 C3,0 C4,0 C0,0

PL 0 0 0 0 0 0
LASSO 0.345 0.400(.44) 0.501(.62) 0.644(.64) 0.194(.38) 0.367(.84)
SCAD 0.955 0.890(.99) 0.781(.97) 0.987(.99) 0.502(1.00) 0.370(.92)
True 0 1 0.9 0.802 1 0.502 0.402

Table 3.5: Sparsity summary measures: incorrectly identified when sample size is 500. The
values in the parentheses are the relative values, RIi,0.

Estimator I0 I1,0 I2,0 I3,0 I4,0 I0,0
PL 0 0 0 0 0 0
LASSO 0.055 0.001(.01) 0(0) 0(NA) 0(0) 0.177(.3)
SCAD 0.045 0.002(.02) 0(0) 0(NA) 0(0) 0.177(.3)
True nonzero 4 0.1 0.198 0 0.498 0.598
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Figure 3.6: Model goodness-of-fit shown with horizontal KS plots of estimated models when
the sample size is 500. PL (black dotted), LASSO (black solid), SCAD (gray solid), true
model (In-Sample gray dashed) and NULL model (Out-of-Sample gray dashed).
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3.4.2 Scenario 2: comparison of the three methods when incorrect B-spline
basis functions are used and the sample size is 500.

To evaluate the performance of PL, LASSO and SCAD when the coefficient functions are

not in the space spanned by a linear combination of B-splines used to fit the model, the data

generated in Section 3.4.1 is fitted using B-spline basis functions with incorrect number of

knots. We use B-spline basis functions with 3, 6, 12, 15 and 18 equally spaced interior knots

to approximate the coefficient functions. Recall that the correct number of interior knots is

9. The performance of these incorrect basis functions are evaluated in terms of MISE. MISEs

of the estimated coefficient functions using 9 knots are used as references. We compute the

relative differences between MISEs using k knots and MISEs using 9 knots as

RDMISE
(k)
i =

(MISE
(k)
i −MISE

(9)
i )

MISE
(9)
i

(3.15)

To evaluate the overall local sparsity identification, average relative correctly identified zero

interval and average relative incorrectly identified zero interval are computed as

ARC(k) =
1

5

4∑

i=0

RC
(k)
i,0 , (3.16)

ARI(k) =
1

5

4∑

i=0

RI
(k)
i,0 . (3.17)

The maximum mean distance (MMD) between KS plot and the diagonal line is used as a

goodness-of-fit measure,

MMD(k) = max
u

MDis(u)(k) = max
u

(
1

200

200∑

j=1

|KS
(k)
j (u)−Diag(u)|

)
. (3.18)

The changes in MISE values of the three methods are shown in Table 3.6. Negative

relative difference values imply that the MISE values of the estimates are smaller than

the estimates obtained by using the correct B-spline basis functions. From Table 3.6, PL

estimates have smaller MISE values when the number of B-spline basis functions is small.

This is because PL tends to over-fit, so when the number of parameters is smaller, the
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over-fitting is less severe. For LASSO and SCAD, most of the relative difference values are

positive, so they have the smallest MISE values when the number of knots is equal to 9, the

correct number. The MISE values when the number of knots is equal to 9 are also given in

the Table 3.6. Recall that SCAD has smaller MISE values for all the predictor trains.

Similar patterns can be seen in the changes of the out-of-sample MMD values (Table

3.7 and Figure 3.7). From Table 3.7, the out-of-sample MMD value of PL increases as the

number of knots increases, in particular it increases from 0.560 to 1.095 and this is illustrated

by the left plot in Figure 3.7. The MMD values of LASSO and SCAD do not change much.

Also SCAD has smaller MMD values in both in-sample case and out-of-sample case than PL

and LASSO for most knot numbers.

Table 3.8 shows the sparsity summary measures for various knot-numbers. For the cor-

rectly identification measures (C0 and ARC), SCAD has larger values than LASSO, which

implies that on average, SCAD is able to correctly identify more constant zero coefficient

functions and zero intervals. For the incorrectly identification measures (I0 and ARI), SCAD

has smaller or larger but still close values than LASSO, which implies that on average, SCAD

does not incorrectly identify more than LASSO. In general, SCAD has better performance

than LASSO in achieving both global sparsity and local sparsity for all numbers of knots.

The best performance is obtained when the number of knots is correct, that is, for the cor-

rectly identification measures (C0 and ARC), SCAD has the largest values (0.96 and 0.97)

when the number of knots is 9.

In summary, the performance of PL is greatly affected by the number of knots, while for

LASSO and SCAD, the performance does not change much as the number of knots changes,

i.e., they are less sensitive to number of knots choice. Moreover, for various knot numbers,

SCAD have better performance than PL and LASSO in model estimation, variable selection

and model prediction.
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Table 3.6: Comparison of RDMISEs for various number of knots values when sample size is
500.

Estimator knots κ1 κ2 κ3 κ4 κ0

PL MISE 9 0.00110 0.00145 0.00102 0.00067 0.00407
3 -0.573 -0.138 -0.657 1.104 -0.555
6 -0.327 -0.214 -0.324 -0.104 -0.408

Relative difference 12 0.300 0.317 0.294 0.269 0.066
15 0.591 0.566 0.588 0.522 0.337
18 0.873 0.814 0.853 0.746 0.570

LASSO MISE 9 0.00046 0.00047 0.00002 0.00047 0.00088
3 0.130 1.723 0.500 2.979 0.636
6 -0.130 0.787 0.500 0.383 -0.034

Relative difference 12 0.304 0.426 0.000 -0.170 0.341
15 0.478 0.660 0.000 0.128 0.602
18 0.522 0.702 0.000 0.383 0.784

SCAD MISE 9 0.00010 0.00014 0.00003 0.00029 0.00136
3 3.200 7.214 -0.333 4.448 0.140
6 0.600 3.286 -0.333 0.207 -0.309

Relative difference 12 0.800 1.929 0.000 -0.034 0.051
15 1.800 2.143 0.667 1.517 0.368
18 3.200 3.857 3.000 1.966 0.794

Table 3.7: Model goodness-of-fit evaluated with KS test for various number of knots values
when sample size is 500.

Number of knots 3 6 9 12 15 18
In-sample

PL 0.177 0.166 0.159 0.170 0.163 0.165
LASSO 0.261 0.292 0.335 0.356 0.359 0.366
SCAD 0.163 0.163 0.164 0.174 0.175 0.185

Out-of-sample
PL 0.560 0.727 0.841 0.928 1.014 1.095
LASSO 0.517 0.501 0.491 0.493 0.497 0.509
SCAD 0.509 0.502 0.476 0.487 0.502 0.516

72



Figure 3.7: Comparison of the max mean deviation of the KS plot from the diagonal line for
In-Sample (triangle) and Out-of-Sample (square) for various number of knots values when
sample size is 500.

Table 3.8: Comparison of sparsity summary measures for various number of knots values
when sample size is 500.

Estimator C0 ARC
3 6 9 12 15 18 3 6 9 12 15 18

LASSO 0.29 0.34 0.35 0.48 0.45 0.47 0.29 0.50 0.60 0.68 0.72 0.74
SCAD 0.95 0.98 0.96 0.94 0.89 0.78 0.74 0.91 0.97 0.96 0.95 0.93

I0 ARI
3 6 9 12 15 18 3 6 9 12 15 18

LASSO 0.09 0.09 0.05 0.13 0.15 0.22 0.03 0.02 0.08 0.15 0.17 0.20
SCAD 0.11 0.05 0.06 0.06 0.07 0.02 0.02 0.04 0.08 0.21 0.26 0.28
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3.4.3 Scenario 3: comparison of the three methods when correct B-spline basis
functions are used and the sample size is 1000.

We increase the number of response spikes generated in each repetition to 1000 to inves-

tigate the performance of the three methods for a larger sample size. Again, we start with

using the correct number of knots and then evaluate the performance of the methods when

incorrect number of knots is used.

B-spline basis functions with d = 3 and 9 equally spaced interior knots are used to

approximate the coefficient functions. Figure 3.8 shows the biases of coefficient functions

estimated by PL, LASSO and SCAD. Comparing with the biases based on 500 response

spikes, the biases of all three methods decrease. In particular, the bias of SCAD over the

interval near 0 of the response’s history decreases greatly and SCAD has the smallest biases

over almost all intervals of all five coefficient functions. SCAD also has the smallest RMISEs

(Table 3.9). Tables 3.10 and 3.11 show the sparsity measures. SCAD performs better than

PL and LASSO in achieving both global and local sparsity. Its performance increases as the

sample size increases.

Table 3.9: Comparison of RMISEs when sample size is 1000.

Estimator κ1 κ2 κ3 κ4 κ0

PL 0.021 0.024 0.022 0.018 0.036
LASSO 0.015 0.015 0.003 0.016 0.014
SCAD 0.005 0.007 0.003 0.012 0.014

Table 3.10: Sparsity summary measures: correctly identified, when sample size is 1000. The
values in the parentheses are the relative values, RCi,0.

Estimator C0 C1,0 C2,0 C3,0 C4,0 C0,0

PL 0 0 0 0 0 0
LASSO 0.370 0.386(.43) 0.524(.65) 0.695(.70) 0.207(.49) 0.339(.91)
SCAD 0.965 0.896(.99) 0.795(.99) 0.990(.99) 0.502(1.00) 0.393(.98)
True 0 1 0.9 0.802 1 0.502 0.402

The in-sample and out-of-sample performances of models estimated by PL, LASSO and

SCAD are shown in Figure 3.10. SCAD performs best in both in-sample and out-of-sample
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Figure 3.8: Comparison of bias of the coefficient functions of the predicator trains estimated
by PL (gray solid), LASSO (black dashed), and SCAD (black dash-dotted) when the sample
size is 1000.
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Figure 3.9: Comparison of bias of the coefficient functions of the response’s history estimated
by PL (gray solid), LASSO (black dashed), and SCAD (black dash-dotted) when the sample
size is 1000.

cases. Figure 3.11 compares the performance of models estimated based on 500 response

spikes and those based on 1000 response spikes. The performance of all three methods is

improved as the sample size increases. PL has the largest improvement.

Table 3.11: Sparsity summary measures: incorrectly identified, when sample size is 1000.
The values in the parentheses are the relative values, RIi,0.

estimator I0 I1,0 I2,0 I3,0 I4,0 I0,0
PL 0 0 0 0 0 0
LASSO 0 0(0) 0(0) 0(NA) 0(0) 0.115(.19)
SCAD 0 0(0) 0(0) 0(NA) 0(0) 0.182(.30)
True nonzero 4 0.1 0.198 0 0.498 0.598

76



0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

N
o

rm
al

iz
ed

 C
D

F
 d

if
fe

re
n

ce
In sample

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

N
o

rm
al

iz
ed

 C
D

F
 d

if
fe

re
n

ce

Out of sample

Figure 3.10: Model goodness-of-fit shown with horizontal KS plots of estimated models when
the sample size is 1000. PL (black dotted), LASSO (black solid), SCAD (gray solid), true
model (In-Sample gray dashed) and NULL model (Out-of-Sample gray dashed).
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Figure 3.11: Comparison of model goodnees-of-fit shown with horizontal KS plots for differ-
ent sample sizes 500 and 1000. PL (black dotted), LASSO (black solid), SCAD (gray solid),
and NULL model (gray dotted).
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3.4.4 Scenario 4: comparison of the three methods when incorrect B-spline
basis functions are used and the sample size is 1000.

Similar to Section 3.4.2, we evaluate the performance of PL, LASSO and SCAD when

the true coefficient functions are not in the space spanned by a linear combination of B-

splines used to fit the model. The sample size is increased to 1000. We use B-spline basis

functions with d = 3 and 3, 6, 12, 15 and 18 equally spaced interior knots to approximate

the coefficient functions. Recall that the correct number of interior knots is 9. Table 3.12

shows the RDMISEs. For LASSO and SCAD, the model using the correct number of knots

has the smallest MISEs. For PL, in general, the model using 6 knots has the smaller MISEs

than that using 9 knots. The sparsity measures are shown in Table 3.13. SCAD performs

better than LASSO for all numbers of knots in achieving both global and local sparsity.

Its performance achieves its best when the number of knots is correct. The performance of

LASSO is better when the number of knots is larger. The model goodness-of-fit performance

is shown in Table 3.14 and Figure 3.12. The results are similar to those based on 500 response

spikes. The model predication of PL decreases as the number of knots increases, while the

performance of LASSO and SCAD does not change much as the number of knots changes.

In summary, the simulation results demonstrate that for our proposed model, SCAD has

smaller bias, RMISE and performs better in achieving both global and local sparsity than

PL and Lasso. This advantage exists in both small sample size situation and fairly large

sample size situation. In addition, the performance of SCAD is not sensitive to whether the

correct number of knots is used for the B-spline basis functions.
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Table 3.12: Comparison of RDMISEs for various number of knots values when sample size
is 1000.

knots κ1 κ2 κ3 κ4 κ0

PL MISE 9 0.00047 0.00061 0.00046 0.00032 0.00132
3 -0.340 0.574 -0.630 3.094 -0.189
6 -0.319 -0.066 -0.283 0.156 -0.326

Relative difference 12 0.277 0.295 0.283 0.219 0.189
15 0.553 0.525 0.522 0.406 0.485
18 0.830 0.754 0.783 0.625 0.773

LASSO MISE 9 0.00023 0.00021 0.00001 0.00026 0.00022
3 0.652 3.905 1.000 5.115 1.955
6 -0.043 1.857 0.000 0.846 0.227

Relative difference 12 0.348 0.476 0.000 -0.154 0.591
15 0.565 0.571 0.000 0.115 1.045
18 0.696 0.571 0.000 0.346 1.500

SCAD MISE 9 0.00003 0.00004 0.00001 0.00015 0.00021
3 10.333 24.250 -1.000 9.067 4.524
6 1.667 10.500 -1.000 1.133 0.381

Relative difference 12 1.000 4.250 0.000 0.133 1.429
15 3.333 3.000 1.000 1.667 2.619
18 4.333 6.250 3.000 2.667 3.952

Table 3.13: Comparison of sparsity summary measures for various number of knots values
when sample size is 1000.

estimator C0 ARC
3 6 9 12 15 18 3 6 9 12 15 18

LASSO 0.19 0.33 0.37 0.42 0.46 0.44 0.24 0.50 0.60 0.64 0.72 0.69
SCAD 0.99 0.99 0.98 0.95 0.89 0.83 0.73 0.92 0.99 0.98 0.95 0.95

I0 ARI
3 6 9 12 15 18 3 6 9 12 15 18

LASSO 0 0 0 0 0 0 0 0.01 0.05 0.08 0.17 0.11
SCAD 0 0 0 0 0 0.01 0 0.01 0.08 0.19 0.26 0.23
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Table 3.14: Model goodness-of-fit evaluated with KS test for various number of knots values
when sample size is 1000.

Number of knots 3 6 9 12 15 18
In-sample

PL 0.184 0.159 0.165 0.162 0.166 0.170
LASSO 0.325 0.355 0.381 0.400 0.416 0.442
SCAD 0.170 0.169 0.171 0.181 0.177 0.181

Out-of-sample
PL 0.544 0.609 0.645 0.682 0.720 0.781
LASSO 0.562 0.521 0.523 0.550 0.552 0.562
SCAD 0.548 0.519 0.497 0.490 0.513 0.514

Figure 3.12: Comparison of the max mean deviation of the KS plot from the diagonal line for
In-Sample (triangle) and Out-of-Sample (square) for various number of knots values when
sample size is 1000.
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3.4.5 Updating the time-dependent covariates less often

When the sample size, i.e., the number of response spikes, and the number of unknown

parameters in the model are fixed, the computational complexity of model estimation is

affected by the frequency of updating the time-dependent covariates. Ideally, we want to

update the covariates whenever their values change. However, high updating frequency

brings computational challenges and may not lead to significantly better estimates of the

coefficient functions. In this section, we use simulation to compare the performances of

the models based on different updating frequencies. We use the data generated in Section

3.4.3. Recall that the data consists of 200 repetitions, each of which includes four predictor

spike trains and a response spike train of 1000 spikes. The response trains are generated

by model (2.7) and covariates are updated every 0.004s in the data generation. In previous

simulations, we fit the data using the models with correct updating frequency. Here, we use

incorrect updating frequencies: the covariates are updated every 0.008s and 0.016s instead

of 0.004s. The computational complexity of these models are less than the model using the

correct frequency and reduction of computation is about the same as reducing the sample

size to 500 and 250 respectively. The performances of the two models are compared with

the models using the correct frequency and based on 500 and 1000 response spikes. Same

as in previous simulations, the model performance is evaluated by bias, RMISE, sparsity

summary measures and the KS plots.

Figures 3.13-3.15 show the bias curves of the estimated coefficient functions by PL,

LASSO and SCAD using 1000 sample size and updating the time-dependent covariates every

0.004s, 0.008s and 0.016s. To illustrate the size of the bias, the true coefficient functions are

also plotted. For all three methods, the difference in bias of different updating frequencies

is small compared with the true coefficient functions. Table 3.15 shows the RMISE values.

For PL estimates, the value increases very little as the updating frequency decrease from per

0.004s to per 0.016s. However, when the sample size is reduced to 500 from 1000, the RMISE

value increases quite a bit. For LASSO and SCAD, the RMISE values does not increase very
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much when the updating frequency changes from per 0.004s to per 0.008s. But when the

updating frequency is reduced to per 0.016s, the RMISE values increase to almost as large

as those when the sample size is 500.

The sparsity measures are shown in Tables 3.16, 3.17. For both LASSO and SCAD, we

do not see much change in those sparsity measures as the updating frequency changes. And

with updating per 0.016s and sample size of 1000, the sparsity performance is still better

than updating per 0.004s and sample size of 500. The model goodness-of-fit and prediction

measures, shown in Table 3.18, support the same conclusion.

In summary, the models that update the covariates every 0.008s and 0.016s based on 1000

response spikes perform better or as well as the model that updates the covariates every

0.004s based on 500 response spikes. This implies that for the generated data, reducing

the updating frequency is a good way of reducing the computational complexity without

decreasing the model performance, which could be true for some real life data. In real data

analysis, since penalized methods are much more computational expensive than PL, fitting

models using various updating frequencies by PL and choosing an appropriate updating

frequency based on the computational complexity and model performance could be a helpful

step before model selection by methods like LASSO and SCAD.
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Figure 3.13: Bias comparison of coefficient functions estimated by PL updating the covariates
every 0.004s (dark gray solid), 0.008s (black dashed) and 0.016s (black dotted). The gray
solid curves are the true coefficient functions.
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Figure 3.14: Bias comparison of coefficient functions estimated by LASSO updating the
covariates every 0.004s (dark gray solid), 0.008s (black dashed) and 0.016s (black dotted).
The gray solid curves are the true coefficient functions.
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Figure 3.15: Bias comparison of coefficient functions estimated by SCAD updating the co-
variates every 0.004s (dark gray solid), 0.008s (black dashed) and 0.016s (black dotted). The
gray solid curves are the true coefficient functions.
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Table 3.15: Comparison of RMISEs for various updating frequency and sample size combi-
nations.

Sample size Updating κ1 κ2 κ3 κ4 κ0

PL RMISE 500 0.004 0.033 0.038 0.032 0.026 0.064
1000 0.004 0.022 0.025 0.021 0.018 0.036
1000 0.008 0.022 0.026 0.022 0.018 0.036
1000 0.016 0.023 0.028 0.022 0.020 0.037

LASSO RMISE 500 0.004 0.021 0.022 0.004 0.022 0.030
1000 0.004 0.015 0.014 0.003 0.016 0.015
1000 0.008 0.017 0.015 0.003 0.017 0.015
1000 0.016 0.019 0.017 0.003 0.021 0.015

SCAD RMISE 500 0.004 0.010 0.012 0.005 0.017 0.037
1000 0.004 0.005 0.006 0.003 0.017 0.014
1000 0.008 0.005 0.007 0.002 0.013 0.016
1000 0.016 0.007 0.011 0.003 0.017 0.019

Table 3.16: Comparison of sparsity summary measures: correctly identified, for various
updating frequency and sample size combinations.

Estimator Size Updating C0 C1,0 C2,0 C3,0 C4,0 C0,0

LASSO 500 0.004 0.345 0.399 0.500 0.644 0.194 0.367
1000 0.004 0.370 0.386 0.524 0.695 0.207 0.339
1000 0.008 0.400 0.392 0.498 0.701 0.208 0.342
1000 0.016 0.355 0.373 0.506 0.690 0.203 0.341

SCAD 500 0.004 0.955 0.890 0.781 0.987 0.502 0.370
1000 0.004 0.965 0.896 0.795 0.990 0.502 0.393
1000 0.008 0.975 0.899 0.800 0.997 0.502 0.390
1000 0.016 0.965 0.896 0.799 0.994 0.502 0.398

True 1 0.9 0.802 1 0.502 0.402

Table 3.17: Comparison of sparsity summary measures: incorrectly identified, for various
updating frequency and sample size combinations.

Estimator Size Updating I0 I1,0 I2,0 I3,0 I4,0 I0,0
LASSO 500 0.004 0.055 0.001 0 0 0 0.177

1000 0.004 0 0 0 0 0 0.115
1000 0.008 0 0 0 0 0 0.123
1000 0.016 0 0 0 0 0 0.125

SCAD 500 0.004 0.045 0.002 0 0 0 0.177
1000 0.004 0 0 0 0 0 0.182
1000 0.008 0.005 0 0 0 0 0.179
1000 0.016 0.005 0 0 0 0 0.167

True 4 0.1 0.198 0 0.498 0.598
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Table 3.18: Model goodness-of-fit evaluated with KS test for various updating frequency and
sample size combinations.

In-sample Out-of-sample
Size 500 1000 1000 1000 500 1000 1000 1000

Estimator Updating 0.004 0.004 0.008 0.016 0.004 0.004 0.008 0.016
PL 0.0097 0.0071 0.0070 0.0078 0.0512 0.0277 0.0270 0.0290
LASSO 0.0204 0.0164 0.0167 0.0170 0.0299 0.0225 0.0221 0.0222
SCAD 0.0100 0.0074 0.0072 0.0080 0.0290 0.0214 0.0204 0.0203

3.5 Real data analysis: model selection for small sample

The dataset used in this section is a 200s continuous recording of neurons in layer CA1 of

the right dorsal hippocampus. It is seconds 1300 to 1500 of the data set describe in Section

2.6.2 and we call it the Real Data 2. It contains 6 neural spike trains that recorded the neural

spikes of 6 neuron cells. During this 200 seconds period, the 6 neurons generated 6722, 5874,

7613, 570, 8880 and 3715 spikes respectively. The sixth spike train, denoted as S6, is chosen as

the response and the other 5 spike trains are treated as functional predictors. The modulated

renewal process model (2.7) is fitted to the data. This model includes covariates that reflect

the predictor trains’ history, the response train’s history and the movement speed of the

subject. The length of the history M is chosen to be 1 second. The history covariates are

time-dependent and are updated every 0.004 second, which is a reasonably small value. B-

spline basis functions with d = 3 and 11 interior knots are used to approximate the coefficient

functions for the history covariates. The knots sequence is: 0, 0.020, 0.05, 0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.7, 0.8, 0.9, 1. The interior knots are evenly spaced except the first two. This is

different from the simulation in Section 3.4, where the knots are evenly spaced. We put more

knots near 0, because it is believed that the history impacts are stronger and more complex

near the current time. The B-spline basis function closest to the 1 end is not used because

we want the coefficient functions to be 0 at 1. This is a reasonable constrain given that the

length of the history is quite large.

The coefficient functions are estimated by PL, LASSO and SCAD methods. For LASSO

and SCAD, the tuning parameters are selected by minimizing BIC as described in Section 3.2.
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The estimated coefficient functions are shown in Figure 3.17, which consists of six plots. The

first five plots show the estimated coefficient functions for the histories of the five predictor

trains, κ1 to κ5, and the last plot shows the coefficient function for the response’s own

history (κ0). PL does not identify any constant zero coefficient function nor zero interval of

the nonzero coefficient functions. LASSO and SCAD do not identify any coefficient function

as constant zero function. SCAD identifies shorter nonzero intervals than LASSO but larger

effect over those nonzero intervals. Because the simulations in Section 3.4 demonstrate that

SCAD has better performance than PL and LASSO, we focus on interpreting the SCAD

estimates. In κ1 and κ2, SCAD estimates show strong positive components for short intervals

less than 20ms. The estimated κ3 shows a weaker positive component for a short interval

(< 20ms), followed by a weaker negative component for a short interval of about 30 ms,

and then followed by another positive component for a longer interval (about 130 ms). The

second positive component is weaker than the first one. In κ4 and κ5, SCAD estimates show

a weak positive component for short intervals followed by a negative component for longer

intervals. However, the nonzero interval (40 ms) in κ4 is much shorter than that (180 ms) in

κ5. In κ0, the coefficient function of the response history, SCAD estimate is zero in the first

30 ms interval and shows a weak but long last (280 ms) positive component. The results

show that as expected, the effects of the histories are stronger near the current time (near 0)

and weaker far from the current time (near 1). These results suggest that further analysis

might be done with length of history M reduced from its current value of 1 second to a

smaller value.

Figure 3.16 shows the estimated baseline hazard functions by PL, LASSO and SCAD.

The baseline hazard function can be interpreted as the unique effect of time since the very

last response spike in addition to the effects of the response spikes in the history. The SCAD

estimate is small near 0, so the neuron tends to not fire again immediately after a firing (i.e.,

resting period). It increases rapidly to its maximum at approximate 15 ms and reaches its

second peak at approximate 100 ms. The estimated baseline hazard function is not close to
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a constant function, which supports the notion that it is better to model the response train

as a modulated renewal process than an inhomogeneous Poisson process. PL and LASSO

estimates are smoother than the SCAD estimate, and they over-smooth the baseline hazard

function. This is demonstrated by the out-of-sample KS plot (Figure 3.18) that evaluates

the prediction performance of the models. We use the 500 seconds data that immediately

follow the 200 seconds data used for fitting the models to construct the out-of-sample KS

plot. The plot shows that the SCAD model yield smaller KS score than PL and LASSO

models, i.e., SCAD model has better prediction performance.
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Figure 3.16: Estimated baseline hazard functions: PL estimation (gray solid), Lasso estima-
tion (black dashed) and SCAD estimation (black dotted) based on Real Data 2.
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Figure 3.17: PL (black dotted), LASSO (gray solid) and SCAD (black dashed) estimates
of coefficient functions for the five predictor trains (the first five subplots) and the response
history (the sixth subplot) based on Real Data 2.
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Figure 3.18: In-sample and out-of-sample horizontal KS plots: PL estimation (gray solid),
LASSO estimation (black solid) and SCAD estimation (black dotted) based on Real Data 2.
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CHAPTER 4

Future work

4.1 Big-data computing

Given the large number of spikes and sparse but complex relationships among neurons,

the analysis of neural spike trains is bound to face computational challenges. For the pro-

posed model, the penalized methods require a large amount of memory when the number

of spikes is large. For example, greater than 20GB memory is required for 10000 spikes and

6 spike trains. Some studies [Song et al., 2007] showed that including second order inter-

actions in the model can increase the ability of capturing the connections between neurons.

However, this will greatly increase the number of parameters in the model and increase the

computational complexity. Therefore, for large neural spike train data, approaches to reduc-

ing computational complexity are needed. Some available approaches include map-reduce

[Dean and Ghemawat, 2008] and coordinate decent [Friedman et al., 2010].

4.2 Non-stationarity modeling

In the real data analysis, we see that the relationships between the response train and

the predictor trains may not be stationary, i.e., the coefficient functions may vary over the

real time (the time from the start of the observation). Therefore, for neural spike train data

over a long observation period, it is reasonable to develop models that can account for the

non-stationarity. Such models include:

1. Mixed models

Divide the observation period into sub-periods based on extrinsic information of the

subject that may affect the neural activities, for example, location, movement, stimulus,

etc., and, include sub-period random effect(s) in the model. There are two main challenges:

first, identification of the sub-periods is difficult. Second, the likelihood does not have a

closed form due to the integration with respect to the distribution of the random effects.
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2. Locally non-stationary models

The goal of this type of models is to better capture the effect of the response train’s

history. Some differences between the response train’s history and the predictor trains’

history up to time t are: (1) There are no response spikes between tN(t−) and tN(t−)+1, but

there can be predictor spikes during that time. (2) The most recent response spike before t

may have special effect that is different from the effect of the other previous response spikes.

But the predictor spikes should all have the same effect on the future response spikes. Given

these two differences, the following extension of the proposed modulated renewal process

model may be able to better capture the effect of response train’s history.

The first extension is to assume the effect of a response does not depend only on its

distance from t; instead, its effect depends on both its distance from the most recent response

spike before t as well as the distance between t and the most recent response spike tN(t−).

That is, the effect of a response spike at tj on the conditional intensity at time t, t > tj is a

function of t− tN(t−) and tN(t−) − tj,

λ(t|Ht) = λ0(t− tN(t−)) exp



...+

N(t−)∑

j=1

κ0(tN(t−) − tj, t− tN(t−))I{tN(t−) − tj ≤ M}...





= λ0(t− tN(t−)) exp

{
...+

m∑

u=0

κ0(u∆, t− tN(t−))x0(tN(t−) − u∆) + ...

}
. (4.1)

Comparison of this extension and our proposed model is illustrated in Figure 4.1. Figure 4.1

(a) shows that for our proposed model, the effect of a spike at tj on the conditional intensity

at t is a function of t− tj. Figure 4.1 (b) shows that for the extension, the effect of a spike

at tj on the conditional intensity at t is a function of t− tN(t−) and tN(t−) − tj,

Estimating the two dimensional coefficient surface is difficult. One approach is to approx-

imate it using B-spline basis like this κ0(u∆, t−tN(t−)) ≈
∑

j1

∑
j2
αj1,j2Bj1(u)B

∗
j2
(t−tN(t−)).

Note that instead of using the two dimensional B-spline basis function, we use the product

of two one dimensional B-spline basis functions. The challenge of the this model is that

the number of parameters is increased and the shape of κ0(u∆, t − tN(t−)) with respect to
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Figure 4.1: Comparison of the proposed modulated renewal process model and the locally
non-stationary model.

t−tN(t−) should not be too complex. We call this model locally non-stationary model because

it allows the effects of history response spikes to vary according to their distances from the

most recent response spike. In principle, the effects of the predictor spikes can be modeled

in this way, however, first, it would greatly increase the number of parameters and second,

there are predictor spikes after the most recent response spike and they need to be handled

differently from those before the most recent response spike.

3. Globally non-stationary models

The goal of this type of model is to model the variation of the coefficient functions along

the real time trajectory. This requires information about how the relationships among neu-

rons vary over time. One possible approach is to assume the relationships change according

to the status of the subject that can be measure by the extrinsic covariates such as loca-

tion, movement, stimulus etc. Under this assumption, including interactions between history

covariates and extrinsic covariate capture the variation of the coefficient functions of the his-

tory covariates. Another approach that seems to be reasonable when information about the

subject’s status is not available is to assume the effects vary periodically. We extend the one

dimensional coefficient function to two dimensional such that the effect of a spike in history
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does not only depend on its distance from t but also depend on t itself. That is

λ(t|Ht) = λ0(t− tN(t−)) exp

{
p∑

i=0

m∑

u=0

κi(u∆, t)xi(t− u∆) + ...

}
. (4.2)

Comparison of this extension and our proposed model is illustrated in Figure 4.2. Figure 4.2

(a) shows that for our proposed model, the effect of a spike at tj on the conditional intensity

at t is a function of t− tj. Figure 4.2 (b) shows that for the extension, the effect of a spike

at tj on the conditional intensity at t is a function of t− tj and t.

Figure 4.2: Comparison of the proposed modulated renewal process model and the globally
non-stationary model.

We approximate the two dimensional coefficient surface by the product of B-spline ba-

sis functions and basis functions suitable for periodic functions such as the Fourier basis

functions. That is

κi(u∆, t) =
∑

j1

∑

j2

αj1,j2Bj1(u∆)B∗
j2
(t). (4.3)

The main challenge of this model is computational complexity due to the large number of

parameters.
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