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ABSTRACT

A THEORY OF TOPOGRAPHICALLY BOUND BALANCED MOTIONS AND
APPLICATION TO ATMOSPHERIC LOW-LEVEL JETS

The response of a stratified fluid to forcing from the lower boundary idistlboth analyt-
ically and numerically. The lower boundary forces a flow field throughgmaphic obstacles and
potential vorticity anomalies. It is argued that these mechanisms contribute meeihéenance of
low-level jets (LLJs) that are observed regularly in the vicinity of the Boklountains and the
Andes. Low-level jets function as one of the primary mechanisms througthwbpography and
surface heating influence regional and global climates.

On the f-plane a horizontal transform of the governing equation for potentidicity leads
to a vertical structure equation that is solved using Green’s functionsth®misphere a vertical
transform of this system leads to a horizontal structure equation that isdsaking spheroidal
harmonics. These analytic solutions lead to a conceptually simple picture otitiedsponse to
forcing. However, these derivations only lead to closed analytic solufanthe case of an isen-
tropic lower boundary. When the lower boundary is not isentropic a mesklger must be included
in the domain and the solution is then found iteratively. For the cases includivagsless layer the
system is approximated using finite differences and solved with an oleesat®n procedure.

Solutions are presented for the geostrophically balanced, steadysespithe fluid to three
idealized lower boundaries. An isentropic ridge is studied to determine theooldeated orog-

raphy plays on the wind field. Then a flat heated lower boundary andaseatropic ridge are



studied. The cases with a heated lower surface result in a cyclonic widdtfa is anchored over
the topography. Observations show a prominent cyclonic wind field chtemn both the Rocky
Mountains and the Andes. The idealized cases studied in this work allowdaxdmination of
fluid systems analogous to the Great Plains LLJ and the South American bttitiee mean be-
havior of these jets and their variability have important climatological and enanionpacts on the
plains regions of North and South America.

One of the purposes of this work is to interpret particular LLJ systems @opehe oro-
graphically bound, balanced motion associated with the potential vorticity diesnpaoduced by
solar heating. This research proposes the jets on opposite sides of tiéameuo be a single
response to potential vorticity forcing that is the result of radiative heatinthe Rockies and the
Andes. Although the importance of heated orography to LLJs has tendeddownplayed in the

literature, it is shown here to be a significant component in the maintenahte ef
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Chapter 1

INTRODUCTION

1.1 General Motivation

How does a stratified fluid respond to an obstacle in its path? The fluid will gt over
or move around the sides of the obstacle. The details of the resulting fluid nvatlatepend on
the initial velocity and stratification of the fluid as well as the size, shape, anpe@ture of the
obstacle. Although this may seem to be an overly simplified scenario, it hastampamplications
for the fluid motions that are observed in the atmosphere and oceansgmage to the complex
orography of the Earth. The atmosphere is strongly stratified and is dgritafluenced by numer-
ous large mountain ranges as the Earth rotates. Notable examples of prommentains that are
known to have major impacts on the climate and weather are the Rocky Moutkefsdes, the
mass of land and ice in Greenland, and the Tibetan plateau. All of thesephig features ex-
perience seasonal and diurnal fluctuations in surface temperaturk alb@ serve to influence the
atmospheric flow. The research presented here explores the gegspahse of a stratified fluid to
both isentropic and non-isentropic orography.

The steady, topographically bound balanced response of a fluid toaptogwas studied
by Eliassen (1980). His classification for isentropic flows used the foligwiethod. Begin by
assuming the lowest isentropic surface (a surface of constant epfodipyvs the lower boundary in
the far field. Isentropic obstacles are then defined as those whosetgetigl surface continuously
follows an isentropic surface. A non-isentropic obstacle (Eliasserdsmiobstacle) is one whose

geopotential surface protrudes through one or more isentroped)yuatia summit. These two
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Figure 1.1: Schematic representing three idealized fluid configurations stubdeed. Contours
represent lines of constant potential temperature (isentropes), tieavaxis could be either height
or pressure. On the left is an isentropic obstacle, the middle is a heatedwviéatdarface, and the
right is a heated obstacle.

types of obstacles represent fundamentally different distributionstafgnwithin the fluid domain.
Eliassen showed that solutions for an isentropic ridge were only possihie lfeight of that ridge
did not exceed a critical value. If this ‘critical crest height’ was exegkdhe ridge must be a warm
obstacle. Because Eliassen’s paper did not address a heated laymelabp his warm obstacles
always corresponded to objects that exceed the critical crest heighteér, orographic features
that are radiatively heated also satisfy his criterion for a warm obstaeleittheir crest height does
not exceed the critical crest height. Non-heated warm obstacles aactérized by isentropes that
are compressed over the summit, with the lowest isentropic surfaces barmegthey intersect
the lower boundary. In contrast, heated obstacles are characteyizeeriropes that are stretched
out over the summit with the isentropic surfaces bending down as they ictténsedower boundary
as in the right panel of Fig. 1.1.

The impact of three simple lower boundary conditions on the atmospheric withenass
fields is studied in this dissertation. Figure 1.1 shows a schematic representatizese three
cases. On the left is an isentropic ridge which was studied by Eliassefi)(198e center panel
represents a heated lower surface with a constant geopotential. A caioibiobthese two cases

results in a heated obstacle as shown in the right panel. The contoursrarepss, or lines of



constant potential temperature. Isentropes that intersect with the lowedary indicate a tem-
perature gradient along that boundary and can represent a ‘heatettiary. When considering a
fluid in hydrostatic and geostrophic balance that conserves potenti@ityolcompressed isentropic
surfaces result in anticyclonic motion, while stretched isentropic surfaeglsto cyclonic motion.
Thus in the case of an isentropic obstacle there will be anticyclonic vorticéytbe summit where
the isentropes are compressed and cyclonic vorticity in the surroundigsn the lower boundary
is heated the interpretation of the isentropes is more complicated becausgapetaticity is not
conserved. However, the results of this research and observalions i the next chapter indicate
that, even with a heated lower boundary, compressed isentropes inditiayel@nic vorticity while
vertically stretched isentropes lead to cyclonic vorticity.

Figures 1.2 and 1.3 show the mean circulation around both the Andes andc¢hkg Roun-
tains to be dominated by cyclonic flow. Embedded within this flow around the #\adethe South
American Low-Level Jet (SALLJ) to the east, and the Chilean Low-L&8aastal Jet (CLLCJ) to
the west. Similarly, the cyclonic flow around the Rocky Mountains includes teat®lains Low-
Level Jet (GPLLJ) and the California Coastal Low-Level Jet (CQLIhis observed mean flow
suggests that there could be a connection between the flow generatekdelyed ridge and the
persistent low-level jets on either side of these mountain ranges.

Relatively fast moving confined currents of air in the lower atmospherearsistently ob-
served in the vicinity of many mountainous regions. Numerous atmosphemoptena with some
form of a horizontal wind field maximum in the lower troposphere have beterned to as low-
level jets (LLJs). Bonner (1968) developed a number of characterigtat have often been used
to define the North American Great Plains Low-Level Jet (GPLLJ) ancermecently the South
American Low-Level Jet (SALLJ). Many of the common definitions for klidclude the following
three characteristics in the wind field: a horizontal wind maximum in the lower kine tropo-
sphere, a moderate to high vertical and/or horizontal gradient in the wafd] &ind a measurable
diurnal oscillation. One of the results of this work is to interpret particularlevel jet systems as

part of the orographically bound, balanced motion associated with thet@bterticity anomalies



produced by solar heating.
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Figure 1.2: January 2003 mean 925 hPa wind (scale of 10 'nvector indicated just below the
colorbar) from the NCEP-DOE Reanalysis Il data (Kanamitsu et al. 20@2ich has the hori-

zontal/vertical resolution T62/L28. Vectors are not drawn in the regiothefAndes above 925
hPa (at T62 horizontal resolution). The background map shows toplogiaee colorbar, scale is
100's m), with the La Plata river basin outlined in red. Adapted from Taasd al. (2006) and

Nogués-Paegle et al. (2001).

Descriptions of low-level jets began to appear in the literature as early aEo8@s (Far-
guharson 1939). At the time very little was understood about these atnraspiations and almost
no relevant data was available. Research picked up in the fifties as thg sifluence of LLJs on
precipitation was realized. In spite of sparse data the early studies did@nedde job of identify-
ing the dominant characteristics of the LLJs. (see Means 1952, Ho#@8&8r Bonner 1968, Hoxit

1975, and references therein). Most of the initial focus was on theLGBLt the past couple of



decades have seen a dramatic growth of interest in other LLJs arougtbbee(Vera et al., 2006;
Jiang et al., 2010; Rife et al., 2010; and references therein).

As the basic characteristics of LLJs became more clear, additional queatiase as to why
the jets existed. What physical explanation could explain such regulastyraeg but highly vari-
able phenomena? Some of the first studies to propose specific physitemsas responsible for
the generation and maintenance of the jets were those by Buajitti and Bla¢k88a), Blackadar
(1957), Wexler (1961) and Holton (1967). Blackadar’s approachiges on the daily oscillation of
solar heating. During the day radiation from the sun heats the Earth&csusihd leads to the gen-
eration of wind as a response to pressure gradients. Because oftlatigae near the surface, the
boundary layer wind quickly becomes turbulent, which implies a high valueeétldy viscosity.
After sunset, radiatively driven boundary layer turbulence ceasedhee eddy viscosity decreases
dramatically. The wind in the LLJ is often observed to become supergebstrag it is shielded
from boundary layer friction. Blackadar hypothesized that this leads tosaillation in the total
wind field as a result of the oscillation of the ageostrophic wind in responte tGoriolis force (an
inertial oscillation). This would lead to a northward wind maximum in the early mgenin

In 1961 Wexler attributed the location of the GPLLJ to a simple deflection by thentaims
of Central America of the winds in the Bermuda high pressure system argideved the GPLLJ
as analogous to the Atlantic gulf stream. He argued that the local effecasliation and friction
used in Blackadar’'s argument were not enough to create the highlectrated wind field in the
LLJ but that it was fundamentally due to large scale inertial forces. Simideection of the trade
winds over South America by the Andes has been proposed as onestdligeessible mechanisms
responsible for the SALLJ (Vera et al., 2006). According to Holton )%t ale analysis can show
that the GPLLJ is not a close analogue to oceanic western boundagpntsurHowever, a mechani-
cal deflection of wind currents by the mountains does play an important rthe ilife cycle of the
American LLJs. The coastal LLJs in particular are strongly impacted by &ledi® high pressure
systems.

Holton (1967) examined the oscillations of a density field over uniformly hegdetly slop-



ing terrain (e.g. the Great Plains). The resulting mechanism he propssex$@onsible for the
GPLLJ can be illustrated by looking at the variation of the pressure graftiere between the day
and night. During the day relatively high regions of the terrain will be heatete than air at the
same altitude that is not at the surface. This uneven heating leads to arprgssdient force di-
rected towards the higher elevation. East of the Rocky Mountains thikg@san westward flow
which is turned northward by the Coriolis force. Jiang et al. (2007) idea helpful analysis of
Holton’s theory and show the output from the Geophysical Fluid Dynamatsotatory (GFDL)
atmospheric general circulation model (AGCM). They show (see their Bighe zonal pressure
gradient force, air temperature, and wind fields averaged over the legiR@N to 40N at 1800 Lo-
cal Time (LT). The pressure gradient force is clear on both sides ®toéy Mountains and forces
upslope wind. An inertial oscillation due to the Coriolis force acting to the righhe motion, if
given enough time, will result in a northward flow east of the mountainsirguhe night, radiative
cooling of the orography reverses this process with an eventual satdHlow. These flows result-
ing from the heating add to the mean summertime northward wind over the Graa.Plaus the
mean flow is enhanced by the northward flow at night and decreasea lsptithward flow during
the day.

Jiang et al. (2007) also compared the AGCM to the North American Regiceahddysis
to investigate the relative importance of the mechanisms proposed by BlagkatiBlolton. They
found that both mechanisms are necessary for producing a GPLL bthateces well with observa-
tions. Blackadar’s theory accounts well for the diurnal oscillation btittlocation of the GPLLJ.
Wexler’s theory accounts well for the location but not the strength ondiwoscillation and Holton’s
theory does reasonably well with both the location and strength of the LLStiuggles with the
vertical structure and phase. Holton’s approach also does notm@idoothe uneven surface heating
which is clearly occuring each day. Another weakness of Blackatta@ry is that if the GPLLJ
is largely due to the inertial oscillation that is forced by changes in eddy siiscithen we should
observe similar jets everywhere that eddy viscosity changes periodidsidydo not observe this;

instead LLJs are almost always found near some prominent topograalicd such as a mountain



range or a coastline. This suggests that orography may serve to t@teer amplify the affects
considered by Blackadar.

South American mean January 2003 winds at 925 mb are shown in Figuré Biiking
feature is the strong cyclonic flow centered around the Andes. The Sanéti¢an Low-Level Jet
is seen in the southward flow east of the Andes and the Chilean Low-Ltewgstal jet is clear in
the northward flow over the eastern Pacific Ocean. The La Plata rigér Isaoutlined in red. The
SALLJ has a major impact on the South American hydrologic cycle, particularlie La Plata
basin. This basin extends over parts of five countries and supportsificsigt production of food
and hydroelectric energy. Understanding the spatial extent, stremgthvaaiability of the SALLJ
is therefore critical for the regional economies of several differenntries.

Figure 1.3 (from Jiang et al. 2007) shows the climatological summertime meanvead
tors at 925 mb. The top panel (1.3a) shows the North American RegioraiaResis (NARR).
The NARR is a combination of the National Centers for Environmental Prediatiesoscale Eta
forecast model and data from October 1978 to December 2003. Toleties of NARR is 32 km
with 45 vertical layers and output every 3 hours. For more informationsew et al. (2007). The
middle panel (1.3b) shows a control run by the GFDL atmospheric geciecalation model (real-
istic topography, full physics model with resolution dflatitude by1.25° longitude and 24 vertical
levels), and the lower panel (1.3c) shows another run by the GFDL nimdeVith the orography
removed.

In general there is very good agreement between the NARR (1.3a) anddbel (1.3b).
The model captures well the location and spatial structure of the GPLLIhenigt off the coast
of California. The model does not however calculate the correct magndfithe subtropical high
in the western Atlantic or the maximum in the LLJ wind field over the Gulf coast. Theetalso
does not capture the correct wind field in the Gulf of California. When tlegmaphy is removed,
the low-level structure in the wind field is dramatically altered. There are ngeloany LLJs; the
wind fields in the eastern Pacific and over the southern Great Plainsidyeufdaform. The wind

maxima that are present have been greatly weakened and spread isdtgdie clearly shows the



important affect of orography on the LLJs.

These two figures strongly suggest that the Rocky Mountains and thesAmgbact the for-
mation and maintenance of the GPLLJ, the SALLJ and the LLJs off the wastsof California
and Chile. The orographic impact can best be understood as haviegksesmponents. Possibly
the most obvious impact is the unchanging shape of the mountains that protrothe atmosphere
forcing the wind to change course. As shown in this dissertation low-letehje also influenced
through the radiative heating that occurs at the surface of the mounféaiogher indirect effect on
the LLJs comes from latent heating as a result of weather induced by thetaima When looking
at observations and model output it is not easy to determine which of tffestsgif any, dominate

or how they interact with each other.
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1.2 Influence of low-level jets on regional and global climags

Persistent and strong low-level jets have a major impact on the regional dinmabeth
North and South America. Both the GPLLJ and SALLJ transport large ata@minmoisture from
low tropical latitudes to the interiors of the continents and benefit agriculpnaduction. The
largest annual flux of moisture into the interior of North America occursnguthe summer months
and is attributed to the GPLLJ (Higgins et al. 1997). A significant amounteofitbisture necessary
for the agriculturally productive La Plata basin in South America is transgdhiere by the SALLJ
(Marengo et al. 2004, Vera et al. 2006). There are also persisbastal jets off the west coasts
of the Americas. The coastal jets strongly influence the weather pattedmadiation budgets of
the regions and lead to intense oceanic coastal upwelling. This upwellingitel @amponent of
the coastal economies and leads to rich marine ecosystems (Jiang et aJ. Z0&0California
coastal LLJ (CCLLJ) has been the subject of many studies while the Chitaah.evel Coastal Jet
(CLLCJ) has received less attention. Due to the excellent data now deditatihe Great Plains
LLJ and the significant economic impact of both the GPLLJ and the South Amatrich these two
LLJs have been studied much more than other documented LLJs arouridlibe g

Not only do the American LLJs directly impact the moisture budget, they haeebalen
closely tied to the formation of large regions in the atmosphere that are fdedmdeep convec-
tion and mesoscale convective systems (MCSs). This is accomplished bystivagerting large
amounts of warm, humid air from lower latitudes, enhancing upward motion in therltropo-
sphere and creating instabilities that often lead to convective activity. Thssaften occurs down-
stream of the LLJ maxima in the so-called exit region of the jet. Thus the salaartuations in
the strength and location of LLJs can influence the distribution of deepecting events (Stensrud
1996, Vera et al. 2006). This connection between LLJs and deegciivey activity is one of their
clearest connections to regional and global climates.

Mesoscale large convective systems (MCSs) impact the global climate rabeegs. They
produce a high proportion of the global precipitation. The vertical gradié heating produced

by MCSs strongly influences the atmospheric large-scale flow field (H@@8a). They influence
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the radiation budget through the production of abundant high-levetisland the surface energy
budget through latent heat fluxes. The global distribution of lightningble@s shown to correlate
highly with the distribution of MCSs (see Houze 2004, fig. 47). Througir 8teong influence on
MCSs, LLJs thus indirectly impact many components of the global climate.

Mesoscale convective complexes (MCCs) are a subset of MCSs.oEeey primarily over
land, tend to be quasi-circular, and are usually quite intense (Madd88).1B has been hypothe-
sized that their high intensity is in part due to large low-level buoyancy lawet that results from
the daytime radiative heating. However, over land the boundary layentes stable at night and
does not generally provide a favorable environment for MCCs to farmtensify. This should lead
to a clear minimum of MCSs over land because they need more than the 10 tark2ofidavor-
able boundary layer conditions that are provided by daytime heating. Tdistisctly not what the
observations show. In fact, in the subtropics and midlatitudes almost all d@@s observed by
Laing and Fritsch (1997, see Houze Fig. 46) occurred over landheaicean. Figure 46 of Houze
(2004) also clearly shows the regions where MCCs preferentially forbetthe same regions of
North and South America that experience LLJs. These LLJs, whicln id&ir maximum strength
at night, bring copious amounts of warm, moist air from the tropics into thet@Hains and the
La Plata basin making the nighttime boundary layer in these regions more litaséoa the main-
tenance of MCSs than they would be otherwise. This is the mechanism thndugih the spatial
distribution of MCSs over Earth is heavily influenced by LLJs. It is themfeasonable to conclude
that LLJs should not be ignored when modeling the Earth’s climate (Stet986).

Of the many studies on LLJs, two papers by Byerle and Paegle (2002) a@among only
a few that mention the cyclonic circulation over the Rockies and the Andes.fddus of these
studies is on the interaction between the orography and the mean zonalTimy. demonstrate
how orography can function as a scale transfer mechanism to focual gicdle patterns into re-
gional responses. This can potentially lead to increased predictabilitxtienee LLJ events. The
barotropic vorticity equation is used to study the possible impact of statior@sgtfy waves on the

weather patterns over the plains regions of North and South America.
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Spatial and temporal variability of low-level jets are perhaps the most imparteracter-
istics for those living in regions directly impacted by LLJs. For example, if thameenter of a
LLJ shifts by 70 km the regional rainfall pattern would also shift and caakllt in the rainfall
for a particular region significantly changing. Similarly, if the month in which the) ldccured
most frequently changed the resulting regional weather would most likalygghas well. Both of
these effects strongly impact agriculture because of the influence oipipagion rates during the
growing season for a particular area.

Low-level jets can be thought of as regionally and globally forced mgsostic features
of the general circulation that impact local climates. There are LLJs thautgthe atmosphere
with a wide spectrum of characteristics that are influenced by many difféaetors. The dominant
patterns of variability and structure of a particular jet are usually due to ltlgsigal mechanisms
that are forcing and maintaining that jet. We know that natural seasowc#lditions in these jets
influences regional temperatures and precipitation but it is usually nat e@atly how. Trying
to understand the natural variability of LLJs and any possible futureggsaim their behavior is a

major current challenge.

1.3 Research hypothesis

The hypothesis for the research presented in this dissertation is thatdheddatmospheric
response to a heated lower boundary significantly influences the fornaattbmaintenance of low-
level jets. Specifically, this work examines the dynamically balanced respaires stratified fluid
to obstacles and temperature anomalies on the lower boundary. This isitdtewvaultiple regions
of the globe that experience persistent low-level jets. It is proposédhigets on opposite sides of
the North and South American mountains are part of a single response itigloterticity forcing
that is the result of radiative heating at the surface of the Rocky Mouwmntad the Andes. The
results imply that the Great Plains LLJ and the California coastal LLJ are onwgponents of the
same response to diabatic heating of the Rocky Mountains and similarly thabtitfe Smerican

LLJ and the LLJ off the coast of Chile are part of the same responseatmgef the Andes. Each
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of these four jets has been previously studied, but almost exclusivelglatian. The dynamical
approach taken here provides a unified view for understanding thgraplically bound balanced
motions that are important to the life cycle of LLJs.

Although the work of Eliassen (1980) was not specifically applied to LL¥sri¢levant to
them and provides physical insight into the dynamical characteristics & ghrevalent phenomena.
His paper laid the theoretical groundwork for this research, but dihddtess applications to LLJs
or find solutions for non-isentropic objects as is done here.

Three simplified cases are mathematically studied. Figure 1.1 gives a scheioatie p
of these cases. An isentropic ridge for which no isentropes intersedowee boundary, a flat
(constant geopotential surface) lower boundary with a non-conlstaet isentropic surface, and a
non-isentropic ridge with isentropes intersecting its surface. Thesedhsss describe well many
observed scenarios in the atmosphere including a temperature gradiggmidiat lower boundary
and heated orography.

Isentropic surfaces are used as the vertical coordinate becauseirofdhvenient conser-
vation properties for adiabatic processes. A material element of fluid wiltrass an isentropic
surface unless it is diabatically heated. This allows for simple interpretatiotine gotential vor-
ticity dynamics. Isentropic surfaces that intersect the ground are athe giimary difficulties this
coordinate system leads to because it is challenging to correctly formuldtawleboundary con-
dition. Incorporating a massless layer and slightly modifying the necessargférms to and from
spectral space allows for a consistent physical domain with isentrofacesrand a geopotential
lower surface that is intersected by isentropes.

Although LLJs have been studied extensively for decades, to the bigst author’s knowl-
edge, the approach presented here is unique and leads to new insigtesniog the forcing and
variability of these jets. Orographic affects have been known to impact ltie for as long as
they have been studied. The precise impact of simple orographic heatimgrbly been quantified;
this research develops an analytic theory for this and applies it to the ateresprhis allows for

the determination of how the heated orography influences the wind and mlasadart from other
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forcing mechanisms.

In short, this dissertation presents the solutions governing the respbas&ratified fluid
to a heated lower boundary. The primary question motivating this reseavdheither heating of
the Rocky Mountains and the Andes plays a significant role in the genegttmaintenance of
low-level jets. One of the results is the ability to directly compute the impact ofgihgrdiabatic
forcing on the lower boundary.

The next chapter describes relevant observations of low-level jetsptér 3 lays out the
dynamical system to be studied and derives solutions onfthkne. A critical crest height is
derived above which it is no longer mathematically possible for an object iedmgropic. The
wind field is plotted for an isentropic ridge using these analytic solutions. €hdgs similar to
chapter 3 but the solution of the invertibility principle is generalized to a sph&he solutions
derived in chapters 3 and 4 are only closed solutions for the case oéating along the lower
boundary. In order to compute the wind and mass fields that result fratedhéower boundaries
chapter 5 solves the invertibility principle using finite-difference approxinmatiof the governing
equations. An analysis is then made of the results and how they comparestalggrservations of

LLJs. Final conclusions and a discussion of the implications of this rdseagecgiven in chapter 6.
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Chapter 2

OBSERVATIONS OF LOW-LEVEL JETS

2.1 Classification

A precise classification of a low-level jet is difficult because of the plettidrphenomena
that have been referred to as LLJs. The term has been used fonseanfiligh speed horizontal
wind having intense diurnal fluctuations, and for regions with no diurnatdlations. High speed
wind fields that result from mountain gaps and extend for roughly 200 lereweferred to as
LLJs (Macklin et al., 1990) as well as the synoptic scale Great Plains ldnJtbe order of 1000
km). Arakawa (1956) has discussed wind patterns at 500 mb as LLJstivhiteeight of the wind
maximum described by Macklin et al. (1990) was at just 80 m above grtaved (AGL). If a
maximum in the wind field at any height, with unspecified shear characteriatidsa horizontal
extent that ranges from the small meso-scale to the synoptic scale caiefed¢o as a LLJ then
the atmospheric phenomena that fall under the term LLJ will be so divedaamerous that a
general explanation of the dominant forcing mechanisms and variabilityghotibe expected.

Of the many LLJ definitions that have been used, one that has beconadentels that
proposed by Bonner (1968) in his study of the GPLLJ. He requiredeighhof the wind maximum
AGL to be no greater than 1.5 km (this is the same height used by Blacke@&f)j1 In addition
a hierarchy of criteria were defined based on the magnitude of the windak&s directly from

Bonner (1968) these criteria are as follows.

(1) The wind speed at the level of maximum wind must equal or exceed 12nd/snast

decrease by at least 5 m/s to the next higher minimum or to the 3 km level, whicisev



lower.

(2) The wind speed at the level of maximum wind must equal or exceed 16 nd/snast
decrease by at least 8 m/s to the next higher minimum or to the 3 km level, whicisev

lower.

(3) The wind speed at the level of maximum wind must equal or exceed 20nd/snast
decrease by at least 10 m/s to the next higher maximum or to the 3 km level,ewvbidk

lower.
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Figure 2.1: Isotachs (m$) along the southwest to northeast cross-section running from (21.5S,
63.5W) to (19.2S, 58.7W). The data was obtained between 15:00 and 16Q®mKJ 6 February
2003 (during SALLJEX) by the sawtooth flight trajectory of one of the NFOR-3 aircraft. From
Vera et al. (2006).

These conditions indicate that the stronger the wind speed maximum is forthé lgleater
the vertical shear will be. Bonner did not enforce a requirement thaGteLJ exhibit a diurnal
cycle, but the diurnal nature of the jet was clear in his observationdgbelal not specify anything
about the horizontal shear of the jet). The work of Reiter (1963) sstggbat jets with a strong
diurnal component that are connected to the nocturnal inversion sheuleferred to as ‘inversion
wind maxima’ rather than LLJs, although this term has not been fully adoptéakititerature.

Reiter goes on to say that the term low-level jet should refer to wind fieldshidénee a strong
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horizontal and vertical gradient and be noticeably impacted by the Cor@ii® f(this eliminates
strong low-level regional flows). The reality is that often the term lowliggtas used in the
literature is purely based on the vertical profile of the horizontal wind figlitlf as those shown in
Figure 2.3).

The South American Low-Level Jet Experiment ( SALLJEX) chose tgatite criteria of
Bonner (1968) for their studies of the SALLJ. Thus the magnitude anddheal profile of the
horizontal wind was the primary focus while the horizontal gradient wasKigure 2.1 shows data
from SALLJEX near a LLJ maxima. The zig-zag numbered line across theefigacks the course
of the aircraft which took the data. Along the bottom of the figure the opflgraan be seen in grey,
the slight rise on the left side of the figure is the foothills of the Andes, buptimeary mountain
mass is not displayed. The jet in this figure has high vertical and horizsimalr in the wind field,
reaching a maximum speed of 25 m/s. This provides a good example of a ltifilstiae somewhat
generic characteristics of LLJs proposed in Chapter 1.

Figure 2.2 (from Rife et al., 2010) provides a global view of the LLJs tieate a strong
diurnal fluctuation. Note the GPLLJ is clearly present in the July map andAhé Bis clear in the
January map. Also apparent are nocturnal LLJs on the west co&stumhi Africa, throughout the
Asian monsoon region,just off the Somalian coast, and western Australs&mBp was specifically
created to view nocturnally maximizing LLJs at or near their peak times, the time i%taimaausly
midnight at every point on the map. The index that is plotted was calculated loastwo criteria.
First, the wind at 500 m AGL must be stronger at local midnight than locahraow second the
wind speed at 500 m AGL must be stronger than that at 4 km AGL. Basdldese requirements
every grid point is assigned a numeric value which is then plotted as the @olBrgure 2.2, the
wind field is also shown with vectors to give a basic idea of the spatial striofuthe jets. All of
the global LLJs that were subjectively identified by Stensrud (1996yevieccessfully identified

using this objective technique developed by Rife et al. (2010).
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2.2 Data Coverage

Based on the literature, the interest in low-level jets began with the GreasRlaihin the
1930s. At the time there was only sparse data over that region, makingcuttitio ascertain the
basic characteristics of the jet. Over the past several decades, asltgpghhas improved and
interest in increasingly accurate weather forecasts has grown, theaatege of the GPLLJ has
become more regular and dense. Although data coverage has bedly steagasing in many
areas, in 2010 the only “well instrumented region” in which a nocturnal btdurred was the
Great Plains of North America according to Rife et al. (2010). Sparte daverage in many of
the regions that regularly experience strong LLJs has made validatiohbfrlodel simulations
difficult. Accurately observing the jets is necessary when checking helvmesoscale and global
models simulate LLJs. Observations are also a necessary componaiitfaatong remotely sensed
data sets. The connection between LLJs and MCSs as well as the ttarfdaaye amounts of water
vapor by LLJs make it clear that they need to be correctly represente@MsiGremotely sensed
data, and reanalysis products.

Obtaining high quality observations of LLJs has been difficult in the pasa feariety of
reasons. The jets in the Americas occur in regions with moderate to low pomglatioich often
corresponds to a low number of weather stations. Surface observalioesage not sufficient, and
when the vertical profile of wind is measured, it needs to be at a fairly l@gblution to properly
resolve a LLJ. Another difficulty is that the LLJ wind maxima rarely occurrriba traditional syn-
optic observation times for launching rawinsondes (0 and 12 UTC) bugrraitthe early morning
hours. This results in the LLJs either being significantly underestimatedl, togather missed in
some of the observations.

Radiosondes take direct in-situ measurements of temperature, humidityyessliie as a
function of height. When the wind data is also processed they are callédsavdes. Radars
and satellites also can provide wind measurements by tracking clouds. Radiissoffer a more
direct and precise measurement, but they are limited in space and time bdwusepresent the

atmospheric positions at a single horizontal location and time. Radars and satffidemuch
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Figure 2.2: 21-yr mean NLLJ index and 500m AGL wind field for Januawy duly calculated from
hourly analyses. The scale of a 10 m' svind vector is indicated in bottom right of January figure.
See text for details. From Rife et al. 2010.

better spatial and temporal coverage, but they usually need verificatian bxternal data source
and can only observe atmospheric conditions when measurable aemesptesent.

Many of the radar systems currently in use have difficulty resolving therlatvacture of
LLJs. The NOAA404-MHz radars only begin taking wind measurement5m AGL, but Sten-
srud (1996) (see his Fig. 3) shows tHé&t, of LLJs occurred below this height and Whiteman et al.
(1997) show that oves0% of LLJs occur belows00m, making consistent and accurate LLJ obser-
vations with these radars impossible. The National Weather Service (N@y8¢s an operational
wind algorithm that smooths the 6-second wind data over a 2 minute interval.sifmgicantly

downgrades the temporal resolution of their radiosonde data and resuajisténa different LLJ

19



1 1P
:‘: 1P
30} & 1P
P 1 g

I -
§ {r
é 20} g 1P
4P

< S

E :\~~ -1P
~ 4P
o 10 R 1P
g 10 >3 i
,—.".“ 3P

SFC { SFC

0 5 10 5 20
WIND SPEED (m s™)

Figure 2.3: Wind profile vs height from a high-resolution research raande (solid), a regular
NWS rawinsonde (dashed), and the NWS averaged high-resolutiansawde (dotted). From
Stensrud et al. 1990.

profile than is given by unsmoothed raw data. Figure 2.3 was taken fronsi8teet al. (1990)
and clearly illustrates this discrepancy between vertical wind profiles takelifferent radiosondes
or smoothed in time. The solid line shows a wind profile taken with an unavetrdgbeesolution
research rawinsonde. The wind sharply increases to a maximum of alhogsdelow 500m AGL
before sharply dropping back to lower values. Note that the magnitudesdflth is significantly
underestimated by the regular NWS rawinsonde and the averaged Bigbtien rawinsonde. The
height of the maximum wind is also overestimated. Another kind of radar beied i the U.S. is
the WSR-88D. This produces wind profiles every half-hour, but theyaly calculated over verti-
cal intervals of 304m, so the vertical resolution is quite poor. It was alewshhat a high degree
of quality control is needed to confirm the validity of remotely sensed datahwk obviously a
problem over regions with little to no in situ observations.

As part of their study of the Great Plains LLJ climatology Whiteman et al. (L68mpared

data from a104-MHz radar with that from &15-MHz radar. The915-MHz radar was found to have
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sufficient vertical resolution to resolve many LLJ characteristics butfrgagiently contaminated
with noise produced by nocturnally migrating birds. Another source ofal@ifidata is the National
Oceanic and Atmospheric Administration Profiler Network (NPN) which cassi§ 35 doppler
radar sites in 17 states of the central United States. These sites provitievestical wind profile
data and are an excellent source of data for the study of the GPLLAntrast to the GPLLJ, the
regions of South America with LLJs have been poorly observed. Thisnaat it difficult to form
a clear picture the SALLJ mean characteristics, particularly its naturalbitya

In addition to increasing direct observations, the development of betiaalgsis products
has given an improved understanding of the global atmosphere and sgstams. The global re-
analysis developed by Rife et al. (2010) provides mesoscale horizestduition with grid spacing
of 40 km. The reanalysis hourly data allows for relatively detailed studye§fatial structure and
diurnal cycles of LLJs around the globe. One of the goals of Rife e8l1{) is to determine the
underlying common features of NLLJs around the globe.

Thus throughout most of the past several decades some obsenattibhds have been
available but several key issues created accuracy problems with théltiataituation is improving
but it will still be quite a while before a high quality climatology of LLJs is availaiRather than
focusing on climatological aspects of LLJs the next section presentsvalisas from individual
days or averages over short time periods of the LLJs in the Americas. wilikelp guide the

choice of parameters used in the analysis of chapter 5 and instruct ayr@téion of the results.

2.3 North and South American Low-Level Jets

The purpose of this section is to provide a simple picture of the American Lefssterived
mostly from observations but with a few of the characteristics drawn fromiahforecasts. Figures
2.4-2.7 show mean reanalysis meridional wind fields and isentropes thatmeasured during
the Year of Tropical Convection (YOTC) mission. The resolution of theadgsis wind fields is

0.5° x 0.5° and there aré1 irregularly spaced vertical levels. The mission occurred from Nea§g

through April,2010. For more information see Waliser et al. (2010). Plots from the summerrseaso
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Figure 2.4: Mean warm season reanalysis meridional wind field at 21n$tfre Year of Tropical
Convection. The magnitude of wind is given by colorbar, black contogrésantropes.

in each hemisphere were chosen. Wind fields around the Andes ara stt@®¢S and 30S. The
SALLJ often maximizes near the latitude of 20S, but as seen in Fig 2.5 the Idola3tia stronger
farther south. Cross sections of the wind fields around the Rocky Mimsreiee shown at 30N and
35N. As shown in Figure 1.2 the GPLLJ maximizes at about 25N, but asiséggures 2.6-2.7 it
is still quite strong at 30N and 35N.

The zonally symmetric cyclonic motion centered on the mountain ranges is the bvisi®
feature of the wind fields in these four figures. The coastal LLJs tendue & broader horizontal
scale and a wind maxima that is closer to the surface than the jets to the eashoilhi@in ranges.

The isentropes are generally drawn down over the mountain ranges)targect the surface along
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Figure 2.5: Same as 2.4 butat30 S

the sides and tops of the mountains. This agrees with the basic conceptwalahtite potential
temperature field above a heated ridge that was proposed in chaptirdlsti worth noting that the
meridional wind is nearly zero directly over the mountain crests. For the sokitibthe invertibility
principle derived in chapters 3 and 4 the wind will be assumed to be zerdle/edge crest. This

assumption is not necessary for the solution method of chapter 5.

231 The South American LLJs

The combination of very sparse data in the region of the SALLJ, and msmiution in
the cases where data is regularly being taken has led to a poor reptiesenfahe SALLJ and

the precipitation cycle in reanalysis products. The region to the east ofridesAwas so poorly
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observed in the last century that the SALLJ was not identified until the<sB&6ed on individual
case studies and a small number of rawinsonde observations. Baséyl droF\Vera et al. (2006)
there are no operational radiosonde sites directly to the east of the Aertesen 15 S and 30 S.
Because this is the critical region of the SALLJ the temporary observatiatabork that was set up
for SALLJEX included six radiosonde sites and more than ten pilot balloos sitthis particular
region, with additional sites in the surrounding areas. SALLJEX provatedccessible source of
high quality data for the region east of the Andes during the observingdef 15 November 2002
through 15 February 2003. Radiosondes, pilot balloons, and a deinsgauge network were used
to gather data in parts of Argentina, Brazil, Paraguay, Bolivia, and.PEne SALLJEX mission
did an excellent job of determining important spatial and short term temploaahcteristics of the
SALLJ and supplied data that will continue to be used in future research.

Figure 2.1 shows a specific SALLJ event in February 2003 with a maximurd aiound
25 m/s at a height of 800-700 hPa. This was considered a moderateamgeioctin be taken as
representative of the SALLJ. Throughout SALLIEX the height of th&imam wind fluctuated
between 500m-3km. Often the height of the maximum wind will rise during therdégcting the
deepening mixed layer with the jet ‘riding’ along the top. North of 20 S Sauld. €2000) suggest
that during the warm season the SALLJ maximizes between 0600 and 1ZD0AHen the core of
the jet is around 30 S the time of the jet maximum shifts to about six hours eatrlier.

During the observational period of SALLJEX there were 112 recotd&$E cases with an
average lifetime of 11 hours. There were two peak times at which the MG8hed their mature
stage. This tended to occur either in the afternoon or in the night/early mortiingas shown
that the maximum extent of the MCSs was reached in phase with the time of the Mudhuoma
for around70% of the cases occurring over Argentina, southern Brazil, and UrugBay. LJEX
confirmed the diurnal variability of the LLJ wind field, but did not obtain therdal fluctuations
of the rainfall (Vera et al. (2006)). Several previous studies hagested that the northwestern
Argentinian low (NAL) influences the southward intensification of the SAM&Jich was confirmed

with SALLJEX data.
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The Chilean low-level coastal jet was studied by Jiang et al. (2010)ir pPhper focuses
on understanding the characteristics and dynamics of the Chilean coagtaltlis primarily a
modeling study that used output from twice-daily 48 hour forecasts fosdbieheast Pacific region
that were made in support of the Variability of the American Monsoon Sys¥aM(QS) field
campaign (October and November 2008). They propose that synoptefsccing is the primary
forcing mechanism driving the Chilean coastal LLJ. The southeast ®&djfh pressure system
(SEPH) is the dominant pattern of the synoptic environment and its locatioshveam to be well
correlated with the strength of the CCLLJ. The SEPH tends to move eaststobetwveen two
preferred locations. These correspond to it being either close to drofarthe coastline. When
the SEPH moves closer to shore, the LLJ intensifies and the location of thenaixidhum moves
south.

There are striking similarities between the Chilean coastal LLJ and the Cadifooastal
LLJ. They are both directed equatorward and have similar spatial scéteswind speed maxima
for both are located between 100 and 200 km offshore and follow mountsnegions of coastline
while being strongly influenced by the high pressure systems of the Pacifieitowest. These
similarities suggest that the coastal jets could be forced by similar dynamichbamisms. Several
studies (Jiang et al. 2010, Maz and Garreaud (2005), Chao (1985)) have hypothesized that the
are three important factors that play into the forming of these two subtropesital jets: subtropi-

cal high pressure systems, the topography along the coast, and theekadifferential heating.

2.3.2 The North American LLJs

The Great Plains low-level jet has been extensively documented aragparpeview of the
literature is outside the scope of this dissertation. The basic characterstitscassed by Bonner
(1968) and Whiteman et al. (1997) are briefly summarized below. Borindiesl data from 47
rawinsonde stations in the United States for the years 1959 and 1960, Whigtmla (1997) used
data from a single station near the border of Oklahoma and Kansas duwviagyaar period (7 April

1994 through 30 March 1996). In general the Whiteman et al. (199@Y $tad much better vertical
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Figure 2.6: Same as 2.4 but for 30 N

and temporal resolution, but because it is from only a single site, the rémuttdBonner’s study is
also instructive.

Bonner found that GPLLJs occurred most frequently over Oklahordakamsas; this con-
firms the good choice of location chosen for the study by Whiteman et al.7{1%onner also
found that GPLLJs tend to have the maximum wind speed occur in the earlyngamnd that they
occur most frequently in the months of August and September. In cotbrése theory of Black-
adar (1957) he determined that the heights and magnitudes of the LLJ&tga/eariability and do
not correlate well with the height of the surface inversion.

The study of Whiteman et al. (1997) revealed several interesting feadineut the GPLLJ.

They did not find a large difference in frequency between the warntalidseasons. The strongest
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Figure 2.7: Same as 2.4 but for 35 N

LLJs are much more common than previously thought and the mean heightwirtthiénaximum
is significantly lower than other studies have reported. The mean heigra @fitld maximum was
given by Bonner (1968) as 785 m AGL, Mitchell et al. (1995) showed the 1000 m AGL, and
Whiteman et al. (1997) reported it to be 596 m AGL. This discrepancy is cthimbe entirely due
to the differences in vertical resolution of the observing tools used in tferelift studies. It seems
clear that there is a significant amount of variability in the height of the windimafor both the
GPLLJ and the SALLJ and that better vertical resolution is needed in thenai®ns. Based on
Whiteman et al. (1997) the vertical structure of the GPLLJ has an avernagespeed maximum of

17. 1 m/s with this maximum usually occurring below 500 m AGL.
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2.3.3 Summary

The observations presented in this chapter highlight the dominant cyclamicfield around
the Rocky Mountains and the Andes. It should also be noted that the Igesstaf the Americas
have common characteristics, as do the LLJs over the plains regions entweesontinents. The
jets over the plains tend to maximize at night or early in the morning and are oftemfrequent
during the warm season. They have a wind speed maximum on the ordemafsZand generally
occur between 500 m and 2000 m AGL. Neither of the coastal jets are sstdohe mountains as
the plains jets and are more directly tied to the high pressure systems of the Rakéwise, there
are similarities between the mountain ranges of the Americas. Both the RockytMiogiand the
Andes are generally oriented in the north-south direction. They bothadeked on the west by
the Pacific ocean and on the east by plains gently sloping to lower eleva@nthe other hand
the Andes are higher, steeper, and narrower than the Rockies andidies Are much closer to the
equator. In the following chapters we explore the hypothesis that thesertigslaf the LLJs are

in part due to the atmospheric response to the heating of these mountains.
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Chapter 3

DYNAMICAL THEORY OF TOPOGRAPHICALLY BOUND BALANCED
MOTIONS ON THE f-PLANE

3.1 Introduction

Eliassen (1980) considered the following geostrophic adjustment prolméially, a stably
stratified fluid is in a state of rest over a level bottom surface orf-plane. Over some arbitrary
time interval, the bottom topography is raised to its final shape and any tramseetia-gravity
waves are allowed to disperse away. The final adjusted wind and massdielthen determined
via the potential vorticity (PV) invertibility principle. He found that a solution witlfc@nstant
density lower surface could only occur when the height of the orogragats less than some critical
value, which is here called the critical crest height. For orography tkegezls the critical crest
height, the summit will penetrate into the less dense layers above.

Eliassen derived analytic solutions for the case of an isentropic objecawigight less than
the critical crest height. He did not plot these solutions or derive solufmmany obstacles that
penetrated through the surface density layer (his ‘warm’ obstacle). dfierlearly demonstrated
the usefulness of isopycnic or isentropic coordinates for geostrogljistanent problems when
used in combination with the conservation of potential vorticity.

This research examines a similar problem of the balanced wind and massgeld®pog-
raphy that has been heated by radiative processes, resulting in aicyfbbov around the obstacle.
This allows for an interpretation of the prominent low-level jet circulationsested over the Amer-

icas as part of the topographically bound motion associated with the PV anprodlyced by solar



heating. Specifically, the Great Plains low-level jet and the Californiatablasv-level jet are part
of the same dynamical response to heating of the Rocky Mountains and bdBotith American
low-level jet and the Chilean coastal low-level jet are part of the samardigal response to heating
of the Andes.

The vertical coordinate of the mathematical model was chosen to be potenterizture
because of the simple mathematical form the expression for PV takes, itsdakeg to Eliassen’s
model, and the fact that potential temperature generally increases montyowitta height in the
atmosphere. This quickly raises the question of how to handle a lower boutttht is not an
isentropic surface whenever the domain of interest includes the lowarspphgre. An excellent
discussion on the implementation of isentropic coordinates is given by HsArakdwa (1990).

They list several advantages of using this coordinate system, a fewidf ate summarized here.

(1) Potential temperature (entropy) is conserved for a material elemeadibatic processes.

This implies that isentropic surfaces are also material surfaces.

(2) The expression for Ertel’s potential vorticity in isentropic coordinai@ss not include the
vertical derivative of the horizontal velocity. This is one of the reasseastropic coordi-

nates are especially convenient when analyzing PV dynamics.

(3) This choice of coordinates provides a quasi-Lagrangian view ofiéineral circulation of
the atmosphere. When diabatic heating is zero, the pressure torque activgamordinate

surfaces is the only mechanism for angular momentum to be vertically tregdfer

Of course there are disadvantages to using this coordinate system aghestivo primary
ones being the already mentioned intersection of isentropes with the loweddguand the fact
that the mass between two surfaces can become infinitesimally small, leading tatatomal
difficulties. As discussed by Hsu and Arakawa (1990) these are tedthtificulties rather than
intrinsic and can be dealt with in a straightforward way.

To the best of the author's knowledge the idea of using material surfaceke vertical

coordinate was first proposed by Starr (1945). Shortly after thiseho(1955) used isentropic
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surfaces in his definition of available potential energy. He developed #zedfi‘massless’ layers
to cope with the problem of isentropes that intersect the surface. Whisernope intersects the
surface, imagine that it continues just under the surface. The pessisung this subsurface isentrope
is defined to be the surface pressure at that location, thus there camizess between the isentrope
at the surface and the one ‘below’ it. This implies the pseudode@s%@p/%) is equal to zero and
the PV is infinite in the massless layer. Fulton and Schubert (1991) dentedsting practicality
of using a massless layer with the semigeostrophic equations. They appliepphiach to the
problem of surface frontogenesis. The basic idea is to formulate th&pvedequation in terms of
the inverse of the PV. The governing equations are still valid in the massiessdad numerical
schemes for solving the system of equations have been presented in titeriggsee Fulton and
Schubert, 1991; Arakawa and Hsu, 1990).

In the next section the basic elliptic system is set up with appropriate boundaditions
and the invertibility principle is derived. All of the interesting physics of thelgem comes directly
from the lower boundary condition and the intersection of isentropic sesfavith this boundary.
For the particular system studied here, finding an analytic solution is much simgieectral space
than it is in physical space. With this in mind a horizontal Fourier transformjdied to the system
and results in a vertical structure equation. This vertical structure equedio be solved in at least

two ways. The method using a Green’s function is presented becauseahipgctness and insight.

3.2 Basic governing equations

The following sections present equations describing the simplest possyseahsystem
that still retains the ability to describe the balanced response of a fluid tolyimgeheated orogra-
phy. Consider the inviscid, adiabatic, quasi-geostrophic, quasi-btatio, motions of a compress-

ible stratified fluid on ary-plane. The basic equations for this system can be written as

Duy oM

ot vty =0 (31)
D, oM

oM _ 3.2
ot Tl g, =0 (3.2)
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oM

Do ou Ov
Do s (am ay) _o, (3.4)

where

oM OM
(fvgv _fug) = (ama ay)

are the geostrophic velocity components. The Exner function is defindd by c,(p/po)"/»,

(3.5)

M = 011 + ¢ is the Montgomery potentialp is the geopotentialy = —(1/g)(dp/99) is the
pseudo-density, and
D 0 0 0

D _9 9 9 36
Dt ot T Yar T Vay (3.6)

is the material derivative. The constant reference pressure is addorbep, = 1000 hPa,R =
287.0 J kg~! K~1 is the gas constant of dry air, ang = 1004 J kg! K~ is the specific heat of
dry air at constant pressure. The buoyancy freque¥i¢§) is an important parameter that gives a

measure for the degree of stability of the fluid under consideration. Iresdefined by

~\ —1
B ' dIl
N%(6) = 7 <_d9> : (3.7)

WhenN? > 0 the fluid is stable, wheV? < 0 the fluid is unstable. Following Eliassen (1980) two
special cases of the buoyancy frequency are considered whichewidifbrred to as reference state
1 and reference state 2. For Reference state 1 we assume that thadyuisgguency is inversely
proportional tod, i.e., N(0) = N16p/60, whereN; andfp are constants. A second reference state

could also be defined by assuming the buoyancy frequency is a congtad,0) = Ns.

3.3 Invertibility principle

The material conservation law for potential vorticity takes the fan®/Dt = 0. Fory-

independent motions the potential vorticity is defined by

B ov 190p -1
pe(re5) (o) oo

with f denoting the constant Coriolis parametgtthe acceleration of gravity(x, ) the merid-

ional component of the flow, anez, #) the pressure. In the far-field the flow vanishes, and the
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pressure and potential vorticity take on the horizontally homogeneoussyilieand P(6), which

are related by

- 1op\
(i) @9

Denoting the density by(z,0) and the far-field density by(#), it is easily shown that
0p(dIl/dp) = 1 and@p(dIl/dp) = 1, wherell = c,(5/po)™/ . This allows the ratio of (3.8) to

(3.9) to be written in the form
7= (+5) Goos)
- (r+3) (Simrayanon) a0
~(r+3) ()

where the last equality follows from approximating tfie/p) factor by unity. Using the definition

for buoyancy frequency, (3.10) can also be written in the form

v fO?N?P\ o1l P
D - _ ~ = T_l .
8a:+< 2P ) 29 f(P > (311)

wherell’(z, 8) = II(z, §) — I1(6) is the Exner function anomaly.

We shall require that (3.11) holds in a region that includes an underlypagraphic feature
whose geopotential surface is specifieddgy(z). We assume that, due to radiative processes, the
potential temperature varies along the topography according to the sgdaifietionfs(x). For
simplicity, we assume that bothy (x) andfg(z) are symmetric about = 0. The inverse oflg(x)
iszg(0). When & surface intersects the topographic surface, it is considered to ruarjdst the
topographic surface with a pressure equal to the surface presslitbus form a layer that contains
no mass. The point at which a particutasurface intersects the topographic surface is defined to
bexg(0). The isentropic surface that is below the earth’s surface over the taplog feature and
is at the earth’s surface in the far-field is labeteg Thefp surface is the lowest isentrope that is
in the massless layer for all values:ofand defines the lower boundary of the domain. Thug, in
space, the massless layer is defined to be the regjord 6 < 0s(x). The crest isentrop&() is

defined to be the isentrope that just touches the crest of the ridge. Agsbwotimgeostrophic and
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hydrostatic balance leads to the thermal wind relation given below in (3.1R)at®ns (3.12) and
(3.13) are Cauchy-Riemann conditions on the unknown functi¢ns?) andIl’(z, 6).

We now assume that, except in the massless layer, the potential vorticity isnumifoeach
isentropic surface, i.eP(x, ) = P(0) for z5(#) < x < oo, so that the right hand side of (3.11) is
zero and (3.11) simplifies to the top entry in (3.12) below. In the massless thggrseudodensity
vanishes, i.e.gp/00 = 0, or equivalentlydIl/0f = 0, which can be written as the second line
in (3.12). An alternative derivation consists of multiplying (3.11) ﬁyP and then taking the
limit as P — oo. As for boundary conditions, we require thaandII’ approach zero in the far-
field. We also require that the upper boundary is both an isentrépie §) and isobaric surface,
which is expressed in the second line of (3.14). To formulate the lowerdawyrcondition we
combine ther-derivative of M — 011 = ¢ with the geostrophic and hydrostatic relations to obtain
flv —0(0v/08)] = (0¢/0x), which, when applied & = 0z yields the bottom entry in (3.14). In
summary, the elliptic problem is

v ( f02N2> orr’
+ -

=0 for z5(f) <z < o0,

i - J
O pe ]52 anfa (3.12)
=f f <
( 7 )80 f for 0<z<ag(0),
H/
f@—a =0 for 0<xz<o00, Og<0<0r, (3.13)
00  Ox
with boundary conditions
v—0and II' = 0 as z — oo,
II'=0at 6 =0, (3.14)

ov B dos(x) B
f(v—ﬁae> Ir at 0 = 0p.

3.4 Fourier transform of the invertibility principle

To solve the invertibility problem (3.12)—(3.14) Fourier integral transfoars used. For
simplicity it is assumed that the specified functiofsz) andfg(z) are symmetric inz, so that

IT'(x, @) is symmetric inz andv(z, #) is antisymmetric inc. The Fourier sine transform pair for
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v(x,0)is

0(k,0) = 2 /Oov(a:,e) sin(kz) dz, (3.15)
T Jo
v(z,0) = /Ooﬁ(k,ﬁ) sin(kx) dk, (3.16)
0

while the Fourier cosine transform pair foif (z, 0) is

Ir'(k,0) = 2 /OO ' (z,0) cos(kx) du, (3.17)
T Jo

H'(m,G):/mﬂ'(k,G)cos(k:x) dk. (3.18)
0

A similar cosine transform pair exists for the surface geopotentjak) and its transformpg (k).
We now wish to Fourier transform (3.12), (3.13), and the last two line8.d#(. To Fourier

transform (3.13) we multiply it byin(kz) and integrate over: from 0 to oo, thereby obtaining

(3.23) below. To Fourier transform (3.12) we first multiply the top line in (3.8 cos(kx) and

integrate over: from z () to oo, thereby obtaining

 Ju(z, 0) () gu(x, 0) fOENZ2 d [>* _,
gz, 7) - il 1
/0 5 cos(kx) dx /0 5 cos(kx) dx + Tl (x,0) cos(kx) dx

dzxs(0
db

) cos(kxg(0)).

(3.19)
Similarly, multiplying the bottom line in (3.12) byos(kx) and integrating ovet from 0 to xg(6),

we obtain
f92N2
g2

d IS(G)H’ 0 kx)d
d@/o (x,0) cos(kx) dx =

fO>N?

o) _ (3.20)
/ f cos(kx) dx + 7 ' (xs(0),0) zs(6) cos(kxg(0)).
0

de
Taking the sum of (3.19) and (3.20), noting the cancellation of theTias(0), §) terms, we

obtain

°° Jv(x,0) fOPN%2d [>_, B
/0 5 cos(kx) dx + 7 d9/0 IT'(x,0) cos(kx) do =

z5(0)
/0 (f + 811(8;1; 0)> cos(kz) dx.

Integrating the first term by parts, using the symmetry conditi@y¢) = 0 and the lateral boundary

(3.21)

conditionv — 0 asz — oo, and then noting the transform relations (3.15) and (3.17), we obtain
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(3.22), whereF'(k, 0) is defined in (3.25). In summary, the Fourier transform of the elliptic problem

(3.12)—(3.13) is

[ fO2N2\ dIl
—F 22
v+ (£257) G = Fko) (3.22)
f@ + k=0 (3.23)
do o '

with boundary conditions

II'=0 at 0 = 6,

(3.24)
dv
0@—7}—?@55( ) at 0—93,
whereF'(k, 0) is defined by
2 z5(0)
— / ( ) cos(kz) dz
i (3.25)

i [ (edi;% ) 2950 iy,

The first line of (3.25) can be interpreted as a measure of the “absoluteopi vorticity in the
massless layer." In the second lihgk, ) is composed of three separate pieces, the first is due to
the Coriolis force, the second depends on the radiative heating alongrtaees and the third piece
depends on the particular shape of the ridge being studied. Note tha&t, 06, (3.25) yields
F(k,8) = 0 sincexg(f) = 0. In other words, (3.22) is a homogeneous equation above the crest
isentrope. The second line in (3.25) is derived as follows. In the madalgss)(z, 0) = ¢g(x)
andIl(z,0) = II(z,0s(x)), so that the Montgomery potential in the massless layer is given by
M(z,0) = 011(0s(z)) + ds(x). Using this formula foM (z, ) in (Ov/0x) = (1/f)(0*M/0z?),

we obtain the second line in (3.25), which allows us to comgute, #) in terms of the specified
functionsIIg(z), 0s(z), andgg(z). Rather than having to specify bolhy () andfg(x) it would

be nice ifés(x) was the only function (except the lower geopotential surface) thatenktxbe

specified. The Exner function at the geopotential surface can be waiten

Ms(ps(x)) = ¢, (p 8(@)7 = (‘3 93R>£”- (3.26)

Po Po

Wherey = R/c, and the assumptiop/p = 1 has been used, as it was in the derivation of (3.11).

Now, rather than having to specify bofy(x) andps(z) we only needds(z). For a given topo-
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graphic scenario, ond#s () is given, the wind and mass fields that result from the adjustment to
the topography and temperature along the lower boundary should be tadstgu

As can be seen from the vertical structure equations (3.22)—(3.24ndsal wind and mass
fields are forced in two ways: b'(k,#) and by¢g(k). When bothF(k,6) and ¢s(k) vanish,
the solutions of (3.22)—(3.24) argk,0) = 0 andII’(k,0) = 0. Thus, for nontrivial solutions
we can consider three special cases: (i) nonzero topograiqux # 0) with no variation of
potential temperature along the bottom boundafyk( 6) = 0); (ii) flat topography s (k) = 0)
but with variation of potential temperature along the bottom boundai:(#) # 0); and (iii)
nonzero topography with a variation of potential temperature along thacgurfEliassen (1980)
studied case (i) and showed that physically reasonable solutions aiblpasly if the crest height
of the mountain is less than a critical value. In case (i) the topographicaliycdbalanced flow is
anticyclonic, so this special case is not useful for describing cyclomiesfsuch as those shown in
Figs. 1.2 and 1.3.

Our analysis shows that, for a given reference state buoyancyefneguprofile N () and
topographygs(x), the only remaining field that needs to be specified is the potential temperature
distribution along the lower boundary, i.@g(x) or its inversexg(#). The entire distributions of
the balanced wind and mass fields are then given by the solutieng) andIl’(x, #) of the elliptic
problem (3.12)—(3.14).

In the next section we consider thé(#) profile for reference state 1 which allows for a

simple analytical solution of (3.22)—(3.24).

3.5 Solution of the vertical structure equation

The Exner function for reference state 1 can be found by integratify {@ obtain

2

M (0) = ¢, — QleQ (6 —05). (3.27)
B

after which the reference state hydrostatic equation can be integratethio ob

2

~ g 2
M(0)=c,0 — ——— (0 -0 . 3.28
1( ) Cp 29128N12 ( B) ( )
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Figure 3.1: Pressure as a functionfos computed from (3.27) for reference state 1 (solid curve)
and for reference state 2 (dashed curve).

Sinceg; (0) = M, () — 011, (0), we can use (3.27) and (3.28) to obtain

2

é1(0) = 20;;]\712 (6% - 6%) . (3.29)

The relationship of pressure and potential temperature for referdate 5 as determined from
(3.27), is plotted as the solid curve in Fig. 3.1 and for reference state 2 amghed curve, where
we have chosen, = 1004.5 Jkg ! K71, g = 9.8 ms2, 05 = 295K, and(0p/g) N = 5.1373 K
km~1.

Equations (3.22)—(3.23) represent a system of two equations and tmowns. When one
of the unknowns is eliminated a second order ordinary differential equatith variable coeffi-
cients is obtained. IfT'(k,6) is eliminated and reference state 1 is assumed, the second order

ordinary differential equation with constant coefficients #6k, #) is found to be

d*o 9 gK
— — KD = — F. 3.30
a2~ "l T T repN (3.30)
and the boundary conditions are
dv
25 =0 at 0="0r, (3.31)
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o . k-
05 ._?¢gk)m;9_93, (3.32)

wherex(k) = gk/(f0pN1). We now solve (3.30)—(3.32) via the Green’s functig(k;, 6, 6").
Green's functions are quite useful when solving nonhomogeneoesatitial equations. The
basic approach is to replace the forcing function with a delta function dmd #te resulting equa-

tion. Thus from (3.30) the Green’s function is the solution of the differéetjmation

2
%g—ﬁg:—mw—a% (3.33)

with the homogeneous boundary conditions

dg
dg
9@—9—0 at 0 =0p, (3.35)

where the Dirac delta functiof(6 — #’) vanishes foP +# ¢’ and satisfies

0+
/) 5(0—0)do =1. (3.36)
0

/_

The variablg’ represents a single point of excitation; or an impulse at the point in the dorhairew
6 = 0. Thusg is the solution of (3.30) when the forcing is concentrated at the goiatd’. The
solution of (3.30) for general forcing is then given by an integral onaltiple Green'’s functions at
each point of excitation.

For#’ < 6 < Or, the Green'’s function is a constant times the solution of the homogeneous
version of (3.30) satisfying the upper boundary condition (3.31), whilé£ < 6 < ¢’ the Green’s
function is a constant times the solution of the homogeneous version of Ea88fying the lower
boundary condition (3.32). The two constants are determined by reqttiang (%, 6, 6’) is contin-

uous at) = ¢’ and that the jump in the first derivative satisfies

dg o'+ B
|:d€:| o = —K, (337)

which is obtained by integrating (3.33) across a narrow region suriogrid= #’, making use of
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Figure 3.2: The Green’s function for select values:6f. For this figured’ = 305K.

(3.36). This procedure results in

1 | cosh[k(07 — 0)] {k0p cosh[k(§' — Op)] + sinh[k(0' — 0p)]}  for §' <6 < Or,

G(k,0,0") = D
cosh[k (0 — 0)] {kOp cosh[k(0 — 0p)] + sinh[k(0 — )]}  for O <0 < ¢,
(3.38)
where
D = cosh[k(0r — 0B)] + kOp sinh[k(0r — 0p)]. (3.39)

To express the solutiofi(k, #) in terms of the Green’s function, we multiply (3.30) Byk, 6,6"),

multiply (3.33) byo(k, #), and then take the difference of the resulting equations to obtain

d (,do dG\ gk S0l
de(%e‘”d@)‘ feBNng—f-m;&(@ 6. (3.40)

Integrating (3.40) oved, using the top boundary conditions (3.31) and (3.35) and the bottom bound

ary conditions (3.32) and (3.35), using the delta function property (3&&J finally using the
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Green’s function symmetry properéy(k,6’,0) = G(k,0,6’), we obtain

g br

i(k,0) = F(k,0)G(k,0,0") d¢/
Op N
105N Jo (3.41)
B &(& (k) cosh[k (07 — 0)]
g cosh[k(0r — 0p)] + kOp sinh[k(0r — 0p)] )
Using o in combination with (3.23) gives
. 2 GT /
1 (k,0) = _fegNZ/ F(k,H’)ag(kg;’H ) ag
B'1 /05 (3.42)

~

— ¢s(k)

< K sinh[k (07 — 0)] )
cosh[k(f7 — Op)] + kbp sinh[k(07 — 0p)] )

The first term on the right hand side of the these solutions describessiiienge of the fluid due to
the isentropic vorticity forcing in the massless layer, the second term desctib response due to

the orography.
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Figure 3.3: Wind field for an isentropic lower boundary. The Gaussi#fwitdh of the mountain
is 500 km, the maximum height is H=1700m, and the latitude is 30N. Solid black asraceithe
isentropes.

Figure 3.3 shows the solution for an isentropic mountain. There is no matsfessn this

case so the entire solution is forced from the term in equation (3.41) thavés/the geopotential.
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Note that although this chapter has been developed ésisghe vertical coordinate, and batlnd
II were computed inaf,#)-space this figure is shown im:f)-space. This makes it easier to view
the isentropic mountain that is forcing the atmospheric response. Figurdsevaiown in Chapter

5 using both £,0)-space andx,#)-space and the relative advantages will be discussed.

3.6 Critical crest height

An important parameter of the preceding theory is the maximum height an thestachave
while remaining an isentropic object with no isentropes intersecting its surfacthe following
an analytical expression is derived which predicts this height. Althouglil¢ketls are different,
the logic of this section closely follows that of Eliassen (1980) in his derigaticthe critical crest
height (#.).

For our balanced physical system we have assumed that hydrostaticd@a/ /06 = II)
holds. Because pressure decreases with height, it followdltkall also decrease with height and
# must increase monotonically with height for it to qualify as a vertical cootdinghis implies

0’M oIl
— = —<0. 3.43
967 ~ 99 = (3.43)
Assuming the Exner function can be written as a sum of a mean part anduabpdion part and

using the buoyancy frequency from reference state 1, the abovedlilgccan be written as

2 / oo ATT/
(ngeB) > 881; = ; 881; cos(kx)dk. (3.44)

The solution for an isentropic mountain was found to be

93N1 a} k - 6_5(0_93) _ G_H(20T_GB_9)
(k. 0) = =% sk . 3.45
p (k,0) f¢5( ) (1 + K05 + (1 — KOp)e260r—05) (3.45)

We now can write a general inequality that depends on the function spegifypography which

must hold for a hydrostatic atmosphere:

g 2 o0 97 k 6—5(9—93) +6—K(20T—03—9) k dk 346
<N193) >/0 k“ps(k) 5 05 + (1= rp)e 2701 —0p) cos(kx)dk. (3.46)

For an isentropic surface, there is no massless layer and the potentiatatungalong the orogra-

phy will be constant{s = 65 = constant). The maximum height of the obstacle will bexat= 0
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Figure 3.4: Critical crest height as a function of latitude for referenated.

andé = 6p. Using a Gaussian shaped obstacle we can write

2 oo —QKZ(GT—@B)
g\ _ gHa / k2 (k/2)? Lte dk,  (3.47)
N10p V2 Jo 1+ k0 + (1 — klg)e—2607—0p)

or, changing the integration variable

dk. (3.48)

H, V2

Theoretically this predicts the maximum height an obstacle in the atmospheraeartéfore it

1 af0sNy (05N 2 /oo P e—(af0pN1r/2g)? (1 + 6—2,‘{(9'1“—93))
g 0 1+ k0p + (1 — kOp)e2:(07—05)

is required to puncture one or more isentropic surfaces. The signifiependence on latitude
apparent in Fig. 3.4 becomes important for mountain ranges that haveeaniarp-south extent
such as the Rocky Mountains and the Andes. Mountains at low latitudesahanech smaller
critical crest height and therefore can be expected to penetrate thiloeidpwer isentropes even for
relatively weak heating cases. The main concentration of the highest jmetlle Rocky Mountains
occurs in the mid-latitudes while much of the Andes are closer to the equatercrifital crest
height also depends on the width of the mountain, as shown in Fig. 3.5. Tussi@a half-width of
the idealized mountain is plotted on the horizontal axis for five different lattudléide ridges or

mountains have a higher critical crest height than do narrow mountaingiatmlatitude. Both of
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Figure 3.5: Critical crest height as a function of Gaussian halfwidth ééerence state 1 at five
different latitudes.

these figures indicate that the Andes will tend to have a significantly loweradritiest height than
the Rocky Mountains.

Note that this has been computed for an atmosphere at rest with no hedtisgnafameter
H. then cannot be directly compared with the environment we observe, blbulid give us a

reasonable feel for which topographic regions the lower bound maaklihrough isentropes.
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Chapter 4

TOPOGRAPHICALLY BOUND BALANCED MOTIONS ON THE SPHERE

4.1 Introduction

In general there are several methods of solution for the elliptic systemvtsadlerived in the
previous chapter. As shown there, one approach is to use Fouriefdrars in the horizontal di-
rection and then use Green'’s functions to solve the vertical structuegiequThis method worked
well and the solutions (3.41-3.42) were used to generate the Fig. 3.3.vdpwevas unclear how
to generalize this method to a spherical domain. Here we present a diffnévation that allows
for solutions to be found on the sphere. This method starts with a transfaitme iertical dimen-
sion. This leads to a horizontal structure equation that can be solved siiegoidal harmonics.
Instead of the solution being composed of Green'’s functions as in thehiaster, the solution here
is composed of vertical structure functions that satisfy a Sturm-Liouvillélpro. For clarity and
comparison with the previous chapter, the derivation will be done firstoftplane, after which

the generalization to the sphere will be straightforward.

4.2 Invertibility principle

To begin, the governing equation of the flow (3.11) is rewritten in terms of tbatypmery

potential anomalp/’(x, ). Equation (3.11) then takes the form

O*M' [ fPORNEP\ 0°M' (P
522 +< 2P ) 5 = <]5—1>. (4.1)




As we did for equation (3.11) we assume that, except in the massless laypnténtial vorticity

is uniform on each isentropic surface, i.€(x,0) = P(f) for 05(z) < 0 < 67, so that (4.1)
simplifies to the top entry in (4.2) below. In the massless layer, the pseudtydesmsishes, i.e.,
dp/00 = 0, or equivalentlyoIl/06 = 0, which can be written as the second line in (4.2). Alter-
natively (4.1) could be multiplied by?/P and then the limit taken a8 — co. As for boundary
conditions, we require that/’ approaches zero in the far-field, which is expressed in (4.3). We
also require that the upper boundary is both an isentragpie @) and isobaric surface, which is
expressed in (4.4). To formulate the lower boundary condition we subtfae 0(9M /90) = ¢

from M — 6(0M/98) = ¢ to obtainM’ — (dM’ /D) = ¢ — $, which, when applied &t = 6

yields (4.5). In summary, the elliptic problem is

2,7 05Ng\?2 92M’
0 +<fB B> 9 =0 for Og(z) <6 < 0r,

2 2
O fGBNig L ]Z? 2 (4.2)
( . ) I 1 for b <0 < 0(a),
with boundary conditions
M' — 0 as x — oo, (4.3)
aé\g/ =0at 60 =0r, (4.4)
M — Haé\g/ = ®(z) at 6 =0p. (4.5)

Two interesting special cases occur: di)(z) = 0p and®(z) # 0; (i) Os(x) # 0 and®(x) =

0. In special case (i), all the orographic features are isentropic, Botbe top line in (4.2) is
relevant and the entire forcing comes from the specifiéd) field. In special case (i), there are no
orographic features but potential temperature varies along the flat merdary, so that the entire
forcing comes from the massless layers associated with the spegifietifield. Special case (ii)
is useful in understanding the flow patterns forced by land-sea cootras Earth-like planet with

no mountains.
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4.3 Solution of the invertibility principle on the f-plane via transform methods

To solve the invertibility problem (4.2)—(4.5) we first introduce the verticahsform pair

1 br
Mj(z) = M’ (,6) Vi(6) df, (4.6)
Or — 0B Jo,
M (x,0) =Y M(x) Vi(0), (4.7
=0
whereV;(0) are the vertical structure functions, which satisfy the Sturm-Liouville proble
&V, g Y
= 4.
d92 + <93NBCg> W 0’ ( 8)
dvy B
Vg—@% =0 at 6=0p, (4.10)

with the integerf denoting the index of the vertical mode. Only solutions with> 0 are possible.

Forc? > 0 the solution of (4.8) satisfying the upper boundary condition (4.9) is

_ 9(6r —0)
Vi(0) = Ay cos <MBCZ) , (4.11)

where

: -1/
Ay=V2 {1 1 sinlolOr — 6p)/ (65 Nco) } - (4.12)

29(07 — 0B)/(0BNpcy)

is the normalization factor. The lower boundary condition (4.10) is satisfiedsétisfies the tran-

scendental equation

g(0r — 93)) Npeg
tan — = 0. 4.13
< OpNpce g (413)
Approximate solutions of (4.13) are given by
9(0r — 0p)

N 4.14

“ Eﬂ'@BNB ( )
The first eleven solutions of (4.13), indexéd= 0,1,2,---,10, are given in the second column

of Table 4.1, while the approximate solutions are given in the third column. &heal structure

functionsV;(0) satisfy the orthonormality relation

1 9T 1 g/ — €
Ve(0)Ver (0) db = (4.15)
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Note that (4.6) can be obtained by multiplying (4.7) Wy(0), integrating ove®, and then using

the orthonormality relation (4.15).
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Figure 4.1: Vertical structure functiorig(¢) for ¢ =0, 1, 2, 3.

To take the vertical transform of (4.2) we first multiply the bottom line in (4.2}) and

integrate fron¥Yp to O5(x), thereby obtaining

05(x) / f0pNp 292\ Os(z)
Vpdo = 2V, d6. 4.16
/GB ( : ) v /9 PV (4.16)

Similarly, multiplying the top line in (4.2) by, (6) and integrating fronfs(x) to 67, we obtain

or 92 M’ br ([ fopNg\* 0*M' Os(@) 92’
Vd0+/ ( ) Vcw:/ —— Vpdb. 4.17
[, G v [ (55F) TGgvan= [ G v @1

Taking the sum of (4.16) and (4.17), we obtain

or [92M' [ f0pNg\* 02M’ Os(@) ¢ M’
- . 4.1
/QB {(%2 +< g > gz Vedt /aB (f + 53 )wde (4.18)

Integrating thgd? M’ /06%)V, term by parts twice, using the boundary conditions (4.4), (4.5), (4.9),

and (4.10), and finally recalling the transform relation (4.6), we obtain

*M;  f?
M= F. (4.19)
dx? c?
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s(x) / 2
Fy(x) ! /9 <f2 + "M ) Vi db — (fNB> GBW(HB)@(J;). (4.20)

" 0 — 05 05 dx? g Or —0p

To solve the horizontal structure problem (4.19) we now introduce thedrdransform pair
Vi 2 * /
M;(k) = / M;(x) cos(kx) dx, (4.21)
™ Jo

My(z) = / M (k) cos(kx) dk, (4.22)
0
wherek is the horizontal wavenumber. A similar cosine transform pair exists foruHace geopo-
tential ®(z) and its transforn® (k). Taking the Fourier cosine transform of (4.19) we obtain

S Fy(k)

A .

(4.23)

which is the spectral space solution of the original invertibility problem (4£2%}. This solution

can be transformed back to physical space through the use of (4.73.229, which results in

. > 0o 2131 k
M(2,0) = — g { 0 M cos(kzx) dk} Vi(6). (4.24)

In the next section we examine this solution for the special case of an ipentnountain.

4.4 The case of an isentropic mountain

Now consider the special case in which the mountain is an isentropégi(e), = 65 so that

(4.20) reduces to

fNB>2 GBV’Z(HB)q)(x). (4.25)

Fg r) = — (
(@) g Or —0p
For all the calculations presented in this section we have chosen the getgdode the lower
boundary as

O(z) = gHe /%", (4.26)

where the constanfd anda respectively specify the mountain height and width. The Fourier cosine

transform of (4.26) yields

d(k) = 95;6—&%2/4, (4.27)
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so that

o (INB\?08Vil0p) gHa 22,
Fy(k) = (g ) o0 3" . (4.28)
Plugging this into (4.23) gives
. 2 Np\? 05Vi(05) -
Mi(k) = G N5\ 05Vil08) g )y 4.29
1= (=) (52) e (4.29

The Montgomery potential ifi, §) space is then obtained using (4.7)

4.5 Invertibility principle on the sphere

In this section the previous argument is generalized to a spherical domsiimg the longi-
tude A and the latitudep as horizontal coordinates and the potential temperdtuae the vertical
coordinate, and denoting the zonal component of the flow agd the meridional component by

the governing equations for inviscid flow on the sphere take the form

Du_ <QQsin@+Utan¢>v+aciﬂfp8)\:0, (4.30)
%: + <2Q sin o + “taw> u+ fé\i =0, (4.31)
M= %7‘04, (4.32)

O (e + 2 50) o @39

where) anda are the Earth’s rotation rate and radidg, = 011 + ¢ is the Montgomery potential,
¢ is the geopotentiall(p) = c,(p/po)" is the Exner functiong = —(1/g)(9p/00) is the pseudo-
density, and D/ Dt) = (8/8t) +u(d/a cos pdN) +v(d/adyp) +6(d/d9) is the material derivative.
The variables:, v, M, p are functions of A, ¢, 0, t).

The potential vorticity principle, derived from (4.30), (4.31) and (4,38)

DP dv 0 du 06 NYCL
“Dt ~ 06 acos pON + 80 adyp (2 + V) a6’ (4.34)
where the potential vorticity is defined by
P = (2Qu+ V) _Lov\ (4.35)
% 400 : :

50



with u = sin ¢ and with the relative vorticity expressed as the horizontal Laplacian ofttears-

function, i.e.,

2 _ 0%y 9 2, 0¥
V= A man T 2o ((1—M )aﬂ>' (4.36)

As in the derivation on thg-plane, in the reference state the flow is assumed to vanish. The ratio

of the potential vorticity (4.35) to the reference state potential vorticity isrgive

P o11/80
2QME = (20u + V) (aH;%) , (4.37)

To convert (4.37) into an invertibility principle, we need to formulate a balawalition
between the nondivergent wind fieldand the anomaly of the Montgomery potential, defined by
M' = M — M, whereM (6) is hydrostatically related tdI(6) via dM/df = II. The balance
condition used here is an approximation of the linear balance conditiof2Qu V1)) = V2M'.
The approximation is obtained by consideri2i@.. to be slowly varying, so that the linear balance
condition simplifies tdv?(M’ — 2Qu)) = 0, from which the local linear balance conditidd’ =
2Qu1p then follows. Discussions of the accuracy of this local linear balancditton can be found
in Schubert and Masarik (2006), Verkley (2009), and Schubeat ¢2009). Sincdl — II = IT' =

OM' /00 = 2Qu(0/086), (4.37) can now be written in the form

ON2Qu\ 2 P 0%y P
2 _ _
V) + ( p ) = 902 2Qu < — 1) , (4.38)

where we have defined the reference state buoyancy frequé(iyby

~\ —1
B g° dIl
N%() = 7 <—d9> : (4.39)

For the reference state we assume that the buoyancy freqétgyis inversely proportional t@,
i.e., N(0) = Nplp/6, whereNp andfp are constants.

We shall require that (4.38) holds on a sphere that includes topogrégdticres whose
geopotential is specified b$(\, ). We assume that, due to radiative processes, the potential
temperature varies along these topographic features according to ttiéespinctionfg(\, ).

As in chapter 3 the regiofiz < 6 < s(\, 1) is the massless layer.
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We now assume that, except in the massless layer, the potential vorticity istegha
reference value, i.eP(\, i1, 0) = P(u, ), so that (4.38) simplifies to the top entry in (4.40) below.
In the massless layer, the pseudodensity vanishesgpgdd = 0, or equivalently,0T1/906 = 0,
which can be written as the bottom entry in (4.40). As for boundary conditioe require that
the upper boundary is both an isentropfic=¢ 67) and isobaric surface, i.€l] = II, which, using
the hydrostatic equation and the balance condition, can be writt@d&g06 = 2Qu(dy/96) =
0, or simply as (4.41) below. At the bottom boundary the geopotential s ®(\, 1), so that
0[0(M — M)/90) = 6(I1 — IT) = M — M — ®, or equivalently2Qu[y) — 8(9/d6)] = ®. In

summary, the elliptic problem fap is

200 Np \? 6
v2¢+< NZB B> gefzofor Os( A\, ) <6 <6,

2005 Ng \? 9% (4.40)
HUBINB
= <
( p > 502 2Qu for Op <0 < Os(\, ),
with boundary conditions
a—w—Oate—H (4.41)
a0 - '
w—egg:m at 0 =0p, (4.42)

whereV is defined in terms ob by & = 2Q.V.

4.6 Solution of the invertibility problem via transform met hods on the sphere

To solve the invertibility problem (4.40)—(4.42) we introduce the verticaldfam pair

Ot
vehi) = g | V(w6 Vil6) df, (4.43)
(A, 0) =D be(A, 1) Vi(6), (4.44)
/=0

whereV,(0) are the vertical structure functions introduced earlier.
To take the vertical transform of (4.40) we first multiply the bottom line in (4180);(0)

and integrate frond to 5 (A, 1), thereby obtaining

/es(A,u) <2§2,u93NB>2 321l)w do — /QS(A’M) 20V, db. (4.45)
QB g 802 93
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Similarly, multiplying the top line in (4.40) b¥,(#) and integrating fronfs (A, 1) to 6, we obtain

Ot

Or 2 02 GS()VH')
<ZQMGBNB> OV 4o = / V) V, db. (4.46)

24V dO /
Vo Vpdo + p 502 )

GB 95 (>‘7u)

Taking the sum of (4.45) and (4.46), we obtain

o 2 52 05 (\p)
/ V3 + (29“ 93NB> 0 f Vydo = / (2Qp + V) V, df. (4.47)
05 g o6 05

Integrating the 9%y /962)V, term by parts twice, using the boundary conditions (4.9), (4.10), (4.41),

and (4.42), and finally recalling the transform relation (4.43), we obtain

2
€Lt

V2 — 2 Ye=F (4.48)
where
2
€ = <29a) (4.49)
cr
is Lamb’s parameter and
1 95()‘7N) 9
Fy(A\ p) = / (2Qu + V) Vi(6) d6
Or — 0B Jo,
) (4.50)
g (6r —0p)op "

The first term on the right hand side can be interpreted as a measure ‘@fobmute isentropic
vorticity in the massless layer."
To solve the horizontal structure problem (4.48) we now introduce thersjal harmonic

transform pair

1 1 2
ujfmn = 4/ 7/}5()‘7110 S:,m(ﬁg; Aaﬂ) dA df'La (451)
TJ-1Jo
Do) = YD Pomn Smnles A 1), (4.52)

m=—0o0 n:‘m‘

whereS,,.,(eg; A, 1) are the spheroidal harmonic functions, which satisfy

Qmn (64)
aQ

2
V28, — %smn — Sorms (4.53)

where the integem is the zonal wavenumber, the integeis the total wavenumber, and the values

amn(€¢) are the eigenvalues of the spheroidal harmonic operator. The orthality relation for
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spheroidal harmonics is

1 o 1 (m/,n')=(m,n)
- / / S (€6 A 1) Sy (65 A, 1) dN dp = (4.54)
- 0 (m/,n) # (m,n).

Note that (4.51) can be obtained by multiplying (4.52)3jy,.., (e¢; A, 1), integrating ovens and,
and then using the orthonormality relation (4.54). A concise summary of giolaéharmonics is
given in Abramowitz and Stegun (1965, pages 751-769). A more extedsicussion is given in
Flammer (1957). The Mathematica software package (versions 6 andhigtsebuilt-in support
for computing spheroidal harmonic eigenvalues and eigenfunctions.

To take the spheroidal harmonic transform of (4.48) we multiply ity (e,; A, 1) and

integrate over the entire sphere, thereby obtaining

1 2T GZ,UI 2T
/ / oy (VQS* — = )d/\du / / FyS*  d\dy, (4.55)
—-1J0

where we have used S;,, V2, d\du = [ 1¢V2S},, d\du. Using the complex conjugate of
(4.53), the transform relation (4.51), and noting that\, ;1) and Fy,,,,, are related by a transform

pair identical to (4.51) and (4.52), we can simplify (4.55) to

an
emn =~ (4.56)
O‘mn(ﬁl)

which is the spectral space solution of the original invertibility problem (4-@0%2). This solution

can be transformed back to physical space through the use of (4d43.82), which results in

[e.o]

=S 33 L V1(6) S (e M ) (4.57)

(0%
£=0 m=—00 n=|m)| mn(

Oncey (A, u, 0) is known, the wind field can easily be computed because we have assumeéddhe

field is nondivergent.

4.7 Discussion of various solution methods

Why has the same physical system been written as two distinct elliptic problegigeas

by (3.12-3.14) and (4.2-4.5)? Recall that the elliptic problem from ch&piesolved with Fourier
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transforms. This approach led to a solution but the transforms were comeplibg the boundary
between the atmosphere and the massless layer and it was not clear haveralige the results
to a spherical domain. However, rewriting the system in terms of the petiombslontgomery
potential as in (4.2—4.5) leads to an elegant transform process andhrécap generalization can
be derived. This is why two distinct elliptic problems were used.

The next chapter solves the invertibility principle using finite-differenca@agmations. In
this case the elliptic problem is written in terms of the full Montgomery potertialOften when
using transforms, variables that represent perturbations {likend M/’) which approach zero in
the far field make the definition of boundary conditions convenient. With afiifterence system
this is not necessary because there is more flexibility in the choice of bpuodaditions. In the
following chapter there is no need to use perturbation variables and sdlthhtgomery potential
is used. Thus three different elliptic systems have been used to repttesesame physical system.

It is straightforward to show that they are all equivalent.

55



¢ | egms )| ¢ (ms
Exact Approximate

0 365.2 00

1 51.52 52.64
2 26.18 26.32
3 17.50 17.55
4 13.14 13.16
5 10.52 10.53
6 8.768 8.773
7 7.517 7.520
8 6.578 6.580
9 5.847 5.849
10 5.263 5.264

Table 4.1: The spectrum of gravity wave speegdsand approximate gravity wave speeds for the
values off listed in the left column. The exact values@thave been computed from (4.13) and the
approximate values from (4.14) usifig = 295K, 67 = 360K, g = 9.81 ms 2, and(d/g) N3 =
5.1373 Kkm~1.
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Chapter 5

NUMERICAL SOLUTIONS

51 Comparison between analytic and numerical solutions

The analytically derived solutions given by (3.41) and (3.42) offerlea’s’ mathematical
description of the influences orography and heating have on the bdlatt®spheric wind and
mass fields. These equations are valid for arbitrary orography anoh@pby the functiont'(k, 6).
However, to move from these solutions to a quantitative measure of how tldeamthmass fields
respond to a precise and specific forcing scenario, more work mustriwe The process of comput-
ing wind fields for a given orography and a specifiédk, ) has uncovered several mathematical
subtleties that lead to further insight concerning the incorporation of alesaskyer into a de-
scription of fluid systems. This chapter presents the results for the threéesiages discussed in
chapter 1 and sketched in Fig. (1.1).

The original intent of using the transform method was to transform thesystequations
(3.12)-(3.14) into spectral space where a solution would presumablynipées to derive. However,
the transformed system (3.22)-(3.24) contains the forcing tE( ) which cannot be directly
expressed in terms of specified quantities. When seeking to computé) andIIl'(x, ) there
are two problems with (3.22)-(3.24). First, these equations are partly sigdiyspace and partly in
spectral space. Second, it is clear th@t, #) cannot be computed froi(k, 8) (using 3.16) because
0(k, 0) depends orF'(k,#), andv(z, ) must be known to computE(x, §). What this implies is
that we cannot simply dictate or choose a give(k, #) in the massless layer and then compute the

resultant(x, ). Both F'(k,#) andv(z, #) are unknowns.



Further, because this is an elliptic systétfk, #) depends not only on the geometry of the
mountain, the potential temperature along the lower boundary, @nd) within the massless layer,
but also orv(z, §) throughout the domain. Specifying a givéiik, ) at each grid point within the
massless layer and then computing the resulting wind field will not work. Hewé{(k, #) can
be found through an iterative procedure. If we specify the lower hgatind the shape of the
topography, a first approximation df(k, ) can be found. Then an approximate wind field is
computed, and using the boundary conditions, topography, and wind tiielcapproximation of
F(k,0) can be recalculated and updated. This process is repeated until the eléhdrfd (%, 0)
are no longer significantly changing with additional iterations.

To understand why our original solution method has broken down in this avalpser look
at (3.12)-(3.14) is helpful. It was originally assumed this was a linearstaoh coefficient (when
reference state 1 is assumed f6(#)) system and that accordingly, Fourier transforms would lead
to a unique solution. This is not true. Equation (3.12) is a variable coeffilbneyar equation and as
such, there is no guarantee that Fourier transforms will lead to a closadsfdution. This can be

seen if (3.12) is rewritten as

v <f92N2> o1T B 0 xg(e) <r< oo (5.1)

“ox 2 ) a6
o 0<z<zg(h)
wherea = 1 except in the massless layer where= 0. The solutions derived using transforms
led to insights concerning the behavior of the physical system, especiallg itetfe of isentropic

obstacles, but the transform did not produce easily computable solulioagpears that the best

way forward then is to use an iterative solution method. This is what follows.

511 Finite difference discretization and successi ve over-relaxation

When the system of equations is solved using finite difference approxirsati@msforms
are not needed and it is unnecessary to separate the fields into a meamdgaperturbation part as
was done in the previous two chapters. Here the system is written in termsfofltMntgomery

potential. As before, potential vorticity is assumed to be conserved whergatiential vorticity
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is defined by (3.8) with the notation the same as in previous chapters. Usiggdst&ophic and
hydrostatic formulag (oM /0x,0M/00) = (fv,1II)) the potential vorticity can be written as the

following invertibility relation

0*M 0?M
9<f2+ )+2:0for Os(xz) < 8 <0rp,

2
fOpP ox 82];9 (5.2)
W =0 for HB < 0 < 05(1’),
where the density is given in terms of\/ by
o 1 oM (1-r)/k
P~ Ry <c,, 0 ) ‘ (5-3)

Note that the full density is now being computed, which introduces a weadlkneanty. The top
line of (5.2) represents the system above the massless layer. In the mdagbgs” — oo. In
this limit the top line of (5.2) becomes the second line of (5.2) to gowdrin the massless layer.
Along the left and right boundarie¥ is required to equal the specified functiM](G). The upper
boundary is required to be both an isentropic{ 1) and an isobaric surface with a constant Exner
functionIlr. To formulate the lower boundary condition we note that— 6(0M/06) = ¢, and

apply this ah = 5. The boundary conditions are then expressed as

M= M) at = ==+L, (5.4)
oM
M — 9687]9\4 = ¢s(z) at 0 =0p. (5.6)

As a first step towards an iterative solution of this elliptic problem, the numegiidimust
be defined by discretizing the geometric domain. Our domain is divided/itaK grid cells with
grid points given by(z;, 0;,) = (—L+ jAx, g+ kAf)withj =0,1,...,Jandk =0,1,..., K,
whereAz = 2L/J andA6¢ = (0 — 6p)/ K. We then seek an approximate solution with gridpoint

valuesM; , ~ Mz, 0)) satisfying the discrete form of equation (5.2)

Aj [(FAZ)? + My — 2Mj g + My 1] 5.7)

+ Mjp—1 — 2Mj) + Mj 1 = 0,
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where the dimensionless coefficiefif . is defined by

9(A0)?
A= . 5.8
P8 FOkpiaPk(Ax)? 68
The discretized versions of (5.5) and (5.6) are
Mj,K — Mj,K—l = HTAH at 0 = HT, (59)
OB
ijo — E (Mj,l — Mj,O) = ¢S(xj) at 9 = HB. (510)

Note that the problem is nearly isotropic on the grid outside of the masslessflayg, ~ 1, which
can serve as a rough guide for the choice of the ratfy Ax. Also note that (5.7) applies both

outside and inside the massless layer, with, # 0 outside and4; ;, = 0 inside the massless layer.
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Figure 5.1: Meridional wind field (shading, warm colors are positive| colors negative, contour
interval =1 m/s) for an isentropic lower boundary computed using odakagion. The maximum
height of the Gaussian mountainlis00 m and its halfwidth= 500 km. The maximum winds are
14.3 m/s.

We solve the discrete equations (5.7), (5.9), and (5.10) using the follastamglard succes-

sive over-relaxation (SOR) procedure. The current estimafe.gf is denoted by\Z; 5., but should
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not be confused with the use of the ‘hat’ notation in chapter 3 to denote éle&rajspace component
of a variable. From the current solution estimaifgk, sweeping through the grid in lexicographic

order, we first compute the current estimate of density from

~ ~ (1-k)/k
. po [ Mjrt1— Mjp—1
o : : 11

the current estimate of the dimensionless coefficient from

9(A0)? :
S ’ (5.12)

0 if Op <0 <0s(z;)
and then the current residual from
ik = Mjgp—1+ M1
+ Ajy, {(an:)2 + M1+ My, (5.13)
-2 (1 + Aj,k) Mng.
The solution estimate on the interior is then updated by

~ ~ (.UT‘j,k

2 (1 + Aj,k)

wherew is the overrelaxation factor and (5.13) and (5.14) are computed at thegrits1 < j <
J—1, 1 <k < K —1. Finally, the top and bottom boundary points are updated from the boyndar

conditions (5.9) and (5.10), written in the form

Mjg « Mjx—1+17A0 for 1<j<J-1, (5.15)

N JAO)M; 1 + ¢s(z;)
3,0 1+ (05/A0)

for 1<;<J-1. (5.16)

Equations (5.11)-(5.16) are iterated, starting with the initial estimf@t@ = M(Hk). This initial
estimate does not change on the lateral boundgried) andj = J. The number of iterations can
be increased until the desired level of accuracy is attained.

The above iterative procedure determines the Montgomery potential in tine @omain for

a given geopotentiabs(x) and a given potential temperatutg(z) along the lower surface. From
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the Montgomery potential the wind field can be easily recovered using gebstrbalance, and the
pressure field can be computed using the hydrostatic approximation. Thiefigich can now be
computed throughout the entire domain for a specific forcing function.

Figure 5.1 shows the solution computed for an isentropic ridge of the santd hsithe ridge
shown in Fig. 3.3. A comparison of these two figures shows that the solutiored using Green’s
functions (3.41-3.42) and the solution found with the above iterative proeggive similar results.
These figures are not expected to be identical because Fig. 3.3 wastednagsuming the density
was equal to the far-field density (only depend¥pwhile Fig. 5.1 was computed with density as

a function off andzx.

5.2 Results

All of the wind fields shown here were computed inf)-space and then interpolated to
(z,p)-space. In many cases a particular wind field is shown in hef)-Epace andaf,p)-space.
This provides two different views of the same information and hopefully makerpretation easier.
Thinking of the atmospheric response to forcing in a domain Wi#ts the vertical coordinate and
massless layers along the lower boundary is somewhat abstraat,f)rspace the massless layer
appears as a mountain along the lower boundary. This is not a physicataimgubut simply shows
the regions where isentropi@)(surfaces pass under the ground in physical space. When viewing a
figure plotted in &,p)-space, if the lowest pressure surface is uniform the massless lagemat
appear and the isentropes intersect the lowest pressure surfaer, tB€ lowest pressure surface is
not uniform and the massless layer appears as a mountain that reptesatitsis where pressure
surfaces are not defined. The shapes representing the massless (ay@®-space anda,p)-space
are different from each other, and neither corresponds exactly tadtual orography in physical
space. Comparing figures in pressure coordinates with tho8ecoordinates is a useful way to
develop an intuition of the fluid response to obstacles.

All of the figures in this chapter (and Fig. 3.3) show the wind field as shadatburs inl

m/s intervals with warm colors representing positivénto the page) and cool colors representing
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Figure 5.2: Meridional wind field (shading,m/s intervals) for an isentropic ridge with =1800
m, vmae = 15.4 m/s. Black contours are isentropes (top) and isobars (bottom).
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Figure 5.3: Meridional wind field (shading,m/s intervals) for a heated flat lower surface with a
K temperature anomaly and Gaussian halfwidth a = 600dgn, = 12.7 m/s. The massless layer
in (z,p)-space (top) is indicated by black object along lower boundary; #){space (bottom) it is
indicated by the thick black line. Contour spacing in the massless layer is 1 hPa.
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Figure 5.4: Meridional wind field (shadingm/s intervals) for a heated ridge witld temperature
anomaly,H=1800 m,a=600 km,v,,.. = 11.13 m/s. The massless layer is indicated by the black
object (top) and the thick black line (bottom). Halfwidth of ridge is 900 km. Congpacing in the
massless layer is 50 hPa except for lowest contour of 975 hPa.
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Figure 5.5: Same as Fig. 5.3 except with2aK temperature anomaly,,,,, = 27.27 m/s. Contour
spacing in the massless layer is 4 hPa.
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Figure 5.6: Same as Fig. 5.4 except with2aK temperature anomaly,,,., = 10.3 m/s.
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negativev (out of the page). For the figures shown in)-space the black contours show isentropes
(surfaces of constant potential temperature) in interval® l§f The figures shown inaf(,#)-space
have isobars contoured in black.

Figures 5.2-5.6 show the wind fields that result from the three simple casessded previ-
ously and represented in Fig 1.1. An isentropic ridge with a crest heigt8@ m is shown in Fig.
5.2 and can be clearly identified by the fact that the isentropes do notaténg ridge and the flow
is anticyclonic. A flat lower boundary with a potential temperature anomalykofsshown in Fig.
5.3, which results in a 12.7 m/s cyclonic flow. Figure 5.4 combines these twimdocases into a
heated ridge with a crest height of 1800 m and a heating anomaly of 6 K.

Note that the isentropic lower surface has anticyclonic flow anchored tbheeridge, but
for the case of the flat lower boundary the flow is cyclonic. The heatapkniith a temperature
anomaly of6 K has anticyclonic flow but when the temperature anomalyi& the flow becomes
cyclonic. This demonstrates the competing influences of the purely ofuigrémcing and the
temperature forcing. Once the surface temperature anomaly has becongeestough to overcome
the orographically forced tendency towards anticyclonic motion, the witdidi@duced by a heated
ridge grows with the tempterature anomaly. The results also demonstratéh@vat)sthat, as the
width of the ridge grows for a set temperature anomaly, the influence ofibraaly is spread out
and effectively acts as a weaker anomaly.

It is also apparent ina(-6)-space that the isentropic ridge case does not contain a massless
layer, but for the heated flat lower boundary and heated ridge a masyes is present and marked
as the area below the thick black line. Pressure in the massless layer isnddapefd, as is clear
from the vertical isobars within the massless layers of Figs. 5.3 and 5.4.isTteguired by the
hydrostatic approximation. Although the pressure is uniforvithin the massless layer, it varies
strongly as a function af, which requires a nonzero wind field. The velocity is required to satisfy
the lower boundary condition given by (5.6), which can be seen as the sfdhe velocity increases
with the magnitude of the velocity along the lower boundary. The concepbuoearo velocity

underneath the surface of the ground is admittedly strange but is valid loaisthe governing
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equations. Because there is zero mass within this region of the domain, #mebe @o mass flux
regardless of the structure of the velocity field inside the massless layer.

For the isentropic case potential vorticity is conserved. Combining this withsbetisen-
tropic coordinates leads to an intuitive explanation for the wind field regptmghe mountain as
seen in Fig. 5.2. Recall that, in the absence of heating, mass cannott@adsentropic surfaces.
This constrains how the mass field must adjust when the isentropes are opgedown. One of
the primary benefits to using isentropic coordinates is the simplicity of the esiprefor potential
vorticity. The denominator of the potential vorticity is given by the pseudsitier-(1/g)(9p/09),
which becomes smaller when the isentropes are compressed as ovestlod ttre isentropic ridge.
Because the potential vorticity is conserved, the decrease in magnitude adriominator implies
the numerator also must decrease. The only part of the numerator thédg¢caase in magnitude is
ov/0z, so a negative meridional velocity gradient is required, which is exactt wiy. 5.2 shows.
It is apparent that the velocity gradient is greatest where the isentespabe most compressed.
Similar reasoning can be applied to the case of stretched isentropes withydiffarence being
the sign of the velocity gradient. The isentropic structure for the cases \withted lower boundary
is quite different. The heating forces mass across isentropic surfaseadiation heats the surface,
an upslope motion is generated. When the mass moves upward it is trath$ferneone isentropic
layer to next warmer layer. This is what physically causes the isentrogmEstbdown towards the
heated surface. The stretched isentropic layers generate a wind fielsl dha@nted opposite to that
which results from the isentropic case with compressed isentropes.

Each of figures 5.2-5.3 show the wind maximum to be in the lowest layers oliideafhd to
decay rapidly in the vertical and horizontal directions. This matches well aviihsic description
of a low-level jet. In agreement with the insights offered by the invertibility gipte, all three
figures show an increased gradient in the velocity field when the isestarpeeither compressed
or stretched out. These figures clearly indicate that in the absence offathers a (sufficiently)
diabatically heated surface will result in a cyclonic wind field. Itis also dleatrthe jets of opposite

sign on either side of the ridge are two components of the same responsddeocthg. A heated
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ridge does not lead to a single LLJ, but two LLJs that form a cyclonic ticyelonic circulation.

53 Technical Discussion

Solving this system by relaxing finite difference approximations of the cootiaequations
highlights two aspects of the problem. The first is that the grid representingl@main is not
in general isotropic. This most likely slows down the relaxation procedudengcessitates going
through many more iterations than would be required for an isotropic grttlel§rid spacing in the
vertical and horizontal is carefully chosen to result in the coefficikeiteing approximately equal
to 1, the grid outside the massless layer is nearly isotropic. Within the masslesgllaguals zero
and the grid will not be isotropic regardless of the grid spacing. Thergecomplication arises
because the system is strongly coupled in the vertical dimension of the nsalssles but only
indirectly coupled in the horizontal direction. For Gauss-Seidel overagilan using lexicographic
ordering this also leads to very slow convergence. It is possible thag lism relaxation in the
vertical would help this. Both of these issues cause the iteration proctmbeeslow, with many
iterations necessary before the residual can be said to be small.

The computed value of the residual needs to be put in a meaningful caotdetermine
how many iterations of the solution procedure are necessary. Often thatadegof the residual
can be compared to the magnitude of the forcing. Applying this method here s¢raigthtforward
because the forcing is only present in part of the domain, but the résgddefined at each grid
point. We have chosen to compare the norm of the residual after a singigaiteto the norm of
the residual for a later iteration. When this norm has decreased by abanglers of magnitude
the wind field no longer significantly changes with further iterations. Mogheffigures shown
have been iterated until the residual has decreased by more than twe ofdeagnitude. Over-
relaxation parameters of around’ to 1.95 have been used. It is difficult to theoretically estimate
an optimal overrelaxation parameter because our domain is composed ofrapiisregion and a

non-isotropic region. The values used were obtained through a séneserical tests.
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Chapter 6

CONCLUSIONS

6.1 Overview

The research presented in this dissertation shows that heated togodegthres are an
important component to the forcing of atmospheric low-level jets. This hygsighs demonstrated
by calculating the balanced response of a stratified fluid to forcing alonipwer boundary. The
forcing used here is intended to mimic atmospheric obstacles and surfaieghe@he results
clearly show that the wind field generated by a heated ridge includes [flojgposite sign on either
side of the ridge.

The basic method used is very simple. The forcing takes the form of a pdteotieity
anomaly that is determined by the boundary conditions along the lower bigunflais potential
vorticity is then used to compute the wind field through the invertibility principle thdersved in
chapters 3, 4, and 5. Figure 1.1 shows the three cases this method Viad &mpan isentropic
ridge along the lower boundary, a heated lower boundary with a flatggeopal surface, and a
heated ridge. To the best of the author’s knowledge, the potential voitwigytibility principle in
isentropic coordinates has not previously been solved when the lowadboy includes mountains.

Three separate methods have been used to solve the invertibility principdgteC!3 finds
solutions by using Fourier transforms in the horizontal dimension to dexeetial structure equa-
tion that is then solved using the appropriate Green'’s functions. Analgidations are plotted for
the wind field that is forced by an isentropic ridge. Assuming the fluid to satigllyostatic balance

and requiringd to increase monotonically with height an expression for the critical creghhes



derived. Ridges that are higher than the critical crest height mustragméhe lower isentropes in
the domain while ridges with a height below this value can remain isentropic ifainiggs present.
This provides a generalization of the theory presented by Eliassen)(10Bapter 4 uses a similar
approach to solve the invertibility principle but vertical transforms are usetkrive a horizontal
structure equation. This derivation is generalized to a sphere and tizemat structure equation
is solved using spheroidal harmonics. The analytical solutions derivelabipters 3 and 4 are only
closed form solutions for the case of an isentropic lower surface. Whating is introduced along
the lower boundary of an isentropic domain a massless layer is inevitableaadlthions must be
found iteratively. The third method for solving the invertibility principle was te figite difference
approximations of the governing equations which are then solved in chapiging Gauss-Seidel
over-relaxation.

Another useful result of this research is the practical presentationeafinthssless layer. It
is intended that this work will help to clarify how the massless layer can bepncated into the

solution of other problems in a straightforward manner.

6.2 Summary of wind field response to forcing

Isentropic ridges produce an anticyclonic wind field. The closer the ridgght comes
to the critical crest height the tighter the isentropes are packed over tie aitd the stronger the
corresponding wind field is. In contrast, the case of a heated flat lasugrdary results in a cyclonic
wind field. When these two cases are combined into the case of a heatethedgtal wind field is
decreased due to the competing impacts of the isentropic orography arehtiregh For temperature
anomalies that are quite small the mechanical influence of the ridge is domimthtiteawind field
is anticyclonic. However, for temperature anomalies that are closer to tissved (in YOTC)
the heating along the lower boundary is the dominant factor and the wind fieltienic. The
heated ridge shown in Fig. 5.4, with a temperature anomaly of 6K, has and@daticyflow, while
the heated ridge shown in Fig. 5.6 with a temperature anomaly of 12K, hasoaicyitow. Byerle

and Paegle (2003) noted a change from cyclonic to anticyclonic flow gitine North American
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winter. They attributed this to a change in the zonal flow and the interaction watbrtigraphy.
The results here suggest this transition is due to the winter temperature artong below the
critical value that is needed for a cyclonic circulation.

The solutions computed in chapter 5 also show that in general the wind fieldenslironger
for a stronger temperature anomaly when the width and height of a ridgeoastant. Similarly,
for a constant magnitude of the temperature anomaly, the wind field will dezieatrength as the
width of the ridge is increased.

The persistent occurrence of LLJs in the atmosphere has led to manycoleeerning the
possible mechanisms for their development. Blackadar (1957) hypottdhiaethe jets are due
to an inertial oscillation acting on the diurnal cycle of boundary layer edslyogity while Holton
(1967) proposed that a buoyancy-driven flow over sloping terrais tive primary process responsi-
ble for the jets. Wexler (1961) claimed the GPLLJ is an analogue to the wédxiandary currents
of the ocean basins. The North and South American LLJs are also oftdmuttt to a simple de-
flection of the trade winds by the orography. Each of these mechanisnmapoeant to the LLJs
observed in North and South America but no individual mechanism carelgngixplain their gen-
eration, maintenance, and variability. The work presented here showkdated orography also
needs to be included in this list of influential mechanisms for LLJs.

The basic characteristics of the wind field from the YOTC data shown in Bigs2.7 agrees
well with the results shown in Fig. 5.6. The orientation of the wind field (cycloisithe same and
the magnitude is similar to that shown by the YOTC data. The figures in chapter Becenter-
preted as representing means of roughly 1-3 months. If the temperattrieudisn along the lower
boundary is made larger, say 20K (see Jiang et al. 2010), the windspecloser to what would
be expected for daily or weekly mean fields. The parameters used to coaipoft¢the wind fields
shown in chapter 5 were chosen to be comparable to Earth-like mountains aliticetempera-
ture anomalies along the lower boundary. It is probably not appropriateke direct comparisons
between the results of chapter 5 and observations of specific jet ewvestgro climatologies be-

cause the assumptions of a steady, nonviscous fluid will certainly lead teplswies between the
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computed and observed wind fields, especially along the lower boundaigh v precisely where
the LLJ maxima in chapter 5 are located.

The YOTC data of the meridional wind field and potential temperature distribétiotwo
Rocky Mountain latitudes and two Andes latitudes are intended to give aajétea of the mean
wind and temperature distributions during the warm season of those regibasesults computed
in chapter 5 show general agreement with the basic wind and temperatweeihistics. However,
a detailed comparison between the results of this research and obserdtaimospheric LLJs is

beyond the scope of this work.

6.3 Final Discussion

Contributions to our understanding of fluid systems made by this researdieadivided into
two components. First, the general question of how a stratified fluid relsgora non-trivial lower
boundary has been solved. The isentropic coordinate invertibility prineipkesolved for the case
of a domain including a massless layer. This can be applied to a variety ofstitgr@roblems in
future research. The second component is the application of the psgvimentioned solutions to
the study and interpretation of atmospheric LLJs.

There are several mechanisms that are known to be important to the tiEmerfal LJs.
These include the kinematic redirecting (deflection) of the flow by mountainséhigal oscillation
acting with the fluctuating boundary layer turbulence, and the pressadeegt force. Often these
mechanisms act on a regional scale and only influence one side of a maanigénat a given time.
As a result, past studies have generally studied each LLJ in isolation. 8d@anch makes it clear
that a heated mountain influences jets on both flanks which indicates a stnomgction between
the LLJs on opposite sides of the Rocky Mountains and the Andes.

Because a steady state has been assumed the time evolution of potential \amrticiynd
can obviously not be seen. This model only computes the wind field thdtsésum the potential
vorticity at an instant in time. Alternately, this could be interpreted as the potentiatity averaged

over atime interval. This does not imply the wind field for the chosen time or pesieds accurate;
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it simply means that we cannot say anything about the potential vorticity fidétdeber after the
chosen time interval.

It may seem that in the analytical parts of this research the system wdyg ewaplified
by assuming symmetry im, that density only varies as a function &fand idealized orographic
shapes. When the solutions are found through finite difference appatgns these simplifications
are unnecessary and can be dropped. Particular scenarios tmad@eomplex than the analytic
derivation allowed for can then be studied. Having first derived analydimutions for simple cases,
the solutions found through iteration can be more readily interpreted.

This research lays the groundwork for future projects in severattiines. The efficiency
of the finite difference solution method could most likely be increased. Thieyof weakly-
nonlinear equations that result from the finite-difference solution of theriibility principle is
quite sparse. This suggests that a solution method such as the conjug#atgraethod may work
well. Developing an algorithm that utilizes multi-grid methods is also possible anddvadmost
certainly converge to the correct solution faster than does the ovesatiEla method used here.

One potential future project would be to carry out a similar study with more ¢exrp-
pography, possibly in spherical coordinates. If the topography bstindjed is more complex, the
heating along the lower boundary should also be adjusted and will probhablyto be more com-
plex as well. The results here have been presented in a fairly generabémaut they could be used
for particular case studies. The atmospheric response to heatedmggseclearly important to
monsoon circulations. It would be interesting to study particular surfaagrfieprofiles and oro-
graphic structures in this context. Specific case studies could also be frithgeRmcky Mountains
or Andes using data from particular months and latitudes similar to the YOTC llatansn chapter
2. This would offer insight into the importance of the surface heating to thislklative to other

forcing mechanisms active at that time.
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