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ABSTRACT 
 
 

CAMELINA VARIETY PERFORMANCE FOR YIELD, YIELD COMPONENTS AND OIL 

CHARACTERISTICS 

 
Oilseed crops have the potential to increase the stability and sustainability of American 

agriculture by replacing a portion of the fossil fuels consumed by this sector. There are several 

candidate oilseed species that have been identified as compatible with a dryland winter wheat-

fallow rotation. Of these species, Camelina sativa has been previously identified as being a 

promising species for the High Plains region. This is due to its short growing season, drought 

tolerance, cold tolerance and resistance to many of the insect and pest species that cause yield 

reductions in other Brassica oilseed species. To evaluate the performance of this species in the 

Western United States, we carried out a two year variety trial in 2011 and 2012 to evaluate the 

performance of 15 varieties in two distinct geographical regions in the Western United States. 

Six of the varieties, Ligena, SSD10, SSD177, SSD87, SSD138, and Celine, were in the highest-

yielding group of varieties in all of our combinations of environments, including irrigated 

environments. Five of the varieties have been identified as containing favorable alleles for yield 

and drought tolerance. These SSD varieties yielded well in our study but did not significantly 

outperform their parental varieties across all environments. The mean yield for the trial across all 

environments was 813 kg ha-1. Lower-latitude environments in Colorado and Wyoming were not 

as high-yielding as higher-latitude environments in Montana and Washington State. Camelina 

did not perform as well at low latitudes even under irrigated conditions during the two years of 

our study. The low yields can be attributed to above-average, high temperatures. Decreasing the 

average maximum temperature during the growing season resulted in increased yield and was 
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positively correlated with an increase in the percent oil and percent of the oil profile comprised 

of polyunsaturated fatty acid and a decrease in the percent oil comprised of saturated fatty acids. 

From an agronomic perspective, the focus might be on reducing the number of warm days so that 

they comprise no more than 17% of the growing season.  

In addition to yield, this study looked at the components of yield to see how they were 

affected by environmental conditions and how they contributed to yield. The number of plants 

per hectare had the largest effect on yield. This yield component showed significant genotype by 

environment (GxE) interaction. This yield component is strongly influenced by environmental 

conditions and not genotype. This suggests that the quickest and easiest way to increase yield is 

to increase the planting density of the field. In a dryland agricultural system, increased density 

may have a negative tradeoff in the form of increased water usage of the crop. If breeders are 

interested in choosing a variety for seed yield improvement, it would be beneficial to choose 

thousand seed weight, as this is highly heritable and related to genotype. The number of pods per 

plant has little relationship with the overall yields for camelina and showed significant GxE 

interaction.  

 In addition to the variety trial, we assessed the fall planting potential of 11 winter lines 

and three spring lines of camelina in Fort Collins, CO and Rocky Ford, CO from 2010 to 2011. 

We found significant differences between the dates of planting (p <0.001). The average yield of 

the fall seeded entries was 434 kg ha-1, which was less than the average yield of 1033 kg ha-1 for 

a nearby spring seeded camelina variety trial. This showed that through fall seeding of camelina, 

it is possible to get a stand, but the yields are lower than spring seeded camelina. Our trial 

included an entry of pennycress (Thlaspi arvense), another oilseed species with potential for 

Colorado agricultural areas. This preliminary trial in 2010 to 2011 found that under irrigation, 
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pennycress yielded 1392 kg ha-1, which was much higher than the fall seeded camelina. In a 

follow up trial of the dryland potential of four lines of pennycress in Akron, CO in 2012, 

excessive drought conditions resulted in a failure of the plots.   
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CHAPTER ONE:  
 

LITERATURE REVIEW 

 

GLOBAL CLIMATE CHANGE 

A major contributor to global climate change is carbon dioxide (CO2) gas. Atmospheric 

concentrations of carbon dioxide CO2 gas are correlated with the surface temperature of the earth 

(Lüthi et al., 2008; Tripati et al., 2009). In addition to directly increasing global temperatures, 

increased levels of CO2 can cause dramatic changes in climate (Raymo et al., 1996). As a result 

of the anthropogenic emission of this gas, the global atmospheric CO2 concentration has 

increased to a concentration of 385 parts per million (ppm) in 2010 from 280 ppm in the 18th 

century (Allison et al., 2010). This is higher than the atmospheric CO2 concentrations that 

existed before the Industrial Revolution or any time in the past 800,000 years (Alison et al., 

2010). The overall largest annual emitter of CO2 is China, which emits 6,534 Tg of CO2, 

followed by the United States, which emits 5,833 Tg annually (UCS Global Warming, 2012). Per 

capita, however, the United States is the largest emitter, at 19.18 tonnes person-1 year-1 (UCS 

Global Warming, 2012). 

The increased concentration of CO2 has tremendous implications for the environment. 

The International Panel on Climate Change (2007) has predicted that the unchecked increase in 

concentrations of greenhouse gasses will result in an annual temperature increase of ~0.2°C.  

Planetary warming between 1°C and 3°C is anticipated to cause ocean warming and acidification, 

rising sea levels, increased incidence of extreme weather phenomena and large-scale extinction 

events (Allison et al., 2010).  



2	
	

The combustion of fossil fuels releases CO2 that was sequestered by plants and fossilized, 

beneath the earth’s surface millions of years ago. The release of this fossilized carbon through 

the combustion of these fossil fuels raises the atmospheric CO2 levels beyond their historic 

concentration of 280 ppm. The United States relies on fossil fuels to satisfy the majority of its 

energy needs. Of the 98 quadrillion Btu of energy consumed in the United States in 2010, 83% 

was generated by natural gas, coal, or petroleum. In contrast, only 8% of the energy consumed in 

the United States came from “alternative sources,” which include hydropower, geothermal, wood, 

biofuels, solar, wind or other sources that do not involve the combustion of fossil fuels (U.S. 

Energy Information Administration, 2011). Unfortunately, no single existing alternative-energy 

technology is capable of meeting all of our national energy needs. As a result, a sustainable 

energy plan for the future will need to include a myriad of alternative energy sources to fill our 

various energy needs.  

Aviation, shipping and ocean transportation, and agriculture will continue to require a 

source of fuel that is light, energy dense, safe, and easy to transport (Bang, 2011). One potential 

source of energy for these sources is liquid fuel grown from biological feedstocks such as plants. 

These are therefore considered renewable fuels because the carbon comes from the atmosphere 

where it is fixed by the feedstock plants and not from fossilized sources. These bio-based fuels, 

or biofuels, have an energy density comparable to fossil fuels, and release CO2 that was recently 

sequestered from the atmosphere by the feedstock plant, resulting in lower net CO2 emission 

compared to fossil fuels (Bessou et al., 2011). Biofuels such as ethanol and biodiesel can serve as 

an alternative to traditional fossil fuels. These fuels can be grown and processed in the United 

States, thereby reducing the United States’ reliance on imported fuels.  
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FUELS AND BIOFUELS IN THE UNITED STATES 

In 2010, the United States consumed 19,150,000 barrels of oil per day, which exceeded 

the next largest consumer, the European Union, by 5,470,000 barrels (CIA World Factbook, 

2010). Beginning in the 1950s rising energy consumption in the United States began to outstrip 

production and the importation of petroleum fuel began. Today, petroleum imports comprise 

45% of the total petroleum consumed in the United States (U.S. Energy Information 

Administration, 2011). Our imported petroleum comes from a variety of countries. The greatest 

petroleum exporter to the United States is Canada, which in 2011 provided 29% of the imported 

petroleum products, followed by Saudi Arabia (14%), Venezuela (11%), Nigeria (10%) and 

Mexico (8%) (U.S. Energy Information Administration, 2011). Some of these countries use fuel 

revenues to support governments that are either unfriendly to the interests of the United States or 

the rights of these people. Therefore, reducing our reliance on imported fossil fuels could reduce 

support for these governments.  

In an effort to encourage the production and utilization of bio-based liquid fuel, the U.S. 

federal government enacted the Energy Policy act of 2005, which introduced the renewable fuel 

program (RFS1). This required a total of 7.5 billion gallons of renewable fuel to be blended into 

gasoline by 2012, primarily through the use of ethanol derived from corn (Renewable Fuel 

Standard, 2012). Following this program was the Energy Independence and Security Act (EISA) 

of 2007. As a result of the passage of this act, the Environmental Protection Agency established 

national minimum usage standards for biofuels. This program was known as the Renewable Fuel 

Standard 2 (RFS2). The RFS2 came into effect on July 1, 2010, with a mandate that the 

American energy economy would be using 36 billion gallons of renewable transportation fuel 
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per year by 2022 (USDA Biofuels Strategic Production Report, 2010). Of these 36 billion 

gallons, 21 billion gallons must come from so called “advanced biofuel sources”, 16 billion from 

“cellulosic biofuels”, and 1 billion from bio-based diesel (Bessou et al., 2001; Carriquiry et al., 

2001; Congressional Research Service, 2011)]. An advanced biofuel is defined as any renewable 

fuel, excluding ethanol derived from corn, which achieves a 50% GHG emissions reduction (U.S. 

Department of Energy, 2011). A cellulosic biofuel is defined as any fuel that is derived from 

cellulose, hemicellulose or lignin that achieves a 60% or greater greenhouse gas (GHG) 

reduction (U.S. Department of Energy, 2011). This can be achieved by utilizing second-

generation feedstocks such as fast growing perennial grasses or woody biomass. Biomass-based 

diesel is defined as a renewable transportation fuel, transportation fuel additive, heating oil, or jet 

fuel that meets the definition of either biodiesel or non-ester renewable diesel, and achieves a 

50% GHG emissions reduction (U.S. Department of Energy, 2011).  

In 2010, the U.S. Department of Agriculture estimated each of the United States’ 

geographic region’s potential contribution to the overall national production of biofuels (USDA 

Biofuels Strategic Production Roadmap, 2010). The Central East and Southeast regions are 

projected to contribute 93.1% of the total volume. The American West, on the other hand, is only 

projected to contribute less than 0.3% of the total volume. Of this 0.3%, the only contributions 

are predicted to come from feedstocks derived from logging residues and sweet sorghum 

biomass. Despite the government predictions for the biofuel production Western States, interest 

is growing in this area for the on-farm production of biofuels. In addition, cooperative oilseed 

crushing facilities have begun to develop in rural communities in Colorado. These locally 

produced biofuels could help Agricultural producers in the Western United States reduce their 

dependence on fossil fuel.  
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The goal of this thesis is to do research related to increasing the percentage of biofuels 

contributed by the Western High Plains region. There has been controversy in the past, 

commonly referred to as the “food vs. fuel” argument, where it is supposed biofuel feedstocks 

drive up the prices of food crops due to competition for land use. The High Plains agricultural 

region has traditionally been a wheat-producing area. For Eastern Colorado this means that any 

successful biofuel feedstock must not interfere with the production of winter wheat.  There are 

significant challenges to achieving this goal. The dry, variable nature of the High Plains climate 

is not conducive to growth of most biofuel-producing species that show promise in more humid 

eastern and central areas of the United States. Previous research has identified short-season 

oilseed species as strong potential biofuel feedstocks because they replace a fallow period and 

not wheat crop. Based on this research I have worked to carry out further characterization and 

development of these oilseed species to identify optimal climates and genotypes for the High 

Plains region.  

 

COLORADO CROPPING SYSTEMS  

Colorado is predominantly a wheat-producing state. According to the 2011 Colorado 

agricultural statistics database, Colorado is the eighth largest wheat-producing state nationwide 

(Clark, 2011). In 2010, out of 1,002,811 wheat hectares, 991,479 were planted with winter wheat. 

This resulted in a total value of $606,359,000 (Clark, 2011). 

 

Wheat-Fallow Cropping System  

In the wheat-fallow cropping system, winter wheat is alternated with a fallow period as 

part of a rotation. In the Southeastern area of Colorado where the climate is hotter and drier, 



6	
	

wheat is planted in the fall and harvested the following summer, normally in late June to early 

July. The following year, the land is left fallow in order to allow for moisture recharge. The next 

year wheat is planted again and the cycle continues.  

There is evidence that the traditional wheat-fallow cropping system is an inefficient use 

of soil moisture, in that much of the soil moisture that is supposedly recharged during the fallow 

period is lost to evaporation (Peterson and Westfall, 2004). This suggests that incorporation of a 

spring oilseed crop such as camelina would not deplete the soil of moisture any more than a 

fallow period that extended through the summer. Introducing camelina into this cropping system 

would intensify this system to a continuous rotation of wheat-camelina-wheat 

 

Wheat-Spring Crop-Fallow System 

In Northeastern Colorado, the predominant dryland cropping systems involve a three-

year wheat-fallow-spring crop rotation. Common spring crops are corn, sunflower and proso 

millet. This system could increase the intensity by incorporating a spring- or winter-seeded 

oilseed during the fallow period. It is suggested that growing a summer crop might increase the 

water use efficiency by 37% relative to the continuous wheat-fallow system (Peterson and 

Westfall, 2004).  More intensive cropping systems also have been shown to increase the soil 

organic carbon content by 39% (Peterson and Westfall, 2004). This is partly due to the increased 

plant residues left on the soil. A winter-seeded oilseed such as winter canola or camelina could 

be compatible with this rotation. 

In the Northeastern part of the state, a typical rotation would start with wheat being 

planted in September and harvested the following July. The land would then be planted to a 

summer crop such as corn, millet, or sunflowers. These crops are harvested as late as November 
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and the land remains fallow until the following September when it is planted with wheat again. 

This results in a cropping system that produces two crops in three years with a lengthy fallow 

period. The incorporation of a short-season oilseed could effectively produce another crop in the 

fallow period during the time between when the summer crop such as corn is harvested in 

November and the second wheat crop is planted in the following September as shown in Figure 

1.1.  Farahani et al. (1998) determined that the water storage efficiency is lowest from May to 

September. Therefore, having an oilseed crop planted during this period would reduce the 

inefficiency of the management system.  

There are several oilseed crops that are potentially suitable for cultivation in Colorado. 

These include sunflower (Helianthus annuus), safflower (Carthamus tinctorius), canola 

(Brassica napus), Indian brown mustard (Brassica juncea), camelina (Camelina sativa), field 

pennycress (Thlaspi arvense) and soybean (Glycine max). Although each of these species can be 

grown in Colorado, not all of them can be effectively incorporated into a dryland winter wheat 

rotation. Soybean is a well-known crop that is already planted under irrigation on limited 

acreages in Colorado, however it is not sufficiently drought tolerant and therefore cannot be 

incorporated into dryland cropping systems (Johnson et al., 2008). Sunflower, and to a much 

lesser extent safflower, are grown in Colorado, but they are planted in May and harvested in 

October, rendering them incompatible with winter wheat (Johnson et al., 2008). This leaves B. 

juncea, canola and camelina as potential oilseed crops that may fit well into the dryland winter 

wheat crop rotation. 

Each of these crops is classified as early maturing, meaning that they require a short 

growing season to reach full maturity (Johnson et al., 2009; Enjalbert, 2011). Of the three species, 

canola has been the subject of the most research and variety development (Johnson et al., 2009). 
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Camelina and Indian brown mustard remain experimental crops, but research interest is growing 

as studies illuminate their potential in the United States. 

Of these three crops, camelina shows the most promise for Colorado (Enjalbert, 2011). 

Canola is cultivated in Colorado, but shows inferior cold tolerance and sensitivity to high 

temperatures, both of which can cause reductions in yield. In addition, canola and Indian brown 

mustard are susceptible to attacks by flea beetles, which cause extensive crop damage (Johnson 

et al., 2008). 

 

CAMELINA AGRONOMY  

Spring Camelina  

Camelina sativa, or “gold of pleasure” belongs to the Brassicaceae family and has been 

cultivated in Europe as an oilseed since the Bronze Age, which began around 4000 BC. (Zubr, 

1997).  Numerous archeological studies have shown that camelina, flax and cereals constituted a 

significant portion of the human diet in Europe and Scandinavia during the Bronze Age (Zubr, 

1997). For unknown reasons, cultivation of camelina waned until recent interest in low-input 

biofuels resulted in a reexamination of its value as an oilseed crop and as a potential source of 

omega-3 fatty acids for human and animal consumption (Zubr, 1997; Frohlich and Rice, 2005).  

 There have been limited breeding programs implemented in the past few years, however 

interest is increasing (Vollman et al., 2005). European varieties have been subjected to limited 

improvement and subsequently brought to the United States, Chile, Canada and other temperate 

areas where they have been tested and adapted to regional environments (Berti et al., 2011; 

Enjalbert and Johnson, 2011). Genetic screens using randomly amplified polymorphic DNA 



9	
	

(RAPD) markers have revealed that there is a low degree of diversity for seed characteristics 

(Vollman et al., 2005).  

Camelina can be grown in a dryland winter wheat-based cropping system where it can be 

treated as a summer annual or a fall-seeded annual (Enjalbert and Johnson, 2011). Camelina is a 

small-seeded crop and can be broadcast or direct seeded using existing wheat or canola planting 

equipment at a shallow depth of no more than 12 mm, with 6.3 mm being optimal (Enjalbert and 

Johnson, 2011). The optimal seeding rate has been found to be 5.6 to 7.8 kg ha-1 depending on 

planting conditions such as seed bed quality, soil humidity, and weed pressure (Robinson, 1987). 

No-till conditions are appropriate for camelina planting, although there are some weed-control 

issues that arise from this method of planting due to the lack of herbicide resistant varieties 

(Lafferty et al., 2009).  

Weed control is important. Camelina is generally a strong competitor, but can be 

overcome with weeds. Tillage prior to spring planting can reduce some of the weed pressure. 

The only herbicide for weed control in camelina is sethoxydim, or Poast (BASF, 2010), which is 

useful for control of grassy weeds (Hulbert et al., 2011; Lafferty et al., 2009). Poast can be 

applied at any point in the growth cycle of camelina, as it has no effect on broadleaved plants 

(Lafferty et al., 2009). This weed control measure therefore is not effective against thistles, 

bindweed and other common broadleaved weeds present in the High Plains. For this reason, 

planting in fields with a history of weed problems should be avoided. Camelina is sensitive to 

sulfonylurea herbicide residuals such as Ally, Amber and triazine, which are all labeled for use 

with wheat or corn (Enjalbert and Johnson, 2011).  

Seeding of camelina can occur in spring or in the fall. Fall-seeded varieties have a growth 

cycle similar to wheat in that they establish a stand and overwinter in a dormant stage. Of course, 
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this is dependent on the presence of fall rains. Spring-seeded camelina does best when planted 

early (Ehrensing and Guy, 2008; Enjalbert and Johnson, 2011). If camelina is planted in March 

before spring weed emergence, its earlier date of emergence will allow it to compete more 

vigorously against spring weeds (Lafferty et al., 2009; Enjalbert and Johnson, 2011). Camelina is 

a short-season crop, requiring roughly 80 days to reach maturity. Early spring planting or late 

winter planting will allow camelina to mature before summer temperatures cause heat stress and 

lower yields (French et al., 2009). The required cumulative growing degree days (GDD) for 

camelina are estimated to be 1,300 °C (Hunsaker et al., 2012). The temperature for germination 

is 3.3 °C and delay of planting from March until April results in yield reductions of up to 25% 

due to heat stress (Ehrensing and Guy, 2008). Dryland tests of camelina in Colorado have 

demonstrated superior yields compared to other oilseed crops (Johnson et al., 2008). Dryland 

field trials of spring varieties in 2007 and 2008 showed promising yields compared to canola 

(Johnson et al., 2009). The oil content of camelina ranges from 30% to 45% (Zubr, 1997; 

Johnson et al., 2009)  

Camelina responds to fertilization, with the addition of supplemental nitrogen resulting in 

yield increases. A general rule of thumb is that camelina needs 2 to 2.7 kg of N to produce 45 kg 

of grain (Hulbert et al., 2011). This can be applied during the growing season, or if residual 

nitrogen is available from previous crops, this can be utilized by the plant as well (Hulbert et al., 

2011).  

During growth, camelina is not susceptible to insect pressure from flea beetles that have 

been shown to negatively affect yields of canola and Brassica juncea  (Zubr, 1997). The 

resistance to flea beetles is thought to be the result of defense compounds present in the leaves of 

camelina. A class of compounds known as quercetin glycosides has been identified as 
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contributing to its resistance to damage from the crucifer flea beetle (Onyilagha, 2012). The 

presence of additional leaf compounds means that camelina is naturally resistant to some fungal 

infections, which is important in irrigated situations (Browne et al., 1991). Camelina has also 

shown allelopathic relationships with flax, Linum usitatissimum, under controlled conditions 

(Lovett and Sagar, 1978; Lovett and Jackson, 1980). 

Camelina can be direct harvested using existing wheat harvesting equipment with a 

screen of 3.6mm installed over the lower sieves (Enjalbert and Johnson, 2011; Lafferty et al., 

2011). Harvesting efficiency can be improved if future varieties are selected to reduce shattering. 

If weeds are a problem camelina can be swathed when it is 65% yellow (Lafferty et al., 2009).  

Camelina is well suited to growth in low-moisture environments. The minimum water 

requirement for camelina to reach its maximum yield potential has been calculated to be 333mm 

to 422mm in Arizona (French et al., 2009). The required minimum irrigation varies with climatic 

conditions and evapotranspiration rate. Below this minimum, yields are negatively affected, 

however irrigating above this level doesn’t show any positive effect on seed yields. Irrigating 

above this level has been shown to raise evapotranspiration of the plant (Hunsaker et al., 2011). 

The root zone of camelina is relatively shallow compared to wheat, reaching a maximum depth 

of 1.4m  (Sabu et al., 2000; Hunsaker et al., 2011).  

 

Fall-seeded Camelina 

There are two types of camelina varieties: Those vernalization response varieties that can 

be planted in the fall and allowed to overwinter in the rosette stage (fall-seeded) and those that 

do not have a vernalization requirement (spring-seeded) (Putnam et al., 1993). In the case of fall-

seeded, the plant establishes itself in the fall and overwinters as a rosette. The following spring, 
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when temperatures reach 3.3°C, growth is initiated and the plant emerges from the rosette and 

resumes growth (Ehrensing and Guy, 2008). Previous experiments have found that fall seeded 

camelina has enough winter hardiness to survive the harsh winters of Minnesota, where average 

winter air temperatures are far lower than those found in Colorado (Gesch and Cermak, 2011). 

As the plant is already established, it reaches maturity earlier than spring-seeded camelina. 

Earlier maturity means that the plants are not exposed to as much of the heat and drought stress 

that occurs during the warmest months of summer.  

In addition to the potential for increasing yields, earlier harvest allows more time for 

moisture recharge in the field during the summer. This could result in higher yields for wheat 

that is planted after fall-seeded camelina than spring-seeded camelina. This may vary based on 

spring temperatures and moisture conditions. Another advantage of winter camelina is that fall 

planting is generally drier and the seeds are already planted when spring rainfall arrives. Winter 

seeding of camelina would be particularly advantageous in Southeastern Colorado, where the 

winters are warmer and the spring arrives earlier.  

 Overwintering ability is increased with snow cover (Aase and Siddoway, 1979; Sharratt 

et al. 1992). Aase and Siddoway (1979) determined that 7 cm of snow cover is sufficient to 

buffer wheat seedlings from temperatures as low as -40°C. With the increased stubble as a result 

of the implementation of no-till agricultural systems, there is a greater amount of snow capture 

on fields in Eastern Colorado.  

 

FATTY ACIDS AND VEGETABLE OILS 

Not all vegetable oils are created equal. The vast majority of commercially produced 

vegetable oils are destined for human or animal consumption. As a result, vegetable oils breeding 
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programs have focused on improvement of the oils from a health perspective. This thesis will be 

focusing on the suitability of a vegetable oil for use as a diesel substitute. This creates an issue 

from the food vs. fuel perspective because oilseed varieties that are bred for the optimal 

production of biofuels are not necessarily optimal for human consumption.  

 The basic structure of vegetable oil is a triglyceride, which is formed when three fatty 

acid molecules are connected to a glycerol backbone (Ryan, 1984). The three fatty acid chains 

may be the same, or may vary in length and composition (Harrington, 1986). What we call 

vegetable oil is actually an amalgamation of various fatty acid chains of different lengths and 

degrees of saturation. Saturation is a measurement of the number of double bonds present in the 

carbon chain (Kahn, 1983; Harrington, 1986). The percentage of each type of carbon chain is 

known as the fatty acid profile. Different fatty acid profiles determine the chemical and physical 

properties of the vegetable oil. Depending on these properties, oil can be more or less suitable for 

one purpose or another. This creates a conundrum for those hoping to improve the oil of a 

species, because the improvement of food and fuel characteristics of oil involves fulfilling 

different goals.  

The nomenclature that is traditionally utilized to represent the different fatty acids is as 

follows: Within the parenthesis, the letter C is followed by a number that represents the chain 

length, i.e., how many carbon molecules are contained within the chain. After the colon there is a 

second number representing the degree of saturation of the fatty acid chain. For example, 

linolenic acid is represented as (C18:3). This means that this fatty acid is composed of a carbon 

chain containing 18 carbon molecules with three double bonds somewhere in the chain. If there 

are no double bonds, and the second number is 0, the chain is fully saturated.  As a rule of thumb, 

at room temperature, saturated fatty acids are solid because straight saturated chains are joined 
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by the attraction of the carbon and the hydrogen atoms in close proximity (Lyons et al., 1964).  

Unsaturated fatty acids tend to be liquid at room temperature because the double bonds cause the 

formation of kinks in the chain. These kinks mean that the chains cannot lie flat on each other 

and are therefore not subject to the same attractive forces as saturated fatty acids (Lyons et al., 

1964).  

Velasco et al. (1998) use an estimation of the activity of various pathways that cause the 

elongation and desaturation of the fatty acids that represents these activities through a series of 

ratios. The elongation ratio (ER) estimates the activity of the pathway that converts oleic acid 

(C18:1) to eicosenoic (C20:1). The desaturation ratio (DR) estimates the activity of the pathway 

responsible for the conversion of linoleic fatty acid (C18:2) to linolenic (C18:3). This 

desaturation pathway is further subdivided into the oleic desaturation ratio (ODR) and the 

linoleic desaturation ratio (LDR). The ODR estimates the efficiency of the desaturation from 

oleic to linoleic fatty acid while the LDR estimates the efficiency of the linoleic to linolenic 

conversion pathway (Pleines and Friedt, 1988). Figure 1.2 shows how to calculate these ratios. 

These ratios are useful when they are compared for many different species or varieties. 

This gives an idea of which varieties are more efficient producers of the desired fatty acids, 

which could be a valuable breeding tool for estimating genetic gain for oilseed improvement 

programs. Breeding for improvement of the fatty acid profile is very difficult. The metabolic 

pathways that produce the component fatty acids of the oil profile are composed of complex 

pathways that result in the production of different fatty acids in particular concentrations. These 

pathways are influenced by the environment (Tremolieres et al., 1982). 

The fatty acid composition of vegetable oil determines its suitability as a food or fuel 

source. In the case with bio-based diesel fuels, there are two possibilities for on-farm production, 
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conversion to biodiesel and utilization in an unrefined state as straight vegetable oil. Each has its 

benefits and drawbacks, but the main difference is that biodiesel can be blended with 

conventional diesel to help meet the RFS2 biodiesel blending mandate and SVO requires 

minimal processing and is therefore preferable for on-farm production. 

 

Biodiesel 

Biodiesel is the term for any triglyceride (derived from a vegetable oil or animal fat) that 

has been subjected to a chemical conversion process known as transesterification. 

Transesterification is the process of switching an organic group from an ester to an alcohol. This 

process makes the vegetable oil directly compatible with mineral diesel fuel and is outlined in 

Figure 3 (Van Gerpen, 2005). 

During transesterification, raw vegetable or animal-derived triglycerides are combined 

with an alcohol such as methanol or ethanol and reacted with a catalyst. The primary products 

resulting from this process are glycerol, which formed the backbone of the triglyceride, and fatty 

acid methyl esters, or biodiesel. There is evidence that the oil profile of the triglyceride feedstock 

plays a large role in the efficiency of the process and the quality of the resulting biodiesel (Pinzi 

et al., 2009).  

The oil profile of the feedstock vegetable oil influences the quality of the biodiesel 

product in a number of ways. The most common parameters that researchers use to judge the 

suitability of a biofuel feedstock based on its oil profile are iodine value, cetane number, cold 

weather performance, kinematic viscosity, and free fatty acid content. Iodine value is a measure 

of the degree of saturation of the fatty acid. High iodine value, meaning high unsaturation, has 

been shown to negatively effect oxidative stability, or shelf life, of the biodiesel (Azam et al., 
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2005; Pinzi et al., 2009).  Oxidation, in turn, negatively affects engine performance over time 

(Van Gerpen, 2005). Cetane number is a quantification of the combustion quality of the fuel. 

High combustion quality reduces engine ‘knocking’. Higher cetane number is correlated with 

higher ignition quality and leads to lower emission of harmful nitrogen oxide (NOx) pollutants 

(Pinzi et al., 2009). Cetane number increases with increased chain length and saturation (Knothe, 

2008). Related to iodine value is cold weather performance. Polyunsaturated fatty acids show 

better cold weather performance than more saturated fatty acids (Pinzi et al., 2009). Kinematic 

viscosity is very important for several reasons. Increased viscosity decreases the efficiency of the 

fuel’s flow through the engine. This decreases ignition efficiency leading to engine drag, greater 

fuel consumption and increased emission of NOx (Knothe, 2008). The presence of free fatty 

acids is important for the production of biodiesel. Low quality feedstocks contain more than 5% 

free fatty acids. The presence of these fatty acids causes loss of catalyst during the 

transesterification process, as when free fatty acids react with the alkali catalyst, insoluble soap is 

formed that must be removed before combustion. High percentages of free fatty acids are 

generally found in vegetable oils that have been used for cooking (Van Gerpen, 2005). 

In comparison to petroleum-based diesel, production of biodiesel has a lower net 

emission of greenhouse gasses and it is less damaging to the environment due to its 

biodegradability and low toxicity (Azam et al., 2005). In terms of diesel oil substitutes, biodiesel 

is the only mineral diesel alternative that can be run in a traditional diesel engine with little or no 

engine modification (Johnson and Taconi, 2006). Certified biodiesel can also be sold to 

petroleum distributers where it is blended with petroleum in certain quantities so that the 

producers are able to meet federal blending requirements (Bang, 2011). When considering cost, 
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the feedstock production costs are the most important, as they comprise nearly 80% of the 

production costs of making biodiesel (Demirbas, 2006) 

As glycerol comprises approximately 10% of the weight of vegetable oil feedstocks, it is 

produced in substantial quantities as a secondary product (Thompson and He, 2006). As glycerol 

is denser than biodiesel, it naturally separates from the resulting mixture following the 

transesterification process (Van Gerpen, 2005). After it is produced, it is cleaned through the 

removal of the ethanol or methanol. The glycerol byproduct can be used in a number of ways. It 

can be sold to paper, food, chemical, cosmetic or other industries, or else it can be co-fired to 

create electricity or heat for the biodiesel production facility (Johnson and Taconi, 2007; 

Thompson and He, 2006). 

 

Straight Vegetable Oil 

Straight vegetable oil (SVO) can be used as an alternative to processed biodiesel. The 

principal difference between using SVO and biodiesel is the viscosity of the fuel. For this reason, 

a fuel-heating unit must be added to the vehicle’s fuel line to decrease the viscosity of the 

vegetable oil (Nettles-Anderson, 2009).  

 In order to run SVO in a truck or piece of agricultural machinery, engine modifications 

are recommended along with the above mentioned fuel line modifications. A conversion kit 

designed by the German company Elsbett (Thalmässing, Germany) includes modified injector 

nozzles, duel fuel tank with a heater, a modified temperature control system, strong glow plugs, 

and dual fuel filters. With these minor modifications to the fuel line, it is reported that filtered 

highly saturated palm oil can meet international requirements for use as diesel fuel (Bari et al., 

2002; Masjuki and Abdulmunin, 1996). The vegetable oil must first be degummed before it can 
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be run through an engine. This inexpensive process involves heating the vegetable oil to 40°C 

briefly while a small amount of phosphoric acid is added. After one week, the gums are fully 

precipitated to the bottom where they can be used as a fertilizer (Haldar et al., 2009). 

SVO can be made more directly compatible with conventional diesel engines through 

blending, where it is mixed with mineral diesel in different concentrations. Blending SVO from 

Jatropha curcas in India with diesel fuel in concentrations up to 30% produces a fuel that is 

nearly indistinguishable from mineral diesel with respect to fuel and emissions properties, 

meaning that engine modifications are not necessary (Agarwal et al., 2007). As the vegetable oil 

component of the blend increases, the viscosity and the energy value, or gross calorific value, is 

decreased (Wang et al., 2006). Blending is a good alternative for those who are thinking of using 

SVO on their farm, but are not ready to make the full conversion by purchasing a conversion kit. 

This would also be useful for those who are interested in buying SVO from a local producer.  

One of the most significant advantages to using SVO instead of biodiesel is an energy 

savings from the reduced processing inputs and the environmentally advantageous lack of 

secondary products such as glycerol. A common method for comparing the energy savings of a 

type of biofuel is to represent its output in terms of an energy conversion ratio. This ratio is a 

measure of the energy consumed in the processing phases of these fuels over the energy gained 

from combustion of the fuel. Esteban et al. (2011) performed a lifecycle analysis comparing the 

energy allocation ratios of biodiesel and SVO. They found that the ratio was 2.34 for SVO and 

1.77 for biodiesel. This is a substantial energy savings compared to biodiesel. Another important 

consideration for SVO is that it can be produced locally and doesn’t need to be shipped to a 

processing facility and then entered into the petroleum distribution system. Small-scale crushing 
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facilities already exist in several areas in Colorado. These are located in Stratton, Costilla County, 

and Rocky Ford, Colorado (Enjalbert and Johnson, 2011).  

There are some issues with using SVO in a diesel engine. One of these is the lower 

energy value compared to mineral diesel, which means that a greater volume of fuel is consumed 

during engine operation (Agarwal et al., 2007). In addition, there is the expense of converting a 

vehicle or piece of machinery with a tank heater to increase the viscosity of the fuel. If the 

vegetable oil fuel is heated to more than 90°C there is the possibility of causing damage to 

engine components if the process is not properly monitored. There is also the possibility for an 

increase in harmful NOx emissions (Nettles-Anderson, 2009). There can be a delay while the oil 

is being degummed to reduce buildup on the injectors (Nettles-Anderson, 2009; Haldar et al., 

2009).  

The emissions from burning SVO vary depending on the oil profile of the feedstock 

vegetable oil. Generally, the emissions of NOx and carbon monoxide are lower than emissions 

from petroleum diesel (Wang et al., 2006). In the case of SVO, the most significant gaseous 

pollutants are NOx compounds. Generally, a higher percentage of polyunsaturated fatty acid in 

the oil and lower combustion temperature will result in higher NOx emissions (Bari et al., 2002). 

High viscosity also increases NOx emissions due to incomplete combustion however; this is 

avoided by preheating the vegetable oil (Wang et al., 2006).  The most important factor for 

reducing NOx emissions is high engine temperature.  

 

Camelina as a fuel oil 

 As a candidate feedstock for biodiesel production, camelina is suitable in all respects 

except its high iodine value due to the high degree of unsaturation of its oil (Frohlich and Rice, 
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2005). This high iodine value would result in higher than acceptable levels of oxidation and 

issues with pouring quality (Pinzi et al., 2005). The concentration of free fatty acids in camelina 

was found to be 3.1%, which is within the acceptable 5% range for biodiesel feedstocks (Budin 

et al., 1995). Frohlich and Rice (2005) performed engine tests for camelina fatty acid methyl 

ester and found that the high iodine value was within the acceptable specifications, meaning that 

it closely resembled the trial results for rapeseed oil, especially when the biodiesel was blended 

with petroleum diesel to improve the cold temperature and pour point qualities.  

Camelina seeds are composed of 30%-40% oil (Zubr, 1997). Vegetable oil produced 

from camelina seeds is composed of over 50% polyunsaturated fatty acid (Figure 1.4), 30-45% 

of which are omega-3 alpha-linolenic acid. Due to this high concentration of omega-3 fatty acids, 

it is suggested that consumption of camelina oil is beneficial to human and animal health 

(Frohlich and Rice, 2005). This high concentration of polyunsaturated fatty acids and protein 

present in the press cake is a valuable addition to feed, but must be added in modest proportions. 

It is recommended that camelina meal comprise no more than 15% of the feed weight due to the 

concentration of toxic glucosinolates that can negatively affect the thyroid (Moriel et al., 2011). 

Camelina meal can also replace up to 5 percent of broiler chicken feed without negatively 

impacting the quality of the meat. The incorporation of this feed increases the intramuscular 

concentration of omega-3 fatty acid (Ryhanan et al., 2007). The protein content of the press cake 

left over from the hexane solvent extraction process is suitable for animal consumption. It is 

lower in fat due to the increased efficiency of the extraction technique but it has protein content 

similar to that of soybean meal. Any harmful compounds such as glucosinolates and erucic acid 

that are present in the seeds before pressing can be extracted by subsequent solvent treatment of 

the seed meal (Naczk et al., 1985). The consumer of vegetables within the Brassica family will 
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recognize glucosinolates from the pungent odor that is released from the cooking of cabbagees 

and Brussels’s sprouts. With these vegetables, and with leftover seed meal, glucosinolate content 

can be reduced by heating of the product prior to consumption due to leaching and some 

decomposition (Fenwick and Heaney, 1983).  

The leftover seed meal from camelina pressing contains 40 to 45% crude protein and 

10% fiber, which is lower than soybeans but comparable to rapeseed press cake (Ryhanen et al., 

2007). Combined with the residual fatty acids and a lack of toxic erucic acid (C22:1), the 

molecular profile of the leftover seed meal indicates that it could be a potentially valuable 

coproduct as animal feed. Future improvements and plant breeding research will need to focus 

on optimizing the biofuel oil profile to raise the percentage of oleic acid (18:1) and decrease 

concentrations of linolenic acid (18:3) (Pinzi et al., 2009). This would eliminate some of the 

health benefits of consuming camelina seed meal, thereby affecting its value as an additive to 

animal feed, but it would make a better diesel alternative. Figure 1.4 compares the oil profiles of 

several oilseeds that are grown in different areas of the United States.  

 

Oil extraction 

There are two methods for expelling the oil from the feedstock oilseeds. The most 

common, easiest, and lowest cost method of oil extraction uses a mechanical oilseed crusher. 

This machine heats and crushes the seeds, which causes the separation of the oil from the seed 

meal (Kahn and Hanna, 1983). Figure 1.5 shows an example of a screw-press oil expeller. 

The resulting press cake contains approxinately 10% oil by weight and is considered to have an 

extraction efficiency of 75%  (Boateng et al., 2010).  Another common extraction method uses 

hexane as a solvent. This hexane extraction raises the efficiency to 95% (Esteban et al., 2011). 
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Another solvent-mediated extraction technology uses either 5% methanol and water or a two-

phase system that consists of a 10% solution of ammonia in methanol (Naczk et al., 1985).   

Oilseed press cake can be converted to liquid fuel using a thermochemical conversion 

process known as pyrolysis. This has been shown to have a carbon conversion efficacy of 60 to 

80%. Coproduction of this fuel would provide additional fuel that could be used to co-fire an 

oilseed crushing facility (Boateng et al., 2010).  

 

GENOTYPE BY ENVIRONMENT INTERACTION (GxE) 

The characterization of plants with stable drought responses with respect to yield and oil quality 

characteristics is important for identifying individuals that are stable across the variable 

environmental conditions of the arid High Plains region. It is important to remember, when 

breeding for stability across environments, that a certain degree of phenotypic plasticity is not 

always negative (Bradshaw, 2006; Freeman et al., 1993). Plants that can respond and change 

their phenotype in response to their environment are useful in environments where they are likely 

to encounter a large degree of variability from year to year.  

  The term “environment” in this case generally refers to different geographic 

environments and years. The interaction between the genotypes and the environment occurs 

when the ranked performance of a cultivar changes among environments. This is known as 

crossover interaction (Fehr, 1987). Non crossover interaction can also occur when the 

performance of a genotype changes between environments, but this does not alter the ranking of 

a genotype compared to other entry genotypes (Fehr, 1987) 

 GxE is important to consider when making varietal recommendations. Farmers could 

suffer heavy losses if varietal recommendations are made based on yield data where overall yield 
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stability is not taken into consideration. The stability of a variety depends on the heritability of 

its yield and yield components. The heritability component of yield is reduced if genotype x year 

x environments (G x Y x E) interactions are significant (Richards et al., 2010).  

The High Plains region of the United States encompasses a large area stretching from 

Eastern Washington to Arizona that contains many different micro and macroclimates (Peterson 

et al., 2006). Dryland areas throughout this arid region vary greatly in terms of temperature, 

elevation, and precipitation, each bestowing its own stress on crop plants. The way that crop 

plants react to each of these stress factors can affect their ability to withstand environmental 

stresses (Bohnert et al., 1995; Nicotra and Davidson, 2010). The source of the plant’s ability to 

adapt to stress conditions varies based on the degree of plasticity exhibited by the trait and the 

biochemical pathways controlling the responses (Bohnert et al., 1995; Nicotra et al., 2010). In 

earlier experiments, earlier-flowering varieties of camelina demonstrated higher yields 

presumably because of higher water availability earlier in the spring (Enjalbert et al., 2011). 

Another factor that could affect the suitability of different camelina cultivars in the High Plains 

is water use efficiency. A variety with high water use efficiency would use water efficiently 

under periods of drought but not under periods of water abundance (Nicotra and Davidson, 2010). 

This is an example of phenotypic plasticity that can contribute to the overall fitness of a variety 

across environments.   

Oil profiles are affected by climatic conditions (Aslam et al., 2009).  There has been a 

demonstrated instability across environments of the oil profile of soybean particularly with 

respect to concentrations of oleic fatty acid (C18:1) (Bachlava et al., 2008). This is important 

from the perspective of oilseed breeders working to optimize oil profiles for biofuels as there is 

evidence that oleic acid content has a negative correlation to the content of linolenic fatty acid 
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(C18:3) (Bachlava et al., 2008). Earlier flowering varieties of camelina are also shown to have 

higher linolenic fatty acid content in their seeds (Enjalbert et al., 2011). This could be because 

linolenic fatty acid contributes to cell membrane fluidity at lower temperatures, therefore 

contributing to increased cold-tolerance (Linder, 2000). Higher concentration of polyunsaturated 

fatty acids increases the cold or heat tolerance of oilseed species (Lyons et al., 1964; Seiler et al., 

1983; Kodama et al., 1994; Murakami et al., 2000; Izquierdo et al., 2003; Baux et al., 2008; 

Sadras et al., 2009). This environmental variability in oil profile influences the suitability of oil 

for use as a fuel.  

It is important to select for varieties that perform equally well in drought years as well as 

years with ample rainfall. In other crops such as wheat, efforts have been made to model the 

responses of these varieties to climatic conditions so that a check can be made for comparison to 

yields (Chapman, 2008). In experimental conditions, these modeling exercises have shown that 

much of the variation is due to rainfall timing rather than amount of rainfall (Hammer et al., 

2005). To properly quantify the crop’s response to environmental factors, it is important to have 

as many representative samples as possible.  

Breeding for stability over environments will become more important in the future as 

climate change and global warming affect both absolute environmental conditions and variability 

of environmental conditions. With a changing climate, varieties will become outdated sooner 

while stability over years in the same environment will become a more pressing issue. 
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Figure	1.1.	Colorado cropping systems that could include an oilseed species 
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Figure 1.2. Calculating the ratios to estimate fatty acid production efficiency (Pleines and Friedt, 
1988; Velasco et al., 1998). 
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Figure 1.3. An outline of the transesterification process (Ma et al., 1999). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



28	
	

	

Figure 1.4- Oil profiles of different oilseed species (Zubr, 1997; Isbell, 2009; Pinzi et al., 2009). 
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Figure 1.5. Diagram of a screw-press oil expeller (Kahn and Hanna, 1983) 
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CHAPTER TWO: 

ENVIRONMENTAL, GENOTYPE, AND GENOTYPE BY ENVIRONMENT (GXE)EFFECTS 

ON CAMELINA SATIVA YIELD AND OIL CHARACTERISTICS IN THE AMERICAN 

WEST 

 
 
CHAPTER SUMMARY 

 Volatility in fuel prices and rising levels of atmospheric carbon dioxide have fueled 

interest in the on-farm production of biofuels. Increasing the on-farm production of biofuels 

contributes to national food security and stability of production costs, as they are less dependent 

on the price of petroleum fuel. Camelina sativa is an oilseed species that has been identified as a 

potential feedstock for the on-farm production of biofuels in the Colorado agricultural area. This 

project included five varieties (listed with prefix SSD) derived from a mapping population and 

identified as containing favorable alleles at QTL for yield and drought tolerance. Our project 

conducted a two-year trial of 15 camelina varieties over a diversity of environments in two main 

geographic areas. The first area included high-latitude environments in the Pacific Northwest and 

Montana. The second included high-altitude environments in the Intermountain West region of 

Colorado and High Plains environments in Colorado and Wyoming. The overall mean yield was 

813 kg ha-1 and significant GxE interaction was present when all environments were combined. 

We found that environment played a larger role in determining yield and oil profile than 

genotypes. Of the environmental factors, latitude (model-R square % 0.76) and temperature 

(model R-square % 0.59) during the growing season had the greatest impact on yield and oil 

profile characteristics while precipitation had the least (model R-square % 0.01). The average 

maximum temperature had a significant negative effect on yield (p <0.001) and a significant 
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negative correlation (p <0.001) with the percent of oil composed of polyunsaturated fatty acid. 

The significant GxE interaction for polyunsaturated fatty acid percent suggests that heat impacts 

the development of these oils. With the exception of Yellow Jacket, Colorado, in all of our low-

yielding environments (yields of under 500 kg ha-1), warm days comprised more than 22% of the 

growing season. When environments were grouped so that GxE interaction was not significant, 

we found that six varieties in the trial (Ligena, SSD10, SSD177, SSD87, SSD138, and Celine) 

ranked in the highest significance group across a variety of environments that included irrigated 

and dryland conditions. Although many of the SSD varieties ranked in the highest-yielding group 

of varieties, they were not significantly higher-yielding than their parental varieties (p= 0.9954). 

Further work should focus on the development of camelina germplasm that is more resistant to 

heat stress of lower-latitude environments.  

 
 
INTRODUCTION  

American agriculture uses more than 5% of the total distillate fuel oil consumed annually 

in the United States, mostly in the form of diesel fuel (DOE Energy Information Administration, 

2009). It is possible to increase the energy independence of American agriculture by reducing the 

overall consumption of fossil fuels. Price fluctuations of petroleum products and dependence on 

imported fossil fuels reduce the overall sustainability of the food production system. Promoting 

energy independence of American agriculture can lead to improved security of the food and feed 

production sectors. The production of fuels derived from contemporaneous plant sources, or 

biofuels, can provide a domestic source of petroleum that can lower the agricultural sector’s 

overall dependence on fossil fuels. In addition to reducing the relationship between food and fuel 

prices, this will reduce the overall carbon footprint of the agricultural sector. The combustion of 
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conventional fossil fuels releases carbon in the form of carbon dioxide (CO2) that was 

sequestered by plants and fossilized beneath the earth’s surface millions of years ago. In the case 

of biofuels, the combustible carbon comes from the modern atmosphere instead of from non-

renewable subterranean carbon sources, and, depending on the source, can reduce the net 

contribution of atmospheric CO2 compared to petroleum fuel sources (Bessou et al., 2011).  

Oilseed species in the mustard family Brassicacae have generated much interest as 

potential sources for the production of biofuels in the American Midwest. One species, Camelina 

sativa, has potential for yielding in dryland conditions (Angelini et al., 1997). Camelina is able to 

produce yields quickly and with minimal inputs. It is also resistant to many of the problems that 

have plagued other, better-established Brassicaceae species such as canola (Brassica napus). The 

oil extracted from camelina can be burned directly as a diesel substitute or blended with 

petroleum diesel fuels to offset the annual consumption of petroleum diesel. The potential of this 

crop as a feedstock for the production of biofuel in Eastern Colorado and the High Plains region 

must be evaluated through multi-environment yield and oil quality testing of existing varieties.  

The climate of the arid Western American High Plains region of Eastern Colorado and 

Wyoming is characterized by frequent droughts, low humidity and seasonal high temperatures, 

which mean that soil evaporation throughout the growing season commonly exceeds 

precipitation (Peterson and Westfall, 2004). In the High Plains region annual precipitation ranges 

from 250 to 450 mm per year and on average 75% of the total annual precipitation falls between 

April and September (Peterson and Westfall, 2004). In the inland Pacific Northwest dryland 

cropping region, annual precipitation ranges from less than 250 mm to over 600 mm per year and 

on average only 35% of total annual precipitation occurs between April and September (S.O. 

Guy, personal communication, 2013).  
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The agricultural landscape of Eastern Colorado is dominated by two cropping systems. 

The first is a dryland winter wheat-fallow rotation and the second is a dryland winter wheat 

rotation that incorporates one or more spring crops such as corn, proso-millet, sorghum or 

sunflowers. In these rotations, there is a fallow period that extends from the time that the wheat 

or spring crop is harvested until the following September when wheat is planted again. In the 

lower intermediate and intermediate precipitation zones of the Pacific Northwest (PNW), 250-

450 mm annual precipitation, camelina would fit into a winter wheat-fallow crop sequence. In 

this cropping system, a fallow period would extend from the time wheat is harvested until the fall 

when wheat is planted again.  Camelina would serve as an addition to this rotation and would be 

planted in the spring of the fallow period and would be harvested in mid summer before wheat is 

planted again in late summer (S.O. Guy, personal communication, 2013). In the high 

precipitation zones, 450-600 mm, camelina could fit in as part of a winter wheat-spring cereal-

camelina rotation (S.O. Guy, personal communication, 2013). In Colorado and lower 

precipitation areas of the PNW, a biofuel-producing oilseed could be incorporated during a 

fallow period without the displacement of any food-producing crops (Johnson et al., 2009). In 

the higher precipitation areas of the PNW, camelina could serve as an alternative crop in a three-

crop rotation. 

Winter wheat is an avoidance crop, meaning that it matures ahead of the hottest, driest 

part of summer, in order to avoid heat and drought stress (Blum and Ebercon, 1981). As a result, 

the summer months are left fallow. Summer precipitation is not effectively captured in fallow 

fields due to high evaporation during that time, so replacing summer fallow with an additional 

crop can increase overall productivity by 75-100% percent (Peterson and Westfall, 2004). C. 

sativa, is a short season crop that requires between 90 and 120 days to reach maturity. It can be 
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incorporated into a dryland rotation where it is planted in the early spring and harvested in the 

early summer (Zubr, 1997; Johnson et al., 2008). 

Archeological evidence has shown that C. sativa, or false flax, has been cultivated by 

humans for nearly 4000 years (Zubr, 1997). Although camelina has shown highly variable yields 

under dryland conditions, it has a suitable oil profile for use as a diesel substitute, is relatively 

tolerant to cold temperatures and is resistant to flea beetles, a common pest of other oilseed crops 

(Browne et al., 1991; Zubr, 1997; Frohlich and Rice, 2005; French et al., 2009; Enjalbert, 2011; 

Enjalbert and Johnson, 2011). Yield stability depends on the genotype and how it is affected by 

environmental conditions compared with other genotypes.  

Camelina produces seeds that contain 30%-40% oil, although this percentage varies due 

to environment and genotype (Zubr, 1997; Enjalbert, 2011). These oils are particularly rich in 

unsaturated fatty acids (90%) such as oleic (C18:1), linolenic (C18:2) and linolenic fatty acid 

(C18:3) with linolenic comprising the largest percentage at 25 to 42% (Vollmann et al., 2007). 

Camelina oil can be burned directly in a modified diesel engine or else it can be converted to 

biodiesel and used in a traditional diesel engine. The fatty acid profile is considered adequate for 

the production of biofuel (Frohlich and Rice, 2005). Increasing the portion of the vegetable oil 

that is unsaturated decreases the combustion quality of the oil (Pinzi et al., 2009). On the other 

hand, increasing the unsaturated portion contributes to cold-temperature performance of the oil 

as well as the cold and drought tolerance of the plant (Linder, 2000; Pinzi et al., 2009; Vollmann 

et al., 2007; Enjalbert, 2011).  

Prior to this study, two European camelina varieties, “Lindo” and “Licalla”, were crossed 

and 187 recombinant inbred lines (RILs) were evaluated for their performance with respect to 

yield, oil content, and drought adaptation (Gehringer et al., 2006; Enjalbert, 2011). Of the 
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mapping population derived from these parents, 24% evidenced transgressive segregation by 

outperforming the parents (Gehringer et al., 2006). Previous studies carried out at Colorado State 

University have identified several significant alleles at quantitative trait loci (QTL) for yield and 

drought tolerance in individuals from this mapping population (Enjalbert, 2011). Our study aims 

to test the performance of five of these lines identified as highest-yielding compared to 10 other 

existing camelina varieties in multiple environments across the High Plains and Pacific 

Northwest. Through large scale, multi-environment testing we can determine if these alleles 

contribute to higher, more stable yields.  

Analyses of genotype and environment interaction for camelina will allow us to assess 

varietal stability and analyze what subsets of the environments constitute a single variety 

recommendation domain. Oil content and profile information will help assess how environmental 

effects and genotypes affect these traits.  

   

MATERIALS AND METHODS 

Environments 

In 2011, field environments included five High Plains environments in Colorado: Fort 

Collins, Iliff, Rocky Ford, Yellow Jacket, and Craig; and two Pacific Northwest environments in 

Lind, Washington, and Bozeman, Montana. In 2012, the environments were in Greeley and 

Rocky Ford, Colorado, Creston, Montana, and Lind, Washington. The Fort Collins, Greeley and 

Rocky Ford environments were under a limited irrigation regime for stand establishment and to 

prevent excessive drought stress. In all cases, the precipitation and irrigation were combined and 

reported as precipitation.  
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Plot sizes measured 1.8 m by 6.1 m, for a total plot area of 10.8 m2. For each 

environment, there were four replications except at Rocky Ford and Yellow Jacket, where there 

were three replications. The planting was a randomized complete block design. The seeding rate 

was 2,802,000 seeds acre-1. Fertilizer application varied among environments depending on plant 

needs. The herbicide Sonalan (Ethalfluralln, DowAgrosciences, Indianapolis IN) was applied 

prior to planting at a rate of 1.17 L ha-1.  

 

Plant Material  

 The names and origins of the varieties included in this study are listed in Table 2.1. The 

varieties with the prefix SSD were all developed as part of a mapping population. These were 

identified as containing alleles for yield and drought tolerance (Enjalbert, 2011). They were 

originally part of a mapping population derived from a cross between the parental varieties 

“Lindo” and “Licalla” at the University of Giessen in Germany (Gehringer et al., 2006). BSX 

G22, BSX G24 and Cheyenne came from the Blue Sun Biodiesel company in Colorado. Blaine 

Creek and Suneson came from Montana State University. Celine and Ligena are two European 

varieties that are commonly available. Yellowstone is a variety from Great Plains Oil and 

Exploration in Ohio.  

 

Data Collection 

 Yields were recorded at each environment after combining with plot combine of varying 

makes and models. Seeds were allowed to air dry to 8% moisture level. The seed oil profile 

analysis for 2011 environments was carried out at a USDA research station in Peoria, Illinois, 

using gas chromatography mass spectrometry (GC-MS). Oil profile analysis for the 2012 
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locations are not yet completed. The oil profile traits included percent composition of total 

saturated fatty acid (C16:0, C18:0, C20:0, and C22:0), C18:1, C18:3, C22:1, percent 

monounsaturated fatty acid (C18:1, C20:1, C22:1, and C24:1), percent polyunsaturated fatty acid 

(C18:2, C18:3, and C20:2), and total percent oil (% Oil). 

 

Climatic Variables 

Weather data were obtained from the Western Regional Climate Center, the Colorado 

Agricultural Meteorological network (COAGMET) or the NOAA National Climatic Data Center. 

Climate data collected for the growing season were latitude, precipitation, average maximum 

temperature, average minimum temperature, number of warm days (days where maximum 

temperatures exceeded 32°C), number of cold days (days where minimum temperatures fell 

below 5°C), growing degree-days (GDD), and elevation. These data are found in Table 2.2.  

Baux et al. (2008) outlined a method for determining whether extreme temperature 

affects the oil profile of rapeseed. This was adapted by Enjalbert (2011) to camelina 

development and used as a threshold for influence on oil production and vegetative growth. Heat 

stress days were those days during the growing season where the maximum temperature rose 

above 32°C. Cold days were recorded as those where the minimum temperature fell below 5°C.  

 

Analysis 

 The data were analyzed using the SAS statistical program, version 9.3 (SAS Institute 

Cary, NC). The general linear model (GLM) was used to analyze yields among genotypes and 

environments. The mixed procedure was used to evaluate genotype by environment interactions. 

The regression and correlation procedures were used to analyze the relationships among traits 
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and environmental variables. Climate variables were considered independent variables. The 

dependent variable was yield. Pearson’s correlation was used to measure the correlation between 

the oil characteristics and three environmental variables, precipitation, latitude, and average 

maximum temperature as well as yield.   

 
 
RESULTS 

 Table 2.2 shows the weather variables at each environment. The higher-latitude 

environment group includes the Pacific Northwest and Montana environments into one group 

above 43°N while lower-latitude environments were those below 42.06°N. Lower-latitude 

environments include those in the High Plains region of Eastern Colorado and Torrington, WY, 

as well as two Intermountain environments in Craig and Yellow Jacket, CO. Growing season 

precipitation included irrigation in Greeley, Rocky Ford 2011 & 2012, Fort Collins, and 

Torrington, WY. The precipitation throughout the growing season varied from 117 mm in Lind, 

WA, (2012) to 364 mm in Fort Collins, CO. The average maximum temperature for the Colorado 

and Wyoming environments was 25.9°C while the average temperature in the Pacific Northwest 

environments was 22.7°C and in Montana was 23.5°C. Table 2.2 shows the number of warm 

days, which are days where the daily temperature exceeded 32°C, as a percentage of the growing 

season. This provides a variable to evaluate the potential effect of high temperatures on camelina 

yield. This was calculated by dividing the total number of warm days by the total days in the 

growing season. Craig, CO, had the highest percentage of warm days (35%), although this was a 

higher-altitude environment. Conversely, Yellow Jacket had a low percentage of warm days 

(6%) at a similarly high altitude. These environments were both environments in the 

Intermountain region of Colorado. The length of the growing season between the dates of 
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planting and harvest was the most important factor in determining the number of GDD at each 

environment. Regardless of the length of the growing season, the GDD were sufficient to 

produce high yields, as all were above 2100 GDD for the season. There was no apparent 

geographical pattern to the number of GDD between environments. Lind, WA, in 2011 had 2387 

GDD for the growing season, but had 3050 GDD for the 2012 season.  

Table 2.3 shows the seed yield for each variety at each environment and the overall mean 

yields by variety and environments. There was only a difference of 91 kg ha-1 between the 

overall highest and lowest performing varieties. The overall mean yield was 813 kg ha-1 but 

significant GxE interaction was present when all environments were combined. Nevertheless, 

Ligena had the highest mean yield of all the varieties at 842 kg ha-1. Similarly, the SSD lines all 

yielded higher than the variety trial average and higher than their parental lines, Lindo and 

Licalla. Lines that yielded below the trial average included varieties from Blue Sun Biodiesel, 

Great Plains Oil, Montana State University, and some European varieties. According to Table 

2.3, the highest yielding environments were in Kalispell and Bozeman, MT, Lind, WA and Fort 

Collins, CO. The range between the highest- and lowest-yielding environments was 1914 kg ha-1 

(the highest was Montana 2012 at 2037 kg ha-1 and the lowest was Greeley 2012 at 123 kg ha-1). 

Higher-yielding environments (above 500 kg ha-1) tended to be either higher altitude or higher 

latitude, and tended to have a lower average maximum temperature. The lowest-yielding 

environment was Greeley, CO. Greeley experienced high temperatures between June 20, 2012, 

and July 5, 2012, during which floral abortion and early ripening were observed. Similarly, heat 

stress might have contributed to the low yields in Rocky Ford, CO for both years. The Torrington, 

Wyoming, environment had heavy weed infestation, which contributed to low yields. Yields in 

Yellow Jacket were affected by low precipitation and heavy, late season rainfall resulting in 
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stand regrowth that caused shattering and reduced yields. Iliff experienced heavy rainfall (Table 

2.2) and a high percentage of warm days that resulted in soil cracking and lower yields. 

Significant differences were observed between the varieties in Montana 2011, Montana 2012 and 

Yellow Jacket. The least significant difference (LSD) values for Montana were 92.3 kg ha-1 for 

2012 and 132.56 kg ha-1 for 2011. Yields were so low in Yellow Jacket that significant 

differences among varieties were not informative. 

Table 2.4 looks at groups of environments to attempt to evaluate genotype by 

environment (GxE) interactions. In the first column, all environments were included and there 

was significant GxE interaction. When the higher-yielding environments (yields greater than 500 

kg ha-1, with the exception of Montana 2012) were combined, there was no significant GxE 

interaction and there were significant differences among varieties. Above 500 kg ha-1 stands 

appeared healthy, below this, stands appeared to be thin and stressed. At the lower-yielding 

environments, there was no significant GxE interaction but there were no significant differences 

among varieties. The model R-square value was greater for the higher-yielding environments 

(0.92) than for the lower-yielding environments. Performance among the environments differed 

significantly (p <0.001). The highest-yielding environment in Colorado was Fort Collins in 2011, 

and the lowest-yielding was Greeley in 2012.  

Table 2.5 compares the performance of different varieties at groupings of environments. 

These groupings include all environments, the maximum number of environments where GxE 

interaction was not significant and higher-yielding environments (environments where yields 

exceeded 500 kg ha-1). In each case, the rankings of the varieties change; however, varieties with 

above-average yield tended to be the same in all groups. In the case of the maximum number of 

environments, the range between the highest-yielding variety, SSD 10, and the lowest-yielding 
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variety, Yellowstone, was 102 kg ha-1. The LSD value (67 kg ha-1) means that the performance 

of the top six varieties are not significantly different from one another. In the higher-yielding 

environments, the LSD value was 101 kg ha-1, meaning that the yield of the top six varieties did 

not differ significantly. The difference between the highest- and lowest-yielding varieties among 

higher-yielding environments was 199 kg ha-1. The varieties that were included in the top 

significance group in all combinations of environments were, Ligena, SSD10, SSD177, SSD87, 

SSD138, and Celine. In the case with maximum environments and high-yielding environments, 

three of the experimental lines, SSD10, SSD87, and SSD177, ranked significantly higher than 

one parental variety, Lindo, but not the other, Licalla. The yields of the SSD lines and their 

parent lines, Lindo and Licalla, were compared in an analysis of variance using Tukey’s honestly 

significant difference (HSD) test to determine significant yield differences. No significant 

differences were found in analyses comparing all SSD lines to the parental varieties across all 

environments (p = 0.9954), the top two yielding SSD lines, SSD 10 and SSD 177, to the parents 

at all environments (p = 0.9933), and all SSD lines to the parents at only the high-yielding 

environments (p = 0.8066) (Table 2.4).  

Regression of climatic and weather variables on yield shows that all of the weather 

variables have a significant effect on yield (Table 2.6). Latitude had the strongest effect on yield, 

and precipitation (including irrigation) had the smallest effect on yield compared to all other 

climatic variables. Three climatic variables related to high temperatures (average maximum 

temperature, number of warm days, GDD) all had negative slopes, which indicates a negative 

effect on yield.  

Table 2.7 shows the results of analysis of yield and oil characteristics of varieties at 2011 

environments. The % Oil at Rocky Ford was very low compared to other environments and was 
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the only environment where the % Oil was lower than 30%. The % Oil varied significantly 

among varieties at all environments except in Yellow Jacket, CO and Lind, WA in 2011. The 

mean % Oil varied significantly between environments (p <0.001). The mean for the trial was 

35%, but the range was from a low of 11% in Rocky Ford to a high of 42% in Washington. 

Percentage monounsaturated fatty acid (MUFA) varied less; with a mean of 36%, it varied from 

36 to 37% and there was still significant variation among varieties and environments (p <0.001). 

Percent polyunsaturated fatty acid (PUFA) also varied significantly among environments           

(p <0.001). The trial mean was 56% and was higher than MUFA. The least significant 

differences (LSD) were 0.80 for the % Oil, 0.65 for MUFA, and 0.82 for PUFA. The percentage 

of MUFA varied significantly among varieties in all environments. The percent of the oil 

composed of PUFA varied significantly among varieties at all environments except in Rocky 

Ford in 2011.  

The effects of genotype, environment and genotype x environment (GxE) interaction on 

the different oil profile characteristics of importance to camelina researchers and biofuel 

producers are shown in Table 2.8. In addition to % Oil, percentage saturated fatty acid (SAT), 

MUFA, and PUFA, we chose to include C18:1, C18:2, C18:3, and C20:1 because they comprise 

the majority of the fatty acid profile of camelina and their concentrations have been shown to 

vary among environments (Vollmann et al., 2007; Johnson et al., 2009; Enjalbert, 2011). C22:1 

was included because of the deleterious health effects of this fatty acid, although it normally 

exists in lower concentrations in camelina than in other Brassica oilseed crops (Velasco et al., 

1998). There were highly significant differences among varieties for all of the oil profile 

characteristics and differences among these values at different environments. There was 

significant GxE interaction for percent C18:3, C20:1, C22:1, and % Oil. The model R-square 
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was high for all oil characteristics, varying from 0.79 for SAT to 0.98 for % Oil. This means that 

the models captured a large percentage of the total variation for all of the oil characteristics.  

Table 2.9 illustrates the relationship between the environmental conditions and yield with 

the oil characteristics. With increase in latitude, there was a decrease in the percent concentration 

of C18:1, C18:2, the percent of SAT, and the percentage MUFA. Conversely, for C18:3, 

C20:1, % Oil and PUFA, an increase in latitude correlated to an increase in concentration. C22:1 

was not significantly correlated with latitude.  Precipitation had a significant negative correlation 

to the C20:1, % Oil, and percent PUFA. The other fatty acids were positively correlated to 

precipitation, except for C22:1 and MUFA. Average maximum temperature was negatively 

correlated to the production of C18:3, C22:1, % Oil, and PUFA. There was a positive correlation 

between average maximum temperature and C18:1, C18:2, SAT, and percent MUFA. An 

increase in the average maximum temperature was negatively correlated to lower concentrations 

of C18:3, C22:1, % Oil, and percent PUFA. C18:3, SAT and MUFA were positively correlated 

with  average maximum temperature. The concentration of C20:1 was not correlated with 

average maximum temperature. Increased yield had a highly significant positive correlation with 

the concentration of PUFA, % Oil, concentrations of C18:3, and concentrations of C20:1. This 

means that as yield increased, the concentrations of PUFAs and the percent oil in the seeds 

increased. Conversely, the concentrations of MUFA, SAT, C18:1 and C18:2 decreased with 

increasing yields. 

 
 
 
DISCUSSION 
 

The trial average of 813 kg ha-1 falls within the range reported in trials in Western 

Nebraska in 2005 and 2006, which fell between 556 and 1456 kg ha-1 depending on the date of 
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planting (Pavlista et al., 2011). Yields in Minnesota were also reported to fall within the range 

reported in this study (Gesch and Cermak, 2011). Camelina in Arizona under irrigation yielded 

over 1500 kg ha-1 in 2009 and 2010 (Hunsaker et al., 2012). Camelina yields in Chile have also 

been reported to vary between 420 kg ha-1 and 2314 kg ha-1 for 2008 and 2009 (Berti et al., 

2011). Mean yields across several environments in Germany ranged from 1460 kg ha-1 to 1715 

kg ha-1, which exceeded our yields (Gehringer et al., 2006). 

Yield trends were observed in our study. Higher-latitude environments with cooler 

climates experienced higher yields. Lower than expected yields were mostly a result of 

environmental stresses. These environments experienced heat during flowering, intense rainfall, 

weed infestations and regrowth due to uneven rainfall patterns. Hunsaker et al. (2012) found the 

maximum seasonal water use of camelina to be 470-490 mm, which is more than was received 

by any of our environments, including those under irrigation. These factors together may have 

contributed to overall lower average yields in this trial. The low yields at Greeley, Rocky Ford, 

and Yellow Jacket in Colorado and Torrington in Wyoming emphasize the importance of site 

selection and management to produce adequate yields.  

As with any crop, favorable environmental conditions produce higher yields. 

Environments in the Pacific Northwest and Montana produced higher yields (Table 2.3). These 

higher-latitude environments provided comparisons to the lower-latitude environments to help 

determine the effect of environmental conditions on yield due to their lower number of GDD, 

lower average maximum temperatures, and % warm days. We made combinations of the 

different environments to analyze GxE interaction (Table 2.4). When all environments were 

included, there was significant GxE interaction. Enjalbert (2011) also reported significant GxE 

interaction for yield in a variety trial grown throughout the High Plains region. When three of the 
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environments were removed, one of which had harvest problems stemming from stand regrowth 

and another had low yields, the GxE interaction was no longer significant. The same was true 

when only the highest-yielding environments were included in the analysis. When all low-

yielding environments (environments with mean yields below 500 kg ha-1) were grouped together 

for analysis, there was significant GxE and no significant differences among the genotypes. This 

was likely due to the fact that the varieties did not reach their yield potential due to stress. Six 

varieties were significantly higher yielding than the others in all of the environment groupings 

(Table 2.5). These were Ligena, SSD10, SSD177, SSD87, SSD138, and Celine. From these 

analyses, we can conclude that across a wide range of environments some varieties produced 

significantly higher yields. Enjalbert (2011) also found Celine and Ligena to be well adapted to a 

wide range of environments throughout the High Plains region. With the exception of SSD186, 

the yields of the SSD varieties, which contained alleles identified at quantitative trait loci (QTL) 

for yield and drought tolerance, performed well, placing in the higher categories in all of the 

groups of environments. Gehringer et al. (2006) performed a similar multi-environment trial in 

Germany using the same mapping population. They found that Lindo was the best-performing 

parent and that in certain environments, SSD10 and SSD177 yielded significantly higher than the 

parents, although the mean yield across all environments did not exceed that of the parental 

varieties.  

Across all environments, there were significant differences for oil characteristics among 

varieties and environments. Table 2.7 shows that with the exception of the Rocky Ford 

environment, the mean % Oil for our environments, 32%, in this study exceeded those reported 

by Pavlista et al. (2011) in Nebraska. The Rocky Ford 2011 environment had a very low oil 

percentage (11%) and was the only environment below 32%. Rocky Ford exceeded the average 
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maximum temperature of 25.1°C and the average % warm days for the growing season (Table 

2.2). It had the most GDD, despite a relatively early date of harvest, suggesting that the oil 

content was affected by heat. Rocky Ford also had the lowest percent of PUFA and there was no 

significant difference among the genotypes. This may have to do with warm temperatures later in 

the growing season, as Berti et al. (2011) found that in Chile, the concentration of C18:3 was 

negatively affected by later date of planting. Table 2.8 shows that there were significant 

differences among varieties and environments for all of the oil characteristics. Significant GxE 

was only present for C18:3, C20:1, and C22:1. This differs from the lack of GxE interaction for 

these characteristics observed by Vollmann et al. (2007), perhaps because our trials were 

subjected to environmental conditions that were not optimal for the production of a stable fatty 

acid profiles. C18:3, C20:1, and C22:1 are also the most unsaturated and longest-chain fatty 

acids that comprise a significant portion of the oil profile of camelina. The desaturation pathway, 

produces increasingly unsaturated fatty acids and the elongation pathway produces longer-chain 

fatty acids (Velasco et al., 1998).  These pathways were affected by conditions present in these 

environments. Enjalbert (2011) reported significant GxE interaction for % Oil and C18:3. This 

suggests that the production of MUFA and SAT are less affected by the environment than the 

production of PUFA.  

Latitude and temperatures during the growing season had the greatest influences on the 

yields and oil profile characteristics of the varieties in this study (Table 2.6). These two variables 

are closely related, as higher latitudes have lower average maximum and minimum temperatures. 

A decrease in average maximum temperature or an increase in latitude results in increased yields 

(Table 2.6). It appears that camelina would yield higher in cooler, higher-latitude environments 

with fewer GDD, and lower average temperatures during the growing season. There were heat-
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related yield reductions, which is consistent with reports that camelina shows yield reductions 

beginning at 25°C (Berti et al., 2011). Our mean for the average maximum temperature was 

25.1°C .With the exception of Craig, CO, number of warm days comprise no more than 17% of 

the total days throughout the growing season of the high yielding environments (Table 2.2). The 

opposite is true for the low-yielding environments, with the exception of Yellow Jacket; all of 

the low-yielding environments had warm days comprising more than 22% of the growing season. 

The effect of high temperatures was also evidenced by the small stature of plants in high heat 

environments (data not shown), which suggested that heat was affecting the physiological 

maturity of the plants. Heat had a negative effect on yield but altitude was a confounding factor. 

Craig and Yellow Jacket, both part of the Intermountain region of Colorado, were the two 

highest-altitude environments at 1855 m and 2070 m, respectively, which was above the average 

of 1234 m for all environments. These were also the only two environments that were the 

exception to the effect of number of warm days on yield.  

Lower temperatures and higher latitude were also positively correlated with 

concentrations of C18:3, C20:1, and % Oil. It has been observed that % Oil is a characteristic 

related to temperature and precipitation (Berti et al., 2011). This means that at those cooler, 

higher-latitude environments, the elongation and desaturation pathways were more active. In 

other oilseed species, it has been reported that lower daily temperatures result in a higher 

concentration of C18:3 (Deng and Scarth, 1998). This is caused by the downregulation of fatty 

acid desaturase 3 (FAD3), the enzyme responsible for the production of C18:3 (Baux et al., 

2008). Higher concentration of PUFA increases the cold tolerance of oilseed species (Lyons et 

al., 1964; Seiler, 1983; Kodama et al., 1994; Murakami et al., 2000; Izquierdo et al., 2002; Baux 

et al., 2008; Sadras et al., 2009). In our study, increased yield is correlated with an increase in 
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C18:3 and C20:1, suggesting that where conditions are conducive to high yields, they are also 

conducive to the activity of the desaturation pathway. Precipitation was the weather variable with 

the lowest R-square value, meaning that it accounted for the least amount of variability with 

respect to yield. Precipitation had no clear association with the activity of any pathway, but it 

was negatively correlated with PUFA. Enjalbert (2011) found that drought stress reduced C18:3 

content by 17% compared to a well-watered trial.  

From this study, it would seem that with the exception of Fort Collins in 2011, and Craig 

in 2011, the low-latitude environments in this study are not conducive to the production of high-

yielding camelina stands. Higher-latitude environments with lower average temperatures and 

lower precipitation seem to be better producers of camelina with more unsaturated oil. 

Environment plays a larger role than genotype in determining the yields of camelina. Oil profile 

characteristics, with the exception of the production of linolenic and linoleic fatty acids, are more 

genetically fixed. Environment and related stress factors such as drought and heat can lead to 

variation in oil profile and decreased seed oil content, which can impact seed viability and 

suitability as a biofuel feedstock.  

 There was no significant difference between the SSD varieties and the other entries in the 

variety trial. This does not mean that these varieties are not good performers. These topped the 

trial and should be recommended for this area. The lack of significant differences in varietal 

yields points out a need for new germplasm to augment a lack of germplasm diversity in the 

possible entries for camelina 
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CONCLUSION 

The camelina variety trial compared the performance of 15 varieties in two distinct 

geographical regions in the Western United States. Six of the varieties, Ligena, SSD10, SSD177, 

SSD87, SSD138, and Celine, were in the highest-yielding group of varieties in all of our 

combinations of environments, including irrigated environments. Gehringer et al. (2006) found 

that two of the varieties, SSD10 and SSD177, performed well in Germany, suggesting that these 

two lines are very widely adapted. The SSD varieties yielded well in our study but did not 

significantly outperform their parental varieties across all environments. 

Lower-latitude environments in Colorado were not as high-yielding as higher-latitude 

environments. Camelina did not perform well at low latitudes even under irrigated conditions, 

during the two years of our study, so the low yields can be attributed to above-average, high 

temperatures. Heat affected the physiological maturity of camelina, which is related to oil 

production pathways, yield, and seed fill. Varietal improvement efforts need to focus on 

development of heat-resistant camelina varieties for lower-latitude environments.  From an 

agronomic perspective, the focus might be on reducing the number of warm days so that they 

comprise no more than 17% of the growing season. One way this can be achieved is through 

earlier planting. As shown by the results of the higher-latitude environments, a decrease in 

average maximum temperature during the growing season resulted in increased yield and was 

positively correlated with an increase in % Oil and PUFA and a decrease in SAT. As a potential 

biofuel feedstock, camelina is better adapted to higher-latitude environments and further 

development of lines is needed for adaptability of camelina in lower-latitude environments.  
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Table 2.1. Names, sources, and maturity dates of the camelina varieties included in this trial. 
 
Variety Maturity    Source 
SSD 177¶ M# University of Giessen 
Ligena L Europe 
SSD 10¶ L University of Giessen 
Celine M Europe 
BSX G22 E Blue Sun Biodiesel 
SSD 138¶ L University of Giessen 
Licalla M University of Giessen 
BSX G24 M Blue Sun Biodiesel 
SSD 186¶ M University of Giessen 
Suneson M Montana State University 
Yellowstone E Great Plains Oil 
SSD 87¶ M University of Giessen 
Lindo M University of Giessen 
Blaine Creek E Montana State University 
Cheyenne M Blue Sun Biodiesel 
¶Indicates entry identified as containing significant 
quantitative trait loci for yield and drought tolerance 
# Maturity classification of the varieties. L= Late 
Maturing, M= Medium Maturing, E= Early 
Maturing 
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Table 2.2. Date of planting, date of harvest, and environmental variables for the environments included in this trial.  

Year Environments  
 Environmental Variable 

Date of 
planting 

Date of 
harvest Latitude 

Growing season 
precipitation1 

Avg max 
temp2 

% Warm 
days3 GDD4 Elevation

    °N mm °C °C  m 
2011 Lind, WA 4/19/11 8/8/11 46.79 181 20.8 4 2387 417 
2011 Iliff, CO 4/20/11 8/1/11 40.75 300 26.6 35 2491 1147 
2011 Fort Collins, CO 3/25/11 7/26/11 40.58 364 21.9 24 2369 1533 
2011 Rocky Ford, CO  3/18/11 7/18/11 38.05 226 26.5 26 3086 1254 
2011 Craig, CO 5/12/11 9/1/11 40.51 182 28.3 35 2561 1856 
2011 Bozeman, MT 5/12/11 8/23/11 45.67 201 25.7 17 2173 1341 
2011 Yellow Jacket, CO 4/20/11 8/16/11 37.53 121 24.3 6 2833 2070 
2012 Rocky Ford, CO 3/19/12 6/28/12 38.05 361 27.0 26 2683 1254 
2012 Torrington, WY 3/16/12 7/20/12 42.06 229 27.8 34 2354 1231 
2012 Greeley, CO 4/9/12 7/11/12 40.42 220 27.1 22 2193 1405 
2012 Lind, WA 4/3/12 8/9/12 46.79 117 23.6 15 3050 417 
2012 Creston, MT 3/20/12 8/18/12 48.18 302 21.4 10 2255 887 

1 Growing season precipitation includes irrigation from date of planting to date of harvest 
2 Average maximum temperature from date of planting to date of harvest 
3 Percentage of the growing season composed of warm days (days above 32°C) from date of planting to date of harvest 
4 GDD=Growing degree days (Tmax+Tmin)/2-Tbase. Tbase=4.4°C (McMaster and Wilhelm, 1997) 
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Table 2.3. Seed yields for all environments and varieties within the variety trial. Varieties are ranked in order of decreasing mean 
yields across all environments. Environments are organized in order of decreasing mean yield. Environments are abbreviated: MT 
2011 Bozeman, Montana; MT 2012 Crestone, Montana; WA Lind, Washington; FC Fort Collins, Colorado; RF Rocky Ford, 
Colorado; WY Torrington, Wyoming; YJ Yellow Jacket, Colorado; GR Greeley, Colorado.  

Variety Environments 
MT 
2012 

WA 
2011 

WA 
2012 

MT 
2011 

FC    
2011 

Craig 
2011 

Iliff 
2011 

RF   
2011 

WY 
2012 

RF 
2012 

YJ  
2011 

GR 
2012 Mean 

 Yield kg ha-1 
Ligena 2113 1820 1555 1101 1072 699 348 396 334 311 210 150 842 
SSD10 2060 1976 1413 1171 995 714 383 391 318 297 204 92 835 
SSD177 2083 2071 1198 1160 1017 609 552 420 339 206 202 140 833 
SSD87 2063 1901 1578 1034 934 682 331 372 300 260 144 113 809 
SSD138 2130 1936 1256 1105 855 690 549 405 286 281 109 105 809 
Celine 1835 1957 1487 1018 1037 682 312 365 309 272 189 141 800 
SSD186 2211 1744 1367 1022 900 549 530 376 236 246 193 126 792 
Suneson  2139 1778 1492 930 894 675 359 365 314 228 206 98 790 
Licalla 1825 1883 1352 1055 992 650 376 292 296 353 120 205 783 
BSX G22 2013 1782 1146 1062 965 629 573 265 225 236 225 111 769 
Yellowstone 2133 1824 1317 935 736 570 486 297 362 212 233 112 768 
BSX G24 2026 1787 1312 825 774 731 453 400 270 342 150 121 766 
Lindo 2039 1862 1168 1124 820 655 372 360 245 261 182 95 765 
Blaine Creek 1989 1794 1342 932 745 608 426 306 329 282 190 76 752 
Cheyenne 1892 1817 1338 1001 798 630 315 339 304 244 182 155 751 
Mean  2037 1862 1355 1032 902 651 424 357 298 269 183 123 813 
p- varieties *** NS‡ NS ** NS NS NS NS NS NS * NS -1 
* Significant at the 0.05 probability level 
**Significant at the 0.01 probability level 
***Significant at the 0.001 probability level 
‡ NS indicates lack of significance 
1 Genotype x environment interaction was significant 
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Table 2.4. Results of multiple genotype by environment interaction analysis. ‘All environments’ 
includes all the environments of the variety trial, ‘maximum’ includes the most environments 
without significant GxE interaction (p <0.05), ‘high yielding’ environments are those where 
average yields exceed 500 kg ha-1, and ‘low yielding’ environments are those with average yields 
below 500 kg ha-1.  

Year Environments Groups of environments 

  
All 

environments Maximum 
High 

yielding 
Low 

yielding Mean 
      kg ha-1 
2012 Crestone, MT †† 2037 
2011 Lind, WA †† †† †† 1862 
2012 Lind, WA †† †† †† 1355 
2011 Bozeman, MT †† †† †† 1037 
2011 Fort Collins, CO †† †† †† 902 
2011 Craig, CO †† †† †† 652 
2011 Iliff, CO †† †† †† 424 
2011 Rocky Ford, CO †† †† †† 357 
2012 Torrington, WY †† †† †† 298 
2012 Rocky Ford, CO †† †† †† 269 
2011 Yellow Jacket, CO †† †† 183 
2012 Greeley, CO †† †† 123 

    
Mean kg ha-1 813 807 1160 276  
LSD kg ha-1 52 67 101 56  
 ANOVA  
Model R-square  
CV, % 
GxE 
Genotype 
Environment 

0.97 0.95 0.92 0.71 
16 18 14 34 
*** NS‡ NS NS 
** ** *** NS 
*** *** *** ***  

†† Indicates grouping 
* Significant at the 0.05 probability level 
**Significant at the 0.01 probability level 
***Significant at the 0.001 probability level 
‡ NS indicates lack of significance 
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Table 2.5. Comparative yields and analysis of variance (ANOVA) results for each combination 
of environments listed in Table 2.4. The varieties are ranked in order of decreasing average yield. 
Max environments includes the maximum number of environments that can be combined 
without significant GxE interaction. High-yielding environments are those environments where 
yields exceeded 500 kg ha-1. 

Groups of Environments 
All Environments Max Environments High Yielding 

Variety Yield  Variety Yield Variety Yield 
kg ha-1 kg ha-1 kg ha-1

Ligena 842 SSD10 851 SSD10 1254 
SSD10 835 Ligena 848 Ligena 1249 
SSD177 833 SSD177 841 Celine 1236 
SSD87 809 Celine 827 SSD87 1226 
SSD138 809 SSD87 821 SSD177 1210 
Celine 800 SSD138 818 Licalla 1186 
SSD186 792 Licalla 805 SSD138 1168 
Suneson  790 Suneson  782 Suneson  1153 
Licalla 783 SSD186 774 Lindo 1126 
BSX G22 769 BSX G24 766 BSX G22 1117 
Yellowstone 768 BSX G22 765 Cheyenne 1117 
BSX G24 766 Lindo 763 SSD186 1086 
Lindo 765 Cheyenne 754 BSX G24 1084 
Blaine Creek 752 Blaine Creek 752 Blaine Creek 1084 
Cheyenne 751 Yellowstone 749 Yellowstone 1076 

ANOVA 
R-square  
CV, % 
GxE 
Genotype 
Environment 

0.97 
16 
*** 
** 
*** 

R-square  
CV, % 
GxE 
Genotype 
Environment 

0.95 
18 

NS‡ 
** 
*** 

R-square  
CV, % 
GxE 
Genotype 
Environment 

0.92 
14 
NS 
*** 
*** 

Mean  816 Mean  807 Mean  1160 
p-value varieties ** p-value varieties ** p-value varieties *** 
LSD (0.05) 52 LSD (0.05) 67 LSD (0.05) 101 
**Significant at the 0.01 probability level 
***Significant at the 0.001 probability level 
‡ NS indicates lack of significance 
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Table 2.6. Climatic variables regressed on yield across all environments in order of decreasing 
model R-square value. 

Climate Variable  Significance
 

Intercept Slope 
Model      

R-square 
Latitude (°N) *** -5598 152.5 0.76 
Average maximum temperature (°C) *** 9156 -107.7 0.59 
Elevation (m) *** 1914 -0.3 0.42 
Number of warm days (days above 32°C) *** 1558 -29.6 0.32 
Growing degree days (GDD) *** 2706 -0.7 0.10 
Precipitation (mm) ** 1084 -0.9 0.01 
**Significant at the 0.01 probability level 
***Significant at the 0.001 probability level 
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Table 2.7. Yield, percent oil (% Oil), percent monounsaturated fatty acid (MUFA) and percent 
polyunsaturated fatty acid (PUFA) by variety at each environment for 2011. The p-values 
indicate significance among the varieties at each environment. The varieties are ranked in order 
of mean yield across all environments for 2011. Varieties are abbreviated, FC: Fort Collins, 
Colorado; RF: Rocky Ford, Colorado; YJ: Yellow Jacket, Colorado; WA: Lind, Washington; 
MT: Bozeman, Montana.  

Variety Oil  Environments  

  
Iliff 
2011 

FC 
2011 

Craig 
2011 

RF 
2011 

YJ 
2011 

WA 
2011 

MT 
2011 Mean

  % Oil 
SSD177 % Oil 33.9 38.2 40.8 11.0 38.2 41.9 39.5 34.8
  MUFA 
  MUFA 39.7 41.3 40.6 41.6 40.5 39.7 40.9 40.6
  PUFA 
  PUFA 48.9 47.3 48.8 45.3 48.6 49.9 49.2 48.3
SSD10 % Oil 27.9 33.9 40.5 11.0 37.3 40.8 36.9 32.6
  MUFA 40.2 40.4 39.5 41.2 40.4 39.6 39.9 40.2
  PUFA 47.3 47.1 49.8 44.6 48.0 50.4 48.9 48.0
 SSD138 % Oil 34.1 39.4 40.4 11.3 37.3 42.5 38.9 34.8
  MUFA 37.7 35.4 35.9 37.1 35.4 35.3 34.6 35.9
  PUFA 50.9 53.4 53.6 48.0 53.9 55.0 55.0 52.8
Ligena % Oil 26.1 39.2 40.9 11.8 36.3 43.3 39.6 33.9
  MUFA 34.5 33.5 34.0 35.9 33.2 33.5 33.0 33.9
  PUFA 52.8 54.9 55.3 51.3 55.7 56.8 56.8 54.8
Celine % Oil 32.1 38.8 40.2 10.2 38.1 42.2 38.3 34.3
  MUFA 37.1 35.1 35.6 36.8 35.5 35.3 34.7 35.7
  PUFA 50.9 53.7 54.0 46.9 53.8 55.0 55.5 52.8
BSXG22 % Oil 33.8 39.2 40.3 11.3 38.2 41.9 40.1 35.0
  MUFA 35.6 35.1 35.9 36.3 35.2 34.8 34.8 35.4
  PUFA 52.9 53.5 53.6 48.0 54.2 55.2 54.6 53.2
SSD87 % Oil 30.8 37.7 38.9 9.7 35.2 39.2 37.9 32.8
  MUFA 36.2 36.3 36.3 36.1 36.0 35.6 35.6 36.0
  PUFA 52.7 52.6 53.3 49.1 53.5 54.4 54.4 52.9
Lindo % Oil 31.6 36.9 41.5 11.8 37.3 43.0 39.9 34.6
  MUFA 37.4 35.2 35.7 37.1 35.9 35.4 35.2 36.0
  PUFA 51.0 52.9 53.5 48.3 52.5 54.6 54.2 52.4
Licalla % Oil 32.4 36.0 41.0 11.1 36.7 41.7 39.3 34.0
  MUFA 37.3 37.5 37.9 37.7 36.9 36.6 37.5 37.3
  PUFA 51.2 51.3 52.0 45.8 52.4 53.9 52.6 51.3
SSD186 % Oil 32.2 37.2 40.7 9.5 37.5 42.5 39.1 34.1
  MUFA 35.1 33.7 34.7 35.6 33.6 34.1 34.0 34.4
  PUFA 52.8 54.0 54.5 47.4 54.7 55.7 55.1 53.5
Suneson % Oil 30.9 38.0 39.4 10.9 35.2 41.6 39.1 33.6
  MUFA 36.5 36.0 36.9 37.4 36.4 35.3 35.8 36.3
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  PUFA 52.1 53.0 52.7 49.1 52.8 54.7 53.9 52.6
BSX G24 % Oil 33.8 37.7 40.3 9.2 37.9 41.5 39.6 34.3
  MUFA 36.5 36.0 36.4 37.2 36.1 35.4 35.5 36.1
  PUFA 51.9 52.3 53.2 44.3 53.5 54.9 54.2 52.1
Cheyenne % Oil 30.3 36.9 41.3 11.4 36.6 41.9 39.3 34.0
  MUFA 35.3 36.9 35.8 37.9 36.5 35.1 35.9 36.2
  PUFA 53.1 52.0 53.7 49.1 52.8 55.2 54.0 52.9
Yellow  % Oil 32.8 37.8 40.4 11.1 37.4 41.1 39.8 34.3
  Stone MUFA 35.6 33.3 34.5 35.6 34.7 33.5 33.4 34.4
  PUFA 53.2 55.7 55.4 51.9 54.6 57.1 56.7 54.9
Blaine  % Oil 32.1 36.6 41.5 11.3 38.7 42.4 39.3 34.5
  Creek MUFA 36.5 35.2 36.4 36.8 36.4 35.4 34.8 35.9
  PUFA 52.2 52.7 53.2 48.9 52.7 55.0 54.5 52.7
 ANOVA 
p-value  % Oil 32** 38* 41* 11 37 42*** 39*** 35*** 
varieties MUFA 37* 36*** 36*** 37*** 36*** 36*** 36*** 36*** 
  PUFA 52* 52*** 53*** 48 53*** 55*** 54*** 52*** 
* Significant at the 0.05 probability level 
**Significant at the 0.01 probability level 
***Significant at the 0.001 probability level 
‡ NS indicates lack of significance 
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Table 2.8. Mean values plus genotype, environment and GxE effects on important oil characteristics for all 2011 locations. The oils in 
this table include oleic (C18:1),	linoleic (C 18:2), linolenic (C18:3),	eicosenic acid (C 20:1) erucic (C22:1), percent oil (% Oil), 
percent saturated fatty acid (SAT), percent monounsaturated fatty acid (MUFA), percent polyunsaturated fatty acid (PUFA).   

Oleic 
C18:1 

Linoleic 
C18:2 

Linolenic 
C18:3 

Eicosenic 
C20:1 

Erucic  
C22:1 % Oil SAT MUFA PUFA 

  % Composition 
Mean 19.0 20.7 30.0 12.8 3.5 34.9 10.8 36.3 52.5 
   ANOVA 
Genotype *** *** *** *** *** *** *** *** *** 
Environment *** *** *** *** *** *** *** *** *** 
GxE NS‡ NS * *** ** *** NS NS NS 
CV, % 6 4 4 4 5 4 9 3 3 
Model R-Square  0.81 0.86 0.94 0.76 0.85 0.98 0.79 0.80 0.84 
* Significant at the 0.05 probability level 
**Significant at the 0.01 probability level 
***Significant at the 0.001 probability level 
‡ NS indicates lack of significance 
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Table 2.9. Results of Pearson’s correlation analysis displaying the correlation coefficients and significance between oil characteristics 
and environmental variables for the 2011 environments. The oils in this table include oleic (C18:1), linoleic (C 18:2), linolenic 
(C18:3), eicosenic acid (C 20:1), erucic (C22:1), percent oil (% Oil), percent saturated fatty acid (SAT), percent monounsaturated fatty 
acid (MUFA), percent polyunsaturated fatty acid (PUFA).   

Environment Variable C18:1 C18:2 C18:3 C20:1 C22:1 % Oil SAT MUFA PUFA 

Latitude 
-0.22 -0.45 0.59 0.12 0.01 0.53 -0.47 -0.18 0.43 
*** *** *** * NS *** *** *** *** 

Precipitation 
0.15 0.33 0.34 -0.26 -0.09 -0.15 0.23 0.04 -0.17 
** *** *** *** NS ** *** NS *** 

Average Max temp 
0.18 0.42 -0.44 -0.08 -0.19 -0.31 0.23 0.14 -0.23 
*** *** *** NS *** *** *** ** *** 

Yield 
-0.20 -0.53 0.57 0.13 0.10 0.49 -0.41 -0.14 0.34 
*** *** *** * NS *** *** ** *** 

* Significant at the 0.05 probability level 
**Significant at the 0.01 probability level 
***Significant at the 0.001 probability level 
‡ NS indicates correlation coefficient was not significant 
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CHAPTER THREE: 

FACTORS AFFECTING CAMELINA YIELD COMPONENTS IN COLORADO AND 

WYOMING 

 

CHAPTER SUMMARY 

Yield components are a useful tool for crop scientists to evaluate physiological 

characteristics that contribute most to yield and how these traits are affected by environmental 

conditions. Camelina is an experimental oilseed species that has been identified as a candidate 

oilseed for the on farm production of biofuel in Colorado and the High Plains of the Western 

United States. In this experiment, we calculated the yield components seeds per pod, pods per 

plant, plants per hectare and thousand seed weight of several environments within a larger 

camelina variety trial. This study included three environments in the Colorado High Plains 

region, one in the Wyoming High Plains region and two in the Intermountain region of Colorado. 

Path analysis showed that plants per hectare had the strongest direct and indirect effects on yield 

and the other yield components. In addition, it had a consistent positive relationship with yield at 

all environments (p<0.001). There was also significant GxE interaction for plants per hectare in 

our study. This suggests that farmers looking for a quick way to increase yields should increase 

their planting density which increases the number of plants per hectare.  

Plants per hectare had no significant correlation to the production of polyunsaturated fatty 

acids. Thousand seed weight and pods per plant had significant positive correlations to the 

production of linolenic (C18:3) fatty acid and a negative relationship with linoleic (C18:2). 

Average maximum temperature during the growing season is negatively correlated with high 

thousand seed weight, number of pods per plant, and the production of unsaturated fatty acids. 

Increasing precipitation had a significant positive relationship only with the number of seeds per 
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pod. This suggests that the other yield components are more affected by temperature than 

precipitation.  

 

INTRODUCTION    

Camelina sativa is an oilseed species with potential for use as a feedstock for the 

production of triglycerides for use as feedstocks for the production of biodiesel, surfactants, 

lubricants and many other industrial products (Zubr, 1997). Production of bio-based petroleum 

substitutes, or biofuels, in dryland farms could help offset the annual consumption of diesel fuels 

in Colorado farms. Enthusiasm for camelina in Eastern Colorado stems from its drought 

tolerance, suitable oil profile for use as a diesel substitute, compatibility with a dryland wheat-

based cropping system, and resistance to flea beetles, a common pest of canola (Brassica napus) 

(Browne et al., 1991; Frohlich and Rice, 2005; French et al., 2009; Zubr, 1997). Camelina has 

demonstrated variable yields under dryland conditions and needs further assessment to judge its 

potential for growth in Colorado agricultural areas (Johnson et al., 2009).  

Camelina seeds are composed of 30%-40% oil (Zubr, 1997). Vegetable oil produced 

from camelina is composed of over 50% polyunsaturated fatty acid, 30% to 45% of which are 

omega-3 alpha linolenic acid. Due to the high concentration of omega-3 fatty acids and low 

concentrations of erucic acid (C22:1) it is suggested that consumption of camelina oil is 

beneficial to human and animal health (Frohlich and Rice, 2005). High concentrations of 

polyunsaturated fatty acid can result in elevated emissions of nitrogen oxide (NOx) pollutants 

(Pinzi et al., 2009). Optimizing the biofuel oil profile of camelina will need to focus on raising 

the percentage of oleic acid (C18:1) and decreasing concentrations of linolenic fatty acid (C18:3) 

(Pinzi et al., 2009).  
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Colorado is a predominantly wheat-producing state. According to the 2011 Colorado 

agricultural statistics database, Colorado is the eighth largest wheat-producing state nationwide. 

In 2010, out of 1,002,811 wheat hectares in Colorado, 991,479 were planted with winter wheat. 

This resulted in a total value of $606,359,000 (National Agricultural Statistics Service, 2011). 

Therefore, any candidate oilseeds for use in the production of bio-based petroleum substitutes in 

Eastern Colorado will need to be compatible with a dryland winter wheat rotation.  

The Western Great Plains region of the United States is a challenging environment for 

any crop species due to its seasonal precipitation, low humidity and temperature fluctuations 

(Peterson and Westfall, 2004). Nevertheless, a bio-based petroleum substitute must be high-

yielding in order for Colorado farmers to adopt this method of offsetting their annual diesel 

consumption.  

It is important to identify varieties with stable yield and oil quality responses the diverse 

climatic conditions of the Colorado agricultural region. It is important to remember, when 

breeding for stability across environments, that a certain degree of phenotypic plasticity is not 

always negative (Bradshaw, 2006; Freeman et al., 1993). Plants that can respond and change 

their phenotype in response to their environment are useful in environments where they are likely 

to encounter a large degree of variability from year to year.  

Yield stability is assessed by comparing the genotype and how it is affected by 

environmental conditions compared with other genotypes. The interaction between the genotypes 

and the environment, commonly known as genotype by environment (GxE) interaction, can 

occur in two ways, crossover and non-crossover interaction (Fehr, 1987). GxE interaction is 

important to consider when making varietal recommendations. Farmers could suffer heavy losses 

if varietal recommendations are made based on yield data where yield stability is not taken into 
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consideration. The stability of a variety depends on the heritability of its yield and yield 

components. The heritability component of yield is reduced if genotype x year x environment (G 

x Y x E) interactions are significant (Richards et al., 2010). 

Yield is a difficult selection criterion for plant breeders. There are numerous qualities that 

contribute to the overall yield of a crop species. A useful way to divide yield into more specific 

units is to measure yield in terms of yield components. There are many potential yield 

components and their relevance to yield improvement varies with the type of crop. For Brassica 

oilseed crops species, these include stand density, number of flowers, number of seed-bearing 

pods, seed weight, and number of branches. Measuring yield as a component of these 

characteristics gives breeders and crop scientists a way to measure yield as a function of different 

contributing factors. The advantage of breeding for components of yield is that heritability of the 

components of yield can be higher than heritability of total yield. For example, Vollman et al. 

(1996) calculated that the heritability of seed weight in camelina was 97.6 while the heritability 

for yield was lower, at 86.5. Yield components facilitate the identification of large-effect 

quantitative trait loci related to yield as yield is a complex trait that is governed by many genes 

and environmental effects while yield components are more specific traits that are controlled by 

fewer genes (Ribaut et al., 1997). Additionally, information about yield components better 

characterizes the specific roles stresses, such as drought, play in reducing overall yield (Ribaut et 

al., 1997). 

Understanding how yield components are affected by climatic conditions and stresses can 

improve our understanding of how to breed for stability with respect to these characteristics. Oil 

profile characteristics can be affected by temperature and other environmental conditions during 

the growing season (Vollman et al., 2007). The level of linolenic fatty acid (C18:3) content in the 
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seed-oil and plant biomass of camelina has a strong positive correlation with latitude, as the 

percent of this oil increases in cooler, wetter conditions (Linder, 2000; Enjalbert, 2011).  

In addition, yield components have been shown to affect other yield components. 

Previous studies on yield components in camelina have found that large-seeded varieties have 

lower oil content than smaller-seeded varieties (Vollman et al., 2007). Increased planting density 

for camelina results in a decreased number of pods per plant (Agegnehu and Hornermeier, 1997).  

A useful addition to the analysis of yield components is path analysis, a technique first 

described by Wright (1921). This technique has been used to analyze the relationships between 

yield components in wheat, crested wheatgrass and winter rapeseed (Dewey and Lu, 1959; Bhatt, 

1973; Basalma, 2008; Cooper et al., 2012). Performing a correlation measures the association 

between two traits without identifying any of the specific causes or effects. By weighting the 

suspected causes and expressing their relative contributions to overall yield, path analysis uses a 

partial regression coefficient to give a more detailed analysis of the relationship between yield 

and yield components (Wright, 1921; Dewey and Lu, 1959; Bhatt, 1973). A visual representation 

is illustrated below in Figure 3.1.  

Velasco et al. (1998) use a series of ratios to estimate the activity of various pathways 

that cause the elongation and desaturation of the fatty acids. This is a helpful tool for comparing 

the activity of metabolic pathways that form these fatty acids between species or varieties. The 

desaturation ratio (DR) estimates the activity of the pathway responsible for the conversion of 

linoleic fatty acid (C18:2) to linolenic (C18:3). The linolenic desaturation ratio (LDR) estimates 

the efficiency of the linoleic to linolenic conversion pathway. Figure 3.2 shows how to calculate 

these ratios. These pathways are a useful way to represent oil content because the production 

pathways of these oils are related.  
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This study calculated the yield components for camelina within a regional variety trial in 

order to quantify the variation in yield components in a diversity of environments within Eastern 

Colorado, Wyoming and the Intermountain West environments. The effect of the climatic 

variations on yield components will give us a better idea of the variation of these components in 

Colorado and Wyoming farming environments. In addition, the relationship of these components 

to each other will allow breeders to better understand the consequences of selecting for certain 

traits.  

The yield components measured in this study were plants per hectare, pods per plant, 

seeds per pod and thousand seed weight. These yield components were analyzed for possible 

correlation with overall yield, oil content, oil profile, and climatic conditions. The climatic 

variables in each site were site elevation, total irrigation and precipitation, average daily 

maximum temperature, number of warm (above 32°C) and cold (below 5°C) days, as adapted 

from Baux et al. (2008) and used by Enjalbert (2011) as a stress threshold for oil development in 

oilseed species. From these measurements, we determined the stability of these yield component 

traits in a diversity of Colorado and farming conditions. By quantifying how these traits vary 

over a number of environments, we will be able to provide a useful tool for breeders hoping to 

produce high, stable yields across a number of drought environments.  

 

MATERIALS AND METHODS 

 

Environments  

 The environments in 2011 were Craig, Fort Collins, Yellow Jacket and Iliff, Colorado. In 

2012, the environments were Greeley, Colorado, and Torrington, Wyoming. The sites in this 
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study were selected from within a larger multi-environment variety trial. The environments were 

selected to represent a range of elevations and climatic conditions within the High Plains region. 

The two higher-altitude environments in this study were Yellow Jacket, Colorado, located at 

2,103 m above sea level, and Craig, Colorado, which is located at 1,885 m. The lower elevation 

environments, more typical of Eastern Colorado agricultural areas, were Fort Collins, located at 

1,557 m, Greeley at 1,427 m, Torrington, Wyoming, at 1,251 m, and Iliff at 1,165 m. 

These sites were planted at different times depending on the planting conditions. In each 

environment except for Yellow Jacket, irrigation was applied as needed if drought conditions 

were excessive. The earliest planting date was at Torrington, Wyoming, which was planted on 

March 16, 2012. The latest date was at Craig, Colorado, which was planted on May 12, 2012. 

The harvesting dates varied from the earliest, July 11, 2012, at Greeley, to the latest, September 

1, 2011, at Craig. 

 

Planting and Harvesting 

 The entries were planted at a constant rate of 300 seeds m-2. The seeds were planted in 

rows using a wheat planter. The plots measured 11 m2 or 6 m long by 1.9 m wide, and were 

organized in a randomized complete block design with four replications. The herbicide Sonalan 

(Ethalfluralln, DowAgrosciences, Indianapolis IN) was applied prior to planting at a rate of 1.17 

L ha-1 at all environments for all years. Fertilizer application varied among environments 

depending on how much was needed so that N, P and K were not limiting yield.  

 

 

 



75	
	

Genotypes Evaluated 

A total of 15 varieties were included in this trial. The goal was to test a number of 

varieties from a diversity of breeding programs. Several of these were identified at Colorado 

State University as containing alleles speculated to contribute to increased yield performance in 

drought conditions (Enjalbert, 2011). These varieties, named with the prefix SSD, for single seed 

descent, were derived from a mapping population developed from the German varieties Lindo 

and Licalla (Enjalbert, 2011). The names and origins of the varieties included in this study are 

listed in Table 3.1.  

 

Data Collection 

For each environment, three yield components were measured within seven days before 

harvest. Three plants were selected randomly from within the plot and the number of pods per 

plant (PPP) was recorded. Open space between rows increased the amount of branching and 

caused an increase in the number of pods on plants at the perimeter of a plot, so plants were 

selected from within the interior of the plot. The number of seeds per pod was calculated using 

data from 10 pods from plants throughout the plot. The weight of 30 seeds was measured and 

this was used to calculate the average weight of a single seed for each variety and multiplied by a 

thousand for the thousand seed weight (TSW). The seeds from 10 pods from each plot were 

pooled and divided by the weight of a single seed for that plot and then by 10 to get the average 

number of seeds per pod (SPP).  

Plants per hectare (PPH)= (((Yield (kg) per hectare/(TSW/1000))/SPP)/PPP)  

Following collection of yield component data, the plots were harvested following drying 

to full harvest maturity and the yield was calculated after the seeds were allowed to dry to 8% 
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moisture. The harvesting was carried out with a Wintersteiger plot combine in Fort Collins and 

Iliff. In Craig, and Yellow Jacket, harvesting was done with a Hege plot combine. In Torrington, 

the harvesting was done with a 35’ Massey-Ferguson. 

Seed oil profiles for the 2011 environments were analyzed at a USDA research station in 

Peoria, Illinois, using gas chromatography mass spectrometry (GC-MS). Environments in 2012 

have not been analyzed yet for oil profile and content. The weather data was gathered from the 

CoAgMet or USDA meteorological station nearest to the trial. The growing degree days were 

calculated using a base of 4.4°C and an upper threshold of 29.4°C. The equation for calculating 

growing degree days was described by McMaster et al. (1997) in instances where an upper 

threshold is used. This is: 

GDD= [(TMAX+TMIN)/2]-TBASE (McMaster and Wilhelm, 1997). 

In our calculations, if the TMAX exceeds the upper threshold, then the upper threshold 

temperature is used. The inverse is the case with the TMIN and the lower threshold.  

 

Analysis 

SAS 9.3 (SAS Institute, Cary, NC) was used to perform the statistical analysis for this 

study. The General linear model (GLM) procedure was used to analyze the yield data for each 

environment individually and across all environments. The mixed procedure was used to 

calculate the analysis of variance (ANOVA) for the yield and yield components across varieties 

and environments. Pearson’s correlation was used for correlation analysis. Path coefficients, both 

direct and indirect, were computed using a SAS macro developed by Cramer et al. (1999), using 

techniques originally pioneered by Wright (1921). Regression was carried out in SAS PROC 

REG, where the dependent variables were the yield components; seeds per pod, thousand seed 
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weight, pods per plant, and plants per acre and the independent variables were the environmental 

variables latitude, precipitation, average maximum and minimum temperatures, number of cold 

and warm days, growing degree days, and elevation. 

 

RESULTS  

Table 3.2 shows the mean yields at each environment for each of the 15 varieties 

included in this study. All 15 varieties were included at each environment. The p-value denotes 

whether there are significant differences among the varieties at each environment. The varieties 

are listed according to mean performance across all environments. SSD177 was the overall 

highest yielding variety in this set of environments.  

 Table 3.1 shows the correlations of the yield components with the overall seed yield for 

each variety included in this trial across all environments and years. For eight of the fifteen 

entries, pods per hectare was positively correlated with seed yield. For six of the fifteen entries, 

thousand seed weight was positively correlated with seed yield. For two of the entries, seeds per 

pods was negatively correlated with seed yield. Pods per plant was not significantly correlated 

with seed yield. For five of the entries, none of the components of yield were correlated with 

seed yield.  

The average values for the seed yields and yield components for each of the 

environments are shown in Table 3.3. They are arranged by order decreasing total seed yield. 

Fort Collins was the highest yielding trial. Low seeds per pod was observed at the Craig 

environment. There were four environmental conditions that may have influenced yield this 

includes dense stand establishment at Craig, high temperatures between June 20, 2012 and July 5, 

2012 at Greeley (during which floral abortion and early ripening were observed), and high 

temperatures between June 20, 2012 and June 30, 2012 at Iliff. At Yellow Jacket, a dry period in 
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early to mid-July followed by heavy rains on July 25, 2011 resulted in pod shattering and 

subsequent secondary flowering of the plants. Excessive weeds at Torrington were a problem for 

that trial. 

There are several significant correlations reported in Table 3.4. Thousand seed weight is 

negatively correlated with the number of seeds per pod in all environments and across the 

combined environments. Thousand seed weight showed a significant negative correlation with 

the number of pods per plant but the correlation was significant only at Iliff. The number of 

plants per hectare had the strongest relationship with the other yield components. Seeds per pod 

and plants per hectare were negatively correlated in all the individual environments and across 

the combined environments. Pods per plant demonstrated significant negative correlations with 

number of plants per hectare in each individual environment and across all environments. At all 

environments, yield had a consistent positive relationship with the number of plants per hectare.  

 The underlined numbers in Table 3.5 express the direct relationship between the yield 

components and seed yield. The indirect effect expresses the negative or positive contribution of 

that yield component to the overall correlation with yield. The sum of the direct and the indirect 

effects across the rows is equal to the correlation coefficient between the yield component and 

the seed yield.  

The direct positive effect of seeds per pod on yield is almost always offset by a medium 

or large indirect negative effect of plants per hectare and thousand seed weight. Likewise, the 

direct effect of thousand seed weight on yield was nearly always positive, but was usually 

counteracted by a negative indirect effect of seeds per pod. Pods per plant did not show a 

significant correlation with yield across all environments or at any individual environment. 

Plants per hectare always showed a large positive direct effect on yield. The indirect effects of 
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plants per hectare on yield were usually small and ngative, except at Iliff, Fort Collins, and Craig, 

where plants per hectare had medium indirect negative effects on pods per plant and seeds per 

pod.  

Table 3.6 shows the effect of varieties, environment and genotype by environment (GxE) 

for the various yield components in this study. Pods per plant and plants per hectare both show 

significant genotype by environment interaction. In all cases except for plants per hectare, the 

genotypes showed significant differences with respect to the yield components. The high 

coefficient of variation (%CV) suggest that these data might not be normally distributed. It is 

especially high for PPH, SPP and PPP.  

Table 3.7 shows the weather and descriptive date for each environment. Three of the 

environments, Torrington, WY, Fort Collins, CO, and Greeley, CO were irrigated. Table 3.8 

shows the relationship among climatic variables and the yield component data for all 

environments combined. The number of seeds per pod has a significant negative relationship 

with the average maximum temperature, the number of days above 32°C (warm days), the 

number of days below 5°C (cold days), and elevation. On the other hand, it has a significant 

positive relationship with the amount of available water and the average minimum temperature. 

Thousand seed weight has a significant negative relationship with latitude, the average 

maximum and minimum temperatures, and the number of warm days. It has significant positive 

relationships with the number of cold days, number of growing degree days and elevation.  

Increasing the average maximum temperature negatively affected the number of pods per 

plant and increasing the average minimum temperature, number of cold days, and number of 

growing degree days led to increased number of pods per plant.  
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The number of plants per hectare is negatively influenced by the average minimum 

temperature. Pods per hectare if negatively influenced by the average maximum temperature, 

number of warm days, number of cold days, number of growing degree days and elevation. 

Overall, yield decreases with an increase in average maximum and minimum 

temperatures. The latitude, the amount of available water, the number of cold days, and number 

of growing degree days all contribute to higher yields.  

Table 3.9 shows the results of a correlation between yield components and the oil profile 

characteristics that were analyzed for 2011 environments. The fatty acids in this table were used 

because they contribute to the calculation of the linoleic desaturation ratio (LDR) and the 

desaturation ratio (DR). Yield had a strong positive correlation with percent oil and a negative 

correlation to percent erucic acid. Seeds per pod showed a strong negative correlation with 

percent oil, percent eicosenoic acid, percent linolenic acid and LDR. There was a positive 

correlation between seeds per pod and percent linoleic and erucic acid.  

Thousand seed weight was positively correlated with percent oil, percent linolenic acid 

and LDR. Thousand seed weight was negatively correlated with linoleic acid. Pods per plant was 

positively correlated with percent oil, linolenic acid, LDR and DR and negatively correlated with 

oleic, linoleic and eicosenoic acid. Plants per hectare was positively correlated with percent oil 

and eicosenoic acid, and negatively correlated with percent erucic acid. Percent oil was 

positively correlated with linolenic, eicosenoic, LDR and DR and negatively correlated with 

oleic, linoleic, and erucic acid.  
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DISCUSSION 

The heat and drought stresses experienced at all environments except Fort Collins 

environment resulted in the high yield variability. In Fort Collins in 2011, precipitation was high 

and the average maximum temperatures were lower than average. In other drier or hotter 

environments, heat resulted in lower yields. Heat stress during flowering stage between June 20, 

2012, and July 5, 2012, may have caused the floral abortion and lack of seed fill observed in 

Greeley, Colorado. In Iliff, Colorado, a lower yielding environment (mean yield 379 kg ha-1), 

high temperatures were recorded between June 20, 2011, and June 30, 2011, which was around 

the flowering period at this environment. In Yellow Jacket, heavy rains on July 25, 2011, 

followed a low precipitation period. This resulted in pod shattering and subsequent secondary 

flowering of the plants which reduced the yields severely (mean yield=162.3 kg ha-1). The yields 

at Torrington (266.7 kg ha-1) were reduced because of heavy weed competition. In the Craig 

environment, seeds per pod were lower than other environments, but moisture conditions were 

optimal at planting so the stand densities were higher as a result.  

The optimal seeding rate for camelina varies depending upon different environments and 

climatic conditions. Some (such as our program) prefer to row plant in high population densities, 

which for us was 710 seeds m-2. Depending on the thousand seed weight, the planting rate in kg 

ha-1varied but was approximately 7.84 kg ha-1 for our plots. This planting technique is 

compatible with wheat planting equipment if the planting depth is set to 6.3mm. Koncius and 

Karcauskiene (2010) found that the optimal yields and thousand seed weight of camelina were 

reached with a planting rate of 8 kg ha-1. Other programs plant camelina by broadcasting the 

seeds throughout the field at lower densities closer to 3 kg ha-1 and pressing them with a press-

wheel (Francis and Campbell, 2003). There is some disagreement as to whether one should plant 



82	
	

at lower densities to increase the number of pods per plant or plant at higher densities with fewer 

pods per plant for optimal yields. Agegnehu and Hornermeier (1997) found that optimal stand 

density for camelina was 400 seeds m-2 while Crowley and Frolich (1998) found a lower seeding 

rate of 300 seeds m-2 to be adequate. Ehrensing and Guy (2008) reported that seeding at a rate as 

low as 134 seeds m-2 would produce adequate stands. This is far lower than our planting rate of 

300 seeds m-2. 

As shown in Table 3.4, the number of pods per plant did not have a significant correlation 

with yield at any individual environment or across environments in this experiment. A higher 

number of plants per acre has a stronger relationship to seed yield than the number of pods per 

plant. The number of plants per hectare showed significant positive correlations with seed yield 

across many of the varieties as shown in Table 3.4. In previous experiments, it has been observed 

that optimal seeding rates result from planting rates that ranged from 300 to 600 seeds m-2 

(Agregnehu and Honermeier, 1997; Crowley and Frolich, 1998; Uabaniak et al., 2008). At heavy 

plant densities, reductions in pods per plant were also observed in our study as well as others 

(Agregnehu and Honermeier, 1997; Uabaniak et al., 2008). In canola, plants have been observed 

to compensate for low stand establishment as a result of phenotypic plasticity in yield 

components (Angadi et al., 2003). Above a certain plant density, which for canola has been 

observed to be 8 plants m-2, the plants yield better due to interplant competition (Angadi et al., 

2003). Below that threshold, yield increases resulting from interplant competition are no longer 

present and yields drop precipitously (McGregor, 1987). It has been shown in camelina that 

stand reductions up to 50% during rosette and bolting stages had no significant effect on seed 

yields over a two-year period in Montana (McVay and Kahn, 2011).  
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 Thousand seed weight and the number of seeds per pod were negatively correlated to 

each other at all environments. This suggests that there is a finite metabolic allotment to each 

pod, and therefore, the total weight of the seeds within a pod is more or less constant regardless 

of how many seeds are produced. This means that seeds per pod would not be a good trait to 

select for due to its negative relationship with thousand seed weight. According to Table 3.4, the 

direction and strength of correlation between yield and thousand seed weight varies in individual 

environments but the correlation is significant and positive when all of the environments are 

combined. Among individual varieties, shown in Table 3.2, there are many cases where thousand 

seed weight is significantly positively correlated with yield. This would suggest that thousand 

seed weight could be a yield component to select for in an effort to increase yields. Vollman et al. 

(1996) found that this trait has a high heritability, making it a good trait for selection by breeders. 

Due to the negative relationship between oil content and larger-seeded camelina seen in other 

studies, this increase in yields could come at the expense of the amount of oil per acre (Vollman 

et al., 2007).  

The path analysis in Table 3.5 reveals some of the more nuanced relationships between 

the yield components and yield. The strongest direct effect on yield was the number of plants per 

hectare. It is interesting that the direct effects of this yield component always have a negative 

indirect effect from seeds per pod and pods per plant. It has been previously observed that 

branching and pods per plant are positively correlated (Urbaniak et al., 2008) This would suggest 

that increasing the number of plants per hectare has a negative effect on the pods per plant and 

number of seeds per pod, but an overall positive effect on seed yield. The number of seeds per 

pod also has a strong direct effect on seed yield but this is always countered by a strong opposite 

indirect effect of the number plants per hectare by increasing the overall number of pods per acre. 
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This effect is similar for the number of pods per plant, where it has a large direct effect on yield 

that is countered by large indirect effects from the number of plants per hectare. Follow up 

experiments could further elaborate on this idea by comparing the harvest index, or percent of 

the total biomass that is dedicated to seed. This would verify whether stand density has a 

significant positive effect on seed production.  

According to our analysis, plants per acre would be a useful yield component for breeders 

interested in increasing yield. As shown in Table 3.6, plants per hectare and pods per plant 

showed significant GxE interaction across the environments. In addition, there were no 

significant differences for the varieties for plants per hectare. This suggests that this yield 

component is dependent on the environment and is not a characteristic that should be selected for 

as part of a breeding program.  

The influence of environmental variables on the yield components, shown in Table 3.8, is 

strong. Latitude, average maximum temperature, and days above 32°C had the strongest effects 

on thousand seed weight (model R-square=0.324, 0.197, and 0.246, respectively). The negative 

slopes of latitude (-0.1314) and warmer average temperature (-0.3383) show that environments at 

higher latitude or warmer temperatures have lower thousand seed weights. This result is 

confounding as higher latitudes would be assumed to have a lower average maximum 

temperature, which had a negative relationship with yield. An explanation for this might be the 

effect of elevation on temperature for the environments in this study. The highest elevation 

environments in this study, Craig, and Yellow Jacket, Colorado, were also some of the lowest 

latitudes.  

Irrigation and precipitation had a strong influence on yield. It has been estimated that 

camelina planted in Arizona consumed between 333 and 423 mm of applied water (French et al., 
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2009). Hergert et al. (2011) found that camelina exhibited a curvilinear response to irrigation that 

plateaued between 200 to 250 mm which when combined with stored soil moisture resulted in a 

maximum seasonal water use of 500-700 mm in the growing season. Our recorded combined 

precipitation and irrigation in this study varied from 360 mm in Fort Collins, Colorado, to 121 

mm in Yellow Jacket, Colorado. Water stress during flowering in canola has been shown to 

cause a yield reduction of 29.5% (Ahmadi and Bahrani, 2009). 

The average maximum temperature had a negative effect on yield and thousand seed 

weight. This reflects the susceptibility of camelina to heat stress as warmer environments yielded 

poorly. Also, the average minimum temperature had a strong negative effect on thousand seed 

weight and number of plants per hectare and yield. Conversely, it had a strong positive effect on 

the number of seeds per pod and pods per plant. This suggests that in colder environments, there 

is superior stand establishment and higher yields but fewer seeds in each pod and fewer pods per 

plant than in warmer climates. This possibly explains the low number of seeds per pod in the 

Craig environment as it had some of the lowest average minimum temperature and highest 

elevation. The result of the positive relationship between number of cold days with both yield 

and plants per hectare reinforced this idea, higher yields were associated with colder 

temperatures and number of plants per hectare. 

The accumulated growing degree days throughout the growing season had a positive 

effect on yield and on most yield components. This was likely a result of the plant’s reaction to 

increased number of days of appropriate temperature, which resulted in more growth and 

therefore more plants, more seeds, and heavier seeds. In the Greeley environment, flowering was 

terminated early because of high temperatures early in the season. Experiments with canola have 
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found earlier sowing dates, and more time before high summer temperatures, cause stress have 

resulted in higher yields (Ozer, 2003).  

High temperatures seemed to result in deformed, light seeds as were seen in the negative 

correlation between thousand seed weight and average maximum temperature. We found that 

thousand seed weight and plants per hectare had positive correlations with oil content, suggesting 

good establishment conditions promote the formation of oil. This was observed by McVay and 

Khan (2011) who found decreasing stand density reduced seed oil content. Enjalbert (2011) 

found that cooler environments had an increased level of linolenic fatty acid. This is because of 

the down-regulation of fatty acid desaturase 3 at higher temperatures (Baux et al., 2008). The 

thousand seed weight and its relationship to the ratio of linoleic (C18:2) acid and linolenic 

(C18:3) acid is of interest here. Thousand seed weight has a negative relationship with C18:2, 

and a positive relationship with C18:3 suggesting that C18:2 might be formed early and then 

increasingly desaturated as the seed develops until there is a greater percentage of C18:3. High 

temperatures decrease oil content which is shown through the positive correlation between 

thousand seed weight and the LDR. This could mean that the linoleic to linolenic conversion 

pathway are responsive to the same stresses that cause a reduced thousand seed weight. The 

negative relationship between C18:2 and % Oil could suggest that as the seed develops, the 

percentage that is C18:2 is fixed and the plants continue to produce more of the other oils that 

form the components of the oil profile. Increasing yields and denser stands had a negative effect 

on concentrations of erucic acid, which is detrimental to the health of livestock and humans 

(Hulan et al., 1976). This suggests that dense camelina stands have less erucic acid and higher 

value as an animal feed.  

 



87	
	

CONCLUSION 

The number of plants per hectare had the largest effect on yield. According to the path 

analysis, there were indirect effects from the other yield components but they were not sufficient 

to outweigh the direct effect of the plants per hectare. The result of our study suggest that within 

the locations of this study, areas with environmental conditions favoring high yields were also 

those that favored denser stands. All of our locations were seeded at a constant rate but the stand 

density varied among locations. The significant GxE interaction and variation among 

environments for plants per hectare suggests that this component is influenced by environmental 

conditions and not related to genotype. In a dryland agricultural system, this increased density 

may have a negative tradeoff in the form of increased water usage of the crop suggesting that a 

density threshold would be reached where yield increases would decrease because of competition 

for moisture, however Hunsaker et al. (2011) observed when low and limited irrigation 

conditions exist, high plant population contributed to yield increases. On the other hand, 

Agegnehu and Honermeier (1997) found that in higher-precipitation areas, pods per plant were 

the most important contributor to yields. Further investigation into the water use of a densely 

planted stand verses a low density, highly branched stand in low moisture, low humidity 

environment would be a useful follow-up experiment.  

According to Table 3.1, the highest yielding variety in this trial was SSD 177, however, 

the seed yield of this variety did not show any significant correlation with yield components 

across all environments. If breeders are interested in choosing a variety for seed yield 

improvement, it would be beneficial to choose one that shows significant correlation with yield 

components that are highly heritable and related to genotype. It has been reported that camelina 

TSW shows a heritability of 97.6 (Vollman et al., 1996). TSW would be the best yield 
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component for breeders interested in increasing yield because it doesn’t show any significant 

GxE and varies significantly among varieties.  

Based on the effect environment has on the yield components, it would appear that 

camelina does better in cooler climates where the chances of heat stress are low. In warmer 

climates, such as those in Colorado, where the chances of encountering excessively warm days, 

early planting would be a useful way to decrease the chances of flowering during a warm period.  

According to our trials, the number of pods per plant has little relationship with the 

overall yields for camelina. The number of seeds per pod was observed to vary significantly 

among environments. This was most apparent in Craig, Colorado, where the number of seeds per 

pod was very low. This could have been related to the dense stand establishment suggesting a 

response to altitude. 
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Figure 3.1. The direct and indirect effects of the yield components. The solid lines represent the 
direct effects on yield while the dashed lines represent the indirect effects. The indirect effect of 
plants per acre via pods per plant would be calculated by the correlation coefficient between the 
two variables multiplied by the direct path coefficient for pods per plant (Cooper et al., 2012).  
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DR= 
%C18:2 + %C18:3 

%C20:1 + %C22:1+ %C18:1 + %C18:2 + %C18:3 

LDR= 
%C18:3 

%C18:2 + %C18:3 
Figure 3.2. Calculating the ratios to estimate fatty acid production efficiency (Velasco et al., 
1998).  
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Table 3.1. Pearson’s correlations of the yield components with the yield of the varieties across all 
environments. Entries are ranked by order of yield performance across the trial. Includes sources 
of the varieties included in this trial with their respective maturity dates.  

Variety Maturity    Source Avg. Yield  SPP† TSW PPP PPH

   kg ha-1   
SSD 177§ M¶ Univ. Giessen 484 NS‡ NS NS NS
Ligena L Univ. Giessen 478 NS NS NS  NS
SSD 10§ L Univ. Giessen 451 NS 0.44 NS NS
Celine M Europe 445 NS 0.50 NS NS
BSX G22 E Blue Sun Biodiesel 443 NS NS NS 0.53
SSD 138§ L Univ. Giessen 437 -0.52 0.50 NS 0.55
Licalla M Europe 437 NS NS NS NS
BSX G24 M Blue Sun Biodiesel 428 NS 0.46 NS 0.59
SSD 186§ M Univ. Giessen 427 NS NS NS 0.44
Suneson M MT State Univ. 424 -0.44 0.48 NS 0.43
Yellowstone E Great Plains Oil 423 NS NS NS 0.55
SSD 87§ M Univ. Giessen 412 NS NS NS NS
Lindo M Univ. Giessen 401 NS 0.50 NS 0.46
Blaine Creek E MT State Univ. 398 NS NS NS 0.44
Cheyenne M Blue Sun Biodiesel 395 NS NS NS NS
§Indicates entry identified as containing significant favorable quantitative trait alleles for yield 
and drought tolerance 
¶ Maturity classification of the varieties. L= Late Maturing, M= Medium Maturing, E= Early 
Maturing 
†Yield components: SPP= Seeds per pod, TSW= Thousand seed weight (g), PPP=Pods per 
plant, PPH=number of pods per hectare 
‡ NS indicates correlation coefficient was not significant (α=0.05) 
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Table 3.2. LSMEAN yields for each variety at each environment. P-value signifies whether there 
is a significant difference among the varieties at each environment.  

Variety 
Fort 
Collins Craig Iliff Torrington 

Yellow 
Jacket Greeley Mean 

 kg ha-1 
SSD177 1017 609 551 339 202 140 476 
Ligena 1072 699 348 334 210 150 469 
BSX G22 965 629 572 225 225 111 455 
SSD10 995 714 383 318 204 92 451 
Celine 1037 682 312 309 188 141 445 
Licalla 992 650 376 296 120 205 440 
SSD138 855 690 549 286 109 105 432 
Suneson  894 675 359 314 206 98 424 
SSD186 900 549 530 235 193 126 422 
SSD87 934 682 331 300 144 113 417 
BSX G24 774 731 453 270 150 121 417 
Yellowstone 736 570 486 362 233 112 416 
Cheyenne 798 630 315 304 182 155 397 
Blaine Creek 745 608 426 329 190 76 396 
Lindo 820 655 372 245 182 95 395 
Mean  902 651 424 298 182 123 433 
p val  0.092 0.758 0.198 0.444 0.029 0.299 -  
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Table 3.3. Average yields and yield component values at each environment across all 15 varieties 
included in this study. 

   Yield Component† 
 Year Environment Yield  SPP TSW  PPP PPH 

  kg ha-1  g   
2011 Fort Collins 804 10.0 1.11 121 134,884 
2011 Craig 592 3.3 1.12 56 709,502 
2011 Iliff 379 10.1 0.77 62 189,872 
2012 Torrington 267 9.7 0.57 180 78,116 
2011 Yellow Jacket 162 9.7 1.20 143 31,228 
2012 Greeley 109 9.5 0.80 72 45,657 

† Yield components: SPP= Seeds per pod, TSW= Thousand seed weight (g), 
PPP=Pods per plant, PPH=number of pods per hectare 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



94	
	

Table 3.4. Correlation coefficients and significances among yield components.  

Environment  Yield Component  
 SPP† TSW PPP PPH YIELD 

           All environments 
SPP 1 -0.37*** 0.13* -0.56*** -0.16** 
TSW - 1 -0.16** 0.20*** 0.37*** 
PPP - - 1 -0.41*** -0.08 
PPH - - - 1 0.43*** 

          Fort Collins 
SPP 1 -0.51*** 0.03 -0.44** -0.23 
TSW - 1 -0.02 0.04 0.32 
PPP - - 1 -0.61*** 0.03 
PPH - - - 1 0.50*** 

          Iliff 
SPP 1 -0.49** 0.15 -0.47** 0.08 
TSW - 1 -0.42*** 0.28* 0.28* 
PPP - - 1 -0.49*** 0.10 
PPH - - - 1 0.35** 

        Craig 
SPP 1 -0.37* 0.04 -0.32 0.13 
TSW - 1 -0.09 -0.10 -0.12 
PPP - - 1 -0.75** -0.17 
PPH - - - 1 0.40** 

        Yellow Jacket 
SPP 1 -0.57*** -0.21 -0.09 -0.19 
TSW - 1 -0.10 -0.18 0.19 
PPP - - 1 -0.56*** -0.20 
PPH - - - 1 0.45** 

        Greeley 
SPP 1 -0.16 0.01 -0.34** -0.09 
TSW - 1 -0.16 0.23 -0.54*** 
PPP - - 1 -0.32* 0.21 
PPH - -  1 0.62*** 

         Wyoming 
SPP 1 -0.04 -0.13 -0.38** -0.09 
TSW - 1 -0.03 0.45** 0.05 
PPP - - 1 -0.40** -0.17 
PPH - - - 1 0.350** 

* Significant at the 0.05 probability level. 
**Significant at the 0.01 probability level. 
***Significant at the 0.001 probability level. 
† Yield components: SPP= Seeds per pod, TSW= Thousand seed weight (g), PPP=Pods 
per plant, PPH=number of pods per hectare 
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Table 3.5. Path analysis showing direct and indirect effects and total correlation coefficients of 
yield and yield components. Effect values are considered large if they exceed 0.50, medium if 
they are near 0.30, and small if they are less than 0.10 (Suhr, 2008).  

Environment  Yield Component  
 SPP† TSW PPP PPH YIELD 

          All environments 
SPP 0.29‡ -0.14 0.02 -0.33 -0.16** 
TSW -0.11 0.38 -0.03 0.12 0.37*** 
PPP 0.04 -0.06 0.19 -0.24 -0.08 
PPH -0.16 0.08 -0.08 0.59 0.43*** 
Fort Collins 
SPP 0.52 -0.28 0.02 -0.50 -0.24 
TSW -0.27 0.55 -0.01 0.04 0.32 
PPP 0.02 -0.01 0.72 -0.69 0.03 
PPH -0.23 0.02 -0.44 1.14 0.50*** 
Iliff 
SPP 0.71 -0.34 0.10 -0.39 0.08 
TSW -0.35 -0.69 -0.29 0.23 0.28* 
PPP 0.10 -0.29 0.69 -0.41 0.10 
PPH -0.34 0.19 -0.34 0.83 0.35** 
Craig 
SPP 0.56 -0.10 0.03 -0.37 0.13 
TSW -0.21 0.26 -0.06 0.11 -0.12 
PPP 0.02 -0.02 0.67 -0.83 -0.17 
PPH -0.19 -0.03 -0.50 1.11 0.40** 
Yellow Jacket 
SPP 0.20 -0.26 -0.06 -0.06 -0.19 
TSW -0.11 0.46 -0.03 -0.12 0.19 
PPP -0.04 -0.04 0.29 -0.40 -0.20 
PPH -0.02 -0.08 -0.16 0.70 0.45** 
Greeley 
SPP 0.24 -0.08 0.00 -0.26 -0.09 
TSW -0.04 0.49 -0.09 0.17 -0.54*** 
PPP 0.00 -0.08 0.54 -0.25 0.21 
PPH -0.08 0.11 -0.17 0.76 0.62*** 
Torrington 
SPP 0.16 -0.01 -0.01 -0.23 -0.09 
TSW -0.01 0.33 0.00 -0.27 0.05 
PPP -0.02 -0.01 0.09 -0.25 -0.17 
PPH -0.06 -0.15 -0.04 0.60 0.350** 
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* Significant at the 0.05 probability level. 
**Significant at the 0.01 probability level. 
***Significant at the 0.001 probability level. 
† Yield components: SPP= Seeds per pod, TSW= Thousand seed weight (g), PPP=Pods per 
plant, PPH=number of pods per hectare  
‡ Direct effects denoted with underline 
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Table 3.6. ANOVA for the effects of genotype, environment and genotype by environment 
(GxE) on the four yield components.  

df SPP† TSW PPP PPH 
  P P P P 

Source of variation       
Genotype 14 ** *** ** NS 
Environment 5 *** *** *** *** 
GxE 70 NS‡ NS * * 
R-Square 0.63 0.80 0.72 0.85 
CV% 29.90 18.23 39.10 64.94 
Mean 8.92 0.91 106.29 182282.01 
* Significant at the 0.05 probability level. 
**Significant at the 0.01 probability level. 
***Significant at the 0.001 probability level. 
† SPP= Average number of seeds per pod, TSW=Thousand seed weight, PPP= 

Average number of pods per plant, PPH=Average number of plants per hectare.  
‡ NS indicates correlation coefficient was not significant 
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Table 3.7. The weather data collected for each environment in this study. Precip=Growing season precipitation (combination of 
precipitation and irrigation). Avg Max Temp= Average maximum temperature for the growing season. Avg Min Temp= Average 
minimum growing season temperature.  

Year Environment Latitude 
Date of 
Planting 

Date of 
Harvest 

Precip 
Avg max 

temp 
Avg min 

temp 
Growing 

degree days
Elevation 

  mm °C °C  m 
2011 Fort Collins, CO 40.58 3/25/11 7/26/11 364 21.9 6.6 2369 1533 
2011 Craig, CO 40.51 5/12/11 9/1/11 182 28.3 6.1 2561 1856 
2011 Iliff, CO 40.75 4/20/11 8/1/11 300 26.6 8.4 2491 1147 
2011 Yellow Jacket, CO 37.53 4/20/11 8/16/11 121 24.3 8.4 2833 2070 
2012 Torrington, WY 42.06 3/16/12 7/20/12 229 27.8 8.4 2354 1231 
2012 Greeley, CO 40.42 4/9/12 7/11/12 220 27.1 8.6 1250 1405 
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Table 3.8. Regression of yield and yield components on climatic variables over all environments. 

Yield 
Component 

Intercept Slope Model R-
square 

Intercept Slope Model R- 
square 

 Latitude Precipitation+ Irrigation 
SPP† NS‡ NS NS 6.22 0.28 0.06*** 
TSW 6.22 -0.13 0.30*** NS NS NS 
PPP NS NS NS NS NS NS 
PPH NS NS NS NS NS NS 
Yield -1398.74 45.31 0.03** -150.89 60.89 0.37*** 
 Avg. Max temp Avg. min temp 
SPP 28.46 -0.25 0.07*** -27.87 0.80 0.16*** 
TSW 3.57 -0.03 0.20*** 4.40 -0.08 0.21*** 
PPP 295.61 -2.40 0.02** -166.14 5.90 0.03** 
PPH -3297289 47562 0.10*** 10253142 -212316 0.40*** 
Yield 3240.26 -35.63 0.23*** 6393.86 -129.10 0.63*** 
 Days above 32°C Days below 5°C 
SPP 10.51 -0.06 0.04*** 11.49 -0.07 0.03*** 
TSW 1.22 -0.01 0.25*** 0.68 0.01 0.04*** 
PPP NS NS NS 66.56 1.02 0.03** 
PPH -42113 18243 0.15*** -447807 23059 0.16*** 
Yield NS NS NS -474.62 23.30 0.68*** 
 GDD Elevation 
SPP NS NS NS 13.91 -0.00 0.08*** 
TSW 0.52 0.00 0.08*** -0.03 0.00 0.41*** 
PPP 45.73 0.03 0.04*** NS NS NS 
PPH -263265 313.80 0.07*** -317242 153.35 0.07*** 
Yield -42.01 0.21 0.12*** NS NS NS 
*Significant at the 0.05 probability level 
** Significant at the 0.01 probability level 
*** Significant at the 0.001 probability level 
† SPP= Average number of seeds per pod, TSW=Thousand seed weight, PPP= Average 
number of pods per plant, PPH=Average number of plants per hectare.  

‡ NS indicates lack of significance 
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Table 3.9. Correlation of yield and yield components with oil profile characteristics for environments in Fort Collins, Yellow Jacket, 
Craig and Iliff, CO, in 2011.  

Oil Component Yield Component % Oil 
 Yield SPP† TSW PPP PPH  
% Oil 0.332*** -0.353*** 0.499*** 0.135* 0.352** NS 
C18:1 Oleic NS‡ NS NS -0.172* NS -0.150* 
C18:2 Linoleic NS 0.142* -0.442** -0.189** NS -0.385*** 
C18:3 Linolenic NS -0.169* 0.431*** 0.378*** NS 0.643*** 
C20:1 Eicosenoic NS -0.185** NS -0.175* 0.214** 0.162* 
C22:1 Erucic -0.145* 0.172* NS NS -0.141* -0.158* 
LDRα NS -0.177* 0.511*** 0.311*** NS 0.583*** 
DR NS NS NS 0.213** NS 0.197** 
* Significant at the 0.05 probability level 
** Significant at the 0.01 probability level 
*** Significant at the 0.001 probability level 
† SPP= Average number of seeds per pod, TSW=Thousand seed weight, PPP= Average 
number of pods per plant, PPH=Average number of plants per hectare. 
‡ NS indicates correlation coefficient was not significant 
α LDR= Linolenic desaturation ratio, DR= Desaturation Ratio 
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CHAPTER 4: 

 FALL SEEDING OF CAMELINA IN COLORADO 

 

INTRODUCTION 
 
Camelina sativa, or false flax, is an oilseed species that has been identified as a 

promising feedstock for the on-farm production of biodiesel due to its favorable oil profile, 

resistance to flea beetles, and cold and drought tolerance (Angelini et al., 1997; Zubr, 1997; 

French et al., 2009; Onyilagha, 2012). Camelina can be planted in agricultural areas utilizing 

both tillage or no-till techniques (Gesch and Cermak, 2011).  

There is evidence that incorporating different crops into an otherwise continuous winter 

wheat-fallow rotation can result in increased wheat yields (Bushong et al., 2012). Bushong et al. 

(2012) found in Western Oklahoma that wheat yield of a winter wheat-canola rotation showed an 

increase that varied from 10 to 22%. They also found that based on the historical wheat and 

canola prices, the net economic returns from the canola-wheat rotation were greater than those 

for continuous wheat. This analysis included the economic impacts of purchasing herbicide 

treatments and losses due weed pressure. The yield effect of incorporating camelina into the 

rotation may be comparable to canola, as their growing season lengths are comparable. Figure 

4.2 presents a possible planting schedule comparing how spring and winter camelina are 

compatible with a winter wheat rotation as opposed to other common oilseeds in Colorado such 

as sunflowers. 

There are two types of camelina that differ from an agronomic perspective. Winter 

varieties are planted in the fall and overwinter in a rosette stage. These resume growth in the 

spring when temperatures rise above 3.3°C (Ehrensing and Guy, 2008). Spring seeded varieties, 
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on the other hand, are planted in early spring and do not undergo a dormancy stage (Putnam et al., 

1993). Both planting regimes have their benefits and drawbacks but are equal with the winter 

wheat-fallow rotation in the American High Plains.  

Advantages of spring planting include better weed control if spring tillage is utilized, lack 

of winter-kill of dormant seedlings, and the ability to plant into moist spring conditions. 

Drawbacks of this regime include later spring emergence, and dependency on spring moisture for 

emergence.  

The majority of the research on camelina has focused on spring varieties. For dry areas in 

Colorado, fall planting of camelina might result in a yield advantage similar to that of winter 

wheat over spring wheat. Advantages of fall-seeded winter varieties include earlier initiation of 

growth, reduced risk of unfavorable planting conditions, and less time to reach maturity than 

spring-seeded camelina. Earlier maturity means that the plants are not exposed to as much heat 

and drought stress that occurs in the warmest months of summer. Drawbacks of this planting 

regime include increased weeds and insect pests.  

Seeding camelina in the fall requires modification of the weed and pest management 

regimes that are utilized for spring camelina. Fall planting means that tillage or herbicide 

applications occur in the fall prior to planting, instead of the spring. This means that weed 

pressure could be increased because spring tillage is not available as a control measure. Good fall 

stand establishment and vigorous spring growth can alleviate some of the weed pressure through 

shading and vigorous competition (Crowley, 1999).  

A concern for the viability of overwintering camelina seedlings is their tolerance to cold 

winter temperatures. Previous experiments have found that camelina is hardy enough to survive 

the harsh winters of Minnesota, where average winter air temperatures are far lower than those 
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found in Colorado (Gesch and Cermak, 2011). Overwintering ability is increased with snow 

cover (Aase and Siddoway, 1979; Sharratt et al., 1992). Aase and Siddoway (1979) determined 

that 7 cm of snow cover is sufficient to buffer wheat seedlings from temperatures as low as          

-40°C. With the increased stubble as a result of the implementation of no-till agricultural systems, 

there is a greater amount of snow capture on fields in Eastern Colorado than is present with 

traditional tillage (Nielsen, 1998).  

There are insect pests of winter camelina that are not present in spring-seeded camelina. 

Previous winter camelina trials in Akron, Colorado, have encountered failures related to the 

presence of Ceutorhynchus cyanipennis and Ceutorhynchus americanus (Boris Kondratieff, 

personal communication, Apr 8, 2011; Gary L. Hein, personal communication, Feb 18, 2006). 

These insect pests appear frequently on plant species in the Brassicaceae family, which includes 

camelina (Cripps et al., 2006). These insects most strongly affect winter camelina that is planted 

in earlier in the fall, especially in August, as this is the time adult insects lay eggs (Cripps et al., 

2006). Later fall planting dates have been shown to reduce the impact of these pests. Studies of 

winter camelina in Ireland have shown that earlier planting dates are prone to high rates of 

lodging (Crowley, 1999). This may be due to the damage from these insects, as the larvae feed 

on stems at or below the soil line (Gary L. Hein, personal communication, Feb 18, 2006). 

Fall seeding of camelina would be particularly advantageous in Southeastern Colorado, 

where early spring temperatures are warmer and spring regrowth can be initiated earlier. In this 

area, high summertime temperatures result in a high evapotranspiration rate, meaning earlier 

establishment can allow camelina to avoid the hot, dry conditions of early summer. 

There were three specific objectives to this study within a larger goal of evaluating the 

potential of fall-seeded camelina in Colorado. The first was to determine the optimal date of 
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planting for fall seeded camelina. The second was to determine the optimal variety for fall 

planting among the varieties included in this study. The third goal was to evaluate the 

overwintering survival of spring varieties compared to winter varieties  

 
 
MATERIALS AND METHODS 
 

The initial evaluation of fall-seeded camelina was carried out in 2010-2011 in two 

environments, Fort Collins and Rocky Ford, Colorado. In both environments, there were fourteen 

total entries (Table 4.2). These included eleven winter-seeded varieties from the Great Plains Oil 

breeding program in Torrington, Wyoming. In addition, three spring types were included for 

comparison; these were Yellowstone, Celine and Ligena. In Fort Collins and Rocky Ford, these 

varieties were seeded in plots measuring 1.3 m2. The Fort Collins environment also included two 

treatments: irrigated and dryland. The date of planting was randomized within each treatment. In 

Rocky Ford, there was only an irrigated treatment and three dates of planting. In both 

environments there were two replications. The varieties planted in Fort Collins were planted at 5 

different dates throughout the fall of 2010 and one date in the spring of 2011. These dates of 

planting are listed in Table 4.1. The spring planting date reflected when spring camelina is 

typically planted in the High Plains. These entries were hand planted in multiple rows at a rate 

equivalent to 7.8 kg ha-1. 

For the irrigated treatment, sprinkler irrigation was applied as needed to prevent 

excessive drought stress of the plots. Irrigation water was shut off on October 13, 2010. 

Throughout the fall and spring, emergence and flowering data for the fall and spring-

seeded entries were recorded on a biweekly basis. At harvest, the plots were hand-harvested and 

hand threshed at different times depending on the date of maturity.  



107	
	

The yields were recorded and the data were processed using a general linear model 

(GLM) as provided in the SAS statistical software (SAS institute Cary, North Carolina). The 

independent variables were date of planting, variety, environment, irrigation treatment, and 

replication. There were no significant differences among the environments in this study 

(p=0.6683) so the environments were combined for analysis.  For both environments, the least 

squared means (LSMEAN) were calculated from yields across both environments.  The 

dependent variable was yield.  

 

RESULTS 

Spring varieties that were seeded in the fall all emerged in the fall but failed to overwinter. 

Weeds were also a problem and resulted in many plots being abandoned. Plots that were 

abandoned due to weeds were recorded as missing data in the analysis. This ensured that plot 

failure due to outside factors was not counted against the true performance of the varieties. Due 

to the unbalanced design because of the missing entries, least squared (LS) means were used.   

The fall of 2010 was dry. The first significant precipitation event occurred on October 12, 

2010, so fall germination was not observed prior to that in the non-irrigated trials. Following that 

rain, the next precipitation event occurred on Oct 22, 2010 and again on Nov 9, 2010. The total 

precipitation that fell from Sept 15, 2010 to Nov 23, 2010, when the soil temperature fell below 

0°C was 31mm. 

 Fall emergence was only observed in the irrigated treatments for those entries planted in 

the first, second and third fall planting dates. At the time of the fourth and fifth planting, 

temperatures were below the minimum required for camelina germination. The winter camelina 

varieties established a small, purple rosette that remained dormant throughout the winter. In the 
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following spring, the rosette resumed growth. All entries planted on the third date of planting 

failed to emerge in the spring. The winter camelina varieties planted on the fourth and fifth dates 

germinated in the spring when conditions were optimal. Those winter camelina entries that 

emerged in the fall were ready for harvest on July 19, 2010 while those that did not germinate 

until the spring were not ready until July 24, 2010. The spring varieties planted in any fall date 

failed to emerge in the spring. 

 Spring precipitation in 2011 was sufficient to result in a yield of the dryland camelina 

entries. From March 11, 2011, when soil temperatures rose above 0°C until July 15, 2011 on the 

first harvest date, there was 219 mm of total precipitation. This is close to the 333mm total water 

requirement at which camelina has been observed to reach its maximum yield potential in 

Arizona (French et al., 2009).  

 There were several issues that led to low yields of the entries in this trial. The entries that 

germinated in the earliest dates of fall planting may have been affected by the presence of an 

insect pest, Ceutorhynchus americanus, which was positively identified in the field as living in 

the rosette of overwintering individuals. This may have contributed to the die-off of many of the 

smaller individuals that emerged in the fall but failed to reemerge in the spring. In addition to 

insect pressures, weeds were also a problem. Lodging of the camelina due to bindweed resulted 

in the abandonment of many plots. Another issue affecting those entries planted on the first and 

second dates of planting was uneven establishment. Of the winter camelina varieties, some of the 

seeds planted in the fall remained dormant until the spring. These seeds emerged in the spring 

later than the individuals that established a rosette in the fall. As a result, there was a 

discontinuity in the maturity within some of the plots.   
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Despite the poor performance of some of the varieties included in this study, yield data 

were recorded for many of the entries. The results of the analysis of variance carried out for this 

trial showed that there were significant differences among three of the treatments in this 

experiment. Those were variety (p =0.0485), date of planting (p <0.001) and irrigation treatments 

(p =0.0358). The mean yield for the irrigated entries in this trial was 468 kg ha-1, while the mean 

yield for the dryland entries was 400 kg ha-1.  There were no significant differences among the 

environments in this study (p =0.6683) so the environments were combined for analysis. The 

yield mean for the winter camelina in this trial was 434 kg ha-1, while the mean yield for the 

spring varieties that were planted in the spring as a check was 479 kg ha-1. Table 4.2 shows the 

averages for the different varieties included in the trial. Figure 3 shows a comparison of the mean 

yields for the winter varieties at each date of planting, irrigation treatment and environment.  

 

DISCUSSION 

 Camelina entries showed much variability for yield. The highest performer was a winter 

variety HPX-WG2 at 567 kg ha-1. The lowest yielding varieties were HPX-WG1-29 and HPX-

WG4, which yielded 342 kg ha-1 and 324 kg ha1, respectively. Overall the spring varieties seeded 

on the final date of planting outperformed the winter varieties in this trial.  

Our yields were comparable to the winter camelina yields observed by Gesch and 

Cermak (2011) in Minnesota. Their average yield for the variety Joelle, which was an entry in 

this trial, was 552 kg ha-1, which is higher than the 470 kg ha-1 recorded here. Overall the entries 

in this study yielded lower than the average for a nearby spring camelina variety trial, which had 

a trial average of 1033 kg ha-1.  



110	
	

 Figure 4.3 shows the performance for each of the dates of planting. The fourth, fifth and 

sixth dates of planting were the best performers. Varieties planted on these dates germinated and 

emerged in the spring. Planting dates 4 and 5 were allowed to overwinter as seed and germinate 

when spring conditions were optimal. This might have some implications for those interested in 

planting camelina. Planting a winter variety in the late fall when average temperatures are below 

the germination threshold for camelina means that seeds stay dormant throughout the winter. 

This means that the seeds emerge when spring moisture arrives. This does not, however, work 

for spring camelina varieties, as low winter temperatures result in die-off.   

  

CONCLUSION  

From this study, we affirmed that is it possible to grow winter camelina in Eastern 

Colorado. We also discovered that spring varieties seeded in the fall not will emerge in the 

spring. It is possible that planting in the late fall and allowing camelina to overwinter as a seed 

could be an effective part of an agricultural rotation that effectively utilizes subsoil moisture. 

This planting strategy ensures the seeds are able to germinate at the earliest moment that spring 

conditions are optimal. Treating camelina as a winter annual and allowing it to germinate and 

emerge in the fall is not a recommended strategy because of the insect and drought pressure in 

this area. 
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Figure 4.1. The chronology of a rotation for Eastern Colorado that produces three crops in three growing seasons by displacing fallow 
period with a short season oilseed crop (Johnson et al., 2009). 
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Figure 4.2. Potential cropping sequences for winter oilseeds in Eastern Colorado (Johnson et al., 2009). 
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Figure 4.3. Comparison of the average winter camelina (WC) yields for each date of planting 
(DOP) with the spring camelina (SC) yields included in the trial. The spring camelina emerged 
on DOP 6 only and failed to overwinter.  
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Table 4.1. Planting dates for camelina in Fort Collins and Rocky Ford in 2011. 

Planting Date  Date of planting Date of harvest 

1 9/15/10* 7/19/11
2 9/29/10* 7/19/11
3 10/13/10 No spring emergence 
4 10/27/10 7/19/11
5 11/8/10 7/19/11
6 3/9/11* 7/24/11

*Indicates a date of planting at Rocky Ford, Colorado. No asterisk 
indicates that planting was done only in Fort Collins.  
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Table 4.2. A list of the LSMEAN yields for each winter variety over all dates of plating across 
both environments.  

Variety Yield LSMEAN (kg ha-1) 

HPX-WG2 524.4
HPX-WG1-33 500.0
Spring variety mean 479.0
HPX-WG1-6 475.9
Joelle 470.7
HPX-WG1-24 405.7
HPX-WG1-35 446.7
HPX-WG1 446.0
HPX-WG4-1 423.9
HPX-WG3 420.9
HPX-WG1-29 342.3
HPX-WG4 324.0
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CHAPTER 5:  

YIELD EVALUATION OF PENNYCRESS AND OTHER OILSEEDS IN DRYLAND 

CONDITIONS OF EASTERN COLORADO 

 

INTRODUCTION 

Another promising summer oilseed for the Colorado winter wheat-fallow cropping 

system is another member of the Brassicaceae family known as field pennycress (Thlaspi 

arvensi). This weedy species is native to Europe but has become widely established throughout 

midwestern agricultural areas of North America. Colorado farmers will recognize this plant, as it 

is commonly found growing near irrigation ditches throughout Eastern Colorado. Like Camelina 

sativa, another promising oilseed species in the Brassicaceae family, there are two varieties of 

pennycress that can be grown depending on the cropping system most prevalent in the area. 

Pennycress can be seeded in the fall where it is allowed to overwinter as a rosette or else it can 

be planted in the spring (Isbell, 2009). This plant is less cold tolerant than camelina and requires 

a higher soil temperature and more soil moisture for germination than camelina (Hazebroek and 

Metzger, 1990). The optimal daily temperature for germination and growth of this species is 

20°C (Hume et al., 1995).  

Much of the research that has been carried out on pennycress has focused on defining its 

characteristics as a weed. Some promising experimental lines have been identified that are high 

yielding and have potential as a field crop. These advanced lines exclude some of the weedy 

characteristics that would cause problems for potential producers. The characteristics that are 

excluded include cold-induced secondary dormancy, uneven annual germination and seed 

vernalization requirements (Hazebroek and Metzger, 1990). Pennycress seeds collected from 
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wild germplasm have been reported to have a germination rate of less than 50% due to various 

dormancy effects (Hume, 1994). In addition to germination traits, pennycress improvement 

programs have also focused on identifying varieties that are early-flowering, meaning that they 

flower 30 to 60 days after germination (Hume, 1994; Hume et al., 1995). In comparison, later-

flowering strains need 100 to 130 days to reach full flower (Hume, 1990). Pennycress does not 

compete well as a weed in dryland agricultural systems and is easily controlled with existing 

herbicides meaning that it will not take over when incorporated into a dryland agricultural 

rotation.  

Some pennycress varieties have a winter vernalization requirement and some do not. 

Annual varieties of pennycress, meaning those that do not have a vernalization requirement, 

flower in April or May depending on whether they were planted in the spring or fall. Preliminary 

studies have shown yields of 1,420 kg ha-1 in test plots (Isbell, 2009).  

The seed oil profile determines the potential uses of this feedstock and its suitability as a 

feedstock for the on-farm production of biodiesel and vegetable oil.  The seed oil of pennycress 

is composed of a higher percentage of monounsaturated fatty acids. The main components of 

pennycress oil are erucic (C22:1): 32.8%, linoleic (C18:2): 22.4%, linolenic (C18:3): 11.8%, and 

oleic (C18:1): 11.8% (Moser et al., 2009). The oil content of this species is lower than for other 

oilseeds at 29% (Isbell, 2009; Moser et al., 2009).  Figure 5.1 compares the oil profile of 

pennycress to that of other potential oilseed species in the Brassicaceae family.  

Pennycress biodiesel meets or exceeds all of the biofuel feedstock requirements set out in 

the American Society for Testing Materials (ASTM) D6751 (Moser et al., 2009; American 

Society for Testing Materials, 2008). High concentration of polyunsaturated fatty acids in 

pennycress oil means that it has low overall oxidative stability however high concentrations of 
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antioxidative compounds such as tocopherols increase the stability (Moser et al., 2009). The 

cetane number, which determines combustion quality of the oil, exceeds the minimum ASTM 

D6751 standard for biodiesel production. 

The process involved with the on-farm production of biofuels produces a large amount of 

secondary products in the form of press cake. Finding economically viable uses for this press-

cake is an important part of ensuring the economic sustainability of pennycress-based biofuel. 

Pennycress oil and seed meal is high in concentrations of erucic (C22:1) acid (Moser et al., 2009). 

This fatty acid has been shown to be toxic to animals and humans and causes cardiac lesions in 

test situations but has industrial uses (Hulan et al., 1976). Other studies have shown that 

phytotoxic compounds such as glucosinolates present in pennycress press cake can inhibit the 

germination of certain crop species and in other cases greatly reduce the ability of these plants to 

grow and thrive meaning pennycress meal could be utilized as a weed control agent (Vaughn et 

al., 2005). 

 Pyrolysis, or the heating of the seed meal under pressure to produce liquid fuel, would be 

a potential option for value-added use of the leftover seed meal from pennycress because of the 

deleterious effects of pennycress seed meal when used for feed or fertilizer (Boateng et al., 2010). 

The objective of this study was to test the initial performance of pennycress in a Colorado 

agricultural setting. Based on the initial observations of the growth and yields of pennycress in a 

smaller variety trial, a second larger trial was conducted to test the dryland yields of fall and 

spring-seeded pennycress compared to winter camelina and an entry of lesquerella (Lesquerella 

fendleri).  

 

 



120	
	

 

MATERIALS AND METHODS 

Within a variety trial and date of planting study of winter and spring camelina outlined in 

Chapter 4, one entry of pennycress was included. This was planted at two dates throughout the 

fall in 3.9m2 mini-plots. The dates of planting were Oct 14, 2010 and Oct 28, 2010. These entries 

were hand planted in multiple rows at a rate of 4.48 kg ha-1. Sonalan (Dow Agrosciences, 

Indianapolis, IN) was applied as a pre-planting weed control measure at a rate of 1.4 L ha-1 and 

the field was tilled to incorporate the herbicide. The fields were fertilized to ameliorate 

deficiencies identified through soil testing. The plots were hand weeded in the spring but heavy 

weed pressure was a problem throughout the trial. 

 Throughout the fall and spring, emergence and flowering data for the fall-seeded varieties 

were recorded on a biweekly basis. The plots were hand-harvested July 17, 2011 and hand 

threshed at different times depending on the date of maturity.  

The pennycress was hand cut and threshed in the same manner as the winter camelina. 

The spring of 2011 was wetter than normal, with the result that between the date of March 

emergence and harvest, over 219mm of precipitation and irrigation water was applied to the 

irrigated varieties. 

As a follow up to the initial pennycress seeding study, we tested the dryland potential of 

pennycress. Three winter pennycress varieties, W12, Patton and Beecher, were planted in a 

randomized complete block with four replications at the USDA research station in Akron, 

Colorado. Parallel to this block for comparison was another randomized block that included the 

top winter camelina performer from the 2011 date of planting study: HPX-WG2. An entry of 

lesquerella (Lesquerella fendleri) and a spring variety of pennycress were also included in this 
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block. With the exception of the spring pennycress, all of these varieties were planted on October 

10, 2011.  

 

RESULTS 

Pennycress seeded in the winter of 2010 did not germinate until May 5, 2011 when soil 

temperatures exceeded 4.4°C and was ready for harvest on July 12, 2010.  

Figure 5.2 shows the performance of thlaspi in a 2010-2011 variety trial compared to entries of 

spring and winter camelina. Its performance far exceeded that of any of the individual varieties 

of winter or spring camelina in this trial. The highest yielding camelina variety was the winter 

line HPX-WG2 that yielded 524 Kg Ha-1. This is far less than the 1,392 kg ha-1 yield of the 

pennycress.  

From October 10, 2011, the date of planting, until April 2, 2012, there was a total of 

38mm of precipitation in Akron, Colorado where the follow up dryland thlaspi trial was held. 

This was insufficient to raise a dryland crop of pennycress and as a result, there was no fall or 

spring emergence. Insufficient spring moisture (47mm in April) led to the failure of the 

pennycress and lesquerella. The spring camelina emerged and reached maturity under dryland 

conditions, but yield data was not gathered because the field was used as a demonstration during 

the wheat field day presentation.  

 

DISCUSSION 

The biggest surprise in this trial was the yield potential for pennycress under limited 

irrigation as shown in the 2010-2011 variety trial. This entry topped the trial with a yield of 1392 

kg ha-1. As a result of this study we discovered the superiority of pennycress as a potential 

oilseed crop under irrigated conditions. These results led to a follow-up study in 2011 to assess 
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the dryland potential of pennycress in a larger experiment. From this, we can conclude that 

thlaspi and Lesquerella require more than 38mm of precipitation throughout the growing season 

in order to yield a crop.  
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Figure 5.1. Oil profiles of different oilseeds with potential for use as a biofuel feedstock in 
Colorado (Zubr, 1997; Isbell, 2009; Pinzi et al., 2009). 
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Figure 5.2. Comparing the 2010-2011 variety trial yields of winter camelina, pennycress, and 
spring camelina entries (Spring). Winter 1,2,4,5, and 6 refers to winter camelina varietal 
performance at different dates of planting.  
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CHAPTER 6:  

HYBRID COMBINING ABILITY OF CAMELINA 

 

INTRODUCTION 

Crop scientists have long recognized the phenomenon known as hybrid vigor, whereby a 

particular hybrid cross outperforms the parental varieties with respect to growth and reproductive 

vigor. This phenomenon was first observed in corn and has since been recognized in many crop 

species (Shull, 1908). When making a cross, it is important to consider that some varieties make 

superior pollen donors or recipients and some crosses produce stronger, more fertile offspring.  

The value of a parent is measured in terms of ‘combining ability.’ This is divided into 

two types of combining ability, general and specific. General combining ability refers to a single 

parental variety’s average performance in combination with all other parents in the study. 

Specific combining ability, on the other hand, is a measurement of the specific crosses that 

exceed the average within a set of crosses (Sprague and Tatum, 1942). Specific combining 

ability is an important part of most breeding programs, especially those for maize and other 

outcrossing species. It is estimated that maize hybrids yield 15% more than open-pollinated 

varieties (Lippman and Zamir, 2006). This is a large reason why nearly 100% of corn planted in 

the US today is the derived from hybrid crosses (Duvick, 1999).  

Camelina sativa is an oilseed species within the Brassicaceae family that has been 

identified as a potential feedstock species for the production of biofuel in dryland agricultural 

systems. This species is primarily self-pollinating and its degree of outcrossing has been 

estimated to be between 0.09% and 0.28% (Walsh et al. 2012).  
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Being able to identify good specific crosses can contribute significant yield increases to 

developing breeding programs. Some oilseed breeding programs have adopted hybrids as a way 

to increase oil content and overall yields (Duvick, 1999). 

 

MATERIALS AND METHODS 

This study was carried out using common varieties that were identified by a collaborator 

as optimal maternal or paternal lines. These pollen recipients were Glacier, Orovada, Blaine 

Creek, and Jasper. Glacier, Orovada, Blaine Creek and Jasper were developed in Big Fork, 

Montana. The varieties were grown in the Colorado State University greenhouse facility and a 

proprietary chemical, provided by one of our collaborators, was applied at the bolting stage to 

create male-sterile plants to receive pollen from the other entries. The entries in this case were 5 

varieties that were identified as part of a mapping population and bred at CSU using single seed 

descent (SSD) after identification of quantitative trait loci for drought tolerance in a previous 

experiment. In addition to these and the 4 varieties used as female parents, several check 

varieties were added in order to create a diverse and well-rounded selection of individuals from a 

diversity of backgrounds.  

The crossing plan was to create a half-diallel analysis where crosses are only made in one 

direction. This involved sowing 10 seeds in a 1in Jiffy pot, and repeating so that each individual 

has six replications. Next, Glacier and Blaine Creek were grown in the same type of pot and a 

proprietary sterility-inducing chemical was applied. This crossing experiment failed to produce 

male-sterile plants due to unknown problems with the greenhouse or sterility-inducing chemical.  

Do to the failure to produce male-sterile individuals, the parental varieties Glacier, 

Orovada, Blaine Creek and Jasper were sent from Montana along with individual hybrid crosses 



128	
	

between each possible parental combination. These were planted in Greeley, Colorado with three 

replications. Figure 6.1 outlines the planting design and the environment of the hybrids relative 

to the parents. The hybrid entries were Blaine Creek x Orovada (BCxO), Glacier x Orovada 

(GxO), Glacier x Jasper (GxJ), and Blaine Creek x Jasper (BCxJ). The plots 11.6 m2 blocks 

where the parents were planted adjacent to the hybrid to facilitate visual comparison between 

them.  

 
Hand weeding was carried out throughout the trial. Irrigation was applied as needed to 

prevent excessive drought stress. The yields were recorded and the hybrid and parental yields 

were processed using a one-way analysis of variance (ANOVA) model as provided in the SAS 

statistical software (SAS institute, 2011). Precipitation data was gathered from the Colorado 

Agricultural Meteorological network (COAGMET) website.  

 

 
RESULTS AND DISCUSSION 

The greenhouse portion of this experiment was not successful. The varieties were grown 

separately and the proprietary male-sterilant was applied, but the resulting flowers emerged 

fertile and produced seed. This was the case with both attempts to create male-sterile camelina 

lines for crosses.  

The analysis of variance analysis carried out through this study showed that the hybrid 

varieties in this study did not differ significantly from the non-hybrid varieties (P=0.43). In 

addition, there was not significant variation among the varieties in this experiment (P=0.85). 

Overall, the mean of the hybrid varieties was 131.3 kg ha-1while the mean for the non-hybrid 

varieties was 117.1 kg ha-1. This lack of significant difference among the varieties was likely due 
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to the overall poor yields for the camelina plots in Greeley, Colorado. High temperatures and 

lack of precipitation during pod fill likely contributed to flower abortion and early termination of 

pod creation. The seeds in these varieties were small and withered, as was the case with the 

adjacent camelina variety trial, where the yields were similarly low. Without a significant 

difference between the hybrid and non-hybrid varieties as a result of environmental stresses, it is 

impossible to calculate general and specific combining ability (Sprague and Tatum, 1942). 

Perhaps in another environment, hybrid vigor could have been recorded.  

When the flanking parental varieties were compared directly with the hybrids, the 

relationships were all found to be nonsignificant, as illustrated in Figure 6.2. There was one 

significant difference where the variety jasper was found to be significantly different from the 

Jasper x Glacier cross (P=0.0376). Unfortunately, the parent was found to be significantly higher 

yielding than the hybrid.  
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Figure 6.1. Diagram of the planting layout of the combining ability field design. 
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Figure 6.2. The relationship between the mean yields of the parental varieties and those of the 
hybrids. The parental varieties are Orovada, Blaine Creek, Orovada, Glacier and Jasper. The 
hybrids are named with the letter symbols of the parental varieties and a lowercase x between 
them to indicate the lineage.  
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