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ABSTRACT 

 

PREDICTING HYBRID VEHICLE FUEL ECONOMY AND EMISSIONS WITH NEURAL 

NETWORK MODELS TRAINED WITH REAL WORLD, ON-ROAD DATA 

 

Physics-based hybrid vehicle simulation models for fuel economy (FE) exist but 

are computationally and financially expensive. These models simulate aspects of real-

world drive cycles that include the driving environment, thermal management, driver input, 

and powertrain component behavior. In this study, an alternative method of hybrid vehicle 

FE simulation is developed by training and testing a time series neural network (NN) 

model using real world, on-road data. This enables NN models to model many aspects of 

on-road vehicle dynamics, like regular traffic stops, turning, and irregular accelerations 

and stops. Unlike the physics-based models, NNs have the advantage of lower 

computational costs, which could be utilized in near-real-time vehicle system control to 

determine optimal velocity planning and powertrain control. Models trained in this study 

used velocity-time traces as an input to predict instantaneous FE. The NN model 

predicted fuel economy within a mean absolute error of 0-5% for on-road measurements 

over a 40 minute, real world, city and highway drive cycle. NN models trained with varying 

lengths of datasets did not improve with training data longer than 35 minutes. When 

trained with this method, NN models were accurate when tested with data from multiple 

days of tests and various drive cycles. Multiple NN models were also trained with hybrid 

vehicles with varying control system settings. NNs can only successfully model a vehicle 

whose control system settings reflect the training of the model. These results are 
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expected to improve with more comprehensive drive cycle data that includes data from 

different elevations and various climatic conditions. The predictions from the FE NN 

model were compared against predictions from the physics-based Autonomie model and 

a custom HEV simulation model developed at Colorado State University. NNs outperform 

these models when tested with on-road data to predict FE of a known vehicle. Using a 

portable emissions monitoring system (PEMS), NN models were also able to predict 

nitrous oxides and particulate matter emissions with <5% mean absolute error. The NN 

model method could be used to improve emissions estimates by capturing differences 

between real world and laboratory tested emissions. Recording and including more data 

from the vehicle and devices like the PEMS could further improve these NN models. 
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1. INTRODUCTION 

 

Project Introduction  

The transportation sector accounts for 28% of all energy use in the US and 5% 

globally [1, 2]. Most of this energy is generated from the combustion of fossil fuels, 

which produces greenhouse gases (GHG) such as CO2 and CH4, and harmful pollutants 

such as CO, NOX, hydrocarbons (HC), and particulate matter less than 2.5 μm in 

diameter (PM2.5), that affect air quality, climate and human health [3, 4, 5, 6, 7, 8, 9]. 

There is an urgent need to improve vehicle fuel economy (FE) that will reduce 

dependence on fossil fuels and reduce environmental impacts.  The Corporate Average 

Fuel Economy (CAFE) standards were enacted by the US Congress in 1975 to reduce 

dependence on oil and reduce energy consumption [10]. CAFE standards are fleet-wide 

averages to be achieved by individual automakers for its car and truck fleet. Recently, in 

2012, CAFÉ standards were updated to project a fleet wide average FE of 40.3-41.0 

mpg by model year 2021. This goal operates in tandem with the Environmental 

Protection Agency’s (EPA) goal to limit CO2 emissions to 163 grams/mile by model year 

2025. In addition to the CAFÉ standards, the California Air Resource Board (CARB) 

standards which regulate other emissions such as CO, NOx, and HC. 

Hybrid vehicles, in particular hybrid electric vehicles (HEV), are showing 

increased consumer demand and are considered a crucial vehicle architecture to 

improve FE. Annual US sales of HEVs have increased from 9,350 in 2000 to over 

500,000 in 2014 [11]. Vehicle FE is commonly characterized on a chassis 

dynamometer, a device that measures and imposes torque and power on an engine or 
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vehicle. Numerical models, such as Autonomie and Modelica, simulate the physical 

processes in the vehicle and predict FE. Using these measurements and predictions, 

vehicles can be optimized to improve FE through modification of the powertrain and 

energy system control [12, 13, 14]. By improving HEV energy management techniques, 

FE can be increased by approximately 20% depending on the cycle driven [15]. This 

can be achieved in part by improving the model representation of the powertrain and 

energy control system (Figure 1). 

 

 

Figure 1: Optimization of HEVs is a multi-step, iterative process that requires evaluation to 
model vehicle FE on a given route. There are a growing number of methods to improve 
powertrain control including dynamic programming (DP), Pontryagin's Minimum Principle (PMP), 
and NNs [12]. This study is aimed at improving the FE model evaluation portion of optimizing 
powertrain control. Physics-based models provide more detailed information for specific vehicle 
parameters studies but for FE studies, as shown in this work, comprehensive information is not 
needed. 
 

Hybrid vehicle FE modeling is difficult due to complicated engine and energy 

management strategies resulting from a combination of multiple drivetrain energy 

sources [16]. Models allow researchers to optimize control strategies that can reduce 

fuel consumption of HEVs without the need for on-road tests. Current models can 
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accurately predict FE in conventional vehicles (CV) and HEVs but these are 

computationally and financially costly [17].  

Consequently, improving FE also reduces total emissions produced due to less 

fuel consumed. However, emissions composition changes with vehicle specific power 

(VSP) and steady state engine operation [18, 19]. The EPA has developed the MOtor 

Vehicle Emission Simulator (MOVES) [20, 21, 22, 23, 24] to model emissions from on-

road mobile sources. This method works well for internal combustion engines in CVs 

but it has been shown that the model does not perform as well with HEVs [25]. 

Emissions tests on dynamometers, using certification cycles, have underestimated 

some pollutants by 10-20% when compared to real world, on-road test conditions [26]. 

Tests completed on a chassis dynamometer cannot fully mimic turns and potholes, 

unexpected and inopportune traffic incidents, and aggressive or uncommon driving 

habits. These are characterized primarily in real world, on-road collected data. A model 

built to anticipate on road driving occurrences could improve FE and emissions 

predictions. 

Prediction of vehicle parameters using a neural network (NN) model has been 

previously studied [27, 28, 29, 30, 31, 32, 33]. NNs build associations from known data 

to create simulation models. These studies have focused on predicting emissions and 

engine and fuel performance for an engine on a dynamometer only and not an on-road 

driven vehicle. Researchers at the National Renewable Energy Laboratory (NREL) have 

utilized NNs to determine optimal engine control for HEVs using an input drive cycle [33, 

34, 35]. While these studies utilize NNs, predicting vehicle FE using real-world data is 

less explored. However, these studies and physics-based model approaches all forgo 
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the use of real world, on-road testing for controlled laboratory data. NNs in HEVs and 

CVs will allow investigation of alternate control strategies to improve FE based on on-

road driving data. A NN trained on on-road data could predict the FE of future routes, 

which would progressively improve with more data from the given route and from 

multiple drivers. If the route is known, the vehicle’s energy management system can be 

modified to optimize efficiency. This benefits the manufacturer by enhancing their 

product and the consumer by saving on long term fuel cost (Figure 1). On-road driving 

data has an advantage over characteristic drive cycles in the fact that the models can 

be trained to anticipate real world instances, driving habits, and multiple drivers. NNs 

can also be trained in a time series configuration, which accounts for short term, 

nonlinear engine dynamics and hysteresis. 

Research Objective and Overview 

In this study, we developed and applied neural network models to simulate fuel 

economy and emissions from hybrid vehicles operating in the real world. The neural 

network models were trained, tested, and evaluated on real-world, on-road 

measurements made on a combination of hydraulic and electric hybrid vehicles. The 

neural network models were also tested against physics-based models. Our work was 

used to answer the following research questions: (i) Are NN models built to predict FE 

and emissions from real world data viable as a modeling technique?, (ii) Under what 

conditions (e.g. drive cycle and data length, model training parameters) do NN models 

for FE and emissions predict with less error?, and (iii) Is there a methodology to 

consistently train FE and emissions NN models? 
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Materials and Methods 

Neural Network Models 

A NN is a computing tool originally designed to loosely model the pathways 

found in the brain and nervous system. NNs establish interconnected links called 

neurons which accept inputs and pass them through transfer functions, in hidden layers 

within the model, to compute an output. The network trains weights within these transfer 

functions with the objective of minimizing the error between the measured and predicted 

output. NNs are ideal for creating predictive models when large datasets exist and there 

are complex, nonlinear relationships between the inputs and outputs. They have been 

widely utilized in weather, energy systems, economic trends, and can be applied to any 

scenario where non-linear relationships occur [36, 37, 38, 39, 40]. 

NNs are trained iteratively to change the weights and biases in a neuron with the 

transfer function: � = ∑ ����=� �� + �     (1) 

Where n is the neuron output, P is the number of input elements, xi is the input value, wi 

is the weight of the input value, and b is the bias. Weights and biases are altered with 

each iteration, influencing the output relative to the importance of the input [41]. The 

summation of the weighted inputs and the network biases yield an output, n, in the 

hidden layer [42]. Figure 2 shows the architecture of a Nonlinear AutoRegressive 

network with eXogenous (NARX) inputs which is the form of all NNs in this study. A 

sigmoid transfer function is used in the hidden layer neurons producing an output from 0 

to 1. Using a sigmoid function in the hidden layer allows the weights and biases to 

generalize an output unlike a step function. Neurons in the hidden layer pass 
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predictions to a single neuron in the output layer. The output layer uses a linear transfer 

function to scale the overall output for the target units and scale. Time series datasets 

utilize more inputs dependent on a time delay d: �(�) = �(�(� − �),�(� − �), … ,�(� − �), �(� − �),�(� − �), … , �(� − �))   (2) 

Where y(t) is the network output, x is the training input, and t is the time step. The time 

delay determines the amount of time each data point is included in the transfer 

functions. 

Figure 2: Schematic for a NARX NN trained to predict FE and emissions predictions. In this 
case, 4 inputs (x(t)) and 1 feed-forward output (y(t)) enter the network. The output of the 
network is used as an input from pervious time steps. The time delay for this network is 3 
seconds (1:3) and there are 15 neurons in the Hidden Layer [42]. 
 

The performance of NNs are evaluated by calculating the correlation coefficient 

(R) and the mean square error (MSE) in each training iteration: �(�,�) =
�[(�−��)(�−��)]��(�−��)�(�−��)�     (3) 

��� =
��∑ (�� − ��)���=�      (4) 

Where E is the expected value, a and p are measured and predicted output sets 

respectively, ua and up are the mean values of the a and p sets respectively, and n is 

the length of the a and p sets. The R-value, R(a,p), is a measure of how well the 
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predictions correlate linearly to the measurements. The MSE measures average 

squared error in the prediction. The training process attempts to maximize the R value 

and minimize the MSE. The weights and biases are improved using backpropagation 

algorithms in an iterative process [41]. Each iteration builds on the previous network, 

changing weights and biases, to optimize MSE and R. 

In this work, the performance of the trained networks was judged by calculating 

the percent error in the measured and predicted FE over an entire cycle: 

      % ����� =
∑ ����������=� �−∑ �����������=� �∑ ����������=� � ∗ ���                     (5)     

Where n is the number of predicted and measured values, measuredi is the measured 

value, and predictedi is the model predicted value. The sign of percent error calculated 

depicts whether a model under or over estimates a prediction. 

Training networks from comprehensive driving data can create networks that can 

predict the FE or emissions for any drive cycle. This study explores NNs as a method to 

train models from on-road data to predict FE and emissions from hybrid vehicles. 

Physics-Based Models 

Autonomie is a simulation tool developed by the Vehicle Testing Group at 

Argonne National Labs (ANL) [43]. ANL has developed models that simulate real world 

Chevrolet Volt PHEV operation [44] and Toyota Prius HEV operation [45] using 

Autonomie. However, in practice, ANL does not provide these individual vehicle models 

to researchers. Customers are required to learn the simulation architecture and details 

as well as input vehicle parameters manually such as control logic, engine operation 

maps, and component efficiency maps. Without modification, Autonomie essentially 

acts as a “black-box” in practice, making rigorous investigation of new control strategies 



8 

difficult. Because of these drawbacks, some researchers elect to build their own custom 

models. 

Custom models to evaluate the effect on FE of various methods of energy 

management are well developed in the literature [45]. Development of FE simulation 

models has been accomplished by several researchers, including our group, which 

developed a FE simulation model in the Modelica language [46]. Modelica is a free tool 

that uses forward dynamics to simulate real-world stimulus responses as well as a 

differential algebraic equation solver [47, 48]. This custom simulation tool is useful 

because modifications for various energy management scenarios are clear and 

transparent in comparison with Autonomie. The drawback of this simulation technique is 

the large amount of required development time, program compatibility issues, and 

common open source program drawbacks like lack of resources, frequent program 

crashes and arduous troubleshooting. This study uses these alternate fuel economy 

models to check the viability of a NN approach to vehicle FE modeling. 

Portable Emissions Monitoring System 

Portable Emissions Monitoring System (PEMS) devices have been used to 

measure on-road emissions in real world traffic [25, 49, 50, 51, 52, 53, 54]. The 

emissions data in this study was collected using an AxionS+ PEMS manufactured by 

Global MRV. Similar PEMS devices from the same manufacturer have performed well 

and have been used on many different vehicles including light duty vehicles, refuse 

trucks, and conventional and hybrid transit buses [25, 50, 51].  

The PEMS device collected mass emission rates of CO2, CO, HC, O2, NOX, and 

particulate matter less than 10μm (PM10) measurements at 1Hz. The CO2, CO, and HC 
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measurements are made using a nondispersive infrared (NDIR) sensor, the O2 and NOX 

are measured with electrochemical sensors, and PM10 measurements made with a laser 

scattering detector. GPS coordinates and engine parameters from Controller Area 

Network (CAN) signals available through a vehicle’s OBD-II port can also be recorded. 

The emissions were captured with an exhaust tailpipe probe, connected to the main 

device with ruggedized tubing. A 12 second delay correction was made in the PEMS to 

compile and synchronize all emission data to account for delays from plumbing and 

sensors. 

Background 

Conventional Characterization of Vehicle FE and Emissions 

Fuel consumption in vehicles is typically measured during chassis dynamometer 

testing, which requires expensive equipment and a specialized laboratory. However, 

real world driving conditions may not be captured well on a chassis dynamometer and 

fail to represent driving occurrences such as traffic stops or abrupt changes in vehicle 

acceleration. 

Characteristic drive cycles are velocity-time cycles formulated to represent real 

world driving profiles of various driving applications. These drive cycles (e.g. UDDS, 

HWFET, and US06) are used for regulatory purposes to calculate FE and to determine 

compliance with emissions standards. These and other cycles are composed of many 

driving instances to represent driving routes utilized in, but not limited to commuting, 

delivery vehicles, and public transit. Physics-based models are built to match drive cycle 

test results from these laboratory tests but are not typically tested with real world data. A 
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model that is built from real world data should perform as well as these laboratory 

derived models and compare well to laboratory collected data. 
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2. LIGHTNING HYBRIDS MODELS 

 

 Lightning Hybrids (LH) in Loveland, CO retrofits trucks, buses and other large 

transit and delivery vehicles with hydraulic drivetrain-integrated systems. LH converts 

CVs to hydraulic hybrid vehicles (HHV) that have similarly complex energy management 

and powertrain control systems compared to HEVs. LH encountered problems when 

attempting to drive characteristic drive cycles generated to represent their customers’ 

driving applications. These drive cycles were not always drivable due to driver response 

and the operation of the hybrid vehicle. CSU was commissioned to research a method 

to create more realistic drive cycles or to model FE in their vehicles. A preliminary NN 

approach was explored with real world, test track data provided by LH. 

NN Test and Training Procedures 

The MATLAB Neural Time Series tool was used to train all NNs with a 3 second 

time delay. The time delay was included to account for short term operating history of 

the vehicles such as the vehicle’s acceleration and momentum. Preliminary tests 

showed a 3 second delay yielded more consistent NNs over a 2 second delay but 

showed no discernable improvements for 4 to 5 second delays. Vehicle parameters and 

fuel consumption data was collected using the LH system controller at 1Hz and 

emissions data collected at 1Hz using the PEMS.  

Two distinct NN models were created for fuel consumption and emissions 

modeling. When PEMS data were available, fuel consumption measured by the PEMS 

was used instead of the LH controller measurement. The two NN models were trained 

with a varying set of input variables as shown in Table 1 and Table 2. In theory, a NN 
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model trained on more variables related to the output should produce a more robust 

model. 

NNs were trained using the Levenberg-Marquardt backpropagation algorithm. 

Ten NNs were trained for each input scenario and the NN with the most optimized R-

value and MSE was chosen. 

All drive cycle data was collected and provided by LH using vehicles with LH’s 

HHV system. Every NN model generated was tested and evaluated to determine the 

absolute percent error for the FE and emissions for the entire length of the tested drive 

cycle. Every model was tested on data independent from training data. The following 

paragraphs include descriptions of how the models were trained and tested with a 

varying number of neurons and inputs and varying lengths of data during training, 

different drive cycles, and LH control system settings. The limited testing of the 

emissions models from LH data is also included. 

Table 1: Fuel Consumption training input scenarios, Bare, Vehicle Specific, and All In 
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Table 2: Emissions training input scenarios, Bare, Vehicle Specific, and All In 

 

Number of Neurons 

Four different amounts of 1, 3, 12, and 48 neurons in the hidden layer were used 

in training of a NN model. The Keisling cycle was utilized for this exercise due to it 

having the longest drive cycle. For all other NNs trained, Eqn. 6 was used; this method 

is evident in the gray literature [55]. � =
���+����2                                  (6) 

Where n is the number of neurons, Nin is the number of unique inputs, and Nout is the 

number of unique outputs.  

Number of Inputs 

The fuel consumption NNs were each tested for performance among three 

training input scenarios as seen in Table 1. The NN models were trained on the Keisling 

cycle again due to its length. 

Length of Training Data 

Previous work has not explored the influence of the length of real world training 

data to create fuel consumption NN fits. The fuel consumption NN models were trained 

with 5 datasets of varying length to show how training length affects NN performance. 
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Different Drive Cycles 

LH provided data for Orange County bus (OCBUS) and Keisling cycles for the 

fuel consumption models and the UPSUK cycle for emissions models. The OCBUS 

cycle is dominated by lower cruising speeds (~20 mi/hr) and time spent at idle. The 

Keisling cycle has periods of time spent at a stop with trends at intermediate to high 

speeds (30 to 70 mi/hr). Both of these cycles are explained in depth later in Chapter 2. 

The UPSUK cycle depicts a delivery route and trends around intermediate speeds (25 

to 40 mi/hr). The OCBUS cycle is approximately 35 minutes, the Keisling cycle up to 9 

hours, and the UPSUK cycle is approximately 8 minutes long. 

Control System Settings 

LH HHVs can change the state of their hybrid vehicles (System on/off) during 

testing. This enabled a strong comparison in models depicting either a conventional or 

hybrid vehicle. Drive data included system on and off control setting and some included 

2 different system-on settings: Torque Addition (TA) and Torque Replacement (TR).TA 

adds torque from the hybrid system to the conventional drivetrain system. This reduces 

the driver’s need to increase the throttle during operation. TR anticipates the throttle 

operation from the driver and the hybrid system replaces some of the torque in 

conventional drivetrain operation. This creates a more conventional driving experience 

for the driver since the input on the throttle should not differ between hybrid system on 

and off.  
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Emissions Models 

The UPSUK cycle was the only cycle tested for the PEMS and was not explored 

extensively due to a limited amount of data. The training input scenarios were explored 

and are described in Table 2. 

Results 

Number of Neurons 

The number of neurons used to train the NN did not seem to affect the NN fit and 

produced small errors in the predictions for fuel consumption. However, we did observe 

small differences in the errors as the number of neurons used to train the NN model 

were changed. NNs trained with too few or too many neurons performed poorly. The 

NNs trained with 1 and 48 neurons generated more error compared to the 3 neuron NN 

which adhered to Eqn. 6 (Table 3). Figure 3 shows the 1 neuron NN under predicting 

fuel consumption at 30.5 min and 33 min and the 48 neuron NN under predicting at 31.6 

min. While the 3 and 12 neuron NNs under or over predict in some instances, the 1 and 

48 neuron NNs under or over predict more often resulting in a larger percent error over 

the length of the cycle. 

Table 3: Percent error from testing Keisling trained NNs and the approximate times to train each 
NN. 4 NNs were trained with varying number of neurons in the hidden layer and tested with the 
same Keisling cycle 
 

Number of Neurons 
in Hidden Layer 

Fuel Conumption % Error for 
9 hour Drive Cycle 

Approximate Time 
to Train (s) 

1 0.23 % <5 

3 0.12 % 5 

12 0.01 % 15 

48 0.22 % 30 
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Figure 3: Comparisons of predicted fuel consumption values from NNs trained with varying 
amount of neurons in the hidden layer. 
 
Number of Inputs 

NNs trained to predict fuel consumption all performed well with absolute errors 

smaller than 1% for all training scenarios. Models with more inputs beyond velocity, 

time, and consequently acceleration, did not drastically improve performance among 

these scenarios (Figure 4). Bare, VS, and All In training scenarios yield 0.461%, 

0.124%, and 0.974% errors respectively. All subsequent fuel consumption NNs reported 

will be of the VS variety considering it having the lowest error in this case. 
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Figure 4: Predicted fuel consumption with varying input scenarios compared to actual measured 
fuel consumption values. 

Length of Training Data 

One could expect that the longer the training data, the better the NN fit and 

performance would be. Here, we examined the influence of four different training 

lengths from the OCBUS data on the ability of the NN model to predict fuel 

consumption. We find that the length of a dataset used to train a NN influences the 

performance of the model. Longer data sets produce smaller errors and vice versa 

(Table 4).  

Table 4: NNs trained with varying lengths OCBUS datasets predict fuel consumption with 
associated percent errors. 
 

Training 
Dataset 

Length (min) 

Fuel 
Consumption 

% Error 
4 1.50 % 
8 3.30 % 

17 2.24 % 
35 0.46 % 
70 0.12 % 
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Different Drive Cycles 

NNs trained and tested with datasets from different drive cycles perform 

depending on the conditions of the training and testing datasets. A NN trained on a 

dataset without highway driving: OCBUS cycle, and tested with data with highway 

driving: Keisling cycle, yields a 13.08% error. A NN trained on a dataset with highway 

driving and tested with data without highway driving yields a 4.01% error. Time of year 

and different trucks may influence these errors. The test conditions for this instance is 

explored further in chapter 2. 

Control System Settings 

System on trained NNs can only accurately predict system on fuel consumption 

and system off trained NNs can only predict system off fuel consumption. Large errors 

(>10 %) occur when a network trained on one system setting attempts to predict fuel 

consumption from the opposite system setting (Table 5). This indicates that a NN model 

does not model control system settings that it was not trained to model. 

Table 5: Percent error of aggregate fuel consumption from training and testing NNs with varying 
LH system on/off settings. OCBUS cycle used for testing and training. 
 

NN Trained Data Input Data % Error 

LH System On LH System On 0.46 % 

LH System On LH System Off 14.81 % 

LH System Off LH System Off 1.07 % 

LH System Off LH System On 10.67 % 

 

The LH system state can be set to more than on and off settings. A NN was built 

with the LH system set to TA and tested with data collected with the system set to TR. 
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The TR prediction, 1.56% error, performs worse than a TA prediction, 0.46% error, 

using a TA trained NN.  

Emissions Models:  

The NNs trained to predict emissions perform well for some outputs; notably well 

for HC and NOX with errors <5 % (Table 6). Predictions of CO consistently create error 

of >10 % for most scenarios.  

Table 6: Percent error of each predicted emission type over the length of the UPSUK cycle for 
system on and off and the 3 input scenarios. 
 

 Control System  
Setting 

 
Emission  
% Error   

System On System Off 

Bare VS All In Bare VS All In 

CO2 0.87 % 2.13 % 7.26 % 1.29 % 4.11 % 11.31 % 

CO 6.92 % 62.63 % 15.33 % 13.61 % 2.73 % 41.50 % 

HC 1.72 % 2.02 % 0.27 % 0.27 % 1.91 % 1.38 % 

NOx 0.15 % 0.89 % 2.51 % 2.95 % 2.14 % 3.15 % 

PM10 0.37 % 0.48 % 7.23 1.59 % 2.00 % 6.06 % 

 
Discussion 

Training Inputs 

Training NNs with different input scenarios shows that the Bare scenario that 

includes inputs of velocity and acceleration are the most influential variables. The 

addition of engine speed as an input variable only marginally improves predictions of 

fuel consumption (Figure 4). 
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Number of Neurons 

For all tests, we used a NN with one hidden layer that included the number of 

neurons given by Eqn. 6. The number of neurons seemed to have small effect on model 

performance although our sensitivity studies suggest that the use of too few (e.g. 1 or 3) 

and too many (e.g. 48) results in marginally higher error. We hypothesize that too few or 

too many neurons may create a weak NN that cannot generalize (Figure 3). An 

intermediate amount of neurons creates stronger performing NNs. The number of 

neurons determined by Eqn. 6 trains a NN that performs well but this equation may not 

work for all applications. A NN trained with 12 neurons performs best among the 4 

tested options but an equation or method has not been found to support this for this 

study. 

Length of Training Data 

The length of a dataset that trains a NN has profound effects on model 

performance. A substantial amount of data, as well as increased variability in captured 

drive cycles, improves the model. In Table 5, NNs with over 35 minutes of training data 

have error <1%. The NN trained with 4 minutes is the outlier with error of 1.50%, which 

produces less error than the 8 and 17 minute trained models. 

Different Drive Cycles 

Variability in drive cycle also trains a more accurate NN. The OCBUS cycle, 

being an inner city bus route, does not include higher speeds that would be found from 

driving on the highway. The Keisling trained NN model can predict the OCBUS cycle 

with error of 4.01% while the OCBUS NN model predicts the Keisling route with a higher 

error of 13.08%. Additional information for this case can be found in chapter 2. 
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Control System Settings 

The models performed well with training from different LH system settings of 

controller on and off and torque addition and torque replacement. In each case of NNs 

built from data with different system settings than the data used for testing, predictions 

produced more error than when trained and tested with the same settings (Table 5). 

These instances of the models failing shows that the trained NNs are only trained for 

that specific controller setting. Control system settings directly affected performance of 

the NN model predictions. Extensive datasets that specify system settings would be 

able to predict fuel consumption in each control scenario. This would be invaluable in 

being able to determine the optimum controller setting to reduce fuel consumption. 

Emissions Models 

NNs trained to predict emissions have higher error and increasing the number 

inputs does not appear to improve performance (Table 6). This error may not be fully 

attributed to the inputs. The UPSUK data used to train NNs is approximately 8 minutes 

long; fuel consumption NNs trained on this length of data produced more error in their 

predictions than any other tested data length (Table 4). A longer emissions data input 

could benefit model performance. Separating each emission into its own model may 

also improve model training since fuel consumption models performed better overall 

while predicting only one output. 

Conclusions and Future Work 

NNs are likely a viable tool to model the fuel consumption from conventional 

gasoline and hydraulic hybrid vehicles. The error in the model predictions was less than 

1% when training was performed over a long enough drive cycle and it is possible that 
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the error can be further reduced through improved training strategies. While NNs may 

not replace lab dynamometer testing performed on characteristic drive cycles, they 

could complement traditional models in assessing and optimizing fuel consumption of 

vehicles in the future. 

NNs can be further improved by capturing more drive cycle characteristics and 

having data from different drivers and road conditions. Different drivers could add more 

variability to the data since no two drivers have the exact same driving habits. Including 

vehicle curb weight, engine size, and make and model in the training could improve the 

NNs for specific vehicles. However, by adding this functionality, the models would be 

less generalized than predicting fuel consumption directly from a drive cycle velocity-

time input. 

NNs can also be improved with the exploration of optimizing the training process. 

The backpropagation algorithm used in this preliminary LH study is one of at least 2 

others (Bayesian Regularization and Scaled Conjugate Regression) in the MATLAB 

Neural Time Series tool. Utilizing other NN training tools and techniques could lead to 

the discovery of an optimal training method for this application. 
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3. FUEL ECONOMY MODELS 

 

NN models performed well in the preliminary LH applications. This chapter of the 

study trained NN models from real world, on-road data to predict FE for 2 production 

HEVs and explored methods to consistently create a NN model. These models were 

compared to physics-based models and measured data to demonstrate the strength of 

the method. The city and highway LH models are explored further in this chapter to 

justify the HEV tested drive cycles. 

Methods 

In this work, NN models were trained and evaluated to predict fuel consumption 

from a suite of hybrid electric and hybrid hydraulic vehicles. The training and evaluation 

were performed on data that were independently obtained across different drive cycles 

and on different days. For the hybrid electric vehicles, the performance of the NN model 

was also compared to the performance from physics-based models. The sections below 

describe the vehicles, routes and models used in our study. 

Vehicles and Routes 

This study employed three different hybrid vehicles: (i) one 2010 Toyota Prius, 

which is an HEV, (ii) one 2013 Chevrolet Volt, which is a plug-in HEV (PHEV), and (iii) 

2013 and 2015 Ford E450 LH HHVs.  

Custom routes were developed for tests with the HEV and PHEV. These were 

designed to mimic commuter driving and each consisted of a city and highway driving 

on roads in Fort Collins, CO (see Figure 5). Each vehicle was driven several times on 

the four cycles shown in panels a through d. These drive cycles incorporated a variety 
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of driving conditions and included a mix of stops, accelerations, and portions of constant 

velocity while navigating through traffic. Four routes were created from a combination of 

one of the two city cycles and one of the two highway cycles so that each route has 

both city and highway driving conditions. Each route consisted of approximately 45 

minutes of driving. A stair plot of the vehicle velocities for the four routes used for both 

vehicles is shown in Figure 6. 

An established and a custom drive cycle were used to test the LH HHVs. The 

established drive cycle was the Orange County Bus (OCBUS) cycle was developed to 

mimic a transit bus cycle [56]. In this work, the OCBUS cycle was executed on a test 

track in 35 minutes. The custom drive cycle, henceforth referred to as the Keisling cycle, 

was an entire day (~9 hours) of shuttling senior citizens across town. The Keisling cycle 

included long durations of idling and a mix of city and highway driving. A velocity 

histogram of the HHV velocities for the OCBUS and Keisling cycles is shown in 

Figure 7.    
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Figure 5: Maps of drive cycles captured in Ft. Collins, CO: a) city drive cycle 1, b) city drive cycle 
2, c) highway cycle 1, and d) highway cycle 2. Credit: Google Maps 
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Figure 6: Vehicle velocity histogram of the 4 routes as driven with a 2010 Prius (a) and a 2013 
Volt (b). Each drive route includes similar driving instance distribution and includes a mix of 
highway and city driving speeds. Training NNs with this data will produce a model that can 
anticipate all included driving speeds. The US06 cycle is also included for comparison. 

 

 

b) 

a) 
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Figure 7: Vehicle velocity histogram of the Keisling and OCBUS drive cycles, as driven on LH 
trucks. The Keisling cycle includes highway driving while the OCBUS cycle is primarily city 
transit driving. 
 
Data Acquisition 

Velocity and fuel consumption data were collected using Controller Area Network 

(CAN) signals available through the On-Board Diagnostics (OBD-II) port. For the Toyota 

Prius HEV, the signals were recorded using an ELM327 based data logger connected to 

a cellphone through bluetooth. For the Chevrolet Volt, data was collected using a 

Kvaser CAN/USB connecter. GPS coordinates were also recorded. Unlike generic EPA 

drive cycles, which are executed under controlled conditions, the custom designed drive 

cycles produce data more consistent with real-world driving events. 
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Physics-Based Models 

Autonomie and Modelica models for a 2010 Toyota Prius were developed based 

on information available from the literature. The Autonomie model was developed by 

modifying the public 2004 Toyota Prius model with the new BSFC map as shown in 

Figure 8 [44, 57]. Additional information for other subsystems was also incorporated 

based on information in the literature [58]. The Modelica model was entirely custom built 

by our research group at Colorado State University. Validation of the models was 

completed through comparison of chassis dynamometer FE data on the EPA drive 

cycles. Autonomie and Modelica models were developed for the Prius HEV and 

validated for EPA and on-road drive cycles. An Autonomie model of the Volt PHEV was 

also developed according to the methods referenced and FE values calculated [43]. 

 

Figure 8: BSFC map with operation limits and ideal operating line information that must be 
incorporated manually in Autonomie and other simulation [44]. 
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NN Training Procedure Exploration and Model Testing 

The MATLAB Neural Time Series tool was used to predict all networks with a 3 

second time delay.  This time delay produced accurate FE predictions while reducing 

the models’ total training time. The time delay accounts for vehicle acceleration and 

momentum in the model. A NARX network architecture was used for all model trainings. 

Every network was trained with 10 neurons in 1 hidden layer (Figure 9 and Figure 10). 

Backpropagation algorithms were chosen on training performance for each vehicle. 

Networks were trained using the Bayesian Regularization backpropagation algorithm for 

the Prius and Volt and the Levenberg-Marquardt backpropagation algorithm for LH 

vehicles. The data sets were partitioned into training, validation, and testing segments 

of 70%, 15%, and 15% respectively for the NN training tool internal performance check. 

For each routes’ data set, 10 to 20 NNs were trained and the NN with the most 

optimized R-value was used for each model. We chose to train multiple NNs for each 

model because the performance varies significantly from each attempt. This method did 

not consistently produce a high performing network within 50 trained models but instead 

produces a range of models with varying prediction errors as shown in Figure 9 and 

Figure 10 for the Prius and Volt, respectively. There is a chance of training a model with 

minimal prediction errors but training 50 NNs does not guarantee a strong model shown 

by the distribution of errors produced in Figure 11. A number of trained NNs above 50 

was not attempted due to the increased training time for each attempt.  
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Figure 9: An exhaustive method for determining optimal training conditions in Prius FE NN 
models with 3 different backpropagation algorithms: Bayesian Regularization (BR), Levenberg-
Marquardt (LM), and Scaled Conjugate Gradient (SCG). a) Percent error generated when 
training an increasing number of NNs trained with 10 neurons, b) length of elapsed training time 
when training an increasing number of NNs trained with 10 neurons, c) percent error generated 
when training with an increasing number of neurons; 10 networks trained for each amount of 
neurons, d) length of elapsed training time when training with an increasing number of neurons; 
10 networks trained for each amount of neurons. Methods proved to be inconclusive 
considering the variability in error from 1 to 50 NNs trained and 1 to 50 neurons. This method is 
incapable of producing consistent NN models. 

b) a) 

c) d) 
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Figure 10: An exhaustive method for determining optimal training conditions in Volt FE NN 
models with 3 different backpropagation algorithms: Bayesian Regularization (BR), Levenberg-
Marquardt (LM), and Scaled Conjugate Gradient (SCG). a) Percent error generated when 
training an increasing number of NNs trained with 10 neurons, b) length of elapsed training time 
when training an increasing number of NNs trained with 10 neurons, c) percent error generated 
when training with an increasing number of neurons; 10 networks trained for each amount of 
neurons, d) length of elapsed training time when training with an increasing number of neurons; 
10 networks trained for each amount of neurons. Methods proved to be inconclusive 
considering the variability in error from 1 to 50 NNs trained and 1 to 50 neurons. This method is 
incapable of producing consistent NN models. 
 

 

c) d) 

a) b) 
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Figure 11: Increasing number of NNs trained with each attempt and their distribution of FE 
prediction error. Methods proved to be inconclusive considering the variability in error from 1 to 
50 NNs trained. This method is incapable of producing consistent NN models but is capable of 
producing some models with very low prediction error. 
 

All training inputs are in the form of a velocity-time trace. Given only an input of a 

velocity-time trace, the NNs were trained to output fuel consumption. Other vehicle 

parameters could also be included to improve predictions. Parameters like HEV battery 

state of charge (SOC) and engine speed were not included to test the minimal amount 

of data required to train a NN model. This minimalistic approach was explored since 

velocity is readily acquired data through CAN signals or location derived data acquired 

through GPS locators.  The networks were built using the real world, on-road data sets. 
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Both the Prius and Volt networks were trained on the collected routes 1 through 4 and 

the LH vehicles were trained both on the OCBUS and Keisling cycles. (Table 7). 

Table 7: Vehicles and available data sets for modeling and testing 
 

Vehicles Drive Cycle Data Sets 

2010 Toyota Prius and 2013 Chevrolet 
Volt 

Route 1 
Route 2 
Route 3 
Route 4 

*Each route is a combination 
of a city cycle and highway 
cycle from Figure 5. Each 
route is a unique sample of 
driving data 

Lightning Hybrids Hydraulic Hybrid 
Ford E450 

OCBUS Cycle 
Keisling Cycle 

 
The LH tests accounted for NN tests across different drive cycles, vehicles, and 

data collected across different seasons of the year at different elevations. The OCBUS 

cycle and the Keisling cycles were captured by two different vehicles with the same 

make and model but model years 2013 and 2015, respectively. The operating loads of 

each vehicle also varied depending on the amount of passengers. The OCBUS cycle 

was collected in the summer at approximately 5000 ft elevation and the Keisling cycle 

was collected in the winter at approximately sea level.  

The Prius and Volt NN models were each tested with the collected 4 routes’ data 

(Fort Collins, CO elevation of ~5000 ft) and data for 3 EPA drive cycles from 

ANL (collected at ~700 ft). The data from Fort Collins and ANL were collected from 

different vehicles with the same make and model and year. All NN models were tested 

with additional data and not just data used for training. These NN models were then 

compared to results from the physics-based models for all cycles.  
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Results 

LH HHV Model Results 

 Two NN models were trained using two different drive cycles’ data sets provided 

by LH. The performance of each model was tested with the drive cycle that it was not 

trained with. The NN models generated from the on-road training cycle predicted FE 

with varying accuracy. The OCBUS model has no training inputs over 35 mph. This 

caused the model to under-predict when input with the Keisling cycle which contains 

many instances at highway speeds (>75 mph) (Figure 12). The LH NN models depict 2 

unique training conditions and are reflected in predictions .The Keisling trained model 

performed well with all tested drive cycle instances. This was anticipated since the 

speeds in the OCBUS are present in the lower speeds of the Keisling cycle. Models 

appeared to over-predict the fuel consumed during lower fuel consumption rates and 

can be seen during accelerations at 0, 1.6, and 4.6 minutes in Figure 12. 

The LH NN models produced less error in the Keisling model than the OCBUS 

model (Table 8).  

Table 8: Comparison of the ability of each modeling technique to accurately predict real world 
fuel economy for LH vehicles. Shown in parentheses is the error in predicted FE compared to 
the measured. Negative error depicts over-estimating FE and positive error depicts under-
estimating. 
 

                        Drive Cycles 
 
Models 

Keisling Shuttle OCBUS 

Real World 8.53 mpg 7.87 mpg 

NN Keisling Trained N/A 7.57 mpg (3.8 %) 

NN OCBUS Trained 9.59 mpg (-11.1 %) N/A 
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Figure 12: Testing LH NN models: a) Model trained on OCBUS cycle and tested with Keisling 
cycle. b) Model trained on Keisling cycle and tested with OCBUS cycle. OCBUS model is 
incapable of predicting instances of higher fuel consumption (during highway segments). 
Vehicle velocity included in plots to show the trend with fuel consumption. 
 
 
 
 
 
 

b) 

a) 
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Prius and Volt HEV Model Results 

All Prius and Volt models’ cumulative fuel consumption predictions were plotted 

against the measured values for Route 1 and the 3 EPA cycles Figure 13 and Figure 14 

respectively The Prius and Volt NN models performed well for each cycle. The 

Autonomie Prius model over-predicted on-road collected data. The Autonomie and 

Modelica Prius model predicted total fuel consumptions similar to measured values for 

UDDS, HWFET and US06 but deviated in instantaneous fuel consumption predictions. 

The errors in the physics-based models in the middle of the data sets were higher than 

the aggregate fuel consumption. The physics-based models are designed to estimate 

total FE and not the time dependent fuel consumption. This is evident when comparing 

the cumulative fuel consumption to the physics-based models’ predicitons. 

Calculated fuel economy from total distance driven over the cycle per the amount 

of fuel consumed yielded mixed results. The Prius NN outperformed the physics-models 

in predicting on road data (Table 9). The Volt models had similar performance with the 

EPA cycles and the NN model produced FE with less error than the Autonomie model 

for on road test cycles (Table 10). A comparison of the error produced by each model is 

in Figure 15.  
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Figure 13: Prius cumulative fuel consumption comparison plots for Route 3 Trained NN, 
Autonomie, and Modelica with 4 tested drive cycles: a) On-road Route 1, b) UDDS Cycle, c) 
HWFET Cycle, and d) US06 cycle.  

a) b) 

c) d) 
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Figure 14: Volt cumulative fuel consumption comparison plots for the Route 4 trained NN, 
Autonomie, and Modelica with 4 tested drive cycles: a) On-road Route 1, b) UDDS Cycle, c) 
HWFET Cycle, and d) US06 cycle.  

 

 

 

 

 

 

 

 

b) 

c) d) 

a) 
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Table 9: Comparison of the percent error of FE for each modeling technique and tested cycle for 
a 2010 Toyota Prius. Negative error depicts over-estimating FE and positive error depicts 
under-estimating. Measured FE in MPG is given in the first row of data. All 4 NN models labeled 
by what training data was used. Error highlighted in yellow is 5-10% absolute error and red is 
greater than 10%. 
 

 
Tested Drive  

Cycles 
 
Prius_________ 
FE Models____ 

R
o

u
te 1 

R
o

u
te 2 

R
o

u
te 3 

R
o

u
te 4 

U
D

D
S

 

H
W

F
E

T
 

U
S

06 

Measured FE  65.33 
MPG 

64.24 
MPG 

71.91 
MPG 

78.14 
MPG 

69.89 
MPG 

63.27 
MPG 

41.61 
MPG 

P
er

ce
n

t 
E

rr
o

r 
 Route 1 NN -1.42 % -1.27 % -3.66 % -5.15 % -6.04 % 3.54 % 5.49 % 

Route 2 NN -4.86 % -4.66 % -7.46 % -9.29 % -9.70 % -0.99 % 3.15 % 
Route 3 NN -2.36 % -2.51 % -4.39 % -5.55 % -0.42 % 2.15 % 1.08 % 
Route 4 NN -4.63 % -4.63 % -8.31 % -10.9 % -16.9 % 2.22 % 6.84 % 
Autonomie 23.2 % 22.0 % 28.9 % 35.0 % 3.74 % 2.78 % -0.86 % 
Modelica 11.8 % 9.39 % 19.4 % 23.5 % -3.33 % -7.27 % 3.73 % 

 

Table 10: Comparison of the percent error of FE for each modeling technique and tested cycle 
for a 2012 Chevrolet Volt. Negative error depicts over-estimating FE and positive error depicts 
under-estimating. Measured FE in MPG is given in the first row of data. All 4 NN models labeled 
by what training data was used. Error highlighted in yellow is 5-10% absolute error and red is 
greater than 10%. 
 

 
Tested Drive 

Cycles 
 

Volt__________ 
FE Models____ 

R
o

u
te 1 

R
o

u
te 2 

R
o

u
te 3 

R
o

u
te 4 

U
D

D
S

 

H
W

F
E

T
 

U
S

06 

Measured FE 38.64 
MPG 

40.35 
MPG 

42.29 
MPG 

46.15 
MPG 

43.04 
MPG 

48.18 
MPG 

38.76 
MPG 

P
er

ce
n

t 
E

rr
o

r 
 

Route 1 NN -2.49 % -1.70 % -3.31 % -4.12 % -5.24 % -3.57 % -1.27 % 
Route 2 NN 4.65 % 2.44 % 4.03 % 2.75 % 7.69 % -0.95 % 1.66 % 
Route 3 NN -2.71 % -1.13 % -3.26 % -3.57 % -6.69 % -2.58 % -1.47 % 
Route 4 NN -0.66 % 0.86 % -0.95 % -1.17 % -1.71 % -0.16 % 4.29 % 
Autonomie -15.7 % -15.2 % -9.60 % -2.80 % -37.8 % -3.48 % 5.54 % 
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Figure 15: Comparison of the 3 Prius models and 2 Volt models tested with the various cycles. 
The 4 NN model errors are averaged for each cycle. Errors from the 4 on-road routes are 
averaged in 1 on-road error. Error bars for 95% confidence is also included. 
 

Overall, the NN models predicted all drive cycles more accurately and 

consistently than the physics-models. The Route 4 trained NN from the Volt performed 

strongest with on-road data and EPA data yielding correlation coefficients of 0.977, 

0.977, 0.981, and 0.970 for Route 1, UDDS, HWFET, and US06 cycles respectively 

(Figure 15). 
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Figure 15: Correlation plots of Volt NN trained on Route 4 tested with Route 1, UDDS, HWFET, 
and US06 cycles with R values of 0.977, 0.977, 0.981, and 0.970 respectively. 
 

The standard deviation of the absolute error in FE was calculated for both the 

Prius and Volt. Absolute percent errors from all 4 NNs and respective unique testing 

routes were used (routes used for training were not used to test that route’s network in 

this calculation, for example the Route 1 trained NN was not tested with Route 1 data). 

The standard deviation in absolute error for the Prius and Volt were 2.43% and 1.43% 

respectively. This produced absolute error ranges of 2.54% to 7.40% for the Prius and 
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1.11% to 3.97% for the Volt. 83% of the Prius predictions fall within one standard 

deviation with both outliers occurring in the UDDS cycle predictions. 75% of the Volt 

predictions fall within one standard deviation with all 3 outliers occurring in the UDDS 

cycle predictions. 

Discussion 

LH HHV Model Discussion 

The two LH models showed that there was minimal error resulting from 

drastically different elevation and seasonal weather conditions. The OCBUS cycle was 

collected at approximately 5000 ft during the summer and the Keisling at sea level 

during the winter. This is seen in the FE prediction error from testing the OCBUS cycle 

on the Keisling trained NN model in Table 8. 

The LH NN models and their predictions provided insight on what occurs when 

training cycles fail to capture the tested drive cycle. The OCBUS trained network did not 

include any highway driving and resulted in being unable to predict highway fuel 

consumption in the Keisling cycle (Figure 12). The Keisling model accounted for more 

diverse drive cycle instances and had less error in its predictions. NN models trained on 

more driving applications, that capture more variability, produced higher performing 

predictions. This result was reinforced with the higher FE percent error in the OCBUS 

NN model than in the Keisling model (Table 8). 

Prius and Volt HEV Model Discussion 

The neural network models generally predict fuel economy within 7.40% and 

3.97% for the Prius and Volt models respectively when trained and tested with the on-

road collected data. The source of this error could be due to several factors. The NN 
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models tend to over-estimate the FE but not extensively as seen with the under-

estimation in the NN model trained with route 2 on the Volt. The NN models predict fuel 

economy with an absolute percent error of 16.9% and 7.69% for the Prius and Volt 

models respectively when trained with the on-road collected data and tested with EPA 

cycle data. This higher error appears to be caused from a disparity between the on-road 

collected data and the EPA collected data. 

The UDDS cycle produced more error in the Prius and Volt NN models than any 

other drive cycle. Unless the error was a result from strange weather or data acquisition 

conditions, there could have been a certain combination of drive cycle instances in the 

UDDS that were not included in the training cycles. The latter seems more likely 

considering the LH models performed well with significantly different elevations and 

seasonal conditions. It is possible that the nature of the UDDS cycle could be more 

artificial or manicured when compared to real-world on-road driving. The UDDS cycle is 

in some aspect unlike the other two EPA cycles since the NN models perform well with 

those cycles. NN models designed to predict on-road data would perform worse when 

tested with data that does not exhibit real world cycles. There could be some change in 

battery SOC since the NN model is not designed to include this parameter. 

The physics-based models performed well in predicting FE in all EPA cycles with 

an exception in the Volt Autonomie model predicting the UDDS cycle. The Prius models 

under-estimated in the on-road test cycles with FE error in excess of 10-35 % for both 

the Autonomie and Modelica models with the Autonomie model producing >30% error in 

one case (Table 9). These models can predict overall FE well but deviate in the 

instantaneous predictions and are not always accurate throughout the duration of the 
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entire data set as seen in Figure 13 and Figure 14. These models could be well used in 

studying optimal vehicle system velocities and optimal powertrain control but did not 

appear to be suited for on-road FE predictions for HEVs. These models took significant 

effort to construct and verify. Autonomie could be best used for investigating specific 

vehicle control processes. Creating a custom model such as the Modelica model was 

very time consuming and perhaps was adept for exploring specific vehicle component 

and environmental processes which are not as easily manipulated in Autonomie. The 

NN models performed well at predicting FE consumption and can be created from easy 

to use NN toolboxes. 

All NN models trained have been tested with data that was collected in conditions 

drastically different from the data used to train. All Volt and Prius NN models were 

trained with data collected at approximately 5000 ft yet the largest absolute error 

generated of cycles tested was 16.9%. This error could be attributed to the slower 

highway speeds in the EPA cycles as shown in Figure 6 with the US06 cycle. The NN 

models are not trained to include the US06 highway speeds as frequently as the real-

world data highway speeds. This error could also be attributed to the difference in 

quality of data between the ANL data and the road collected data or from the 5000 ft 

elevation difference. However, it appears to be the former due to similar test conditions 

between the LH drive cycle data sets. The LH HHVs collect data using LH’s control 

systems for all explored data sets. The same cannot be claimed for the Prius and Volt 

HEVs since the ANL data was collected on a chassis dynamometer and the on-road 

data collected from the OBD-II port.  
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Conclusions 

Predictive FE models do not all perform similarly, therefore should not be used 

for the same applications. Physics-based models would be suited for comprehensive 

research on vehicle dynamics and performance considering their computationally and 

financially costly nature. Physics-based models are optimized for the EPA cycles and 

predict on-road data with increased error. These models would benefit from optimization 

on on-road data also. 

NN models can predict FE quickly and accurately when vehicle drive data is 

available. This method for predicting FE has been shown to be viable when trained from 

just a velocity-time trace. The training method explored here is not yet optimized to 

produce a strong model with every attempt. Including parameters like battery SOC and 

engine speed could improve model accuracy and improve the uniformity of model 

training. 
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4. HYBRID ELECTRIC VEHICLE EMISSIONS MODELS 

 

Methods 

This portion of the study trained NN models from real world, on-road emissions 

data to predict mass flow rates of CO2, CO, HC, and NOX for a 2013 Chevrolet Volt and 

explored methods to consistently create a NN model. PM10 emissions were not 

collected due to receiving updated information from the PEMS manufacturer advising 

against the collection of particulate from gasoline engines. These models were 

compared to measured data to demonstrate the error generated in the method. Data 

from the PEMS is primarily to capture trends of emissions produced during real world 

driving and not to study instantaneous measurement values. The data will need to be 

explored further and compared with supplemental Volt emissions data inaccessible at 

the time of this study. 

Vehicles and Drive Cycle Development 

This study utilized real world, on-road driving data from a 2013 Chevrolet Volt in 

full hybrid mode. Driving data was not collected for battery only operation. Custom drive 

cycle development was required to capture real world driving characteristics. Drive 

cycles and combined routes were the same as the on-road routes used in the FE 

modeling portion of the study. Again, each route was approximately 45 minutes long. 

The probabilistic velocity composition of the Volt routes can be seen in Figure 6. The 4 

routes driven are shown to include driving instances at city and highway speeds with 

comparable frequencies. The Volt was driven and PEMS data collected by the author. 
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PEMS Data Acquisition 

 Emissions data was recorded for routes 1-4 using the PEMS device. The PEMS 

was allowed to heat up for at least 30 minutes prior to data collection for all testing. The 

PEMS was calibrated to manufacturer methods at the time of data collection. Data 

recording practice consisted of starting and stopping a “bag” in the PEMS UI at the start 

and stop of each cycle in order to partition data. This improved post processing data 

manipulation and ease of use. A background was collected before each cycle to zero 

the background air throughout the day of testing. Portions of the city drive cycles were 

modified by taking side streets to avoid areas of Ft Collins, CO where residents were 

having open bonfires. These emissions noticeably affected the background recorded by 

the PEMS before each cycle.  

NN Training Procedures and Model Testing 

The MATLAB Neural Time Series tool was used to predict all networks with a 3 

second time delay.  This time delay is the same used in the FE portion to produce 

accurate FE models while reducing total training time. The time delay accounts for 

vehicle acceleration in the model. A NARX network architecture was used for all model 

trainings. Backpropagation algorithms and number of neurons in the hidden layer were 

chosen on training performance for each vehicle (Figure 16). Each network was trained 

with 10 neurons in 1 hidden layer for CO2, CO, HC, and NOX. These parameters were 

chosen from the errors generated in Figure 16. All NNs were trained using the Bayesian 

Regularization backpropagation algorithm for NOX, and PM10. The data sets were 

partitioned into training, validation, and testing segments of 70%, 15%, and 15% 

respectively for the NN training tool internal performance check. For each NN model, 10 
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to 20 NNs were trained and the NN with the most optimized R-value was used for each 

model. The variations in number of models trained are resultant from inconsistent NN 

performance from each attempt. This produced a method that does not consistently 

produce a high performing network within 50 trained models but instead produces a 

range of models with varying prediction errors as shown in Figure 16. There is a chance 

of training a model with minimal prediction errors but training 50 NNs does not 

guarantee a strong model shown by the distribution of errors produced in Figure 11 for 

the FE modeling. A number of trained NNs above 50 was not attempted due to the 

increased training time for each attempt. 

All training inputs are in the form of a velocity-time trace. Given only an input of a 

velocity-time trace. The NNs were trained to output mass flow rates of CO2, CO, HC, 

and NOX. Other vehicle parameters could also be included to improve predictions. 

Parameters like HEV battery state of charge (SOC) and engine speed were not included 

to test the minimal amount of data required to train an emissions NN model. This 

minimalistic approach was explored since velocity is readily acquired data through CAN 

signals or location derived data through GPS locators.  The networks were built using 

the real world, on-road data sets. The Volt NNs were trained on the collected routes, 1 

through 4.  

All NN models were tested with separate data sets from data used for training. 

The Volt NN models were each tested with the collected 4 routes’ data (Fort Collins, CO 

elevation of ~5000 ft) and compared to measurement. The error calculations were 

performed by taking the absolute value of Equation 5 and averaged over all tested 

routes. This was done since the NN models can under and over estimate. An average 
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absolute error produced depicts performance of the models without taking under and 

over estimations into account. 

Results 

The carbon related measurements for all tested routes were collected and g/mi 

calculated to compare to standards (Table 11). The measurements produced results 

that trended well with velocity of the vehicle. Figure 17 shows the measurements for 

CO2, CO, and HC with velocity and predicted values from the Route 1 trained NN 

model. The Route 1 NN models produce predictions with R-values of 0.9989, 0.9982, 

and 0.9989 for CO2, CO, and HC respectively.  All NN models trained with Routes 1 

through 4 trend with variability in the measured values and major deviations in some 

models (Figure 18). 

Table 11: Maximum average measured emissions compared to emissions standard for CARB 
super ultra-low emission vehicles (SULEV20) and CAFE standard for 2025 [10, 59]. SULEV20 
is the lowest emitting standard (most restrictive) for a vehicle of this weight as of early 2017. 
 

Measurement  
& Standard 

 
Emission 
 

Maximum Mean 
Measured (g/mi) 

CAFE 2025 
(g/mi) SULEV (g/mi) 

CO2 8.50*10-7 163 N/A 
CO 2.34*10-10 

N/A 
1.0 

HC 1.22*10-9 0.020 
NOX 8.01*10-10 0.020 
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Figure 16: An exhaustive method for determining optimal amount of neurons in the hidden layer 
in Volt tailpipe emissions NN models with 3 different backpropagation algorithms: Bayesian 
Regularization (BR), Levenberg-Marquardt (LM), and Scaled Conjugate Gradient (SCG). 
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Percent error generated when training with an increasing number of neurons and length of 
elapsed training time when training with an increasing number of neurons is plotted for each 
emission. 10 networks trained for each amount of neurons and the lowest error model reported. 
Half of the route 1-4 data used to train networks and the other half used to test and produce 
prediction errors. Methods proved to be inconclusive for training consistent models considering 
the variability in error from 1 to 50 NNs trained and 1 to 50 neurons. 
 

The NOX measurements for all tested routes were collected and produced results 

that trended well with velocity of the vehicle. Figure 19 shows the measurements for 

NOX with velocity and predicted values from the Route 1 trained NN model. The R 

values and correlation plots are also shown. NOX model predictions perform well with R 

value of 0.9912. NN models trained with routes 1 & 4 trend well with the measured 

values with major deviation in models trained with routes 2 & 3 (Figure 20).  

Models were tested with the 4 routes and have average cumulative errors 

ranging from 1.51-100%, 0.01-70.86%, 24.35-68.19%, and 2.36-31.63% for CO2, CO, 

HC, and NOX respectively (Figure 21). Models were tested with the 4 routes and 

average cumulative errors calculated.  
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Figure 17: Measurements from Route 1 for CO2 (a), CO (b), and HC (c) with velocity and 
predicted values from the Route 1 trained NN model. A correlation plot and R value for 
predicted and measured values are also included.  
 

a) 

b) 

c) 
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Figure 18: Route 1 cumulative emissions measurements from on-road drive data and predictions 
from NN models trained with routes 1 through 4 for CO2 (a), CO (b), and HC (c). 
 
 
 
 

a) b) 

c) 
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Figure 19: Measurements from Route 1 for NOX  with velocity and predicted values from the 
Route 1 trained NN model. A correlation plot and R value for predicted and measured values 
are also included.  
 

 

Figure 20: Route 1 cumulative emissions measurements from on-road drive data and predictions 
from NN models trained with routes 1 through 4 for NOX. 
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Figure 21: Average of error in model predictions over all 4 Routes for NOX, HC, CO and CO2 

using NN models trained on Routes 1 through 4. Error bars for 95% confidence is also included. 
 
Discussion 

All average emissions in g/mi are at least 7 orders of magnitude less than the 

compared emission standard (Table 11). The Chevrolet Volt could emit this amount of 

pollutants but a more likely source for the large difference is from an error in calculating 

the gram per mile with raw data from the PEMS. A delay of undetermined amount 

between the recorded velocity and the measured pollutant offsets the gram per mile 

calculation. This delay could be different for each measured pollutant and will require 

further investigation to produce reliable gram per mile calculations. 

The carbon based NN models predicted well when tested with the training data 

(Figure 17). When tested with data from other routes, there was less correlation in 

prediction trends (Figure 18) and greater error in predicting (Figure 21). Upon further 

inspection of the data, there appears to be discrepancies in the route 2 data with a CO2 

mass flow measurements stagnant at 0 for the entirety of the route. This could have 

20.24%

1.51%

100.00%

7.61%

70.86%

22.47%

0.01%

8.57%

24.35%

33.80%

28.87%

68.19%

3.25%

18.37%

31.63%

2.36%

-150.00% -100.00% -50.00% 0.00% 50.00% 100.00% 150.00% 200.00%

NN Route 4

NN Route 3

NN Route 2

NN Route 1

Average Error in NN Model Emissions Predictions

NOx HC CO CO2
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affected the rest of the carbon measurements considering they all share a sensor 

module within the PEMS. The CO average prediction error of 0.01% appears to be 

coincidence since the confidence interval is greater than +/- 50% for the 4 routes. This 

could be an artifact of operator or equipment error in data collection or an artifact of the 

HEV. Recording on-road emissions data from a larger fleet of vehicles could remedy 

this issue. 

 The NOX NN models performed well for all routes. However, there appears to be 

more error generated in route 2 again. Further investigation in collecting on-road 

emissions data will be required as mentioned previously. The NOx models appear to 

predict with less error. This is most evident in the models trained on routes 1 and 4 with 

average error of 2.36% and 3.25%, respectively, and confidence intervals less than 5%. 

Conclusions 

 On-road data models for emissions could be a viable technique for the explored 

emissions with data from more vehicles. Results could improve for conventional 

gasoline vehicles. HEV NN emissions models can predict well but this is not always the 

case. Most notably, NOx NN models perform well in some instance with the average 

error less than 5%. Results could be improved with the addition of engine and energy 

system variables such as battery state of charge and various engine temperatures and 

pressures. 
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5. FUTURE WORK 

 

Real world, on-road data trained NN models could be implemented in control 

system modeling to determine optimal powertrain controls settings in HEVs. This would 

lead to the improvement of HEV fuel efficiency thus reducing overall consumer fuel 

costs [12]. In turn, NN models could be used to improve the consumer experience with 

HEVs by predicting the range of the vehicle with greater accuracy. Vehicle range can be 

affected by normal operating conditions such as the state of the cabin environmental 

controls, entertainment system, and other energy consuming, non-drivetrain related 

amenities in the vehicle. The HEV’s energy control system could factor these conditions 

when making range predictions with a NN model. This could be done in near real time 

since the model requires minimal computing resources. Overall, NNs can be utilized in 

HEV FE models using data from on-road operation. 

If explored, NN modeling could create more comprehensive vehicle emissions 

models. This would improve the emissions inventories of transportation sources since 

on-road emissions can be significantly higher than what the EPA regulates in some 

cases [26]. This experiment will need revisiting with a larger data set in order to be 

confident in NN emissions models. 
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