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ABSTRACT 

 

 

 

LIDAR REMOTE SENSING OF SAVANNA BIOPHYSICAL ATTRIBUTES 

 

 

 

Although savanna ecosystems cover approximately 20 % of the terrestrial land surface and can 

have productivity equal to some closed forests, their role in the global carbon cycle is poorly 

understood. Studies using Light Detection And Ranging (Lidar) have demonstrated the sensor’s 

ability to measure canopy height, that is in turn strongly related to biophysical attributes such as 

aboveground carbon storage, but most of this work has focused on closed canopy forests. The 

sparse observation network in savannas means they remain one of the weak links in our 

understanding of the global carbon cycle. This study explored the applicability of a past 

spaceborne Lidar mission and the potential of future missions to estimate canopy height and 

carbon storage in these biomes.  

 

The research used data from two Oak savannas in California, USA: the Tejon Ranch 

Conservancy in Kern County and the Tonzi Ranch in Santa Clara County.  In the first paper we 

used non-parametric regression techniques to estimate canopy height from waveform parameters 

derived from the Ice Cloud and land Elevation Satellite’s Geoscience Laser Altimeter System 

(ICESat-GLAS) data. Merely adopting the methods derived for forests did not produce adequate 

results but the modeling was significantly improved by incorporating canopy cover information 

and interaction terms to address the high structural heterogeneity inherent to savannas.  

Paper 2 explored the relationship between canopy height and aboveground biomass. To 

accomplish this we developed generalized models using the classical least squares regression 
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modeling approach to relate canopy height to above ground woody biomass and then employed 

Hierarchical Bayesian Analysis (HBA) to explore the implications of using generalized instead 

of species composition-specific models. Models that incorporated canopy cover proxies 

performed better than those that did not. Although the model parameters indicated interspecific 

variability, the distribution of the posterior densities of the differences between composition 

level and global level parameter values showed a high support for the use of global parameters, 

suggesting that these canopy height-biomass models are universally (large scale) applicable.  

 

As the spatial coverage of spaceborne lidar will remain limited for the immediate future, our 

objective in paper 3 was to explore the best means of extrapolating plot level biomass into wall-

to-wall maps that provide more ecological information. We evaluated the utility of three spatial 

modeling approaches to address this problem: deterministic methods, geostatistical methods and 

an image segmentation approach.  Overall, the mean pixel biomass estimated by the 3 

approaches did not differ significantly but the output maps showed marked differences in the 

estimation precision and ability of each model to mimic the primary variable’s trend across the 

landscape. The results emphasized the need for future satellite lidar missions to consider 

increasing the sampling intensity across track so that biomass observations are made and 

characterized at the scale at which they vary.  

 

With ICESat-GLAS having been decommissioned in 2010, the earliest planned spaceborne lidar 

mission is ICESat-2, which will use the Advanced Topography Laser Altimeter System 

(ATLAS) sensor, which uses a photon counting technique. In paper 4 we explore the capability 

of this mission for studying three dimensional vegetation structure in savannas. We used data 
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from the Multiple Altimeter Beam Experimental Lidar (MABEL), an airborne photon counting 

lidar sensor developed by NASA Goddard to simulate ICESat-2 data. We segmented each 

transect into different block sizes and calculated canopy top and mean ground elevation based on 

the structure of the histogram of the block’s aggregated photons. Our algorithm was able to 

compute canopy height and generate visually meaningful vegetation profiles at MABEL’s signal 

and noise levels but a simulation of the expected performance of ICESat-2 by adjusting MABEL 

data's detected number of signal and noise photons to that predicted using ATLAS instrument 

model design cases indicated that signal photons will be substantially lower.  The lower data 

resolution reduces canopy height estimation precision especially in areas of low density 

vegetation cover. 

 

Given the clear difficulties in processing simulated ATLAS data, it appears unlikely that it will 

provide the kind of data required for mapping of the biophysical properties of savanna 

vegetation. Rather, resources are better concentrated on preparing for the Global Ecosystem 

Dynamics Investigation (GEDI) mission, a waveform lidar mission scheduled to launch by the 

end of this decade. In addition to the full waveform technique, GEDI will collect data from 25 m 

diameter contiguous footprints with a high across track density, a requirement that we identified 

as critically necessary in paper 3.  
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CHAPTER 1: INTRODUCTION 

1. Background 

Savanna ecosystems account for approximately 20% of the land area of terrestrial vegetation and 

are a highly productive ecosystem that plays an important role in the global carbon cycle (Lucas 

et al., 2011). In seasonally warm biomes, such as subtropical regions of Africa, savannas are 

undergoing rapid conversions to other land uses at rates exceeding 1% per year which is likely to 

contribute a significant flux of greenhouse gases, mainly CO2 (Potter, 2011). Despite the 

increasingly acknowledged importance of these ecosystems, their carbon cycle is relatively 

understudied compared to other biomes (Williams et al., 2008). A lack of representative studies, 

coupled with a sparse observation network in these biomes, mean they remain one of the weak 

links in our understanding of the global carbon cycle (Bombelli et al., 2009; Williams et al., 

2008). Some savannas like those in tropical regions are as productive as some closed forests, 

they are often rich in biodiversity and with optimal management they are relatively resilient to 

anthropogenic disturbance hence they remain a great hope for maintaining carbon sinks. 

Estimating structural attributes such as aboveground woody biomass is an important step towards 

reliable monitoring of the carbon pools in these ecosystems to help us better understand the 

global carbon cycle. Since conventional field based biomass assessment is tedious and time 

consuming (especially at large scales), remote sensing combined with limited ground truth data 

has been proposed to efficiently monitor terrestrial ecosystems at various temporal and spatial 

scales.  
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Because of the signal saturation problem, optical passive or radar sensors  have proven to be 

more useful in describing the canopy’s two dimensional aspects but inaccurate and at times 

inapplicable to the three dimensional aspects that explain biomass storage, particularly in 

complex, heterogeneous vegetation systems such as mixed deciduous woodlands (Patenaude et 

al. 2005). Light Detection and Ranging (Lidar) can accurately measure the three dimensional 

aspects of a vegetation canopy and have been shown to accurately estimate Leaf Area Index 

(LAI) and aboveground biomass even in those high biomass ecosystems where passive optical 

and active Radar sensors typically fail to do so (Boudreau et al., 2008; Drake et al., 2002; Lefsky 

et al., 1999 ; Lefsky et al., 2002; Patenaude et al., 2005) . The main disadvantage of airborne 

Lidar is its high cost, and its relatively low horizontal coverage, preventing it from global use. As 

such, attention has shifted to spaceborne Lidar applications (Lefsky, 2010, Hall et al., 2011). 

 

Data products from multiple remote sensing techniques can be combined to improve the 

accuracy of modeling 3 dimensional vegetation biophysical parameters. Lidar measurements 

provide the most direct estimates of canopy height and the vertical structure of canopy foliage, 

thus enables ecologists to quantify the 3D distribution of vegetation and understand processes 

such as carbon accumulation and forest succession thereby improving the state of ecosystem 

models (Chambers et al., 2007). Radar backscatter enables direct measurements of live 

aboveground woody biomass (carbon stocks) and structural attributes such as volume, basal area 

and crown mass. Combining Lidar and Radar remote sensing data with moderate resolution 

multispectral remote sensing data such as Landsat and Moderate Resolution Imaging 

Spectroradiometer (MODIS) imagery has proven to be efficient in measuring and mapping 

canopy height and woody biomass at large scale landscapes either as a combination of variables 
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in one model or the other sensors providing  auxiliary variables to extend the plot level estimates 

of Lidar to landscape level (Chambers et al., 2007; Hudak et al.,  2002; Hyde et al., 2007; 

Saatchi et al., 2007; Slatton et al., 2001; Wulder & Seemann, 2003). These kinds of maps also 

provide information about how basin-wide gradients, such as total precipitation drive regional 

biomass distribution, which significantly improves our ability to estimate the carbon flux 

resulting from land-use change (Chambers et al, 2007). 

 

So far, the only used spaceborne Lidar data has been the Geoscience Laser Altimeter System 

(GLAS) waveforms from the Ice Cloud and Land Elevation Satellite (ICESat). GLAS was 

developed by NASA-Goddard for the ICESat mission (Abshire et al., 2005; Zwally et al., 2005). 

The ICESat mission started in 2003 and officially ended in 2010. A number of biomass related 

studies have used its data but mostly in closed forests, with an emphasis on characterizing the 

forest canopy parameters and addressing the problem of slope at plot level (Chen, 2010; Lefsky, 

2010; Lefsky et al., 2007; Lefsky et al., 2005; Xing et al., 2010) and often using a combination 

of airborne and spaceborne data (Boudreau et al., 2008; Duncanson et al., 2010; Hilker et al., 

2010). 

 

A second generation spaceborne Lidar platform (ICESat-2) is expected to launch in 2016. 

Building on the lessons from its predecessor, ICESat-2 is expected to provide observations with 

much greater spatial and temporal resolution, and accuracy through the use of a micro-pulse 

multi beam high repetition photon counting approach (Abdalati et al., 2010; NASA, 2011). The 

primary objective of ICESat-2 will be the quantification of ice sheets and sea ice but just like 

ICESat-GLAS, vegetation height retrieval for biomass assessment is a science objective, 
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although not a mission requirement. With this approach, data will be available in smaller 

footprints (10m) with a dense along track sampling of about 70 cm which should minimize the 

problem of surface slope and sparse coverage encountered with ICESat-GLAS data. Simulation 

data is currently being made available via airborne sensors (MABEL and Sigma Space MPL) 

flown in selected areas of the United States.  

 

Change detection is important for monitoring the relationships between land use dynamics, 

climate change and carbon storage and fluxes. For this purpose combined use of ICESat-1 and 

ICESat-2 data will enable monitoring of canopy height and aboveground biomass using 

spaceborne Lidar from as far back as 2003 into the future. The use of multi-temporal Lidar data 

has proven to be useful in monitoring a number of ecological processes such as species invasion 

(Rosso et al.,  2006), forest gap dynamics (Vepakomma et al.,  2008), forest disturbance (Dolan 

et al., 2011) and forest growth and Net Primary Production (NPP) / biomass dynamics (Lefsky et 

al., 2005; Wulder et al., 2007). Given the ground breaking capabilities of ICESat-GLAS, 

developing relationships between its data and any future spaceborne Lidar system will ensure a 

continuous monitoring of vegetation canopy and the associated ecological processes.    

 

2. Problem identification and justification of this research 

A demonstration of the role of vegetation in carbon sequestration requires reliable estimates of 

the actual amount of biomass stored by the vegetation system of interest. Since spaceborne Lidar 

is a sampling instrument, we also require reliable models that can extrapolate footprint level 

biomass to the landscape level. Derivation of the appropriate means of modeling biomass from 

ICESat-GLAS footprint data and linking it with future NASA missions such as ICESat-2 is an 
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important step in ensuring continuous monitoring of carbon fluxes. When reliable methods are 

developed, public institutions and land managers can also easily participate in carbon 

quantification related projects such as Reducing Emissions from Deforestation and Degradation 

(REDD) or the joint implementation, Clean Development Mechanisms (CDM) and emissions 

trading under the Kyoto protocol.   

 

Most Lidar related canopy height/biomass studies have been done in closed canopy forests (e.g 

boreal forests of North America and Eurasia, temperate forests of China and North America, and 

tropical forests of South America and Africa) but very little has been done in savannas. As a 

result the current global canopy cover maps such as the first ever by Lefsky (2010) focus on 

forests only and subsequent attempts have had inconsistencies mainly resulting from differences 

in vegetation systems boundaries. As an example Simard et al. (2011) reported that their map 

and that of Lefsky (2010) had large differences in vegetation cover, which they attributed partly 

to the fact that they mapped more open systems not covered by Lefsky (2010). Nonetheless, 

Simard et al. (2011) used a subjective slope bias correction method hence the issue of slope and 

open canopy cover was not adequately addressed. Savannas therefore have potential issues that 

serve as both advantageous and disadvantageous to monitor with Lidar sensors. The main 

disadvantage of low canopy cover is that it reduces the power of the canopy return and increases 

the potential contribution of sloped terrain. One advantage of such openness would be that it 

eliminates the problem of occluded understorey and terrain surface experienced in some dense 

forests. Exploring these factors in detail will help in developing correction factors for global use 

of spaceborne Lidar data.  
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3. Research Aim 

Assess the applicability of spaceborne Lidar and auxiliary remote sensing data in estimating, 

mapping and monitoring canopy height and carbon storage in savanna woodlands.   

 

4. Structure of this dissertation 

This dissertation is a compilation of the manuscripts we developed to address the aforementioned 

issues. The research questions we sought to answer in each chapter are outlined below 

Chapter 1: To what extent can slope effect be removed from Lidar waveforms to reliably 

estimate canopy height indices in savanna woodlands? How much does canopy cover data 

contribute in this effort?  

Chapter 2: To what extent are the estimated canopy height indices correlated to footprint level 

aboveground woody biomass? How does this compare with efforts reported in other biomes? 

How do generalized models compare with species class specific models? 

Chapter 3: How reliably can the non-contiguous footprints of Lidar be used in combination with 

Radar, passive remote sensing imagery and relevant auxiliary data to extrapolate and map the 

spatial distribution of the biomass at landscape level? 

Chapter 4: What are the prospects of a photon counting lidar approach, as simulated by an 

airborne sensor in estimating canopy height in savannas?  
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CHAPTER 2: MODELING CANOPY HEIGHT IN A SAVANNA ECOSYSTEM USING 

SPACEBORNE LIDAR WAVEFORMS1 

Synopsis 

Although savanna ecosystems cover about 20% of the terrestrial land surface and can have 

productivity equal to some closed forests, their role in the global carbon cycle is poorly 

understood. As a result, these ecosystems are globally more important than generally appreciated 

in the earth observation and modeling communities. Remote sensing has been proposed as an 

efficient tool in assessing the physical structure of an ecosystem which in turn is closely related 

to its ecological functionality such as carbon storage. Studies using Light Detection and Ranging 

(lidar) have demonstrated the technology’s ability to measure canopy height and the strong 

relationship between canopy height and structural attributes such as aboveground biomass, but 

most of this work has focused on closed canopy forests. This study explored the applicability of 

spaceborne lidar to estimate canopy height as a pre-requisite for aboveground biomass and 

carbon storage assessment in savannas. The research used a case study of the Oak Savannas of 

Santa Clara in California, USA. Discrete return airborne lidar data was used to extract height 

metrics in plots coincident with waveform data from the Ice Cloud and land Elevation Satellite 

(ICESat)’s Geoscience Laser Altimeter System (GLAS). Detailed analysis of GLAS waveforms 

was followed by non-parametric regression modeling to estimate maximum canopy height and 

                                                 
1 David Gwenzi and Michael Andrew Lefsky, 2014 

  Remote sensing of Environment, Volume 154, 338-344 
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80th and 90th percentile vegetation heights. Existing methods were adapted with the inclusion of 

NDVI (as a canopy cover proxy) and interaction terms to increase utility in savanna ecosystems. 

Our main findings were that merely adopting the methods derived for forests would not produce 

adequate results. Maximum canopy height was estimated with better accuracy compared to 

percentile height metrics. The inclusion of NDVI and interaction terms improved maximum 

canopy height modeling much more than it did for the 80th and 90th percentile height modeling. 

Taller stands on flat terrain had the best results while shorter stands on steep terrain had the 

worst. Our work has demonstrated the capability of waveform lidar to assess vegetation 

structural attributes in savannas. The challenge in canopy height modeling using this technique in 

such ecosystems is not limited to terrain slope but also includes the interacting influence of low 

canopy cover and short height.  As such, we need special models for savanna areas in an effort to 

do global assessments of terrestrial vegetation structure using lidar. For future studies we 

recommend a closer look at the non-significant influence of canopy cover on the percentile 

canopy height models especially its implication on the subsequent biomass modeling.  

 

Key words: Savanna; canopy height; canopy cover; lidar; ICESat-GLAS 

 

1. Introduction 

Savannas account for approximately 20% of the land area of terrestrial vegetation and are highly 

productive ecosystems that play an important role in the global carbon cycle (Lucas et al., 2011). 

Globally, savannas and other open woodlands are experiencing changes in the balance between 

woody and herbaceous cover (Hill & Hanan, 2010). In seasonally warm biomes, such as the 

subtropical regions of Africa, they are undergoing rapid conversion to other land uses at rates 
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exceeding 1% per year (Potter, 2011). Savannas and open canopy ecosystems in tropical regions 

and other dryland areas can be as productive as some closed forests (Rotenberg & Yakir, 2010; 

Schimel, 2010), they are often rich in biodiversity and can be major stores of carbon in woody 

biomass and soils (Scholes & Hall, 1996) hence they may be a good carbon sink.  

 

Despite the increasingly acknowledged importance of these ecosystems, like open dryland 

forests the carbon cycle of savannas is relatively understudied in the earth observation and 

modeling communities compared to other biomes (Williams et al., 2008;  Schimel, 2010; Hill 

and Hanan, 2010). This sparse observation network means their role in the climate system and 

feedbacks with the atmosphere are not well understood and they are a weak link in our 

understanding of the global carbon cycle (Bombelli et al., 2009; Hill & Hanan, 2010; Williams et 

al., 2008). Estimating structural attributes such as aboveground woody biomass is an important 

step towards reliable monitoring of the carbon pools in these ecosystems. 

 

The carbon storage capacity and related ecological functionality of an ecosystem is largely 

represented by its physical structure (Wulder et al., 2004).  Remote sensing combined with field 

data has been employed as a tool to measure and monitor the structure of terrestrial ecosystems 

at various temporal and spatial scales (Lefsky et al., 2002; Patenaude et al., 2005). Most remote 

sensing studies use empirical relationships between structural properties of vegetation such as 

biomass and the intensity of electromagnetic energy (or the ratio of energy at different 

wavelengths) that is received and recorded by optical passive or microwave sensors (Patenaude 

et al., 2005). However, these relationships are often useful in describing the canopy’s two 

dimensional aspects but imprecise and at times inapplicable to its three dimensional aspects, 



13 

 

particularly in complex, heterogeneous vegetation systems such as mixed deciduous woodlands 

(Ranson et al., 1997; Austin et al., 2003; Patenaude et al., 2005 ).  

 

Light Detection and Ranging (lidar) can directly measure the three dimensional aspects of a 

vegetation canopy and has been shown to accurately estimate Leaf Area Index (LAI) and 

aboveground biomass even in those high biomass ecosystems where passive optical and active 

microwave sensors typically fail ( Lefsky et al., 1999; Drake et al., 2002; Patenaude et al., 2005; 

Boudreau et al., 2008). A prerequisite to biomass modelling using lidar is a reliable estimation of 

the vegetation canopy height (Means et al., 1999; Drake et al., 2002, Lefsky et al. 2002;  2005; 

2007; 2010).The main disadvantage of airborne lidar is its high cost for relatively low horizontal 

coverage. As such, for regional and global extents, attention has shifted to spaceborne lidar 

applications (Lefsky, 2010). 

 

Currently, most spaceborne applications of lidar have used waveforms from the Geoscience 

Laser Altimeter System (GLAS) on the Ice Cloud and Land Elevation Satellite (ICESat) 

developed by the National Aeronautics and Space Administration (NASA). The sensor used 

1064 nm laser pulses to illuminate an elliptical area (footprint) and record the returned laser 

energy from these footprints.  The footprint size was nominally 65m in diameter but varied 

between the mission’s 3 operation periods. The spacing between footprint centroids was about 

175 m (Brenner et al., 2003). Details of the sensor specifications and methods of data collection 

can be found in Zwally et al. (2002) , Abshire et al. (2005)  and Schutz  et al. (2005).  
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A number of vegetation structural studies have used ICESat-GLAS data with an emphasis on 

characterizing forest canopy parameters and addressing the problem of slope at plot level ( 

Lefsky et al., 2005; Lefsky et al., 2007; Chen, 2010; Xing et al., 2010; Lefsky, 2010;  Duncason 

et al., 2010), and often using combinations of airborne and spaceborne data (Boudreau et al., 

2008; Hilker et al., 2010). A common problem cited by these studies is that in steep terrain, the 

total length of the waveform from signal start to signal end (waveform extent) increases as a 

function of the product of the slope and the footprint size, and returns from both canopy and 

ground surfaces can occur at the same elevation thereby complicating waveform interpretation. 

Short height stands on steep terrain are the main problem (Lefsky et al., 2007; Gwenzi, 2008). 

This problem can be so significant that most studies have even considered  discarding waveforms 

from footprints that are in high relief areas e.g. Sun et al. (2008) only considered flat areas; 

Baccini et al. (2008) and Dolan et al. (2009) only used waveforms in areas of at most 5 degrees; 

Xing et al. (2010) only used those waveforms in areas not exceeding 30 degrees; Simard  et al. 

(2011) only used waveforms on slopes below 5 degrees and for which the original height was 

above another threshold level. 

 

The correction of the slope problem and subsequent canopy height modeling has been done in 

various ways, providing varying levels of success. Lefsky et al. (2005) used the Shuttle Radar 

Topography Mission (SRTM) digital elevation model (DEM) data to calculate terrain slope 

indices subsequently used in combination with the waveform extent to estimate canopy height in 

3 forest sites, (R2 = 0.48 - 0.68). Subsequent work demonstrated the sufficiency of waveform 

information only, eliminating the need for DEM data. In 2007, Lefsky et al. developed a revised 

model that estimated mean canopy height using the waveform extent, leading edge extent and 
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trailing edge extent (R2 = 0.83, see section 2.3 for definitions). In 2010, Lefsky used full 

waveform extent as well as the 10th and 90th percentile of waveform energy to estimate Lorey’s 

height, the basal area weighted height of all trees, (R2= 0.67). Duncannon et al. (2010) used 

several other waveform parameters and a dummy variables model based on relief classes to 

estimate 85th percentile canopy height, (R2 = 0.75 - 0.88). These studies have been conducted in 

forests (e.g. boreal forests of North America and Eurasia, temperate forests of China and North 

America, and tropical forests of South America and Africa) but very little has been done in 

savannas. Direct application of these methods to savannas may not yield accurate results because 

of the structural complexities of savannas. 

 

Savannas have structural characteristics that are both advantageous and disadvantageous to 

monitor with lidar sensors. The main disadvantage of low canopy cover is that it reduces the 

power of the canopy return and increases the potential contribution of sloped terrain. This is 

especially so on short height stands where the relative contribution of vegetation to the waveform 

is much lower than that of the ground resulting in the waveform explaining more of ground than 

vegetation information. One advantage of such openness would be that it minimizes the problem 

of occluded understory and terrain surface experienced in some dense forests. As a result, some 

global canopy cover maps such as Lefsky (2010) for global and Saatchi et al. (2011) for  the 

tropical latitudes focused on forests only and subsequent attempts have had inconsistencies 

partially due to differences in the interpretation of lidar data collected from open forests and 

savannas. As an example, Simard et al. (2011) reported that their map and that of Lefsky (2010) 

had large differences in vegetation cover and height, which they attributed partly to the fact that 

they mapped more open systems not covered by Lefsky (2010). Nonetheless, Simard et al. 
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(2011) used an untested slope bias correction method, hence the issue of slope and open canopy 

cover was not adequately addressed. Exploring these factors in detail will help in developing 

correction factors for global use of spaceborne lidar data.  

 

Chen (2010) adopted Lefsky et al.’s (2005; 2007) methods in a savanna area in the Pacific coast. 

A number of linear and nonlinear models were developed to estimate maximum canopy height 

but the correlations between observed and modelled canopy height were very low, i.e. maximum 

r2 value of 0.34 and a root mean square error (RMSE) of as high as 5m (which is about 40% of 

the mean stand maximum canopy height). In this paper we demonstrate that unique models 

should be developed for savannas that take into account the structural challenges posed by such 

systems. The short height, open canopies, multi-story arrangement, and terrain relief 

interactively influence the manner in which energy is reflected back to the sensor and must be 

considered in statistical modelling of canopy height. Based on this argument, we propose the 

inclusion of a canopy cover proxy to address the heterogeneity in canopy openness. Additionally, 

since the predictors act in an interactive manner, we also went further and tested the importance 

of interaction terms in developing the final canopy height models. Our second objective was to 

demonstrate the challenge of slope and short height combination that characterizes most 

savannas in mountainous areas. Our hypothesis was that better results are expected in patches 

with taller stands on flat terrain while short height stands on steep terrain are the most 

problematic. 
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2. Methods and materials 

2.1. Study area 

This research was done in the Oak Savannas of Santa Clara in California, USA. The site’s extent 

is about 13650 Ha centred at 37.10 N, 121.25 W. The primary reasons for selecting this area 

were that it had available high accuracy airborne discrete lidar data from 2006 (coinciding with 

ICESat operation time) for validation and it is also highly heterogeneous in tree density and 

topography to allow for the investigation of slope and canopy cover. We believed that a success 

in this highly rugged terrain would indicate more likelihood of success in other relatively 

homogenous and flat savanna ecosystems. According to Chen (2010) and Baldocchi et al. 

(2011), this savanna ecosystem consists of a mix of herbaceous and woody, evergreen and 

deciduous and annual and perennial species. The co-dominant tree species are Blue Oak (Quecus 

douglasii), Coast Live Oak (Quercus agrifolia), Valley Oak (Quercus Lobata) and Buckeye 

(Aesculus californica) intermixed with Diablan sage scrub that is comprised of California 

Sagebrush (Artemisia californica) and non-native annual grassland. The average tree height is 11 

m. Topography is highly heterogeneous, with mean slopes of 20 degrees.  The mean annual air 

temperature is 15 C and the annual precipitation range is 400 to 800 mm.  Substantial work has 

been done to quantify structural features of this oak savannah with both direct and remote 

sensing methods (Baldocchi et al., 2011) but a number of questions still remain unanswered as 

far as lidar estimation of canopy height and biomass is concerned. Chen (2010) looked at canopy 

height derivation using ICESat - GLAS waveforms and concluded that terrain slope and the large 

diameter footprint of GLAS waveforms are the main limiting factors.  
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2.2. Data 

The study used cloud free geolocated waveforms from ICESat - GLAS laser operation periods 2 

and 3, acquired from 2003 to 2006.  Processing algorithms from Lefsky et al. (2007; 2010) and 

Miller et al. (2011), along with tools developed by NASA Goddard were used to model 

waveforms.  Data product GLA01 provided the raw waveforms while the GLA06/GLA14 data 

products provided surface elevations including the laser footprint geolocation and reflectance, as 

well as atmospheric corrections for range measurements. GLAS waveforms were filtered for 

atmospheric conditions using flag information (FRir_qaFlag = 15 and satNdx = 0) from the 

GLA14 data products following Chen (2010) and Duncanson (2010). As an additional filter, we 

only used those waveforms whose elevation was no more than 100 m below or above the SRTM 

elevation (Chen, 2010).  High accuracy airborne discrete return lidar data was obtained from the 

United States Geological Survey (USGS) Centre for Lidar Information Coordination and 

Knowledge (CLICK). This point cloud data set has a density of 1 pulse per square meter and was 

acquired by an Optech ALTM 3100 lidar system by Optimal Geomatics in April and May 2006. 

The airborne lidar data was used for validating the ICESat-GLAS height models. Height indices 

from airborne lidar data are highly correlated to field measured height but have advantages over 

field estimates because of their accurate geolocation, high sampling density and correspondence 

with the three dimensional geometry of canopies (Lefsky et al., 2002; 2007).  

 

2.3. GLAS waveforms processing and parameter extraction 

Waveform modeling involved a series of steps including converting the original 0-255 values of 

the waveforms into voltage units and Gaussian decomposition.  The transmitted and received 

waveforms were modeled and smoothed using algorithms developed by Brenner et al., 2003 and 
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the detailed steps and equations are provided by (Harding & Carabajal, 2005; Duong et al., 

2006). Three main parameters (waveform extent, leading edge and trailing edge) were extracted 

from the waveforms (Figure 2.1) following the method developed by Lefsky et al., 2007. 

Waveform extent is the distance between the point of signal start and signal end. Signal start is 

defined as the point when the increasing waveform intensity first crosses the background noise 

threshold level, corresponding to canopy tops. Signal end occurs where the decreasing waveform 

intensity cross the same threshold, corresponding to the last ground returns. The noise threshold 

level is calculated as mean background noise plus n times the standard deviation. Previous 

studies have used different values of n ranging from 3 to 4.5. Chen (2010) found that in this area 

the value of n for optimal threshold is 3.5 for signal start and 5 for signal end therefore an 

average value of 4.5 was used in this study. The leading edge is a function of canopy variability 

and is calculated as the distance between the elevation of signal start and the first elevation at 

which the waveform is half of the maximum signal above the background noise value. Trailing 

edge is the distance between elevation of signal end and lowest elevation at which the signal 

strength of the waveform is half of the maximum signal above the background noise value, and 

is a function of terrain slope. 

 

2.4. Airborne lidar data processing 

2.4.1. Bare earth modeling 

Airborne lidar data points were first classified into ground return and non-ground return using 

MCC-LIDAR. MCC-LIDAR is a command line tool that uses an automated approach to 

iteratively identify non-ground (bare earth) points that exceed positive curvature thresholds at  
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multiple scales using the Multiscale Curvature Classification algorithm (Evans & Hudak, 2007). 

The main advantage of the MCC algorithm is that it uses a thin-plate spline (TPS) which allows 

for adjustment of tension between points and integrates a multiscale approach where the surface 

is interpolated at different resolutions hence addressing topological relationships of non-ground 

objects at variable scales. The details of the parameters and how the algorithm further works are 

found in Evans & Hudak (2007).  

 

Ground return points were then used to create a digital elevation model (bare earth surface) using 

the GridSurfaceCreate algorithm of FUSION software developed by the United States 

Department of Agriculture, Forest Service (McGaughey, 2012). GridSurfaceCreate uses points 

filtered as bare earth to compute the elevation of each grid cell using the average elevation of all 

points within the cell.  The algorithm also has a spike option that works well to remove spikes 

that may have resulted from residual returns from vegetation. This was necessary in our study 

area since very short herbaceous plants characterize the understory of savannas and these are 

likely to be confused as ground returns in the first iterations.  

 

2.4.2. Plot level canopy height metrics 

We used the Cloudmetrics algorithm of FUSION to extract all airborne data points above the 

earlier generated bare earth surface and within circular plots centered at the waveform 

coordinates given by the GLA14 data product. Plot diameters were matched with footprint size 

of each waveform’s laser operation period, i.e 70 m for laser 2 shots and 55 m for laser 3. These 

dimensions gave an area that is equal to the average area of the ecliptical footprint for each 

relative observation period. The Cloudmetrics algorithim of FUSION computes a variety of 
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statistical parameters describing a lidar dataset using elevation and intensity values. From this 

processing we obtained the mean, maximum and nth percentile heights for each plot. 

 

2.4.3. NDVI as an index of canopy cover 

A Landsat 5 Thematic Mapper (TM) image from summer (9 June, 2006) was acquired from the 

USGS site (http://glovis.usgs.gov/). The year 2006 was chosen to coincide with the year the 

airborne lidar data (used for validation) was acquired. Atmospheric correction was done on the 

image using the Quick Atmospheric Correction (QUAC) module of the Environment for 

Visualizing Images (ENVI) software (Bernstein et al., 2005). The NDVI index (Myneni et al., 

1995) was calculated and scaled from 0 to 255 for use as an index of canopy cover. Previous 

studies have shown a linear relationship between NDVI and percentage vegetation cover (Gamon 

et al., 1995; Todd & Hoffer, 1998). Since trees green up in summer, while grasses are gray/dead 

for this biome, the June NDVI index was considered to be a good variable to indicate crown 

cover in data analysis as explained in section 2.5. The aboveground biomass value for this area 

averages about 120 Mg/ Ha (Battles et al., 2008) therefore it is highly unlikely that this NDVI-

cover relationship saturates. The NDVI value for each plot was extracted using values of a 3 x 3 

cell window around its center geolocation through bilinear interpolation.  

 

2.5. Data Analysis 

A non-parametric stochastic gradient boosting software (TreeNet) was used to relate waveform 

parameters and NDVI to airborne lidar data derived canopy height metrics. TreeNet (Salford 

Systems, 2001) uses an algorithm that generates thousands of small decision trees built in 

http://glovis.usgs.gov/
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sequential error-correcting process to converge to an accurate model. This gives it an edge over 

other statistical methods like random forests where on the tree nodes the splitting attribute is 

selected from a randomly chosen sample of attributes. For consistency and simplicity of terms, 

we refer to the waveform extent as width, leading edge extent as lead, trailing edge extent as 

trail, maximum canopy height as Hmax and any nth percentile height as Hn. We evaluated the 

ability of waveform parameters and NDVI to estimate Hmax, H80 and H90. In this paper we 

present all the height metrics models, but focus on Hmax. The percentile heights will mainly be 

used in the subsequent biomass modeling work since they have been proven to emphasize more 

the importance of large trees (Duncanson et al., 2010), a situation that is ideal for computing plot 

level tree biomass, especially in open canopy areas.  

 

We firstly developed and validated canopy height models with the commonly used waveform 

parameters (width, lead and trail) and then developed subsequent models adding NDVI and 

interaction terms to get the following 10 candidate variables: 

width (w); lead (l); trail (t); NDVI; width*lead (wl), width*trail (wt) ; 

 width *NDVI (w*NDVI);  lead*trail (lt);  lead*NDVI (l*NDVI); trail* NDVI (t*NDVI) 

We ran the TreeNet model with all 10 variables and determined the order of their importance. 

The model was then run 9 times, dropping one variable (starting with least important) on each 

run so that we could trace the change in goodness of fit statistics in relation to number of model 

parameters. The goodness of fit statistics calculated and traced were Training R2 value, 

Validation R2 value, AIC and BIC and these were used as the cut off criterion in determining 

optimum number of parameters to use in the final model. We also tested the results of estimating 
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all the 3 canopy height metrics with interaction terms but excluding NDVI so we could roughly 

judge the statistical worthiness of the extra effort required in its inclusion.    

 

A tenfold cross validation approach was used to assess the accuracy of each model. With this 

approach, the original data set is randomly partitioned into 10 subsamples. Of these 10 

subsamples, 9 are used as training data while the other one is retained as the validation data for 

testing the model. This process is repeated 10 times and each of the 10 subsamples is used 

exactly once for validation. In the end the 10 results from the 10 folds are averaged to produce a 

single estimation. This approach is useful in work like ours where the ultimate purpose of 

modeling is prediction (Kohavi, 1995).   

 

To test our hypothesis that short height stands at steep slopes are the most problematic we 

divided our data set into 4 terrain-height classes using natural breaks in the data identified though 

agglomerative hierarchical cluster analysis. The four classes and the terms we use later to refer to 

them (in parentheses) are shown in Table 2.1. For each class we calibrated the best canopy height 

model identified in earlier steps and judged its accuracy in that class using the RMSE expressed 

as a percentage of the class’ mean Hmax. Two regression models were then developed to show the 

trend of modeling accuracy versus the slope-height interaction. Since this resulted in only one 

observation as a measure of accuracy in each class, we generated pseudo-replicates to obtain 

more observations to use in the regression model. This was done by a bootstrapping approach 

where a random sample of 75% of the data points in each class was drawn and used to run the 

model and save the RMSE. This would be repeated by replacing the sample and resampling over 

1000 iterations. The resulting 1000 observation points for each class were then used in a dummy 
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variable regression model of mean RMSE versus height-slope interaction class, and a linear 

model of each class’ mean height/slope ratio versus mean RMSE.  

 

3. Results 

3.1. Maximum canopy height 

Modeling accuracy (Table 2.2) was low using width, lead and trail only and slightly improved 

when NDVI was added. The model became much better when interaction terms were used. For 

all the models the training R2 was always higher than the validation R2 value. After including 

interaction terms, the order of decreasing variable importance picked by TreeNet was w, l*NDVI, 

w*NDVI, wl, lt, t, t*NDVI, NDVI, l, wt. As Figure 2.2 shows, using the earlier mentioned 

goodness of fit statistics, the optimum number of parameters (excluding intercept) was the first 6 

(R2
training = 0.89; R2

validation = 63 ; RMSE = 1.6 m, i.e 12%). Modeling with interaction terms but 

excluding NDVI reduced the model’s R2
training to 0.83 and the R2

validation to 0.59 while increasing 

the RMSE from 12% to 15%.  

 

3.2. Percentile canopy height 

As shown in Tables 2.2, the important variables for percentile heights differed from those 

identified in the maximum canopy height models. Overall the models for percentile heights did 

not perform as well as those for maximum canopy height. Between the two percentiles, H90 

models were better than those for H80. For both percentiles, adding NDVI to width, lead, and trail 

without interaction did not improve the model at all. After including interaction terms, the H80 

model had 8 optimum variables while the H90 model had 7. NDVI was not an important variable 



25 

 

for the percentile height models since the 2 models with interaction terms including and 

excluding NDVI performed just about the same. This suggests that cover may not have an 

important influence when the percentile canopy height metric is used. However, as with 

maximum canopy height, the models with interaction terms were better than those without.  

 

3.3. Slope-height interaction 

As we had hypothesized, the short-steep class had the highest RMSE values. Short-flat and tall-

steep classes had better results and the tall-flat class had the best (Figure 2.3A). This relationship 

was significant (p <0.05) as verified by both the dummy variables model and the mean 

height/slope ratio model. The dummy variables model had an R2 value as high as 0.94, p<0.001. 

The second model (Figure 2.3B) shows the significant inverse relationship (R2 = 0.87, p = 0.042) 

between height/slope ratio and RMSE. The short-steep class has the lowest height/slope ratio and 

the highest RMSE while tall-flat class has the highest height/slope ratio and the lowest RMSE, 

therefore we failed to reject our hypothesis. The mean RMSE for the 4 height-slope classes was 

slightly higher than the best model’s RMSE (presented in table 2.2) because the former was 

heavily distorted by the low accuracy associated with steep terrain areas when they are modeled 

separately (especially those plots in the short-steep class).  

 

4. Discussion 

In forest based studies such as Lefsky et al. (2005; 2007; 2010), models developed using the 

variables w,l and t gave good results. In this work they gave less accurate results suggesting that 

we need special models for savanna ecosystems. Interaction terms are a better representation of 
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the interactive nature of the factors that contribute to the complex structure of savannas. The 

l*NDVI and w*NDVI terms demonstrate the importance of stem density. Since l is a function of 

canopy variability, it is very much influenced by the density of stems within the plot, hence the 

significance of l in combination with NDVI (our surrogate measure for crown cover). The 

w*NDVI term is important in the sense that canopy cover determines the power of ground returns 

recorded by the sensor. Holding terrain slope constant, dense canopies can result in relatively 

shorter w because there would be insufficient energy returned from the ground and waveform 

extent will not capture the full range of footprint elevations (Lefsky et al., 2007).  The first 3 

variables (w, l*NDVI, w*NDVI) in our best model therefore explain much of the vegetation 

physical realism in savannas. The other variables like lt explain more of the terrain issues. The 

interactive effect of height and terrain slope was also demonstrated by the height-slope class 

results. Modeling accuracy decreases as height reduces or as slope increases. 

 

Our work has demonstrated that waveform information alone (t) is sufficient to account for slope 

terrain, although it is less accurate at higher terrain slopes. Duncanson et al. (2010) suggested 

another way of using only waveform information to correct for terrain. They developed a model 

that used 4 waveform parameters (3 of them different from the ones we used) to calculate 

footprint maximum relief. Footprints were then grouped into relief classes and a model with 

dummy variables for each class finally developed to estimate 85th percentile canopy height. 

Although the results were good (R2 = 0.81) in their forested area, the final model required as 

many as 10 variables computed separately. Our simpler model gave good results with only 6 

terms. Moreover, as we have shown earlier with the Lefsky et al. (2007) and Chen (2010) 
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models, merely adopting this method to savanna ecosystems is not likely to give good results, 

given the complex structure of savannas, especially when terrain slope is high.   

 

In this work we used NDVI as a surrogate variable but a more accurate way of directly 

computing canopy cover would be better. We selected NDVI because it is easily derived from 

freely available data sources such as Landsat and the Moderate Resolution Imaging 

Spectroradiometer (MODIS). Moreover, optical passive remote sensing imagery has generally 

been proven to be good at delineating the two dimensional structural attributes of vegetation 

(Patenaude et al., 2005). This will be a very important wall-to-wall data source in the next steps 

of this kind of work i.e. modeling biomass distribution across landscapes. However, the density 

and phenology of the vegetation has a big impact on the usefulness of NDVI as a proxy for 

canopy cover. In our study site, it worked well because the trees and grass green up in different 

seasons. This empirical relationship may not work well in areas where at one point in time there 

is greenness from both trees and grasses or when stem density and biomass values are so high 

that the NDVI-cover relationship saturates. We therefore recommend this as one area of 

improvement in subsequent studies. Alternatives include using NDVI and texture to discriminate 

between vegetation and grass or directly computing canopy cover from freely available optical 

passive remote sensing imagery such as Landsat TM alongside freely available software such as 

Forest Canopy Density Mapper (Rikimaru, 2002) but these methods were not tried in our work 

and we leave it as a recommendation to others who may do similar work in future.  It may also 

be possible to compute canopy cover from the lidar waveforms themselves. 
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Dropping NDVI and using only w,l,t,wl, lt and wt gave a model that was still better than the one 

developed using w,l and t alone but the amount of variability explained became much lower 

hence we strongly recommend the inclusion of NDVI. We plan to test and compare the 

relationships of percentile heights and Lorey’s height to aboveground biomass in future work. 

These height metrics are related to basal area which is a measure of the area occupied by the 

cross section of tree trunks hence they may be sufficient for modeling biomass when canopy 

cover data is not available. The percentile height model results were poorer than those of Hmax 

most probably because of the way H90 and H80 were computed from the point cloud lidar data. A 

cut off point of 2 m was used to separate tree returns from non-tree returns but such a cut off is 

not applied in determining waveform width where the presence of dense understory vegetation 

such as herbs complicates the discrimination of background noise and signal end. This is an 

inevitable problem in savannas since such short understory vegetation can always be expected.  

 

This work has emphasized that in savannas, the challenge of canopy height modeling with 

waveform lidar is not only slope, but the short heights of stands in these biomes as well. It is 

because of these complex interactions that models developed for forests will fail when merely 

adopted to savannas. Future missions of spaceborne lidar such as ICESat-2 remain untested in 

savanna ecosystems, and should be included in mission designs due to the observed differences 

between savanna and forest structure. 

 

 5. Conclusion 

Our work has demonstrated the capability of lidar waveforms to predict canopy height in 

savannas. However, the complex structures of savannas require different models from those 



29 

 

developed for forests. Canopy cover and interaction terms are a very important input into 

savannas specific models. These results suggest a possibility for height change detection using 

spaceborne lidar data back to at least 2003 when ICESat-GLAS data was first available. If 

ICESat-2 data will be usable in savannas as well then continuity is ensured in the global 

availability of multi-temporal spaceborne lidar data and hence improving our knowledge about 

savanna ecosystems’ contribution to important global ecological processes such as the carbon 

cycle.  
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6. Tables and Figures 

Table 2.1: Height-slope classes used to test the interactive influence of height and slope in 

canopy height modeling 

 

Class Height range Slope range 

Tall stands on flat terrain (Tall -flat) Above 11m Below 8 degrees 

Tall stands on steep terrain (Tall-steep) Above 11m Above 8 degrees 

Short stands on flat terrain (Short-flat) Below 11m Below 8 degrees 

Short stands on steep terrain (Short-steep) Below 11m Above 8 degrees  

 

Table 2.2: Modeling results 

 

 

 

 

Height 

Index 

Model and important variables R2 RMSE (% 

of mean 

Hmax) 
Training Validation 

 

 

 

 

Hmax 

A.Width, lead and trail only 

Hmax ~ w+l+t 

0.73 0.55 19 

B. NDVI added to model 1 

Hmax ~ w+l+t+NDVI 

0.78 0.57 17 

C. Interaction terms added to model 2  

Hmax ~ w+lNDVI+wNDVI+wl+lt+t 

0.89 0.63 12 

D.Interaction terms  without NDVI 

Hmax ~ width+wl+lt+t 

0.83 0.59 15 

 

 

H80 

A.Width, lead and trail only 

H80 ~ w+l+t 

0.68 0.40 19 

B. NDVI and interactions terms added to model 1  

H80 ~ w+ lNDVI+wNDVI+wl+lt+tNDVI+wt+t 

0.80 0.42 16 

C. Interaction terms; without NDVI 

H80 ~ w+wl+lt+wt+t 

0.74 0.40 17 

 

 

H90 

A.Width, lead and trail only 

H90 ~ w+l+t 

0.70 0.42 19 

B. NDVI and interactions terms added to model 1  

H90 ~ w+ lNDVI+wNDVI+wl+lt+tNDVI+t 

0.76 0.46 17 

C. Interaction terms; without NDVI 

H90 ~ w+wl+lt+t 

0.77 0.48 17 
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Figure 2.1: Diagrammatic representation of the waveform parameters used. Adopted from 

Lefsky et al., (2007) 
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Figure 2.2: Modeling assessment criterion trends. The number of variables on the x-axis 

corresponds to the cumulative variables in the following order: w, l ∗ NDVI, w ∗ NDVI, wl, lt, 

 t, t ∗ NDVI, NDVI, l, and wt. 
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CHAPTER 3: PLOT LEVEL ABOVEGROUND WOODY BIOMASS MODELING USING 

CANOPY HEIGHT AND AUXILIARY REMOTE SENSING DATA IN A 

HETEROGENEOUS SAVANNA2 

Synopsis 

Remote sensing studies aimed at assessing woody biomass have demonstrated a strong 

relationship between canopy height and plot level aboveground biomass, but these studies have 

mostly been performed in forests. To date, few studies have examined the limitations and 

challenges of this relationship using large footprint lidar in savannas. Furthermore, methods for 

the comparison of generalized versus species composition or vegetation type-specific models 

have not been adequately explored at the plot level.  In this work, we developed generalized 

models using the classical least squares regression modeling approach to relate selected height 

metrics to above ground woody biomass and then employed a Hierarchical Bayesian Analysis 

(HBA) to explore the implications of using generalized instead of composition-specific models. 

Our study used field data, airborne discrete return lidar and Landsat 5 TM data collected from 

the oak savannas of Tejon Ranch Conservancy in Kern County, California. Model parameters 

were developed and analyzed at the level of 50 m diameter plots, comparable to the resolution of 

large footprint lidar waveforms. The three generalized models that incorporated canopy cover 

proxies performed better than one model that did not use canopy cover information. From the 

HBA, we found out that for all the models, both the intercept and slope have interspecific 
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variability. The valley oak dominated plots consistently had higher slopes and intercepts while 

the plots dominated by blue oaks had the lowest. However, the intercept and slope values of the 

composition-specific models did not differ much from the global (overall) values and their 95% 

Credible Intervals (CIs) overlapped the global mean values. We conclude that the narrow range 

of the distribution and the overlap of the CIs of the composition-specific and global parameters 

suggest that scaling rules do exist for savannas. The distribution of the posterior densities of the 

differences between composition level and global level parameter values showed a high support 

for the use of global parameters suggesting that all of the 4 models are universally (large scale) 

applicable. Therefore, in this case the choice of method depends more on secondary 

considerations. 

 

Key Words: Lidar, Canopy height, aboveground biomass, canopy cover, Hierarchical Bayesian 

 

1. Introduction 

Large footprint lidar has a demonstrated capability to measure canopy height in both forests and 

savannas (Duncanson et al. 2010; Xing et al. 2010; Lefsky, 2010; Gwenzi & Lefsky 2014) thus it 

is recognized as a valuable technique for large scale assessment of vegetation structure and 

function. Canopy height is often measured as part of aboveground biomass assessment since the 

two have been found to be highly correlated for forest plots (Lefsky et al. 1999; Means et al. 

1999; Drake et al. 2002; Lefsky et al. 2002; 2005; 2007; Boudreau et al. 2008; Zolkos et al. 

2013). Little work has been done on lidar remote sensing of biomass in savanna landscapes or 

other open canopy ecosystems, and the published work has often used small footprint lidar 

(Colgan et al., 2012; Nyström et al., 2012; Colgan et al., 2013; McGlinchy et al., 2014) or the 
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analyses were done at the individual tree level (Wu et al., 2009). The only available satellite 

based lidar data to date was collected by the Ice Cloud and land Elevation Satellite’s Geoscience 

Laser Altimeter System (ICESat-GLAS), operational between 2003 and 2010. 

 

Large scale assessment of aboveground biomass in savannas is important for determining aspects 

of ecological function such as carbon sequestration, habitat availability, bio-energy production, 

water flow, herbivory, and fuelwood supply. For large scale applications, large footprint 

spaceborne lidar data sources are often preferable to small footprint airborne lidar because of the 

former’s lower cost and increased availability. The selection of height metrics like maximum 

canopy height in savannas is complicated by the structural heterogeneity of these ecosystems. 

Capturing this heterogeneity may require the use of extra variables to account for differences in 

stem density and the vertical structure of vegetation observed among plots, even in the same 

locality. Canopy cover directly estimates the amount of woody cover in a plot, making it an 

important variable to consider in modeling biomass in such heterogeneous vegetation systems. 

 

Canopy cover can be accurately derived using high point density discrete return lidar data 

(Colgan et al., 2012) but in most systems it can also be estimated by multispectral vegetation 

indices like NDVI to which it is highly correlated (Gamon et al., 1995; Todd & Hoffer, 1998). 

Another approach to incorporate canopy cover information is to weight the canopy height by 

some variables that are directly related to stem density. Lorey’s height (VanLaar & Akca, 2007) 

is a commonly used metric that uses basal area or crown area weighting (Pang et al., 2008). 

Percentiles such as the 90th percentile height metric emphasize the importance of larger trees 

making them another good alternative.  
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The selection of methods to compare the utility of generalized versus species or composition or 

vegetation type-specific regression equations has been a problem for studies of individual tree 

allometry relating diameter, height and biomass in both forests and savannas. Previous studies 

have demonstrated that at the individual tree level the use of generalized allometric models (with 

Diameter at Breast Height (DBH) and total height) can lead to bias in estimating the biomass of 

particular tree species (Zianis & Mencuccini, 2004; Chave et al., 2005; Litton & Kauffman, 

2008; Mwakalukwa et al., 2014). However, some of these studies have also noted an allometric 

convergence of the scaling exponents despite the multitude of site-specific factors affecting tree 

growth (Zianis & Mencuccini, 2004; Pilli et al., 2006; Tredennick et al., 2013). Thus, despite the 

better performance of species/composition/vegetation type or site-specific models, generalized 

models can be applied to achieve comparable results with less time and effort.  At the plot level, 

these trends may be different since errors in model initialization tend to compensate at larger 

spatial scales (Hurtt et al., 2010). Large scale remote sensing estimation of biomass often use 

plot parameters thus an investigation of the differences between generalized and 

species/composition-specific models at the plot level is necessary for evaluating large scale 

efforts. The inherent heterogeneity of savanna ecosystems complicates the use of 

species/composition-specific models and yet the errors resulting from using generalized models 

are not well investigated at the plot level.  

 

In this work we investigated the utility of selected canopy height metrics for estimating 

aboveground woody biomass at the plot level in a typical savanna landscape.  For our first 

objective, we developed and tested generalized models that related canopy height to biomass 

using the empirical frequentist statistical approach, which has been the standard in previous work 
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(Lefsky et al. 1999; 2002; 2005; Means et al. 1999; Drake et al. 2002). The second objective was 

to investigate the influence of using generalized models instead of species-specific models. 

Because of the mixed vegetation characteristics of savannas, our plots rarely comprised of single 

tree species thus our classification was defined by the dominant species in each plot. As a result, 

in this paper we refer to the different groups of plots as composition classes. Comparisons of 

species or composition-specific and generalized models for estimating biomass whether at tree 

level or plot level has been traditionally done by calculating and comparing the relative bias of 

each model’s estimates to the validation data set or testing of differences in slope and intercept 

parameters of the respective classical regression models. These approaches are mostly useful 

with large enough data sets but can be difficult or even impossible when the sample size is too 

small to obtain significant sub-models. 

 

In contrast, bayesian inference (section 1.1) is unbiased with respect to sample size. In their work 

in forests, Zapata-Cuartas et al. (2012) were able to create and evaluate Bayesian models with a 

sample size of 6 on a task that would require a sample size of at least 40 for a classical statistical 

method. Bayesian analysis encorporates prior information about model parameters to produce an 

updated distribution (posterior) and a metric of estimate reliability ( Robert, 2007; Hall, 2012; 

Zapata-Cuartas et al., 2012). The prior distribution for a parameter () is updated after 

accounting for observed data (y) to yield the posterior distribution.  On the contrary, the 

frequentist approach does not condition on the observed data but rather the accuracy of the 

evidence from an experiment is restricted to statements about long run averages from 

hypothetical replicates of sampled data, were the experiment repeatedly performed (Jaynes, 

2003; Wagenmakers et al., 2008).  
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Because of the low sample size of our data, and the additional advantages mentioned above, we 

chose to use a Bayesian approach to create hierarchical models so that the posterior distributions 

of composition-specific parameters could be compared to those of the global parameters. This 

allowed us to investigate the effect of using general models over composition-specific models in 

estimating plot level above ground biomass in savannas. Bayesian analysis is a relatively 

unexplored area in large scale lidar remote sensing of vegetation structure although some studies 

e.g Zapata-Cuartas et al. (2012) in forests and Tredennick et al. (2013) in savannas have 

investigated the usefulness of a Bayesian approach for the creation of tree level allometric 

equations. These studies demonstrated the importance of considering allometric scaling 

coefficients in the framework of probability distributions rather than as fixed parameter values, 

as explained in the following sections. 

 

1.1. Bayesian Analysis 

Bayesian methods are based on Bayes’ rule (Carlin & Thomas, 2000; Ghosh et al, 2006) which 

breaks down knowledge into 4 components: prior knowledge (1) and new data (2) are combined 

by a model (3) to produce posterior/updated knowledge (4). For estimating parameters, the prior 

distribution is the probability distribution of the parameter that we have before observing the 

data.  When the prior has minimal impact on the posterior distribution, it is said to be objective, 

sometimes called non-informative. On the other hand, the prior is subjective/informative if it 

expresses specific, definitive information about a variable. The subjectivity can be based on for 

example information gathered from a previous study, past experience or expert opinion. The 

posterior distribution represents our updated beliefs about the parameter after observing the data. 

Our new knowledge of the parameter is therefore contained in the posterior and statistical 
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inferences are made by summarizing its distribution. The posterior distribution depends on the 

weight placed on the prior compared to the new data and the magnitude of the difference 

between the two. Thus, while a frequentist approach investigates the probability of observing the 

data, given that the hypothesis is true a Bayesian approach investigates the probability of the 

hypothesis being true, given the observed data (McCarthy, 2007; Robert, 2007).  

 

Bayes’ rule is based on conditional probability and for a finite number of hypotheses, it states 

that the probability of the hypothesis given the data is calculated by: 

Pr(Hi|D) = 
)|Pr(*)Pr(

)|Pr(*)Pr(


j

jj

ii

HDH

HDH
              (1) 

where Pr(Hj) is the prior probability of the different hypotheses and Pr(D|Hj) is the probability of 

obtaining the data given the hypotheses. 

For continuous hypotheses, Bayes’ rule is expressed as: 

Pr(H|D) = 




0
)|Pr(*)Pr(

)|Pr(*)Pr(

dxxDx

HDH
              (2) 

where H represents a particular value for the parameter and the limits of the integration are over 

all the possible vales of the parameter x. To summarize the above equations, the posterior 

probability equals the prior multiplied by the likelihood of the data and a scaling constant. The 

scaling constant is the denominator in both of the above cases. In Hierarchical Bayesian Analysis 

(HBA), models are written modularly, i.e. in terms of sub-models. The sub-models then combine 

to form the hierarchical model, and Bayes theorem is used to integrate the pieces together. The 

challenge of estimating the scaling constant analytically has been overcome by the development 

of software such as the Microsoft windows version of Bayesian inference Using Gibbs Sampling 
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(WinBUGS) (Spiegelhalter et al., 2005) and Just Another Gibbs Sampler (JAGS) (Plummer, 

2003). These programs draw samples from the posterior distribution using Markov Chain Monte 

Carlo (MCMC) (Brooks et al., 2011; Robert & Casella, 2004). MCMC is a general purpose 

technique for generating samples from a probability in high (e.g. millions) dimensional state 

space, using random numbers drawn from uniform probability in a certain range. 

 

2. Methods and materials 

2.1. Study area 

This research was conducted in the oak savannas of Tejon Ranch Conservancy (centered roughly 

at 34.85 N, 118.86 W). A cooperative agreement between the Tejon Ranch Company and a 

group of conservation organizations in 2008 resulted in the creation of this 72 000 Ha 

conservancy. The conservancy was created to protect and implement science based stewardship, 

thus preserving, enhancing and restoring the native biodiversity and ecosystem values of the 

Tejon Ranch and Tahachapi Range for the benefit of California’s future generations (Tejon 

Ranch Conservancy, 2011). These oak savannas comprise mainly of blue oaks (Quercus 

douglasii), black oaks (Quercus kelloggii) and valley oaks (Quercus lobata). Other non-

dominant tree species found in this ecosystem include canyon live oak (Quercus chrysolepis), 

interior live oak (Quercus wislizeni), the California buckeye (Aesculus californica) and a few 

conifers. Blue oak woodlands are dominant at the lower elevations (between 500 and 1 000 m), 

black oak woodlands are dominant in higher elevation areas (> 1 200 m) while valley oak 

woodlands are found on both lower (400- 600 m) and higher (1400- 1800 m) elevations. Grass 
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dominates the understories of blue and valley oaks while shrubs are found in combination with 

grass in the understory of black oaks.  

 

2.2. Data 

Field work was conducted in August and September of 2012. Inventory was carried out on 

circular plots of 50 m diameter to approximate the nominal diameter of satellite based large 

footprint lidar (ICESat–GLAS). Plot center coordinates were recorded using a Trimble Juno 3C 

handheld GPS within an accuracy of 0.5 - 2 m. Diameter at Breast Height (DBH) and total height 

were measured for every live tree taller than 2 m and greater than 10 cm in DBH in each plot. A 

total of 26 plots were enumerated and later grouped into four main composition classes 

determined by the dominant tree species (i.e blue oak plots, n = 11; black oak plots, n = 6; valley 

oak plots, n = 6 and mixed plots, n = 3). The biomass for each tree was calculated using the 

respective species’ equations from Jenkins et al. (2004). 

 

Airborne discrete return lidar data was collected in July 2012 by a commercial lidar vendor at an 

average density of 1 point per m2. The las2dem algorithm of LAStools (Isenburg, 2013) was 

used to create a digital elevation model, above which non-ground points were normalized to 

determine canopy height using the lasheight algorithm. As in fieldwork, a cut off height of 2 m 

was used to minimize the influence of non-tree vegetation. The plot center coordinates recorded 

during fieldwork were used to extract 50 m diameter plot level statistics from the point cloud 

lidar data. Plot statistics, specifically the maximum height metric and canopy cover were 

calculated using the lascanopy algorithm of LAStools and the cover algorithm of FUSION 

software (McGaughey, 2010) respectively. The cover algorithm calculates canopy cover as the 
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number of first returns over a specified height threshold divided by the total number of first 

returns within each cell. The purpose of the lidar data was to demonstrate the ability of lidar to 

represent field conditions in this vegetation system and calibrate canopy cover as explained 

below. Airborne lidar data was an accurate representation of field conditions as evidenced by the 

significant (p<0.001) and very high correlation (R2 = 0.95) between field measured and lidar 

derived maximum canopy height (Figure 3.1). Such a high correlation between variables that can 

be directly validated indicates the reliability of other lidar derived variables that could be used in 

similar work 

 

We selected height metrics that have been identified as readily derivable from spaceborne lidar 

data based on our previous work. These included Lorey’s height (Lefsky, 2010) and the 

maximum and 90th percentile canopy height (Gwenzi and Lefsky, 2014). Lorey’s height was 

calculated as the mean height of all trees weighted by their basal area:   

Hlorey = 



G
HG

i

ii                 (3) 

where Gi and Hi are the basal area and height of tree i respectively.  

We used field measurements of these height indices to predict aboveground biomass. An 

alternative approach would have been to estimate the height indices from lidar remote sensing 

using the field measurements as a calibration dataset but we did not have large footprint lidar data 

available for this area. Since our main aim was to investigate the canopy height-biomass 

relationship at a large scale and the implications of using generalized instead of composition-

specific models, our discussion mainly focused on plot level model performance treating the 50 m 

plot as analogous to an ICESat-GLAS footprint. We have confidence that we can estimate these 

height indices from spaceborne lidar as we have demonstrated in the above mentioned previous 
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work thus conclusions about height-biomass relationships reached using field data should be 

equally valid for height metrics derived from lidar. The idea is that the height-biomass relationship 

derived here can be taken and used in areas that have ICESat-GLAS footprints or any future large 

footprint spaceborne lidar satellite data in a global/larger scale effort.  

 

Small scale studies have used discrete return lidar data to calculate canopy cover (Colgan et al., 

2012; Colgan et al., 2013; Nyström et al., 2012). However with our aim of using more affordable 

and globally available data sets, we opted for a proxy of canopy cover derivable from Landsat 

TM imagery. Previous studies have demonstrated a strong relationship between Normalized 

Difference Vegetation Index (NDVI) and canopy cover (Gamon et al., 1995; Todd & Hoffer, 

1998). To confirm this relationship in our study side we compared NDVI derived from Landsat 

TM imagery to canopy cover derived from discrete return lidar data. In the study site, trees green 

up in summer, while grasses are gray/dead so a summer image was most ideal for computing 

NDVI to be used as an indicator of tree crown cover. A July 27, 2011 Landsat 5 TM image was 

acquired from the United States Geological Survey (USGS) distribution site 

(http://glovis.usgs.gov/). Atmospheric correction was done using the Quick Atmospheric 

Correction (QUAC) module of the Environment for Visualizing Images (ENVI) software 

(Bernstein et al., 2005). We then computed NDVI on the atmospherically corrected image, 

resampled to 50 m to match the plot size. Canopy cover was found to be significantly correlated 

to NDVI (p<0.001; r2 = 0.65, see Figure 3.2) derived from the 2011 Landsat TM image 

mentioned above. We therefore relied on this empirical relationship and used NDVI as a proxy 

for canopy cover in subsequent modeling.  

 

http://glovis.usgs.gov/
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2.3. Data Analysis 

The aim of this work was to derive composition-specific and global models to estimate biomass 

from canopy height for a plot comparable in size to the resolution of large footprint spaceborne 

lidar waveforms. We assigned each plot to one of the four main composition classes (blue oaks, 

black oaks, valley oaks and mixed) so as to investigate the potential loss of accuracy when 

generalized instead of composition-specific models are used. The Hierarchical Bayesian 

modeling involved the derivation of parameters at both the composition and global levels. The 

performance of the generalized model compared to the different composition-specific models 

was used as an indicator of how generalizable it can be. Such a detailed analysis at a scale where 

direct measurements are possible can develop principles to be used at regional to global scales 

where direct validation is difficult (Waring & Running, 2007). 

 

2.3.1. Frequentist generalized modeling 

We did simple least squares regression modeling to relate the field measurements of the height 

metrics to aboveground biomass at the plot level. We developed a global model for each height 

metric by fitting linear, power, exponential, logarithmic and polynomial equations to the data and 

picked the best for each (equations 4 - 7). The best model was determined by the training and 

leave-one-out cross validation R2 value (R. Kohavi, 1995) as well as the Root Mean Square Error 

and bias. We initially tested the relationship between maximum canopy height (Hmax) and 

aboveground biomass.  Next, we adjusted the model to include NDVI (as a surrogate for canopy 

cover) to account for differences in plot stem density. We tried both the model with single 

variables and one with interaction terms. The interaction terms did not significantly improve the 

model (additional terms were not significant at the α = 0.05 level and the adjusted R2 became 
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lower) therefore we dropped them. Finally we also tested two other models, one that estimated 

biomass from Lorey’s height (Hlorey) and another that used the 90th percentile height (H90). The 

final four models were: 

Y= a + bx2   where x = Hmax             (4) 

Y = a+ bx2 +cz  where x = Hmax; z =NDVI                                             (5) 

Y= a + bx   where x = Hlorey             (6) 

Y = a + bx   where x = H90              (7) 

For a better comparison with other studies, relative RMSE and bias were also calculated and 

reported as percentages of the mean observed biomass. We also partitioned the bias to determine 

if it was consistent at both low and high biomass plots. This was achieved by calculating the bias 

on plots below and above the median plot biomass and then comparing the two.  

 

2.3.2. Hierarchical Bayesian Analysis (HBA): Generalized vs composition-specific modeling 

We implemented a HBA to fit the four different models (equations 4-7), each to the same data 

set.  MCMC methods as implemented in the JAGS (Plummer, 2003) program within R were 

used to estimate the posterior distributions of each parameter. From each chain we obtained 1 

000 000 iterations (samples) after discarding the initial 200 000 as burn-in. Convergence of 

chains was assessed using the Heidelberger diagnostic tool within the “coda” package of R 

(Heidelberger & Welch 1983; Plummer et al. 2006). Since the 4 composition classes have 

different physical structures, both the intercepts and the slopes were varied and our JAGS model 

considered the possible correlation between the intercept and the slope of each model as 

explained by Gelman & Hill (2009, Chapter 17). We used objective (non-informative) priors 

since we didn’t have any previous similar work from which we could derive subjective priors. 
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Non-informative priors have minimal impact on the posterior distribution and are preferred as a 

more objective starting point when there is minimal or no knowledge about the prior conditions 

(Berger, 2006; Goldstein, 2006; Gelman & Hill, 2009). 

 

To compare composition-specific and global model parameters, we modeled composition-

specific parameters as coming from a global (overall) population that is defined by population 

level parameters: 

a Y,s ~ N(AY,2
AY) ; b Y,s~ N(BY,2

BY) ; c Y,s~ N(CY,2
CY)                                 (8) 

where a Y,s; b Y,s and c Y,s are composition-specific parameters and the variance terms 2
AY; 2

BY  

and 2
CY  describe the variability among the composition classes for the three parameters in the 

models to which they are applicable. We used posterior predictive checks to assess model 

goodness of fit for both composition-specific and global models. A posterior predictive check is 

a comparison between the replicated dataset as simulated from the model and the dataset that 

was used to estimate parameters (Gelman & Hill, 2009). We used a statistic from the replicated 

data (Trep) and an identical test statistic from the observed data (Tobs) to test for lack of fit by 

calculating PB, the probability that the replicated data is more extreme than the real data (Gelman 

& Hill, 2009; Hobbs et al. 2012). A PB value close to 0 or 1 indicates a failure of the distribution 

of simulated data to mimic the distribution of the observed data (lack of fit) and values close to 

0.5 indicate a strong fit (Gelman et al. 2004). PB was broken down into two, P
mean

B
 that measures 

the ability of the model to capture the mean tendency of the data and PB

var
 that measures the 

ability of the model to portray the variation in the data (Hobbs et al. 2012). We used equation 9 

and 10 to compute the test statistics for P
mean

B
 and PB

var
respectively 
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   Tobs =
N

Y
N

i

obs

i
1 ,     Trep=
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rep

i
1                                    (9) 
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


                                                       (10) 

where 
obs

iY  is the observed data, 
rep

iY  is the replicated data and i is the model estimation for 

biomass.  

 

To assess the generalizability of a model, we compared the parameters of each model among the 

four different composition classes by examining the overlap of their 95% Credible Intervals 

(CIs) and their mean values. Credible intervals are analogous to confidence intervals in 

frequentist statistics but they incorporate information from the prior distribution into the 

estimate.  A 95% credible interval will therefore be one in which given the data and the model, 

there is a 95% chance the unknown parameter lies in that interval (Robert, 2007). Additionally 

we calculated the densities of the differences in the posterior distributions of the composition-

specific and global parameters.  The distribution of the posterior densities of these differences 

among composition classes and between each composition class and the global value were then 

used as an indicator of the generalizability of the model. For two parameters being compared, a 

density distribution with a mean difference of zero means no difference while a distribution that 

does not capture zero at all means a complete difference. To aid in interpretation, we also 

calculated Pdiff, the two tailed probability that the difference between the values of two 

parameters being compared is greater than zero. If we are comparing a global parameter G and 3 

composition-specific parameters (Sp1, Sp2 and Sp3), as shown in figure 3.3, the Pdiff concerning 

Sp1 (50%) means there is a strong support for the use of the global parameter. The Pdiffs 
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concerning Sp2 and Sp3 are close to 0 and 100 percent respectively meaning there is a very weak 

support for the use of the global parameter. In this case, there is always a high probability that 

Sp2 is less than the global parameter and Sp3 is greater than the global parameter.  

 

3. Results 

3.1. Frequentist generalized modeling  

All four models gave good estimations of biomass, with the Hmax+NDVI model (equation 6) 

being the best (R2 = 0.75; RMSE = 30% of the mean), see Table 3.1. Overall, all the models had 

a mean bias of 0 Mg/Ha. However, using the median as a cut-off point to separate the 

observations into two groups showed that the bias was not random but all of the models had a 

tendency to overestimate the low biomass plots while underestimating the higher biomass plots. 

The magnitude of the relative bias was higher for low biomass plots than for high biomass plots 

mainly because of a higher number of low biomass plots characterizing this area.  

 

3.2. Bayesian modeling 

Posterior predictive checks for each model (equation 4-7), whether composition-specific or 

overall gave P
mean

B
 and PB

var
ranging from 0.43 to 0.58, meaning the models were not only 

capable of replicating the mean tendency of the data but they also replicated well the variability 

of the data.  The posterior distributions of the parameters for the 4 models are shown in figures 

3.4 – 3.7. Part A of the figures show the mean values for the parameters and the associated 95% 

credible intervals. Part B shows how these parameters differ between composition classes while 
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part C shows how the composition-specific parameters differ from the global parameters. There 

was a consistent pattern of intercept and slope values for each composition class. The valley oak 

class consistently had the highest values while the blue oak class consistently had the lowest. 

However, for all the models, the 95% CIs overlapped the mean values, and the composition-

specific mean values were not very different from the global mean values (especially for the Hmax 

+ NDVI model). This suggests that although composition-specific models would be more 

accurate, there is a high support for the use of global parameters as shown by the posterior 

differences curves with Pdiff values of mostly between 25 and 75 %, implying that the models are 

generalizable. This trend was however less pronounced for the Hmax model (equation 4) 

compared with the rest. 

 

4. Discussion and conclusions 

The heterogeneity associated with open canopy systems suggests the use of structure parameters 

that combine height and at least one gap fraction measure to reliably estimate volumetric 

attributes such as aboveground biomass. The importance of a canopy cover proxy demonstrated 

in this work is a confirmation of previous studies in savannas or other open canopy areas (Colgan 

et al., 2012; Nyström et al., 2012). Whereas those studies used canopy cover as derived by high 

density airborne discrete return lidar data, we used NDVI as a proxy so we could evaluate the 

utility of using data that we can easily obtain over larger scales from space. In our study area, 

trees and grasses green up in different seasons hence an image captured in the trees’ green season 

will be a good indication of tree cover. Most savannas, especially in northern temperate areas 

have this type of phenology which makes our method applicable to other areas. However, in 

areas where trees and grasses green up at the same time, this empirical relationship may not work 
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well. Where NDVI is not adequate, other indices that describe vegetation type can also be 

derived from passive optical remote sensing imagery and used to improve canopy height-

biomass modeling (Ni-Meister et al., 2010). Another alternative will be to use NDVI and texture 

to derive an index that identifies well the contribution of trees. 

 

Canopy cover information can also be incorporated using height metrics that consider stem 

density such as Lorey’s height or percentile height metrics. The 90th percentile canopy height and 

Lorey’s height allow the larger trees to contribute more to the mean (Naesset, 1997). Basal area 

or crown area defines the area of the stand that is occupied by trees. Larger stem or crown 

diameter trees contribute more to the total plot biomass thus the use of Lorey’s height in 

estimating biomass also takes advantage of this fact. The problem is that these metrics are not 

readily obtainable from spaceborne lidar data alone. There are models developed to derive 

Lorey’s height from spaceborne lidar waveforms but these are based on field plots from forest 

sites (Lefsky, 2010) and have been shown to reduce accuracy of biomass estimation even when 

applied to related forests (Mitchard et al., 2011). Although there are other several metrics 

previously derived and used e.g quadratic mean canopy height, height of median energy, canopy 

height profile, canopy volume method , vertical canopy profile (Lefsky et al. 1999; Means et al. 

1999; Drake et al. 2002; Boudreau et al. 2008), maximum canopy height is most easily defined 

in terms of geometry and more easily identified in lidar data, especially in regions with variable 

terrain and high slopes. Broadleaved savanna ecosystem trees mostly have flat and wide canopies 

therefore the probability of identifying the canopy top is always high as compared to for example 

coniferous forests with narrow canopy tips. Since maximum canopy height and NDVI performed 

as well as the more complicated height indices, the Hmax+NDVI model (Equation 5) would be 
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best for regional to global applications, provided the tree and grass NDVI contribution can be 

separated.  

 

Composition-specific parameters were distinctively different with the valley oak class 

consistently having the highest values while the blue oak class had the lowest. This was 

consistent with field observations that valley oaks have big stem and crown diameters therefore 

even a few trees in a valley oak plot would have wide spreading and interlocking braches, giving 

a high canopy cover and biomass from its crown compared to many small diameter trees in blue 

oak stands whose biomass is concentrated in the stems. Fitting a generalized model averaged out 

these differences. The distribution of the posterior densities of the differences between the 

composition level and global level parameter values coupled with the overlap of the parameters’ 

95% CIs and the mean values for the composition level and global level models show a universal 

applicability (generalizability) of the models. The higher differences between composition-

specific and global parameters for equation 4 are most likely to be a result of the fact that the 

model did not have any information on the horizontal structure of the plots. With the other 

models, NDVI (equation 5), basal area weighting (equation 6) and use of the 90th percentile 

height (equation 7) provided extra information about structure and hence adjusted the parameters 

accordingly when a generalized model is fit. Fitting a composition-specific model would be best 

for a local and homogeneous scale but in large scale studies, fitting nested composition-specific 

models within a large landscape is not practically meaningful.  

 

We recommend the use of the global parameters of the intercept and slope coefficients in large 

scale studies regardless of composition since the HBA results showed a logical generalizability 
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of the models. The narrow range of the distribution and the overlap of the CIs and mean values 

of the composition-specific and global parameters suggest that scaling rules do exist for 

savannas. This has also been demonstrated at tree level (Tredennick et al., 2013; Zapata-Cuartas 

et al., 2012). As Zapata-Cuartas et al., (2012) suggest, and from the results of our Bayesian 

analysis, we also conclude that the model parameters are better represented as probability 

distributions rather than as constant values. For small scale studies in sites that do not have local 

equations, this distribution can be applied as priors to develop new models.  
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5. Tables and Figures 

Table 3.1: Generalized frequentist regression modeling: leave one out cross validation results 

Model Goodness of fit statistics 

R2 RMSE Bias 

Absolute 

Mg/Ha 

Relative 

(%) 

Absolute, 

Below 

median 

(Mg/Ha) 

Relative, 

below 

median (%) 

Absolute, 

Above 

median 

(Mg/Ha) 

Relative, 

above 

median 

(%) 

Hmax 0.68 81.10 34 24.51 21 -20.60 6 

Hmax+NDVI 0.75 70.85 30 12.08 10 -9.01 3 

Hlorey 0.73 73.65 31 16.26 14 -15.18 4 

H90 0.71 77.11 33 14.56 12 -12.46 3 
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Figure 3.1: The high correlation between lidar derived and field measured maximum canopy height 
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Figure 3.2: Canopy cover-NDVI relationship in the 26 plots enumerated 
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Figure 3.3: Illustration of the posterior distribution differences used to assess model 

generalizability 
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Figure 3.4: Posterior predictive checks for the Hmax (equation 4) model 
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Figure 3.5: Posterior predictive checks for the Hmax + NDVI (equation 5) model 



64 

 

 

 

Figure 3.6: Posterior predictive checks for the Hlorey (equation 6) model  
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Figure 3.7: Posterior predictive checks for the H90 (equation 7) model  
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CHAPTER 4: SPATIAL MODELING OF LIDAR-DERIVED WOODY BIOMASS 

ESTIMATES COLLECTED ALONG TRANSECTS IN A HETEROGENEOUS SAVANNA 

LANDSCAPE3 

Synopsis 

Transects of lidar waveforms from the Ice Cloud and land Elevation Satellite’s Geoscience Laser 

Altimeter System (ICESat-GLAS) have shown a capability to estimate canopy height and 

footprint level aboveground biomass even in structurally complex savanna ecosystems. 

However, for decision making at the landscape level, wall-to-wall maps are preferred since they 

are more easily integrated with other geospatial data sources. In this work we employed a data 

fusion approach with deterministic and geostatistical methods to spatially map the variability of 

aboveground woody biomass across a 11 800 Ha Oak savanna landscape in Santa Clara county, 

California, USA. We evaluated and compared the utility of inverse distance weighting, 

cokriging, regression kriging and image segmentation methods to create a wall-to-wall map from 

footprint level biomass. The 4 methods estimated biomass at independent validation sites with 

between 39% (inverse distance weighting) and 66% (image segmentation) of variance explained 

and Root Mean Square Error of 42% and 32% of the mean respectively. Image segmentation 

results indicated that when more waveforms were available to characterize patch biomass, 78% 

of variance in biomass was explained (RMSE = 21% of the mean). Overall, the mean pixel 

biomass predicted by the 4 methods did not differ significantly but the output maps showed 

                                                 
3 David Gwenzi and Michael Andrew Lefsky, 2015 
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marked differences in the estimation precision and ability of each model to mimic the primary 

variable’s trend across the landscape. We conclude that ICESat-GLAS or similar transect-

sampling lidar data can be used to create wall-to-wall biomass maps in savannas but the methods 

work better with a higher sampling intensity and more informative correlated secondary data so 

as to reproduce the variability of the primary variable across the landscape. We recommend that 

future satellite lidar missions increase the sampling intensity across track so that biomass 

observations are made and characterized at the scale at which they vary.  

 

Key words: Savanna; woody biomass; deterministic model; spatial autocorrelation; geostatistics;  

image segmentation;  ICESat-GLAS 

 

1. Introduction 

Waveforms from the Ice Cloud and land Elevation Satellite’s Geoscience Laser Altimeter 

System (ICESat-GLAS) have shown a capability to estimate canopy height even in structurally 

complex savanna ecosystems (Gwenzi & Lefsky, 2014). This canopy height can be used to 

estimate plot (footprint) level biomass (Lefsky et al., 1999; 2005; Gwenzi & Lefsky, 2015). 

While transect data is sufficient for many scientific studies, wall-to-wall maps are preferred for 

decision making as they can be applied at all points on a landscape ( Turner, 1989; Levin, 1992). 

Spatial modeling methods are required to derive spatially continuous maps from transect based 

data such as that from ICESat-GLAS or future missions like the Global Ecosystem Dynamics 

Investigation (GEDI) lidar (http://eospso.gsfc.nasa.gov/mission-category/55). These kinds of 

maps can also be used to derive information about how wide scale gradients such as total 

http://eospso.gsfc.nasa.gov/mission-category/55
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precipitation and dry season length drive regional biomass distribution, and significantly improve 

our ability to estimate the carbon flux resulting from land-use change (Chambers et al., 2007).  

 

The utility of mapping aboveground biomass by fusing transect based lidar data and other data 

sources that have a complete horizontal coverage has been tried mostly in forests (Sales et al., 

2007; Boudreau et al., 2008; Nelson et al., 2009; Saatchi et al., 2011; Mitchard et al., 2012)  . 

The main approaches used have been 1) deterministic methods, 2) geostatistical methods and 3) 

image segmentation followed by regression analysis using proxies of remote sensing and other 

environmental covariates in distribution models. In the latter two approaches lidar data is used to 

capture the 3 dimensional structure of vegetation at plot level and other auxiliary data sources are 

used to provide a complete two dimensional coverage. The wall-to-wall output not only gives the 

mean or total quantities but also shows the variability of the biomass across the landscape under 

study. Commonly used auxiliary data include radar backscatter, spectral indices derived from 

optical passive remote sensing imagery and topography indices derived from digital elevation 

models (DEM).  

 

1.1. Deterministic methods 

This approach relies explicitly on the first “law” of geography (Tobler, 1970) which states that 

“everything is related to everything else, but near things are more related than distant things." 

Interpolation/extrapolation of field measured values to larger areas is done by employing 

methods such as moving average, tessellation and inverse distance weighting (IDW).  All of 

these methods are “deterministic” in the sense that there is no statistical estimation of parameters 

used in the method. Surfaces are created from measured points using mathematical functions, 
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based on either the extent of similarity or the degree of smoothing in the data. Deterministic 

methods are relatively fast since they use algorithms that require fewer assumptions and input 

parameters. The problem with these aforementioned methods is that they lack the explicit spatial 

information of the distribution of the concerned variable which can be addressed by the use of 

geostatistics.  

 

1.2. Geostatistical methods 

This group of methods involve decomposing the unknown value (z) at any location into a mean 

component (m) and a residual component (s). The variability of the mean component determines 

the method to use in the subsequent modeling (Goovaerts, 1997). If the mean is assumed to be 

constant (an unusual case), a stationarity based method known as ordinary kriging (OK) is the 

best to use. When the mean is spatially variable (the more common case), then it is modeled by 

expressing it as a function of auxiliary variables using non-stationary methods that belong to a 

group called hybrid geostatistical methods (McBratney et al., 2000). The auxiliary variables 

could be any that explain the distribution of the response variable of interest for example remote 

sensing derived vegetation spectral indices, soil type, forest type etc. for aboveground biomass. 

 

These hybrid geostatistical methods are classified into two main groups depending on the 

properties of the input data (Hengl et al., 2003). In the first (cokriging), estimates are made using 

the spatial correlation of the primary variable with itself, spatial correlation of a secondary wall-

to-wall variable with itself, and a “cross-correlogram” that describes the cross correlation 

between the primary and secondary variable. The second group is referred to variously as kriging 

with unknown mean, kriging with a trend model or kriging with external drift but at least 3 
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different approaches are recognized: 1) universal kriging (UK) where the trend is modeled as a 

function of coordinates, 2) kriging with external drift (KED) where the drift is defined externally 

by auxiliary variables instead of the coordinates and 3) regression kriging (RK) where the drift 

and residuals are fitted separately and then summed. 

 

1.3. Image segmentation 

This approach involves delineating patches within an image of the study area based on its 

spectral and/or textural qualities. After image segmentation, each of the resulting polygons is 

attributed with measures of centrality or spread (such as mean, range and standard deviation) of 

the auxiliary variable layers. These polygon statistics are then used as independent variables in 

modeling the biomass (Mitchard et al., 2012). For small scale studies and where financial 

resources are not limiting, high spectral and or spatial resolution data has been used to derive the 

covariates (Cho et al., 2011; Cho et al., 2012; Naidoo et al., 2012). This approach would be 

suitable for savannas also because high spectral resolution and high spatial resolution images 

will capture the irregularity of the vegetation that results from marked differences in biotic and 

abiotic factors such as topography, rainfall, herbivory and human impacts. Hyperspectral 

imagery is good in species discrimination while high spatial resolution imagery can clearly 

differentiate the tree and grass segments of the landscape at finer scales. However, for large 

extents, use of such data is at present prohibitively expensive to acquire and methods based on 

moderate to low resolution data that are freely available are more appropriate. At regional to 

global level other ecologically related layers such as ecoregion classifications can be used in 

attributing the polygons (M A. Lefsky, 2010; Mitchard et al., 2012) 
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Although generally more accurate, the geostatistical and image segmentation approaches are 

more sophisticated and the necessity of employing such complicated processes depends on the 

purpose of the modeling. The aim of this work was to use ICESat-GLAS footprint level biomass 

in combination with wall-to-wall remotely sensed data and topographically derived variables to 

estimate the woody biomass values at unsampled points and consequently its spatial distribution 

across the landscape. The secondary objective was to compare the accuracy of the 3 earlier 

mentioned groups of approaches for this kind of work to come up with recommendations for 

large extent and global mapping efforts. Our hypothesis was that these different approaches 

would give slightly different results but the intensive process of the geostatistics approach would 

give a more insightful solution that provides a better understanding of the ecosystem compared 

to the other two approaches. Where not specified, the word biomass in this paper refers to 

aboveground woody biomass as estimated in Gwenzi & Lefsky (2015). 

 

2. Materials and methods 

2.1. Study Site 

We used data from the same site and ICESat-GLAS footprints reported in our previous work 

(Gwenzi & Lefsky, 2014).  These are the Santa Clara Oak Savannas located in California, USA 

(Figure 4.1).  For details of the vegetation and terrain structure, we refer readers to the above 

mentioned paper. 
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2.2. Data 

2.2.1. Raster data 

A Landsat 5 TM image collected on 9 June, 2006 was acquired from the USGS distribution site 

(http://earthexplorer.usgs.gov/). We chose a scene from the summer since it is the time when 

trees green up and the year 2006 was chosen to match approximately with the time the ICESat-

GLAS waveforms and other lidar data used in Gwenzi & Lefsky (2014) were collected (2003-

2006). Atmospheric correction was done on the image using the Quick Atmospheric Correction 

(QUAC) module of the Environment for Visualizing Images (ENVI) software (Bernstein et al., 

2005).  For radar, we used the Phased Array type L- band Synthetic Aperture Radar (PALSAR) 

data collected by the Advanced Land Observing Satellite (ALOS). Two Level 4.1 scenes from 

June 2007 were obtained from the Japanese Space System’s integrated ASTER/PALSAR 

distribution site (https://ims.ersdac.jspacesystems.or.jp) and mosaicked. We could not find a 

2006 scene for our study site so we assumed that the vegetation changes within the 4 years range 

(2003-2007) of our data acquisition times would not significantly influence the results. Both the 

horizontal transmit, horizontal receive (HH) and horizontal transmit, vertical receive (HV) 

polarization data in sigma nought units were used for this work. The spatial resolution of remote 

sensing analyses should be equal to or at least not finer than the size of the field plots used to 

calibrate the remote sensing (Naesset, 2002; Gonzalez et al., 2010). Since most of our GLAS 

waveforms were from laser 3 observation period with a nominal footprint diameter of 55 m, we 

did our analyses at the 55 m pixel size and resampled all the remote sensing data accordingly. A 

Shuttle Radar Topography Mission DEM was obtained from the above mentioned USGS site. 

From the DEM we obtained 3 topography related variables i.e. absolute elevation in meters, 

slope in percent and aspect in degrees.  

http://earthexplorer.usgs.gov/
https://ims.ersdac.jspacesystems.or.jp/
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2.2.2. Footprint level biomass 

We calculated footprint level biomass using the model developed for canopy height-biomass 

modeling in our previous work (Gwenzi & Lefsky, 2015) in a nearby oak savanna site, the Tejon 

ranch conservancy in Kern County, California. For each footprint, biomass was calculated in 

Mg/Ha units as a function of maximum canopy height and NDVI using the following model:  

Biomass = 0.29 H
2

max
+ 1.02NDVI – 41.11                       (1) 

where Hmax is the footprint’s maximum canopy height computed from  lidar data and NDVI is a 

measure of greenness scaled from 0 to 255 computed from Landsat TM image’s Red and Near 

Infrared bands’ reflectance values. For all the mapping methods, the data set was split into 

training (2/3) validation (1/3) datasets.  

 

2.3. Spatial autocorrelation analysis 

The spatial autocorrelation statistical formulas described in this section are presented in Reich  

(2008). Geographic coordinates of the GLAS waveforms were used to determine the inverse 

distance between points in computing a spatial weight matrix that was used in equation 2 below 

to calculate Moran’s I. The weights were calculated in distance lags of 500 m and then rescaled 

from 0 to 1 such that when points i and j are closest to each other they had the highest weight (1), 

which decreases to near zero when they are furthest from each other but still within 500 m, and 

eventually zero if they are more than 500 m apart. The Moran’s I values were then plotted 

against distance to give a correlogram that shows how the spatial autocorrelation of biomass 

changes with distance. Moran’s I was calculated using equation: 
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                                               (2) 

where d is the distance class, wij(d) is the weight at distance d, W(d) is the sum of all the weights 

at distance d , and . The information from the correlogram was then 

used to decide on default lag distances to use in computing semi-variograms (section 2.5.2) 

 

2.4. Mapping Methods 

2.4.1. Deterministic Approach 

The inverse distance weighting (IDW) method was chosen to represent this group. IDW 

interpolates by using the average of weighted observational data points within a given search 

radius based on the inverse distance from the estimation point (Dirks et al., 1998). The distance 

is raised to some power based on minimum error and in this work we used a power of 2 as 

recommended by literature (Kruizinga & Yperlaan, 1978; Dirks et al., 1998). Equation 3 shows 

the IDW model. The number of nearest neighbors and search radius used in IDW were based on 

the results of the spatial correlation analysis explained in section 2.3 above.  

               (3) 

where Pest is the estimation for the unsampled point, di is the distance of that point to a sampled 

point i within the search radius and whose value is Pi, n is the number of points in the search 

radius  
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2.5. Geostatistical approach 

2.5.1. Cokriging 

In cokriging, estimates are made using the spatial correlation of the primary variable (biomass) 

with itself, the spatial correlation of the secondary wall-to-wall variable (radar backscatter in this 

case) with itself, and a cross-correlogram that describes the cross-correlation between the 

primary and secondary variable.  The HV layer was selected since it was the one with the highest 

correlation to the biomass point data (r = 0.72).  The spatial dependence is calculated by treating 

Moran’s I as a special case of the cross-correlation statistic: 

                                                                                      (4) 

where wij is a scalar that quantifies the degree of spatial association or proximity between 

locations i and j , W is the sum of all n2 values of wij, Var(y) is the sample variance of yi, and 

Var(z) is the sample variance of zi. 

The cross-correlation statistic simultaneously tests the following hypotheses: a) Is variable y 

spatially correlated? b) Is variable z spatially correlated? c) Are variables y and z spatially cross-

correlated? If yi = zi the cross-correlation statistic is equivalent to Moran’s I. Table 4.1a shows 

the linear relationship between biomass and backscatter HV and Figure 4.2 shows the cross-

correlogram computed by the above formula.  

 

2.5.2. Regression Kriging 

Regression kriging involves fitting a linear model to the data to identify the variables that 

significantly explain the large scale trend (trend surface) of the dependent variable and then 
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separately modeling the resulting residuals. This method requires that the predictors must be: 1) 

available at every sample point and 2) linearly related to the response variable (Hengl et al., 

2003). After fitting the large scale trend model, the residuals are analyzed for spatial 

autocorrelation. If the residuals are not spatially autocorrelated then it means the variability in 

the mean component of the data is explained by large scale trends only. If they are spatially 

autocorrelated then it means there is a local spatial dependency that is not explained by the large 

scale trend. If the residuals are approximately normally distributed they can then be spatially 

modeled by OK. The residuals kriging layer added to the trend surface will give a distribution of 

the response variable of interest across the concerned landscape. 

 

An Ordinary Least Squares (OLS) model was fit to relate the footprint biomass to 5 variables: 

radar backscatter HV polarization (HV), radar backscatter HH polarization (HH), elevation, 

terrain aspect and slope (results shown in table 4.1b). The residuals were checked for conformity 

to kriging requirements (normal distribution, presence of spatial autocorrelation and stationarity) 

by means of calculating Morani’s I and examining their histogram and qq plots. As Figure 4.3 

shows, the residuals satisfied the ordinary kriging requirements.   

 

The OLS model was then used to develop the trend surface and the spatial structure of the 

residuals was modeled using OK. To accomplish this, semi-variograms were computed to 

determine the kriging parameters to use. We computed the semi-variance (𝛾(ℎ) ) from distance 0 

to 10 000 m using equation 5 and then divided the distance range into 20 equal lags to show the 

semi-variogram as a plot of the median semi-variance of each class (y-axis) against the center of 

each distance class (x-axis).  
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                𝛾(ℎ) =  
1

2𝑛(ℎ)
∑ (𝑧𝑖−(𝑖𝑗|ℎ𝑖𝑗 =ℎ) 𝑧𝑗) 2                          (5) 

where h is the distance separating sample locations i and j, zi is the variable of interest at location 

i and n(h) is the number of data pairs separated by distance h. 

 

We checked for anisotropy (the directional tendency of spatial autocorrelation) by calculating 

and plotting semi-variograms of the residuals in 3 directions (0, 45 and 90 degrees) and 

compared these with the omnidirectional semi-variogram (Figure 4.4). The range and sill values 

for all four semi-variograms were approximately the same, suggesting there was no anisotropy in 

the residuals. This means the trend surface model had captured the large scale variability so 

isotropic models could be used in kriging the residuals. In plotting the semi-variograms, we tried 

the Gaussian, spherical, and exponential models (equations 6-8) and then selected one that fit the 

data best. Some studies use the AIC values of the models to determine the best one to use but in 

our case the AIC values were not very different so we instead used a cross validation approach to 

determine the Mean Squared Error of Prediction (MSEP) associated with each model and 

selected the best model as the one that had the lowest MSEP values. An advantage of this cross 

validation method is that its output can also be used to determine the optimum number of nearest 

neighbors to use in the interpolation. This means that during kriging, the search range will not be 

fixed but varies according to the distribution of the nearest neighbors, a more reasonable 

approach for sample data that is not uniformly stratified. The exponential model was the best in 

terms of this criterion (Table 4.2). After modeling the spatial structure of the residuals, the output 

raster was added to the trend surface to obtain the final estimation map. 
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where for all models, the parameter a is the range, h is the distance lag and c0+c1 is the sill of the 

semi-variogram. When h > a, 𝛾(ℎ) =  𝑐0 +  𝑐1.   

 

2.6. Image Segmentation Approach 

Image segmentation involves partitioning image pixels into multiple patches (objects/segments) 

that have similar characteristics such as color, intensity or texture. Definiens Developer 

(Definiens, 2007) software was chosen for image segmentation due to its record of success for 

natural resources applications (van Aardt, Wynne, & Scrivani, 2008). Definiens builds objects in 

a bottom-up procedure that starts from seed pixels which are then merged into polygons, which 

are further merged until user supplied spectral and spatial heterogeneity criteria is met (Benz et 

al., 2004; Definiens, 2007). We used two of the software’s main algorithms in a hierarchical 

manner. We first segmented the image using the contrast split algorithm and then did a 

multiresolution segmentation on the result.  The contrast split algorithm segments an image or 

image objects into dark and bright regions. This gave a first cut distinction between high tree 

density, moderate tree density, grass and bare areas. The multiresolution algorithm is an 

optimization procedure which identifies single image objects and merges them with their 
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neighbors, based on relative homogeneity criteria. The segmentation is controlled by the main 

heterogeneity criteria of color and shape and a scale parameter, which defines the maximum 

allowable heterogeneity of the objects. This further split the objects created in stage one (contrast 

split) using an equal weight for color and shape and a scale factor of 20, a combination that 

optimized the quality of the segmentation as determined by visual inspection. 

 

Patches that were coincident with one or more ICESat-GLAS footprints were randomly split into 

training (two thirds) and test (the other third) datasets. Within each patch we calculated the 

average biomass as well as statistics (mean and standard deviation) describing the independent 

variables (HV, HH, elevation, slope and aspect). The training data set was used to develop 

models whose results are shown in Table 4.1c. The first was an OLS model generated to relate 

average patch biomass to the statistics of the independent variables. Estimates made between 

adjacent patches are expected to have a positive covariance (autocorrelation). To investigate this 

we created a binary spatial weight matrix where a weight of 1 was assigned to adjacent patches 

and 0 for non-adjacent patches and calculated Moran’s I for the residuals of the OLS model. 

Since the residuals were significantly (p<0.05) spatially autocorrelated, we accounted for spatial 

autocorrelation by also doing the estimation using a second model, which is a spatial 

autoregressive error (SAR) model (Anselin &Bera, 1998; Reich, 2008). The model used was: 

                           (9) 

where Y is the response variable, X is a vector of the independent variables,   is a vector of the 

regression coefficients, I is an identity matrix,  is spatial autoregressive coefficient, W is a 

spatial weight matrix and is an independent error term. 

 1)(  WIXY


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The SAR model is defined by adding a spatial structure term to the OLS model's residuals thus 

partitioning the error term into a spatial structure residual and a random residual. The cause of 

the residual autocorrelation is typically assumed to arise from the exclusion of an unobserved 

endogenous spatially structured covariate, that were it measured would explain the spatial 

autocorrelation in the residuals. This model therefore controls for the effect of correlated errors 

arising from an inherently spatial process or spatial autocorrelation in the measurement errors of 

the variables in the model (Anselin & Bera, 1998). We then used the OLS and the SAR models 

separately to estimate the average biomass for every other patch in the whole landscape.  

 

In Figure 4.7 we present the results for both the SAR and OLS models but we used only the SAR 

model for every other subsequent analysis (including the production of the final estimation map) 

since it had better results. We also investigated the effect of lidar sampling intensity on the 

results of the image segmentation method. Firstly we compared the validation residual for each 

patch to the number of footprints in that patch and found out that patches with fewer footprints 

tended to have higher residuals. We then developed the estimation model separately for 3 main 

groups of patches according to the number of coincident footprints i.e. group one with only one 

footprint, group two with 2 or more footprints and group three with 3 or more footprints. There 

were 223 patches overall and 82 of these had at least 2 footprints so we split them into 55 for 

training and 27 for validation. However, there were only 34 patches with 3 or more footprints 

thus splitting them into training and validation sets would result in a very low sample size so we 

only used a 10 fold cross validation approach for this group (Kohavi, 1995). In addition to using 

an independent validation set, we also did a 10 fold cross validation for the other 2 groups for 

comparison purposes.  
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2.7. Validation of the output maps 

The validation data set mentioned in the sections above were used to determine how at a point 

with known value, the estimation from interpolation by each method departed from the observed 

value. We extracted the predicted biomass values from the output layer of each method and 

correlated them with the observed values. The R2 and RMSE statistics were then used to 

determine the level of accuracy. The validation was therefore at the footprint level for IDW, 

cokriging and RK and at both the footprint and patch level for the image segmentation approach.  

 

2.8. Final biomass distribution maps  

To minimize edge effects we did the analysis on raster layers at an extent (Figure 4.1) greater 

than the study area boundary and then extracted the focal study site results from the output 

(Wickham et al., 2008).  Due to the use of many remote sensing independent variables, 

impossible results such as negative biomass values are expected from some few pixels. To avoid 

these unreasonable results, we truncated every negative biomass value to 0. The study area also 

has a few non-vegetation areas (mainly roads and buildings). It would have been ideal to mask 

these out but they are relatively very small and doing so would have introduced many more 

edges and hence increase edge related errors. If necessary, analysis can be done on the full extent 

like we did and then mask out these small patchy non-vegetation areas in the very end. To 

determine the total study site biomass predicted by each method, we calculated each pixel’s 

absolute biomass value by multiplying the Mg/Ha value by 0.3025 (the pixel area in Ha) and 

then summed up all pixel biomass values. To compare these total biomass values per method we 

divided the processing extent into 32 regular blocks (Figure 4.1) and used them as replicates. We  
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then calculated the total biomass of each block as predicted by each method and used a one way 

analysis of variance (ANOVA) to compare the means.  

 

3. Results 

3.1. Spatial Autocorrelation 

Overall there was a significant (p < 0.001) positive spatial autocorrelation in the footprint 

biomass data. The spatial autocorrelation started off very high at small distance lags and 

decreased to zero around 1500 m, after which it fluctuated randomly and at very low positive and 

negative values (Figure 4.5).  

 

3.2. Biomass estimation and the resulting maps 

The study site estimation maps produced by each method are shown in Figure 4.6. One way 

analysis of variance showed that there was no significant difference (p > 0.05) among the total 

biomass values predicted by the 4 methods at the = 0.05 level. The distribution of biomass (as 

determined using the 32 comparison blocks) was similar among these methods (Table 4.3).  

Figure 4.7 shows the validation plots and statistics for each method.  Overall, the IDW and 

cokriging methods were poor at reproducing the structure (distribution) of the primary variable 

across the landscape. IDW was worse as it gave an over-smoothed distribution while 

concentrating the gradient only on areas close to the observation points. These two methods also 

tended to heavily underestimate the primary variable on the high biomass plots. Regression 

kriging and the image segmentation methods gave estimation surfaces that better visually 

resembled the distribution of the primary variable. This suggests that regression kriging and 
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image segmentation approaches are better than IDW and cokriging since they had a higher 

accuracy (as measured by R2 and RMSE values) and a better ability to reproduce the spatial 

variability of the primary variable. 

 

For the image segmentation approach, the estimation accuracy was dependent on the number of 

footprints coincident with each patch as shown by Figure 4.8. Estimation error was lower for 

patches that had a higher number of coincident footprints as evidenced by the residuals of each 

patch being significantly negatively correlated to the number of footprints (p = 0.04, r= 0.25, 

Figure  4.8b).   

 

4. Discussion 

The spatial autocorrelation range of ~ 1500 m provides a reference point to guide spatial 

sampling in this landscape. Any transect sampling approach will be improved when there are 

enough transects so that an adequate number of points fall in the search radius of an interpolation 

method. GLAS sampling is high along track, with footprints separated by ~ 172 m  but the 

spacing between ascending and descending tracks in a single orbit is in km, varying with latitude 

(Abdalati et al., 2010).  Spatial sampling in heterogeneous ecosystems like savannas would be 

ideal if it is sufficiently dense so that trends can be characterized on the scales at which they 

vary. The wide across track separation of GLAS footprints has resulted in large scale studies that 

resort to averaging of observations to the land cover type/ patch level ( Boudreau et al., 2008; 

Lefsky, 2010; Nelson et al., 2009; Mitchard et al., 2012). This results in some smaller/local scale 

trends going unnoticed as they are masked by the larger trends captured by the scale at which 

observations are made. In spite of our good results, better sampling densities are recommended 
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for future spaceborne platforms. In this context we conclude that NASA’s GEDI mission will be 

successful for landscapes of this type. GEDI will sample all the land between 50° North and 

South latitudes using 3 High Output Maximum Efficiency Resonator (HOMER) lasers, whose 

beams will be divided into 14 parallel tracks of 25 m contiguous footprints on the ground 

(Stysley et al., 2015). With a track separation of 500 m, one swath will cover about 6.5 km, a 

configuration dense enough to fulfill the spatial autocorrelation conditions we identified in this 

work.   

 

The non-significant difference in the total landscape biomass predicted by the 4 methods 

suggests that the pros and cons for each method must be based on other factors. IDW requires 

fewer assumptions and input parameters and the algorithm is fairly quick hence when 

interpolation is just needed for a quick rough picture on which to base secondary objectives, it 

would be adequate. When there are no predictor variables that significantly explain the global 

trend, the distribution can be treated as heavily dependent on distance only and hence IDW will 

be most appropriate.  Likewise when one has a very high density of sample points and the global 

(landscape) mean is of primary importance, IDW would be acceptable. In this case high accurate 

(densely sampled) areas can compensate for low accuracy areas while areas of overestimation 

can cancel out some areas of underestimation. The failure of the IDW method to portray the 

actual pattern of landscape biomass makes it less ideal when the local mean is preferred more to 

the global mean. The “bull’s-eye” effect around data points and oversmoothing of unsampled 

areas make IDW inappropriate for mapping biomass as a determinant of flow based ecosystem 

services such as water flow, habitat availability and associated ecological phenomenon like 

herbivory and fire.  



90 

 

Cokriging and RK exploit the correlation of the primary variable to at least one covariate hence 

their estimation maps are better at mimicking the primary variable’s trend in the landscape. The 

portrayal of the landscape is important for management purposes. With the results, not only can 

we explain the landscape in terms of the mapped process, but also in terms of what influences it, 

which is important for making decisions about issues like selective logging or restorative 

management since priority areas can be singled out. Visual inspection of the biomass maps 

indicate that the RK estimation map better represents the landscape pattern of biomass than does 

the cokriging map. This is mainly because the cokriging analysis used only one covariate, i.e. 

radar backscatter HV while RK used 4 (radar backscatter HV and HH, slope and aspect). 

 

It is important to note that the furthest western part of the study area is outside the spatial 

autocorrelation range of 1500 m from the nearest observation point so the RK results in that part 

are only based on the trend surface model and not the residuals’ kriging surface. This does not 

affect our cross validation results because they are based on observations from the adequately 

sampled area. Slope and aspect are bio-geographically very important variables in rugged terrain 

since vegetation distribution and growth depend on sun angle and elevation (Day & Monk, 1974; 

O’loughlin, 1981). Aboveground biomass in savannas has been found to be highly sensitive to 

topographic factors such as absolute or relative elevation, especially when considered at a 

landscape level (Colgan et al., 2012). Cokriging and RK are also better for understanding 

purposes as they offer relatively more information than IDW. The semi variogram or cross 

correlogram analysis required for obtaining mapping parameters provide interpretive values 

beyond the methods’ role in interpolation and explain well the nature, intensity and extent of the 

spatial distribution of the data, which deterministic methods like IDW cannot. These detailed 
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trend analyses are important in savannas since the vegetation is highly irregular in canopy and 

crown shape, height and other structural dimensions, showing inter and even intra-species 

spectral variability due to natural differences in topography, rainfall, herbivory and human 

impacts (Naidoo et al., 2012). 

 

The demonstration of the accuracy of the image segmentation approach relies on the presence of 

sufficient footprints to adequately characterize each patch. The use of the average value as the 

sampling unit has a problem of smoothing variability but this may be acceptable when larger 

scale trends are of particular interest. At regional to global scales, even other functional 

characteristics based data sources such as land cover maps and ecoregion types can be used as in 

related forest based studies (Boudreau et al., 2008; Nelson et al., 2009; Lefsky, 2010). In a 

savanna study Colgan et al. (2012) also pointed out the importance of edaphic factors at smaller 

scales. The key point is that the observation unit to use will depend on the scale and purpose of 

modelling. 

 

At very small scales, other high resolution data can be used to further segment the image to finer 

resolutions than we did in this work. Discrete return lidar data is commonly used either in 

identifying patches, or providing more covariates to use in training the mapping models 

(Antonarakis, Richards, & Brasington, 2008; Arroyo, Johansen, Armston, & Phinn, 2010; van 

Aardt et al., 2008). At moderate to large scale work like ours, other studies like Mitchard et al. 

(2012) have used the Radar Forest Degradation Index (RFDI) to classify the study site into 

different patches based on vegetation type. We tried this index but it was not significantly 

(P>0.05) correlated to biomass, probably because our landscape was not as diverse as theirs 
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which ranged from very dense tropical forests to very open savannas. The reduced estimation 

error associated with patches that had a higher number of footprints suggests that the relatively 

high spatial density of observations for missions such as GEDI will be a successful strategy for 

reducing uncertainty in biomass estimates.  

 

The differences in the distribution of biomass obtained by the 4 methods are mostly a result of 

the models’ different capabilities to utilize secondary variables. IDW simply uses the sampled 

points’ values and the Euclidean distance between them thus estimates at points farther away 

from the sample data become blocky. Moreover, if only non-zero biomass plots are used in 

mapping, the method cannot capture and isolate zero biomass areas like water bodies. On the 

other hand the secondary variables (e.g radar backscatter) used in a method like RK can isolate 

such areas. If the patch delineation method is accurate enough, the image segmentation method 

can also isolate these areas. This was demonstrated in this work where the IDW and cokriging 

estimation maps could not show the small water body in the southwestern quadrant of the study 

area that can be clearly seen in Figure 4.1. Regression kriging and image segmentation methods 

managed to capture and isolate this water body as seen in Figure 4.6.  The regression kriging’s 

output map looks fuzzier than that of the image segmentation method most probably due to the 

different grain/resolution in the data used by the two approaches. RK’s estimation was done at 

the pixel level (finer resolution) while image segmentation was at the patch level. As a result, 

rare or small objects are lost as grain becomes coarser, especially if they are dispersed (Turner et 

al., 1989; Levin, 1992; Qi & Wu, 1996).  
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The validation plots (Figure 4.7) clearly show that IDW and cokriging underestimate the higher 

biomass areas. Holding other factors constant, this would mean that the total landscape biomass 

predicted by these two methods would be much lower than that of the other two methods. 

However, this was not the case in our results, most probably because the former methods 

compensated for this by overpredicting those zero and low biomass areas as explained above, 

resulting in the uncertainties canceling out. We cannot tell conclusively why the image 

segmentation method predicted the highest (although not significantly) biomass values among all 

the other methods but our speculation is that it may have resulted from the edge effects 

associated with using numerous objects (patches) as polygons. It is more likely that the image 

segmentation approach generally overestimated the biomass in some areas since our sample 

plots’ mean biomass is much lower (112 Mg/Ha) and literature has shown that the average 

biomass in this type of ecosystem is less than 120 Mg/Ha (Battles et al., 2008). The higher 

correlation between predicted and observed biomass and lower RSME associated with the image 

segmentation method at the patch level is partly due to the fact that variability was reduced by 

means of using the average patch value as the smallest unit. However, the image segmentation 

approach still gave the best results even when validation was done at the footprint level (figure 

4.7). 

 

5. Conclusions 

Our work has demonstrated the use of ICESat-GLAS to create wall-to-wall biomass maps in 

savannas, and the results are likely to be applicable to other waveform lidar remote sensing 

missions. Biomass estimates would likely be much improved if the sampling intensity is 

increased so that biomass measurements are optimally sampled and landscape patches are better 
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characterized. The mapping methods work better if they are more informed by correlated 

secondary variables so as to reproduce the variability of the primary variable across the 

landscape. Building on these results, increased sampling intensity and improved methods with 

future missions will increase our confidence in change detection studies related to landscape 

level biomass and the associated ecological functionalities.  
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6. Tables and figures 

 

 

Figure 4.1: Map showing Landsat TM false color (432) image, study area extent and location of 

ICESat-GLAS footprints used as plots in this work.  
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Figure 4.2: Cokriging cross-correlogram  
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Figure 4.3: Diagnostic plots of the trend surface OLS model’s residuals. Morani’s I = 0.04, p 

value = 0.000961 
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Figure 4.4: Semi-variograms for the OLS model residuals with an exponential model (equation 

8) curve fit  
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Figure 4.5: Correlogram showing how the spatial autocorrelation of biomass varies with distance 
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Figure 4.6: Estimation maps of the 4 methods used in interpolation 
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Figure 4.7: Validation plots and statistics for the 4 methods used in interpolation  
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Figure 4.8: Relationship between estimation error and number of coincident footprints. A: 

independent validation using all patches, B: correlation of absolute residual and number of 

footprints in patch, C: independent validation using only patches with 2 or more footprints, D: a 

10 fold cross validation using all patches, E: a 10 fold cross validation using only patches with 2 

or more footprints, F: a 10 fold cross validation using only patches with 3 or more footprints. 
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Table 4.1: Intermediate regression model results 

Method Model type Model parameters Model 

R2 value Variable Coefficient p value 

a. Cokriging  Linear model of footprint 

level biomass as a function 

of the highest correlated 

auxiliary data layer 

Intercept 56.23 <0.0001 0.52 

HV 5866.83 <0.0001 

b. Regression     

Kriging  

OLS for trend surface Intercept 53.81 <0.0001 0.57 

HV 4620.84 <0.0001 

Aspect -0.11 <0.0001 

HH 211.88 0.0011 

Slope 0.89 0.0076 

c. Image 

segmentation 

SAR for patch level 

biomass 

Intercept 64.43 <0.0001 0.78 

Mean HV 6252.95 <0.0001 

Mean slope 3.64 <0.0001 

HH std -142.49  0.0001 

Mean aspect -0.10 0.0062 

HV std -2542.21 0.0404 

OLS for patch level 

biomass 

Intercept 18.81 0.0424 0.69 

Mean HV 9318.10 <0.0001 

Mean HH -503.62 <0.0001 

Mean slope 5.03 <0.0001 

Mean aspect -0.09 0.0317 
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Table 4.2: Semi-variogram statistics for the models fit to the regression kriging trend surface 

residuals 

 

Model Nugget Range  Sill AIC MSEP range 

Exponential 0.05 1203.56 1573.98 250.55 1799.55 – 2027.20 

Gaussian 0.86 1104.65 1539.33 249.39 2750.65 – 3088.31 

Spherical 0.21 1325.47 1538.87 249.55 1981.68 – 2309.33 

 

Table 4.3: Study site biomass estimations by the 4 methods  

Estimation Method Study site mean pixel biomass 

(Mg/Ha) 

Total Study site 

biomass (Tg) 

Inverse distance weighting 119 1.40 

Cokriging 117 1.39 

Regression kriging 118 1.39 

Image segmentation 121 1.43 
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CHAPTER 5: PROSPECTS OF PHOTON COUNTING LIDAR FOR SAVANNA 

ECOSYSTEM STRUCTURAL STUDIES4 

Synopsis 

The next planned spaceborne lidar mission is the Ice, Cloud and land Elevation Satellite 2 

(ICESat-2), which will use the Advanced Topographic Laser Altimeter System (ATLAS) sensor, 

a photon counting technique. To pre-validate the capability of this mission for studying three 

dimensional vegetation structure in savannas, we assessed the potential of the measurement 

approach to estimate canopy height in a savanna landscape. We used data from the Multiple 

Altimeter Beam Experimental Lidar (MABEL), an airborne photon counting lidar sensor 

developed by NASA’s Goddard Space Flight Center. ATLAS-like data was generated using the 

MATLAS simulator, which adjusts MABEL data's detected number of signal and noise photons 

to that expected from the ATLAS instrument. Transects flown over the Tejon ranch conservancy 

in Kern County, California, USA were used for this work. For each transect we chose to use data 

from the near infrared channel that had the highest number of photons. We segmented each 

transect into 50 m, 25 m and 14 m long blocks and aggregated the photons in each block into a 

histogram based on their elevation values. We then used an automated algorithm to identify cut 

off points where the cumulative density of photons from the highest elevation indicates the 

presence of the canopy top and likewise where such cumulative density from the lowest 

elevation indicates the presence of the mean terrain elevation. MABEL derived height metrics 

                                                 
4 David Gwenzi, Michael Andrew Lefsky, David Harding, Vijay Suchdeo, 2015 

  In preparation 
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were moderately correlated to DRL derived height metrics (r2 and RMSE values ranging from 

0.60 to 0.73 and 2.9 m to 4.4 m respectively) but MATLAS simulation resulted in more modest 

correlations with DRL indices (r2 ranging from 0.4 – 0.64 and RMSE from 3.6 m to 5.2 m). 

Simulations also indicated that the number of signal photons will be substantially lower and this 

reduced canopy height estimation precision especially in areas of low density vegetation cover. 

On the basis of the simulated data, there is reason to believe that the ability of ICESat-2 to 

estimate height will be similar or worse than the original ICESat mission. 

 

Key Words: Photon counting lidar, ICESat-2, MABEL, MATLAS, Savanna, Canopy height 

 

1. Introduction 

Lidar remote sensing provides a means to directly estimate the three dimensional biophysical 

parameters of vegetation using the physical interactions of an emitted laser pulse with the 

vegetation structure being illuminated. In ecology, one widely demonstrated application of lidar 

has been the estimation of canopy height which is in turn related to aboveground woody 

biomass, an important quantity in monitoring the dynamics and storage of carbon in vegetation. 

Due to their small spatial coverage and high acquisition costs, small footprint discrete return 

lidar (DRL) systems are ideally useful for small extents. For the opposite reasons, spaceborne 

large footprint waveform lidar systems have been the primary source of data for studies of larger 

extents (Hall et al., 2011). The Geoscience Laser Altimeter System (GLAS) aboard the Ice, 

Cloud and land Elevation Satellite (ICESat), was a spaceborne lidar sensor that provided 

waveform data and demonstrated a capability to estimate canopy height in various ecosystems ( 

Lefsky et al., 2007; Duncanson et al., 2010; Lefsky, 2010; Xing et al., 2010; Simard et al., 2011; 
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Gwenzi & Lefsky, 2014). ICESat was decommissioned in 2010 and the earliest planned future 

mission is its successor, ICESat-2, which will use the Advanced Topography Laser Altimeter 

System (ATLAS). 

 

Unlike GLAS, that used a full waveform recording technique, ATLAS will use a single photon 

counting technique. A single photon counting lidar (SPL) system fires thousands of laser pulses 

per second and records the travel time of individual photons that are reflected back to the sensor. 

The photons’ time of arrival and the instrument’s Global Positioning System (GPS) and Inertial 

Measurement Unit (IMU) orientation are used to calculate the distance the light travelled and 

hence the elevation of the surface below. The high level of sensitivity of a SPL at low energy 

expenditure promises extended laser lifetimes and makes it possible to fly at higher altitudes, 

thus providing larger coverage. The plan for ATLAS is to use a single pulse at 532 nm 

wavelength which will be split into 6 transmit beams arranged in 3 pairs. The configuration will 

give a distance of 3.3 km between each pair with a 90 m separation between the members of 

each pair. Using a 10 kHz repetition rate at an altitude of ~500 km will produce overlapping 

footprints of nominally 14 m diameter at 70 cm intervals along track (Abdalati et al., 2010). The 

location of the ICESat-2 footprint will be known but the origin of the recorded photons within 

the footprint will be unknown (Rosette et al., 2011). The primary objective of ICESat-2 will be 

the quantification of ice sheets and sea ice but as with ICESat-GLAS, vegetation height retrieval 

for biomass assessment is a science objective, although not a mission requirement. 

 

The Multiple Altimeter Beam Experimental Lidar (MABEL) is an airborne simulator of ATLAS 

that was developed by NASA’s Goddard Space Flight Center to pre-validate the ICESat-2 
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mission. MABEL flights were carried out on NASA’s ER-2, a high altitude aircraft 

(http://www.nasa.gov/centers/armstrong/aircraft/ER-2/index.html). The sensor uses laser pulses 

in the red (532 nm, obtained by a frequency doubler) and near infrared (1064 nm) wavelengths at 

a variable repetition rate of 5-25 kHz. Typically, it uses a 10 kHz repetition rate and laser pulse 

length of 2 ns. At the platform’s nominal speed of 200 ms-1, a pulse is will be emitted every 4 cm 

along the track (McGill et al., 2013). At the ER-2’s operational altitude of 20 km, the laser 

illuminates a spot (footprint) of ~2 m in diameter, within the telescope’s field of view of ~4 m. 

The output of the MABEL laser at the two wavelengths is split into 8 near infrared (1064 nm) 

and 16 red (532 nm) beams which can be off-nadir pointed at 3°. With this configuration, a 

flight altitude of 20 km results in a swath width of up to 2.10 km. The details of MABEL 

configuration are given in (McGill et al., 2013).   

 

The MABEL instrument was flown aboard the ER-2 on several missions above various earth 

surfaces between the years 2010 and 2014 at different times of the day. The variation of 

conditions under which it was flown provides different levels of solar background and other 

atmospheric conditions necessary to test signal detection algorithms for different surfaces, 

including vegetation. The aggregation of the time tagged photons along the ground track allows 

for vertical profiles to be created, on which vegetation and terrain elevations can be computed.  

MABEL was not intended to be an exact duplicate of ATLAS but was meant to provide the 

measurement concept and data for algorithm development with the flexibility to explore science 

and engineering trade spaces (McGill et al., 2013). This paper reports work that used MABEL 

data from one selected channel, and simulated ATLAS data, to investigate the prospects of 

photon counting lidar in retrieving 3-D vegetation structural attributes in a savanna landscape. 

http://www.nasa.gov/centers/armstrong/aircraft/ER-2/index.html
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We hope to provide a base for any other photon counting lidar remote sensing work that aims at 

calculating canopy height, biomass and consequently carbon storage/dynamics in such 

ecosystems. 

  

2. Methods and materials 

2.1 Study Site 

This research was conducted in the oak savannas of Tejon Ranch Conservancy (figure 5.1). The 

2008 Tejon Ranch Conservation and Land Use Agreement between Tejon Ranch Company and a 

group of conservation organizations resulted in the creation of this 72 000 Ha conservancy. The 

conservancy was created to protect the ranch and implement science based stewardship, thus 

preserving, enhancing and restoring the native biodiversity and ecosystem values of the Tejon 

Ranch and Tehachapi Range for the benefit of California’s future generations (Tejon Ranch 

Conservancy, 2013). These oak savannas comprise mainly of Blue oaks (Quercus douglasii), 

Black oaks (Quercus kelloggii) and Valley oaks (Quercus lobata). Other species found in this 

ecosystem are Canyon live oak (Quercus chrysolepis), Interior live oak (Quercus wislizeni), the 

California Buckeye (Aesculus californica) and a few conifers. Blue oak woodlands are dominant 

at the lower elevations (between 500 and 1 000 m), Black oak woodlands are dominant in higher 

elevation areas (> 1 200 m) while Valley oak woodlands are found on both lower (400- 600 m) 

and higher (1400- 1800 m) elevations. Grass dominates the understories of Blue and Valley oaks 

while shrubs are found in combination with grass in the understory of Black oaks. 
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2.2 MABEL altimetry 

We used MABEL data collected during February 2012 day time flights using a NASA ER-2 

aircraft flying at an altitude of 20 km.  At that altitude the laser footprint diameter is 2 m, 

substantially smaller than the 14 m footprint planned for ATLAS.  At the nominal aircraft speed 

of 200 m/sec and laser repetition rate of 5,000 pulses per second the spacing between footprints 

was 4 cm as compared to the ATLAS 70 cm spacing.  Because of the high altitude, and the small 

diameter of the receiver telescope, the probability of detecting (PD) a photon per laser fire 

reflected from the surface was very low and highly variable between different wavelengths and 

beam. Although ATLAS’s laser will be at 532 nm, in this study a 1064 nm channel was used 

because for this MABEL campaign damage to the green optical fibres caused unacceptably low 

signal density. Using a different aerial single photon airborne lidar, Harding et al., (2011) 

showed that the vertical distribution of reflected photons from forest canopies does not 

substantially differ between 532 and 1064 nm.  Therefore, we think the use of 1064 nm MABEL 

data to simulate the 532 nm ATLAS results is justified. Channel 49 was selected for these 

analyses since on average it had the highest number of detected photons for the data available 

(3.6 photons per meter). 

 

Data from 2014 MABEL flights in the ER-2 indicated that the geolocation precision of MABEL 

was 30 m RMSE, but this figure was derived after significant engineering improvements had 

been made to MABEL and errors for our 2012 data are likely to be larger. To minimise 

geolocation error we extracted photons that were classified as terrain (see section 2.3 for details) 

from the MABEL data and co-registered them to a Digital Elevation Model (DEM) derived from 

DRL data. The DRL data was collected in July 2012 by a commercial lidar vendor at an average 
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density of 1 point per m2 and was validated with field data as explained in Gwenzi & Lefsky 

(2015). Co-registration was performed by comparing root mean square errors for the difference 

between the terrain elevations for the MABEL and DRL datasets. The MABEL data was shifted 

in the x and y directions to create a surface of RMSE error as a function of the distance shifted 

and the shift that resulted in the lowest error was added to the original MABEL coordinates. We 

also adjusted for elevation errors by adding the median difference between the MABEL and 

DRL derived terrain elevations to the MABEL elevation points. While this would be 

unacceptable for a study of absolute elevation, we are only concerned with the relative height of 

the vegetation and the result of the elevation shift was to allow for visual comparison of the two 

datasets.  

 

2.3 MATLAS simulations 

MATLAS simulation is the process of generating ATLAS-like data by adjusting the number of 

MABEL’s detected number of signal and noise photons to that predicted using ATLAS 

instrument model design cases. The design cases developed by the ICESat-2 science team 

provide values for the physical parameters used to model instrument performance so they can be 

compared to the precision and accuracy needed to meet the mission science requirements.  Using 

the design cases, the MATLAS simulator transforms MABEL data in five ways. 1) MATLAS 

simplifies the trajectory of the airborne MABEL data (which varies with platform roll, pitch and 

yaw) to simulate the less variable ATLAS trajectory. 2) The MABEL spatial resolution is 

degraded to match the larger ATLAS footprints. 3) Photons in the MABEL data are classified 

into signal and noise classes. 4) MABEL signal photons are subsampled to match the expected 

ATLAS signal photon density. 5) If simulated background noise levels exceed those observed in 
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the MABEL source data, (i.e. due to varying solar elevation angles) noise levels are adjusted, 

while retaining the observed spatial variability of solar background noise caused by changing 

surface reflectance along the flight line.  

 

Two design cases were evaluated for this study, a day time design case and a night time design 

case. This allow for an investigation of the different contributions of background noise and 

instrument noise. For forest targets the physical properties described by the design cases include 

SEA, atmospheric transmission, nominal canopy and terrain bi-directional reflectance values, 

reflectance multiplier factors for the laser retro-reflectance (i.e. for “hot spot” parallel 

illumination and view angles), canopy height, leaf area index and terrain slope and roughness. 

For this study, both the strong and weak beams that ATLAS will use were simulated, but only 

the strong beams were evaluated for their ability to estimate canopy height. Due to simplifying 

assumptions in the DC input parameters and modelling method the expected levels are only 

meant to be approximations for the different forest cover types, not rigorous predictions.  

 

2.3.1 Trajectory simplification and decrease of spatial resolution 

As with all airborne data, the MABEL beam tracks on the ground form complex sinusoidal 

patterns due to changes in aircraft roll, pitch and yaw at various frequencies and amplitudes. To 

produce the MATLAS simulations the following steps are applied. To produce an ATLAS-like 

straight track more amenable to simulation, all photons in a 60-second (approximately12 km) 

MABEL file are projected perpendicularly to a straight-line track defined by a best fit to all the 

photon latitude and longitude locations.  The data is then divided into 14 m long segments. 
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2.3.2 Classification of MABEL photons  

To classify photons in the MABEL data, the lowest terrain elevation within each segment is 

identified and a section below that elevation is used to identify the mean and standard deviation 

of total observed background noise, which includes both solar and instrument noise.  The 

segment is divided into 2 m vertical cells and an expected number of noise photons is identified 

for that cell using average noise statistics and a Poisson distribution.  If more than that number of 

photons is present in a cell, that excess amount is removed by randomly sampling the photons 

present in the cell.  The remaining photons are classified as noise.   

 

This simple method of classification is purposefully meant to not take into account the spatial 

structure of the signal photon population, as might be done in a more sophisticated surface 

tracking methodology.  One of the purposes for developing MATLAS is to provide realistic 

ATLAS-like data that retains the statistical properties of the MABEL source data, for the 

development of algorithms to be used in ATLAS processing. Using a surfacing tracking 

algorithm in the MATLAS classification could impose a hidden selection bias potentially 

altering the characteristics of the observed photon point cloud in a way that erroneously 

influences the development of ATLAS processing algorithms. 

 

2.3.3 Modelling ATLAS signal photons 

The number of MABEL signal photos exceeds the number of expected ATLAS photons, so that 

the photons to be used in the MATLAS simulation can be selected by subsampling the MABEL 

data. The subsampling factor to select the expected number of ATLAS signal photons from the 

MABEL signal population is derived from the ratio of ATLAS to MABEL signal photons.  The 
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total number of expected ATLAS signal photons is computed as the number of 14 m ATLAS 

footprints along the track multiplied by the predicted number of signal photons per laser pulse. 

The number of footprints is equal to the track length divided by the 0.7 m footprint spacing (7 

km/sec spacecraft velocity and 10 kHz laser fire rate). The subsampling factor is equal to the 

ratio divided by 20 because each MABEL signal photon can be observed 20 times due to the 

overlapping 14 m footprints. For each ATLAS footprint signal photons are randomly selected at 

the subsampling rate from the MABEL photons encompassed by the footprint.  In this way the 

variability of signal photon density in the segments is preserved while the total number of 

expected ATLAS photons is matched for the entire track. The elevation of the selected photons 

are shifted by a random value between ±10 cm so that if a photon is selected more than once 

each occurrence will have a unique elevation. The latitude and longitude of the selected photons 

are assigned to the center of the ATLAS footprint, as will be the case for ATLAS data products. 

  

2.3.4 Modelling ATLAS noise photons 

MATLAS noise cannot be produced by subsampling because an increased noise rate (as 

compared to the MABEL source data) is required when simulating a higher SEA than the angle 

at the time of data collection.   Instead solar noise is generated at the predicted rate. In the first 

step, instrument noise is removed from the noise population.  The instrument noise rate is 

constant and determined for each of the beams from MABEL data collected at night. Using that 

rate and a random distribution the occurrence of instrument noise photons is determined for each 

14 m x 2 m cell. When using MABEL data acquired during the daytime as the simulation source, 

the number of instrument noise photons is subtracted from the number of noise photons present 

in the cell leaving the number of solar noise photons.  The total number of solar photons in each 
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14 m segment defines its along track spatial variability introduced by the variation fractional 

components of sunlit and shaded canopy and terrain surfaces viewed in the instrument pointing 

direction, and their reflectance.   

 

The solar noise rate predicted for the DC defines the total number of photons that should be 

observed along the length of the ATLAS track.  As in the signal photon case, a scaling factor for 

the entire track is defined as the total number of predicted solar noise photons vs MABEL 

photons classified as solar noise. The noise photons are assigned the latitude and longitude of the 

footprint center at an elevation randomly distributed throughout the 14 m wide column. For a DC 

simulation with a SEA larger than when the MABEL data was collected, the number of solar 

noise photons will increase.  Conversely, it will decrease for a lower DC SEA. For night time 

simulations with the sun below the horizon the number of solar noise photons is set to zero. The 

pattern of noise variability is only meant to be a representative occurrence for the DC land cover 

type, not a rigorous treatment of what ATLAS will observe for that specific location and SEA. In 

the MATLAS product each photon is identified as being signal, solar noise or instrument noise.  

 

2.4 Terrain and canopy top identification 

Within the transect, the derivation of canopy heights was evaluated within segments of varying 

resolution (14 m, 25 m, 50 m), herein referred to as blocks. We chose the 14 m block size to 

represent the planned ICESat-2’s footprint size. The 25 m block size was chosen to compare with 

the footprint size of a successful medium resolution airborne lidar sensor, the Laser Vegetation 

Imaging Sensor (LVIS) (Blair, et al., 1999) and a recently approved mission, the Global 

Ecosystem Dynamics Investigation (GEDI) (Stysley et al., 2015) lidar. We evaluated the 50 m 
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block size to compare with ICESat-GLAS and determine the effect of analysis at a much coarser 

resolution. For each block length, photons were aggregated into a histogram at 0.5 m vertical 

resolution. The raw data for each channel has a large quantity of noise photons collected below 

and above the signal photons. We considered those photons whose elevation was within the 2.5 σ 

of the mean elevation to be potential signal photons. The histogram for each block was used to 

derive two height metrics for that corresponding block: Hmax defined as the maximum canopy 

height minus mean terrain elevation and H90 defined as the 90th percentile canopy height minus 

mean terrain elevation without a cut off threshold.  

 

As a preliminary analysis, we selected blocks for which the vertical distribution of the photons 

showed clear breaks, (i.e. a likely canopy top and terrain elevation). These breaks were then used 

to define average values for the percentage of photons associated with the canopy top and mean 

terrain elevation. Percentages were calculated relative to the highest elevation for canopy top and 

relative to the lowest elevation for mean terrain elevation. From the histograms, we found out 

that on average for all the block sizes, the break for canopy top corresponded to the elevation of 

the lowest bin among the top 2.5 % photons. The mean terrain elevation corresponded to the 

elevation of the most numerous bin among the bottom 20 %, 25 % and 27.5 % of photons for the 

14 m, 25 m and 50 m block sizes respectively.  On the basis of these results we then 

implemented an algorithm (figure 5.2) in R (R Core Team, 2014) that used these percentages to 

identify the canopy top and mean terrain elevation for each block at each of the three resolutions.   

 



121 

 

2.5 Analysis 

In this work, we present results from the transect that had the highest variability in terms of 

vegetation cover and terrain relief (Transect 5 in figure 5.1). Height metrics calculated from the 

MABEL and MATLAS data were validated by comparing them with the equivalent metrics 

derived from the DRL data. From the DRL data we created a Digital Terrain Model and 

maximum and 90th percentile canopy height Digital Surface Models at 2 m resolution using 

LAStools (Isenburg, 2015). To extract validation height metrics, the transect ground track was 

divided into blocks coincident with those used in MABEL/MATLAS data analysis, with a cross-

track buffer of 2 m to represent the approximate footprint diameter of MABEL. As with the 

MABEL/MATLAS data height extraction algorithm, Hmax and H90 for each block were obtained 

by subtracting the mean terrain elevation from the maximum and 90th percentile canopy 

elevations respectively.  We used r2 and RMSE statistics to determine the deviation of the 

MABEL derived metrics from the DRL derived metrics. We removed all the points for which the 

residuals showed clearly unrealistic values, presumably due to processing error. The maximum 

allowable residual was calculated as the sum of the mean tree height (11 m) observed during 

field work (Gwenzi & Lefsky, 2015) and the average vertical extent of terrain, obtained using the 

block size and the study area’s mean terrain slope (22 degrees). Figures comparing 

MABEL/MATLAS and DRL derived height metrics show the residual points, which are plotted 

in grey.  

 

Data co-registration, height calculation, vegetation prolife generation and validation procedures 

were done for MATLAS simulated day and night data in the same manner as those for MABEL. 
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We computed signal and noise photons statistics for channel 49 of transect 5 to show the 

expected differences in data quality between MABEL and ATLAS.  

 

3. Results  

3.1 MABEL 

Profiles of transect 5 at a densely vegetated and open canopy areas at the three different block 

sizes are presented as Figures 5.3 and 5.4. Profiles at the 25 m and 14 m block sizes clearly had a 

better representation of the vegetation than those at 50 m, primarily due to the smaller 

contribution of terrain variability for the smaller block sizes.  Smaller block sizes are also better 

at matching the spatial scale of the canopy. The MABEL derived height metrics were moderately 

correlated to DRL derived metrics with only slight differences in the quality of estimates for the 

Hmax and H90 metrics (Figure 5.5). The correlation coefficient between the MABEL and DRL 

metrics was highest at the 25 m block size and lowest at the 14 m block size implying that the 

spatial resolution of analysis has a significant influence on the results. However, the meaningful 

MABEL profiles at 14 m and the DRL data’s strong agreement with field conditions (Gwenzi & 

Lefsky, 2015) suggests that the low agreement between MABEL and DRL height metrics at this 

block size is mainly due to the spatial resolution of analysis getting finer than the geolocation 

error of the MABEL data. 

 

3.2 MATLAS  

The MATLAS simulation process showed that the quantity of signal photons will be 

substantially reduced (relative to the MABEL data) for both day and night time acquisitions 
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(Table 5.1). These are average values computed for channel 49 of transect 5 at 50 m block sizes. 

Of the two MATLAS design cases, night data has a higher ratio of signal to noise photons, but 

the accuracy of the height metrics derived from the night data was just slightly better (slightly 

lower RMSE) than those from day data implying that the most important factor for the algorithm 

we implemented is the density of photons per block. MABEL does not only have a higher ratio 

of signal to noise photons but also has a high total photon density, which is about 6 and 7 times 

greater than that for the MATLAS day and night data respectively. Solar background contributes 

much of the noise in the MATLAS day data which reduces the ratio of signal to noise photons to 

a value below 1 compared to as high as 10.26 for MATLAS night and 76.41 for MABEL data. 

Because of the reduced photon density, the vegetation profiles (Figure 5.6-5.7; 5.9-5.10) from 

MATLAS data are less representative compared to those of MABEL and the correlations 

between the MATLAS derived height metrics and DRL metrics are poorer as shown in table 5.2 

and figures 5.8 and 5.11.   

 

4.  Discussion 

Our algorithm provided encouraging height derivation results but were not impressive when 

compared to other high spatial resolution lidar techniques. We believe that better validation 

results could have been obtained with more accurately longitude-latitude geolocated photons. 

Since our cut-off values for canopy top and mean ground elevation derivation were empirically 

generated, we expect them to vary as a function of vegetation and terrain factors like canopy 

structure, mean stem density and slope variability.  As such, other variables may need to be 

considered for a large scale application. In this paper we present a first cut method suitable for 

evaluation, not a full blown algorithm. 
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Our results were likely affected by the differences in vegetation phenology over the different 

seasons in which the MABEL and DRL data were collected. MABEL data was collected in 

February, a season during which the majority of tree species in the study site are leaf off and 

grass growth is at peak. DRL data was collected in July, a season within opposite phenology- 

leaf on trees and dry grass. The consequences of these differences are twofold: MABEL 

penetrated the canopy more under leaf off conditions and hence had more terrain returns in 

densely vegetated deciduous tree areas where DRL may not have penetrated well under leaf on 

conditions. On the other hand, MABEL under leaf off conditions had a higher probability of 

missing the canopy tips where DRL had higher chances of capturing these tips as surface area is 

greatly increased by the leaf on conditions. These effects would be compounded because the 

lower pulse energy of MABEL is less likely to record energy from the very highest elevations 

and more likely to penetrate to the terrain. Moreover different herbaceous vegetation grows on 

the open areas over these different seasons in the study area, which can also contribute to the 

differences in the terrain elevations in the sparse sections of the transect obtained from each data 

set.  

 

Profiles drawn at the 50 m block size do not adequately represent the vegetation along the 

transect because of the high heterogeneity of both relief and vegetation within this area. The 

variability of these two factors is finer than the aggregation length of 50 m. The less dramatic 

change in the visual appearance of the vegetation profiles from 25 to 14 m block sizes and the 

reduced accuracy from 25 m to 14 m block size suggests that for MABEL/MATLAS data, 25 m 

is the best aggregation length to use. This concurs with waveform lidar studies where 25 m 
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footprint data from LVIS (Blair et al., 1999; Drake et al., 2002; Anderson et al., 2006) provided 

better results compared to GLAS data with footprint sizes greater than 50 m in diameter.  

 

The spatial resolution of MATLAS data is limited due to the large, overlapping footprints that 

remove the specifics of the location of each received photon. It is possible that photons returned 

from later pulses have come from behind (relative to along-track travel) the photons received 

earlier.   In single beam simulations, as used in this study, only the along-track component of 

reduced resolution is introduced.  The cross-track resolution remains equal to the 2 m MABEL 

footprint diameter.  This does not does give a true estimation of the sampling capability of the 

ATLAS sensor across track. Better MATLAS simulation results could have been obtained with a 

MABEL cross-track resolution that matches the 14 m ATLAS resolution. The MATLAS 

simulator includes the creation of a composite product that combines several adjacent MABEL 

beams to enlarge the simulated footprint size in the cross-track direction.  However, composite 

products were not used in this study because a method is not available yet that addresses the 

complexly intersecting nature of the MABEL sinusoidal ground tracks which introduce 

inconsistent simulated footprint widths along track. 

 

The MATLAS simulation results suggest that the actual data from ICESat-2’s ATLAS sensor 

will give poorer results than MABEL. The higher background noise levels from a spaceborne 

platform and combination of lower sampling rates and larger footprints will reduce ICESat-2 

data’s reliability. Having few photons in areas that already have low vegetation cover makes it 

difficult to characterize the vertical distribution of the vegetation at small aggregation lengths. 
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Increasing the aggregation block size will also increase the variability in both relief and tree 

height within each block.  

 

Full waveform lidar has already proven to provide good results for vegetation and the best block 

size of 25 m identified in this work suggests that medium resolution future missions like GEDI 

(http://science.nasa.gov/missions/gedi/ ) with a canopy height measurement RMSE target of 1 m 

will be a better option than ICESat-2 for biomass studies. GEDI will measure the biophysical 

attributes of vegetation areas between 50° North and South latitudes using 3 High Output 

Maximum Efficiency Resonator (HOMER) lasers, whose beams will be divided into 14 parallel 

tracks of 25 m contiguous footprints on the ground (Stysley et al., 2015) 

 

 

5. Conclusions 

For such a structurally complex savanna system, the results we obtained from MABEL data are 

encouraging but it appears unlikely that ICESat-2 will provide the kind of data required for a 

reliable mapping of the biophysical properties of savanna vegetation. However, this does not rule 

out the use of single photon lidar as a technique, provided a sensor with a higher number of 

observed photons is used.  Current resources may be better off concentrated on preparing for the 

GEDI mission, scheduled to launch by the end of this decade.  ICESat-2 will however still be 

useful for those latitudes not covered by GEDI or as a necessary bridge with future missions to 

ensure continuity of monitoring canopy height, biomass and carbon stocks using spaceborne 

lidar. 

 

http://science.nasa.gov/missions/gedi/


127 

 

6. Tables and figures 

Table 5.1: Summaries of the MABEL and MATLAS design cases data. The dashes are a result of 

no data because at the moment, MABEL noise data is not sub-classified into instrument and 

background noise and for MATLAS night data background noise is assumed to be zero 

 

Data variable Data source 

MABEL MATLAS 

day 

MATLAS 

night 

Average number of total photons per 50 m block 710 124 97 

Average number of signal photons per 50 m block 701 89 89 

Average number of noise photons per 50 m block 9 124 9 

Contribution of instrument noise to total noise - 7 % 100 % 

Contribution of background noise to total noise - 93 % 0 % 

Ratio of signal to total noise photons 76.41 0.72 10.26 

Ratio of signal to instrument noise photons  - 10.6 10.26 

Ratio of signal to background noise photons - 0.78 - 

 

 

Table 5.2: MABEL and MATLAS height metrics validation results 

 
Height 

Metric 

Data source Block size and validation results 

50 25 14 

R2 (%) RMSE (m) R2 (%) RMSE (m) R2 (%) RMSE (m) 

Hmax MABEL 74 4.1 75 3.2 64 3.0 

 MATLAS night 71 4.4 69 3.6 62 3.1 

 MATLAS day 73 4.6 70 3.5 58 3.3 

H90 MABEL 71 4.2 72 3.0 60 2.9 

 MATLAS night 67 4.4 69 3.1 56 3.0 

 MATLAS day 64 4.6 64 3.3 50 3.3 
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Figure 5.1. Map showing Landsat TM false color (432) image of study area and location of DRL 

data extent and transect 5. 
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Figure 5.2. Diagrammatic representation of the height calculation algorithm (an example of a 25 

m block from transect 5) 
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Figure 5.3: Vegetation profiles crated from MABEL data and their comparison to DRL profiles 

on a typical dense vegetation area along transect 5. Terrain elevation has been reduced by a 

factor of 10 to enhance vertical variability   
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Figure 5.4: Vegetation profiles crated from MABEL data and their comparison to DRL profiles 

on a typical dense vegetation area along transect 5. Terrain elevation has been reduced by a 

factor of 10 to enhance vertical variability   
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Figure 5.5: MABEL canopy height metrics validation. The gray points were considered outliers 

and excluded from analysis as explained in the methods section.   
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Figure 5.6: Vegetation profiles crated from MATLAS day data and their comparison to DRL 

profiles on a typical dense vegetation area along transect 5. Terrain elevation has been reduced 

by a factor of 10 to enhance vertical variability   
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Figure 5.7: Vegetation profiles crated from MATLAS day data and their comparison to DRL 

profiles on a typical open canopy area along transect 5. Terrain elevation has been reduced by a 

factor of 10 to enhance vertical variability   
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Figure 5.8: MATLAS day data height metrics validation. The gray points were considered 

outliers and excluded from analysis as explained in the methods section.   
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Figure 5.9: Vegetation profiles crated from MATLAS night data and their comparison to DRL 

profiles on a typical dense vegetation area along transect 5. Terrain elevation has been reduced 

by a factor of 10 to enhance vertical variability   
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Figure 5.10: Vegetation profiles crated from MATLAS night data and their comparison to DRL 

profiles on a typical open canopy area along transect 5. Terrain elevation has been reduced by a 

factor of 10 to enhance vertical variability   
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Figure 5.11: MATLAS night data height metrics validation. The gray points were considered 

outliers and excluded from analysis as explained in the methods section.   
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