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ABSTRACT 

Surplus is defined as the maximum positive sum, deficit as the minimum 
negative sum, and range as their difference (or the sum of their absolute values) 
on a curve of cumulative deviations for a given subseries of length n. Several 
types of Surplus, deficit and range are defined depending on the base variable 
from which the cumulative deviations of a variable x are obtained, especially 
for the base value x, and the changing value x.. for subseries (adjusted surplus , 
adjusted deficit and a djusted range). An attempt is made to systematize the types 
of storage equations. T he application of surplus , deficit and range in hydrology is 
discussed. Storage problems and the use of su rplu s , defiCit and range in analyz: ­
ing these problems arc viewed from the three approaches; empirical method, 
data generation method and analytical method. P roperties of these three methods, 
as applied to the surplus. deficit and range. are investigated in detail. Smooth ­
ness in results of the latter two methods in comparison with the first method 
should not be mistaken for increased information. The three methods are com­
par ed on the bases of the Rhine River 's annual nows . 

The distributions and the parameters of distributions for the surplus, 
range, adjusted surplus and adjusted range of independent and dependent normal 
variables are investigated by; the analytically derived expressions or by exact 
distributions; and by the data generation method in obtaining samples generated 
of 100,000 independent and/or dependent normally distributed numbers . 

The effect of dependence in time series on distributions of surplus, 
range. adjusted surplus and adjusted rallie ill studied for the Markov first order 
linear dependence model of a normal variable, with both the independent and de­
pendent variable having means z:ero and variances unities. The statistical para­
meters of distributions of surplus, range , adjusted surplus and adjusted range 
change significantly with an increase of the dependence parameter oC this model. 

The effect of skewness of basic variable on the statistical parameters 
(mean, variance, and skewness coefficient) or surplus. deficit . range. adjusted 
surplus, adjusted deficit and adjusted range are investigated for ind~endent 
gamma variables with skewness coefficients ranging from zero to 'VF: The cflect 
of skewness is larger on surplus , deficit, adjusted surplus and adjusted deficit 
than on the range and adjusted range . T he effect increases with an increase of 
the order of statistical moment used in the computation of these parameters. 

xi 



THE APPLICATION OF SURPLUS, DEFICIT AND RANGE IN HYDROLOGY 

By: Vujica M. Yevdjevich'" 

CHAPTER I 

INTRODUCTION 

I. Time series. A sequence of observations 
on a quantity 1n hme Is a time series. If the quantity 
under observation is symbolized by X, its value at 
time t is designated by Xt . In the probability theory 

of time series, each X
t 

is considered as a stochas ­

tic variable . In this case, the time series is also 
called a stochastic process . If X

t 
is defined for aU 

t in an interval a ~ t ~ b, it is called a continuous­
time process. On the other hand, if Xt is defined 

only at discrete times II' IZ ' . . . , it is called adis ­

crete-time process . In many practical situations X
t 

may be a continuous - time process but is observed at 
equally spaced intervals of time, giving a sequence 
X/>, XZ/>' . . .. Or, the average of X

t 
over a period 

/> is calculated giving the sequence of means: Xl>,' XZl>,' 
... , where 6, l6, 36, . . . , denote the successive 
equal intervals of time . 

A great many hydrologiC variables are ob­
served or derived as time series. Properties of 
these series are of ever-increasing significance in 
planning, designing and operating water resource pro ­
jects. Hydrology places emphasis on techniques avail ­
able for the analysis of time series, and potential 
techniques which can be developed for general or spe­
cial problems. This paper deals only with a particular 
definition of discrete - time series or with those con ­
tinuous - time series which are made discrete. Di s ­
crete - time series will be defined later in this text. 

The maximum surplus . the maximum de­
ficit , and the maximum range for a time series from 
time 0 to time t may be defined in variOUS ways . 
In this paper these fa ctors will be defined as the maxi ­
mum value, the minimum value and the difference be­
tween the maximum and minimum value on the cumu ­
lative curve . This curve reflects the cumulative sums 
of deviations of a variable from a defined value, from 
a changing parameter or a function of time, for a 
given length of a time series. Detailed definitions of 
maximum surplus, maximum deficit and maximum 
range a r e given in Chapter II. Even though the study 
is limited to the analysis of surplus , deficit and range 
as they apply to a hydrologic time series, the result s 
and techniques given here apply to fields other than 
hydrology . 

Z. Technirr,ues for analYSiS of time series . 
Theory of probabi--ty, mathematical statistics. sto­
chastic processes and other fields of mathematics are 
among the many techniques used for the analysis of 
stationary time series. Of these techniques the most 

'" Professor of Civil Engineering, Colorado State 
University, Fort Collins, Colorado. 

commonly used are: harmonic analysis (based on 
Fourier series); serial correlation analysis ; power 
spectrum analysis; analysis by surplus, defici t and 
range; analysis by runs; and others . Describing 
time-dependent stochastic processes by developini 
mathematical models (linear or non-linear) is pre ­
sently the best method of analyzing hydrologic time 
series. These mathematical models are developed 
with statistical inference of parameters estimated 
from available samples. 

This paper is concerned with the proper­
ties of maximum surplus, maximum deficit and maxi ­
mum range. Specifically. it deals with their distribu­
tions, starting from the probability distribution ot a 
variable and from the mathematical model of depen­
dence in the corresponding stationary time series. 

3. 

, which consists of 
.C<'~'bi~,ii,'n of cycles) or of trends 

(and Jumps), or may only a stochastic com -
ponent. Or, it may be a combination of determ inistic 
and stochastic components. If a hydrologic magnitude 
is cumulative in nature, and has a substantial sto­
chastic component, the theo r y of stochastic processes 
may be applied to determine the probabilities of water 
surplus, deficit or range (or storage). Determina­
tion of these probabilities must be based on a given 
inflow regime into the storage space and a given out­
flow regime. When the stochastic theory is applied 
to waiting lines (especially human lines) , the methods 
developed for the probability distribution of the ac­
cumulated line are encompassed by the theory of 
queues (often called the queueing theory. or queueing 
process and bulk service) . When the stochastic term 
is applied to inventory or production problems, 
methods of computing the surplus, deficit or storage 
are called the inventory problem, theory of proviSion­
ing or probability theory of storage systems. T ech­
niques developed whe n applying the stochastic term to 
water surplus, deficit and storage in lakes and re­
servoirs are usually called the-probability theory of 
reservoir storage, storage problem, probability 
theory of storage system . dam theory (where th e word 
"dam" replaces the word "reservoir storage") , or 
theory of dams. 

Ge nerally when studying a ccumulated de­
viations as part of the stochastic process theory, the 
fo llowing terms are used; partial sums of a finite 
number of variables (independent normal or any 
other) . sums of independent or dependent random 
varia bles , and maximum ranges . As this problem of 
accumulated deviations has many applicat ions , the 
terms "maximum surplus," "maximum deficit" and 
"maximum range" or Simply, "surp lus," "deficit" 



and "range" are used here exclusively. '" It covers 
most of the techniques wh ich are encompassed in the 
probability theory of storage systems. 

4. Short h istor ical review. Contributions to 
the analysis of maximum surplus, maximum deficit 
and maximum range by various authors as applied to 
water resources problems are not summarized in this 
introduction. However, the basic ideas and mathe­
matical expressions developed by some authors are 
given and discussed in the following chapters of this 
paper. 

W. R ippl [I], in 1883, first used cumula ­
tive curves (mass - curves) of river now to determine 
the capacity of storage reservoirs for water supply. 
From that time until the present, mass-curves have 
been used extensively when designing storage reser­
VOirs, and many particular variations of the method 
have been developed. The following is an example of 
the application of mass-curve: Assum e that the river 
How for each year should be regulated to the mean 
flow of that particular year. The mass-curve for that 
year will produce the necessary storage or range. 

'" The definition of this range should not be confused 
with the concept of the range as the difference Xmax -

Xm in in a sample of Size N of a variable X. 

z 

For N years of observations there are N values of 
range . These values then represent a new sample 
that supports the study of the probability of range. 

5. Sub1ects of this paper. The various and 
detailed deflnitions of maximum sum (surplus). mini ­
mum sum (deficit) and maximum range are elaborated 
on in Chapter II . Chapter III deals briefly with the 
applications of surplus. deficit and range as techni ­
ques of the probability theory and mathematical statis­
tics for the analysis oC hydrologic problems . This 
study probes general and particular cases of the dis­
tributions of su rplus, deficit and range. for given 
properties of a variable (the probability density func­
tion and the mathematical model of dependence in 
time for a stationary time se ries) . These cases are 
outlined in Chapter IV and treated in subsequent chap ­
ters. 

In this study the analysis of surplus, defi­
cit and range refer only to the population (universe) of 
a variable . This study does not deal with the statis­
tical inference about the properties of the population 
starting from the available sample. However. in 
many cases distributions of statistical parameters. 
as summarized from available literatu re. o r devel­
oped in this paper. enable the statistical inference to 
be carried out. 
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CHAPTER II 

DEFINITIONS OF M AXIMUM SURPLUS, MAXIMUM DEFICIT AND MAXIMUM RANGE 

X"~ 
iables. 

1. Cumulative series of a variable. Let XI' 

be a sequence of non-negative random var ­

L et forn" 1, 2, 

+ X 
n 

with Cn ~ C n+ l , and with the understanding that 

z. 

Co ° for n" 0 . F or river flo ws , Xi may re ­

present thc total flow for the i - th year, and C
n 

the 

cumulative flow for all the yea r s I, 2, . .. ,n. Let 
the sample siz~ consist of N values, while n is a 
variable numbe r , and let 

x. , z. z 

If in eq . 2. I each Xi is replaced by X, 

then Cn (X) .. nX, for n - I, 2, . . . , N. If X is 

the average annual outflow, Cn (X) represents the 

situation of a constant outflow for a period of n 
years, equal to the average outflow. 

Figure 2. I, (1) , shows an example of 
cumulative sums Cn as it changes with n for a 

sampJe of Size N. The straight l ine Cn (Xl is also 

plotted on th is graph , (2) . F or n" 0, Co " O. 

In this study the cumulative series of a 
variable , and the discret e-time series a re defined in 
a particular manner . A hydrologic process of 
flow or prec ipitation is a continuous - time series 
(zero values included) . By select ing a unit period , 
at, (day, month, yearl,the sequence of the total or 
average flow or precipitation fo r this unit period 
forms a discrete-time series. Authors approach 
this case several ways in literature . Some authors 
replace the continuous process by point values. For 
example, Moran [8] considers the annual inflows in­
to reservoirS and outflows from them as concentrated 
values at points , or as instantaneous values at ~iven 
time mtervals (end of years) . Similarly, Anis l6) 
considers that the cLrnulative seri es C

n 
of a varia-

ble does not start at zero but as Xi ' The definition 

of cumulative - time series in this te>.i is based on the 
assumption that t he flow or' p r ecipitation within a 
select ed unit period (day, month, year) is uniform. 
This uniform value produces the sam e total value at 
the end of a unit period as the actual non -uniform 
fiow or precipitation. In other words, if an annual 
value of non -uniform river flow or precipitation is 
Xi ' it is assumed when defining the cumulative 

series of X that Xi is obtained from a uniform 

flow or precipitation inside the unit period. By this 
definition, Cn - 0 at n " 0 (or i ,. 0), and Cn ,. XI 

at n" 1. Practical application of this assumption 
m akes Cn a continuous series in the form of a poly · 

3 

gone with breaking points at 0, Xi ' ... , X
n

, and 

not as pure discrete ordinates . The selection of 
n '" ° or t" 0 ( initial tim e) is necessarv to any re ­
gu lation problem, and from that point the accumula­
tion of input and output is usually counted . 

In this study the values nand N do not 
represent the number of ordinates in a sample of dis ­
crete time series . The se values do represent the 
number of unit periods '" t for which t he variable 
values are computed, eithe r as total sums or as mean 
values. When considering a time unit of one year , 
at, river runoff is the mean or t he total annual flow 
representing the variable values , and n or N are 
numbers of years . In this way (n + I) ordinates have 
n unit periods . This fact should be remembered 
whenever comparing the r esults and fo r m u las of this 
study with those which conside r n as the number of 
discrete ordinates . 

The difference between X, and a given con­
stant, Xo ' given as llX j • Xi - Xo ' is the dev iation 

or departure of Xi from Xo' It is to be noted that 

and this sum is zero if and only if Xo" X. The 

cumulative sum of deviations from Xo is defined as 

n 
Sn (Xo) ,. z: aXi" 

i - I 

n 

!: Xi - nXo -C n - nXo' 
i" 1 Z. 3 

for n· 1, 2, ... , N, and for com pleteness als o 
S (X)" ° fOr any X . If a reservoir has a con-o 0 0 

stant outflow, Xo' and random inflows X l ' X 2, ... 

then Sn (X
o

) denotes the total water s torage after n 

years, with surplus of storage if Sn (XC> > o . and 

deficit of storage if Sn (X
o

) < o. 

Two methods are used when plott ing cumu­
lative curves: (1) Cumulative sum of the variable, 
Cn , as in fig . 2. 1; and, (2) Cumulative sum of de -

viations, Sn (Xo)' from a selected constant value 

Xo' Usually. this value Xo is t he mean for the 

total period of obse rvations as shown in fig . 2. 2, 
upper graph, or it is a variable parameter. T he 
second method of representation is preferable from 
the s t andpoi nt of accuracy and ease of graph mani ­
pulation. Even though this fact is known, this s tudy 
employs both m ethods of plotting (as in figs . 2.1 and 
2. 2) for the purpose of defining various types of 
surplus, delicit and range . 

The basic value Xo from which the de vi ­

ations are calculated can be co ns idered either as 
independent or dependent on the samp le values . If 
the release of water Xo ' from a reservoi r, is 
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Fig . Z. 1 Definitions of surplus. defic it. range, adjusted surplus, adjusted deficit and adjusted ranlie, as 
well as of surplus , deficit and range for any base value Xo and any variate value n: (I) C " m ula-

tiva sum Cn of the variable X i (2) Cumulative s um of constant value X. given as Cn (Xl · n X; (3) 

Cumulative sum of constant value Xo' given as Cn (Xo) " nXo; (4) The change of the range. Rn' as 

n increas es from 0 to N; and, (5) The change of the adjusted range, R (X ), a s n incre ase s from 
o to N. n n 
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Fig. Z. Z Cumulative sums, 5i (Xo)' of deviations ax i " Xi - Xo for five values of Xo (upper graph) and the 

sequence of range , R (X ), as n increases from 0 to N, for five values of X (lower graph); (tl 
n 0 0 

Cumulative sum , Sn eX); (l) Cumulative sum of X; (3) Range, Rn, as n increases from 0 to N; 

(4) and (6) Cumulativ:. sums of (Xi - Xo) with Xo < X; (5) and (7) The chan~ of Rn (Xo) as n increases 

from 0 to N for Xo < X; (8) and (10) Cumulative sums of (Xi - Xo) for Xo > X; (9) and (11) The change 

of R (X ) as n increases from 0 to N for X > X. The graphs refer to the relative values X. 
n 0 0 1 

V./V (V:o annual flows and V:o mean annual flow) of the Gota River in Sweden for N:o 150 . • 
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prescribed in advance as a constant , t hen Xo is in­

dependent of So (Xo)' Furthermore , Xo may be a 

fu nction of time, but still independent of S (X) . In 
n 0 

other words, the outnow regim e is independent of the 
inflow regime and the storal:e in th e reservoir (volume 
or elevation of stored waler). If Xo is a fun cHon of 

the inflow regime, or of the water stored in the re­
sevoir, then Xo is dependent on So (Xo)' In prac · 

ti ce, the outnow is a function of the wat er stored in 
the reservoir, the predicted futu r e inflow and the 
wat er demand. Thus , the outflow varies either con ­
tinuously or discontinuously with t i me . 

This study probes the simple case of a 
constant Xo either for the length N or subsampJes 

n . The two cases: (a) Xo chang~s with time inside 

a given n, and is independent of Sn (Xo); and (b) Xo 

changes with time and is a function eithcr of inflows 
or of 5n (Xo)' as further generalizations , an' not con-

sidered in this paper. 

In this study a time series of sample size 
N is used for various definitions. Definitions also 
refer to an infinite stationa ry time scri~s of a varIa­
ble X, with the m ean /-' . In this case X should be 
replaced in definitions by the population mean /-', 

Z, Definition of maximum and minimum sums 
of deviations . The sequence of the sums of the devia-
tions of Xi from Xo' So (Xo)' 5 1 (Xo) ' . . . , 5n (Xo). 

for each n, has a maximum and a minimum value . 

Lot 

5~ (Xo)smax[50 (Xo)-0, 5 1 (Xo)' ... , 5n (Xo)] 

l . 4 

as th e maximum of the sums of the deviations, and 

5~ (Xo) s min [So (Xo)· 0, 51 (Xo)' . . . , 5n (Xo)] 

l . 5 

as the m in imum of the sums of deviations . The pro­
bability distributions of these two par ameters depend 
on the joint distribution of (XI ' X Z' . . . , Xn). or in 

the case of stationary time series on the distribution 
of the variable X and its patterns in time series se­
quence. 

and 
It is obviou,f from the above d~finitions 

So (Xo) ,. ° that Sn (Xo) ~ 0, and Sn (Xo) 'S 0. 

N 
If X "N- I z: X s X, the sums S+ (X) and S~(X) 

o i" I I n 

will be simply denoted as S~ and S~ . The variable 

s~ (X
o

) will be cal:ed here the maximum surplus, 

and the variable Sn (Xo) the maximum deficit , for a 

gIven Xo and n. 

Another method of defining and calculating 
the maximum and minimum sum of deviations, for 
each n, is to take deviations from the mean of the 
first n values. Thus, let 

- 1 • n 
n 
1: X., 

i" l I 
n • 1, Z, . . . • l . 6 

5 

and let 

l . 7 

with j-O, I,Z, 
then 5

j 
(~n) is 

, n. For example. if n '" 3, 

So (5:") 

S I (X 3) 

Sz (X 3) 

S3 (X 3) 

o 

X I - X3 

X I + X z - 2X 3, and 

XI + Xz + X3 - 3X 3 O. 

It is obvious from the definition of X in eq. Z.6 that 
n 

Sn O{n) • O. From the double sequence Sj (Xn), 

j" I , Z, . .. , n; a nd n · I, Z, ... , the maximum 
sum of deviation is 

S~ (Xn) z max [0 , 5 1 (Xn), Sz (X n), ... , 5n _I (Xn), 0) 

l.S 

and the minimum sum of deviation 5~ (X n) is simi ­

larly defined. This maximum sum is called the ad­
just ed maximum sum or the adjusted maximum sUr­
plus . T he m inim um sum is called the adjusted mini­
mum sum or the adjusted maximum deficit. W. Fell ­
er [4] call ed the difference of these two sums the ad­
justed maximum range which is defined later in this 
text. 

3. Definit ion of maximum ran e for a constant 
value Xo' e maximum range or a given constant 

value Xo is defined here as the difference between 

s~ (Xo) and Sn (Xo)' or 

Rn (Xo) "S~ (Xo) - S~ (Xo). l . 9 

with Rn (Xo) as a non - decreasing function of n, for 

a given sample N, or 

By definition Ro (Xo) ,, 0. For n" I , 2, . .. then 

S~+ 1 (X o) "max [0,51 (Xo)' . . . , S~+t (Xall ~ 

+ - + -
Rn+l (Xo) " Sn+ 1 (Xo) - Sn+1 (Xo) ~ Sn (Xo) - Sn (Xo) 

Rn (Xo) ' 

The properties of Rn (Xo) for a var iable X, there ­

fore, depend on nand Xo' T he r e must be a diS ­

tinction between nand Xo' This distinction is 

necessary because both factors can be considered as 
changing parameterS or varIables (Xo can take any 

value from Xm in to Xmax while n can take on 

only discrete values of int egers) . T o fulfill this 



requi r eme nt n will be referred to as a varia te. 

Figure Z. t shows the sums of the yariabl~ 
X, as well as the increase oC range Rn (X

o
) wnh n, {4/. 

It does not show the distribution of Rn (Xo)' 

4 . Definition of maximum range for the 

special case Xo. X. Taking X " mean of the 

available sample size N, as a special value of Xo' 
then 

s~ Z. 11 

The values S~ and S~ are the maximum and mini ­

mum values of the sums Sn {Xl in a subsample of 

size n. whe r e Sn (Xl is determined by 

Z. 12: 

as shown in fig . Z. I, or as 

Z. 13 

_Figure Z. I , {oil , shows the maximum 
range Rn (X) as it changes with an increase of n . 

Figures Z. 1 and Z. Z Show only how numerous varia­
bles in the form of sums . m:lXimum surplus, maxi ­
mum deficit and maximum range change with an in­
c resse of n. If a scries of sample size N is divided 
Into m parts or subsamples, each with the length n, 
and if for each subsamplethe cor~espon.2ing statistics 
are determined for a given Xo' X or X n, then m 

values Cor each oC these variables are obtained. This 
enables the determination of distributions and pat ­
terns in sequence of these statistical parameters . 

Figure Z. Z, ( I), shows the cumulative 
sum of deviations 

S (Xl . ~ (x. - X) 
n i"" I 1 

for annual flow oC the Gota River in Sweden for the 
period 1.807 - lOS?J1S0..,.Years) . It is g iven as 
Sn (X) lX, where X = V is the average annual flow . 

The computed values Sn ("X), or any other Sn (Xo)' 

as ·,vell as the statistics S~ {XJ. S~ (Xo )' and Rn (Xo) 

must be multiplied by V (In thIS case V· 16 . Z in 

109 ro 3) in order to obtain their values in cubic 
meters. 

In this study the maximum surplus, maxi ­
mum dericit and maximum range, which correspond 
to Xo"~' are called surplus, deficit and range. re-

spectively . When these terms refer to range Cor Xo 

an understanding is that the terms always mean 
maximum surplus , maximum deficit an d maximum 
range, respectively, for a given Xo; 

The range R (Xl repr esents the storage 
n 

capacity necessary in a reservoir, if the fluctuations 
of flows could be suppressed for a "'pe r i od of n time 
units . The expected value of Rn (X) increases with 

6 

an increase oC n . Also, the r ange according to 
H. E. Hurst [11 , [2] and [3] can be conceived as; 
(a) the maximum accumulated storage when there is 
no deficit in outflow (for the outflow equal to the mean). 
with R • 5+, as the range is equal to the surplus; 

n n 
(b) the maximum defJcit, when there is never any 
surplus with Rn· Sn or the range is equal to the 

deficit; and, (c) the sum of accumulated surplus and 
accumulated deCi~it, when both surplus and defic i t 
exist, or Rn· Sn - S~ . The same concept is valid 

for any value oC Xo with a cons tant outflow Xo which 

creates either a maximum surplus , a maximum de­
ficit or both . It should be pointed out that in case of 
a deficit S~ (Xo) the constant outflo w Xo can be 

supplied downstream during n unit periods only if 
there is an equal or greater sur plus stored from the 
previous unit pe r iods . 

S. Defi nition of maximum adjust ed range. 
The range Cor a given n 1S dehned a s 

2 .14 

where X Js the mean for the particular length of 
n 

n unit periods . W. Feller (4] entitled this range the 
maximum adjusted range or simply the adjusted 
range . For a!!,Y subsample of length n with n < N, 
the mean is X

n
, and considert.' d a sampling statistic . 

T he sums of deviations, when Xn is determined 

for any period of n time units, may be obtaIned by 

2. 15 

The last value in fig. Z. I . (4). point 0 ' , 
is RN (X) of eq. Z. II, and is also the adjusted 

range for n. N. As X is also thc mean for the 
lX'ints A, B, and C, the values of range from line 
(4) are at t.he same time the va lues of adjusted range , 
points A' , B ' and C' of line (5) . 

in:""~' with an increa se in n for 
oon'Ia.O't value of Xo' However , the expected 

change of these values for lI. given n with a changing 
X is somewhat different . For instance, if X ,. 0 o 0 

the ranges are equivalent to the values of Cn of 
cumulative sums, fig. Z. I, {Il . Th is equality [s due 
to the fact that S~ (X

o 
,. 0) is always zero and 

5'" (X • 0) increases steadily as n increases and is 
n 0 

equal to Cn. When Xo increases toward the popu-

lation value $l (estimated by Xl the expected val ue of 
the range decreases as the difference j..I - Xo de ­

creases Cor a given n. This difference results 
primarily from an accumulated surplus. because the 
deviations, Xi - Xo' are more positive than nega-

tive Cor Xo < ..,. When Xo is very close to the 

population mean j..I , the expected value of the range 
Cor a given n Is a minimum. When Xo mcreases 

beyond the value of j..I, the expected value of the range 
for a given n increases in comparison with the 
corresponding expect ed value of the r a nge for j.I . 

The negat ive deviations , Xi - Xo ' appear more fre-



qu~'ntly ancl arc of greater absolute value than positive 
deviations . They arc responsible for an accumulated 
ueficit . If Xo still increases and approaches infinity . 

the expected valut· o f the range also increases toward 
infinity for a given n. 

Hangcs arc given in fig. 2. Z fo..!' fiv~ 
values of Xu: XI and X2 (sm aller than X ), X. and 

X3 and X4 (greater than Xl . Th l! cumulative sums 

()f the deviatIOns of X from Ihese five values arl' 
given in fig . 2, Z, lines (4), (6), (2), (6) and (10) . 
Hanges as they increase with an increase of n for 
each of these CiVI' vaiu{'s of Xo arc also seen in fig. 

2, 2, lim's (5), (7). P), (9) and (I I) . T he range for a 
small n in a partIcular sample may be gr .. aterthan 
for a h.Lrgcr n because of salll!)ling fluctuations. 
Thi s differt:IlCI' for smal l and lar /.\ (; n results from 
a lurg\': val'iation ()( range about its m<.:un . Variati()ns 
may b~ such that for a short timc se r ie s th~!'un/.ie for 
Xo + X can!J\,: sm3,lll'r than that for Xo · X. fig . 
2 . l , linc( tl}. 

Figur(' 2. t , line (5). shows the adjust ed 
rang" as n increas(:'s from 0 to N . Thc£e is one 
diIflT~nCt' \:wtweun the adjusted rang .. · Rn (X

n
) and 

the range Rn as n increases from 0 to N. This 

d ifferencl' is that for a given sampll! thl' former is 
with()ut sharp steps and can either incTe:lsl' or de­
crease whh an increase of n, whereas, the latter 
can only incrt!ast'. Figure 2, t, lines (4) and (5), 
give this companson of range and adjusted r ange. 

F lgurt! Z. 3 gives in a simple way the de­
finitions of the g,llowing variables;~ { t ) the sums of 
deviations X, - X, line ( 1); ( 2) the X- sum r epresented , 
by the line (Z); (3) the Xn - sum. line (3); and (4) the 

X - sum , from 0 to N. line (4) . The nine values arc 
a + + _ , , 

shown in the figure; surplus , Sn = Sn (X); defICIt, 

S- "5- (Xl ' range, R " R (Xl; adjusted surplus. 
n n ' n n 

5+ (X )' adjusted deficit. S· (X ); adjusted range , R n n' n n 
H (X ); surplus for X , S+(X ); deficit for Xo' n non 0 
s- (X ) ; and range fo r X • R (X) . 

n 0 0 n 0 

If the range and tht: adjusted ranges an' 
divided by any valu~ X., thE'y nl'COmt,: tht, n:iat ivE' , 
ranges . If thl's e values arc cs)(-cially s<:!ccH-d to nt' 
~ o r X, or ~ . tht;n the ratios R Ix; n (X j{jt; 

, 0 n n IlEi 

f{ {X )/'9.. R CR )/~ 01' simila r are c .. l1cd rlola-nn'nnn 
tiv(' ranSt!s. The relativ{' range's Rn/X for lht, annual 

flows of the Gota Rlvl'r art' /.iivr-n as lint' (3), fig . 2.2. 
The other \jnl'S, (5). (7). (f)) and (J I), fiU . 2,2, an' 

'
Iven as relat iv(; v .. lut.:s H (X ){X , If Ow variabh' n 0 

X is standardiz('d WIth the new variable· x ~ (X - X)/.-;, 
thcm the rungt' I'efers to a sample with a ml::an of 
7.ero and a. standard deviation unily . In the ahovt' t;}:­

pression s. standard deviation of X for tin, sampll 
of siz ... · N, 

~ 
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Definitions of surplus . deficit and range; ( 1) The cumulative sum of deviation, 2: (Xi - X), 

(Z) The sum zero of X • 0; (3) The sum of X : (4) The sum of X. The nine values : S+ , +_ + _ _ _ _ n _ 0 n 
Sn (Xn), Sn (Xo); Sn • Sn (Xn), Sn (Xo); and Rn' Rn (Xn), Rn (X

o
) are shown in the fi gu r e . 
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CHAPTER III 

APPUCATlONS IN IIYDROLOGY 

I. Cumul3tive m3gnitudes, Gen e rally it is 
feasible to apply statistical parameters In the form of 
surplus, deficit 3nd range to any physical magmtude 
which can be accumulated in a given space, such as: 
heat. kinetic energy. water vapor, water , water 
moisture, sediment, mineral content in water, oxygen 
content in water, pollute nts in water, biological 
matterS in water, etc, Thus, any hydrologic magni­
tude of a cumulative nature may be analyzed by surplus 
deficit and !'anlCe , It is feaSible to Investigate stOI'­
agE" probif'ms with this type of analysis when the 
following three fa ctorS al'(~ involved: (a) the charad­
\'risticl1 of the storage space (storage r~sf.lonse to in­
flow and outflow); (b) input or inflow into the StOl'age 
spac('; and (c) output or outflow from the storage 
space. 

Flow regulation by sto r age volumes is 
one of the basic hydrologic pr oblems. The impor ­
tance of this problem warrants the following diSCUS ­
sion on stochastic problems in design and operation 
of reservoirs , How~ver, thl.' surplus, deficit and 
I'ange approach c an also be used for the anaiysis of 
hydrologic tlmc series without referring to storage 
problems. 

Z, Independl'nt and dependent reservoirs. 
A storage r e scl'voir Wh lrh IS opcrated Independently 
of any other I'cservo)r i~ called an Independent re ­
serVOir, If its design and ope-ration are dependent 
on other I'esel'voil's , iL is called a depcndent reser­
voir. Dependent )'eSel'VOlrS are of tht'se three gen­
<,ral types: (a) Innow dependS pal'tty or wholly on the 
regulated outflow of upstream reservoirs; (b) Out ­
flow is governed by jOint operation With upstream and 
downstream re!:lcrvoirs; and (c) Outflow is affccted 
by resel'voirs in ad.iacent or distant river baSinS; or 
combinations of these three types. 

Surplus, deficit and range may be used to 
analyze s tochastic dC'slgn problems of independent 
l'cservoirs or of those dependent reservoirs whose 
characteristics of eventnal dependent inflo ws and/or 
unposed outflows by the other reserVOirs are kllO\\'n 
or prescribed in advance , Complex stochastic pro ­
blems in design and/or operation of a system of de ­
pendent reservoirs and their solution represent a 
further gcnerilli::ation tn the application of sur?ius, 
deficit and ranKe. HO'NE"ver, solutions of stochastic 
problems of individual reservoirs give the basic " '('­
ments in design of a system of reservoirs. 

3. Basic storagt! equa1)on, The basic clas­
Sical continuity equation in the design of reservoirs 
!S 

3. I 

with I "inflow, 0" outflow , and S" Change in re­
ilervoir ::ttorage. in a Jj:lv~n time interval T , Neglect ­
,ng both the: groundwater portion of a predominantly 
sur face storage rt!svI'voir and the seepage out of the 
reServoir; but including the evaporation from the re ­
servoir and the sedimentation of it and passing to the 
rates of infiow, outflow, evaporation and storage 
then, 

8 

P_Q_E . dS 
t t t dt 

3. Z 

with Pt. intlow ratc, which is a stochastic vanable; 

Qt " outflo w rate, which is also a s tochastic variable; 

1::
t 

'" evaporiltion rate from the reservoir, which i::l 

a lso a stochastic val'lable because it is dependent 
on the climat ic stochasti(' movement , a nd I'cservoir 
surface . The last term in "'q. ] , Z is th t! rate of changt! 
in s tored water. StOl'age volume of a r est'rvo ir, S, 
is 0. function of both the l'l~SC ) 'voil' eh'vation, Ii, and 
the time, t, and it can Oft~'Ll be apPI'oximatcd by 

3 . 3 

with a .I/I(t) and m = fit) as functions of time. T he 
inflow of sediments into a reservoir is a stochastic 
variabll'. Thus, a and mare stocha:;tic variables , 
Tht' basic input-Slorage -OUtput relationship of flow 
regulation by rescI'voirs, presented by eq , ] , Z. is an 
ordinary differential equation of stochastic variables , 
By introducing the functions a" IJ,{t) and m " f(t) 
into cq!:l . 3, Z and 3,3, t;q, 3. Z becoiTl! s a partial dif­
CcrentiaL equation of stochastic vanablt!s. 

Storage capacity, S, of a reservoir is a 
finite value , It is a stochastic J.:.riable because 

1 m m 
Sc • a Hmax - Hmin ). where II max and Hmin 
are the maximum and the minimum reservoir heights, 
with a and m Stochastic variables , Practical 
applications iillow the above variables to be neglected 
under the following conditions: (a) If the average 
annual evaporation E from a reservoir is small in 
comparison w ith the alverage annual inflow and out ­
flo w; and (b) If the sediment inflow is small in com ­
par�son with the linite!:ltorage capacity, In th is case, 
the >i t ochastic variables in eqs . 3. 1 and 3. Z are the 
inflow and the outflow and !:Iwrage volume. The 
waHlI' sto rage problolll of tIle n:sel'voi r can be <.Ie­
scrlbed by stochas tic variables and their parameters . 

4 , Change of characteristics oC inflow a nd 
outflow with time , The i1llIow changes with time be ­
cause of natural fluctuations , However, its mean, 
variance , skewness coefficient and time dependence 
may change with time because of various changes and 
developments in the river basin. These changes can 
be assessed, but usually with a small amount of 
accuracy , This fact limits the insistence for excep­
tional accuracy in determining parameters of inflow 
as a stochastic variable. 

The outflow changes with time because of 
unavoidable changes in obJectives of storage use and 
because of influences by various river basin develop­
ments , Personnel that design and operate reservoirs 
must solve an ordinary differential equation with StO ­
chastic variables wh ich are nonstationary. These 
variables are not stationa ry because of evolving con ­
ditions in the environment, This complexity explains 
why there are so many approaches to solving sto­
chastic problems in the design of reservoirs . 



5. Methods of solving stochastic probl~ms in 
design of rese r voirs. Appr oaches currently used in 
solving stochastic problems in design and operation 
of reservoirs may be classified in three large groups: 

( t ) Emfirical method. Thi s met. hod 
uses mass cu rves 0 avaIlable flow time series to de ­
rive various variables a ssociated with storage. 

(Z) Data generation m ethod. This method 
sol ves stochastic storage problems by generating 
large samples of data . Statisticians call it the Mont e 
Carlo Method. Hydrologists denote it as synthetic 
hydrology , simulation, data generation, or operation ­
a l hydrology. The data generation method uses ran ­
dom numbers of one or several variables (normal, 
log-normal, gamm a , or other theoretical distribu ­
tion functions; or empirical distributions), with t he 
stochastic dependence process or cyclic movement 
Buperimposed. Final treatment of generated samples 
is similar to the empirical method . 

(3) Analytical method. This method con­
conSists of mathematical derivations of exact proper­
ties for various variables related to storage prob­
lems . Dirriculties in integrating exact distribution 
equations and sequence patterns in a t ime series 
usually lead to the application of a numerical finit e 
differences method. 

This paper deals with the application of 
these three methods in analyzing storage problems by 
the properties of surplus, deficit and range. Poten ­
tials and limitations of these methods are of Signifi ­
cance when applied to the water resources fie ld in 
general, a nd storage problems in pa rticular. 

S. Variables which de scribe natural flows. 
T he instantaneous discharge is the basic stochastic 
variable in describing river flows, However, the 
daily, monthly and annual flo ..... s are used a s variables 
in practical problems . Properties of instantaneous 
in!low may be considered as approximated by proper ­
ties of daily flows . 

Annual flow, as a stochastic variable, re­
moves the cycle ot a year and any of its harmonics. 
Recent investigations by the writer [9, 101 on a large 
number of river gaging stations resulted in the con ­
clUSion that there is no evidence of cycles greate r 
than a year in the sequence of river flo ..... s . However, 
the change in water carryover in river basins from 
year to year creates a dependence in time series of 
annual flow. This dependence can be described 
mathematically most ly by the first or second order 
Markov linear models (autoregreSSive schemes). or 
moving average schemes of variOUS types . 

Annual Oows of several hundred rivers 
investigated s how two e>.i.remes of time depende nce as 
encountered in their series: (a) Independent varia­
bles; and (b) Dependent variables with the first order 
linear Markov dependence model. In some cases, the 
second order linear Markov model tits th e correlo ­
grams of annual flows. Whenever a large storage 
capacity for overyear flow rei\llations is being de­
signE'd or operated, the inflows on annual basis may 
be described by correspondini:" stochastic mathematical 
models . 

If river flows are not a ffected by some 
important accident in nature, and if the inconsistency 
(man-made systematic errors in data) and non- homo­
geneity in data (man - made changes in r ivc r basin) 
a r e negligible, the series of annual flo w are usually 
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second order stationary (the expected mean, the 
variance and the autocovariance are i ndependent of 
the pOSition i n the series, and ergodicity requirement 
is satisfied) . If not, the non- stationarity (linear or 
non- linear trends) must be r emoved and the new 
stationary serie s as expected to be experienced in the 
future should be used in des ign and operation of re­
servoirs. 

The sequence in time of monthly flows 
shows a cyclic movement of 1 Z-month or its harmonics 
(usually S- months) , and a stochastic movement. 
Mathematical description of monthly flo w time series 
becomes feaSible in the light of sampling errors which 
are inherent in the limited period of observation of 
monthly flows , This description is usually composed 
of three parts: (a) Cyclic movement; (b) An inde­
pendent stoch astic com ponent; and (c) A stochastic 
process, usually of the first or second order Markov 
linear models . 

7. Variables which describe reservoir out­
flows . The reservOIr outflows are usually expressed 
as the same variable (instantaneous, daily , monthly 
or annual flow) as the inflow. A similar matnematical 
approach may be used in describing reservoi r out ­
flows . In the case of lake s with no artificial flow re ­
gulation , the outflows are subject to a larger time 
dependenc~ and usually smaller variations than the 
inflows, but their description is similar. The rigor­
OUS mathematical desc ription of outflows as stochastic 
processes is les s suitable in the cas e of outflows re­
gulated by reservoirs, 

A systematization of types of regulated 
outflows from a mathemahcaI pomi 01 view gIves the 
following general cases: 

{1} Outflow is constant and equal to the 
estimate of the m ean. Assuming the mean inflow is 
equal to the mean outflow, ~ '" P , then, 

3. 4 

(Z) Outflo ..... is conS!3.nt for a eiven period 
of n - time units and is equal to the average inflow, P n' 

of that pe riod, so that Q . P n ' With P n a stochastic 

variable. T he value P n changes from one n-time 

unit period to another. Its variation decreases with 
an increase of n. Then, 

p - p 
n 

dS ;n 0 3. 5 

This means that after n years the reservoir storage 
is al ways at its initial stage . 

(3) Outflow is e..rescribed only by the 
water demand as Q .. Q + Q \II{ T ), with \II (7) a 
t ..... elve -month function, with T the time of the year, 
and Er,(I{T) "0. Its variation about zero depends on 
the seasonal patterns of water demand. The n, for 
Q . P. 

p-p dS • at . 3. 6 

The integration of eq. 3. 6 depends upon ho w well 
l/I ('T) a s a mathematical function, eventually with sto ­
chastic components, describes the a ctual water r e ­
lease. 

(4) Outnow depends on the stor age in 
the reservoir as Q . Q+~f(s):G:l [1+f(s)1, so 



that for ~"iS 

P - is [I + f(S)] dS 
dt 

3. 7 

with E f(S) • O. The variation of outflow depends on 
sto rage variation, which in turn depends on inflow 
variat ion and reservoir characteristics. 

(5) Outflow depends on the inflow into the 
reservoir, or 

Q • Q + Q (P) · 15 [1 + 8 (P)]. so that 

dS 
df P-15[I+ 8 (P)] 3.8 

with E 8 (P) • O. 

(6) Outflow depends oE both storage in 
the reservoir and inflow, or Q " P [ 1 + 0{S, P)J, so 
that 

dS 
P - is [1 + 0 {S. PlJ • dt 3. 9 

with E 0 (5. P) • O. The variation of rJ (5, P) de­
pends on the type of function, and the weight by which 
each 5 and P affect the outflow. 

(7) Outflow is generally prescribed by the 
water demand, but is also dcpend~nt on storage in 
reservoir and on inflow, or Q . P [ 1 + tV (T)" (5, P) ], 
so that 

P-p[t +1/I (T),,{S, P)] ,,~~ 
3. 10 

with E [t/J (T) 0 (5. P)) ,,0 . The variation of 
[!/J (T) 0 (5. P)J depends on the weight by which each 
of the three variables: T. 5, p, aHect the outflow. 
In practice, the demand is prescribed, but it is 
usuaUy modified by the water available in reservoir 
storage and by the anticipated inflows. 

There may be various t;ypcs of the func­
tions 1/1 h), f (S). f) (P) and f, (5, PJ and their com­
binations. Expanded in power series forms, thei r 
linear terms give first order approximations which 
are the simplest to investigate. When these functions 
become complex, they prohibit simple mathematical 
analysis. Usually analysis requires the use of the 
finite differences method in integration, as seen in 
eqs. 3.6 through 3. 10. Outflow regimes (1) and (l). 
eqs. 3.4. and 3.5, are theoretical but they have 
practical applications as limit cases. They provide 
information concerning the required storage capaci ­
ties and storage fluctuations for theoretical regula ­
tion patterns. 

8. Infinite storage. Even though reservoir 
storage capacities are always finite, the theoretical 
concept of infinite storage is useful as a limiting 
factor when treating stochastic proble ms in the de­
sign of reservoirs. This concept may bear various 
names in different literature Such as; infinite rese­
voir, infinite dam. infinite storage. infinite sum of 
deviation!:!. and similar. A reservoir fulfilling the 
concept of infinite storage capacity requirements is 
assumed to be capable of storing any water surplus 
as incurred by the difference of inflow and outflow, 
and to supply any deficit for the difference between 
outflow and inflow. 
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This concept leads to the introduction of 
three basic and important variables into the stochastic 
analysis of storage problems; surplus, deficit and 
range. In general, the concept of infinite storage is 
not necessary for the definition of these three varia ­
bles when applied to river flows, but it is useful as 
soon as these variables are associated with or applied 
to storage problems. It is assumed that infinite 
s torage does not mean that the initial stage of storage 
is an empty reservoir. This concept does assume 
that on both ends of actual stage there is an infinite 
storage for accepting surplus or supplying the deficit. 

9. Finite storage . As all reservoirs have 
limited storage capacities, practical problems are of 
the finite s torage type . F inite storage is conceived 
as a stochastic process with two barriers, the upper 
with the full storage capacity, Sf' and the lower with 

t he empty reservoir. The initial storage content, 5
i
, 

may be anywhere between 0 and Sf' This para­

meter, SI' plays an important role in the operation 

of reservoirs until the operation becomes independent 
of the initial conditions. 

Two factors make the analytical integra ­
tion of storage differential equations or any other 
equation difficult: (a) The existence of two boundaries 
for storage, zero and Sf; and. (b) The impact of 

initial storage, Sr 

The interests in practical storage prob­
lems usually are in: (a) Probability distribution of 
water volumes stored in a reservoir at a given time, 
for given conditions; (b) Probabilities that a given 
storage volume is not exceeded in a given time; (c) 
Probability that the storage volum e reaches either of 
barriers (full or empty reservoir) in a given period; 
(d) Probability that the reservoir is full or empty at 
a given moment, under given conditions; (e) Pro­
bability of time- on that a reservoir stays full or of 
time-off that a reservoir stays empty for a given 
period. once either of the two barriers are reached; 
(f) Probability of water excess beyond demand. 
once the reservoir is full and stays full, for a time 
period; or probability of water cxcess fo r e ach case 
of full storage; the same probabilities for the water 
deCiciency for empty reservoirs; (gl Probabilities 
of range, surplus and deficit as defined above for the 
case of finite storage capacities; and Similar prob ­
lems; (h) Probability of a total water yield in a 
iiven time period under given conditions of storage 
operation, and similar problems. 

10. Investi ation of h drolo ic time series. 
A hydrologic tlme senes 0 t e samp e Slze may 
be analyzed by using the properties of surplus, 5+, 

n 
deficit, S~, and range, Rn' The properties of these 

three parameters may be determined for simple dis­
tribution functions, simple mathematical models of 
sequential patterns and ror stationary time series , 
These properties may be obtained by an analytical 
method, by a numerical integration oC exact distribu­
tion functions, or by a data generation method. Char· 
acteristics of the basic variable and of the above three 
statistical parameters (5+, S·, and R ) then be-

n n n 
come the bench - mark distributions and bench-mark 
sequential patterns , Investigators can derive con­
clusions on the characteristics of an observed time 



series by comparing an observed tim e series and 
+ -their Sn' Sn' and Rn (or other types of these thr ee 

parameters) with th e corresponding bench -mark 
characteristics of the variables and of the ir para ­
met e rs S+ . 5-. a nd R . T his approach pe rmits the 

n n n 
study of patterns in long -range hydro logic fluctuations, 
and especially t he inference about the factors which 
produce the time dependence. 

11. Comp lex hyd r ologic problems . When 
the r e are several storage reservoirs, many water 
re source problems and many water users in a r iver 
basin, t he planning is usually car ried out by using 
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historic data and empirical hydrologic met hods. 
Presently. there is a trend towards using the data 
generation method in hydrology. It consists o f in­
creasing the historic sample size by simulation of new 
data. while maintaining the distribution, stochastic 
and cyclic p r ocesses of the available small historic 
sample . 

The conte mpora ry advances in probability 
theory, mathe matical statistics and s tochastic pro ­
cesses permit probability m ethods to be used in hy ­
drologic applications . The use of the properties of 
surplus, deficit and range r epr esent s potential tech­
niques for the analysis of complex hydrologic prob­
lems. 



CHAPT E R IV 

GENERAL CHARACTERISTICS AND METHODS OF DETERMINATION 

OF SUR PLUS, DE FICIT AND RANGE 

I . Stationarity and ergodicity conditions . In 
this paper the analysis of t ime s e ries assumes that a 
time series is stationary. There are various types of 
stationarity in time series. The stationarity used in 
this ana lysis is specified by two basic conditions which 
are considered to be approximately satisfied: ( I ) The 
expected value of any Xi value in a time series is 

equal to the population mean which is constant, or 

+ro 

E (Xi) = j.j J X d (P (X)] 

oro 

4. , 

with P (X) = the probability distribution function of 
X, and j.j = the constant population mean; and (Z) the 
expected value of covariance of Xi and X

i
+ k de­

pends only on k and not on i; it is equal to the pro­
duct of the population serial correlation coefficient 
Pk and the population variance (l"l 

E [cov (Xi Xi+ k)]= Pk (l"l 4. ' 

These two condit ions make a time series second order 
stationary. Ergodicity Is the next condition that should 
be satisfied, This condition means that time averages 
converge in probability to theoretical averages. 

Z, Distributions and t ime dependence of sur ­
Ius, deficit a nd ran e. A discret e stationary time 

s eries e ither 1n ependent or dependent) with a given 
probability distribution and size N may be considered 
as a random variab le in N - dimensions (hyperspace). 
Thi s t ime series may also be considered as many in­
dividu al variables XI' X Z' . . . XN at the positions 

1, Z, ... N, with the same probability distribution. 
Practical problems involving the dependence of Xi 

may be described e ither by the mathematical model 
of dependence or by using the joint diStribution of N 
variables . The model of dependence is usually de­
fined by its generating process and the characteristics 
of random independent variables involved in this pro­
cess . 

For a large series of size N any non ­
ove r lapping subseries of the size n has a corres · 
ponding value of each type of surplus, deficit and 

+ + +- - - --
range: Sn' Sn (Xo)' Sn (Xn); Sn' Sn (Xo)' Sn (Xn); 

and Rn, Rn (Xo). Rn (Xn). Their time series are 

stationary for a given n, if the time series of X is 
stationary. Each type of surplus, deficit or range is 
characterized by its probability distribution. In the 
case where the variable X is dependent, the surplus, 
deficit and range are also time dependent variables . 

Assume that the variable X may be de­
fined by its probability distribution and mathematical 
model of dependence of its stationary time series. 
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Assume also that a i ' a z' .,. , are parameters of 

t his probability distribution function. and b l , b Z ' 

, are parameters of the mathematical model of 
dependence. The general probability distribution 

+ -
funct ions of Sn (Xo)' Sn (Xo)' and Rn (Xo) may be 

expressed in the form of families of curves , as func­
tion of the variate n, of the variable parameter Xo ' 

and the above parameters a.'s and b . 's as , J 

and 

F [S~ (Xo) "5 Si] = Fe (S~ (Xo); 

ai' az" ; b l , b z· , ; Xo; nJ 

F [S~ (Xo) ~ Sil : F d [S~ (Xo); 

ai ' az'· ; b j • b Z·· ; Xo ; nj , 

F [Rn (~o) ~ Ril ,. Fr [Rn (Xo); 

a1• aZ··; b l · b z'·; Xo; nl 

4.3 

4.4 

4.5 

+ -with Si and R i values which Sn (Xo). Sn (Xo) and 

Rn (So) can assume, respectively. The general mathe ­

matical expressions for dependence can be expressed 
in the form of families of curves as 

~s [S~ (Xo); a,. a,. . ; b
l

, b, . .;Xo;nJ=O 4. 6 

</Jd(S~ (Xo); a,. a,. . ; b
l
, b, . . ;Xo; nJ 0 4. 7 

</J r (Rn (Xo); ai ' a,. .; b
l

, bZ" ;Xo;n] = 0, 4 . 8 

Suppose t hat X follows a normal distri­
bution function with two parameters ~ and (1" . Also, 
suppose that the properties of a random independent 
variable, (;, are known and that the Markov first order 
linear model with the parameter P is the relationship 
between X and E: . Then, the propert ies of surplus, 
eeficit and range may be described by their probability 
distributions and their models of time dependence 
which are not only functions of Xo a nd n, but a lso 

of j.j, iT, P and the propertie s of E: i . 

If eqs . 4.3 through 4.8 were available 
fo r particular field conditions of hydrologic stochastic 
variables, they would be of value in water resources 
planning. design and operation. Statistical inference 
concerning the parameters of distribution and of t ime 
dependence is a prere quis ite for the applicat ion of 
eqs. 4.3 through 4. 8 to storage reservoirs and other 
wat er resources problems . In the case of empirical 
distributions and empirical models for time dependencl! 
of hydrologic variables, methods should be available 
for an exact or an approximate determination of the 
above functions . 



The simplest application or eqs. 4. 3 
through 4 . 8 is when the number or parameters a

i 
and b

j 
is very small. In the case or the independ­

ent standard normal variable, none of these para­
meters e nter into eqs. 4 . 3 through 4 . 8 so that in th is 
case 

F [S+ (X ) -:: S,J n 0 

F [S~ (Xo) ~ Si] '" F d [S~ (Xo); Xo; nJ 4.10 

F [Rn (XO> ~ Ri J ~ F I' [Rn (Xo); Xo ; nJ 4 . II 

a nd the su rplus, deficit and r ange a re also ti m e inde­
pendent variables. 

W. Felle r (4 J states tha t it is practically 
impossible to analytically calculat e the exact range 
dist ribution even for a simple form of the underlying 
probability density functi on r( X). This is true even 
for a small value of n such as n" 3. He stresses 
that the sums Sn (X) are normally asymptotically 

distributed and, therefore , the asymptotic distribu ­
tion or the range is independent or the underlying 
function f(X). Accordingly, it is su!ticient to c2.n­
sider the case where the departures l:.X i " Xi - X 

are normally distributed . 

In some cases asymptotic dist ributions of 
Sn (Xl have a small practical value in hydrolog,v. This 

limitation is due to the fa ct that they depart signifi ­
cantly rrom the exact distributions of surplus, de!icit 
and range for very small values of n. These values 
of n often are the most important cases in some ap ­
plications . 

3. PaMicuiar ro erties of robabilitv diS ­
tributions 0 sur us, de ic it an ran e. The pre­
ViOUS e Imt ons an the a ave iscussions reveal 
some particular properties of sur plus, deficit and 
rang e. The values of surplus arc a lways either "Zero 
or positive . Whenever the sum Sn of deviations 

~ . ~ X . - X ha s only zero and nejative values for 
I I 0 + 

i" 1, l, n, then Sn "0. In this case the pro-

bability dist ributions of S~ are comprised or t wo 

parts: (1) a discrete part or probability mass for 

only one value, S~" 0; and (l) a conti nuous part or 

probability density function for values S~ ~ O. As 

t he probability that S~ wi ll remain ze r o decreases 
with an increas(; of n, the discrete part of probability 

distribution for S~ " 0 also decreases with an in­

crease of n. T his relationship takes place while the 
total area under the probability density curve in­
creases With an increase of n. T herefore, the pro ­
b ability of S+ from zero to a given value S. is n , 

5, 

f (S+) dS+ 
'n n 

4. t l 

13 

with 

4. 13 

For n-.. co the value F (S~ " 0) __ 0, and the last 

term of the continuou s density function tends to the 
area unity . 

The sam e relationsh ip is valid lor the de­
ficit S~ , whose probability function is composed ofa 

discrete part or the probability mass F (S~ " 0). and 

a continuous dens ity curve, so that 

S- " 0 

F (S~ ~ Si) F (S~ ~ 0) +J n Cd {S~l d S~ 
S~ SI 

4.14 

with the sam e properties of the two partS giv en by 
eq . 4 . 13, with S1 being a negative value. 

As the range is the sum of the surplus 
and the deficit (deficit taken as the absolute vulu e of 

- + 
Sn ) for each value of Sn " 0 there is a value for 

S~ which is also different from zero. The range is, 

according to eq. l. 11 , always positive with values 
from zero to infinity, T here is no discrete part in 
the probability distribution of range. As th e deficit 
has the opposit e s ign of th e minimum sum of devia­
tions, all thr ee variables (surplus, defic i t and range) 
have valueFi only between zero and infinity . 

In the case of a symmetrical distribution 
of X, the distributions of S~ and - S~ are identi -

cal. The standardized variable, x , used in this study 
is X " (X - /.1)/ 11. F or an asymmetriCal distribution 
of f(xl two integrals are useful, namely 

fr~X) dx • P ; andfO fi x) dx ~ Q . 

o - '" 

with P + Q" 1 

4. t 5 

sam -~~~.~.~~~~~~~~~~~ ples range. This approa ch is 
used time of the \-ariable X is long 
and n is small, thus producing a large m " N/n 
ratio . The se r ies is divided into m sub - series of 
size n. Each sub-series gives one value of a statis ­
tic, so that m sub-series jives m values of surplus, 
deficit and range. From these three new samples of 
s ize m, the probability distribut ions and t ime depen ­
dence for surplus, deficit and range may be empiri ­
cally determined. 

As the sample size m decreases by an 
increase in n, the smoothness of the properties de ­
termined fo r the surplus, deficit and range dec reases 
with an increase oC n . This decrease in smoothness 



with n is the main disadvantage of empirical deter ­
mination of the p r operties of surplus. deficit and 
range. A s econd disadvantage is the large sampling 
errors wh ich are inherent to any s mall sample of size 
m. 

fitted~~~~~~~~~~~~~~~~~?i~ terized by 
pendence . or for 
the mathematical expressions. the data generation 
method (Monte Carlo method) may be used to obtain a 
large sam ple. Samples of size m " N/ n may be 
gene rated as large as it is eithe r necessary or econ­
omically feasible. Techniques (described under 4 
In this chapter) are then applied to obtain distributions 
and time dependence of surplus, deficit and range. 

frequency distributions 
which are empirically determined. case of a 
stationary time series it is a ssumed that these two 
mathematical functio ns will approximate the popula­
tion probability distribution and time dependence. 
Th.is assumption provides a base for an analytical 
approach for the determination of exact or approxi­
mate probability distributions a nd time dependence 
models of surplus, deficit and range. Two cases ar e 
appropr iate for consideration: ( I) Exact mathemati­
cal expressions for the probability dist ributions and 
tim e dependence models of surplus, deficit and range 
may be analytically derived from the properties of 
X. This case is limited only to small values of n. 
A numerical finite difference method of integ ration, 
usually orientated to a digital computer, may be used 
to solve diHiculties in integrating the exact mathe­
matical e quations in closed forms; (2) Statistical 
parameters of the probability distributions and time 
dependence models of surplus , deficit and range may 
be determined in an exact, in an approximate or in an 
asymptotic form as related to t he parameters ai ' s 

and bj 'S of X, the base parameter Xo and the 

values of the variate n. In this case, a fit of ap ­
proximate {unctions lor probabilit y distributions by 
using moments or s tatistical parameters and for time 
dependence by using serial correlation coeffi cients 
yields the approximate properties of surplus, deficit 
and range. 

7. Comparison of the above three methods. 
An e xa mple of the series or N· 156 for the annuaI 
flow of a large river Is used to illustrate these three 
methods. Two values: n ; 3, and n" 10, and Xo · 

X, are used for empirical and data generation methods. 
The derived samples are m • 50 and m • 15 long. 
The values of all three statist ics (S~, S~ and Rn) 

are det ermined respectively for n · 3 and n" 10. 
The analytical method is used only for n" 3. 

The data ge neration method is applied to 
develop properties of surplus, delicit and range for 
normal or some non - normal but known probability 
distribution functions. This method is also applied to 
known time dependence processes. The analytical 
method is demonstrated by two alternatives: (a) ex­
act distributions; and, (b) moment derivations. 
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The following three chapters (V, VI and 
Vll) discuss these three methods and make detailed 
method comparisons. However, the information 
generat ed by each method produces a problem that 
warrants a brief discussion. 

All three m ethods produce the same in­
formation if each is properly applied. In hydrology 
the re is a contemporary trend to use the data genera­
tion method extensively. It should be noted that this 
method cannot produce more information than what 
the sample contains. When gene rating very lar ge 
sam ples from data of smail samples or from functions 
fitted to data of small samples, no new information 
can be obtained beyond that contained in the small 
sample , The same is true (or the a nalytical method 
when it is applied to distribution functions and time 
dependence models which are derived from the avail­
able sample. 

The data generation method has the follow­
Ing properties: (i) If the generated sample is lar ge, 
the statistical characteristics of the sample converge 
to statistical characteristics of the small sample 
from which the large sample is generated. However, 
probability distr ibutions and time dependence models 
of the lar ge generated sample are smoother than 
those of the or iginal small sample. Smoothness does 
not Imply that the information is an,Y better than that 
derived from the small sam ple. (2) Data generation 
method may be used in several problems when the 
mathematical e quations cannot be solved i n closed 
for m . Usually, the selection is between the appUca ­
tion of approximations in solving equations, and the 
use of the data generation method. 

8. SystematiZation of variables in the analy ­
sis oC surplu s , deficit and range. The titt ing of pro ­
bability funchons to empirical f requency distribution 
curves of bydrologic variables is practically limited 
to a small number of theoretical functions. These 
functions are: normal (Gaussian) , log - normal (Gal ­
ton) , extreme values functions and Gamma functio ns 
(Pear son Type ill included) for continuous variables, 
a nd Binomial and Poisson (unctions for discrete 
variables . 

The above theoretical distributions of in­
dependent continuous variables are described: (a) by 
no parameters (standard normal function); (b) by 
one paramet e r (normal function with mean unity, 
Gamma (unction with one parameter); (c) by two para ­
meters (general normal function; log- normal function 
with lower boundary zero; extreme values functions 
with lower boundary zero; Gamma function with two 
parameters); and, (d) by t hree parameter s (log­
normal function and extreme values functio n with 
lower boundary different from zero; Gamma with 
three parameters or Pearson Type III function). 

Apart from the probability distribution 
function, a hydrologic variable and its stationary time 
series are characterized either as independent or de­
pendent. This depend~nce is expressed by various 
mathem atical models. The simplest dependence 
models in hydr ology are: moving average schemes 
(general Markov chains) ; autoregressive models 
(Markov linear models); a combination of harmonic 
movement (daily or seasonal cyclic fluctuations) and 
the above models of moving average or autoregressive 
schemes, and similar. 



The analysis of surplus, deficit and range 
is made in this pape r by determining probability dis­

tributions of S+ , S - and R for various values of 
n n n 

nand Xo when the probability function and depend­

ence model of a variab le are given. The simple 

15 

independent variable, symmetrically distributed in 
the form of independent standard normal variable, is 
first studied. Then, the effect of time series de­
pendence on these three derived variables is studied 
for a simple mathematical model of dependence . T hen, 
variables of various degrees of asymmetry are in­
vestigat ed for the influence of skewness on the pro­
perties of surplus, deficit and range . 



CHAPTER V 

EMPIRICAL APPROACH FOR DETERMINA nON OF 

SURPLUS, DEFICIT AND RANGE 

1. Example. In this study the annual flo w 
series of the Rhine River at Basle , Switzerland, is 
use d as an example to demonstrate the empirical 
method of obtaining the properties of the following 
variables: surplus, deficit, range , adjusted surplus , 
adjust ed deficit and adjuSted range. The series of 
annual flow is 150 years long ( 1808 -1957), and the 
water year November I through October 31 is used 
for computation of annual flows. 

2. Determination of new sam les. Figure 
5. I gives twO tlme series: a nnua ows ex-
pressed in modular coe fficients Ki Z Vi/V, as shown 

in the upper graph, with Ki" modular coe fficient, 

V, = annual flow of i-th year, and V = average annu;!.l , 
flow; and (b) Sums Sn of deviations .o.Ki " Ki - I, or 

deviations of Ki from their average value R" I , as 

shown in the lower graph . This lower graph of So' 

represented in a much larger scale, was used to 
empirically determine the surplus, defic it and range 

+ -
for two values of n (n = 3 and n = 10), and Sn (Kn), 

S~ CRn), and Rn (Kn) or the adjusted surplus, ad ­

justed deficit and adjusted range. In this computa­
tion I<n was conside red as being the sampling statis-

tic or the mean for subsequent non-overlapping sub­
series of size n, and for two values of n (n " 3 and 
n .. 10). 

The sequence 5 in the lower graph (fig. 
n 

5. 1) ;vas divided in 50 non-overlapping subseries each 
3 years long, and 15 non-overlapping subseries each 
10 years long. For each subseries the values ol 
+ -Sn ' Sn and Rn are determined. This gave three 

corresponding samples with size m ,. 50 or m = 15, 
respecti,yely for n '" 3 and n s 10. Similarly, the 
values Kn for subsequent non~over'lapping subseries 

have been dete rmined g r aphically . Then, lor each 

subseries, S~ (Rn) , S~ (Kn) and Rn (Kn), are 

determined respectively for n ~ 3 with m = 50 and 
n = 10 with m = 15. Six new samples for surplus, 
deficit and range are t hus obtained for each of the two 
values of n. 

3. Distributions of surplus, deficit and range. 
Figure 5. l, left graph , gives the irequency density 
of surplus , 5-; . The right graph gives the cumula-

t ive lrequency (diStribution) of surplus . line (I) in 
both graphs represents the frequency density and 
distribution of surplus , respectively, as determined 
by the empirical method. (lines 2 and 3 represent 
the same distributions as line (1). only determined 
by the data generation and analytical methods, re­
spectively, as it will be described in the following 
two chapters) . Figure 5.3 represents the same pro ­
perties as fig. 5.2 exc ept that fig. 5.3 refers to the 
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deficit, S; F igure 5. 4 refers to the range, R)' 

and is analogeous to fig,S. 2. 

Figures 5. 5 through 5. 7 represent the 
frequency density (left graph) and distribution (right 
graph) of adjusted surplus , adjusted deficit and_ ad­
justed range, respectively, for n'" 3 and for K3 as 

a sampling statistic, Line (1) gives th e distributions 
obtained Ily the empirical method (line 2 is determined 
by the data generation method, as it will be described 
in Chapter VI). 

Figures 5.8 through 5. 13, lines (I), give 
the results of the empirical method in determining 
distributions of the six variables for n '" 10. (lines 
2 give the results of the data gene ration method). 
These figures represent the frequency density (le ft 
graph) and distribution (right graph) , nam e ly: fig. 

5. 8 for the iilurplus , SI~ : fig. 5. 9 fo r the deficit,. 51~; 
fig. 5.10 for the range, RIO; fig. 5.11 for the ad­

Justed surplus , 5;0 (K lo); fig . 5.12 for the adjusted 

deficit 5
1
-
0 

(RIO); and fig. 5.13 for the adjusted range, 

RIO (K Io)' 

Table 5. 1 presents statistical parameters 
of surplus , deficit and range fo r n " 3 and n = 10, 
respectively, and of adjusted surplus, adjusted de­
ficit and adJusted range for 0 = 3 and n • 10, res ­
pectively . These stll1istics are: mean, variance, 
standard deviation, coefficient of variation, skewne ss 
coefficient, excess and the fi rst serial correlation 
coeffi cient. The values of distribution parameters in 
table 5. I are compared later in this paper with the 
values of the s am e parameters determined by one o r 
both of the follOwing two methods : (a) From distri-

+ - +- --
butions of variables Sn ' Sn' Rn, Sn (Kn). Sn (~) 

and R (R), obtained by the data generation method 
n n 

for both n " 3 and n = to (as given in Chapter VI) ; and 
(b) From exact di stributions of thes e variables, 
which are integrated by the finite differences method 
for n" 3 (as given in Chapter vn) . These compari­
sons, both by distributions and by their statistical 
parameters, are intended to show the relationship 
of results obtained from each of the three methods: 
empirical, data generation and analytical. The same 
example of annual flow series of th e Rhine River at 
BasIc is used for each of these three methods . The 
respective comparisons are discussed in Chapte rs 
VI and vn . 

4. Reliability of the em~irical method . 
Surveys of figs . 5 . 2 through 5. I , of statistical 
parameters as given in table 5. I, and general prin­
ciples of statistical sampling and inference, yield two 
bits of knowledge : (a) Reliability of this method de­
creases by an increase of n; and, (b) Reliability in­
creases with an increase of sample size N. 

The data generation method may have any 
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The annual flows of the Rhine River: (a) Upper graph , the time series in modular coefficients _ ti n ' 
Ki = ViN ; (b) Sums of deviations S (R "' I) '" 1: ..o.K, - 1: (K - I). 
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Fig . 5. Z Frequency de nsities (left graph) and distributions (right graph) of the surplus , s~. of the annual 

flows of the Rhine River: (I) Determined by the empirical method; (Z) Obtained by the 

data generation method; and (3) Obtained by the analytical method. 

0.5 '0 1 5 <t 2. L""'O.-,r.-" •• __ ,,F(s,; J ,- 0 2 0" 

Fig. 5. 3 Frequency densities (left graph) and distributions (right graph) of the deficit , S~, of the annual 

nows of the Rhine River: (I) Determined by the empirical method; (Z) Obtained by 
the data generation method; and, (3) Obtained by the analytical method . 
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Fig . 5. 4 Frequency densities (left graph) and distributions (right graph) of t he range, R 3, of the annual 

flows of the Rhine River: ( 1) Determined by the empirical method; (Z) Obtained by the 
data generation method; and, (3) Obtained by the analytical method. 
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Frequency densities (left graph) and distributions (right graph) 

of the annual flows of the Rhine River: (1) Determined by 
(2) Obtained by the data gen eration method. 

+ -of the adjust ed surplus , 53 (K 3). 
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Fig. 5.6 Frequency densities (left graph) and distributions (right graph) of the adjusted deficit , S; (K
3
), 

of the annual ,flows of the Rhine River : ( I ) Determined by the empirical method; and, 
(Z) Obtamed by the data generation method. 
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F ig. 5. 7 Frequency densi ties (left graph) and distributi.ons (right graph) of the adjusted range , R 3 (K
3
), 

.of the annual flews .of the Rhine River : (1) Determined by the empirical m ethed; and, 

Fig. 5 . 8 

Fig . 5. 9 

(2) Obtaine d by t he data generation m ethed. 
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Frequency densities (le ft graph) and dist ributiens (right graph) .of the surplus , n:: 10 (R := 1), 
of the annual flews .of the Rhine River: (1) Determined by the empirical methed; 

and (2) Obtained by the data generatien methed. 
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Frequency densities (left graph) and distributiens (right graph) .of the deficit , n . 10 (R " t), 
.of the annual flews .of the Rhine Ri ve r: (1) Determined by the empirical methed; 

and, (2) Obtained by the data g enf'ratien method. 
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Fig. 5. 10 Frequency densities (left g raph) and distributions (right grapn) of the range, n " 10 (K = 1). 
of the annual flows of the Rhine River; ( I ) Determined by the empirical method; 

Fig. 5.1 1 

Fig. 5,12 

and, (Z) Obtained by the data generation method . 
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Frequency densities (left graph) and distributions (right graph) of the adjusted surplus, 
n · 10 (KIOl , of the annual flows of the Rhine River: (1) Determined by the empirical 

method; and, (2) Obtained by the data generation method. 
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Frequency i1ensities (left g raph) and distrihutiontl (right graph) of the adjusted deCicit. 
n ; 10 (Kia)' of the annual flow8 of the Rhine River: ( I ) Determin ed by the e mpirical 

method; and (Z) Obtained by the data generation metho d, 
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Fig. 5 .1 3 Frequency densities (left gr~ph) a.nd distributions (x:ight graph) of the adjusted range, n" 10 (Rlol , 
of the annual !lows of the Rhme Rlver : (I) Determ lned by the empirical m ethod ' and 
(2) Obtained by the data gene ration method. ' 

sample size N, or any value m ~ N/n. The sample 
size for surplus, deficit and range may be constant 
for any value of n {by a proportional increase of N 
with an increase of nJ. In this case the distributions 
and their statistical parameters for the surrlus, den ­
cit and range becomes independent of m "N n, Two 

characteristics differentiate the data generation 
method from t he empirical method: (a) N can be as 
large as it is economically feasible; and (b) m can 
be independent of n. However, the previously dis ­
cussed problem , whether one or the other Inethod gives 
more information from a given amount of sample data, 
should not be overlooked. 

TABLE 5. I 

~ Va,'abl. 

paramete~ 
Mean 

Variance 

Standard 
Deviation 

Coefficient 
of 

Variation 

Skewness 
Coefficient 

Excess 

First 
Serial 
Coefficient 

n ~ 3 

n : 10 

n" 3 

n ~ 10 

n ~ 3 

n" 10 

o· 3 

n ~ 10 

n"3 

n · 10 

n;3 

n" 10 

0 - 3 

n·IO 

s+ 
o 

O. 133 

O. 257 

O. 022 

O. 052 

O. 148 

O. ZZS 

I. 113 

0.887 

0 . 079 

0,046 

O. 230 

O. 196 

O. 179 

-0 . 180 

S R 
n 0 

- 0. 151 0, 28 6 

-0 , 382 0 . 637 

0. 026 0.06 5 

0.052 o. 039 

O. 161 O. 255 

O. 22S O. 197 

I. 066 0 . 692 

0.597 o . 308 

0 .1 04 -0 . 018 

0 ,08 6 -0,002 

O. 348 0 . 072 

0, 321 0,281 

0.058 -0 .031 

0, 108 -0.143 

Z1 

s+ 
0 

(Rn) s~ (Rnl R n (Rn) 

O. 075 -0,083 0, 158 

O. 138 -0 . 325 0.464 

0.009 0.009 0.008 

0.033 O. 033 0.0 14 

0,095 0.095 0.089 

O. 182 O. 182 0.118 

I. 267 1.144 0.563 

1. 3 19 0 . 560 0.254 

O. 150 0 .1 07 -0.506 

0, 125 -0.003 - 0 ,092 

0. 4 59 O. 302 O. 241 

0.260 0,328 0,403 

-0. 085 -0. 12 9 -0.074 

-0.1 4 9 -0.218 -0.027 



CHAPTER VI 

DATA GENERATION METHOD FOR DETERMINATION 
OF SURPLUS. DEFICIT AN D RANGE 

I . Definition of method. The data a-eneration 
method is defined as the simulation of a large sample 
either from data of a s mall sample. or from inferred 
characteristics of a population. These latter are usu­
ally defined by the distribution function and the mathe ­
matical dependence model of a stationary time series. 
Discrete series are generated by computing the inde­
pendent random numbers with a given basic distribu­
tion function, a nd by further transformations of these 
numbers. Random numbers of any other distribution 
function with time series either independe nt or depend­
ent are normally obtained by simulatini them o n a 
digital computer. The continuous series is usually 
generated by an analog "noise generator. " 

The main property of the data generation 
method is the absence of any limitation in the gener ­
ated sample s ize . Size is limited by either one of the 
following two criteria: (a) deSired accu racy of final 
results; and, (b) economics of generating and pro­
cessini a large sample. 

Independent random numbers which are 
readily available usually have uniform distributions. 
A sequence of independent random numbers with the 
normal (Gaussian) distribution is obtained by applying 
the central limit theorem for a sum of a sufficie nt 
number of uniformly distributed random variables . 
By further transformation, the random numbers with 
normal distribution may be transformed to random 
numbers with skewed dis t ributions (log - normal, gam ­
ma, etc . ) . Dependent random numbers of various de­
pendence models a r e obtained by applying these 
models to the ser ies of independent random numbers . 

2. Generation of large samplep from empiri ­
cal small samples . A smail sample of a stationary 
se r ies is characterized by its distribution and its 
time dependence. Distribution can be represented as 
empirical in the form of a table or graph. However, 
dependence models are usually described either by 
parameter or by equations. In this latter case, the 
ser ies analysis is divided into deterministic com ­
ponents (trends, jumps and cycles with harmonics) 
a nd stochastic components . Dependence in series of 
the latter components is determined eit her by empi ­
rical relationships in the form of correiograms. by 
fitting mathematical functions to correlograma, 0:" by 
the mathematical model of dependence generating pro­
cess . 

If random numbers of an inde pendent 
variable t have a uniform density function with 
boundaries t · 0 and t" I, then 

f (tl for 0'S t 'S 
6 . 1 

and f (t) "0 for t ~ 0 and t;> 1. 

The transformation t: F (X) makes possible the 
generation of random numbers of a variable with any 
distribution F (Xl . Random numbers of distribution 
of eq. 6. I are automatically transformed to random 
numbers of distribution of X when: (a) the empirical 

distribution function F (Xl is given for the range Xmin 
toX as F(X . )"'0 and F(X )"1; (b)the max rom max 
table of t • F (Xl versus X is used; and, (c) the 
pr oper interpolation procedure between the discrete 
values of X and F (X) is used In determining the X­
value which corresponds to a given t - value . If the 
variable X is dependent in sequ ence , another t rans­
formation must be used. 

T he other approach in using the data gen ­
eration method is to produce a large sample from a 
small sample of an independent var:able X by: 
(a) inferring a theoretical distribution function to the 
empirical distribution F (Xl; and (b) by generating 
a large sample of random numbers by the procedure 
available for th at type of theoretical function. 

3. Example of large sample generation. In 
this study the latter of the above two approaches is 
used when generating a large a nnual now sample of 
the Rhine River at Basle from the available data. A 
log-normal distribution function is fitted to the annual 
flow distribution of the Rh ine River with sample size 
N· 150. The log-normal function is then used to 
generate a large sample of m · N/n ., 10,000 random 
numbers . As the serial correlation coefficients of 
annual flows of that river Cor N • 150 show no signifi­
cant difference from an independent time series, only 
independent random numbe rs are generated . Log­
arithms of the Rhine River annual flows are approxi ­
mately normally distributed. 

The modular coe!ficients Ki of the Rhine 

River annual flows have a mean of R ,. 1 and a 
standard deviation of sk · Cv "' 0. 159. As In Ki is 

normally distributed with the mean I-In and variance 

ern ' they can be obtained Crom R· I and sk = 0 . 159 

.s 

. In R' In 
1 

"n -V~ + K' I/ t +sk, 6.2 

and 

.' . n In [1 + ;~ ] In [1 "~l 6.3 

These two equations give er 1 :In(1 +sk2 )," 0.02517, 
1 n 

or I-In:O - "2 er~ " -0 .OiZ6. The variable In K • 

O. 158 2t - 0.0 126 , with t the standa rd normal vari ­
able. so that 

K . eO .1 58Z t - 0. 0126 6.4 

is the transformation equation to obtain K - variable 
Crom normal independent random numbers, t . 

The log-normal indeptmdent variable . K. 
of the Rhine River ' s annual flows is generated by using 
the random numbe rs of a normal standard independent 
va riable, t . which are transformed by cq. 6. 4 . 



T he larie sample is generated with 
30,000 independent random numbers in order to ob­
tain 10,000 independent and non -overlapping sub series 
o f n" 3. A large sample , with 100, 000 numbers IS 
also generated in o rder to obtain 10, 000 independent 
and non-overlapping subse ri es of n" 10. The sur ­
plus , deficit, range , adjusted surplus , adjusted deficit 
and adjustcd rangc for both n ... 3 and n " 10 are 
determined fro m these subseries . These subseries 
are also used to compute distributions and statistical 

paramete r s of distributions. Both frequency denSity 
and distributions are plotted in figs. 5. Z through 
5.13 as lines ( 2). Table 6. 1 gives statistical para­
meters which correspond case by case to table 5. I 
except the first serial cor relation coeflicient whi ch 
was not computed in the data generation m ethod 
approach. Table 6, 1 illustrates the statistical para­
meters of fr equency distributions of th e foll owing 
variables : surplus, deficit , range, adjusted surplus, 
adjusted deficit and adjusted range for n . 3 and n a 10. 

TABLE 6. I 
Variable 

S· S n n 
Parameter 

Mean n . 3 O. 14 7 -0. 144 

n · 10 O. 3 14 -0. 325 

Variance n"3 0.031 0. 023 

n. 10 O. 097 0. 086 

Standard n. 3 0. 175 O. 153 !)cviation 
n" 1 0 O. 31l 0.293 

Coefficient 
n"3 1. 194 1. 060 of 

Variation n" 10 O. 993 0. 902 

Skewness 
n ' 3 1. 4 54 1. 090 Coeffi cient 
n" 10 I. 166 0.999 

Excess n · 3 2. 189 0. 825 

n · 10 1. 214 0.772 

4. Com arison of th~ data eneration method 
with the empirical m e thod. Figures 5. 2 through 5. 1 
i llustrate t hat distributions determined by the data 
ge neration m ethod are much smoother than distribu ­
tions obtained by the empirica l method. This is 
especially true when n • 10. Table 6. Z gives differ­
e nces of statist ical parameters of f requency distribu­
tions fo r the empirical method and the data generation 
method. Values in table 6. 2 are the differences be­
tween the corresponding values in tables 5. I and 6. t. 
T hese differences increase with an increase of the 
order of moments used in com puting various statisti ­
cal parameters . The greatest differences are for 
the skewness coefficients and the excess . However, 
it should be stressed that the absen ce of extreme 
large values in the frequency distributions of these 
six variables for the empirical method a ccounts for 
the large differences in the s kewness coeffi cient and 
the excess . The smoothness of distributions obt ained 
by the data generation method is well illustrated in 
figs. 5.2 t hrough 5. 13, a nd it is an asset of this 
method. 

num -
' 0.'"'''''0 to test,s of sam -

ples generated. two necessary tests are: (1 ) 
That the sample distribution is insignific antly different 
on a prescribed probability level from the distribution 

Z3 

Rn S~ (Rn) S~ (Kn) Rn (Rn) 

O. 291 0. 078 -0.078 O. 155 

O. 639 O. 219 -0.2l3 0.44l 

o. " 0.008 0.008' 0.007 

0.062 0.027 0.028 0.020 

O. 14 7 0. 088 0. 087 0.085 

O. 230 0.1 65 0. 166 0. 14 3 

O. 508 1. 138 1. 126 0. 544 

O. 3fJl O. 753 0. 744 0.323 

1. 063 1.2 30 I. 174 0. 775 

0.960 0.742 0. 7 12 0.679 

O. 147 I. 409 0. 988 O. no 
I. 194 0.507 O. 357 0.673 

underlying the generation process (which is either an 
empirical distribution or a t heoretical distri bu tion 
functio n); and (l) Tha.t the ti me dependence of ran­
dom numbers in the generated sample do not depart 
signific antly on the prescribed probability leve l from 
the dependence underlying the generating process . 
Models for the generation of random numbers of 
several types of variables will be discussed in portions 
of this text . In these discussions the variables will 
be descr ibed by theoretical distribution functions which 
are either time independent or time dependent. 

(1 ) Independent normal variables. Digital 
computer programs are iIready available for the ran­
dom numbers generation of independent standard nor ­
mal variable , t, with expected mean zero, expect ed 
standard deviation unity, and expected first serial 
correlation coefficient zero, (0, I, 0). Tests of 
normality and independence are easy to perform. 

T o obtain the random numbers of an 
independent normal variable. X. with X different 
from zero, and s different from unity , the trans ­
(ormation to be used is 

Xi c s tj .. X 6. ;; 

where tj r epres ents the random independent numbers . 

(Z) De pendent normal variab les . Seve ral 



TA BLE 6. l 

~ S+ -
n Sn 

Parameter 

Me~ n' 3 0. 147 ~O. 144 

n = 10 O. 314 -0 . 315 

Variance n = 3 0.031 0.Ol3 

n" 10 0.097 0.086 

Standard n = 3 O. 175 O. 153 
Deviation n · 10 O. 31 l O. Z93 

Coefficient 
n" 3 I. 194 of I. 060 

Variation n = 10 O. 993 0 . 90l 

Skewness n' 3 1.454 1.090 
Coefficient n· 10 1. 166 0.999 

Excess n" 3 Z. 189 0.8l5 

n" 10 I. ZI4 O. i;Z 

mathematical dependence models of stationary time 
series are available for dependent normal variables . 
The selection of those models depends on the charac ­
ter of hydrologic process . The first orde r linear 
Markov model will often fit the dependence in time 
series when the change in water storage carryover is 
responsible for time dependence in river nows. For 
this reason the Markov model will be used as an ex­
ample in this chapter . Moving average schemes of 
variouS types may also be used as well as the second 
or higher order linear Markov models . The first 
order linear Markov m odel is currently used in hydro­
logic sample generations in the form 

6, , 

where C i are random numbers of an independent stan ­

dard normal variable with E (E i) " 0, var E • I : 

P " population first autocorrelation coefficient; and 
Xi generated new numbers of normal standard 

(E(x
i
) " 0 , var X" I } but dependent x - variable. 

Multiplication of (1 variable by ~ is necess­

ary in order to obtain the Xi variable wi th variance 

unity. For the correlogram of generated series 
E (rk ) " Pk' with Pk = pk. This is the correlograrn 

of the first order linear Markov model. However, the 
model 

6 " . , 

is also very often used. In this case , the variance of 
Xi is 1/(1 ~p~)irvar (i"' I. For all values of 

p it is greater than unity. The differences in vari ­
ances of Xl between eq. 6 . 6 and eq. 6.7 should be 

taken into account whenever the two models aN! used 
interchangeably. 

Rn S~(Rn) S~ (Kn) Rn (Kn) 

O. 19 1 0.078 -0.0 78 0.155 

0.639 O. l19 -0. ll3 0.44l 

O. Oll 0. 008 0.008 0.007 

0.06l 0.Ol7 0.Ol8 0.020 

0.147 0.088 O. 087 0.085 

O. 250 O. Hi5 O. 166 0. 143 

0 . 508 I. 138 I. 12' 0.544 

O. 39 1 0.753 o. 744 0.323 

1.063 1. l30 I. 174 0. 775 

0. 9GO 0 .742 O.71Z 0.679 

O. 147 1.409 O. 988 0.720 

1. 194 0.507 O. 357 0. 673 

A correlogram r
k

: rk of a genera­

ted large sample should not depart significantly from 
the populatiOn correlogram Pk " pk on a given pro -

bability level. This relationship may be tt'sted by: 
(I) performing corresponding chi - square test , or 
(Z) by ascertaining if lIrk = Pk - r k differs Signifi­

cantly from zero on the same prescribed probability 
level. 

(3) Independent log~normal variables . If 
the random numbers are needed lor a log-normal in­
dependent variable, U, the following transformation 
can be used. For J" .. mean of U and ".t the vari­
ance of U, the mean and variance of In U are given .. 
and 

I-' • In 
u 

.' . u 

, 
In{ I +~) 

"' 

6.' 

,., 
with In U normally distributed with mean /oJ u and 

variance ".l. By using random numbers of stan dard 
u 

normal independent variable, (, then In U · "'u ( + J"u' 

and the transformation 

6. 10 

gives the random numbers of U, with j.l.u and vu 

given by eqs . 6 . 8 and 6. 9 , respectively. 

(4) Dependent log-normal variables . T he 
first order Markov linear model of eq. 6. ti is based 
on the principle that the sum of two normal variables , 
each multiplied by a constant (and constants related), 
produces a standard normal dependent variable. 



This principle cannot be applied to log-normal var ­
iables because the sum of two log- normal variables 

is not an independent or dependent log-normal varia­
ble. However, the product of two log-normal varia ­
bles 1s a log-normal variable. In this ca se , 

6 . I I 

If the variable x. of eq. 6 . 6 has mean 
zero, s tandard deviation unity, land fir st seria~cor­
relation coefficient p , (0, I, p), with Pk " p and 

is transformed by 

U 
x , 6. t l 

then E (U) 
becomes 

e~ , var U " e (e - I) , and the Pk (U) 

with 

cov Ui U i+ k 
va.r U i 6. 13 

T he new variable (x . + x .+ k) has mean zero and , II: k 
var (xi + xi+ k) : 2(1 + P ) because cov Xi x i + k - P . 

x . + 
The a pplication of eq. 6 .3 gives E (e I 

, k 
exp {z var (xi + xi+ k) 1 exp (1 + P 1· 
6 . 13 then becomes 

k 
, P 
, -, 

X i + k) .. 

Equation 

6. 14 

This model is different from Pk (x ) 
k P. Therefore, 

the transformation of the variable x of eq. 6 . 6 by 
eq. 6. I Z does not produce a log - normal variable with 
a first orde r linear Markov model. This transforma­
tion does produce another sequential model of the die­
away correlogram type . For various P, the dHf'ir­
ences of values of Pk (U) of eq. 6 . 14 and Pk" P 

are given in Hg. 6. l as a fUnction of k. The model 
of eq. 6. 14 Is represented a s Pk :: f (k) for various 

values of P in fig. 6. 1. F or comparison, the model 

Pk - pk i s also represented in fig . 6.1 as dashed lines . 

(5) Independent gamma variables . II 
Xj deSignates independent standard normal variables 

t hen the transformation 

, m 
U .. Z 1: x .z 

j_ t J 
6 . 15 

gives the chi - square distribution o f the variable lU 
with m deg r ees of freedom, or Gamma distributed 
U-variable with the parameter mIl 

m 

f lUI 1 Ur -

n¥1 
- U , 6. 16 

with mean m I Z, variance mil, and skewness coe!-

25 

ficie nt (8/m) l fl . By using integers for m, the only 
values of parameters obtained are 0.5, 1. 0, 1. 5, 
Z. O, • . . , mIl, with m - 1, Z, .. . However, these 
values of mIl are su fficient to study the change in 
su rplus, de ficit and range with the change of distribu­
tion skewness . The changes inbe tween the values 

givenby Cs . (8/m)1/ Z fo r m" I, Z, 3, ... may 

be easily interpolated. Any problem requiring a 
Cs -value which lies betwee n two dis crete Cs -values 

for two given successive m-integers may be solved 
for both m and m + I, by the data generation method. 
Statistics a re determined for both Cs -values and an 

interpolation gives the corresponding statistical para­
meter s for the desired Cs - value . 

(6) Dependent gamma variables. In 
this study the gamma distributlOn a nd the fir st order 
linear Markov mode l are used to generate a va ria­
ble which has a skewed dis tribution" which is depend­
ent in time. This concept serves the purpose of in­
vestigating the simultaneous effect of s kewne ss and 
dependence on the properties of surplus, deficit a nd 
range. 

Let x and ~ be t wo normal standard 
variables . Take Xl :: E: t and use the generating 
process 

6, 17 

The depe ndent variable x is obtained by using the 
sequence ~ I ' € Z' ••• of the variable E: with a con­

stant parameter p . 

Using the sam e procedure, m varia­
bles Xj may be generated from variable s E: j' with 

j .. 1. l . 3 . . .. m. In this generating proces s , the 
sequences i" 1, Z, ••. are obtained for each of m 
variables with th e sample siz e as larie as necessary 
or feasible . These sequences are denoted by xij' 

where i represents the poSition in the sequence of 
the variable xr 

The t ransformation of eq. 6 .1 5 is 
used to obtain the gamma distribution of a variable 
U from the normal s tanda rd distribution of m varia­
bles Xj 

T he serial correlation coefficient o f 
the lag k of the variable U is 

cov U i U i +k 
var Ui 

Repla cing Ui a nd Ui+k by the co rresponding values 

of eq. 6. 15 then 
m • ,-I 

x' i+k, s 

6. 19 



As E (xi / x1+k,j)· EXij Exi+k, j +.2 (Exij x i +k,/' 

k/2 
and as E x,',' x, k . = P ,then eq. 6.1 9 becomes 

1+ • J 

1 k 1 
E Ui Ui +k • '4 In (1 + 2 p ) +'4 (m - 1) m, 

and 
Z 1 k 1 m l I k Pk sm [i m ( l+Zp )+4'(m-l)m-T . p. 

6. 20 

When eq. 6. 17 is used in generating x . variables , 
it has been proven that the variable U j is dependent 
and the mathematical process is Markov first order 
linear scheme. 

The desired degrees of skewness and 
dependence of t he model of eq. 6, 17 is obtained by 
changing the number m of variables x .• thus varying 

the skewness coefficient (81m) 1/ Z, andJby changing 
the parameter p. Therefore, eqs . 6.17 and 6. 15 may 
be used with changing parameters m and p for the 
generation of sequences with various degrees of skew­
ness and dependence, respectively . 

6 . Examples. Chapters VlU and IX offer ex­
amples of large sample generation for variables whose 
distribution functions and mathematical expressions 
for time dependence of stationary series are given. 
The normal standard independent or dependent varia­
bles, and the gamma independent variables are used 
in the se examples . The example of the log - normal 
independent variable has been shown in this chapter 
for the Rhine River 's annual flows. 

Fig . 6.1 The correlograms of two dependence models for various values of the first autocorrelation 

coefficient , p: (1) Pk" pk (first order linear Markov dependence model), dashed lines; 

(2) Pn" (e pk - 1)1 (e -I), of eq. 6. 14 , solid lines . 

__ - ~:Q95.::::=: 

Fig . 6 . 2 
k k 

Differences f;,. a P - (eP 1)/(e -1) o f the two models of fig. 6.1 as functions of p and n. 
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CHAPTER VII 

I. TypeS of variable distributions. It is 
assumed that the probability density of a standardized 
variable x is given either by an empirical frequency 
density curve, by a mathematical function that has 
been fitted to this empirical curve, or in general by a 
population probability density function f(x), However, 
it is assumed that the empirical frequency density 
cun'e has been locally smoothed, Whenever f(xl is 
used in the fo llowing equations , it should be replaced 
eithe r by data of an empirical curve or by a mathe­
matical (unction fitted to data which is , or assumcd 
to be , the population density curve . 

In this study , distributions of surplus , de ­
ficit and range for a given n and a given Xo will be 

expressed in general terms by usi ng the function f(x) . 
Integration of equations of their exact distributions is 
carried out for the example given by the finite differ ­
ence s numerical method. In this case, integrals are 
replaced by summations. When using the empirical 
frequency density curve f(xl, it is represented by a 
table for all computational purposes . This table pre­
sents data as frequency (or probability) densities ver­
sus x - values spaced at selected differences l!.X. 

TABLE 7.1 

x. f (Xi) Xi ( (Xi) , 
-3.00 0.0000 0 .1 0 O. 3804 
-2 . 90 0 . 0002 O. 20 O. 3669 
-2.80 0.0010 0.30 O. 3503 
-2. 70 0.0020 0. 40 O. 3328 
-2.60 0.0040 0.50 O. 3132 
-2.50 0 . 0060 O. GO 0.2921 
-2 .40 0 . 0095 O. 70 0 . 2710 
-2. 30 0.01 46 0,80 0 . 2499 
-2.20 0 . 0221 0.90 O. 2294 
-2. 10 0 . 0311 I. 00 O. 2098 
- 2.00 0 .04Z7 1. 10 0 .1 902 
-1. 90 0 . 0567 1. 20 0 .1 706 
- 1.80 0.0733 1. 30 O. 15 16 
-1. 70 0.0939 1. 4 0 O. 1340 
- 1. 60 0 . 11 H 1. 50 0 , Jl90 
-1. 50 O. 14 20 1. 60 0. 1044 
-1. 40 0.1 696 1. 70 0 . 0923 
-1 . 30 O. 19 9] 1. 80 0 . 08 13 
-I. 20 0.2289 1. 90 0.0713 
-1. 10 0.2580 2.00 0 . 0617 
-1.00 O. 2866 2.10 0.0531 
- 0.90 0 . 3121 2.20 0.04 62 
-0 . 80 0 . 3363 2. 30 0 . 0391 
-0. 10 0 . 3563 Z.40 0.0341 
-0 . 60 O. 3149 2.50 0.0291 
-0. 50 0.3885 2. 60 0 . 0 24 6 
- 0.40 0.3915 2. 10 0.0206 
wOo 30 0 .4020 2.80 0 . 0111 
-0 . 20 0.4025 Z. 90 0 .0141 
- 0 . 10 0.3985 3. 00 0 . 0 11 0 

0 . 00 O. 3910 3. 10 0 . 0080 
3. ZO 0.0055 
3. 30 0 . 0035 
3, 4 0 0. 00 15 
3,50 0.0000 

In this study, the analytical method of determining 
exact dis:ribUtionS is related only to surplus (S~) . 

deficit (Sn) ' and range (Rn). The exact distributions 

of adjusted surplus. adjusted deficit and adjusted 
range are not investigated in this paper. 

2. Example to be used. This chap ter em­
ploys the same sample as Chapters V and VI to illus­
trate the analytical approach in the determination of 
distributions of surplus, deficit and range . The in ­
dependent variable is the annual flow of the Rhine 
River at Basle. Switzerland, with N = 150 years 
( 1808 - \ 951). average annual flow ~ . 362:50 ds and 
the coefficient of variation Cv • O. 159. Figure 1. I 

gives the fit t ed log-nor mal functions to annual flows 
of the Rhine River. Figure 1. Z shows the log-normal 
probabili~ density curve of standardized variable 
x • (Vi - V)/s of the Rhine River 's annual flows. 

Table 1. I gives the values of f (xl for x at the inter­
vals of l!.X = O. 10, of the standardized variable 
x· (Vi - 'i) /s . This example is used in this chapter 

to show the analytical method of computations. To 
compare distributions obtained by the analyticai 
method with distributions obtained by empirical and 

+ -
data generations methods, the values of Sn' Sn' and 

R must be multiplied by C "' O. 159. and their den -n v 
sities divided by it . This factor will yield values that are 
comparable with those given in Chapters V and VI . This 
example will be shown a fter the theoretical analysis of 
exact distributions is completed . 

of surplus , deficit a nd range 
may be approached by either of the following methods: 
(a) By analyzing all possible combinations of cases 
between Xl' xz' ... , xn for n"' I , Z, ..• ; 

(bl By using the distributions of XI' xz' ... , xn' 

but with changing integration regions; and (c) By 
using the joint distribution of sums SI' 52' ... , Sn' 

in the form of F (SI ' 52' ...• 5n); and defining the 

probability of S+ so thai none of the 51' 52 ' ... , 5 
n + n 

variables exceeds a given S, or Sn'$ 5i . Similarly, 

it can be done for 5~ and Rn' 

4. EXact distributions of surplus , deficit 
and range for n"' 1. The basic value x = X • 0 

of a standardized variable x is used in 9:he deriva­
tion of probability densities or probability mass of 
surplus, deficit, and range. The surplus has the 
probability density 

• fl (8 1): f(xl. for x ::: 0 

and probability mass for 5~ " 0 

F 1 (S~ " 0) .. Q 
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Frequency distribution (upper graph) and frequency density curve (lower graph) of the Rhine R iver ' s 
annual nows at Basle . in modular coefficients, K

i
: ( 1) Observed; (l) Fitted log-normal function; 

(3) Observed densities; and (4) Fitted log-normal probability density fu nction. 
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Fitted log - normal probability density curve to standardized variable Xi" (Vi - 'ills for the 

aftnual flow of the Rhine River at Basle , Switzerland (1808 -1 957) , N ~ 150 years. 
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with Q detined by equation 4. 15 . Similarly, 

f 1 (S ; ) " f(xl, for x 'S 0 

is the pr obability density of 5~, an d 

F l (5 ; - O). P 

the probability mass of 5 ~ s 0, with P defined by 

eq. 4 . 15 . 

+ • 
As R l • 5 , - 5 1 the probability density 

because R I • I x I , with R l in the limits from 

z ero to the maximum absolute valu e of x. 

ther efore , 
Distributions of Si. s ; and R i are. 

x S; 
' DO ' DO 

300 300 

r" r.-

F I (S~ ~ S) • J 0 fix) <Ix 

·00 

and 

S 

+J f(x) dx 

o 

+JO fix) dx 

S 

7. I 

7. Z 

7. 3 

Figure 7. 3 shows .rrob~bility densities 
and the probability mass of 51 ' S I a nd R l for the 

above example. For this exa mple , p. 0.46764 and 
Q ~ 0. 53236. 

R, 
' 00 

300 

2DO (' 

'1) /- ~F, (S;.0).P.0.46S 

(S;. Q) ' .00 

o 0 ,' 0.2 0.3 04 US 

'I--'iI,ill'_~'O !;--,;,;;;--,;;';;c';;';;;;-~t.(R,) 
f,(S;) 0 0.20 0 40. 0.60 060 

- '00 

-2,00 

--3,00 

. 4 00 

9 01 O~ Oil 04 05 
(s; . 0 ) ., 

1': .// F. (S; .0),Q .O.5 32 
••• 

-3.00 

. 4 .00 S; 

3 

Fig. 7.3 Probability density curves of x, 5; , s; . and R l , determined for the standard log-normal pro­

bability density curve. f( xl. of the Rhine River's annual flows: (1) P robability density of Xi ; 

(Z) Probability density of S; ; (3) Probability density of S; ; (4) P robability density of R 1; 

(5) Probability mass for S; '" 0; and (6) Probability mass for 5; z O. 

5. Distributions of surplus. deficit and 
range for n · i . F igure 7. 4 shows six possible 
cases for different combinations of x, and x2' 

where Xl is the variable value fo r the first t ime in ­

terval, and Xz for the second time interval. Num­

bers of sub cases are: 1. I and 1. Z for Xi and, 

Z9 

Z.1 through Z.6 for xz. T he first number in this 

designation refers to n-valu e a nd the second number 

to the subcaee. Figure 7. 4 also gives s;, s~ and 

R Z for ~ach of the six subcas es as expressed in XI 

and xz. 
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Fig. 7.4 Six possible cases for different combinations o f x I and Xz in the determination of exact dis­

t ributions of 5; , S~ and Rz; (n . Z, x'" 0). 

Subcases Z. 1 through Z. 6 have the follow · 
ing probab ility densities (fl . il a nd pr obability mass 

(F l . i) [or the s urplus , deficit and range 

( l. l ) JS 
fZ. 1 (S~ " 5) (xl f(S · xl dx 

(z . Z) 

( l . 3) 

o 

oo oo 

F Z. 1 (5; • 0) f f (x) 1 fly) dy] dx 

o 0 

R 

fl. 1 (R Z " R) "'[ f(x)i (R- x) dx 

o 

o 

fz. Z (5;" 5) " f(S) J ( {x) dx 

-5 

oo 0 

Fz. zIS; '0)' J fix) [J fly) dy] dx 

o -x 

o 

f Z. z (R Z " R)" f(RlJ f(x) dx 

-R 

( -5 
fZ . 3 (S~ .. S) • f(S~ f(x) dx 

-oo 

(Z. 4) 

(Z . 5) 

30 

fZ .3 (5;' 5) .fOOfIX) f (S -x) dx 

o 

R 

fZ,3 IR z ' R) • f I-R{ fix) dx 

o 

o 

fz.4 (S~ =5).[ f (x)f(S-x)dx 

-oo 

o 

f z. 4 (Rz • R) .. f( Rl[ r(x) dx 

-R 

o -x 

FZ. 5(5~ SO).[ f(x) [Jf (YldYJ dx 

-oo 0 

-5 

f 2. 5 (S~ '" 5) .. r(5) J f(x) dx 

o 
R 

f Z. 5 (Rz • R) " f <-R)J f(x) dx 

o 



I 

('.6) ° ° 
F Z. 6 (S;:: 0) f I{x) [f f(y) dy] dx 

· 00 -00 

f' . 6 (s; - S) J O fix) f(S-x) dx 

S 

f' . 6 (R , - R) - f Of (X) f ( -R- x) dx 

- R 

T he sub cases for S~ , 5;. and Rz are combined in 

the form 

with Y • 5; . Y "' S~. a nd Y = RZ' respectively. 

The probability density curve, the pro ­
bability mass and the probability d istributions of 

+ -
52 ' Sz a nd R z are 

and 

S 

!z{S; '" S)-Qf(S) +f f(x) r(s -x) dx 7.4 

oro 

° - x 

F,IS~ '0)-J fi x) if fly) dyl dx 7. 5 

-co -00 

ro 

rz<s;",s)"p{(S)+ I f(xl f(S - x) dx, 7 . 1 

S 
ro ro 

F,(S;-O) -j f (x) II f(y)dYI dx. 7.8 

° -x 

and 

7. 9 
for S;; and 

R 0 

f , (R, ' R) J fix) fi R - x) dx +1 fix) fI -R - X)dx+ 

° - R 

with 

o R 

. U( R ) IC (X)dx+ Zf<-Rl [ (x)dx; 7.1 0 

-R 0 

R 

F Z (R Z ~ R) sf fZ (R) d R 

° 
for R

Z
' with fZ( R) given by eq. 7.1 0. 

in the case of a symmetrical density curve 
f (xl, P = Q. and eqs. 7.4 through 7. 6 are identical 
to cqs . 7. 7 through 7.9 for S~ z - S~. Equation 

7, 10 for a symmetrical f(x) becomes 

R R 

lZ (R
Z

" R) '" z( f(xl f( R - xl dx+ 4f( Rl {(x) dx 

J J 7.12 

° 0 

For numerical computation of distribu ­
tions . the integrals of the above equations are re ­

placed by summations , and diffe r e nt ials dx, dS: , 

dS~. and dR
2 

are r eplaced by differences b X. bS~ , 

t.S~. and t.R z• respectively . All four differences 

are taken to be O. to for the Rhine Rive r e x ample. 
which is given in table 7 . 1. 

Figu r e 7. 5 give s the distributions of s;. 
s;. and Rz in the form of probability density curves 

+ -
and probability mass (for 52 ,, 0 and Sl. '" 0) for the 

example of figs. 7 . I and 7. Z and table 7 . 1. 

The requirement that the sum of the areas 
under the pro,J?ability denslty curves plus the probability 
mass (for Sz "0 a nd S2 " 0) are unities has been 

verified for all three probability distribulions (S~ . 
S~, and R n) ' 



_3.0 

s; 
w' 

' .0 

_2 0 .I 

/ ' 
eQ ?4 

r~~ )HS;.'l<I~ 
OIIS;1 

, "" t ~ o.Cl,n 

Jrl~JI(S;'''I<l • 
' 0 40 

" e'l,710 

i!()()!(·R,.xiO. 

Fig . 7. 5 Probability density curves of: x, surplus , deficit and range for n" Z, determined from the 
e xact dist ributions by the fin ite difference method of integra tion for the s t andar diz ed log- norma l 
probability density, f(x), of the Rhine R iver ' s annual flo ws ; (1) Probability denSity of x, 
(Z) Probability density of s~ , and densities of two individualmtcgrals, (3) Probabllny density 

of S;. a nd densities of two individual integrals; (4) Probability density of R Z' and four indivi­

dual integrals; (5) Probabi lity mass of S~ = 0; and (6) Probability mass of S;" o. 

6 . Distributions of surplus , deficit and 
range for n ,,3. Figure 7.6 shows 18 subcases for 
different com binations of xl ' X z and x3 (values of x 

fo r intervals I , 2, and 3). numbered 3. 1 through 3. 18 . 
The first number 3 rd~rs to n, and the second num­
ber to the subcases . Figure 7. 6 gives the correspond-

+ -
ing values of 8 3 , 53' and R

3
. There is an inversion 

+ -
between 53 and S3 for subcases 3. 1 - 3. 9 and 

3.1 0 - 3. 18 . .For R3 these cases mean only a change 

of signs and limits. This is an important property 
for asymmetric dist ributions . F or symmetric func-

tions there are only 9 subcascs for R 3, and 18 for S; , 
+ -

but then f3 (S3)" f3 ( - S3) ' 

Subcase s 3. 10 through 3. 18 are inverts 
of subcases 3. 1 through 3. 9, respectively . InVer­
sion is performed in such a way that only the in­
equality signs have be e n c ha nged . This fact enables 
only the analysis of subcases 3.1 t hrough 3. 9 . The 
probability dlo'nsity equations and probability mass 
developed in these equations a re used to obtai n , by a 
change of signs and integral limits , the corresponding 
expressions for sub cases 3. 10 through 3 . 18 . These 

18 sub cases for 5; "S are: 
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s 
IJY [(x) [(y - x) <Ix ] {J. I} Jf(S -y) dy 

0 0 

S 0 

(3, Z) f(x)f{S x) dx J [(x) dx 

0 -S 
S -s 

(3.3) Jf (x) f (5 - x) dx JI(X) dx 

0 -'" 
S S 

(3 . oil Jf (8 - y) [ J f (x) f (y - x) dxj dy 

0 Y 
0 -x 

(3 , S) f(S) J I (x) I J f (y) dy] dx 

-s - (5 + x) 

0 - (5 + x) 

(3. 6) fiSJ [(xi [ J f (y) dy] dx 

-s -'" 
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X,. XI. X,+Xt+X, Ix,l 

X,·Xt+X, 0 X ,+Xt+Xs 

X, 0 X, 

X, X,+X.+X, IX,+x.1 

X,+Xs,+Xs X,+Xa X, 

X, X,+ X " IX,I 

X, X,+X1.+X, Ix •• x.1 

X, +X:t.+X\ X, X,,+X, 

X,+X~ X, X. 

X, .Xl. x,+X'l. .X, Ix,l 

X,+X .. +X, X, X'1+X, 

0 X, x,l 

0 X, +Xt+X, IX"x.'x,1 

X, +Xt.+X, X, +X I. X, 

0 X,'" X t X,+X, 

0 X,· X1.+X, Ix,+xt+x,1 

Fig. 1.6 Eighteen possible cases for different combi nati ons of XI ' Xz and x3 in the determination of exact 
+ - -distributions of 53 ' 53 and R] (n = 3, X" 10) . 
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o 5 

1'.7) jf IS - y)[J f Ix) flY - x) dx] dy 

- 00 0 

- 5 - x 

1'. 8) f IS) j f Ix)[ j fly) dy] dx 

- 00 0 

- 5 0 

1'.9) f(5)JfIX)[J fly) dy] dx 

- 00 - 00 

1'.1 0) j :IS - y) [J O fix) fly - X) dx] dy 

o -00 

o 

(3.11) jf (xl f (5 - xl 

-00 

1'. 12) JfOIX) f IS - x) 

-00 

o 

dx J f (xl dx 

- (5 - x) 

- (5 - xl 
dx j r(x) dx 

- 00 

o y 

(3 .1 3) Jf (S.y)[j f{x) f(y-x)dxj dy 

o y 0 

1'.1 4) F, IS; • 0) J [J fix) fly - x) dx j flX) dx] dy 

-(l) -00 - y 

j
o y 

(3.16) C(S . y)[jC(X)C{Y.Xldx] dy 

-00 0 
o 0 0 

(3.17) F3 (S;"O)CJ [ JC(XlC(Y.X)dxjC(XldX] dy 

-00 - y - y 

Subc:ases 3. I, 3,4 , 3.7, 3.10, 3, 13 and 
3,1 6, then subcases 3,2, 3,3, 3.11 and 3.1 2, and 
finally subcases 3. 5, 3,6 , 3,8 and 3,9 are combined 
i n integrals of the s3fle type . They give the pro­
bability density of 53 in the form of 
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5 5 

i 3 (S; ;5):J f{S - y) [J (xl r(y-x) dxj dy + 

-00 - 00 
S o - x 

+ QJfIX) fI5 - x)dx+ f(5)jf IX) 1fIY)dY] dx 
7. 13 

- 0) -00-

By combining subcases 3,14 , 3. 15 , 3. 17 

and 3, 18 the probability mass Cor 5; " 0 is Obtained 

as 
o 0 - y 

F ,IS; • 0) J [jil X ) fl y - x) dx J fIX) dx] dy 7. 14 

- 00 -w ·00 

The distribution of S+ is then 
, S 

F3(S;~S).F3(S; .O) +J f 3 (S)dS 7. 15 

o 

with F 3 (S; "0) given by eq. 7.1 4 and f 3 (S) given by 

eq. 7. 13. 

The probability densities of eq. 7. 13 and 
the probability mass of eq . 7.14 are computed for the 
example of figs . 7. 1 and 7. Z and table 7. L The sum 
under the curve of eq. 7 . 13 plus the probability mass 
of eq. 7.14 gives 0.999345. 

Similarly . the probability density of S; 
is obtained as 

f'IS;'S).J~s - y) [J:IX)fIY - X) <Ix) dy + 

+ pJs r:) f(S· x~ dx+ f(S)j f7x)[ j~Y) dyj dx 

7. 16 
S o -x 

with the probability mass for S; " 0 
J OO 00 00 

F,IS;. 0») [1'IX) fly-x) dx 1'IX)dx] dy 

o 0 -y 

7.17 

The distribution of S; is then 

o 

F3 (S; ~ S) • F 3 (S;" 0) +j f 3 {S) dS 

5 

7. 18 

with F3 (S;" I ) given by eq. 7.17 and (3(S) given by 

eq. 7. 16. 

The probabilities of eq. 7. 16 and 7. 17 are 
computed similarly as lor S! . The sum is 0.999346 . 



Figure 7. 7 depicts the probability density 

curves, and the probability mass of S; and S; as 

obtained by the finite differences integration of eqs. 

7.13 through 7. 18. 

~(S;.OJ:026B 

~" o 61 0.2 03 0.4 

R, 
70 

50 

4 0 

3D 

'0 

w 

f (S;) 

0'"--'0",,--J""7I4 

0 0,' 

'0 

'0 

, 
30 

4 0 

5,0 

60 

70 
S-, 

OA 50 
t.(S~' 

50 

4, 

30 

, 

w 

f,(R, ' 
0 0,' Q4 0,. 

Fig. 7. 7 Probability density curves of S; s; and R3 determined from the exact distributions by the 

finite diCference method of integration Cor the independent standardized log-normal probability 
density curve, f(x), of the Rhine River ' s annual flows: (1) Probability denSities of S~ ; 

(Z) Probability densities of S;; (3) Probability densities of R 3; (4) Probability mass for 

S; " 0, and (5) Probability mass for S;" O. 

Similarly as for S;, the 18 subcases of 

R3 "R have the following expressions for its pro­

bability densities 

R y 

(3,1 ) fiR - y) [J r(y - x) fix) dx] dy 

o 0 

o R 

(3. Z) fr (x) <Ix J r (R - y) r (y) dy 

-R 0 

R y 

(3 . 3) f(-R)J r J£(Y-X)t(X) dx] dy 

o 0 
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R R 

(3. 4) J t (R - y) [ J f (y - xl t (x) dx] dy 

o Y 

o -y 

(3. 5) r (R) J r (y) [ J r (x) dx] dy 

-R - (R+y) 

R 0 

(3 . 6) Jr (x) dx J <I-R - y) r (y) dy 

-y - R 

o R + Y 

(3.7) f (R) J [J f (y - x) f (x) dx] dy 

-R 0 



(3. 8) 

(3 . 9) 

(3. 10) 

P . 11) 

P . ll) 

(3. 13) 

(3, 14) 

(3, 15) 

R JR [(-RlJ f(xl dx r(xl dx 

o 0 

- y fr (x) 

o 

<Ix J r (-R-y)r(y ) dy 

- R o 

o 

jr(X) 
R 

dx J r (R - y) f (y) dy 

o -y 

o 0 

r (R) J r (x) <lxJ fix) <Ix 

- R -R 

r( -R)J~ J O r(y-x) r(x) <Ix] dy 

o -R + y 

- y R 

Je (xl We J r (R - y) f (y) dy 

-R 0 

R JR -y 
f <-RIJ f (y) ( r (xl dxj dy 

o - y 

o y 

Jr ( - R - y)] J r (y - x) r (x) <Ix] dy 

-R - R 
o 0 

(3. 16) f (Rl J [ J f (y - xl f (xl dxj dy 

-R Y 

R 

(3. 17) J r (xl 

o 

o 

dx J r(-R - yjf(yjdy 

-R 

P . 18) JrO( - R - y) [ lOr (y - x) r (x) <Ix] dy 

By combining identical integrals: sub ­
cases 3. I, 3.4.3.15 and 3. 18; then subcase s 3. 5 , 
3.1 and 3. 16; $ub cases 3.3, 3. t Z, and 3. 14; subcases 
3, 2, 3. 10 and 3, 13; subcases 3,6, 3. 9 and 3, 17 ; and 
finally 3. 8 and 3. II, the n 

R R 

f)(R3 - Rl" J f(R.y)[ J r(y -x)r (x)dx]dy+ 

o 0 
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o 0 

+ J fi -R- y) [ Jr(y -x)r(x)<Ix] dy + 

-R - R 
o -y 0 

+ fiRf [r(y) J fix) <Ix 1 r(y- x) fix) <Ix + 

- R -(R + y) y 

+J
R

;(: - x) r(x) <Ix ] dy+ fi-Rj ~r (YfR ~fx) dx+ 

o 0 - y 
y 0 

+J fiy - x) r(X)dx+J f{y· x)f(x)dx] dy+ 

o -R+ y 
o R 

+ zJe (xl dx J C (R - xl r (x) dx + 

-R 0 

+ 'J;( X) dXJO r( -R - x) r(x) dx + 

o -R 

R 

+ f ( -R) [Jr(X)dx]1 + 

o 

o 

r(R) rJHx) dX/ 
1 .1 9 

-R 

The distribution of R ) is computed as 
R 

F 3 (R l '5 R) "J f) (Rl dR 7. 20 

o 

and f
3

(R)isgivenbyeq. 7.19, 

Whe n the probability density r (x) is 
symmet rical, the above integrals of eG.. 7. 19 may be 
simplified to: R R 

') (R) " R):zJ I(R - y) [ J I(y - x) [(x) cb:J dy + 

o 0 

R R-y Y 

+U(R1 [r (yj r (x) <Ix+Jr(Y-X)fIX)dX+ 

o - y 0 

J
R +Y 

+ f (y - x.l f (xl dx] dy + 

O RR 

+ 4Jr(X) cb:J r(R-X) r(x) dx + 

o 0 

R 

+ ze (R) [J r(xl dXJl 

o 

7 . 21 



Eight probability density curves for the 
eight integrals of eq. 7. 19 are obtained by digital 
computer integrations. This integration is accom ­
plished by passing from integrals to summation in eq. 
7.19 with t.x " t.y " t.R3, and using t.x" 0.10 . 

The probability density curve of R3 is plotted in fig. 

7. 7. The area under the total probability density curve 
is 0 . 99797 . The main reason for these equations of 
exact distributions of S1 , 5;, and R3 to be given 

in this study is to show the complexity of exact distri­
butions even for n'" 3. Equation 7. 19 with eight 
different integrals and limits shows that the exact dis­
tribution of range is difficult to obtain even for n as 
small as 3, 4, or 5. W. Feller 14] pOinted out this 
same fact in his study of asymptotic distributions . 

7 Comparison of the analytical method with 

the data generation and the empirical methods, by 5;, 

S3 and R3 distributions (for n · 3). At this point 

the densities , mass and distributions of 5; , 5 ;, and 

R3' for the annual flow of the Rhine River as obtained 

by the empirical, data generation and analytical 
methods should be compared. In this comparison the 

values of 5;, 5; and R" in the above integrations, 

are multiplied and densities are divided by 
C

v 
• O. 159. The corresponding curves are plotted 

as lines (3) in figs . 5. 2 through 5. 4 for n ,,3. This 
comparison by distributions illustrates two factors: 
(a) The empirical method gives distributions which 
are not smooth; and (b) The data generation method 
gives values which are very close to those obtained 
by integration which uses the Cinit e differences method 

of exact distributions. The selection of t.x" t.y " 
+ t.S
3 

"t.R3 plays a significant role in the integration 

accuracy of exact distributions . 

8. Dist ributions for the n" 4 . Figure 7. 8 

shows the 54 cases of 5:, S~ and R4. These cases 

are various combinations of xI' x2' x3 and x4' num­

bered 4. I through 4. 54. Cases 4. 28 through 4. 54 
are identical to the corresponding cases 4. 27 through 
4 . 1. Exceptions to this statement are that 5: and 

S~ are interchanged and the signs of variables and 

limits of integrals or sums have to be modified ap­
propria tely . The first number refers to n "' 4, and 
th e second number to the case as designated in fig. 
7. S. In the last four right hand columns fig . 7. B 

+ -yields : the case number, 54' S4 and R4 as ex-

pressed in values Xl' x 2' x3 and x4 · 

Figure 7. 8 is presented to illustrate how 
complicat ed this method becomes even for n"' 4. 
Many cases can be combined as being of the same 
type of integrals but with different integral limits. 
In these cases the expressions for the distributions of 
+ -54' 54' and R4 become complicated, and as such 

are not reported in this study. This involvement 
supportS Feller1s [4] statement that even for n" 4 
the exact distributions are difficult to obtain. For 
n" 5 there are 162 cases (3 x 54 " 162) and any 
attempt to derive the exact distributions of surplus, 
deficit and range become intractable from a practical 
point of view . 
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The other approach for the derivation of 
exact distributions of surplus , deficit and range is in 
combining all similar elementary cases of the pre ­
viously mentioned systematic method of analysis into 
the cases of the same type of integrals. It reduces 
the number of cases to be separately investigated. 
However, this new approach is likely to omit some 
elementary cases . 

.9. Distribution o~ surplus . deficit and range 
as obtamed from xm vanables by using the changing 

integration region. The probability distribution 
+ F n (Sn) may be expressed as 

Fo(S~) J (0) J 'f( f(x ) dx m m 7. 22 

1 m" 1 

7. 23 

Difficulties in integrating eq. 7. 22. come 
from the changing integration region I. Equation 7. 22 
is approximated by the summation 

+ + 
Sl ~ Sn S2"S Sn 

Fn(S~)"!: !: 
-00 -0) -ro 

7.24 

As 5+ cannot be smaller than 5 "0, or 5+ is al-
000 

ways positive, the probability mass for S+ " 0 is o 
equal to eq. 7 . 24 with the lower limit -00 and the 
upper limit zero. In summing eq. 7.24 the value 
S-S +x orS S-x·S " S-x-

n n- I n' n-l n n' n - 2 n n 

x
n

_1 and so on, with SI Sn - xn - xn _1 - ... - X2 

Xl' Taking 6X I " />.X 2 = • .. " t.xn " t.x, for a given n, 

there is a constant (t.x)n in eq. 7.24, or 

5 < S+ + 
Sn ~ S~ 

Fn(S~) 
1 - 0 S2~ Sn 

(/>.Xt , , , {(XI ). 
- ro -ro -ro 

f {x 2}. ... . f(x n}· 7. 2.5 

The follOwing steps are feaSible when usmg a digital 
computer to sum up eq. 7. 25 for a gl ven S~: (a) the 

sum of fn (xn) is determined in the limits -00 to S~, 
(b) this determined value is multiplied by the sum of 
f
n

_
1 

(x
n

_
l
) for each Sn of the previous sum; and 

(c) xn is then selected in such a way that 8n - 1 " 

(Sn - xn)"S s~ with xn in the limits - 00 to + 00 or 

xn ~ (Sn - S~); and so on. This summation requires 

fast digital computer with a very large core storage 
capacity. When n is greater than n " 5 the com­
plexity of this integration may discourage even the 
digital computer approach . 
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Fig. 7. 8 Fifty-four possible cases for different combinations of XI' x 2, x3 and x4 in the determination 

of exact distributions of 5: . S~ and R4 (n: 4, x: 10) . 
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10. Use of jOint distribution of sums of xm ' 

Assume that the independent variable x is dis t ributed 
according to t he probability density function f(x) . The 
sum of m independent standard variables xl' x

Z
' 

... , xm is 

7. Z6 

with So " ° for m = 0, a nd with m "0, I, Z, . . . n. 

This new variable Sm satisfies the first order s t a­

tionarity; namely , the expected mean is zero and it is 
independent of m . It does not satisfy the second or 
higher order stationarity, The variance increases 
with an increase of m , and fo r the standard normal 
variable , var Sm '" m , for m" 0, 1, Z, . . . n. The 

variable Sm is correlated se rially and the expected 

serial correlation coefficients depend on the position 
m. For the position m, the first serial correlation 
coe fficient r t (m) is between Sm and Sm+l ' The 

second serial correlation coeffi cient is between Sm 

and Sm+2:' and so on for the higher order coeffi cients . 

For the position m the covariance of Sm and Sm+! 

is m. Then, 

" covSm Sm +1 

(varSm var Sm+/;~ '" -v mn;1 

7 . Z7 

The dependence of the sequence of the 
variable S increas~s with an increase of m. Then 

r l (l) = ltV. a nd rt( oo) " 1. Similarly, 

m 

Vm (m +kl 

In this case , the serial correlation matrix 
of rk(m) is 

5, 52 53 5, --- 5 n 
m 

5, , -vr -vr Yf ---~ 
2 52 

, -If -Vf ---I/[ 
3 53 

, -vr ----J[ 
4 5, , ---I/f 

, , , , , 
, , 

n 5n 
, 

By using the convolution integral , the dis­
tribution of Sm+ l can be obtained from that of Sm 

f(xl fm (Sm+! - x) dx 7 . 30 
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The Surplus S+ 
n' 

range Rn are 

m
Max 

Max m 

fo rm = 0,1, n. 

the deficit Sn and the 

7. 31 

7 . 3Z 

for m 0, 1, ... n) 

7. 34 

which is the probability distribution o f S~ . In other 

words, the probability of a given 5+ is the probability 
n 

that all dependent 5 are smaller than or equal t o 
+ m 

Sn for any m· 0, 1, .. . , n. 

E quations 7. Z7 through 7. 2:9 enable a de­
rivation of joint analytical distribution f(S I ' SZ ' ... , 

S ) when the s erial cor relation coeffi cients are kno wn. 
n + 

Then t he s u rplus Sn is 

Sn Sn 

Fn(S~ ~ Sn)i {nil fn{SI' SZ ' 

7. 35 -00 -00 

The problem is in deriving a proper ana~ 
lytical equat ion for the joint distribution of Sm (m = 

1, Z, ... ,n). This is feasible only for a normal 
fu nction. Integration is then accomplished by a finite 
difference procedure. With an increase of n the 
expressions for the exact distributions and t heir in­
tegrations become more and more complex. 

11. 

proa ches are 
obtaining these 
progression of 

distributions of 
that all three ap ­

The difficulties in 
grow by a geometriC 

n by an increase of n. 

These difficult ies and an increase in the 
computations needed by a geometric progreSSion of 
n lead to the following conclusions: 

(Il The practical aspects of obtaining 
the above distributions for n approximately five or 
greater, do not justify the use of any of the three 
methods; 

(2) The determination of exact expres ­
sions for parameters of exact distributions of surplus, 
deficit and range , and the fit ting of functions to exact 
distributions by the use of the above parameters, 
becomes an attractive practical solution; and, 

( 3) The data generation method, with 
large generated samples of time series of a given 
dis t ribution and a given time dependence, is the 
attractive method of obtaining the distribution s of 
surplus, deficit and range. closest to the exact distri · 
buiions. 



C HA PTER VIII 

DISTIDBUTION OF SURPLUS DEFICI T AND RANGE FOR INDEPENDENT ANp DEpENDENT 
ST ANDA RD NORMAL YA RJ ABI ES 

1. Independent Normal variables . The dis­
tribut ion of a n independent normal variable, X , is de ­
scribed by its mean j.I and its standard deviation rI o 

The surplus , deficit and range of an independent nor -
+ -

mal variable are equal to Sn ' Sn ' and Rn of the 

independent standard normal variable, X" (x - j,l) lu , 
multiplied by the standard deviation u of X, and their 
probability densities divide d by u. Therefore , it 
suffices to investigate the case of the independent 
standard normal variable to cover all independent nor­
mal variables . 

To simplify the text, the independent stan­
dard normal variable x is often designated by (0, I , 
0) , which means j,l '" 0, IJ' '" I, and Pk '" 0 (all auto­

corre l ation coe fficients are zeros) . The dependent 
standard normal variable is designated by (0 , I , p). 
with P r epresenting the time depende nc e . T he inde­
pendent normal variables are design ated by u.. , IJ' , 0) , 
with Pk S 0 for all k. The dependent normal varia ­

bles are represented by (JJ, IJ' , p), with P the symbol 
of dependence. As the surplus and deficit have the 

identical distributions for s~" - S~ of a symmetri ­

c al (0, I , 0) - variable . it is sufficient in this report 
to give only the properties of the surplus. Therefore, 

whatever is stated about S~ and S~ (Xn) is also valid 

fo r - Sn and - S~ (Xn)· 

St . This distribution is based on the concept of a 

continuously changing no r mal variable, St' as cumula­

tive sums of x . It shou ld be noted that x is sub ­
jected to a Bachelier-Wiener proces s which uses the 
distribution function that occurs in the Kolmogorov­
Smirnov theore m on em pirical distribution functions. 
He also obtained the asymptotic mean and asymptotic 
variance of the range. RC These asymptotic para-

meter values of the range. Rt , are de t e r mined as ap ­

proximations . The sum Sn can be considered as the 

value at time t. n of the continuously changing 
vari able St' and Rn the value of Rt a t t " n. 

The expe cted asymptotic range is 

E(Rn):s Z ( Z; };.{ S 1. 5958 .. .. yn e!1.6 Vn 
8.1 

and the asymptotic variance of range is 

rI ~ s var R s 4 n (In Z - ~)::.: O. Z18 n 8. Z 
n n 7 

where In is the natural log arithm, and n is any 
pOSition in a discrete s eries . Th e expressions: the 
e xpected value and the (population) mean are used in 
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this text as interchangeable synonymous terms. 

According t o W. Feller [4] , the asympto­
t ic mean and asymptotic variance for the range given 
by eqs . 8 .1 and 8. Z seem t o agree with the exact 
values computed for extreme cases. This statement 
is true when the values of xi are only t I , having 

probabilities I /Z, and n is small (6, 10 , l Z). Con ­
sidering the smallness of n, and the fa ct that the 
assumed distribution of variable [+ 1, - I] is most 
unfavorable for the approximation, according to Feller, 
the above equations appear surprisingly good. But , 
they also bear out the expectation that the ranges of 
discrete sums Sn should be smaller than those of the 

corresponding continuously varying sum, \. 

As E (S~) - -E (S~J. an~ E (Rn) " E (S~) 
- E (S~) , the asymptotic mean of Sn is 

E(S~)"~ E(Rnl" (Z: ) ~" 0 . 8 -y;; 8.3 

The asymptotic variance of S+ is 
n 

+ _ var Rn 
varSn - Z( I _pj 

n 

2 Zn(lnZ-.) 0.109 n 
1 - Pn 

8.4 

with P the correlation coefficient between S+ and 
n n 

Figure 8. 1 gives the computed values of 
P

n 
obtained by the data generation method from 

100, 000 independent normal numbers. T he points 
s how a convergence of Pn to the asymptotic value 

P
w 

" 0. 10 with an increase of n. The curve fitting 

in fig. 8.1 gives the following approximate expression 

P • 1 
n 

0. 30 fi 
rn - 0. 31 

8. 5 

with the constants O. 30 and O. 31 obtained by the least 
squares m ethod . The relationship of eq . 8.1 is 
plotted in fig . 8. 1 as a solid line. 

By using P
n 

of e q. 8.5 , the approxima­

tion of eq . 8 . 4 becomes 

var S + "0. 363n - 0.1 34 rn 8 . 6 
n 

Equation 8. 4 may be written as 

P " I ­n 

var Rn 

zvarS~ 
8.7 

The asymptotic 

The asymptotic 

variance of Rn is given by eq. 8 . Z. 

5+ was not available 
n variance of 

for this analysis. However , A. Anis [6] gives an 



Fig. 8. 1 The correlation coefficient Pn between the surplus (S~) and the deficit (s~) of an independent 

standard norm al variable, a s function of n. Points are obtained by the data generation method 
( 100, 000 independent numbers): (1) Curve, fitted to points by least squares method; and, (2) 
Asymptotic value Pn = 0. 70 for very large n. 

approximation to the 
exact distribution of 

second moment about zero of the 
s+ 
n 

2+ y? Yn , 8. 8 

As the asymptotic mean of s~ is given by 

eq. 8. Z, then by using e q. B.8 the approximate vari ­

anc e of S+ be comes 
n 

varS~ =n(I-~)- z+;ff -v-n -o.363n-1.09 Vn 
~ 7r 8 . 9 

Equation 8. 9 1s obtained by using the asym­
ptotic mean of eq. B. 3 and an approximation to the 
exact second moment about zero of eq. 8 . 8. As the 
asymptotic mean for small n (as it will be shown 
later in this text) is greater than the exact mean, eq. 
8.9 gives negative values for small n. However, the 
purpose of eq. 8 . 9 is only a derivation of asymptotic 
value of Pn. 

With eqs. 8. Z and 8. 9, eq. 8.7 becomes 

1 _ 0 . 30:G 

"" - 3 

8. 10 
(1 _~)_~ .fi_ 

T ~ 

When n is very large Pn = 0.70 , approximately. 

However, the convergence to Pen " 0.70 is very slow. 

Even for n" 144 , Pn" 0. 60. For n" 9 the value 

Pn becomes negative infinite. Eq . B. I 0 is useful 

only for its asymptotic value Pro - 0.70. Figure 8. 1 

shows that Pn converges more rapidly to the value 

Pen " 0.70 than eq. B. 10 indicates. It should be 

stressed that eq. B. I0 is derived from the approxi ­
mate or asymptotic values of variances, while fig. 
8.1 for Pn " Hnl is very c lose to the exact rel ation­

ship . 

The asymptotic distribution of range for 
any value of Xo is based on the sums 

8. 11 
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where Sn is the cumulative sum of 

or negative, and the range is 

+ -Rn (xo) • Sn (xo) - Sn (xo) 

x, e ither positive 

8 . 1 Z 

with S~ (xo) the maximum positive cumulative sum 

and s~ (xo) the minim um negative cumulati~e sum of 

Sn (xo) for n'" 0, I, Z, . .. The value Sn (x
o

) 

takes a position in ii' and S~ (xo) in iZ' when i is 

b etwee n 0 and n. These values and positions may 
be different from the values and positions of S+ and 

n 
S~ for xo· O. The approximate expected value of 

the asymptotic distribution of range Rn (xo) is 

B. 13 

where the last term is always taken positive. The 
asymptotic variance is the same as in eq. B. Z. 

H. E. Hurst was the first [I , Z, 3/ to 
develop the expression for the expected value asymp­
totic, however) of the adjusted range as 

W. Feller [4] employed other means to 
develop the asymptotic mean and variance of the ad M 

justed range of (0 , I, 0) - variable. The asymptotic 
mean is the same as in eq. 8 . 14 and the asymptotic 
variance is 

, 
(~ "i) n =='0. 07414 n==O . 074 n 

8 . 15 

Equations S. 14 and S. 15 are developed as 
approximations by W . Feller using Doob's approach 
to the Kolmogo rov-Smirnov theorem. This approach 
yields the distribution of the adjusted range for the 
continuously changing sum, 51" 

The asymptotic expected value of S~ (Xn) 

for (0 , I, 0) - variable is hali of a value given by eq . 
8 . 14, or 



8 . 16 

The coefficients of variation for both the 
range R and the adjusted range R (x) are con-

n n n 
stants for asymptotic distributions, namely, 

and 

-~ 
R 

n 

""\ r;Tr;Z 
• V---'-

.far R (x) 
'" n n 

R (x ) 
n n 

- I ~ O. Z9Z ;' 8. 17 

Equations 8. 17 and 8. 18 s how that the exact Cv-valucs 
of range and adjusted range have horiZont al asympto­
tics. The comparison of cqs . 8 . Z and 8 . 15 shows 
that the adjusted range Rn (xn) has the advantage of a 

greater sampling stability than the range Rn' Equa­

tions 8. I and 8. 14 show that the difference between 
the asymptoti~eans of range and adjusted range is 
c. Rn - 0.35 OJ n. These equations also indicate that 

the difference of asymptotic variances given by eqs. 
8 . Z and 8. 15 is l1varRn" 0. 144n. The use of asymp-

totic values of mean and variance for surplus, deficit , 
range, adjusted surplus , adjusted range and adjusted 
deficit is useful because they may be considered as 
good approximations for large values o f n. 

• 
• 

3. Exact means o f surplus and range for (0 . 
1. 0) - variable. The expected value of R for a 

n 
given n of (0, I, 0) - variable was determined by 
A . A . Anis and E . H. Lloyd (5] in 1953 as 

then, 
As 1t • 

n 

E (S~ ) 

.... rz ia n ; _ ~ V ~ !: ~ 
i - I 

~ for a (0, I, 0) 

1:n 

" i-I 

8 . 19 

varia.ble, 

8.Z0 

For n" I , eq. 8.1 9 gives E( R I) " vz-J;. F or a 
n _~ 

large n the expression z: I 1 becomes approxl-
i- I 

mately Z Vo, and the asymp totic mean of range lid 

2 Vn V2'j; which is in agreement with Feller'S re­

suits (4) an1fq. 8. I. Equation 8. 1 for n - I gives 

E(R
I
)" z 'V~, which is twice the value of eq. 8.19. 

4. Comparison of various expressions and 
methods of com utin means of ran e and ad ·usted 
rigei igure. gives t e comparison between 
E Rn values computed by: ( I ) the formula of asymp-

totic mean, eq. 8 . I ; (Z) the formula for exact values, 
eq. 8.19; and, (3) means obtained by the data genera­
tion method from 100, 000 independent numbers of (O, 
I, 0) - variable, tor various values of n . 

o~--"---,~.---~"c--,~"--;,,.--cw,,--,,.,--C'"O,--, •• ,---'<,," 

Fig. 8. Z ComparIson of means of range ( I ) Mean of asymptotic diStribution, cq. 8 . I ; (2) Exact means, 
eq . B.1 9, (3) Means deter mined by the data generation method, 1\ ; and, (4) An approximation 

given by eq. 8 . ZI, n 

For small values of n, an approximation to exact 
values is given in a recent Ph. O. dissertation at 
Colorado State University [Ii]. 

E (R)s'l/8n 1 - 1.6Vn-I. n , 8.21 

The means of eq. 8.21 are also given in fig. 8. Z, line 
(4). The differences between these mean values are 
given in fig . 8.3 . The absolute diffe rences between 
the exact values obtained by eq. 8.1 9 and the values 
of the data generation method are within the sampling 

~rrors of this latter method. The difference of the 
asymptotic mean and the exact mean of range in per­
cent of the exact mean, as given in fig. 8.4, decreases 
with an increase of n. They are rdatively high for 
values of n encountered in hydrologiC applications. 
Figure 8 . 5 gives the differences between various means 
of R in relation to the exact mean (eq. 8. 19) in per -

n 
ct'nt of the exact mean. 

In conclUSion, the above compari son indi­
cates that eq . 8. I s hould not be used for small values 
of n, even fo r n as large as 25 - 30 , because the e rror 



Fig. 8. 3 

Fig. 8 . 4 

Fig. 8. 5 

, 
___________ ~---~---iO- .. -;;---;,--.~ so ~ 

~ 

Differences of var ious means of the range: ( 1) d t 

minus exact means (eq. 8 .1 9); (Z) d z ~ I. 6...,jn -

z n _~ 

I: i or the data generat ion means • i'" I 

Z n - Ih 
Z; i , or asympt ot ic me an (eq . 8. 1) 

1f i'" I 

minus exact mean (eq. 8 .1 9; and (3) d 3 '" ( 1. 6...,jn - 1) 

8. ZI) m inus exact means (eq. 8. 19). 

z ~ i - Lh., or an approximation (eq. 
lI' i- t 

/ 
/ 

1 . 
oc---,.--;,tro---;.,-,~.--t."--""6'--""--'."o'~~ 

The relative difference. D in "10. of the asymptotic and exact mcans of range . 

Q.o, ... 

! 

j 
.,l 

The relative diffe r ence of ranges: ( I) The difference of mean obtained by the data generation 
method and the exact mean (eq. 8.19) to the exact mean, D1 in 0/0; (2.) Th e difference of 

approxim ate mean (eq. 8. ZI) and the e xact mean (eq . 8.1 9) to the exact mean, DZ in "10 . 
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at these n values is about 15 percent. Equation 8. 21 
does not have any advantage when comparing it to the 
exact mean of eq. 8.1 9. T here is one exception to 
the foregoing statement and that is that the approxi­
mate Rn values may be computed readily from eq. 

8,21 for a given n, while the derivation of R from 
n 

eq. 8. 19 is based on the computation of all previous 
Ri values . with i" I , 2, . . , • n - I. 

To the writer's knowledge, ~n e~ression 
for the exact means of adjusted range, Rn (Xn). is not 

available in the literature . Therefore . fig. 8. 6 gives 
a comparison between the following four curves of the 
expected mean of adjusted range , computed by: (I) ex ­
pression for the asymptotic mean, eq. 8.13; (2) mean 
obtained by the data generation method from 100,000 
independent normal numbers; (3) first approximation 
to the means obtained by the data generation method 

Fig. 8.6 Comparison of means of adjusted range: (1) mean of asymptotic distribution, eq. 8.1 3; (2) mean 
determined by the data generation method (100 . 000 independent number;;); (3) means of the approxi-

mation, Rn ex) " 1. 25 (Vn - I). eq . 8,22; and (4) means of the approximation 

R ex)" n n 
1i 

3 

in the form 

8. 22 

and (4) second appr-oximation to means obtained by the 
data generation method in the form 

n _ ,I 
E (i-I) 12 

i= 1 
d . 23 

For- n" 1 these two equations give HI (XI) = 0 which 

satisfies the conditions of adjusted range th at HI " O. 

~ 

eq. 8. 23. 

Figure 8. 7 gives the following relative 
differences: (1) Asymptotic mean minus the mean ob­
tained by the data gcner-atirm mdhod in per-cent of this 
latter value; (2) Mean of eq . 8 . 22 minus the mean 
obtained by the data gener-ation metllod in per-cfont of 
this latter value; and (3) Mean of eq. 8.23 minus the 
mean obtain"d by the data gener-:l.t ion m.:thud in percent 
of th is latter- value. 

Equations S. 22 and 8. 23 fit the means ob ­
tained by the data gener-alion method r-elat ively well, 
particularly for n > 10. Fo r n = 1 - 10 the lar-gest 
relative differences are not greater- than 8 percent and 
5 per-cent for n" 2, respectively fo r eqs . fl . 22andS . 23 . 

~----
" 

AR"(Rnl n .... 

1~ 
Ii' 

" 
;, 

Fig. 8. 7 
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5. Exact variances of sur Ius and ran e for 
(0, I, 0) - varalb e . nis (; gives the exact 
second moment of S~ about zero as 

"z (S+ ) '" 1 (n + 1) + n ., 
+~ 

n-2 
~ [ r' " j{i - j +l) 2. i; I )" 1 8. 24 

As n ordinates have n - I intervals. n in eq. 7. I 
of ref. (; is replaced by n - I. Using the expression 

for the exact mean of S~ . eq. 8. 20 , the variance of 
+ 

Sn' becomt:s 

+ 1 n - ' i [ t var Sn = ¥ + r. " " (j(i-j+ l) 
" i - t )" 1 

1 
(n ' )' -r. .:!: i - "/~ 8. 25 

1"1 

TABLE 

n R '" S~ var Rn n 
cg. B. 19 cg. 8. 25 e9. 8.26 

1 0 . 7979 O. 3408 0.3246 
2 1. 3621 0.5361 0 .4 364 , 1. 8228 0 . 6602 O. S l OG 
4 2. 2218 0 . 924 9 0.6809 , 2.5786 1. 22 16 0 . 8783 
6 2. 9043 1. 5387 1. 08713 
7 3. 2059 1. 867\ 1. 3025 , 3.4880 2. 2028 L 5 206 
9 3.7540 2.5438 1. 74 10 

10 4.006 3 2.8886 1. 9628 
11 4.2582 3. 2360 2. 185b 
12 4 . 488 6 3. 5855 2. 4 08 7 
13 4. 7099 3.9368 2.6321 
14 4. 9 232 4.28 95 2.8559 
15 5. 1292 4.6433 3. 0804 
16 5.3287 4.998 0 3. 304"i 
17 5 . 5222 5 .3536 3.5291 

" 5.71 03 5 .7099 3. 753\ 

" 5. 8933 6.0667 3.9773 
20 6. 07\7 6 .4241 4.2020 
21 6. 2458 6.78 19 4.4265 
22 6.4159 7 .14-0 1 4.6511 
23 6 . S823 7. 4 986 4.8756 
24 6 . 745 1 7.8575 5. 0995 
2; 6.904 7 8.2167 5. 3236 

for the variance of R n' computed by eq. 8 . 26 ; and 

(3) variances of Rn computed by the data generation 

method (IOO , 000 independent normal numbers). 

Figure 8. 9 gives: (a) difference s between 
the variance of eq. 8.2 and var Rn obtained by the data 

ieneratlon method, in percent of this l atter value; and 
(b) differences between the variance of eq. 8. 26 and 
var Rn obtained by the! data generation method, in per­

cent of this latter value. This figure shows that neithe 
the variance obtained by eq. 8.2. nor the variance 
obtained by eq. 8 . 26 fit closely the variances obtained 
by the data generation method for small values of 
n (2 - 15). 

45 

USing this expression and eqs. 8.5 and 8.7 , the 
variance of range becomes 

var R • 0.60 -,,[""; r n + t 
n Vn - 0.37 [! Z; 

1 
2. i-V. )'] 8. 26 

Table 8. 1 gives the computed values of: 

( 1) Exact values of Rn' eq. 8.19; (2) Exact values 

of Var s~ . eq. 8. 25 ; and (3) Approximations to 

exact values of var Rn' eq. 8. 26. 

6. Comparison of various expressions and 
methods of computing varianct:s of range and adJusto:d 
range . Figure!:!. 8 gives the co mparison between 
variances of Rn compu ted by: (I) expression for' th e 

asymptotic variance of Rn, eq. 8.2.; (2) expr~ssion 

8.1 

n Rn var S~ "" Rn 
eg. 8 .1 9 e9 . 8.25 eg. 8.26 

26 7.06 12 8.5760 5. 5478 
27 7.2148 8.8358 5 . 7725 
28 7. 3655 9. 2995 5 .9965 
29 7 .51 37 9 . 6555 6 . 22 10 
30 "i. 6594 10.0156 6.4450 
3! 7 . 8027 10. 3760 6. 44 50 
32 7 . 9438 10.7364 6 . 8928 
33 ~. 0827 II. 09ti8 7. 1 164 
34 8.2195 11.4575 7 . 3408 
35 8.3543 11.8184 7.5538 
36 8.4873 12. 1792 7. 7874 
37 8.6185 12. 54 03 8.0120 
3B S . 74 79 lZ. 90 14 8 . 2350 
39 8.8757 13. 2627 8. 4 590 
40 9.0018 13.6241 8.6826 
41 9. 1265 13.9854 8. 9059 
42 9 . 24 96 14.3469 9. 128 9 

" 9 . 3713 14.708 3 9 . 3530 
44 9.4 916 15.0697 9.5753 
45 9.6105 15 .4 3 12 9. 7988 
46 e . 7282 15 .7 929 10.0222 
41 9.844 6 16. 1545 10.24 52 
48 9 .9597 16.5 165 10. 4 682 

" 10.0731 16.8782 10.6923 
;0 10.1865 17.2402 10 . 9 148 

Figure 8. 10 iives the com parison between 
variances of adjusted range computed by: (1) ex­
pression for the asymptotic variance of adjusted 
range, eq. 8. I S; and (2) variance of adjusted range 
obtained by the data generation method. No expression 
was available for the exact values or approximation 
to the exact values of the variance of adjusted surplus 
or adjusted range. 

F igure 8. I I gives the differences between 
the asymptotic variance of range. eq. 8. IS, and the 
variance of adj usted range obtained by the data genera­
tion method in percent of this latter value , for n > 2. 
A comparison of figs. 8. 10 and 8. II show that the­
asymptotic variance of adjusted range does not depart 
s i inificantly from the variance obtained by the data 



Fig. 8. 8 

Fig. 8.9 

Comparison of var iances of range computed in the following ways: (1/ asymptotic variance of 
range, eq . 8 . Z; (Z) approximation to exact values, eq. 8. Z6 ; and 3) values obtained by 

the data generation method. 

,­.. 

. ~ 

• • • 

Differences of variances of range computed in the following ways: ( 1) asym ptotic variance of 
range (eq . 8. Z) minus the variance obtained by the data generation method in relation to this 
latter method; a nd (Z) approximation to exact variance of range (eq. 8. Z6) minus t he variance 
obta ined by the data generation method in relation to this latter value. 

_ R"LO"J 
• 

• 
, 

:iQ Ii R> ' 5 ~-----Jo 

Fig. 8 . 10 Comparison ot varianc es of adjusted range: (I) asymptotic variance, computed by eq. 8 . 15; and 
(Z) values obtained by the data generation method . 

. , 
Fig. tI. t 1 Difference of asymptotic variance of adjusted range (eq. 8.15) and the variance of adjusted 

range obtained by the data generation method, in percent of this latter value. 

46 



generation me thod. There!ore. the asym ptotic vari­
ance can be used in practical cases. except for very 
small values of n, such as n" 2 - 6. 

7. Skewness and excess coeffi cients o f sur­
plus . range . a djus t ed surplus and ad justed range . 
F igure 8 . i2 . upper graph. gives the skewness and 
excess coeffiCi ents as functions of n for the inde­
pendent s t andard normal variab le (0. 1. 0) fo r both The approximation var R (X ) " 0. 074 n + O. 05 

approaches better the variance o~ adjusted range ob ­
tained by the data generation method th an eq. 8. 15. 

the surplus and range. This figure presents these 
parameters as computed by the data generation method 

Fig. 8 . 12 

150 
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---,/ ',,-
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C,C.Sn(XI'I») - @ 
Cs(Rn(x"ll -- ® 
E,(SI'I(xrt>l - (l) 
Es(RI'I(Xn)] - tID 

3 

n 

~ 15 ro _ m ~ ~ • 50 

Skewness and excess coefficie nts of surplus. range. adjusted surplus and adjusted range ob tained 
by the data generation method for (0, 1, 0) - variable (100,000 independent normal numbers): 
(1) Sl;awness coeHicient of surplus; (2) skewness coefficient of range ; (3) excess coefficient 
of surplUS; (4) excess coefficient of range; (5) skewness coefficient of adjusted surplus ; (6) skew ­
ness coefficient of adjusted range; (7) excess coefficient o f adjusted surplus; and (8) excess 

coeffic ient of adjusted range . 
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(100,000 independent normal numbers) as they change value of 
with n . Figure 8. 12 leads to the following conclusions: value of 

Es '" 1 /4 and 

Es'" l IZ . 
(a) Even a sample of 100,000 is not sut· 

Cicient to produce reliable values of skewness coeCli· 
cients for the surplus and range of (0, 1, 0)· variable . 
In the c ase n " 5, there was a sample of ZO, 000 lor 
e ither the surplus or the range. 

(b) Skewness coefficients of both the sur ­
plus and the range see~s to converge to the asympto· 
tic value of about Cs (Sn) .. C s (Rn) " 1.00 fo r an in · 

crease in n. For a small n the skewness coefficie nt 
of surplus conve rges slower to C

s
• 1.0 than the 

s kewness coefficient of range. C
s 
(S~) seems to con­

verge to unity from the above and Cs (Rn) from below 

o f the asymptotic value of unity. 

(cl Excess coefficients ot surplus and 
range are less reliable than the skewness coefficient s 
for this sample of 100,000 random numbers . T he 
fact is true because the values Es (S~) and Es (RnJ 

fluctuate more around a smooth curve imagined to be 
drawn ror the comput~d values than is the case for 

+ C s (Sn J or Cs (Rn) · 

(d) It may be concluded that the excess co ­
e lficient for both the surplus and the range converge 
to the asymptotic value of Es. 1. 00 with an increase 

In n though with a slower convergency than C ; the 
+ ' Es (Sn) seems to converge to Es .. 1.00 from belo w 

and Es (R
r
) from above, opposite to the direction of 

convergence for the skewness coe!!icients . 

(e) A much larger sample than 100,000 
is necessary to obtain smoother curves of Cs • and 
Es· coeflicients . 

(f) The use of values Cs " 1. 0 and Es • 

1. 0 for deriving distributions of surplus and range of 
(0, 1, 0) · variable may be considered as reasonat:le 
approximations , even for n as small as 5 ~ 10. 

By using the best available values for ~, 
+ ( + ( + -vllr Sn' Cs Sn) " 1, Es Sn) • 1; Ro' var Rn, 

Cs (Rn) t I and Es (Rn). it is ~ossible to obtain the 

approximate distributions ot Sn and Rn' It suffices 

to use the procedures and criteria for selecting fitting 
functions when the first three or four moments , or 
their corresponding parameters of mean, variance, 
skewness and excess coefficients , are available . 

Figure 8. I Z, lower graph, gives the 
skewness and excess coefficients for the adjusted sur · 
plus and the adjusted range, obtained by the data 
generation method, as they change with n. This 
figure leads to the following conclusions; 

(a) Skewness coefCicicnts Cs[Sn (Xn)] and 

C
s 

[Rn (Xn)] seem to converge to an approximate 

asymptotic value of CS " Z/3 . 

(b) The convergence trends of Es lSn ('Rnll 

and Es [Rn (Xn)] are not as clearly indicated on fig. 

8 .1Z as are the skewness coeffiCient s . This occurs 
because the sampling e r ror associated with 'E is 
larger than that associated with Cs ' Ho wever, it 

s~em!l that Es [Sn (X) 1 converges to the approximate 
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8. Exact distr ibutions of sur Ius a nd ran e 
fo r (0, I, 0) · variab e . T e exact istri utions 0 
surplus and range lor n • 2 and n .. 3 are computed 
from the followi ng equ ations given in Chapter VII : 
( 1) eq. 7. 6 for the surplus and fo r n '" Z; (2) eq. 7.10 
for the range for n" Z; (3) eq. 7.1 5 fo r the surplus 
and n " 3; and (4) eq. 7. ZO for the range and n " 3. 
The only difference between the above equations and 
the equations used for the computation of exact dis- ' 
tributions of surplus and range of (0, I, 0) · variable 
is that the symmetry reduces the number of integrals 
in equations 7.6, 7. to, 7.15 and 7. ZOo 

Figure 8. 13 gives th~ exact probability 
densities and di stributions for Sz and R z of (0, I, 0) 

variable. F or denSities , the curves fo r the basic 
two integrals as parts 01 probability densities of R z 
are also given. The probability mass of 5; " a is 
shown on the S~. probability distribution . 

Figure 8 . 14 gives the exact probability 

densities and distributions for S; and R3 of(O, 1,0) 

variable . For densities, the basic integrals as parts 

of probability denSities of S; and R3 are also given. 

The probability mass of S; " 0 is shown on the S; 

probability distribution. 

The above distributions of S~ , Rz, 5; 

are obtained by the finite diHerences method 

of integrating the exact equations of distributions . 

The diHerences 'Here AX· AS; :: ~Z :: AS; Z AR3 

O. 10. 

9. Distributions of surplus and range of 
o O· variable obtained b the data eneration 

met O . The istd utlOns 0 s urp us and range and 
thelr parameters are computed lor (O , 1, 0) - variable 
! l."om 100, 000 independent normal numbers for the 
following n - values: Z, 4, 6, 8, 10, I S, ZO , 30,40 
and 50 . Both the surplus and deficit were computed. 
Surplus and deficit lor the population are equal be­
cause of distribution symmetry of (O, 1, 0) - variable. 
Sampling errors of the data ieneration method make 
fo r some small differences in computed values of 
surplus and de ficit. The average values of the two 
are plotted in fig . 8.15 . This figure ii~s the distri­
butions of surplus with the upper most graph for 
p • O. Figure 8. 16 gives the probability mass o f 

F (S~ • 0) for S~ '" 0 as a function of n, with th e 

lowest curve for p '" O. Values presented in these 
two figures are averail'es between those obtained for 
surplus and deficit, respectively. Figur~ 8 . 17 gives 
distributions of range, Rn' with the upper most graph 

for p sO. Figures B. 18, 8.1 9 and 8 . ZO give the 
distributions of adjusted surplus , probability mass 01 

adjusted surplus for S~ • 0, and distributions of ad· 

justed range, respectively, for various values of n 
and for p' 0 on the proper graphs . 

10. Properties of dependent var iables . T he 
distributions of surplus, dehcit and range of depend· 
ent variables may be divided into the following two 
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categories: ( 1) The mathematical model of depend­
ence of a variable m ay be expressed as a function of 
an independent variable . F urthermore, the distribu ­
tions of surplus, deficit and range o f this dependent 
variable are related to distributions of surplus, defi­
cit and range of the independent variable through the 
parameters of the dependence model. .-'\s an example. 
the dependent variable X may be expressed as 

Xi a a
1 

X
i
-

1 
+ a Z X i

_Z + Ci ' with fi an independent 

variable, and at and a z the dependence parameters. 

Then the distributions of surplus, deficit and range of 
X are related to distributions of sur plus , deficit and 
range of fi ' respectively, via parameters a l and 

a z, The same pr ocedure 1s valid for t he s t a tistical 

parameters of distl"ibutions and for the mathematical 
dependence models of surpluS , deficit and range of 
depe ndent variables; (2:) Mathematical dependence 
model of a variable is either very com plex or is given 
in an empirical form so that the above procedure, 
under ( 1) , cannot be applied. As a result, it is 
necessary to obtain the distributions and mathemaU ­
cal models of dependence for surplus, deficit and 
range by a direct method of computation. 

The general mathematical dependence 
model for those stochastic variables in hydrology, 
which are t ransformed by storage effects , is of the 
general moving average type 

Xi a bofj + b l (1 - 1 + ,., + b m (i - rn 8.2:7 

where (i ' Ci _ \, ••. , f 1- m represent the values of 

an independent variable at intervals, i , i - I , , .. , 
i -rn, either concurrent or previous to the time inter­

~:~I!bl~U~~~~r~~iCh the value Xi of the dependent 

Th e usual charact eristics of b. coeirici -, 
ent s in the case of water s torage effect s are : (a) their 
sum is unity (but not necessarily); (b) they are 
monotonically decreasing; (c) they are positive ; and 
(d) they are either finite or infinite in number (but 
in the latter case they can be approxim ated by a finite 
number of coefficientS for all practical purposes). 

Let E in eq. 8. Z1 be an independent 
variable , with the mean I.l and variance crt . For , , 
a very large sample X· F , or I.l a I.l , because , , 
m 
r b

j 
"1. This means that for a s ufficient time 

,"0 
period t he average output from a storage facility is 
equal to the average storage input. As the expected 
values of all cTossproducts l>t: p' l>t: s ""'fth p; s 

are zeros, because € i Is an independent variable, 
then 

0' 
x 0' , 8 , 28 

m 
Denote D 1 = 1 I 1: b ,l , 

j"o J 
wah D greater than unity be-

cause 

mao, or when 
m 

" 

D is equal to unity either when 

b 1 • 1. , As 0 1 > 1, then 

crx!< cr€l . The condition for D " I, or that 

m 
;!; b .t " 1, can be obtained only when the first of the 

jao J 
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dependence: 0, O. 10, 0 , lO , 0.40 , 0.60 and 0, 80, obtained by the data generation method . 

previously mentioned four conditions, o r 

is removed. 

m 
E b. 

j::o J 
I, 

The relationship oC fr / and IT x~ depends 

only on b
j 
~ coeffi cients . The factor 0 may be de­

r ived from the properties of X - series . For a X­
series generated from the independent £ - series by 
eq. 8 . Z7 . with b

j 
- coefficients satisfying the four 

mentioned conditions, the first m autocorrelation 
coefficients are positi ve . The Pk - autocorrelation 

coefficient i s 

p • 
k tTxZ(N -k) 

for N" co. 

N - k 
E 
1 

8 . 29 

Replacing X by (" - values of eq. 8. 27 in 
eq. 8.29, with the expected crossproducts of ( ­
series being zeros, and using eq. 8. 28 , then 

m-k 
E b 

J b j +k 
JEO 

Pk . 8.30 
m 
E b.' 

]'=0 J 

T his relat ion was given by Cramer in t933 . 

As there are m positive values of Pk for 

the mathematical model of eq. 8. 27. with the four 
m 

conditions for b
j 

values , and as 

are (m + 1) equations with (m + I) 

1: b .• 1. there 
o J 

unknowns: b 
o 

Theoretically, it should be possible to deter -

10 

mine all b
j 

- values from firSt m values of Pk from 

54 

the autocorrelogram . As soon as m > 2, the analy­
tical solutions (or b. as a function of Pk become 
difficult. J 

It i.s not necessary to pass thr ough b j 
values in order to derive 0 Cor some special cases. 
The use of eq. 8 . 30 gives 

m 
1: Pk· D~ B 
1 

8 . 31 

where B is the sum of all crossproducts of b
j 

values. 
A. 

"(b + b + •.. + b )1 " 
o 1 m 

m 
E 
o 

b .2 + 2 B • 
J 

the square of factor D is 

1 

D' 
+ lB 8. 32 

8.33 

To ootain the facto·r D of a t ime series 
of eq . 8 . 27 , it is sulficient to compute all Initial 
positive m serial correlation coeffic ients r k as 

estimates of Pk , 

The use of eq. 8. 33 requires computation 
of m values o l r

k
. Instead, a simple procedure, 

based on the models assumed for decr easing r k 
values may be used , 

F or all b
j 

- coefficients equal (simple 

moving average model), with j" 0 •• • ' , m , the 
correlogram decreases linearly from PI to Pm Z o . 
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F ig. 8. 20 Distributions of adjusted range, Rn ('Xn), of standard normal variables for various values of n 

and the following values of P. in the case of Markov first order linear dependence: 0, O. 10, 
0. 20, 0.40, 0. 60 and 0. 60, obt ained by the data generation method. 



For the sum • I, Dl becomes 

m 
Dl " 1 + l Z Pk = 1 + m PI 

k=o 
8. 34 

Equation 8 , 33 is valid only fo r the case in 
m 

which :z: b . - I, If this is not a case , another equa· 
j"o J 

tion must be derived for every moving average model 
m 

with Z b . ;. o. The example is the first order 
j-O J 

Markov linear model of dependence in the form 

Equation 8. 35 may be written as 

Xi " Ei + PE i _! + plE i . l + .. . 

In this case, 

ro 

8. 35 

1 
" b j = 0 J 

1 + P + pl + ... + pm + . . . " T=";-
8 . 37 

for p < I, which condition is always satisfied. 

The factor D is given by 

0' 
1 + p2 + P 

4 + ' " 
.. 1- pl 

8 . 38 

The sum, B, of all cross product s of b
J

· coefficients 

of eq. 8. 36 becomes, 

B 

ro 

" p k=1 k 

0' 

Equation 8. 28 gives 

1 
r:p 

! - p~ 

" ' x 

p 

8. 39 

8.40 

which also comes directly out of eq. 8. 35 . 

In the case the Markov first order linear 
model of the following type is used 

with .,. ~ 
x 

ro 
~ b . 

j=o J 

ro 
~ 

j"o 

".Z, then 

~(I +p+pZ + ... ) 

b.' 
J 

which also comes out of eq. 8.l8. 

-v I + P 8 .4l 
1 - P 

8.43 
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11. Distributions of sur Ius ran e ad'usted 
sur Ius and a usted ran eo epen en norma varia· 

es . Investigation probing the e ect 0 time epen­
ence on the distributions of surplus, deficit and range 
is shown here for the standard normal but dependent 
variable (0, 1, pl . Dependence is of the first order 
linear Markov model of the type given by eq. 8.41. 
Both the independent variable , E , and the dependent 
variable, X, have mean zero , and varianc es unities . 
The only difference is the degree of dependence 
measured by the first autocorrelation coefficient, p, 
as the only parameter of dependence . 

As the surplus and deficit have the same 
characteristics for any symme trical distribution, only 
the surplus and range are investigated as they depend 
on the parameter p. For comparative purpos€s , the 
characteristics of sur plus and range are given for 
p - a of independent standard normal variable (0, 1, 
0) . The following properties of surplus and deficit 
for dependent standard normal variables , for various 
values of p, are obtained by the data generatiOn 
method, by using 100,000 normal independent num­
bers : (1) Mean; (l) Mean range; (3) Variance of 
surplus; (4) Variance of range; (5) Skewness coer · 
Iicient of surplus; (6) Skewness coefficient of range , 
all as functions of the variate n and the parameter 
p . 

A clear distinction should be made for 
these two cases: ( I) Distributions of surplus and 
range of a dependent standard normal variable (0, I , 
p) are compared with the corresponding distributions 
of the independent standard normal variable (0, 1. 0); 
and (l) Distributions of surplus and range of a de ­
pendent normal variable (~ , tT , p) are compared with 
the corresponding distributions of indepe ndent stan· 
dard normal variable (0, 1, 0) . Because ". ;. 0 for 
(j..I , "., p) - variable, the distributions of surplus and 
range of this variable should be first transformed by 
multiplying S~ and Rn by tT , and di viding their 

probability densities by".. 

When a mathematical dependence model 
transforms a (0, I, 0) - variable into a dependent 
variable (0 , ".1, p) with the variance ".1, the resulting 
surplus and range are affected by two factors: 
(a) The effect of a standard deviation different f rom 
unity; and (b) The effect of dependence model. These 
two factors may pr oduce the effects of the same or 
of the opposite direction. 

For the dependence of Markov first order 
linear model, eq. 8.35 , var X is given by eq . 8.40, 
sothat var Xi>var "i ' and 

". "{ I.pZ)·I/Z ". For 
x " example, if p = 0. 8, "'x = I. 333 0"(. In this case, 

the variable x has larger values of surplus and range 
'than (, because both factors: the greater value of 
". than". and the dependence model increase t he x , 
surplus and the range of x . The case is opposite for 
the moving average type of dependence, given by 

eq. 8 . l7 . A, 1: b/ < I, eq. 8.28 gives "'xz < 

Surplus and range of the variable x are eiCected by 
two opposite forces: (a) the small value of ". x de -

creases the surplus and range of x; and (b) the de · 
pendence model increases the su rnlus and range of x 
in comparison with those of ( . Which effect is strong · 
er depends on the type of dependence model. As the 
auto regreSSive schemes can be shown in the form of 



00 > 
moving average models, the sum E bt < 1 deter­

-00 j 
mines whether var x ~ var €. as shown by eq. 

8, lB. 

T o avoid the effect of a f1 ;. I , the de -x 
pendence model used in this study is that of eq. 8 . 4 1. 
so that tT • IT • 1. To fit this case in practical ap-

x < 
plications, first the original variable, y , is standard ­
i zedsothat x.(y-p-y)/ITy ' Then p ineq. 8. 4 1 is 

estimated so that the independent variable , E:, has 
the mean zero and variance unity. 

-1 / l As f1 • (I - pZ) IT in the model of x , 
eq. B. 35, it is sufficient to multiply all values of sur ­
plus and range by f1 X and divide the i r d ensities by 

IT x' to r e duce the case of the mode l of eq. 8 .4 1 to that 

of eq. 8 . 35. 

Distributions of dependent standard nor ­
mal variables (0, I , p) are determined by the data 
generation m ethod for the dependence model given by 
eq. 8 . 41. . The following values of p were used: 0. 10, 
O. la, 0.40, 0.60 and 0.80. Figure 8. 15 gives the 
distributions of su rplus , S~ , with the case of P" 0 

included. F igure B. 16 gives the probability mass for 

S~ a 0 with the case p • 0 included. Figure 8. 17 

gives the distributions of range, R n, with the value 

p • 0 included. F igures 8. 18, 8.19 and 8. lO corres~ 
pond case by c as e to figs. 8. 15, B. 16 and B. 17. re­
spectively, but for the adjusted surplus and the adjuot ­
ed range . 

Figure 8. 2 1 gives the mean, the variance 
and th e skewness coefficient for the surplus an~ the 
range as they change both with the change of the 
variate n and the parameter p (p • 0, 0. 10 , 0, 20, 
0. 40, 0.60 and 0.80) , all obtained by the data genera­
tion method f rom l Oa, 000 numbers of t h e independent 
standard normal variable and the dependence model 
of eq. 8 . 4 1. Figure 8. ZZ gives the same graphs as 
fig . 8 , 21 , but for the adjusted surplus and adjusted 
range . The values for the surplus (or the adjusted 
surplu s) as given in fig . 8.2 1 (or in fig . 8 . ZZ) are 
the averages of two computed values: that obtained 
for the surplus and that obtained for the deficit by the 
data generation method. 

Figures 8. I I and B. II represent the re ­
sults obtained by the data gener ation method. T hese 
results contain the sampling errors . A sample size 
of N. tOO, 000 generated dependent numbers gave 
m a Ntn as the derived sample size for surplus, de­
ficit and range, for each n. For n " l , the size is 
m " 50,000. For n • 50, the Size is m " l , 000. The 
accuracy of results, therefore, decreases with an in­

. crease of n. Also, the accur acy decreases with an 
increase of the order of statistical mome nts used in 
computing the three parameters: the mean, the vari­
ance and the skewness coefficient. It is clearly seen 
from these two figures (B.lI and 8.ll) that the skew­
ness coefficients are subject to larger sampling 
errors than the mean or the variance e ven though the 
sample sizes of the above three variables are rela­
tively large for any value of n. 

The results given 1n figs . 8. l 1 and 8 .ll 
show a great effect of the dependence paramete r, p , 
as used in the model of eq. 8. 41 , on the dist r ibutions 
of surplus , range, adjusted surplus and adjusted 
range . This effect increases non- linearly with a n in­
crease of p, and the relative effect is greatest on the 
variance rather than on the mean, and the smallest 
effe ct seems to be on the skewness coefficie nt . How ­
ever, for a small n (n • l - l5) the means of adjusted 
surplus and adju sted range (see fig. 8 . ll) may be 
smaller for a large p than the means for a small p. 

Th e analytical derivations of distributions 
for surplus, deficit and range of dependent standard 
normal variables are not attempted in this study. The 
comparison of the results obtained by the data genera­
tion method and analytical approach are not therefore 
discussed in this paper. 

Hydrologic variables usually have a time 
dependence which is of various moving average 
schemes (autoregressive schemes included) . T hese 
schemes may have the sum of squar es of b j - coeffi-

cients either greater than, equal to, or lower than 
unity. The influence of the dependence generating 
process on the distribution of surplus, deficit and 
range should be studied for the following twO factors: 
(8) e I!ect of change i n the variance , obtained for the 
dependent variable by the generating p rocess in com ­
parison with the variance of independe nt variable ; and 
(b) effect of the dependence parameter or par ameters . 
The above case of the dependence generating model 
of eq. 8. 4 1 is given here to show only the latter effect 
by eliminating the effect of the first factor, or by 
keeping the vari ances unities for both the independent 
and generated dependent variables while changing 
the dependence pa rameter, p. 
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CHAPTER IX 

DISTRIBUTION OF SURPLUS, DEFICIT AND RANGE FOR INDEPENDENT GAMMA 

VARIABLES 

1. Gamma variables . A large number of 
distributions of hydrologic variables may be approxi ­
mated by gamma distributions with one, two or three 
parameters. The special form of this latter case is 
known as the Pearson Type III distribution. 

The one-parameter gamma distribution 
has the form 

p(x) a-1 -x 
x • 9. 1 

with the lower boundary zero, and unbounded function 
to the right ; a is the shape parameter, and r(a) is 
given by -

r(a) -J'" x 

o 

a -I -x • dx . 9. Z 

In eq . 9. I, the mean IJ. " a, the variance (fz" a, 
with the distribution being J - shaped for 0 < a 'S I, 
and bell-shaped for a> 1. 

The t wo-parameter gamma function is 

p(x) • a-I 
x 

-bx • 9. 3 

where b is the scale parameter, and a is the shape 
parameter, the mean /J " alb, and the variance 
(f~ " a/bz "/JIb. Equation 9. 3 may be transformed to 
a one-parameter gamma distribution by the transfor­
mation y" bx and p (y) " P (xl lb. As a result, 

p{y) " a-I 
y 

which is identical to eq. 9. 1. 

• -Y 9.4 

By using y and p (y) instead of x and 
p(x), the results of p(y) may be trans formed to those 
of p (x) by x = Y Ib, and p (x) " b p (y). This 
transformation enables the distribution computations 
of surplus , deficit, range, adjusted surplus, adjusted 
deficit and adjusted range of the two- parameter gamma 
variables from the corresponding distributions of these 
six variables of the corresponding one-param et er 
gamma variables. It is sufficient to multiply the 
surplus. deficit and range by £ and divide their 
probability denSities by £ of the one-parameter 
gamma variable to obtain the dist ributions of surplus , 
deficit and range of the two-parameter gamma varia ­
ble. The same is true for the adjusted surplus, ad­
j usted deficit and adjusted range. Therefore, it 
suffices to invesiigate the distributions of the above 
Six variables for the one-parameter gamma variable . 

60 

" 
The three -parameter gamma distribution 

p(x) " ~(x+c)a- I 
r (a) 

e -b (x+c) 9. 5 

where a and b are the same parameters as in eq. 
9 . 3 andthe third parameter c is the lower boundary 
of x. Using eq. 9. 5, the first transformation 
x + c "z reduces eq. 9.5 to eq. 9. 3, then the trans­
formation y = bz and p{y) " p{z)/b reduces it to 
e q. 9.4, or the one-parameter gamma variable. The 
variable z does not change the distribution of surplus, 
deficit and range in comparison with the variable x, 
because c is the location parameter and means only 
the shifting of distribution aiong the x - axiS. It 
follows from the given two transformations that it is 
sufficient to investigate the distribution of the Six 
variables with the one-parameter gamma variable . 

are given in Chapter VI, eqs . 
number m of independent normal standard 

variables usedin the transformation of eq . 6.1 5 to 
obtain u - variables determines the skewness of 
gamma variables. The obtained samples of inde­
pendent gamma vari ables have the expected mean 
mil. the expected variance mIl and the expected 

coefficient of skewness {8/m):h. The parameter ~ 
ofeg. 9. 1 is mIl. 

The following cases are investigated in 
order to show the influence of the skewness , Cg , on 

the properties of surplus, deficit, range, adjusted 
surplus, adjusted deficit and adjusted range of the 
independent one - parameter gamma variables: 

m 3Z 16 8 

0 . 000 0.500 0.705 1. 000 

m 4 Z 

1. 410 l.OOO l . 820 

where E (C s ) is the expected value of the skewness 

coefficient, with the expected values of all serial 
correlation coefficients zeroes , or E (rk)" Po'" 0, 

for any k f O. T his approach gives only the effect 
of the independent gamma variables with a positive 
skewness 0 ~ Cs ~ l .8 2. The same approach was 

used when developing the dependent one-parameter 
gamma numbers used in the study of simultaneous 
effect of skewness and dependence on surplus, deficit , 



range, adjusted surplus , adjusted deficit and adjusted 
range. However, the presentation and analysis of 
those results are not part of this paper . 

The gener ated samples of independent 
gamma variables for various m (or C

s
) had 100,000 

numbers . To obtain sam ples of 100,000 independent 
numbers , the t otal number of independent standard 
normal numbers was 100, 000 m . So, for th e case 
m " 3Z, it was necessary to generate 3, ZOO, 000 inde­
pende nt s t andard normal numbers in o rder to obtain 
100,000 independent one-parameter gamma numbers 
with the expected skewness coefficient 0.500 . 

(S~) for various values of s kewness of the one - para ­

meter gamm a variable . The left three graphS of t his 

figur e show the change of m ean (s~), variance 

(var S~) and skewness coefficient (C s (S~ ) or sC s ) of 

the s urplus , both as a fu nction of n, and of C s of 

the independent gamma variables . The three right 
g r aphs give the differences of values of mean, vari -

ance and skewness coeffi ci ent of surplus , S~, as 

given in the left graphs for C
s 

# 0, from the case 

Cs " ° for an independent norm al variable in per­

centage of the corresponding values of mean4- vari ­
ance and skewness coefficie nt of surplus, Sn ' for 

this C
s 

= O. The values of Cs ' given in fig . 9. 1, 

for independent gamma variables are those which 
are computed from the generaged large samples. The 
computed C

s 
values arc usually close to the ex-

pecte d values of E (Cs ) " ~ for every ~. 
T he deviations between them may be conside red only 
as sampling errors . 

The means of surplu s for various Cs 
values of independent gamma variables, as given in 
graph (I) fig. 9.1, show a rapid convergence by an 
inc r ease in n to the means of an independent s tan­
dard normal variable with Cs " 0. This independent 

standard normal variable will be designated in further 
t elct as (0 , 1, 0) - variable . T he smaller Cs of a 

independent gamma vari able, the faster is this con ­
vergence of means of surplus to those of the (0, 1, 0) ­
variable . Or, the greater Cs of an independent 

gamma variable and the smaller n, t he greater 1s 
the differe nce of its mea ns of sur plus and the means 
of surplus of (0, 1, 0) - variable. These differences 
a r e negative . 

Graphs (3) and (4) of fig . 9 .1 Show a 
slower convergence of the var iance of surplus of in­
dependent gamm a var iables to that of the (0, 1, 0)­
variab le, than in the case of m e ans . T he greater 
Cs o f a gamma independent variable for a given n, 

the lar ger becomes th e variance of sur plus. 

Graphs (5) and (6) of fig . 9 . Z show that 
the skewness coefficients , sCs ' of the su rplus for 

independent gamma variables increase with an in­
crease of the Cs - value of t hese variables in com -
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parison with C, - values of su rplus of the (0 , 1, 0)-
variable. s S 

It should b e noted that the surplus is main­
ly affe cted by t he long tail of gamma variables while 
the defic it is af fected mainly by the short tail. The 
differences in shape of these two t ails increases with 
an increa se of skewness coefficient, C s ' of inde ­

pendent gamma variables. Therefore , it is expected 
that the differences in means, variances and skewness 
coefficients of the surplus and t he deficit , both b e ­
t ween themselves and between the independent g amma 
variables and (0, I, 0) - variable, should increase 
with an increase of C s of gamma variables . 

Graphs (1) through (6) of fig. 9. Z show the 
characteristics of distribution parameters of delicit 
for independent gamma variables with variOUS skew ­
ne ss coefficients , C s ' In general, the patterns of 

change with n of means, varia nces and ske wne ss 
coefficients of de fi c it seem to be opposite those for 
the s urplus . The means of deficit, ~~, of inde ­

pendent gamma variables converge to those of (0, I , 
0) - variable by an increas e in n, though in this case 
they converge to the values which are about 5 percent 
smaller than the means of deficit of the (O, I, 0) -

variable . The variances of deficit , var S~ , of i nde­

pendent gamma variables are smaller than those of 
the (0, 1, 0) - variable ; and they increase for a given 
n with an inc re ase of C

s 
of independent gamma 

variables as shown on graphs (3) and (4) of fig . 9. Z. 
T he skewness coefficients, sC s ' of deficit of inde­

pendent gamma variables are also smaller than those 
of the (0 , 1, 0) - variable , and they also increase for 
a given n with an increase of Cs of independent 

gamma variables as shown on graphs (5) and (6) of 
fig . 9.2 . However, they s eem t o converge for large r 
values of n to C s " 1. 0 of the deficit of the (0, I, 

0) - variable . 

GraphS (1) through (6) of fig . 9. 3, show 

the mean (fin) ' the variance (var Rn) and the skew­

ness coefficient (C s ) of range as they change with n 

for various values of skewness , C s ' of independent 

gamma variables . The means of the range are clos e 
to those of the (0, 1, 0) - variable , as shown in graph 
(1). Graph (Z) gives .t.1tn between those of inde ­

pendent gamma variables and those of the (0, I, 0) -
variable in a percentage of this latter case . On the 
average . these differences are about 1 percent on the 
negative side. For large values of C s (1. 883 and 

Z. 67 3) and small values of n t he means of range for 
independent gamma variables are smaller than those 
of the (0 , 1, 0) - variable . These means converge 
rapidly with an increase in n t o the means of range 
of the (0 , 1, 0) - variable . 

The variances of range (var Rn) of i nde­

pendent gamma variables increase with an increase 
of Cs as shown in graphs (3) and (4) of fig . 9. 3. 

For small vq.lues of Cs ' say Cs = 0 - 1. 00, t he 

differences between the variances of range for inde ­
pendent gamma variables and the (0, 1, 0) - variable 
are s m all. These differences , as graph (4) shows, 
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are positive and increase with an increase of Cs ' 

while they decrease with an increase in n . 

The skewness coeffi cients (rCs) of rang e 

of independent gamma variables are greater than 
those of the (0 , I, 0) - variable. They increase I'..:ith 
an increase of Cs and decreas e asymptotically with 

an increase in n. The skewness coefficient of range 
is greatly affected by the skewness of independent 
gamma variables. 

4 . Parameters of distributions of ad usted 
sur Ius, ad'uste de icit and ad"uste r an e. F igures 

. 4, . an gIve the means, variances and skew­
ness coefficients of adjust ed surplus , adjusted deficit 
and adjusted range , respectively, for independent 
gamma variables of variouS skewness. The six graphs 
of each figure are analoguous case by case to the 
graphs of figs . 9. 1, 9. Z and 9. 3. The r e sults in figs . 
9.4 t hrough 9.6 are similar to those of fi gs . 9. 1 
through 9. 3 except that the absolute values of the three 
parameters and differences of parameters studied, 
as well as the rate of their convergence to para­
meters of the (0 , 1, 0) - variable are somewhiit dif­
ferent for the cases of adjusted surplus, adjusted de­
ficit and adjusted range. The main exceptions in 
their patterns are that the variances and skewness 
coefficients of adjusted deficit of independent gamma 
variable s (fig. 9.5) are greater than those of the 

(0, 1, 0) - variable, which is opposite from the case 
shown in Cig . 9 . Z for the variances and skewness co­
efficients of the deficit. In many cases, the differ­
ences given in graphs (2). (4) and (6) of figs. 9. 4 
through 9.6 show a small increase for a small n, 
and they decrease with an incre ase in n by converg ­
ing to the zero-diffe r ence for very large values in n . 

5. Conclusions. The above analysis points 
out the following conclusions; 

(a) T he skewness of an independent varla · 
ble has a much greater effect on the distributions of 
s urplus , deficit, adjusted surplus and adjust ed deficit 
than on the distributions of range and adjusted range; 

(b) The effect of skewness of an inde ­
pendent variable increases with an increase of the 
order of statistical moment used in computing the dis· 
tribution parameters of surplus, deficit, range, ad ­
justed surplus, adjusted deficit and adjusted range; 
and, 

(c) The effect of Skewness of an inde­
pendent variable on the properties of distribution of 
these six variables, and particularly on the means, 
may be neglecte d only when simultaneously the skew­
ness coefficients are small and the values of n are 
large. 
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