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ABSTRACT

Surplus is defined as the maximum positive sum, deficit as the minimum
negative sum, and range as their difference (or the sum of their absolute values)
on a curve of cumulative deviations for a given subseries of length n. Several
types of surplus, deficit and range are defined depending on the base variable
from which the cumulative deviations of a variable x are obtained, especially
for the base value X, and the changing value X, for subseries (adjusted surplus,
adjusted deficit and adjusted range). An attempt is made to systematize the types
of storage equations. The application of surplus, deficit and range in hydrologyis
discussed. Storage problems and the use of surplus, deficit and range in analyz-
ing these problems are viewed from the three approaches: empirical method,
data generation method and analytical method. Properties of these three methods,
as applied to the surplus, deficit and range, are investigated in detail. Smooth-
ness in results of the latter two methods in comparison with the first method
should not be mistaken for increased information. The three methods are com- -
pared on the bases of the Rhine River's annual flows.

The distributions and the parameters of distributions for the surplus,
range, adjusted surplus and adjusted range of independent and dependent normal
variables are investigated by: the analytically derived expressions or by exact
distributions; and by the data generation method in obtaining samples generated
of 100, 000 independent and/or dependent normally distributed numbers.

The effect of dependence in time series on distributions of surplus,
range, adjusted surplus and adjusted range is studied for the Markov first order
linear dependence model of a normal variable, with both the independent and de-
pendent variable having means zero and variances unities. The statistical para-
meters of distributions of surplus, range, adjusted surplus and adjusted range
change significantly with an increase of the dependence parameter of this model.

The effect of skewness of basic variable on the statistical parameters
(mean, variance, and skewness coefficient) or surplus, deficit, range, adjusted
surplus, adjusted deficit and adjusted range are investigated for in\?_q?endent
gamma variables with skewness coefficients ranging from zero to The effect
of skewness is larger on surplus, deficit, adjusted surplus and adjusted deficit
than on the range and adjusted range, The effect increases with an increase of
the order of statistical moment used in the computation of these parameters.

xi



THE APPLICATION OF SURPLUS, DEFICIT AND RANGE IN HYDROLOGY

By: Vujica M. Yevdjevich#*

CHAPTER 1

INTRODUCTION

1. Time series. A sequence of observations
on a quantity in time is a time series. If the quantity
under observation is symbolized by X, its value at
time t is designated by Xt‘ In the probability theory

of time series, each Xt is considered as a stochas-

tic variable. In this case, the time series is also
called a stochastic process., If Xt is defined for all

t in an interval a< t < b, it is called a continuous-
time process. On the other hand, if Xt is defined

only at discrete times tyo ty wun, itds called adis-
crete-time process. In many practical situations Xt

may be a continuous-time process but is observed at
equally spaced intervals of time, giving a sequence
X,y XZ;_\.‘ «es » Or, the average of X, overa period

s is calculated giving the sequence of means: X,, X, ,

++. 5 Where 4, 24, 34, ... , denote the successive
equal intervals of time.

A great many hydrologic variables are ob-
served or derived as time series. Properties of
these series are of ever-increasing significance in
planning, designing and operating water resource pro-
jects. Hydrology places emphasis on techniques avail-
able for the analysis of time series, and potential
techniques which can be developed for general or spe-
cial problems. This paper deals only with a particular
definition of discrete-time series or with those con-
tinuous-time series which are made discrete. Dis-
crete-time series will be defined later in this text.

The maximum surplus, the maximum de-
ficit, and the maximum range for a time series from
time 0 to iime t may be defined in various ways,

In this paper these factors will be defined as the maxi-
mum value, the minimum value and the difference be-
tween the maximum and minimum value on the cumu-
lative curve. This curve reflects the cumulative sums
of deviations of a variable from a defined value, from
a changing parameter or a function of time, for a
given length of a time series. Detailed definitions of
maximum surplus, maximum deficit and maximum
range are given in Chapter II. Even though the study
is limited to the analysis of surplus, deficit and range
as they apply to a hydrologic time series, the results
and techniques given here apply to fields other than
hydrology.

2. Techniques for analysis of time series.
Theory of probability, mathematical statistics, sto-
chastic processes and other fields of mathematicsare
among the many techniques used for the analysis of

stationary time series. Of these techniques the most

# Professor of Civil Engineering, Colorado State
University, Fort Collins, Colorado.

commonly used are: harmonic analysis (based on
Fourier series); serial correlation analysis; power
spectrum analysis; analysis by surplus, deficit and
range; analysis by runs; and others. Describing
time-dependent stochastic processes by developing
mathematical models (linear or non-linear) is pre-
sently the best method of analyzing hydrologic time
series, These mathematical models are developed
with statistical inference of parameters estimated
from available samples.

This paper is concerned with the proper-
ties of maximum surplus, maximum deficit and maxi-
mum range. Specifically, it deals with their distribu-
tions, starting from the probability distribution of a
variable and from the mathematical model of depen-
dence in the corresponding stationary time series.

3. Terminology related to the analysis of
surplus, deficit and range. A time series may only
have a deterministic component, which consists of
either cyclic (or combination of cycles) or of trends
(and jumps), or it may have only a stochastic com~-
ponent. Or, it may be a combination of deterministic
and stochastic components. If a hydrologic magnitude
is cumulative in nature, and has a substantial sto-
chastic component, the theory of stochastic processes
may be applied to determine the probabilities of water
surplus, deficit or range (or storage). Determina-
tion of these probabilities must be based on a given
inflow regime into the storage space and a given out-
flow regime. When the stochastic theory is applied
to waiting lines (especially human lines), the methods
developed for the probability distribution of the ac-
cumulated line are encompassed by the theory of
queues (often called the queueing theory, or queueing
process and bulk service). When the stochastic term
is applied to inventory or production problems,
methods of computing the surplus, deficit or storage
are called the inventory problem, theory of provision-
ing or probability theory of storage systems. Tech-
niques developed when applying the stochastic term to
water surplus, deficit and storage in lakes and re-
servoirs are usually called the probability theory of
reservoir storage, storage problem, probability
theory of storage system, dam theory (where the word
"dam'' replaces the word "'reservoir storage'), or
theory of dams.

Generally when studying accumulated de-
viations as part of the stochastic process theory, the
following terms are used: partial sums of a finite
number of variables (independent normal or any
other), sums of independent or dependent random
variables, and maximum ranges. As this problem of
accumulated deviations has many applications, the
terms "maximum surplus," '"maximum deficit" and
"maximum range' or simply, "surplus,' 'deficit"



and ''range' are used here exclusively.* It covers
most of the techniques which are encompassed in the
probability theory of storage systems.

4, Short historical review. Contributions to
the analysis of maximum surplus, maximum deficit
and maximum range by various authors as applied to
water resources problems are not summarized in this
introduction. However, the basic ideas and mathe-
matical expressions developed by some authors are
given and discussed in the following chapters of this
paper.

W. Rippl [1], in 1883, first used cumula-
tive curves (mass-curves) of river flow to determine
the capacity of storage reservoirs for water supply.
From that time until the present, mass-curves have
been used extensively when designing storage reser-
voirs, and many particular variations of the method
have been developed. The following is an example of
the application of mass-curve: Assume that the river
flow for each year should be regulated to the mean
flow of that particular year. The mass-curve for that
year will produce the necessary storage or range.

% The definition of this range should not be confused
with the concept of the range as the difference Xmax-
Xmin in a sample of size N of a variable X,

For N years of observations there are N values of
range. These values then represent a new sample
that supports the study of the probability of range.

5. Subjects of this paper. The various and
detailed definitions of maximum sum (surplus), mini-
mum sum (deficit) and maximum range are elaborated
on in Chapter II. Chapter III deals briefly with the
applications of surplus, deficit and range as techni-
ques of the probability theory and mathematical statis-
tics for the analysis of hydrologic problems. This
study probes general and particular cases of the dis-
tributions of surplus, deficit and range, for given
properties of a variable (the probability density func-
tion and the mathematical model of dependence in
time for a stationary time series). These cases are
outlined in Chapter IV and treated in subsequent chap-
ters.

In this study the analysis of surplus, defi-
cit and range refer only to the population (universe) of
a variable, This study does not deal with the statis-
tical inference about the properties of the population
starting from the available sample. However, in
many cases distributions of statistical parameters,
as summarized from available literature, or devel-
oped in this paper, enable the statistical inference to
be carried out.



CHAPTER II

DEFINITIONS OF MAXIMUM SURPLUS, MAXIMUM DEFICIT AND MAXIMUM RANGE

1. Cumulative series of a variable., Let X

1’
XZ' ... , be a sequence of non-negative random var-
iables. Let forn=1, 2, ...
Cn=X1+X2+"‘+Xn 2.1

with Cn < Cn+1‘ and with the understanding that
C0 =0 for n=0. For river flows, Xi may re-=
present the total flow for the i-th year, and Cn the

cumulative flow for all the years 1, 2, ... , n. Let
the sample size consist of N values, while n is a
variable number, and let

N C
= _ L & N
X—N = }sl- N 2:2

If in eq. 2.1 each X, is replaced by X,
then cn(:?q=n5§, O TS by Bhwees MG IEAX 18
the average annual outflow, Cn (?{) represents the

situation of a constant outflow for a period of n
years, equal to the average outflow.

Figure 2.1, (1), shows an example of
cumulative sums Cn as it changes with n for a

sample of size N. The straight line C_ (X) is also

plotted on this graph, (2}, For n =0, C, = 0.

In this study the cumulative series of a
variable, and the discrete-time series are defined in
a particular manner. A hydrologic process of
flow or precipitation is a continuous-time series
(zero values included). By selecting a unit period,
At, (day, month, year),the sequence of the total or
average flow or precipitation for this unit period
forms a discrete-timme series. Authors approach
this case several ways in literature. Some authors
replace the continuous process by point values. For
example, Moran [8] considers the annual inflows in-
to reservoirs and outflows from them as concentrated
values at points, or as instantaneous values at given
time intervals (end of years). Similarly, Anis [6]
considers that the cumulative series Crl of a varia-

ble does not start at zero but as Xi. The definition

of cumulative-time series in this text is based on the
assumption that the flow or precipitation within a
selected unit period (day, month, year) is uniform.
This uniform value produces the same total value at
the end of a unit period as the actual non-uniform
flow or precipitation. In other words, if an annual
value of non-uniform river flow or precipitation is
Xi’ it is assumed when defining the cumulative

series of X that Xi is obtained from a uniform

flow or precipitation inside the unit period. By this
definition, Cn =0at n=0(ort=0), and Cn = Xy

at n =1, Practical application of this assumption
makes Cn a continuous series in the form of a poly-

gone with breaking points at 0, Xi’ G g Xn, and

not as pure discrete ordinates. The selection of
n=0 or t=0 (initial time) is necessary to any re-
gulation problem, and from that point the accumula-
tion of input and output is usually counted.

In this study the values n and N do not
represent the number of ordinates in a sample of dis-
crete time series. These values do represent the
number of unit periods at for which the variable
values are computed, either as total sums or as mean
values. When considering a time unit of one year,
at, river runoff is the mean or the total annual flow
representing the variable values, and n or N are
numbers of years. In this way (n + 1) ordinates have
n unit periods. This fact should be remembered
whenever comparing the results and formulas of this
study with those which consider n as the number of
discrete ordinates.

The difference between X, and a given con-
stant, Xo’ given as AXi = Xi = Xo‘ is the deviation

or departure of X, from X, It is to be noted that

N N
? AXi= Z}s - NXO,
i=1 i=1

and this sum is zero if and only if XO =X. The
cumulative sum of deviations from Xo is defined as

n n
Sn(Xo) = ‘_2 aKi = %.“ Xl * nXO =Cn = nXO,
i=1 i=1
P
for n=1, 2, ... , N, and for completeness also

SD (XO) =0 for any X If a reservoir has a con-

stant outflow, Xo’ and random inflows Xi’ };2, P

then Sn (XO) denotes the total water storage after n
years, with surplus of storage if S, (XO) > o0, and
deficit of storage if Sn (Xo} < o.

Two methods are used when plotting cumu-
lative curves: (1) Cumulative sum of the variable,
C,. asinfig. 2.1; and, (2) Cumulative sum of de-

viations, Sn (XO), from a selected constant value
Xo' Usnally, this value Xo is the mean for the

total period of observations as shown in fig. 2. 2,
upper graph, or it is a variable parameter. The
second method of representation is preferable from
the standpoint of accuracy and ease of graph mani-
pulation. Even though this fact is known, this study
employs both methods of plotting (as in figs. 2.1 and
2. 2) for the purpose of defining various types of
surplus, deficit and range.

The basic value Xo from which the devi-

ations are calculated can be considered either as
independent or dependent on the sample values, If
the release of water Xo’ from a reservoir, is
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Fig. 2.1 Definitions of surplus, deficit, range, adjusted surplus, adjusted deficit and adjusted range, as
well as of surplus, deficit and range for any base value Xo and any variate value n: (i) Cumula-

tive sum Cn of the variable X; (2) Cumulative sum of constant value X, given as Cn X) =nZX; (3)
Cumulative sum of constant value XO, given as Cn (XO) = nXO; (4) The change of the range, Rn’ as

n increases from 0 to N; and, (5) The change of the adjusted range, Rn (in), as n increases from
0 to N.

PR 1 Poogl o Ll L L

o 0 Es) 0 ——=5 a0

Fig. 2.2 Cumulative sums, S; (Xo}‘ of deviations aX, =X, -X_ for five values of X (upper graph) and the
sequence of range, Rn (Xo)’ as n increases from 0 to N, for five values of XO (lower graph); (1)
Cumulative sum, S (X); (2) Cumulative sum of X; (3) Range, R, asn increases from 0 to N;

(4) and (6) Cumulative sums of (Xi -X ) with X < X; (5) and (7) The change of Rn(XO) as n increases
from 0 to N for X _< X; (8) and (10) Cumulative sums of (Xi -X,) for X0>-}E; (9) and (11) The change
of Rn (Xo] as n increases from 0 to N for XO>}_§. The graphs refer to the relative values Xi =

Vi /¥ (V = annual flows and V = mean annual flow) of the G6ta River in Sweden for N = 150.



prescribed in advance as a constant, then XO is in-
dependent of Sn (Xo}.

function of time, but still independent of Sn {XO). In

Furthermore, XO may be a

other words, the outflow regime is independent of the

inflow regime and the storage in the reservoir (volume

or elevation of stored water). If Xo is a function of

the inflow regime, or of the water stored in the re-
sevoir, then X  is dependent on Sn {Xo). In prac-

tice, the outflow is a function of the water stored in
the reservoir, the predicted future inflow and the
water demand. Thus, the outflow varies either con-
tinuously or discontinuously with time,

~ This study probes the simple case of a
constant X either for the length N or subsamples
n. The two cases: (a) Xo changes with time inside
a given n, and is independent of Sn (XOJ; and (b) . 98

changes with time and is a function either of inflows
or of Sn [XO}, as further generalizations, are not con-

sidered in this paper.

In this study a time series of sample size
N is used for various definitions. Definitions also
refer to an infinite stationary time series of a varia-
ble X, with the mean u. In this case X should be
replaced in definitions by the population mean u.

2. Definition of maximum and minimum sums
of deviations, The sequence of the sums of the devia-

tions of X; from X : SO(XOL si(x Vi w8 X 3 ‘

o] n'o
for each n, has a maximum and a minimum value.

Let

st (X,) =max[S, (X)) =0, S; (X ), ...

: .8, (X )]

n" o
2,4

as the maximum of the sums of the deviations, and

JEOE )y e 8, (00

o o}

Sn (XO) = min [So (X
as the minimum of the sums of deviations. The pro-
bability distributions of these two parameters depend
on the joint distribution of (X, X,, ..., Xn}, or in

the case of stationary time series on the distribution
of the variable X and iis patterns in time series se-
guence.

It is obvicug from the above definitions

and S (Xo) =0 that S (XO)E 0, and S (XD} < 0.

-1 N - S R -

If X =N = X, =X, the sums S (X) and S_(X)
] Sy L n n

will be simply denoted as S: and S;;‘ The variable
SI;i {Xo) will be called here the maximum surplus,
and the variable Sn (XO} the maximum deficit, for a
given XO and n.

Another method of defining and calculating
the maximum and minimum sum of deviations, for

each n, is to take deviations from the mean of the
first n wvalues. Thus, let

n
S X, n=l, 2, cu. 2.6
i=t !

o

1
|

and let
— j —

SJ (X’n} = i?i {Xi = Xn) i
with j=0, 1, 2, ..., n. For example, if n = 3,
then S. (X ) is

i n

Sy (Xj3) =0

Sy (Xy) =Xy - X4

5, (X5) = X, +X, - 2X,, and

SB(Xs) =X1+X2+X3- 3X3=0.

It is obvious from the definition of }_in in eqg. 2.6 that
Sn (Xn) = 0. From the double sequence Sj (Xn),

J=1, 2, su.smyand n=1, .2, ...
sum of deviation is

, the maximum

S, (Xn) = max [0, Sy (Kn). S, (Xn), S 5 Sn-i(Xn)" 0]
2.8
and the minimum sum of deviation S;l (?n} is simi-

larly defined. This maximum sum is called the ad-
justed maximum sum or the adjusted maximum sur-
plus. The minimum sum is called the adjusted mini-
mum sum or the adjusted maximum deficit. W. Fell-
er [4] called the difference of these two sums the ad-
justed maximum range which is defined later in this
text.

3. Definition of maximum range for a constant
value XO. The maximum range for a given constant

value XO iz defined here as the difference between

s, (X,) and S/ (Xo), or

G pe
R, (Xo) =5,

(XD) =8 {}“o)‘ 2.9
with R {XO) as a non-decreasing function of n, for
a given sample N, or

0< R, (X)) <R (X,), for all n. 2,10

n+i

By definition R (X )=0. For n=1, 2, ... then

o

+ o +

s {Xo) =max [0, S; (X)) -.., S 4y XJl =z
> max [0, S1 (XO), s Sn(XO)] = S; (Xo)’ and

n+1i ( Thus,

similarly S XO) < 5;1 (XO).
Fox0) -8 ) TR -5 (%)
n+1 o) n+ti 7o’ = "n*o n'o

R_(X).

n o

R (Xo) =S

n+1

The properties of R (Xo) for a variable X, there-
fore, depend on n and XO. There must be a dis-
tinction between n and Xo. This distinction is

necessary because both factors can be considered as
changing parameters or variables (XO can take any

i i a
value from er to Xmax while n can take on

n
only discrete values of integers). To fulfill this



requirement n will be referred to as a variate.

Figure 2.1 shows the sums of the variable

X, as well as the increase of range R_(X ) Withn, (4).

It does not show the distribution of Rn (Xo]'

4. Definition of maximum range for the

special case Xo = X. Taking X = mean of the

available sample size N, as a special value of X ,
then 2

Ly b
The values S: and S; are the maximum and mini-
mum values of the sums S (X) in a subsample of

size n, where S_ (X) is determined by

5,(X)=C_ -C (X)=C, -nX 2.12
as shown in fig. 2.1, or as
) = o B
8, (X) =8, (XOJ N Sy (x,) 2,13

_Figure 2.1, (4), shows the maximum
range R (X) as it changes with an increase of n.

Figures 2.1 and 2, 2 show only how numerous varia-
bles in the form of sums, maximum surplus, maxi-
mum deficit and maximum range change with an in-
crease of n. If a series of sample size N is divided
into m parts or subsamples, each with the length n,
and if for each subsample the corresponding statistics
are determined for a given X _, X or Xn, then m

values for each of these variables are obtained, This
enables the determination of distributions and pat-
terns in sequence of these statistical parameters.

Figure 2.2, (1), shows the cumulative
sum of deviations

s, (®) =3 (X, -%)

for annual flow of the G&ta River in Sweden for the
period 1807 - 1957 (150 years). It is given as
S, (X)/X, where X = V is the average annual flow.

The computed values Sn (X), or any other 8‘1 {Xo),

; _— e - = :
as well as the statm‘ucs_ S, [}.o), S, (XO_)-, and R ‘\XO}
must be multiplied by V (in this case V = 16.2 in
109 m3) in order to obtain their values in cubic
meters.

In this study the maximum surplus, maxi-
mum deficit and maximum range, which correspond
to X, = X, are called surplus, deficit and range, re-

spectively. When these terms refer to range for X{3

an understanding is that the terms always mean
maximum surplus, maximum deficit and maximum
range, respectively, for a given X_:

The range R (X) represents the storage

capacity necessary in a reservoir, if the fluctuations
of flows could be suppressed for a period of n time
units. The expected value of R (X)increases with

an increase of n. Also, the range according to

H. E. Hurst [1], [2] and [3] can be conceived as:

(a) the maximum accumulated storage when there is
no deficit in outflow (for the outflow equal to the mean),
with Rn = S;, as the range is equal to the surplus;

(b) the maximum deficit, when there is never any
surplus with R = Sn or the range is equal to the

deficit; and, (c¢) the sum of accumulated surplus and
accumulated defig:_it, when both surplus and deficit

exist, or Rn = Sn = Sr'l. The same concept is valid

for any value of X with a constant outflow X which

creates either a maximum surplus, a maximum de-
ficit or both. It should be pointed out that in case of
a deficit SI-I (Xo} the constant outflow Xo can be

supplied downstream during n unit periods only if
there is an equal or greater surplus stored from the
previous unit periods.

5. Definition of maximum adjusted range.
The range for a given n is defined as

R (X) =8 (X)-8 &) 2. 14

where '}En is the mean for the particular length of

n unit periods. W. Feller [4] entitled this range the
maximum adjusted range or simply the adjusted
range. For any subsample of length n with n < N,
the mean is Xn’ and considered a sampling statistic.

The sums of deviations, when Xn is determined

for any period of n time units, may be obtained by

S, (Kn} =C, - C (Xn) 2. 15
_ The last value in fig. 2.1, (4), point D',
is RN (X) of eq. 2.11, and is also the adjusted

range for n= N, As X is also the mean for the
points A, B, and C, the values of range from line
(4) are at the same time the values of adjusted range,
points A', B' and C' of line (5).

6. Comparison of the three types of surplus,
deficit and range. The expected values of surplus,
deficit and range increase with an increase in n for
a given constant value of XO. However, the expected

change of these values for a given n with a changing
XO is somewhat different. For instance, if XO =0

the ranges are equivalent to the values of C_ of
cumulative sums, fig. 2.1, (1). This equality is due
to the fact that S;l (XO = 0) is always zero and

g

“n

Xo = 0) increases steadily as n increases and is
equal to Cn' When XO increases toward the popu-

lation value u (estimated by X) the expected value of
the range decreases as the difference u - X de-

creases for a given n. This difference results
primarily from an accumulated surplus, because the
deviations, Xi = Xo’ are more positive than nega-

tive for Xo < u. When Xo is very close to the

population mean u, the expected value of the range
for a given n is a minimum. When XO increases

beyond the value of u, the expected value of the range
for a given n increases in comparison with the
corresponding expected value of the range for p.

The negative deviations, Xi = Xo’ appear more fre-



quently and are of greater absolute value than positive
deviations. They are responsible for an accumulated
deficit. If Xo still increases and approaches infinity,

the expected value of the range also increases toward
infinity for a given n.

Ranges are gwen in fig. 2.2 for five
values of X : X, and X {smaller than XJ, X, and

X5 and X, (greater than X). The cumulative sums

of the deviations of X from these five values are
given in fig, 2.2, lines (4), (6), (2), (8) and (10).
Ranges as they increase with an increase of n for
each of these five values of X, are also seen in fig.

2,2, lines (5), (7), (3), (9) and (11). The range for a
small n in a particular sample may be greaterthan
for a larger n becausc of sampling fluctuations.
This difference for small and large n results from
a large variation of range about its mean. WVariations
may be such that for a short time series the range for
Xo + X can be smaller than that for XO = X, Tig,

2.2, line (11).
Figure 2.1, line (5), shows the adjusted

range as n increases from 0 to N, There is one
difference between the adjusted range Rn (Xn) and

the range R, as n increases from 0to N. This

difference is that for a given sample the former is
without sharp steps and can either increase or de-
crease with an increase of n, whereas, the latter
can only increase. Figure 2,1, lines (4) and (3),

give this comparison of range and adjusted range.

Sn(X)

A

—~ ot

X X

=

o o

o Xn#O
X=0 y

Figure 2.3 gives in a simple way the de-
finitions of the following variables: (1) the sums of
deviations }& - X, line (1); (2) the X - sum represented

by the line (2}, (3) the X - sum, line (3); and (4) the
XO - sum, from 0 to N, line (4), The nine values are

shown in the figure: surplus, S: = S; (X); deficit,

S; - (T{)- range, R_ = (}_i)- adjusted surplus,
S; (i } djusted deficit, S (X }; adjusted range, R
R, {}_& ); surplus for X, (X }, deficit for X,

Sr-1 (X } and range for X R (XO).

1f the range and the adjusted ranges are
divided by any value XL’ they become the relative

ranges. If these values are especially sclected to be
X, or X, or Xn, then the ratios R f); R (‘{ };’X

Rn( n)fX, Rn (En)f}xn or similar '3..":. (,dAlu, rela-
tive ranges, The relative ranges Rnﬁi for the annual

flows of the Gota River arc given as line (3), fig. 2. 2.
The other lines, (5), (7), (9) and (11), fig. 2.2, arc
given as relative values R (x }D& If ihe variable

X is standardized with f,h{. new var.-abﬁr- x = (X=-X)/s,
then the range refers to a sample with a2 mean of

zero and a standard deviation unity. In the above ex-
pression s = standard deviation of X for the sample
of size N.

e !

Fig. 2.3  Definitions of surplus, deficit and range: (1) The cumulative sum of deviation, X (X. - X);

(2) The sum zero of X =0; (3) The sum of }_(n; (4) The sum of X,
S

+ = + .
S, (Xp)s 8 (X )58, .

1

+
The nine values: Sn

(}_§ )s r-i (XO); and R, R (}_in), R {XO} are shown in the figure,



CHAPTER III

APPLICATIONS IN HYDROLOGY

{. Cumulative magnitudes, Generally it is
feasible to apply statistical parameters in the form of
surplus, deficit and range to any physical magnitude
which can be accumulated in a given space, such as:
heat, kinetic energy, water vapor, water, water
moisture, sediment, mineral content in water, oxygen
content in water, pollutents in water, biological
matters in water, etc. Thus, any hydrologic magni-
tude of a cumulative nature may be analyzed by surplus
deficit and range. It is feasible to investigate stor-
age problems with this type of analysis when the
following three factors are involved: (a) the charact-
eristics of the storage space {storage response to in-
flow and outflow); (b) input or inflow inio the storage
space; and {¢) output or outflow from the storage
space.

low regulation by storage volumes is
one of the basic hydrologic problems. The impor-
tance of this problem warrants the following discus-
sion on stochastic problems in design and operation
of reservoirs. However, the surplus, deficit and
range approach can also be used for the analysis of
hydrologic time series without referring to storage
problems.

2. Independent and dependent reservoirs,
A storage reservoir which is operated independently
of any other reservoir is called an independent re-
servoir. If its design and operation are dependent
on other reservoirs, it is called a dependent reser-
voir. Dependent reservoirs are of these three gen-
eral types: (a) Inflow depends partly or wholly onthe
regulated outflow of upsiream reservoirs; (b) Out-
flow is governed by joint operation with upstream and
downstream reservoirs; and (c) Outflow is affected
by reservoirs in adjacent or distant river basins; or
combinations of these three types.

Surplus, deficit and range may be used to
analyze stochastic design problems of independent
reservoirs or of those dependent reservoirs whose
characteristics of eventnal dependent inflows and/or
imposed cutflows by the other reservoirs are known
or prescribed in advance. Complex stochastic pre-
blems in design and/or operation of a system of de-
pendent reservoirs and their solution represent a
further generalization in the application of surplus,
deficit and range. However, solutions of stochastic
problems of individual reservoirs give the basiceic- |
ments in design of a system of reservoirs.

3. Basic storage equation., The basic clas-
sical continuity equation in the design of reservoirs
is

I =3 3.1

with I = inflow, O = cutflow, and S = change in re-
servoir storage,in a given time interval T. Neglect-
ing both the groundwater portion of a predominantly i
surface storage reservoir and the seepage out of the
reservoir: but including the evaporation from the re-
servoir and the sedimentation of it and passing to the
rlr&lltes of inflow, outflow, evaporation and storage
inen,

(o

ds 5

P,-Q-E = F

T

with Pt = inflow rate, which is a stochastic variable;

Qt = outflow rate, which is also a stochastic variable;
Et = evaporation rate from the reservoir, which is
also a stochastic variable because it is dependent

on the climatic stochastic movement, and reservoir
surface, The last term in eq. 3.2 is the rate of change
in stored water. Storage volume of a reservoir, S,

is a function of both the reservoir elevation, H, and
the time, t, and it can often be approximated by

s=ag™ 3,3

with a = ¢ (t) and m = f(t) as functions of time. The
inflow of sediments into a reservoir is a stochasiic
variable, Thus, a and m are stochastic variables.
The basic input-storage-output relationship of flow
regulation by reservoirs, presented by eq. 3.2, isan
ordinary differential equation of stochastic variables.
By introducing the functions a = ¢ (1) and m = f(t)
into egs. 3.2 and 3.3, ¢q. 3.2 become s a partial dif-
ferential equation of stochastic variables.

Storage capacity, S, of a reservoiris a
It is a stochastic variable because

m
Bp=a (Hmax Hoin and Hin
are the maximum and the minimum reservoir heights,
with a and m stochastic variables. Practical
applications allow the above variables to be neglected
under the following conditions: (a) If the average
annual evaporation E, from a reservoir is small in
comparison with the average annual inflow and out-
flow; and (b) If the sediment inflow is small in com-
parison with the finite storage capacity. In this case,
the stochastic variables in egs. 3.1 and 3. 2 are the
infiow and the outflow and storage volume. The
water storage problem of the reservoir can be de-
scribed by stochastic variables and their parameters.

finite value,

m
), where Hmax

4., Change of characteristics of inflow and
outflow with time. The inflow changes with time be-
cause of natural fluctuations. However, its mean,
variance, skewness coefficient and time dependence
may change with time because of various changes and
developments in the river basin. These changes can
be assessed, but usually with a small amount of
accuracy. This fact limits the insistence for excep-
tional accuracy in determining parameters of inflow
as a stochastic variable.

The outflow changes with time because of
unavoidable changes in objectives of storage use and
because of influences by various river basin develop-
ments. Personnel that design and operate reservoirs
must solve an ordinary differential equation with sto-
chastic variables which are nonstationary. These
variables are not stationary because of evolving con-
ditions in the environment. This complexity explains
why there are so many approaches to solving sto-
chastic problems in the design of reservoirs.



5. Methods of solving stochastic problems in
design of reservoirs. Approaches currently used in
solving stochastic problems in design and operation
of reservoirs may be classified in three large groups:

(1) Empirical method. This method
uses mass curves of available flow time series tode-
rive various variables associated with storage.

(2) Data generation method. This method
solves stochastic storage problems by generating
large samples of data. Statisticians call it the Monte
Carlo Method. Hydrologists denote it as synthetic
hydrology, simulation, data generation, or operation-
al hydrology. The data generation method uses ran-
dom numbers of one or several variables (normal,
log-normal, gamma, or other theoretical distribu-
tion functions; or empirical distributions), with the
stochastic dependence process or cyclic movement
superimposed. Final treatment of generated samples
is similar to the empirical method.

(3) Analytical method. This method con-
consists of mathematical derivations of exact proper-
ties for various variables related to storage prob-
lems, Difficulties in integrating exact distribution
equations and sequence patterns in a time series
usually lead to the application of @ numerical finite
differences method.

This paper deals with the application of
these three methods in analyzing storage problems by
the properties of surplus, deficit and range. Poten-
tials and limitations of these methods are of signifi-
cance when applied to the water resources field in
general, and storage problems in particular.

6. Variables which describe natural flows.
The instantaneous discharge is the basic stochastic
variable in describing river flows. However, the
daily, monthly and annual flows are used as variables
in practical problems. Properties of instantaneous
inflow may be considered as approximated by proper-
ties of daily flows.

Annual flow, as a stochastic variable, re-
moves the cycle of a year and any of its harmonics.
Recent investigations by the writer [9, 10] on a large
number of river gaging stations resulted in the con-
clusion that there is no evidence of cycles greater
than a year in the sequence of river flows. However,
the change in water carryover in river basins from
year to year creates a dependence in time series of
annual flow, This dependence can be described
mathematically mostly by the first or second order
Markov linear models (autoregressive schemes), or
moving average schemes of various types.

Annual flows of several hundred rivers
investigated show two extremes of time dependence as
encountered in their series: (a) Independent varia-
bles: and (b) Dependent variables with the first order
linear Markov dependence model. In some cases, the
second order linear Markov model fits the correlo-
grams of annual flows. Whenever a large storage
capacity for overyear flow regulations is being de-
signed or operated, the inflows on annual basis may
be described by corresponding stochastic mathematical
models.

If river flows are not affected by some
important accident in nature, and if the inconsistency
(man-made systematic errors in data) and non-homo-
geneity in data (man-made changes in river basin)
are negligible, the series of annual flow are usually

second order stationary (the expected mean, the
variance and the autocovariance are independent of
the position in the series, and ergodicity requirement
is satisfied). If not, the non-stationarity (linear or
non-linear trends) must be removed and the new
stationary series as expected to be experienced in the
future should be used in design and operation of re-
Servoirs.

The sequence in time of monthly flows
shows a cyclic movement of {2-month or its harmonics
(usually 6-months), and a stochastic movement.
Mathematical deseription of monthly flow time series
becomes feasible in the light of sampling errors which
are inherent in the limited period of observation of
monthly flows. This description is usually composed
of three parts: (a) Cyclic movement; (b) An inde-
pendent stochastic component; and (c) A stochastic
process, usually of the first or second order Markov
linear models.

7. Variables which describe reservoir out-
flows. The reservoir outflows are usually expressed
as the same variable (instantaneous, daily, monthly
or annusal flow) as the inflow. A similar mathematical
approach may be used in describing reservoir out-
flows. In the case of lakes with no artificial flow re-
gulation, the outflows are subject to a larger time
dependence and usually smaller variations than the
inflows, but their description is similar. The rigor-
ous mathematical description of outflows as stochastic
processes is less suitable in the case of outflows re-
gulated by reservoirs.

A systematization of types of regulated
outflows from a mathematical point of view gives the
following general cases:

(1) Outflow is constant and equal to the
estimate of the mean. Assuming the mean inflow is
equal to the mean outflow, Q = P, then,

P-P-= S—f’ . 3.4
(2) Outflow is constant for a given period
of n-time units and is equal to the average inflow, P ,

of that period, so that Q = f’n, with I_Dn a stochastic
variable. The value T’n changes from one n-time

unit period to another. Its variation decreases with
an increase of n., Then,

= _ d8 .
P Pn = -clft* . 3.9
This means that after n years the reservoir storage
is always at its initial stage.

(3) Outflow is prescribed only by the
water demand as Q = Q + Qu(r), with ¢ {r) a
twelve-month function, with 7 the time of the year,
and E¢(r) = 0. Its variation about zero depends on
the seasonal patterns of water demand. Then, for
Q=P

P-B [t+v (1] = &, 306
The integration of eq. 3.6 depends upon how well
¥ (7) as a mathematical function, eventually with sto-
chastic components, describes the actual water re-
lease.

(4) Outflow depends on the storage in
the reservoir as Q = Q +Qf (s) =Q [1+1(s)], so



that for Q@ = P

ds

T 37

P-P[t+1£(9)] =
with E £(S) = 0. The variation of outflow depends on

storage variation, which in turn depends on inflow
variation and reservoir characteristics.

(5)

reservoir, or

Outflow depends on the inflow into the

Q=0+Q (P =P[1+ 6 (P)]. sothat
P_

Pli+r o (P)] = 3.8

with E 6 (P) = 0.

(6) Outflow depends on both storage in
the reservoir and inflow, or Q= P [1 + #(S, P)], so
that i

P-13[1+95(S,P)]=E 3.9

with E ¢ (S, P) = 0. The variation of ¢ (S, P) de-
pends on the type of function, and the weight by which
each S and P affect the outflow.

(7) Outflow is generally prescribed by the
water demand, but is also dependent on storage in
reservoir and on inflow, or Q = P[L + ¢ (7) é (S, P)].
50 that

ds

P-Plt+y (Né6S P =g

3.10

with E [¢ (1) ¢ (S, P)] = 0. The variation of
[¢(r) ¢ (S, P)] depends on the weight by which each
of the three variables: 7, 5, P, affect the outflow.
In practice, the demand is prescribed, but it is
usually modified by the water available in reservoir
storage and by the anticipated inflows.

There may be various types of the func-
tions ¢ (1), £(S), # (P) and ¢ (S, P) and their com-
binations. Expanded in power series forms, their
linear terms give first order approximations which
are the simplest to investigate. When these functions
become complex, they prohibit simple mathematical
analysis. Usually analysis requires the use of the
finite differences method in integration, as seen in
egs. 3.6 through 3.10. Outflow regimes (1) and (2),
eqs. 3.4 and 3.5, are theoretical but they have
practical applications as limit cases. They provide
information concerning the required storage capaci-
ties and storage fluctuations for theoretical regula-
tion patterns.

8. Infinite siorage. Even though reservoir
storage capacities are always finite, the theoretical
concept of infinite storage is useful as a limiting
factor when treating stochastic problems in the de-
sign of reservoirs. This concept may bear various
names in different literature such as: infinite rese-
voir, infinite dam, infinite storage, infinite sum of
deviations, and similar. A reservoir fulfilling the
concept of infinite storage capacity requirements is
assumed to be capable of storing any water surplus
as incurred by the difference of inflow and outflow,
and to supply any deficit for the difference between

outflow and inflow.
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This concept leads to the introduction of
three basic and important variables into the stochastic
analysis of storage problems: surplus, deficit and
range. In general, the concept of infinite storage is
not necessary for the definition of these three varia-
bles when applied to river flows, but it is useful as
soon as these variables are associated with or applied
to storage problems. It is assumed that infinite
storage does not mean that the initial stage of storage
is an empty reservoir. This concept does assume
that on both ends of actual stage there is an infinite
storage for accepting surplus or supplying the deficit.

9. Finite storage. As all reservoirs have
limited storage capacities, practical problems are of
the finite storage type. Finite storage is conceived
as a stochastic process with two barriers, the upper
with the full storage capacity, Sf, and the lower with

the empty reservoir. The initial storage content, Si,
may be anywhere between 0 and Sf. This para-
meter, Si‘ plays an important role in the operation

of reservoirs until the operation becomes independent
of the initial conditions.

Two factors make the analytical integra-
tion of storage differential equations or any other
equation difficult: (a) The existence of two boundaries
for storage, zero and S, and, (b) The impact of

initial storage, Si.

The interests in practical storage prob-
lems usually are in: (a) Probability distribution of
water volumes stored in a reservoir at a given time,
for given conditions; (b) Probabilities that a given
storage volume is not exceeded in a given time; (c)
Probability that the storage volume reaches either of
barriers (full or empty reservoir) in a given period;
(d) Probability that the reservoir is full or empty at
a given moment, under given conditions; (e} Pro-
bability of time-on that a reservoir stays full or of
time-off that a reservoir stays empty for a given
period, once either of the two barriers are reached;
(f) Probability of water excess beyond demand,
once the reservoir is full and stays full, for a time
period; or probability of water excess for each case
of full storage; the same probabilities for the water
deficiency for empty reservoirs; (g) Probabilities
of range, surplus and deficit as defined above for the
case of finite storage capacities; and similar prob-
lems; (h) Probability of a total water yield in a
given time period under given conditions of storage
operation. and similar problems.

10, Investigation of hydrologic time series,
A hydrologic time series of the sample size N may
be analyzed by using the properties of surplus, SZ,

deficit, S;, and range, Rn. The properties of these

three parameters may be determined for simple dis-
tribution functions, sirhple mathematical models of
sequential patterns and for stationary time series,
These properties may be obtained by an analytical
method, by a numerical integration of exact distribu-
tion functions, or by a data generation method. Char-
acteristics of the basic variable and of the above three

statistical parameters {S;, SI-l’ and Rn) then be-

come the bench-mark distributions and bench-mark
sequential patterns, Investigators can derive con-
clusions on the characteristics of an observed time



series by comparing an observed time series and
; + =
their Sn, Sn,
parameters) with the corresponding bench-mark
characteristics of the variables and of their para-
meters S;, S_, and R . This approach permits the

and Rn (or other types of these three

study of patterns in long-range hydrologic fluctuations,
and especially the inference about the factors which
produce the time dependence.

{1. Complex hydrologic problems. When
there are several storage reservoirs, many water
resource problems and many water users in a river
basin, the planning is usually carried out by using

i1

historic data and empirical hydrologic methods.
Presently, there is a trend towards using the data
generation method in hydrology. It consists of in-
creasing the historic sample size by simulation of new
data, while maintaining the distribution, stochastic
and cyclic processes of the available small historic
sample,

The contemporary advances in probability
theory, mathematical statistics and stochastic pro-
cesses permit probability methods to be used in hy-
drologic applications. The use of the properties of
surplus, deficit and range represents potential tech-
nigues for the analysis of complex hydrologic prob-
lems.



CHAPTER IV

GENERAL CHARACTERISTICS AND METHODS OF DETERMINATION

OF SURPLUS, DEFICIT AND RANGE

1., Stationarity and ergodicity conditions, In
this paper the analysis of time series assumes that a
time series is stationary. There are various types of
stationarity in time series. The stationarity used in
this analysis is specified by two basic conditions which
are considered to be approximately satisfied: (1) The
expected value of any Xi value in a time series is

equal fo the population mean which is constant, or

+ o
X d [P (X)] 4.1
~0

with P (X) = the probability distribution function of
X, and u = the constant population mean; and (2) the
expected value of covariance of X. and Xi-i-k de-

pends only on k and not on i; itis equal to the pro-
duct of the population serial correlation coefficient
p) and the population variance ol

> 2
E[cov (Xi Xi+k}:|r P 4,2

These two conditions make a time series second order
stationary. Ergodicity is the next condition that should
be satisfied. This condition means that time averages
converge in probability to theoretical averages.

2. Distributions and time dependence of sur-
plus, deficit and range. A discrete stationary time
series (either independent or dependent) with a given
probability distribution and size N may be considered
as a random variable in N - dimensions (hyperspace).
This time series may also be considered as many in-
dividual variables Xl‘ XZ’ - XN at the positions

i, 2, ... N, with the same probability distribution.
Practical problems involving the dependence of Xi

may be described either by the mathematical model

of dependence or by using the joint distribution of N
variables. The model of dependence is usually de-
fined by its generating process and the characteristics
of random independent variables involved in this pro-
cess.

For a large series of size N any non-
overlapping subseries of the size n has a corres-
ponding value of each type of surplus, deficit and

+ ot + o= - o - =
range: S, 5, (X)), 5, (X): 8. 8, (X). 8, &)
and R, R (XO), Rn(Xn). Their time series are
stationary for a given n, if the time series of X is
stationary. Each type of surplus, deficit or range is
characterized by its probability distribution. In the

case where the variable X is dependent, the surplus,
deficit and range are also time dependent variables.

Assume that the variable X may be de-
fined by its probability distribution and mathematical

model of dependence of its stationary time series.
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Assume also that a , are parameters of

a
{3 e
this probability distribution function, and bi’ b2 i
. , are parameters of the mathematical model of
dependence. The general probability distribution
(Xo)’ Sn (XO), and R, (XD) may be
expressed in the form of families of curves, as func-
tion of the variate n, of the variable parameter XO,

functions of S;

and the above parameters ai's and bj's as

F[S) (X)) < s;]=F_[s] (X,);

al, EI.Z..‘ 1 Z"- 0'

a EZ";bl bz..,XO; n]. 4,4
and
F[R, (}?o) < Ri] =P [Rn (XO),
a. a,. bi' bz..;Xo; n] 4.5

with S; and R, values which S; (X
Rn(
matical expressions for dependence can be expressed
in the form of families of curves as

o) S; (X,) and
SO) can assume, respectively. The general mathe-

& - . . . = x
QSS [sn (XO), a, a;..;by, by ;X 5n]=0 4.6
éd [Sn (XO); 8y, @,..5by, by 53X ;0] =0 4.7

qﬂr [Rn(Xo), a;, a,..;by, ba..,XO,n]-O. 4.8
Suppose that X follows a normal distri-
bution function with two parameters u and o. Also,
suppose that the properties of a random independent
variable, ¢, are known and that the Markov first order
linear model with the parameter p is the relationship
between X and e¢. Then, the properties of surplus,
deficit and range may be described by their probability
distributions and their models of time dependence
which are not only functions of XO and n, but also

of u, o, p and the properties of €;-

If egs. 4.3 through 4.8 were available
for particular field conditions of hydrologic stochastic
variables, they would be of value in water resources
planning, design and operation. Statistical inference
concerning the parameters of distribution and of time
dependence is a prerequisite for the application of
egs. 4. 3 through 4.8 to storage reservoirs and other
water resources problems. In the case of empirical
distributions and empirical models for time dependence
of hydrologic variables, methods should be available
for an exact or an approximate determination of the
above functions.



The simplest application of egs. 4.3
through 4. 8 is when the number of parameters a;

and b.‘i is very small. In the case of the independ-

ent standard normal variable, none of these para-
meters enter into eqs. 4.3 through 4.8 so that in this
case

+ _ +
F[s. (X) < 8]=F_[s (X

s € B );Xo;n] 4.9

(o]

F[S (X) 2 8] =F4ls (X); X, n] 4.10

< = ‘ :
F[R, (X)) € R]=F_[R (X)X ;n] 4. 11
and the surplus, deficit and range are also time inde-

pendent variables.

W. Feller [4] states that it is practically
impossible to analytically calculate the exact range
distribution even for a simple form of the underlying
probability density function f(X). This is true even
for a small value of n such as n = 3. He stresses
that the sums S (X) are normally asymptotically

distributed and, therefore, the asymptotic distribu-
tion of the range is independent of the underlying
function I(X). Accordingly, it is sufficient to con-
sider the case where the departures &.Xi = Xi =3

are normally distributed.

In some cases asymptotic distributions of
Sn (X) have a small practical value in hydrology. This

limitation is due to the fact that they depart signifi-
cantly from the exact distributions of surplus, deficit
and range for very small values of n. These values
of n often are the most important cases in some ap-
plications.

3. Particular properties of probability dis-
tributions of surplus, deficit and range. The pre-
Vious deiinitions and the above discussions reveal
some particular properties of surplus, deficit and
range. The values of surplus are always either zero
or positive. Whenever the sum Sn of deviations

aX, = Xi =X has on1y+zero and negative values for
i=1, 2, ... n, then Srl = 0. In this case the pro-
bability distributions of S; are comprised of two
parts: (1) a discrete part or probability mass for
" =0 and (2)

probability density function for values S'l:. > 0. As

only one value, S; a continuous partor

s +
the probability that S i]] remain zero decreases
with an increase of n, the discrete part of probability

distribution for 5; = 0 also decreases with an in-

crease of n. This relationship takes place while the
totzl area under the probability density curve in-
creases with an increase of n. Therefore, the pro-
bability of S’ from zero to a given value S, is

13

with
w

4+

-+ ] - + _
F(S, < @) =F(s =0)+ f (S,)ds; =1 4.3

o

For n=s @ the value F (S; = 0)—> 0, and the last

term of the continuous density function tends to the
area unity.

- The same relationship is valid for the de-
ficit Sn’ whose probability function is composed ofa

discrete part or the probability mass F {Sn = 0), and
a continuous density curve, so that

s; =0
rd(sn)dsn 4,14

y=F(S_ =0)+

F(Snz S, 4

1

with the same properties of the two parts given by
eq. 4.13, with Si being a negative value.

As the range is the sum of the surplus
and the deficit (deficit taken as the absolute value of

S;) for each value of S; = 0 there is a value for

5;1 which is also different from zero. The range is,

according to eqg. 2.11, always positive with values
from zero to infinity. There is no discrete part in
the probability distribution of range. As the deficit
has the opposite sign of the minimum sum of devia-
tions. all three variables (surplus, deficit and range)
have values only between zero and infinity.

In the case of a symmetrical distribution
of X, the distributions of s; and - S7 are identi-

cal. The standardized variable, x. used in this study
is x= (X - u)/r. For an asymmetrical distribution
of f(x) two integrals are useful, namely

w

o
f(x) dx = P; and[ f(x) dx = Q, with P+ Q=1

4 . 4.15

4. Determination of properties of surplus,
deficit and range empirically from historic data.
The empirical approach may produce suifficient sam-
ples of surplus, deficit and range. This approach is
used when the time series of the variable X is long
and n is small, thus producing a large m = N/n
ratio. The series is divided into m sub-series of
size n. Each sub-series gives one value of a statis-
tic, so that m sub-series gives m values of surplus,
deficit and range. From these three new samples of
size m, the probability distributions and time depen-
dence for surplus, deficit and range may be empiri-
cally determined.

As the sample size m decreases by an
increase in n, the smoothness of the properties de-
termined for the surplus, deficit and range decreases
with an increase of n. This decrease in smoothness



with n is the main disadvantage of empirical deter-
mination of the properties of surplus, deficit and
range. A second disadvantage is the large sampling
errors which are inherent to any small sample of size
m.

5. Determination of properties of surplus,
deficit and range by the data generation method. Em-
pirical relationships may be used, or functions may
be fitted to empirical data when a sample is charac-
terized by its probability distribution and its time de-
pendence. For these empirical relationships or for
the mathematical expressions, the data generation
method (Monte Carlo method) may be used to obtaina
large sample. Samples of size m = N/n may be
generated as large as it is either necessary or econ-
omically feasible. Techniques (described under 4
in this chapter) are then applied to obtain distributions
and time dependence of surplus, deficit and range.

6. Determination of the properties of surplus,
deficit and range by the analytical method. Mathe-
matical functions may always be fitted to empirical
frequency distributions and to time dependence models,
which are empirically determined. In the case of a
stationary time series it is assumed that these two
mathematical functions will approximate the popula-
tion probability distribution and time dependence.
This assumption provides a base for an analytical
approach for the determination of exact or approxi-
mate probability distributions and time dependence
models of surplus, deficit and range. Two cases are
appropriate for consideration: (1) Exact mathemati-
cal expressions for the probability distributions and
time dependence models of surplus, deficit and range
may be analytically derived from the properties of
X. This case is limited only to small values of n.

A numerical finite difference method of integration,
usually orientated to a digital computer, may be used
to solve difficulties in integrating the exact mathe-
matical equations in closed forms; (2) Statistical
parameters of the probability distributions and time
dependence models of surplus, deficit and range may
be determined in an exact, in an approximate or in an
asymptotic form as related to the parameters ai’s

and b.,'s of X, the base parameter XO and the

values of the variate n. In this case, a fit of ap-
proximate functions for probability distributions by
using moments or statistical parameters and for time
dependence by using serial correlation coefficients
yields the approximate properties of surplus, deficit
and range.

7. Comparison of the above three methods.
An example of the series of N = 150 for the annual
flow of a large river is used to illustrate these three
methods. Two values: n= 3, and n = 10, and Xo =

X, are used for empirical and data generation methods.
The derived samples are m = 50 and m = 15 long.
The values of all three statistics (S;, Sr'1 and Rn)

are determined respectively for n= 3 and n = 10.
The analytical method is used only for n = 3.

The data generation method is applied to
develop properties of surplus, deficit and range for
normal or some non-normal but known probability
distribution functions. This method is also appliedto
known time dependence processes. The analytical
method is demonstrated by two alternatives: (a) ex-~
act distributions; and, (b) moment derivations.
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The following three chapters (V, VI and
VII) discuss these three methods and make detailed
method comparisons. However, the information
generated by each method produces a problem that
warrants a brief discussion.

All three methods produce the same in-
formation if each is properly applied. In hydrology
there is a contemporary trend to use the data genera-
tion method extensively. It should be noted that this
method cannot produce more information than what
the sample contains. When generating very large
samples from data of small samples or from functions
fitted to data of small samples, no new information
can be obtained beyond that contained in the small
sample. The same is true for the analytical method
when it is applied to distribution functions and time
dependence models which are derived from the avail-
able sample.

The data generation method has the follow-
ing properties: (1) If the generated sample is large,
the statistical characteristics of the sample converge
to statistical characteristics of the small sample
from which the large sample is generated. However,
probability distributions and time dependence models
of the large generated sample are smoother than
those of the original small sample. Smoothness does
not imply that the information is any better than that
derived from the small sample. (2) Data generation
method may be used in several problems when the
mathematical equations cannot be solved in closed
form. Usually, the selection is between the applica-
tion of approximations in solving equations, and the
use of the data generation method.

8. Systematization of variables in the analy-
sis of surplus, deficit and range. The fitting of pro-
bability functions to empirical frequency distribution
curves of hydrologic variables is practically limited
to a small number of theoretical functions. These
functions are: normal (Gaussian), log-normal (Gal-
ton), extreme values functions and Gamma functions
(Pearson Type III included) for continuous variables,
and Binomial and Poisson functions for discrete
variables.

The above theoretical distributions of in-
dependent continuous variables are described: (a) by
no parameters (standard normal function); (b) by
one parameter (normal function with mean unity,
Gamma function with one parameter); (¢) by two para-
meters (general normal function; log-normal function
with lower boundary zero; extreme values functions
with lower boundary zero; Gamma function with two
parameters); and, (d) by three parameters (log-
normal function and extreme values function with
lower boundary different from zero; Gamma with
three parameters or Pearson Type III function).

Apart from the probability distribution
function, a hydrologic variable and its stationary time
series are characterized either as independent or de-
pendent. This dependence is expressed by various
mathematical models. The simplest dependence
models in hydrology are: moving average schemes
(general Markov chains); autoregressive models
(Markov linear models); a combination of harmonic
movement (daily or seasonal cyclic fluctuations) and
the above models of moving average or autoregressive
schemes, and similar.



The analysis of surplus, deficit and range
is made in this paper by determining probability dis-

. + .
tributions of Sn, S and Rn for various values of

n
n and XO when the probability function and depend-

ence model of a variable are given. The simple
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independent variable, symmetrically distributed in
the form of independent standard normal variable, is
first studied. Then, the effect of time series de-
pendence on these three derived variables is studied
for a simple mathematical model of dependence. Then,
variables of various degrees of asymmetry are in-
vestigated for the influence of skewness on the pro-
perties of surplus, deficit and range.



CHAPTER V

EMPIRICAL APPROACH FOR DETERMINATION OF

SURPLUS, DEFICIT AND RANGE

{. Example. In this study the annual flow
series of the Rhine River at Basle, Switzerland, is
used as an example to demonstrate the empirical
method of obtaining the properties of the following
variables: surplus, deficit, range, adjusted surplus,
adjusted deficit and adjusted range. The series of
annual flow is 150 years long (1808-1957), and the
water year November 1 through October 31 is used
for computation of annual flows.

2. Determination of new samples. Figure
5.1 gives two time series: (a) Annual flows ex-
pressed in modular coefficients Ki = Vix'V, as shown

in the upper graph, with Ki = modular coefficient,

Vi = annual flow of i-th year, and V = average annual

flow; and (b) Sums Sr1 of deviations aKi =K.-1, or

deviations of Ki from their average value K = 1, as
shown in the lower graph. This lower graph of Sn’

represented in a much larger scale, was used to

empirically determine the surplus, deficit and range
for two values of n(n= 3 andn = 10), and 5:1 (Kn),
Sn (Kn), and Rn (Kn) or the adjusted surplus, ad-

justed deficit and adjusted range. In this computa-
tion Kn was considered as being the sampling statis-

tic or the mean for subsequent non-overlapping sub-
series of size n, and for two values of n (n= 3 and
n = 10).

The sequence Sr1 in the lower graph (fig.

5.1) was divided in 50 non-overlapping subseries each
3 years long, and 15 non-overlapping subseries each
10 years long. For each subseries the values of

e -

Sn 4 Sn
corresponding samples with size m = 50 or m =15,
respectively for n = 3 and n = 10. Similarly, the
values Kn for subsequent non-overlapping subseries

and Rn are determined. This gave three

have been determined graphically. Then, for each
(Kn), Sn (I\n) and Rn (Kn), are
determined respectively for n = 3 with m = 50 and

n =10 with m = 15, Six new samples for surplus,
deficit and range are thus obtained for each of the two
values of n.

; +
subseries, Sn

3. Distributions of surplus, deficit and range.
Figure 5. 2, left graph, gives the frequency density
of surplus, Sg . The right graph gives the cumula-

tive frequency (distribution) of surplus. Line (1) in
both graphs represents the frequency density and
distribution of surplus, respectively, as determined
by the empirical method. (Lines 2 and 3 represent
the same distributions as line (1), only determined
by the data generation and analytical methods, re-
spectively, as it will be described in the following
two chapters). Figure 5. 3 represents the same pro-
perties as fig. 5.2 except that fig. 5.3 refers to the

deficit, S; . Figure 5. 4 refers to the range, R,

and is analogeous to fig. 5. 2.

Figures 5. 5 through 5. 7 represent the
frequency density (left graph) and distribution (right
graph) of adjusted surplus, adjusted deficit and ad-
Jjusted range, respectively, for n = 3 and for K; as

a sampling statistic, Line (1) gives the distributions
obtained by the empirical method (line 2 is determined
by the data generation method, as it will be described
in Chapter VI).

Figures 5.8 through 5. 13, lines (1), give
the results of the empirical method in determining
distributions of the six variables for n = 10. (Lines

‘2 give the results of the data generation method).

These figures represent the frequency density (left
graph) and distribution (right graph), namely: fig.

o o= . ,
10° fig. 5.9 for the deficit, SiO’
fig. 5.10 for the range, Rlo; fig. 5. 11 for the ad-
justed surplus, S;-[] (I_(m); fig. 5.12 for the adjusted
deficit Si_O {RIO); and fig. 5. 13 for the adjusted range,

R

5.8 for the surplus, S

10 (Kyg)

Table 5.1 presents statistical parameters
of surplus, deficit and range for n= 3 and n = 10,
respectively, and of adjusted surplus, adjusted de-
ficit and adjusted range for n= 3 and n = 10, res-
pectively. These statistics are: mean, variance,
standard deviation, coefficient of variation, skewness
coefficient, excess and the first serial correlation
coefficient. The values of distribution parameters in
table 5.1 are compared later in this paper with the
values of the same parameters determined by one or
both of the following two methods: (a) From distri-

; : o = + = - =

butions oivarzables Sn' Sn’ Rn‘ Sn (Kn), Sn (Kn)
and R (Kn), obtained by the data generation method

for both n = 3 and n = 10 (as given in Chapter VI); and
(b) From exact distributions of these variables,
which are integrated by the finite differences method
for n = 3 (as given in Chapter VI). These compari-
sons, both by distributions and by their statistical
parameters, are intended to show the relationship

of results obtained from each of the three methods:
empirical, data generation and analytical. The same
example of annual flow series of the Rhine River at
Basle is used for each of these three methods. The
respective comparisons are discussed in Chapters
VI and VIIL.

4, Reliability of the empirical method.
Surveys of figs. 5.2 through 5. 13, of statistical
parameters as given in table 5. 1, and general prin-
ciples of statistical sampling and inference, yield two
bits of knowledge: (a) Reliability of this method de-
creases by an increase of n; and, (b) Reliability in-
creases with an increase of sample size N.

The data generation method may have any
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Fig. 5.1 The annual flows of the Rhine River: (a) Upper graph, the timenseries in modular coefficients,

K; = V,/V; (b) Sums of deviations S (R=1)= = 8K, = T (K, - 1).
i=1 i=1
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Fig. 5.2 Frequency densities (left graph) and distributions (right graph) of the surplus, S';, of the annual
flows of the Rhine River: (1) Determined by the empirical method; (2) Obtained by the
data generation method; and (3) Obtained by the analytical method.

Fig. 5.3 Frequency densities (left graph) and distributions (right graph) of the deficit, S;, of the annual

flows of the Rhine River: (1) Determined by the empirical method; (2) Obtained by
the data generation method; and, (3) Obtained by the analytical method.
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Fig. 5.4 Frequency densities {left graph) and distributions (right graph) of the range, R,, of the annual

flows of the Rhine River: (i) Determined by the empirical method; (2) Obtained by the
data generation method; and, (3) Obtained by the analytical method.
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Fig. 5.5 Frequency densities (left graph) and distributions (right graph) of the adjusted surplus, S5 (KS)’

of the annual flows of the Rhine River: (1) Determined by the empirical method; and,
(2) Obtained by the data generation method.
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Fig. 5.6 Frequency densities (left graph) and distributions (right graph) of the adjusted deficit, S; (K

of the annual flows of the Rhine River: (1) Determined by the empirical method; and,
(2) Obtained by the data generation method.,
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Fig. 5.7 Frequency densities (left graph) and distributions (right graph) of the adjusted range, R (R:,’),

of the annual flows of the Rhine River: (1) Determined by the empirical method; and,
(2) Obtained by the data generation method.
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Fig. 5.8 TFrequency densities (left graph) and distributions (right graph) of the surplus, n = 10 (K = 1),
of the annual flows of the Rhine River: (1) Determined by the empirical method;
and (2) Obtained by the data generation method.
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Fig. 5.9 Frequency densities (left graph) and distributions (right graph) of the deficit, n = 10 (K = 1),
of the annual flows of the Rhine River: (1) Determined by the empirical method;
and, (2) Obtained by the data generation method.
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Fig. 5.10 Frequency densities (left graph) and distributions (right graph) of the range, n= 10 (K = 1),
of the annual flows of the Rhine River: (1) Determined by the empirical method;
and, (2) Obtained by the data generation method,
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Fig. 5.11 Frequency densities (left graph) and distributions (right graph) of the adjusted surplus,
n= 10 (Km), of the annual flows of the Rhine River: (1) Determined by the empirical

method; and, (2) Obtained by the data generation method.
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Fig. 5.12 Frequency densities (left graph) and distributions (right graph) of the adjusted deficit,
n=10 {Kw), of the annual flows of the Rhine River: (1) Determined by the empirical
method; and (2) Obtained by the data generation method.
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Frequency densities (left graph) and distributions (right graph) of the adjusted range, n=10 (Km),

of the annual flows of the Rhine River: (1) Determined by the empirical method; and

(2) Obtained by the data generation method.

sample size N, or any value m = N/n. The sample
size for surplus, deficit and range may be constant
for any value of n (by a proportional increase of N
with an increase of n). In this case the distributions

and their statistical parameters for the surplus, defi-
cit and range becomes independent of m=N/n, Two |

characteristics differentiate the data generation
method from the empirical method: (a) N can be as
large as it is economically feasible; and (b) m can

be independent of n. However, the previously dis-
cussed problem, whether one or the other method gives
more information from a given amount of sample data,
should not be overlooked.

TABLE 5. 1
Variable
+ - + = - = .
S S R S.(K) S (K) R_(K)
Parameter n n n n'n s Ui 5| n
Mesati n=3 05:4:33 -0, 151 0. 286 0.075 -0,083 0.158
=10 0. 257 -0. 382 0.637 0.138 -0, 325 0. 464
Variance n=3 0.022 0.026 0. 065 0.009 0.009 0. 008
=g 0.052 0.052 0. 039 0.033 0.033 0.014
Standard Hs 0. 148 0.161 0. 255 0.095 0.095 0.089
Dexlation =10 0.228 0.228 0.197 0.182 0.182 0.118
Coefficient n=3 1.1143 1. 066 0.892 1. 267 1. 144 0.563
of _
. n=10 0.887 0.597 0. 308 1. 319 0.560 0.254
Skewness n= 0.079 0.104 -0.018 0.150 0.107 -0. 506
Coefficient =10 0.048 0. 086 -0.002 0.125 -0.003 -0.092
— n= 0.230 0. 348 0.072 0.459 0. 302 0. 241
= 10 0.196 0. 321 0. 281 0. 260 0. 328 0.403
First n= 0.179 0.058 -0. 031 -0. 085 -0.129 -0.074
Serial _ _ i - -
e =10 0. 180 0. 108 0.143 0. 149 0. 218 0.027
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CHAPTER VI

DATA GENERATION METHOD FOR DETERMINATION
OF SURPLUS, DEFICIT AND RANGE

1, Definition of method. The data generation
method is defined as the simulation of a large sample
either from data of a small sample, or from inferred
characteristics of a population. These latter are usu-
ally defined by the distribution function and the mathe-
matical dependence model of a stationary time series.
Discrete series are generated by computing the inde-
pendent random numbers with a given basic distribu-
tion function, and by further transformations of these
numbers. Random numbers of any other distribution
function with time series either independent or depend-
ent are normally obtained by simulating them on a
digital computer. The continuous series is usually
generated by an analog '"'noise generator. "

The main property of the data generation
method is the absence of any limitation in the gener-
ated sample size. Size is limited by either one of the
following two criteria: (a) desired accuracy of final
results; and, (b) economics of generating and pro-
cessing a large sample.

Independent random numbers which are
readily available usually have uniform distributions.
A sequence of independent random numbers with the
normal (Gaussian) distribution is obtained by applying
the central limit theorem for a sum of a sufficient
number of uniformly distributed random wvariables.
By further transformation, the random numbers with
normal distribution may be transformed to random
numbers with skewed distributions (log-normal, gam-
ma, etc.). Dependent random numbers of various de-
pendence models are obtained by applying these
models to the series of independent random numbers.

2. Generation of large samples from empiri-
cal small samples. A small sample of a stationary
series is characterized by its distribution and its
time dependence. Distribution can be represented as
empirical in the form of a table or graph. However,
dependence models are usually described either by
parameter or by equations. In this latter case, the
series analysis is divided into deterministic com-
ponents (trends, jumps and cycles with harmonics)
and stochastic components. Dependence in series of
the latter components is determined either by empi-
rical relationships in the form of correlograms, by
fitting mathematical functions to correlograms, or by
the mathematical model of dependence generating pro-
cess.

If random numbers of an independent
variable t have a uniform density function with
boundaries t=o0 and t =1, then

f(t) =1

(t)

for o< t< 1
6.1

and f o for t< o and t>1,

The transformation t = F (X) makes possible the
generation of random numbers of a variabhle with any
distribution F (X). Random numbers of distribution
of eq. 6.1 are automatically transformed to random
numbers of distribution of X when: (a) the empirical
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distribution function F (X) is given for the range Xmin
toX ..as F {Xmin) =0 and F (Xmax} = 1; (b) the
table of t = F (X) versus X is used; and, (c) the
proper interpolation procedure between the discrete
values of X and F (X) is used in determining the X-
value which corresponds to a given t-value. If the
variable X is dependent in sequence, another trans-
formation must be used.

The other approach in using the data gen-
eration method is to produce a large sample from a
small sample of an independent variable X by:
(a) inferring a theoretical distribution function to the
empirical distribution F (X); and (b) by generating
a large sample of random numbers by the procedure
available for that type of theoretical function.

3. Example of large sample generation. In
this study the latter of the above two approaches is
used when generating a large annual flow sample of
the Rhine River at Basle from the available data. A
log-normal distribution function is fitted to the annual
flow distribution of the Rhine River with sample size
N = 150. The log-normal function is then used to
generate a large sample of m = N/n = 10, 000 random
numbers. As the serial correlation coefficients of
annual flows of that river for N = 150 show no signifi-
cant difference from an independent time series, only
independent random numbers are generated. Log-
arithms of the Rhine River annual flows are approxi-
mately normally distributed.

The modular coefficients Ki of the Rhine

River annual flows have a meanof K =1 anda

standard deviation of B = C‘r =0,159. As In Ki is

normally distributed with the mean M and variance

- they can be obtained from K =1 and s, = 0.159
as

K. =1n —Fﬁ_ = 1n ..__1_ 6.2
and

s?
o= n [1+—15«]= In [1+sz] 6.3
n r? k

These two equations give O'T'Z.l =1n (1 + sl:} = 0,02517,

or u_= - % o2 =-0.0126. The variable InK =

0.1582t - 0.0126, with t -the standard normal vari-
able, so that

K = 01582t - 0.0126 54

is the transformation equation to obtain K - variable
from normal independent random numbers, t.

The log=normal independent variable, K,
of the Rhine River's annual flows is generated by using
the random numbers of a normal standard independent
variable, t, which are transformed by eq. 6.4,



The large sample is generated with
30, 000 independent random numbers in order to ob-
tain 10, 000 independent and non-overlapping subseries
of n= 3. A large sample, with 100,000 numbers is
also generated in order to obtain 10, 000 independent
and non-overlapping subseries of n = 10. The sur-
plus, deficit, range, adjusted surplus, adjusted deficit
and adjusted range for bothn=3 andn =10 are
determined from these subseries. These subseries
are also used to compute distributions and statistical

parameters of distributions. Both frequency density
and distributions are plotted in figs. 5.2 through

5.13 as lines (2), Table 6.1 gives statistical para-
meters which correspond case by case to table 5. 1
except the first serial correlation coefficient which
was not computed in the data generation method
approach. Table 6.1 illustrates the statistical para-
meters of frequency distributions of the following
variables: surplus, deficit, range, adjusted surplus,
adjusted deficit and adjusted range for n=3 and n= 10.

TABLE 6. 1
Variable 4 _ - - _
s; S, R s, (K) s, () R (R)
Parameter

Mean n=3 0.147 -0. 144 0. 291 0.078 -0. 078 0.155
n=10  0.314 -0. 325 0.639 0.219 -0, 223 0.442
Variance =3 0.031 0.023 22 0.008 0. 008 007
=10  0.097 0. 086 0.062 0.027 0.028 020

Standard _ _
s n=3 0.175 0.153 0.147 0.088 0. 087 0. 085
n=10  0.312 0.293 0. 250 0. 165 0.166 0.143
C“iffment -3 1.194 1. 060 0.508 1.138 1,126 0.544
Variation =10 0,993 0.902 0. 391 0.753 0. 744 0.323
Skewness =3 1.454 1.090 1,083 1.230 1,17 5
Coefficient = ' ' A # AR D.715
n=10 1.166 0.999 0. 960 0.742 0.712 0.679
Excess n=3 2.189 0.825 0,147 1,409 0, 988 0.720
n=10 1.214 0.772 1.194 0.507 0. 357 0.673

4. Comparison of the data generation method
with the empirical method. Figures 5. 2 through 5. 13
illustrate that distributions determined by the data
generation method are much smoother than distribu-
tions obtained by the empirical method. This is
especially true when n = 10. Table 6. 2 gives differ- .
ences of statistical parameters of frequency distribu-
tions for the empirical method and the data generation
method. Values in table 6. 2 are the differences be-
tween the corresponding values in tables 5.1 and 6. 1.
These differences increase with an increase of the
order of moments used in computing various statisti-
cal parameters. The greatest differences are for
the skewness coefficients and the excess. However,
it should be stressed that the absence of extreme
large values in the frequency distributions of these
six variables for the empirical method accounts for
the large differences in the skewness coefficient and
the excess, The smoothness of distributions obtained
by the data generation method is well illustrated in
figs. 5. 2 through 5, 13, and it is an asset of this
method.

5. Generation of large samples from theore-
tical distribution functions and mathematical models
of time dependence. Any generation of random rum-
bers should be subjected to appropriate tests of sam-
ples generated. The two necessary tests are: (1)
That the sample distribution is insignificantly different
on a prescribed probability level from the distribution
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underlying the generation process (which is either an
empirical distribution or a theoretical distribution
function); and (2) That the time dependence of ran-
dom numbers in the generated sample do not depart
significantly on the prescribed probability level from
the dependence underlying the generating process,
Models for the generation of random numbers of
several types of variables will be discussed in portions
of this text. In these discussions the variables will

be described by theoretical distribution functions which
are either time independent or time dependent.

(1) Independent normal variables, Digital
computer programs are already available for the ran-
dom numbers generation of independent standard nor-
mal variable, t, with expected mean zero, expected
standard deviation unity, and expected first serial
correlation coefficient zero, (0, 1, 0). Tests of
normality and independence are easy to perform.

To obtain the random numbers of an
independent normal variable, X, with X different
from zero, and s different from unity, the trans-

formation to be used is
X. =8t +X 6.5
i i
where ti represents the random independent numbers,

(2) Dependent normal variables. Several




TABLE 6.2
ariable
gt 5 R sT(R) s (R) R
n n I n n n n Rn{Kn)
Parameter
i = 0.147 -0, 144 0. 291 0.078 -0.078 0.155
=10 | 0.314 -0, 325 0.639 0.219 -0. 223 0.442
Variance n=3 0.031 0.023 0.022 0.008 0. 008 0.007
n=10 | 0.097 0.086 0,062 0.027 0. 028 0.020
Standard = 0.175 0.153 0.147 0.088 0.087 0.085
Deviati
eviation =10 | 0.312 0.293 0. 250 0. 165 0. 166 0.143
Coefficient .
of =3 1.194 1. 060 0.508 1.138 1,126 0. 544
Variation =10 | 0.993 0.902 0. 391 0.753 0. 744 0,323
Ske\;rfness =3 1.454 1.090 1,063 1,230 1.174 0.775
Coefficie ;
icient =10| 1.166 0. 999 0. 960 0.742 0. 712 0.679
Excess = 2.189 0.825 0,147 1.409 0. 988 0,720
=10 | 1.214 0.772 1.194 0,507 0. 357 0.673

mathematical dependence models of stationary time
series are available for dependent normal variables.
The selection of those models depends on the charac-
ter of hydrologic process. The first order linear
Markov model will often fit the dependence in time
series when the change in water storage carryover is
responsible for time dependence in river flows. For
this reason the Markov model will be used as an ex-
ample in this chapter. Moving average schemes of
various types may also be used as well as the second
or higher order linear Markov models. The first
order linear Markov model is currently used in hydro-
logic sample generations in the form

+ 6.6

b 1

[

i- P t-e i

where €; are random numbers of anindependent stan-
dardnormal variable with E (ei} =0, var € = 1;

p = population first autocorrelation coefficient; and
X, generated new numbers of normal standard

[E(x,) =0, var x = 1] but dependent x-variable,

i
Multiplication of ¢, variable by V1 - p? is necess-
ary in order to obtain the X variable with variance
unity. 2
E (rk) = Py With p, = p%.
of the first order linear Markov model.
model

For the correlogram of generated series
This is the correlogram

However, the
T

: 6.
i

In this case, the variance of
For all values of

is also very often used.
x; is 1/(1 - p?if var e =ty

p it is greater than unity. The differences in vari-
ances of X between eq. 6.6 and eq. 6.7 should be

taken into account whenever the two models are used
interchangeably.
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A correlogram Tj; = rk of a genera-

ted large sample should not depart significantly from
the population correlogram Py, = P~ ona given pro-

bability level. This relationship may be tested by:
(1) performing corresponding chi-square test, or
(2) by ascertaining if Ary = pp T Ty differs signifi-

cantly from zero on the same prescribed probability
level.

(3) Independent log-normal variables. If
the random numbers are needed for a log-normal in-
dependent variable, U, the following transformation
can be used. For p = mean of U and o% the vari-
ance of U, the mean and variance of In U are given
as

2
7
7

(U_Z+ qu) /2

In

and

2
a2 1n(1+L2)
u I

with In U normally distributed with mean My and
variance ¢’ By using random numbers of standard
normal independent variable, ¢, then 1ln U= Lo + s
and the transformation

LIy

+
eSS T Hy

6.10

gives the random numbers of U, with By and oy
given by eqs. 6.8 and 6, 9, respectively.

(4) Dependent log-normal variables. The
first order Markov linear model of eq. 6.6 is based
on the principle that the sum of two normal variables,
each multiplied by a constant (and constants related),
produces a standard normal dependent variable.




This principle cannot be applied to log-normal var-
iables because the sum of two log-normal variables
is not an independent or dependent log-normal varia-
ble. However, the product of two log-normal varia-
bles is a log-normal variable. In this case,

plnU, _ i-p €
e At 6. 11

i

If the variable X of eq. 6.6 has mean
zero, standard deviation unity, and first serial cor-
relation coefficient p, (0, 1, p), with P = P and

is transformed by

6.12

then E (U) = el/z, var U =e (e - 1), and the Pi (U)
becomes

o i = Ui Uik _E(Yi Yirk) -e
k- vsu.rU.‘L e(e-1) 6.13
with
i o
_ i i+ k
E(UiUi+k)-E(e )
The new variable (xi + X, k) has mean zero and
k
var (xi + xi+k) = 2(1 + p") because cov X X TP
YT
The application of eq. 6.3 gives E (e ! ) =
1 k 7
exp {7 var (x; + Xy ) ] = exp [1+p" ]. Equation

6.13 then becomes
k
eP -4

e 6.14

Py (U) =

This model is different from Py (x) = pk_ Therefore,

the transformation of the variable x of eq. 6.6 by
eq. 6. 12 does not produce a log-normal variable with
a first order linear Markov model. This transforma-
tion does produce another sequential model of the die-
away correlogram type. For various p, the diffir-
ences of values of p, (U) of eq. 6.14 and Py =P

are given in fig. 6.2 as a function of k. The model
of eq. 6. 14 is represented as pp =1 (k) for various

values of p in fig. 6.1,

i 2
pk-P

For comparison, the model
is also represented in fig. 6.1 as dashed lines.

(5) Independent gamma variables. If
xj designates independent standard normal variables

then the transformation

8

x? 6.15

U=
1

B =
04

i
gives the chi-square distribution of the variable 2U
with m degrees of freedom, or Gamma distributed
U-variable with the parameter m/2
F-1

UZ e'U

6. 16

with mean m/2, variance m/2, and skewness coef-

ficient (Sz'm)i‘fz' - By using integers for m, the only

values of parameters obtained are 0.5, 1. ik, 1.5;
2.0, ..., m/2, with m=1, 2, ... However, these
values of m/2 are sufficient to study the change in
surplus, deficit and range with the change of distribu-
tion skewness. The changes inbetween the values

given by C, = (Bfm)l’fz 1, 2, 3, ...

be easily interpolated. Any problem requiring a
Cs -value which lies between two discrete Cs-values

for m = may

for two given successive m-integers may be solved
for both m and m + 1, by the data generation method.
Statistics are determined for both Cs-values and an

interpolation gives the corresponding statistical para-
meters for the desired Cs-value.

(6) Dependent gamma variables. In
this study the gamma distribution and the first order
linear Markov model are used to generate a varia-
ble which has a skewed distribution, which is depend-
ent in time. This concept serves the purpose of in-
vestigating the simultaneous effect of skewness and
dependence on the properties of surplus, deficit and
range,

Let x and € be two normal standard
variables. Take X T o€ and use the generating
process

x; = '\f? X 4 + Vi-p €5 6.17

The dependent variable x is obtained by using the
sequence €45 €5 +nn of the variable ¢ with a con-

stant parameter p.

Using the same procedure, m varia-
bles xj may be generated from variables ej’ with

j=1. 2. 3. ... m. Inthis generating process, the
sequences i=1, 2, ... are obtained for each of m
variables with the sample size as large as necessary
or feasible. These sequences are denoted by Xij‘

where i represents the position in the sequence of
the variable Xj'

The transformation of eq. 6. 15 is
used to obtain the gamma distribution of a variable
U from the normal standard distribution of m varia-
bles xj

m
b P

The serial correiation coefficient of
the lag k of the variable U is

:covuiUi+k=E (EUU -Ez)
Py var U, m e o I TR

Replacing Ui and Ui e by the corresponding values
of eq. 6.15 then

- S 1 m 2 2
EU Ui ™7 ?’ Z Bxy Has
ji=1 s=1
£ = z o )
== Z Ex o .= B ox. & xS
4 i=1 ij i+k,; 4 its ij itk, s

6.18



2 o g 2 2
As E {xij Xi+k, J) = Exij Exi+k,j + 2 (Exij xi+k,j)z’

and as E x., Xip i T pk;‘Z’ then eq. 6. 19 becomes
s ]

ij 71

1 o 45
EUiUi+ Zm(1+2p }+—4-(rn {)m,

w

and 5
1 1
[Zm(1+2pk)+z(m-1)m-T—]=pk.

6. 20

2
Pk "m

When eq. 6.17 is used in generating x. variables,

it has been proven that the variable U “is dependent
and the mathematical process is Markov first order
linear scheme.

Fig,

8 9 10 n

The desired degrees of skewness and
dependence of the model of eq. 6. 17 is obtained by
changing the number m of variables x_, thus varying

the skewness coefficient (8{m)”2, and by changing
the parameter p. Therefore, eqs. 6.17 and 6. 15 may
be used with changing parameters m and p for the
generation of sequences with various degrees of skew-
ness and dependence, respectively.

6. Examples. Chapters VIII and IX offer ex-
amples of large sample generation for variables whose
distribution functions and mathematical expressions
for time dependence of stationary series are given.
The normal standard independent or dependent varia-
bles, and the gamma independent variables are used
in these examples. The example of the log-normal
independent variable has been shown in this chapter
for the Rhine River's annual flows.

K
2 13 14 15 B 17 B 19 20

6.1 The correlograms of two dependence models for various values of the first autocorrelation

coefficient, ls: (1) B pk (first order linear Markov dependence model), dashed lines;
(2) Pp = (eP” - 1)/ (e-1), of eq. 6. 14, solid lines.

10 N

- .k
12 13 14 15 16 17 18 B 20

k
Fig. 6.2 Differences a = pk - (eP - 1)/(e-1) of the two models of fig. 6.1 as functions of p and n.



CHAPTER VII

EXACT DISTRIBUTIONS OF SURPLUS, DEFICIT AND RANGE DETERMINED ANALYTICALLY

FOR AN INDEPENDENT VARIABLE

1. Types of variable distributions. [t is
assumed that the probability density of a standardized
variable x is given either by an empirical frequency
density curve, by a mathematical function that has
been fitted to this empirical curve, or in general by a
population probability density function f(x). However,
it is assumed that the empirical frequency density
curve has been locally smoothed, Whenever f(x) is
used in the following equations, it should be replaced
either by data of an empirical curve or by a mathe-
matical function fitted to data which is, or assumed
to be, the population density curve.

In this study, distributions of surplus, de-
ficit and range for a given n and a given X will be
expressed in general terms by using the function f(x).
Integration of equations of their exact distributions is
carried out for the example given by the finite differ-
ences numerical method. In this case, integrals are
replaced by summations. When using the empirical
frequency density curve f(x), it is represented by a
table for all computational purposes. This table pre-
sents data as frequency (or probability) densities ver-
sus x-values spaced at selected differences ax.

TABLE 7.1
X, f ()“i} X f {xi)

=3.00 0.0000 0.10 0. 3804
-2, 90 0.0002 0. 20 0. 3669
-2.80 0.0010 0, 30 0, 3503
-2, 70 0.0020 0.40 0. 3328
-2. 60 0. 0040 0.50 0.3132
-2.50 0. 0060 0.60 0. 2821
-2,40 0.0095 0.70 0.2710
-2, 30 0.0146 0.80 0. 2499
-2, 20 0.0221 0. 90 0. 2294
-2.10 0.0311 1.00 0. 2098
-2, 00 0.0427 1.10 0.1902
-1. 90 0. 0567 1.20 0.1706
-1.80 0.0733 1.30 0.1516
-1, 70 0.0939 1.40 0.1340
-1.60 0.1174 1.50 0.1180
-1.50 0. 1420 1. 60 0, 1044
-1.40 0.1696 1.70 0.0923
=130 0.1993 1.80 0.0813
-1, 20 0.2289 1. 90 0.0713
-1.10 0. 2580 2. 00 0.0617
-1.00 0. 2866 2,10 0. 0537
-0. 90 0. 3127 2. 20 0.0462
-0.80 0.3363 2.30 0.0397
-0.70 0. 3563 2,40 0. 0341
-0. 60 0. 3749 2,50 0.0291
=-0. 50 0. 3885 2.60 0. 0246
=-0.40 0. 3975 2.70 0.02086
=0. 30 0.4020 2. 80 0.0171
-0, 20 0.4025 2. 90 0.0141
-0. 10 0. 3085 3.00 0.0110
0. 00 0. 3810 3.10 0. 0080
3.20 0. 0035

3.30 0.0035

3.40 0.0015

3. 50 0. 0000
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In this study, the analytical method of determining
exact distributions is related only to surplus (S;),

deficit [S;). and range (R ). The exact distributions

of adjusted surplus, adjusted deficit and adjusted
range are not investigated in this paper.

2. Example to be used. This chapter em-
ploys the same sample as Chapters V and VI to illus-
trate the analytical approach in the determination of
distributions of surplus, deficit and range. The in-
dependent variable is the annual flow of the Rhine
River at Basle, Switzerland, with 'IN = 150 years
(1808 - 1957), average annual flow @ = 36250 cfs and
the coefficient of variation Cv =0.159. Figure 7.1

gives the fitted log-normal functions to annual flows
of the Rhine River. Figure 7.2 shows the log-normal
probability density curve of standardized variable

X = (Vi- \«l");’s of the Rhine River's annual flows,

Table 7.1 gives the values of f(x) for x at the inter-
vals of ax = 0,10, of the standardized variable
X = (Vi - V)/s. This example is used in this chapter

to show the analytical method of computations. To
compare distributions obtained by the analytical

method with distributions obtained by empirical and
data generations methods, the values of SZ, S;, and

R, must be multiplied by C_ = 0.159, and their den-

sities divided by it. This factor will yield valuesthatare
comparable with those given in Chapters Vand VI. This
example will be shown after the theoretical analysis of
exact distributions is completed.

3. The approach to analvtical determination
of exact distributions. The analytical determination
of exact distributions of surplus, deficit and range
may be approached by either of the following methods:
(a) By analyzing all possible combinations of cases
between Xys Xy wne s X forn=1, 2, ... ;

(b) By using the distributions of Xy X

L xna

but with changing integration regions; and (c) By

using the joint distribution of sums Sl’ Sps een s Sp

in the form of F (Si’ Sy s Sn); and defining the
4

probability of SI'1 so that none of the St’ 52’ comie 3 Sn

y ; + 5
variables exceeds a given S, or Sn < Si' Similarly,

it can be done for 5;1 and Rn‘

4. Ezxact distributions of surplus, deficit
and range for n = 1, The basic value 2. HEdg
of a standardized variable x is used in the deriva-
tion of probability densities or probability mass of
surplus, deficit, and range. The surplus has the
probability density

£, (S]) = (), for x > 0

and probability mass for s‘i =0
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Fig. 7.1 Frequency distribution (upper graph) and frequency density curve (lower graph) of the Rhine River's
annual flows at Basle, in modular coefficients, K;: (1) Observed; (2) Fitted log-normal function;

(3) Observed densities; and (4) Fitted log-normal probability density function.

f(xp)

Fig. 7.2 Fitted log-normal probability density curve to standardized variable Xi = {Vi -V)/s for the
annual flow of the Rhine River at Basle, Switzerland (1808-1957), N = 150 years,
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with @ defined by equation 4. 15,
£, (S])
is the probability density of S;, and

Similarly,

=1f(x), for x < 0

F, {S1 =0) = P
the probability mass of S; = 0, with P defined by
eq. 4. 15,

As R, = 5*1' - s; the probability density

of R1 is

£y (Ry) = £(x) +£(-%) = £ (Ix])

|X|,

Zero to the maximum absolute value of x.

because R1 = with R1 in the limits from

s
F,(S{ss) f x)dx +| f(x)dx 7.1
o e}
F, (SI <SS [ x) dx + f(x) dx Tai2
and
1 (R{<R) j’ f(]x]) Pl

Figure 7. 3 shows 1En:-obza.b:.htj, densities

and the probability mass of 57, Sy and R, for the
Distributions of S';', SI and R, are, above example. For this exa.mpl_e, P= 0.46764 and
therefore, Q = 0.53236.
X S: R|
4 .00r 4001 4,00
3.00 3.00 3.00
200 200 @ 200
N F,(S;=0):P=0.468
1.00 1.00 (S=0). 100
0 01 0203 04 05
& ; fS) o 020 o040 .
040 0O 020 040 fiisp o 020 040 060  0BO
0_01 02 03 04 05
-100 (S1:0) -1.00
/E.(S,‘=O)=O=o_532
-200 -200
-300r -3.00r
-400L -4 004

Fig. 7.3

bability density curve, f(x), of the Rhine River's annual flows:
(2) Probability density of S} ;
(5) Probability mass for st

1

5. Dlstrlbutlons of surplus, deficit and

range for n = 2.

Figure 7.4 showse six possible

cases for different combinations of Xy and X5,

where Xy

terval, and X,

bers of subcases are:

for the second time interval.
1.1 and 1.2 for x

1

is the variable value for the first time in-
Num-

and,

(3) Probability density of SI;
= 0; and (6) Probability mass for S; = 0.

Probability density curves of x, ST, S;, and Rl, determined for the standard log-normal pro-

(1) Probability density of X
(4) Probability density of Ry;

2, 1 through 2. 6 for X, The first number in this
designation refers to n-value and the second number

to the subcase. Figure 7.4 also gives SZ, S; and

R2 for each of the six subcases as expressed in Xy

and X5
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R+ 1%,

| Seex,

Fig. 7.4  Six possible cases for different combinations of x, and x

1 > in the determination of exact dis-
tributions of S;, S;_ and Rz; (n=2, X=0).

Subcases 2.1 through 2.6 have the follow-

(03]
ing probability densities (fz. .) and probability mass s
(F, ) for the surplus, deficilt and range f,.3(8,=9) =J’ f(x) £(8-x) dx
’ o
(2.1) . ¢
£, ((853=9) | f£()£(5-%) ax R
& f2‘3 (RZ =R)=f (-R)J' f(x) dx
(o8] (00] o]
F2_1(5;=0)=J’ f():)g,f{y}dy] dx o
5 5 (2.4) 1, 4 (55 =9 =J’ £(x) (S-x) dx
R -m
fz'i(RZ=R)=I( f(x)f (R-%) dx @
0 £ 4 (S, = 8) = f(s]j f(x) dx
(2.2) 0 -3
iy 2‘(32 =8) = f(S}f £(x) dx o
-5 f2.4 (R2 = R) = f(R)J' f(x) dx
80} o] R
S,=0)= | f f(y) dy] d
FZ.Z( 5 =0) [ (x) [[ (y) dy] dx ” s
° > (2.3 g, (5% = 0) f () [jf{y) dy] dx |
:
f, ,(R, =R) = f(R}j f(x) dx @ _;‘
i
-R - 1
5 £, ; (8;=5)= f(S)[ £(x) dx
(2.3)
5, 5 18] =5}=f(s)f £(x) dx © =
-0
fz, 5 (R2 = R) = f (-R) f(x) dx
(o]
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0
(2.6)
Fp gl 200 [ | £(y) dy] ax
e} -
£, E.(s = f f(x) f(S-x) dx
o
6 (R, = R) =[ f(x) f (-R-x) dx
-R
The subcases for SZ, S;, and Rz are combined in
the form
6
L, =2 §;0)
i=1
with Y = S-IZ—, Y = S;, and Y = RZ’ respectively.

The probability density curve, the pro-
bability mass and the probability distributions of

1 i
SZ’ 52 and R2 are
S

]

o] - X
=0)=f f(x)[Jf(y] dy] dx 7.5
- -0
o —X
(s} < s)=f £(x) [[ (y) dy] dx +
@ =0

+

£,(5; =9)=Qf(5) +| I f(S-xdx 7.4

and

s " S
-l;( [Qf(s) + f f(x) £(S-x) dx] ds,
o =
for S;; ® 7.6

o]

fa(S£=S)=Pf(S}+I f(x) £(S-x) dx, 7.7

[0 8] [e ]
'=0)=jf(x)[ff(y) dy] dx, 7.8
o -xX
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and

(98] @

F S<S)ff(x}[[ f(y) dy] dx +

[[Pf(S)+j (x) £(S-x) dx] ds

for S, 2 and

R o
fz(RZ=R}=ff(fo(R-x)dx+ff(x)f(-R-x}dx+

o -R
o R
. 2f(R) jf (x) dx+ 21'('RJ f(x)dx; 7.10
with -R o
R
F, (R, <R) =f f,(R)dR
o

for R,, with fZ{R} given by eq. 7. 10,

In the case of a symmetrical density curve
fx), P= Q, and egs. 7.4 through 7.6 are identical

to eqs. 7.7 through 7.9 for S = -S Equation
7.10 for a symmetrical f(x) becomes
R R
fz{R2=R)= ZIf(x}f(R-x) dx + 4{{Rj f(x) dx
T7.12
o o

For numerical computation of distribu-

tions, the integrals of the above equations are re-

placed by summations, and differentials dx, ds;,

ds,

2 and dRz are replaced by differences ax, QSZ,

ASE, and AR, respectively. All four differences

are taken to be 0. 10 for the Rhine River example,
which is given in table 7. 1.

Figure 7.5 gives the distributions of 5;.
Sz, and R
and probablllty mass (for S

in the form of probability density curves
=0 and S; =
example of figs. 7.1 and 7. 2 and table 7. 1.

0) for the

The requirement that the sum of the areas
under the pro_pablllty density curves plus the probability
mass (for S, =0 and S2 0) are unities has been

verified for all three probability distributions (S:_.
Sﬁ, and Rn)'
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Fig. 7.5 Probability density curves of: x, surplus, deficit and range for n = 2, determined from the
exact distributions by the finite diiference method of integration for the standardized log-normal
probability density, f(x), of the Rhine River's annual flows: (1) Probability density of x;

(2) Probability density of S"' , and densities of two individual integrals; (3) Probability density

of Sz, and densities of two 1ndw1dual mtegralb, (4) Probability density of R,, and four indivi-

dual integrals; (5) Probability mass of S = 0; and (6) Probability mass of SZ

S v

6. Distributions of surplus, deficit and
range for n = 3. Figure 7.6 shows 18 subcases for (3.1) | £(S-y) [ 3 )
different combinations of Xis X, and Xg (values of x

o} 0
for intervals 1, 2, and 3), numbered 3.1 through 3. 18. S &
The first number 3 refers to n, and the second num-
ber to the subcases. Figure 7.6 gives the correspond- (3.2) f(x)f(S-x) dx f(x) dx
ing values of S S;, and R,. There is an inversion
= -3
between 5 dnd S5 for subcases 3.1 - 3,9 and © s -s

3.10 - 3. 18. For R, these cases mean only a change
; S o : (3. 3) f(x)f(S-x)dx f(x) dx
of signs and limits. This is an important property

for asymmetric distributions, For symmetric func- o -0
tions there are only 9 subcases for R, and 18 for S

but then f, (S3)= 1, (-S)). (3.4) [f(S-yI[ | £(x)f(y-x dx] dy

Subcases 3. 10 through 3. 18 are inverts
of subcases 3.1 through 3.9, respectively. Inver-
sion is performed in such a way that only the in-
equality signs have been changed. This fact enables
only the analysis of subcases 3. 1 through 3. 9. The (3.5) £(8) £ ) oyl o
probability density equations and probability mass

developed in these equations are used to obtain, by a -(8+ x)

change of signs and integral limits, the corresponding - (5 + x)

expressions for subcases 3. 10 through 3. 18. These t(y) d 3
+ 3.6) (S (x v X

18 subcases for S; = § are: (3.6) 1{S) A )
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: A
X < -Lxﬁxzwsz-(xﬂxz)
—_—>
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+ -
3 Ss Rs
X+ Xq+ Xy O [ X+ Xq# Xy
x1 +x2 O X1+ Xz
Xyt X, Xq* X+ X4 IXsl
x‘l O x-|
X Xe+ X4 Xy | XXl
Xq+X, [X,l
X+ Xa# Xy | IXatX4l
x1 X;*Xg
X4 X,
Xyt Xq #X4 Xl
X-‘ Xg“xs
X, 1%,
Xq+Xg+Xy [IXg#X 3 #Xql
Xq+X g X;
X1 "'X,_ X1"'XQ
Kt X+ Xy IX#Xg*'X;l

Fig. 7.6
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Eighteen possible cases for different combinations of x
distributions of S;, S; and R4 (n=3, X=10).

X

17 52

and Xy in the determination of exact




o S
(3.7) If(s-y)[j £(x) f(y-x) dx] dy
e s} o
-S -x
(3.8) f{S)[f(x)[ff(y) dy] dx
= o}

=5 0
(3.9) f (S}ff (x) [J’ f(y) dy] dx
- -
5 o]
(3. 10)f

f(S-y)[J f(x) f(y-x) dx] dy
Q

=0

o o
(3.11) ff(x)f(s-x) dx[ f(x) dx

- -(8 - %)
o =(8§=x)

(3.12) jf (x) £ (8 -x) dx j f(x) dx

i o] e o]
o ¥

(3.13) Jf(s‘y)[jf(x) f(y-x dx] dy
-0 =@
o _y o
(3.14) F, (s§=o)=j [j dxff(x)dx} dy
-y
y

f(x)f(y -x)
e o} -
(o] Q
(3. 15) F3{s§ =0}{ [ [fx)iy-x de’f(x) dx] dy
=0 —o

=

o y
(3. 16) jf(S-y-)[jf(X)f(Y'x) dx] dy
- o]

o] o] o]
(3.17) F,(s;=0) =j[jf(x}f(y-x)dx £(x) dx] dy
~o -y G
o} (8] (8]
(3.18) F,(s3 =0)=j[ff(x)f(y*x)dx[f(x) dx] dy
—0 ¥ hd o]

Subcases 3.1, 3.4, 3.7, 3.10, 3.13 and
3. 16, then subcases 3.2, 3.3, 3.11 and 3. 12, and
finally subcases 3.5, 3.6, 3.8 and 3, 9 are combined
in integrals of the same type. They give the pro-
bability density of S;T in the form of
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dy +

)
J'f(x) f(y-x) dx]
-
S o] -X
+Q[f(x) £(S-x) dx+ f(s)jf(x) [ffm ay] dx
7.13
= - -d

By combining subcases 3. 14, 3.15, 3,17
and 3. 18 the probability mass for S; = 0 is obtained

as
o] o] Y
F3(S;=0)=J'[‘j,f{x)f(y-x}dx //'f(x}dx] dy 7.14
-m -0 -m
The distribution of S; is then
F(S+¢S)=F(S+=0)+J’f{5}ds 7,15
3V°3 - 33 3 h
0

: +
with F3(S3 =
eqg, 7.13.

0) given by eq. 7.14 and f;(S) given by

The probability densities of eq. 7.13 and
the probability mass of eq. 7. 14 are computed for the
example of figs. 7.1 and 7. 2 and table 7. 1. The sum
under the curve of eq. 7.13 plus the probability mass
of eq. 7.14 gives 0.999345.

Similarly, the probability density of S,
is obtained as

o (o]
f3(S;=SJ=If(S'y) [f f(x)f(y-x) dx] dy +
s S
foo) fes) @
+ PIf(x}f(S-x)derf(S)jf(x} [ jf(y}dy] dx
7.16
S o b3

with the probability mass for S; =0

o o e o) jas]
Fg(S3 = 0)=J’[ J’f(x} f(y-x) dx jf(x)dx] dy 7.17
o [e} -y

The distribution of s; is then

F,(S3<8) = Fy(S;=0) +f £,(5) ds 7.18

with Fg (S; = 1) given by eq. 7.17 and {,(S) given by
eq. 7.186,

The probabilities of eq. 7.16 and 7. 17 are
computed similarly as for S‘; . The sum is 0.999346.



Figure 7.7 depicts the probability density obtained by the finite differences integration of eqs.

curves, and the probability mass of S; and S; as 7.13 through 7. 18.
R(5;=0)=0288
+ l/‘\"——"_’_"ﬂ-_
75% (5 Ra
" 0 of 020304 O
&b 0 0.2 04
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Fig. 7.7 Probability density curves of S; 5 S; and R, determined from the exact distributions by the

finite difference method of integration for the independent standardized log-normal probability
density curve, f(x), of the Rhine River's annual flows: (1) Probability densities of S"3’ :

(2) Probability densities of S;; (3) Probability densities of Ra; {4) Probability mass for
S'; = 0, and (5) Probability mass for S; =0,

R R

Similarly as for S, the 18 subcases of
R, = R have the following expressions for its pro- (3.4) [t(R-y[ | £(y-xf(x) dx] dy
bability densities o v
R ¥
o 2
(3.1) ff(R-y) [[ f(y - x) f(x) dx] dy (3. 5) f(R)ff(y)[ [ f(x) dx] dy
e} o]
-R -(R+y)
o] R
R o
>4 f‘(x) dx[ MRS EE @ (3.6) ff(x) dx ff(-R-y)f(y) dy
-R ) 2
Ry y -R
3 £(-R)| [ [ f(y-%£f(x)ds] d Gl sl
(3:.3) o ¥ (3.7) r(R)I[ J, £y - %) £ (x) dx] dy
o o
R o




(3.8)

(3.9)

(3.

(3.

(3.

(3.

cases 3.1,

. 10)

11)

.12)

. 13)

. 14)

. 15)

16)

17)

18)

R R
f(-R)J'f{x) dxj, f(x) dx
O o]
e 5
ff(x)dxjf(-R'y)f(y) dy
o] -R

o R
ff(x) dxf f(R-y) f(y) dy
-y 5

[o] -R+y

-y R
ff(x)dx[ f(R-y) fly) dy
-R o
R
f(-R)f f f(x) dx] dy
(o]
o y
‘l'f(-R-y)[j, f(y -x f(x) dx] dy
R R
o] o]
f(R)j[ ff(y—x)f(x}dx] dy
Ry
R o
J’f(x) GXI f(-R-y) f(y)dy
o -R
o o}
J’f(-R-y)[[f(Y'X)f(X)dX] dy

Yy

By combining identical integrals: sub-
3.4,3.15 and 3. 18; then subcases 3, 5,

3.7 and 3, 16; subcases 3.3, 3,12, and 3. 14; subcases
3.2, 3.10 and 3. 13; subcases 3.6, 3.9 and 3.17; and

finally 3.8 and 3. 11, then

f3{R3=RJ=j f(R-yJ[[ f(y-x) f(x) dx] dy +

R R

o o
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[e] o
+ff(-R-y)[ ff(y-x)f(x) dx] dy +
‘R

f[f f x)dxff(y x)
~(R+y)

R+y _
+J' fly-x)f(x)dx] dy+ f(- R[[fj f(x)dx+
o

¥
+J'f(y-x)f[x)dx+l/’ f(y-x)f{x}dx] dy +

-R+y
+ Zj-f(x f - %) ) dx +
+ZJ’ (x) cle
o

+ £(-R) [I x) dx] + £(R) [j’f(x) a
7.19

o} =R

(x) dx +

The distribution of R, is computed as

R
F, (R; < R) =J' £, (R) dR 7.20

o

and f3 (R) is given by eq. 7.189.

When the probability density f (x) is

symmetrical, the above integrals of eq. 7. 19 may be
simplified to:

5 (R4 R=f Ry)[ff(y x) f(x) dx] dy +

¥
+ 2f( j[f(yf f(x) dx If(y—x}f(x)dx+

R-!—y
+J’ fy -x) f(x) dg] dy +

Q R R
* 4j,f(x) dxff(R—x} f(x) dx +
o o
R
+ 21 (R) [ff{x} dx]?
o



Eight probability density curves for the
eight integrals of eq. 7. 19 are obtained by digital
computer integrations. This integration is accom-
plished by passing from integrals to summation in eq.
7.19 with Ax = Ay = AR, andusing ax = 0.10.

The probability density curve of R3 is plotted in fig.

7.7. The area under the total probability density curve
is 0.99797. The main reason for these equations of
exact distributions of S'_f;, 83, and R3 to be given

in this study is to show the complexity of exact distri-
butions even for n = 3, Equation 7. 18 with eight
different integrals and limits shows that the exact dis-
tribution of range is difficult to obtain even for n as
small as 3, 4, or 5. W. Feller [4] pointed out this
same fact in his study of asymptotic distributions.

7 Comparison of the analytical method with

the data generation and the empirical methods, by S;,
S, and R, distributions (for n= 3). At this point

the densities, mass and distributions of S;, S;, and

R3, for the annual flow of the Rhine River as obtained

by the empirical, data generation and analytical
methods should be compared. In this comparison the

values of S;, S; and R, in the above integrations,

are multiplied and densities are divided by
C, = 0.159. The corresponding curves are plotted

as lines (3) in figs. 5. 2 through 5.4 for n = 3. This
comparison by distributions illustrates two factors:
(a) The empirical method gives distributions which
are not smooth; and (b) The data generation method
gives values which are very close to those obtained

by integration which uses the finite differences method
of exact distributions. The selection of Ax = Ay =
5543- = 8R4 plays a significant role in the integration

accuracy of exact distributions.

8. Distributions for the n = 4.
shows the 54 cases of SZ_. S; and R4. These cases

Figure 7.8

are various combinations of xi, Xy, Xg and Xy OUmM-

bered 4. t through 4.54. Cases 4. 28 through 4. 54
are identical to the corresponding cases 4. 27 through
4.1, Exceptions to this statement are that 84 and
S
limits of integrals or sums have to be modified ap-
propriately. The first number refers ton = 4, and
the second number to the case as designated in fig.

are interchanged and the signs of variables and

7.8. In the last four right hand columns fig., 7.8
yields: the case number, Sz, S; and R4 as ex-
pressed in values Xys Xpy Xg and Xy

Figure 7.8 is presented to illustrate how
complicated this method becomes even for n = 4.
Many cases can be combined as being of the same
type of integrals but with different integral limits.

In these cases the expressions for the distributions of
+ -
Sy 84,
are not reported in this study. This involvement
supports Feller's [4] statement that even forn = 4
the exact distributions are difficult to obtain. For
n = 5 there are 162 cases (3 x 54 = 162) and any
attempt to derive the exact distributions of surplus,
deficit and range become intractable from a practical
point of view.

and R4 become complicated, and as such
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The other approach for the derivation of
exact distributions of surplus, deficit and range is in
combining all similar elementary cases of the pre-
viously mentioned systematic method of analysis into
the cases of the same type of integrals. It reduces
the number of cases to be separately investigated.
However, this new approach is likely to omit some
elementary cases,

9. Distribution of surplus, deficit and range
as obtained from X, variables by using the changing
The probability distribution

+
F_(S_) may be expressed as

integration region,.

n'“n
i m=n
Fn(sn) =] (n) ﬂ f(xm) dx 722
1 m=1
with the region of integration defined as
g +
1: i§1x1=5m§ Sn,mth T Ei0: Ly e » e
T.23

Difficulties in integrating eq. 7. 22 come
from the changing integration region I. Equation 7. 22
is approximated by the summation
+ +
8145 Sn S.?. i Sn
=z
-

=

f{xa) f (xn) AX

17 2"
As S; cannot be smaller than So =0, or S
0 is

equal to eq. 7. 24 with the lower limit - and the
upper limit zero. In summing eq. 7. 24 the value

ways positive, the probability mass for S:

Sn & sn-i FEy o Sn-i 3 Sn " A Sn-Z = Sn “¥y T
Xy and so on, with S1 = Sn TX, T X g Tees TXpF
X Taking AX, = AX, =...TAX = BX, for a given n,

there is a constant (ax)" ineq. 7.24, or

+ + +
(S+) - S,<8, 85,8 S, <8, )
F = (A% = =z s o f(x,)-
non - - -0 .
f{xa). siwie f(xn). 7.25

The following steps are feasible when using a digital
computer to sum up eq. 7. 25 for a given S; (a) the

sum of fn (xn) is determined in the limits - to S;;

(b) this determined value is multiplied by the sum of
o (x__,) for each Sn of the previous sum; and

f
n-1
(e) x 1is then selected in such a way that S _, =
+ . -
(Sn xn) < Sn with x_ in the limits -0 to + o or

-+ i i ;
X, > (Sn - Sn); and so on. This summation requires

fast digital computer with a very large core storage
capacity. When n is greater thann = 5 the com-
plexity of this integration may discourage even the
digital computer approach.
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of exact distributions of SZ, S; and Ry (n=4, X=10).
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10,

Assume that the independent variable x is distributed
according to the probability density function f(x). The
sum of m independent standard variables X, X

Use of joint distribution of sums of x

2,
oz oL is
m
Sm=Xi+' +xn,1 7.26
with So=0 for m =0, and with m=0, {, 2, ... n.

This new variable Sm satisfies the first order sta-

tionarity; namely, the expected mean is zero and it is
independent of m. It does not satisfy the second or
higher order stationarity. The variance increases
with an increase of m, and for the standard normal
variable, var Sm =m, for m=20, 1, 2, ... n. The

is correlated serially and the expected

serial correlation coefficients depend on the position
m. For the position m, the first serial correlation

coefficient ry (m) is between Sm and Sm+1' The

second serial correlation coefficient is between Sm

variable S
m

and S » and so on for the higher order coefficients.
m+2

For the position m the covariance of S and Sm+1
is m. Then,
. (m) = covS S .4 ) =
1/
1 (varS_ var Smﬂ)/'”- RS
T.27

The dependence of the sequence of the
variable Sm increases with an increase of m. Then

rl{i) = 1{'\/7, and ri{m}= 1.

. m
m (m +k)

Similarly,

\f m+k

In this case, the serial correlation matrix
of ry (m) is

r) (m) =

5y S, S3 S/
m

i
N N N
& 8 1 i =2
2 \/_ ViR
3 s 3 __4/3
; b
4 s, 1---\/’4__
n

1
1

1
1

1
1

!
n Sn 1

By using the convolution integral, the dis-
tribution of S can be obtained from that of S
m+1 m
as +m

f (s f(x)f_(S -x) dx 7.30

m+1) =
-

m+1 m'Tm+l

The surplus s:: » the deficit S_ and the
range Rn are
+
S. = _ Max [s ] 7. 31
n m m
Sn - lin [Sm] 7.32
R, = Max [s. ] - Min [sm] 7.33
form =0, 1, ., n
+ o + -
Fn(Sn) 5 Pr(Sm <8 ,form=0,1, ..., n
T7.34
which is the probability d;strlbutmn of S In other

words, the probability of a given S
that all dependent Srn

is the probability
are smaller than or equal to

S:; forany m=0, 1, ..., n,
Equations 7. 27 through 7. 29 enable a de-
rivation of joint analytical distribution f(Sl, S2 y e s

Sn} when the serial correlation coefficients are known.

Then the surplus S'I: is

) S
n n
+ " v
F (s, < Sn}:/’ (DJJ, £.(84,8,,...,8)ds,. dS,.
ol

ds 7. 35
n

The problem is in deriving a proper ana-
lytical equation for the joint distribution of Sm (m =

i1, 2, ... , n). This is feasible only for a normal
function. Integration is then accomplished by a finite
difference procedure. With an increase of n the
expressions for the exact distributions and their in-
tegrations become more and more complex.

11. Comparison of three methods of exact
distribution computations. A comparison of the above
three methods of obtaining the exact distributions of
surplus, deficit and range shows that all three ap-
proaches are similarly complex. The difficulties in
obtaining these distributions grow by a geometric
progression of n by an increase of n.

These difficulties and an increase in the
computations needed by a geometric progression of
n lead to the following conclusions:

(1) The practical aspects of obtaining
the above distributions for n approximately five or
greater, do not justify the use of any of the three
methods;

(2) The determination of exact expres-
sions for parameters of exact distributions of surplus,
deficit and range, and the fitting of functions to exact
distributions by the use of the above parameters,
becomes an attractive practical solution; and,

(3) The data generation method, with
large generated samples of time series of a given
distribution and a given time dependence, is the
attractive method of obtaining the distributions of
surplus, deficit and range, closest to the exact distri-
butions.



CHAPTER VIII

DISTRIBUTION OF SURP1LUS, DEFICIT AND RANGE FOR INDEPENDENT AND DEPENDENT

A (0]

1, Independent Normal variables. The dis-
tribution of an independent normal variable, X, is de-
scribed by its mean up and its standard deviation o.
The surplus, deficit and range of an independent nor-

mal variable are equal to S:, 51-1' and Rn of the

independent standard normal variable, x =(x-u)/o,
multiplied by the standard deviation ¢ of X, and their
probability densities divided by o. Therefore, it
suffices to investigate the case of the independent
standard normal variable to cover all independent nor-
mal variables.

To simplify the text, the independent stan-
dard normal variable x is often designated by (0, 1,
0), which means u =0, o =1, and Py = 0 (all auto-

correlation coefficients are zeros). The dependent
standard normal variable is designated by (0, 1, p),
with p representing the time dependence. The inde-
pendent normal variables are designated by (u, o, 0),
with Pk = 0 for all k. The dependent normal varia-

bles are represented by (u, o, p), with p the symbol
of dependence. As the surplus and deficit have the

identical distributions for S; = - S; of a symmetri-

cal (0, 1, 0) - variable, it is sufficient in this report
to give only the properties of the surplus. Therefore,

whatever is stated about S: and S:; (}_{n) is also valid
for -Sn and - Sn (Xn).

2., Asymptotic mean and variance of surplus,
range, adjusted surplus and adjusted range for (0, 1,
0) - variable. W. Feller [4] developed the asympto-
tic distribution of the range. Rt' of the continuous sum;
Sye

continuously changing normal variable, St’ as cumula-

tive sums of x. It should be noted that x is sub-
jected to a Bachelier-Wiener process which uses the
distribution function that occurs in the Kolmogorov-
Smirnov theorem on empirical distribution functions.
He also obtained the asymptotic mean and asymptotic
variance of the range, R,. These asymptotic para-

This distribution is based on the concept of a

meter values of the range, Rt' are determined as ap-
proximations. The sum Sn can be considered as the

value at time t = n of the continuously changing
variable St’ and Rn the value of Rt at t = n.

The expected asymptotic range is

1
/z =1,5958..../n ==21.6 Vn

_ Zn
ER) = 2( =
8.1
and the asymptotic variance of range is
2
2 = = - —==
¢ = var Rn 4n (In 2 :r) 0.218 n 8.2

where 1n is the natural logarithm, and n is any
position in a discrete series. The expressions: the

expected value and the (population) mean are used in
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L
this text as interchangeable synonymous terms.

According to W. Feller [4], the asympto-
tic mean and asymptotic variance for the range given
by egs. 8.1 and 8. 2 seem to agree with the exact
values computed for extreme cases. This statement
is true when the values of x; are only + 1, having

probabilities 1/2, and n is small (6, 10, 12).
sidering the smallness of n, and the fact that the
assumed distribution of variable [+ 1, - 1] is most
unfavorable for the approximation, according to Feller,
the above equations appear surprisingly good. But,
they also bear out the expectation that the ranges of
discrete sums Sn should be smaller than those of the

Con-

corresponding continuously varying sum,. St.

As E(s:'l)= "E(S]), and E(R_) =E(S;) 5
-E (S;), the asymptotic mean of S; is

+ Zn) Ve

—| =0.8 n 8.3
n

)= ER) -

72 n

E(S

3 i o
The asymptotic variance of Sn is

1

Zn{lnz-é)
. T
varSn

l-pn

var
Rn

2 0.109n
2(1-p.)

1-pn

8.4
with Py the correlation coefficient between S; and
o

-
Figure 8.1 gives the computed values of
Pa obtained by the data generation method from

100, 000 independent normal numbers. The points
show a convergence of Pn to the asymptotic value
Py ™ 0. 70 with an increase of n.
in fig. 8.1 gives the following approximate expression

o =1 0:30 Vn g5
B Vn - 0.37
with the constants 0. 30 and 0. 37 obtained by the least

squares method. The relationship of eq. 8.1 is
plotted in fig. 8.1 as a solid line.

The curve fitting

By using P of eq. 8.5, the approxima-
tion of eq. 8.4 becomes

varS;=0.363n-0.134 V n 8.6
Equation 8.4 may be written as

var
Rn

p.=1- —— 8.7
1 2varS+
n

The asymptotic variance of R, is given by eq. 8.2.

. + ;
The asymptotic variance of Sn was not available

for this analysis. However, A. Anis [6] gives an
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Fig. 8.1

standard normal variable, as function of n.

(100, 000 independent numbers): (1) Curve, fitted to points by least squares method; and,

. . L I
35 40 45 50

The correlation coefficient Py between the surplus (SK} and the deficit (Sr:) of an independent

Points are obtained by the data generation method

(2)

Asymptotic value Pp = 0.70 for wvery large n.

approximation to the second moment about zero of the
Eaa +
exact distribution of Srl

ui {5;} e B o @E o 8.8

As the asymptotic mean of Sg is given by
eq. 8.2, then by using eq. 8.8 the approximate vari-
ance of S; becomes

+ ooy 2+3Z2 - =
varS =n(1 N) - \n =0.363n 1.098 n

.9

Equation 8. 9 is obtained by using the asym-
ptotic mean of eq. 8.3 and an approximation to the
exact second moment about zero of eq. 8.8, As the
asymptotic mean for small n (as it will be shown
later in this text) is greater than the exact mean, eq.
8.9 gives negative values for small n. However, the
purpose of eq. 8.9 is only a derivation of asymptotic
value of Py

With egs. 8.2 and 8.9, eq. 8.7 becomes

2
2(In2-=) o
T 1_0.30 o g 4o

PRV e
T w'\/?

When n is very large Py = 0. 70, approximately.

—

However, the convergence to P ™ 0.70 is very slow.
Even for n = 144, Py = 0.60. For n =9 the value
Piy becomes negative infinite, Eq. 8,10 is useful
only for its asymptotic value P = 0.70. Figure 8.1
shows that p, converges more rapidly to the value
Prs ® 0.70 than eq. 8.10 indicates. It should be

stressed that eq. 8.10 is derived from the approxi-
mate or asymptotic values of variances, while fig.
8.1 for p = f(n) is very close to the exact relation-

ship,

The asymptotic distribution of range for
any value of x, is based on the sums

S, (%) =8, - n x, 8. 11
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where Sn is the cumulative sum of x, either positive
or negative, and the range is

3 =
Rn (xo}= Sn {xo) - Sn (xo) 8.12

. + . s .
with Sn {xo) the maximum positive cumulative sum
and SI-1 {xo} the minimum negative cumulative sum of
+
The value Sn (Xo)

takes a position in i/, and S; {xo) in i,» when i is

Sn(xo) for n=0, {, 2, ...

between 0 and n. These values and positions may
be different from the values and positions of SK and

S; for X, = 0. The approximate expected value of

the asymptotic distribution of range Rn (Xo] is

E[Rn(xo}]‘:i.ﬁ VYn + n |xol 8.13
where the last term is always taken positive. The
asymptotic variance is the same as in eq. 8. 2.

H. E. Hurst was the first [1, 2, 32 to
develop the expression for the expected value (asymp-
totic, however) of the adjusted range as

o = TR o~
E[Rn (xn)] =7\/ 3 1.25 Vn 8.14

W. Feller [4] employed other means to
develop the asymptotic mean and variance of the ad-
justed range of (0, i, 0) - variable. The asymptotic
mean is the same as in eq. 8. 14 and the asymptotic
variance is

2 2
= % =(X_ - I = o
S, var[Rn{xn}] ( 5 2)n 0.07414n=0,074n
8.15
Equations 8. 14 and 8. 15 are developed as
approximations by W. Feller using Doob's approach
to the Kolmogorov-Smirnov theorem. This approach

yields the distribution of the adjusted range for the
continuously changing sum, St'

The asymptotic expected value of S; ()_Cn)

for (0, 1, 0) - variable is half of a value given by eq.
B. 14, or



E[S; &)=\ T = 8.16

0.625 \n

The coefficients of variation for both the
range R and the adjusted range R (xn) are con-

stants for asymptotic distributions, namely,

-‘fvarR | —

. n - 7 ln2 . o3

C, [Rn] =g = '\/ 5 1=20.292; 8.17
n

and
- R (En) w ~
CV[RH {xn)] = _I-_'{nT%;T_ = 3 - = 0.213.

8,18

Equations 8. 17 and 8, 18 show that the exact C - values
of range and adjusted range have horizontal asympto-
tics. The comparison of eqs. 8.2 and 8. 15 shows
that the adjusted range R (En) has the advantage ofa

greater sampling stability than the range R . Equa-

tions 8.1 and 8. 14 show that the difference between
the asymptotic means of range and adjusted range is
aRn = 0,35 \/n. These equations also indicate that

the difference of asymptotic variances given by egs.
8.2 and8.151is avarR = 0.144n. The use of asymp-

totic values of mean and variance for surplus, deficit,
range, adjusted surplus, adjusted range and adjusted
deficit is useful because they may be considered as
good approximations for large values of n.

3, Exact means of surplus and range for (0
1, 0) - variable. The expected value of Rn for a

given n of (0, 1, 0) - variable was determined by
A. A. Anis and E. H. Lloyd [5] in 1953 as

sap- V3 E

i=1
As ﬁn = §:1 for a (0, 1, 0) - variable,

i=n
+ - 1
E(S,)="\z7z =

i=1

;7% 8.19

then,

i 8. 20

Forn =1, eq. 8.19 gives E(Rll =\ 2/r. Fora

oo
large n the expression Z i Z becomes approxi-
i=1
mately 2 Y n, and the asymptotic mean of range is
2 Vn Vz/z which is in agreement with Feller's re-
sults [4] and eq. 8. 1.

E{Ri) =2 %, which is twice the value of eq. 8. 18.

Equation 8,1 for n = 1 gives

4, Comparison of various expressions and
methods of computing means of range and adjusted
range. Figure 8.2 gives the comparison between
E iRni values computed by: (1) the formula of asymp-

totic mean, eq. 8.1; (2) the formula for exact values,
eq. 8.19; and, (3) means obtained by the data genera-
tion method from 100, 000 independent numbers of (0,
1, 0) - variable, for various values of n.

Fig. 8.2 Comparison of means of range:

given by eqg. 8.

For small values of n, an approximation to exact
values is given in a recent Ph. D. dissertation at
Colorado State University [11].

E(Rn)='\}8:r—n -4s 1.6 Yo 8.

The means of eq. 8. 21 are also given in fig. 8. 2, line
(4). The differences between these mean values are
given in fig. 8. 3. The absolute differences between
the exact values obtained by eq. 8. 19 and the values
of the data generation method are within the sampling

21
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(1) Mean of
eq. 8.19; (3) Means determined by the data generation method,

asymptotic distribution, eq. 8.1; (2) Exact means,
R ; and, (4) An approximation
21

errors of this latter method. The difference of the
asymptotic mean and the exact mean of range in per-
cent of the exact mean, as given in fig. 8.4, decreases
with an increase of n. They are relatively high for
values of n encountered in hydrologic applications.
Figure 8.5 gives the differences between various means
of R, in relation to the exact mean (eq. 8.18) in per-

cent of the exact mean.
In conclusion, the above comparison indi-

cates that eq. 8.1 should not be used for small values
of n, even for n as large as 25 - 30, because the error
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Fig. 8.4  The relative difference, D in %, of the asymptotic and exact means of range.
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Fig. 8.5  The relative difference of ranges: (1) The difference of mean obtained by the data generation
method and the exact mean (eq. 8. 19) to the exact mean, D1 in %; (2) The difference of

approximate mean (eq. 8.21) and the exact mean (eq, 8.19) to the exact mean, D, in %.
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at these n values is about 15 percent. Equation 8. 21 To the writer's knowledge, an expression

does not have any advantage when comparing it to the for the exact means of adjusted range, Rn (Xn), is not

exact mean of eq. 8.19. There is one exception to ; ; : : 3

the foregoing staiement snd tht lo that he spproxi- | 3'AAble Jn e Mersture, Therelors, 08 5.0 g1

1 i . :

mate Rn values may be computed readily frgm °q expected mean of adjusted range, computed by: (1)ex-

8. 21 for a given n, while the derivation of Rn from pression for the asymptotic mean, eq. 8.13; (2) mean
obtained by the data generation method from 100, 000

independent normal numbers; (3) first approximation

to the means obtained by the data generation method

eq. 8.19 is based on the computation of all previous
R; values, with i=1, 2, ..., n-L

Ry,
pri

L L . L L L I L._ln
(] E) 10 1% 20 =) 30 EE) 40 45 50

Fig. 8.6 Comparison of means of adjusted range: (1) mean of asymptotic distribution, eq. 8.13; (2) mean
determined by the data generation method (100, 000 independent numbers); (3) means of the approxi-

mation, ﬁn (;n) = 1,25 ('\/;- 1), eq. 8.22; and (4) means of the approximation

= =y Yo B -y
Rn{xn) = 3 i“‘]_ (i-1) % eq. 8.23.

in the form Figure 8.7 gives the following relative
differences: (1) Asymptotic mean minus the mean ob-
E[R_(x])]= 1.25 ( '\/_n-- 1) 8,22 tained by the data generation method in percent of this

.7 latter value; (2) Mean of eq. 8. 22 minus the mean

and (4) second approximation to means obtained by the obtained by the data generation metnod in percent of
data generation method in the form this latter value; and (3) Mean of eq. 8. 23 minus the
mean obtained by the data generation method in percent

n . i i
E[Rn(fn)] - }C;- = (-1 14 3.23 \ of this latter value.
3= 4 Equations 8. 22 and 8. 23 fit the means ob-
Forn =1 these two equations give El (S:‘l) = 0 which tained by the data generation method relatively well,
- (s ! = particularly for n>10. For n =1 - 10 the largest
satisfies the conditions of adjusted range that R, = 0. relative differences are not greater than 8 percent and
5 percent for n = 2, respectively for eqs. 8. 22and8. 23.
aRp(Eqin o
505

40k

30

Fig. 8.7 Relative differences of means of adjusted range: (1) Asymptotic mean minus the mean obtained by
the data generation method, in percent of this latter value; (2) Mean of eq. 8.22 minus the mean
obtained by the data generation method, in percent of this latter value; and (3) Mean of eq. 8. 23
minus the mean obtained by the data generation method, in percent of this latter value.
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5. Exact variances of surplus and range for
(0, 1, 0) - varaible. A. Anis |6] gives the exact
second moment of Slrl about zero as

1

o
! =
uZ{Sn) 2(n+1)+
. nz-a L {j(i-j-ﬁ—l)] %
2w =t =1 8. 24
As n ordinates have n - ! intervals, n ineq. 7.1

of ref. 6 is replaced by n-1. Using the expression
for the exact mean of S; , eq. 8.20, the variance of

+
Sn’ becomes

Using this expression and egs. 8.5 and 8.7, the
variance of range becomes

-" - i -]
var R_ = 200 Yine to. X n‘_‘3 = 4iti- 'é-
5 5 +3; Z T jli-j+1)
Vn -0.37 i=1 j=1
2z
n
1 . =g
- Z_ﬂ— : i /2 8.26
i=1

Table 8.1 gives the computed values of:
(1) Exact values of ﬁn, eq. 8.19; (2) Exact values

+
of Var S , eq. 8.25; and (3) Approximations to

exact values of var Rn’ eq. 8. 26.

+ n 1 n-3 i ]r’f'!
var Sn >t mr i:i 331 (ji-j+ 1)] 6. Comparison of various expressions and
5 methods of computing variances of range and adjusted
{ n = range. Figure 8.8 gives the comparison between
- T U 8,25 variances of R~ computed by: (1) expression for the
£k asymptotic variance of Rn, eq. 8.2; (2) expression
TABLE 8.1
i R, var S var Ry 5 . var S; var f{n
eq. §.19 eq. B. 25 eq. 8. 26 eq. 8.19 eqg. 8,25 eq. 8.26
1 0.7878 0. 3408 0. 3246 26 7.0612 8.5760 5. 5478
2 1.3621 0.5361 0.4364 27 T.2148 8.8358 5, 7725
3 1.8228 0,6692 0.5106 28 7.3655 9, 2995 5. 9965
4 2.2218 0,9249 0. 6809 29 7,.5137 9.6555 6.2210
5 2, 5786 1. 2216 0.8783 30 7.6594 10.0156 6.4450
6 2.90453 Fo 9 AT 1. 0876 31 7.8027 10. 3760 6.4450
7 3, 2059 1.8671 1.3025 32 7.9438 10. 7364 6.8928
8 3,4880 2,2028 1,5206 33 &. 0827 11. 0968 7.1164
9 3.7540 2, 5438 1.7410 34 8.2195 11.4575 7.3408
10 4, 0063 2.8886 1. 9628 35 8.3543 11.8184 7.5638
11 4, 2582 3.2360 2, 1856 36 8.4873 12,1792 7.7874
12 4.4886 3. 5855 2.4087 3 8.6185 12.5403 8.0120
13 4.7099 3.0368 2.6321 38 8.7479 12,9014 8.2350
14 4.9232 4, 2895 2,.8559 39 8§.8757 13. 2627 8.4590
15 5,1292 4, 6433 3,0804 40 9.0018 13.6241 8.6826
16 5. 3287 4, 9980 3.3047 41 9.1265 13,9854 8.9059
17 5.5222 5, 3535 3.5294 42 9. 2496 14, 3469 9.1289
18 5.7103 5.7089 3.7531 43 89,3713 14,7083 9, 3530
19 5.89833 6.0667 3,9773 44 9.4916 15. 0687 9.5753
20 6.0717 6.4241 4, 2020 45 9.6105 15.4312 9. 7988
21 6. 2458 6.7818 4.4265 46 29,7282 15.7929 10,0222
22 6.4159 7.1401 4,6511 47 9. 8446 16,1545 10. 2452
23 6.5823 7.4986 4.8756 48 9. 9597 16. 5165 10. 4682
24 6. 7451 7.8575 5.0995 49 10,0737 16.8782 10.6923
25 6. 8047 8.2167 5. 3236 30 10, 1865 17, 2402 10, 9148

for the variance of Rn’ computed by eq. 8. 26; and
(3) variances of Rn computed by the data generation

method (100, 000 independent normal numbers).

Figure 8,9 gives: (a) differences between
the variance of eq. 8.2 and var Rn obtained by the data

generation method, in percent of this latter value; and
(b) differences between the variance of eq. 8. 26 and
var Rn obtained by the data generation method, in per-

cent of this latter value. This figure shows that neithex
the variance obtained by eq. 8. 2, nor the variance
obtained by eq. 8. 26 {it closely the variances obtained
by( the d;lta generation method for small values of

n (2-15).
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Figure 8. 10 gives the comparison between
variances of adjusted range computed by: (1) ex-
pression for the asymptotic variance of adjusted
range, eq. 8.15; and (2) variance of adjusted range
obtained by the data generation method. No expression
was available for the exact values or approximation
to the exact values of the variance of adjusted surplus
or adjusted range.

Figure 8. 11 gives the differences between
the asymptotic variance of range, eq. 8.15, and the
variance of adjusted range obtained by the data genera-
tion method in percent of this latter value, for n > 2.

A comparison of figs. 8.10 and 8. 11 show that the
asymptotic variance of adjusted range does not depart
significantly from the variance obtained by the data



Fig. 8.8 Comparison of variances of range computed in the following ways: (1) asymptotic variance of
range, eq. 8.2; (2) approximation to exact values, eq. 8.26; and (3) values obtained by
the data generation method.

Fig. 8.9  Differences of variances of range computed in the following ways: (1) asymptotic variance of
range (eq. 8.2) minus the variance obtained by the data generation method in relation to this
latter method; and (2) approximation to exact variance of range (eq. 8.26) minus the variance
obtained by the data generation method in relation to this latter value.

var R,
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Fig. 8.10 Comparison of variances of adjusted range: (1) asymptotic variance, computed by eqg. 8.15; and
(2) values obtained by the data generation method.
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Fig. 8. 11 Difference of asymptotic variance of adjusted range (eq. 8.15) and the variance of adjusted
range obtained by the data generation method, in percent of this latter value.
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generation method. Therefore, the asymptotic vari-

ance can be used in practical cases, except for very
small values of n, suchas n= 2 - 6.

The approximation var R_(X ) = 0.074n +0. 05
approaches better the variance ot ad}usted range ob-
tained by the data generation method than eq. 8.15.

7. Skewness and excess coefficients of sur-
plus, range, adjusted surplus and adjusted range.
Figure 8. 12, upper graph, gives the skewness and
excess coefficients as functions of n for the inde-
pendent standard normal variable (0, 1, 0) for both
the surplus and range. This figure presents these
parameters as computed by the data generation method

n

CS(S;J—‘J- @
Ce(Ry —= @
ESSY— (3
‘150' ES(RH}+ @
i 1)
1 & 2 5 I ,f”l'\\‘\\
100 — ~
Q.75
050+
025
0] 5 0 15 20 25 30 35 40 45 5O
175r CslSn(%n) — B
CslRp(R 1 —
150k E S, (X )1 — ®
\ EslRA(X)1 — @
125+
1.00r
\ ® 6
i
075 \ \ [
i~ — _
0667 s : et
[ B e Mg ey . -
050 —7 et > "\ S
L i e N
\ / ©® )
" l'\ !; N
-“ 2
v,

15

20 25

30 35 40 45 650

Fig. 8.12 Skewness and excess coefficients of surplus, range, adjusted surplus and adjusted range obtained
by the data generation method for (0, 1, 0) - variable (

(1) Skswness coefficient of surplus; (2) skewness coefficient of range; (3)

100, 000 independent normal numbers):
excess coefficient

of surplus; (4) excess coefficient of range; (5) skewness coefficient of adjusted surplus; (6) skew-
ness coefficient of adjusted range; (7) excess coefficient of adjusted surplus; and (8) excess
coefficient of adjusted range.
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(100, 000 independent normal numbers) as they change
with n. Figure 8.12 leads to the following conclusions:

(a) Even a sample of 100, 000 is not suf-
ficient to produce reliable values of skewness coeffi-
cients for the surplus and range of (0, 1, 0) - variable.
In the case n = 5, there was a sample of 20, 000 for
either the surplus or the range.

(b) Skewness coefficients of both the sur-
plus and the range seems to converge to the asympto-
tic value of about CS(Sn) . {Rn) = 1,00 for an in-

crease in n, For a small n the skewness coefficient
of surplus converges slower to CS = 1,0 than the
+
CS(SH) seems to con-
verge to unity from the above and Cq {RnJ from below

skewness coefficient of range.

of the asymptotic value of unity.

(¢) Excess coefficients of surplus and
range are less reliable than the skewness coefficients
for this sample of 100, 000 random numbers. The
fact is true because the values E (S;) and Es (Rn)

fluctuate more around a smooth curve imagined to be
drawn for the computed values than is the case for

+
CS(SH) or CS{Rn}
(d) It may be concluded that the excess co-

efficient for both the surplus and the range converge
to the asymptotic value of Es =1, 00 with an increase

in n though with a slower convergency than CS; the

e, 5]

and E (Rn) from above, opposite to the direction of

seems to converge to ES =1.00 from below

convergence for the skewness coefficients,

(e} A much larger sample than 100, 000
is necessary to obtain smoother curves of Cs - and
Es - coefficients.

(f) The use of values CS= 1.0 and Es=

1.0 for deriving distributions of surplus and range of
(0, 1, 0) -variable may be considered as reasonatle
approximations, even for n as small as 5-10.

By using the best available values for §:,

+ +y s
var 8, € (8) =1, E (8)) =1 R,
Cg (Rn} =1 and E (Rn}, it is possible to obtain the

approximate distributions of S; and R.. It suffices

, var Rn’

to use the procedures and criteria for selecting fitting
functions when the first three or four moments, or
their corresponding parameters of mean, variance,
skewness and excess coefficients, are available.

Figure 8. 12, lower graph, gives the
skewness and excess coefficients for the adjusted sur-
plus and the adjusted range, obtained by the data
generation method, as they change with n. This
figure leads to the following conclusions:

(a) Skewness coefficients CS[SH(}_{n)] and
Cs [Rn (Xn)] seem to converge to an approximate

asymptotic value of C_ = 2/3.

(b) The convergence trends of E_ [Sn (Xn)]
and E_ [Rn(}_in}] are not as clearly indicated on fig.

8.12 as are the skewness coefficients. This occurs
because the sampling error associated with E is
larger than that associated with CS. However, it

seems that E_ [Sn{}_(n)] converges to the approximate
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value of Es

value of Es

i/4 and E 2 [Rn {?n)} to the approximate
if2.

i

8. [Exact distributions of surplus and range
for (0, 1, 0) -variable. The exact distributions of
surplus and range for n = 2 and n = 3 are computed
from the following equations given in Chapter VII:

(1) eq. 7.6 for the surplus and for n = 2; (2) eq.7.10
for the range for n = 2; (3) eq. 7.15 for the surplus
and n = 3; and (4) eq. 7.20 for the range and n = 3.
The only difference between the above equations and
the equations used for the computation of exact dis--
tributions of surplus and range of (0, 1, 0) - variable
is that the symmetry reduces the number of integrals
in equations 7.6, 7.10, 7.15 and 7. 20.

Figure 8. 13 gives the exact probability
densities and distributions for S2 and R, of (0, 1, 0)

variable, For densities, the curwves for the basic
two integrals as parts of probability densities of R2

are also given. The probability mass of S; =0 is
shown on the SZ - probability distribution.

Figure 8. 14 gives the exact probability
densities and distributions for Sg and R3 of (0, 1, 0)

variable. For densities, the basic integrals as parts
+

of probability densities of 3, and R, are also given.

3
3

L)

The probability mass of S; = 0 is shown on the S

probability distribution.

+
3
and R3 are obtained by the finite differences method

The above distributions of SZ, RZ' 5

of integrating the exact equations of distributions.
The differences were Ax = aSZ = bR, = ::.S; =R, =
0. 10,

9, Distributions of surplus and range of
(0, 1, 0) -variable, obtained by the data generation
method. The distributions of surplus and range and
their parameters are computed for (0, 1, 0) - variable
from 100, 000 independent normal numbers for the
following n-values: 2, 4, 6, 8, 10, 15, 20, 30, 40
and 50. Both the surplus and deficit were computed.
Surplus and deficit for the population are equal be-
cause of distribution symmetry of (0, 1, 0) - variable.
Sampling errors of the data generation method make
for some small differences in computed values of
surplus and deficit. The average values of the two
are plotted in fig. 8.15. This figure gives the distri-
butions of surplus with the upper most graph for

p = 0. Figure 8, 16 gives the probabilily mass of
F(S: = 0) for S; = 0 as a function of n, with the

lowest curve for p = 0. Values presented in these
two figures are averages between those obtained for
surplus and deficit, respectively. Figure 8.17 gives
distributions of range, Rn’ with the upper most graph

for p = 0. Figures 8.18, 8,19 and 8. 20 give the
distributions of adjusted surplus, probability mass of

adjusted surplus for S: = 0, and distributions of ad-

justed range, respectively, for various values of n

and for p = 0 on the proper graphs.

10. Properties of dependent variables. The
distributions of surplus, deficit and range of depend-
ent variables may be divided into the following two
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(0, 1, 0), obtained by the finite difference method of integration of exact equations: (1) Pro-

bability distribution of surplus, S-;; (2) Probability distribution of range, R,; (3) Probability
density of 525 (4) Probability density of R,; (5) and (6) Component densities, each multiplied
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Exact distributions for surplus and range for n = 3 of the independent standard normal variable
(0, 1, 0), obtained by the finite difference method of integration of exact equations: (1) Pro-

bability distribution of surplus S;; (2) Probability distribution of range, Rs; (3) Probability
density of S';; (4), (5) and (6) Component probability densities, when summed up give the total
probability density of Sg; (7) Probability density of R3; (8), (9), (10) and (11) Component
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probability densities, when summed up give the total probability density of R3.
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40 45

Probability mass for surplus being zero, F (S; = 0), of standard normal variables for various

values of n, and the following values of p, in the case of Markov first order linear de ;
2, 1 pendence:
0, 0.10, 0,20, 0.40, 0.60 and 0. 80, obtained by the data generation method.

categories: (1) The mathematical model of depend-
ence of a variable may be expressed as a function of
an independent variable. Furthermore, the distribu-
tions of surplus, deficit and range of this dependent
variable are related to distributions of surplus, defi-
cit and range of the independent variable through the
parameters of the dependence model. As an example,
the dependent variable X may be expressed as

Xi oy ¥ X
variable, and a

=ay Xi a E €50 with €; an independent

i-2

2
\ and a,

Then the distributions of surplus, deficit and range of
X are related to distributions of surplus, deficit and
range of €5 respectively, via parameters 2, and

the dependence parameters,

a The same procedure is valid for the statistical

2
parameters of distributions and for the mathematical
dependence models of surplus, deficit and range of
dependent variables; (2) Mathematical dependence
model of a variable is either very complex or is given
in an empirical form so that the above procedure,
under (1), cannot be applied. As a result, it is
necessary to obtain the distributions and mathemati-
cal models of dependence for surplus, deficit and
range by a direct method of computation.

The general mathematical dependence
model for those stochastic variables in hydrology,
which are transformed by storage effects, is of the
general moving average type

+ b 8,27

{, = .+ R .
}&1 bo€1 blel‘i m ~1-m

where €5 € , €. represent the values of

gt i-m
an independent variable at intervals, i, i-1,
i-m, either concurrent or previous to the time inter-
val i during which the value X. of the dependent
variable occurs. !

e 3

51

1

The usual characteristics of b, coeffici-

ents in the case of water storage effects are: (a) their
sum is unity (but not necessarily); (b) they are
monotonically decreasing; (c¢) they are positive; and
(d) they are either finite or infinite in number (but

in the latter case they can be approximated by a finite
number of coefficienis for all practical purposes).

let € in eq. 8.27 be an independent

variable, with the mean He and variance cr: For

a very large sample X ® €, or By = B s because

b.
J

i, This means that for a sufficient time

RCE:!

period the average output from a storage facility is
equal to the average storage input. As the expected
values of all crossproducts aep. ﬁes with p# s

are zeros, because € is an independent variable,
then

8.28

B

Denote D°=1/ X b2 with D greater than unity be-

g A9

cause 3 b.*< 1, D is equal to unity either when
Jj=o m

b3 . P

j=o

The condition for D = 1, or that

m=0, or when 1. As D? > 1, then

r.2< o .

1, can be obtained only when the first of the
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for various values of n, and the following values of p, in the case of Markov first order linear
dependence: 0, 0.10, 0,20, 0.40, 0.60 and 0. 80, obtained by the data generation method.

m

previously mentioned four conditions, or Z b, =1,
j=o

is removed.

2

The relationship of i and crx2 depends

only on b, - coefficients. The factor D may be de-~

rived from the properties of X -series. For a X-
series generated from the independent € - series by
eq. 8.27, with b, - coefficients satisfying the four

mentioned conditions, the first m autocorrelation
coefficients are positive. The pk-autocorrelation
coefficient is
ST S TE

1 i ik M)

2 £ i Px
o (N - k)

Py 8. 29

for N = o.

Replacing X by e -values of eq. 8. 27 in
eq. 8. 29, with the expected crossproducts of ¢ -
series being zeros, and using eq. 8. 28, then

m=k
. gso 4 d7F

m
z b2
j=o

Pr

This relation was given by Cramer in 1933,

As there are m positive values of Py for
the mathematical model of eq. 8. 27, with the four

m

conditions for hj values, andas Z b. = 1, there
o

are (m + 1) equations with (m + 1) unknowns: bo to

bm. Theoretically, it should be possible to deter-

mine all bj - values from first m wvalues of Py from

the autocorrelogram. As soon as m > 2, the analy-
tical solutions for b. as a function of Py become
difficult. ]

It is not necessary to pass through bj

values in order to derive D for some special cases.
The use of eq. 8. 30 gives

8.31

where B is the sum of all crossproducts of bj values.,
As

- - e ow 2‘ -
1—(bo+bi+ +bm)
> 1
= bf+2B = — + 2B 8.32
] DZ
the square of factor D is
m
8.33

o
DE=1+2 z1 P -

To obtain the factor D of a time series.
of eq. 8,27, it is sufficient to compute all initial
positive m serial correlation coefficients r, as

estimates of P

The use of eq. 8. 33 requires computation
of m values of Ty Instead, a simple procedure,

based on the models assumed for decreasing Iy

values may be used.

For all b, - coefficients equal (simple

moving average model), with j=o, ... , m, the
correlogram decreases linearly from p, to p = o0.
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0. 20, 0.40, 0.60 and 0.80, obtained by the data generation method.

53



m
For the sum £ b, =1, D? becomes
j=o

4 m
D°=1+2 Z p ,=1+mp
k=0 X 1

8,34

Equation 8. 33 is valid only for the case in
which g b, = 1, If this is not a case, another equa-
tion mfl-sot be derived for every moving average model
with ;n b. # o. The example is the first order

j=o
Markov linear model of dependence in the form

X, = p Xyt g 8. 35

Equation 8. 35 may be written as

X.=¢g. + A s g o™ L
5 SR PEi-y Pr€i-2 o P E1--rn+ 8. 36
In this case,
@
_Z bj=l+p+pz+...+pm+"°= 11‘:
i=o 8,37

for p < 1, which condition is always satisfied.

The factor D is given by

2: 1 = 1 = -
= 1+ p? 2 T
pct+p F ..

The sum, B, of all cross products of bj - coefficients
of eq. 8. 36 becomes,

@
= 1
Pk -1
B = k=1 - i-p - p
D* 1-p? (1-p)(1-p%
39
Equation 8, 28 gives 5
T
c i = —5— 8.40
X { - pz

which also comes directly out of eq. 8. 35.

In the case the Markov first order linear
model of the following type is used

= - A2

Xl P Xi']. + 1-p € 8,41
with o 2 = ¢2, then

X
Lo 1+

b, = V1-p2(ldp+piters) = =P g.42

D2= CDl = 1 7 = 1

b b_z {1-9) (1+pz+p +.") 8.43

jro 1

which also comes out of eq. 8. 28.
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11, Distributions of surplus, range, adjusted
surplus and adjusted range of dependent normal varia-
bles. Investigation probing the effect of time depend-~
ence on the distributions of surplus, deficit and range
is shown here for the standard normal but dependent
variable (0, 1, p). Dependence is of the first order
linear Markov model of the type given by eq. 8, 41.
Both the independent variable, ¢, and the dependent
variable, X, have mean zero, and variances unities.
The only difference is the degree of dependence
measured by the first autocorrelation coefficient, p,
as the only parameter of dependence,

As the surplus and deficit have the same
characteristics for any symmetrical distribution, only
the surplus and range are investigated as they depend
on the parameter p, For comparative purposes, the
characteristics of surplus and range are given for
p = o of independent standard normal variable (0, 1,
0). The following properties of surplus and deficit
for dependent standard normal variables, for various
values of p, are obtained by the data generation
method, by using 100, 000 normal independent num-
bers: (1) Mean; (2) Mean range; (3) Variance of
surplus; (4) Variance of range; (5) Skewness coef-
ficient of surplus; (6) Skewness coefficient of range,
all as functions of the variate n and the parameter
p.

A clear distinction should be made for
these two cases: (1) Distributions of surplus and
range of a dependent standard normal variable (0, 1,
o) are compared with the corresponding distributions
of the independent standard normal variable (0, 1, 0);
and (2) Distributions of surplus and range of a de-
pendent normal variable (u, o, p) are compared with
the corresponding distributions of independent stan-
dard normal variable (0, 1, 0). Because o # o for
(4, @, p)-variable, the distributions of surplus and
range of this variable should be first transformed by
multiplying s*n‘l and R by o, and dividing their
probability densities by o. .

When a mathematical dependence model
transforms a (0, 1, 0) - variable into a dependent
variable (0, ¢2, p) with the variance o¢%, the resulting
surplus and range are affected by two factors:

(a) The effect of a standard deviation different from
unity; and (b) The effect of dependence model. These
two factors may produce the effects of the same or

of the opposite direction,

For the dependence of Markov first order
linear model, eq. 8. 35, var X is given by eq. 8.40,
so that var Xi > var €5 and _
s = (1 _pz)'lfz o For

example, if p=10.8, ¢ e+ In this case,

the variable x has larger values of surplus and range

‘than e, because both factors: the greater value of

T than e and the dependence model increase the

surplus and the range of x. The case is opposite for
the moving average type of dependence, given by

eq. 8.27, As X bjz < 1, eq. 8.28 gives o'xz < a':.
Surplus and range of the variable x are effected by
two opposite forces: (a) the small value of ¥y de-

creases the surplus and range of x; and (b) the de-
pendence model increases the surnlus and range of x
in comparison with those of e. Which effect is sirong-
er depends on the type of dependence model. As the
auto regressive schemes can be shown in the form of

Tl



oy
. >
moving average models, the sum I b? - 1 deter-
-~
s >
mines whether var x = var e, as shown by eq.

<
8. 28,

To avoid the effect of a . # 1, the de-

pendence model used in this study is that of eq. 8.41,
so that gz = i = 1. To fit this case in practical ap-

plications, first the original variable, y, is standard-
ized so that x = (y - Hy) fu'y. Then p ineq. 8.41 is

estimated so that the independent variable, e, has
the mean zero and variance unity.

As o = (1~ |:;3)-”2 o, inthe model of
eq. 8. 35, it is sufficient to multiply all values of sur-
plus and range by Ty and divide their densities by

L2 to reduce the case of the model of eq. 8.41 to that
of eq. 8, 35.

Distributions of dependent standard nor-
mal variables (0, 1, p) are determined by the data
generation method for the dependence model given by
eq. 8.41. The following values of p were used: 0. 10,
0,20, 0.40, 0.60 and 0,80, Figure 8.15 gives the
distributions of surplus, S';l, with the case of p = 0

included. Figure 8. 16 gives the probability mass for

+
Sn
gives the distributions of range, R, with the value

p = o included. Figures 8,18, 8.19 and 8. 20 corres-
pond case by case to figs, 8.15, 8.16 and 8,17, re-
spectively, but for the adjusted surplus and the adjust-
ed range.

= 0 with the case p = o included. Figure 8.17

Figure 8. 21 gives the mean, the variance
and the skewness coefficient for the surplus and the
range as they change both with the change of the
variate n and the parameter p (p =0, 0.10, 0. 20,
0.40, 0,60 and 0.80), all obtained by the data genera-
tion method from 100, 000 numbers of the independent
standard normal variable and the dependence model
of eq. 8.41, Figure 8,22 gives the same graphs as
fig. 8.21, but for the adjusted surplus and adjusted
range. The values for the surplus (or the adjusted
surplus) as given in fig. 8. 21 (or in fig. 8.22) are
the averages of two computed values: that obtained
for the surplus and that obtained for the deficit by the
data generation method.
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_crease of n.

Figures 8. 21 and 8. 22 represent the re-
sults obtained by the data generation method. These
results contain the sampling errors. A sample size
of N = 100, 000 generated dependent numbers gave
m = N/n as the derived sample size for surplus, de-
ficit and range, for each n. For n = 2, the size is
m = 50,000. For n = 50, the size is m = 2,000, The
accuracy of results, therefore, decreases with an in-
Also, the accuracy decreases with an
increase of the order of statistical moments used in
computing the three parameters: the mean, the vari-
ance and the skewness coefficient. It is clearly seen
from these two figures (8.21 and 8.22) that the skew-
ness coefficients are subject to larger sampling
errors than the mean or the variance even though the
sample sizes of the above three variables are rela-
tively large for any value of n.

The resulis given in figs. 8.21 and 8.22
show a great effect of the dependence parameter, p,
as used in the model of eq. 8.41, on the distributions
of surplus, range, adjusted surplus and adjusted
range. This effect increases non-linearly with an in-
crease of p, and the relative effect is greatest on the
variance rather than on the mean, and the smallest
effect seems to be on the skewness coefficient. How-
ever, for a small n(n = 2- 25) the means of adjusted
surplus and adjusted range (see fig. 8.22) may be
smaller for a large p than the means for a small p.

The analytical derivations of distributions
for surplus, deficit and range of dependent standard
normal variables are not attempted in this study. The
comparison of the results obtained by the data genera-
tion method and analytical approach are not therefore
discussed in this paper.

Hydrologic variables usually have a time
dependence which is of various moving average
schemes (autoregressive schemes included). These
schemes may have the sum of squares of bj - coeffi-

cients either greater than, equal to, or lower than
unity. The influence of the dependence generating
process on the distribution of surplus, deficit and
range should be studied for the following two factors:
(a) effect of change in the variance, obtained for the
dependent variable by the generating process in com-
parison with the variance of independent variable; and
(b) effect of the dependence parameter or parameters.
The above case of the dependence generating model
of eq. 8.41 is given here to show only the latter eifect
by eliminating the effect of the first factor, or by
keeping the variances unities for both the independent
and generated dependent variables while changing
the dependence parameter, p.
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CHAPTER IX

DISTRIBUTION OF SURPLUS, DEFICIT AND RANGE FOR INDEPENDENT GAMMA

VARIABLES

1. Gamma variables. A large number of
distributions of hydrologic variables may be approxi-
mated by gamnma distributions with one, two or three
parameters. The special form of this latter case is
known as the Pearson Type III distribution.

The one-parameter gamma distribution
has the form

p(x) = T (a) X e 9.1

with the lower boundary zero, and unbounded function
to the right; a is the shape parameter, and I'(a) is

given by
T'(a) =j 22 TR gy 9.2

In eqg. 9.1, the mean u = a, the variance ¢? = a,

with the distribution being J - shaped for 0 < a < 1,
and bell-shaped for a > 1.

The two-parameter gamma function is

b a-1 “bx
= 9.3
p(x) T@ = e

where b is the scale parameter, and a is the shape
parameter, the mean u = a/b, and the variance

= a/b?=pu/b. Equation 9.3 may be transformedto
a one-parameter gamma distribution by the transfor-
mation y =bx and p(y) = p (x)/b. As a result,

{ L
p(y) = y&h e

9.4

which is identical to eq. 9. 1.

By using y and p(y) instead of x and
p(x), the results of p(y) may be transformed to those
of p(x) by x=y/b, and p(x) = b p(y). This
transformation enables the distribution computations
of surplus, deficit, range, adjusted surplus, adjusted
deficit and adjusted range of the two-parameter gamma
variables from the corresponding distributions of these
six variables of the corresponding one-parameter
gamma variables. It is sufficient to multiply the
surplus, deficit and range by b and divide their
probability densities by b of the one-parameter
gamma variable to obtain the distributions of surplus,
deficit and range of the two-parameter gamma varia-
ble. The same is true for the adjusted surplus, ad-
justed deficit and adjusted range. Therefore, it
suffices to investigate the distributions of the above

six variables for the one-parameter gamma variable.
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The three-parameter gamma distribution
is

p(x) = (x+c) 37! P (x+c) 9.5

b
T (a)
where a and b are the same parameters as in eq.
9. 3 and the third parameter ¢ is the lower boundary
of x. Using eq. 9.5, the first transformation
X+ ¢ =2z reduces eq. 9.5 to eq. 9.3, then the trans-
formation y=bz and p(y) = p(z)/b reduces it to
eq. 9.4, or the one-parameter gamma variable. The
variable z does not change the distribution of surplus,
deficit and range in comparison with the variable x,
because c¢ is the location parameter and means only
the shifting of distribution along the x-axis. It
follows from the given two transformations that it is
sufficient to investigate the distribution of the six
variables with the one-parameter gamma variable.

2. Generation of large samples of independent
one-parametier gamma variables. The expressions
for the data generation of independent gamma varia-
bles are given in Chapter VI, egs. 6. 15 and 6. 186.

The number m of independent normal standard
variables used in the transformation of eq. 6. 15 to
obtain u -wvariables determines the skewness of
gamma variables. The obtained samples of inde-
pendent gamma variables have the expected mean
m/2, the expected variance m/2 and the expected

1
coefficient of skewness {Sfrn)/“'. The parameter a
of eg. 9.1 is m/2.
The following cases are investigated in
order to show the influence of the skewness, Cs' on

the properties of surplus, deficit, range, adjusted
surplus, adjusted deficit and adjusted range of the
independent one-parameter gamma variables:

m = [s5) 32 16 8
E(CS) = 0.000 0. 500 0.705 1. 000
m = 4 2 1
E {Cs} = 1.410 2,000 2.820

where E (CS) is the expected value of the skewness

coefficient, with the expected values of all serial
correlation coefficients zeroes, or El‘_r )= P~ 0,

for any k # 0. This approach gives only the effect
of the independent gamma variables with a positive

skewness 0 < Cs < 2.82., The same approach was

used when developing the dependent one-parameter
gamma numbers used in the study of simultaneous
effect of skewness and dependence on surplus, deficit,

an

EESOR——

-

e T A A A B R b ot o

T

T b S



range, adjusted surplus, adjusted deficit and adjusted
range, However, the presentation and analysis of
those results are not part of this paper.

The generated samples of independent
gamma variables for various m (or Cs) had 100, 000

numbers. To obtain samples of 100, 000 independent
numbers, the total number of independent standard
normal numbers was 100, 000 m. So, for the case
m = 32, it was necessary to generate 3, 200, 000 inde-
pendent standard normal numbers in order to obtain
100, 000 independent one-parameter gamma numbers
with the expected skewness coefficient 0, 500,

3. Parameters of distributions of surplus,
deficit and range. Figure 9.1 gives the properties
of mean, variance and skewness coefficient of surplus,

(S:-l) for various values of skewness of the one-para-
The left three graphs of this
figure show the change of mean (§:1), variance

) and skewness coefficient (CS(S:) or scs) of
the surplus, both as a function of n, and of C . of

meter gamma variable.
+

var S

( n

the independent gamma variables. The three right
graphs give the differences of values of mean, vari-

;5 +

ance and skewness coefficient of surplus, Sn’ as
given in the left graphs for Cs # 0, fromthe case
Cs
centage of the corresponding values of mean, vari-
ance and skewness coefficient of surplus, Sn for
this CS = 0. The values of Cs’ given in fig. 8.1,

‘for independent gamma variables are those which
are computed from the generaged large samples. The
computed Cs values are usually close to the ex-

pected values of E(Cs) =V8&/m for every Im.

The deviations between them may be considered only
as sampling errors.

= 0 for an independent normal variable in per-

Fl

The means of surplus for various Cs

values of independent gamma variables, as given in
graph (1) fig. 9.1, show a rapid convergence by an
increase in n to the means of an independent stan-
dard normal variable with CS = 0. This independent

standard normal variable will be designated in further
text as (0, 1, 0)-variable. The smaller Cg of a

independent gamma variable, the faster is this con-
vergence of means of surplus to those of the (0, 1, 0)-
variable., Or, the greater Cs of an independent

gamma variable and the smaller n, the greater is
the difference of its means of surplus and the means
of surplus of (0, 1, 0)-variable. These differences
are negative.

Graphs (3) and (4) of fig. 9.1 show a
slower convergence of the variance of surplus of in-
dependent gamma variables to that of the (0, 1, 0)-
variable, than in the case of means, The greater

CS of a gamma independent variable for a given n,

the larger becomes the variance of surplus.
Graphs (5) and (6) of fig. 9. 2 show that
the skewness coefficients, scs’ of the surplus for

independent gamma variables increase with an in-
crease of the CS - value of these variables in com-
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parison with scs- values of surplus of the (0, 1, 0) -
variable.

It should be noted that the surplus is main-
ly affected by the long tail of gamma variables while
the deficit is affected mainly by the short tail. The
differences in shape of these two tails increases with
an increase of skewness coefficient, Cs’ of inde-

pendent gamma variables. Therefore, it is expected
that the differences in means, variances and skewness
coefficients of the surplus and the deficit, both be-
tween themselves and between the independent gamma
variables and (0, 1, 0)-variable, should increase
with an increase of Cs of gamma variables.

Graphs (1) through (6) of fig. 9.2 show the
characteristics of distribution parameters of deficit
for independent gamma variables with various skew-
ness coefficients, CS. In general, the patterns of

change with n of means, variances and skewness
coefficients of deficit seem to be opposite those for
the surplus. The means of deficit, En’ of inde-

pendent gamma variables converge to those of (0, 1,

0) - variable by an increase in n, though in this case
they converge to the values which are about 5 percent
smaller than the means of deficit of the (0, 1, 0) -

variable. The variances of deficit, var 5;1’ of inde-

pendent gamma variables are smaller than those of
the (0, 1, 0)-variable; and they increase for a given
n with an increase of CS of independent gamma

variables as shown on graphs (3) and (4) of fig. 9. 2.
The skewness coefficients, scs’ of deficit of inde~

pendent gamma variables are also smaller than those
of the (0, 1, 0) - variable, and they also increase for
a given n with an increase of Cs of independent

gamma variables as shown on graphs (5) and (6) of
fig. 8. 2. However, they seem to converge for larger
values of n to Cs = 1.0 of the deficit of the (0, 1,

0) - variable.

Graphs (1) through (6) of fig. 9. 3, show
the mean (ﬁn), the variance (var Rn) and the skew-
ness coefficient (CS) of range as they change with n

for various values of skewness, Cs’ of independent

gamma variables. The means of the range are close
to those of the (0, i, 0) -variable, as shown in graph
(1). Graph (2) gives AR between those of inde-

pendent gamma variables and those of the (0, 1, 0) -
variable in a percentage of this latter case. On the
average, these differences are about 1 percent on the
negative side. For large values of Cs (1.883 and

2.673) and small values of n the means of range for
independent gamma variables are smaller than those
of the (0, 1, 0) - variable. These means converge
rapidly with an increase in n to the means of range
of the (0, 1, 0)-variable.

The variances of range (var RnJ of inde-

pendent gamma variables increase with an increase
of C, as shown in graphs (3) and (4) of fig. 9. 3.
For small values of Cs’ say ('Js =0 - 1.00, the
differences between the variances of range for inde-

pendent gamma variables and the (0, i, 0)-variable
are small., These differences, as graph (4) shows,
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Fig, 9.1 Distribution parameters of the surplus for the independent gamma variables with various skewness
coefficients, as they change with subseries length n: (1) Mean of surplus; (2) Differences of
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latter values; (3) Variance of surplus; (4) Differences of variances of surplus for the independent
gamma variables and the (0, 1, 0) - variable, in percent of the latter values; (5) Skewness coef-
ficient of surplus; and (6) Differences of skewness coefficients of surplus for the independent gamma
variables and the (0, 1, 0) -variable, in percent of the latter values.
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are positive and increase with an increase of Cs‘
while they decrease with an increase in n.

The skewness coefficients (rCs} of range

of independent gamma variables are greater than
those of the (0, 1, 0) - variable. They increase with
an increase of Cs and decrease asymptotically with

an increase in n. The skewness coefficient of range
is greatly affected by the skewness of independent
gamma variables.

4., Parameters of distributions of adjusted
surplus, adjusted deficit and adjusted range. Figures
9,4, 9.5 and 9. 6 give the means, variances and skew-
ness coefficients of adjusted surplus, adjusted deficit
and adjusted range, respectively, for independent
gamma variables of various skewness. The six graphs
of each figure are analoguous case by case to the
graphs of figs. 9.1, 9.2 and 9. 3. The results infigs.
9.4 through 9.6 are similar to those of figs. 9.1
through 9. 3 except that the absolute values of the three
parameters and differences of parameters studied,
as well as the rate of their convergence to para-
meters of the (0, 1, 0) - variable are somewhat dif-
ferent for the cases of adjusted surplus, adjusted de-
ficit and adjusted range. The main exceptions in
their patterns are that the variances and skewness
coefficients of adjusted deficit of independent gamma
variables (fig. 9. 5) are greater than those of the

(0, 1, 0) - variable, which is opposite from the case
shown in fig. 9. 2 for the variances and skewness co-
efficients of the deficit. In many cases, the differ-
ences given in graphs (2), (4) and (6) of figs. 9.4
through 9.6 show a small increase for a small n,
and they decrease with an increase in n by converg-
ing to the zero-difference for very large values in n.

5. Conclusions. The above analysis points
out the following conclusions:

(a) The skewness of an independent varia-
ble has a much greater effect on the distributions of
surplus, deficit, adjusted surplus and adjusted deficit
than on the distributions of range and adjusted range;

(b) The effect of skewness of an inde-
pendent variable increases with an increase of the
order of statistical moment used in computing the dis-
tribution parameters of surplus, deficit, range, ad-
justed surplus, adjusted deficit and adjusted range;
and,

(¢) The effect of skewness of an inde-
pendent variable on the properties of distribution of
these six variables, and particularly on the means,
may be neglected only when simultaneously the skew-
ness coefficients are small and the values of n are
large.
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Fig. 9.4 Distribution parameters of the adjusted surplus for the independent gamma variables with various
skewness coefficients, as they change with subseries length n: (1) Mean of adjusted surplus;
(2) Differences of means of adjusted surplus for the independent gamma variables and the (0, 1, 0) -
variable, in percent of the latter values; (3) Variance of adjusted surplus; (4) Differences of
variances of adjusted surplus for the independent gamma variables and the (0, 1, 0) - variable, in
percent of the latter values; (5) Skewness coefficient of adjusted surplus; and (6) Diifferences of
skewness coefficients of adjusted surplus for the independent gamma variables and the (o, 1, 0) -
variable, in percent of the latter values.
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variances of adjusted deficit for the independent gamma variables and the (0, 1, 0) -variable, in
percent of the latter values; (5) Skewness coefficient of adjusted deficit; and (6) Differences of
skewness coefficients of adjusted deficit for the independent gamma variables and the (0, 1, 0) -
variable, in percent of the latter values.
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Fig. 9.6 Distribution parameters of the adjusted range for the independent gamma variables with various
skewness coefficients, as they change with subseries length n: (1) Mean of adjusted range;
(2) Differences of means of adjusted range for the independent gamma variables and the (0, 1, 0) -
variable, in percent of the latter values; (3) Variance of adjusted range; (4) Differences of
variances of adjusted range for the independent gamma variables and the (0, 1, 0)-variable, in
percent of the latter values; (5) Skewness coefficient of adjusted range; and (6) Differences of
skewness coefficients of adjusted range for the independent gamma variables and the (0, 1, 0) -
variable, in percent of the latter values,
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