
THESIS

MONITORING AND CHARACTERIZING APPLICATION SERVICE AVAILABILITY

Submitted by

Daniel P. Rammer

Department of Computer Science

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Spring 2018

Master’s Committee:

Advisor: Christos Papadopolous

Indrajit Ray

Stephen Hayne

Copyright by Daniel P. Rammer 2018

All Rights Reserved

ABSTRACT

MONITORING AND CHARACTERIZING APPLICATION SERVICE AVAILABILITY

Reliable detection of global application service availability remains an open problem on the In-

ternet. Some availability issues are diagnosable by an administrator monitoring the service locally,

but far more may be identified by monitoring user requests (ie. DNS / SSL misconfiguration). In

this work we present Proddle, a distributed application layer measurement framework. The sys-

tem periodically submits HTTP(S) requests from geographically diverse vantages to gather service

availability information at the application layer. Using these measurements we reliably catalog

application service unavailability events and identify their cause. Finally, analysis is performed to

identify telling event characteristics including event frequency, duration, and visibility.

ii

TABLE OF CONTENTS

ABSTRACT . ii

LIST OF TABLES . iv

LIST OF FIGURES . v

Chapter 1 Introduction . 1

1.1 Service Motivation . 1

1.2 Related Work . 3

Chapter 2 Measurement Infrastructure . 5

2.1 MongoDB . 5

2.2 Vantage . 6

2.3 Bridge . 7

2.4 Robustness . 7

2.5 Security . 8

2.6 Libcurl . 9

2.7 Failure Detection . 10

Chapter 3 Measurement Dataset . 11

Chapter 4 Event Detection . 14

4.1 Methodology . 14

4.2 Results . 15

Chapter 5 Event Classification . 19

5.1 Methodology . 19

5.2 Results . 20

Chapter 6 Event Characteristics . 21

6.1 Frequency . 22

6.2 Duration . 22

6.3 Rate . 23

6.4 Visibility . 26

6.5 Summary . 28

Chapter 7 Use Cases . 29

Chapter 8 Conclusion . 31

Bibliography . 32

iii

LIST OF TABLES

2.1 libcurl Configuration . 9

2.2 libcurl Results . 10

5.1 libcurl Error Codes . 19

6.1 Event Frequency . 22

6.2 Event Duration . 24

6.3 Event Rate . 25

6.4 Event Visibility . 27

6.5 Event Summary . 28

iv

LIST OF FIGURES

1.1 DNS Error Detection. 2

1.2 SSL Error Detection. 2

2.1 Proddle Architecture. 5

3.1 Vantage Locations. 11

3.2 Domain Failure Rates. 12

3.3 100% Failure Rate Domains. 13

4.1 Failures Per Event. 16

4.2 Vantages Viewing Each Event. 17

4.3 Durations Per Event. 18

5.1 Event Classification. 20

6.1 Event Frequency. 23

6.2 Event Duration. 24

6.3 Event Size. 26

6.4 Event Visibility. 27

v

Chapter 1

Introduction

In this work we aim to detect and classify application service unavailability events, which are

a period of time where a service is unavailable from various geographic locations. Additionally,

we identify characteristics of events to effectively predict future event behavior. This work fo-

cuses on HTTP(S) services. To achieve this we begin by developing an application layer network

measurement infrastructure. Using this framework we monitor a number of service instances from

geographically diverse regions to detect request failures. By performing analytics on these failures

we identify unique events where a service was unavailable for a particular duration and identify the

HTTP(S) request error. By analyzing characteristics of events we are able to predict event traits

including frequency (how often events of this type occur), duration (how long events last), rate

(number of failures per minute), and visibility (how widespread is the event viewable).

1.1 Service Motivation

Service administrators are unable to diagnose many user request failures without external in-

formation. While internal server errors, such as application failures, may be easily diagnosable

many errors experienced by users such as DNS or SSL issues are difficult to be locally identi-

fied. Figure 1.1 shows a diagnosable DNS misconfiguration issue using distributed application

layer measurements. In this example foo.com content is being served from the US East Coast.

We collect measurements from four geographically diverse vantages, namely West US, Germany,

Japan, and Australia. Measurements from the majority of vantages are successful but the vantage

in Australia errors because it "Couldn’t resolve hostname". With an alert, a domain administrator

is provided actionable information that DNS is misconfigured in that region. Similarly, Figure 1.2

shows an example of a potential SSL configuration issue. In this example foo.com content is served

by multiple locations, one on the US Eastern coast and the other in Southern India. Analysis of

measurements shows content served by the Indian cache is successfully received whereas content

1

served by the US East coast location fails because of an "Invalid SSL certificate". Again, domain

administrators are provided actionable information and should easily resolve the issue. The exam-

ples, namely DNS and SSL failures, are presented because they are easily explained. However,

any request failures by our measurement infrastructure are useful including redirect issues, general

timeouts, or any variety of service failure.

Figure 1.1: Example of detecting DNS misconfiguration

Figure 1.2: Example of detecting SSL misconfiguration

Another problem is that service users are often unaware of service unavailability cause, dura-

tion, visibility, etc. By analyzing characteristics of previous events we are able to reliably predict

these attributes. For example, perhaps events similar to the "Invalid SSL certificate" example

shown above are seen globally and last a duration of about two days. If the monitoring framework

2

notices a particular domain has an "Invalid SSL certificate" it is able to alert users that the service

will likely be unavailable for the duration of two days, and the effect will be seen globally. The ob-

vious application is that users who rely on the service for critical functionality are able to redirect

their work flow to account for the unavailability.

1.2 Related Work

Original attempts at network measurements like [1, 2] focused on developing tools for one-

time measurements. The use of ICMP packets is central to common measurements like PING and

traceroute. While the various ICMP based measurements were used successfully for many years,

[3] shows that the accuracy of results when determining network connectivity can increase by 20%-

30% when using TCP based measurements instead. This is commonly accepted since network

administrators often route ICMP packets differently to reduce or entirely disallow measurements

to infiltrate the network. Therefore measurements based on this protocol are often less effective.

Additionally, network based measurements fail to successfully diagnose problems that may exist

at the application layer.

Gradually, one-time tools tools evolved into distributed measurement collection frameworks.

Work such as Scamper [4] and NIMI [5] aimed to make both ICMP and TCP based measurements

available from a variety of geographically distributed vantages. In these frameworks, measurement

definitions (with the exception of a few configuration options) are hard-coded. This constricts

the ability to perform highly configurable and complex measurements. Scriptroute [6] rectifies

this by allowing users to deploy measurement scripts. This allows essentially any measurement

type/configuration supported by the script. The most recent success is RIPE’s Atlas [7] framework.

This framework allows users to execute highly configurable measurements at multiple vantages

periodically. Additionally, it provides support for service based measurements (ie. HTTP(S), DNS,

etc). These projects have shown the ability to scale effectively and provide reliable measurements.

This work aims to build upon the most effective ideas presented in these frameworks by providing

support for highly configurable, scriptable measurements. We go one step further by performing

3

analysis on measurement results. In doing so we are able to draw complex conclusions about

service unavailability causes, visibility, and duration among others.

There are many commercially motivated efforts for service/network monitoring including [8–

14]. Commercial applications rely on customer subscriptions and as such only monitor paying ser-

vices. They provide a large variety of measurement options including HTTP(S), DNS, SMTP, etc.

Many also advertise custom customer specific measurements. Coverage is therefore extremely pre-

cise for subscribed customers and the result is an in-depth analysis of service availability/metrics

available to each customer privately. Our application aims to provide a community service by

monitoring a broad range of the most popular services. This work focuses solely on HTTP(S)

measurements. However, the framework supports simple measurement implementation and de-

ployment so extensibility is not a limitation. All of our measurements are make publicly available

instantly after execution. Additionally, We perform periodic analysis on measurements to deter-

mine service unavailability events which are also immediately publicly available. By combining

measurements from multiple services we are able to infer complex relationships. For example, the

DynDNS DDoS attack in 2016.

4

Chapter 2

Measurement Infrastructure

Proddle is a distributed application layer measurement framework which we have developed

and deployed. The decision to implement this application instead of leveraging other well estab-

lished efforts hinges on providing a large variety of measurement types along with allowing the

highest level of configuration for those measurements. Any conclusions drawn in this work are

only as reliable as the measurements by which they are derived, therefore we design our measure-

ments to execute similar to HTTP(S) requests from browsers. The three main components in the

system are the vantages, bridge, and MongoDB or the backend database. The entire infrastructure

is depicted in Figure 2.1. Below we described all components from an outside in approach. In each

component section we explain the scalability of the component, thus proving the infrastructure’s

ability to scale as well.

Figure 2.1: Proddle architecture and component communication.

2.1 MongoDB

At the bottom of the framework is a MongoDB [15] cluster. MongoDB has a history of success-

ful application in problems related to ours [16]. At the core, MongoDB is basically a distributed

JSON document store. By using JSON as an internal storage format, the system removes the

5

requirement of continually converting measurement result information between JSON and the re-

lational data store format. This conversion process is not only removed from storing data in the

database, we bypass it when providing information to users in JSON format as well. Another

reason for choosing MongoDB is that the nature of Proddle’s diverse measurement options would

require a complex data model using any common relational database. Instead of traditional SQL

tables, MongoDB refers to collections of records as documents (as that is how they are stored in-

ternally). MongoDB allows for records with varying fields to be stored and query-able within the

same document. For example, in our measurements document we store records for HTTP mea-

surements, which include fields for HTTP status code and content size among many others. In

that same document we store records for traceroute measurements which include an entirely dif-

ferent set of result fields. MongoDB exposes a simple client application to query this document

and to compare any fields available. Therefore we are provided an extremely simple interface for

measurement storage and retrieval that can handle any fields that may be represented in JSON

format.

2.2 Vantage

Vantages are the lightweight application instances which actively execute measurements. Mea-

surements are scheduled to run at predefined intervals. Internally, this means a job is added to

a threadpool. The threadpool provides two beneficial attributes. The first, having a configurable

number of threads concurrently executing measurements effectively utilizes any desired fraction

of available bandwidth. Additionally, the start time of each measurement is contingent on the in-

ternal threadpool implementation. Our implementation randomly chooses measurements from the

execution queue, the result is a systematic execution delay for measurements. For example, 10,000

measurements are scheduled to be executed every 2 hours, in practice we see measurements can

be executed anywhere in a 50 minute window after they are scheduled. Therefore when executing

measurements from multiple vantages we see a variance of execution times. This increases the

utility of the dataset by reducing the interval between measurements when multiple vantages are

6

performing the same measurement. As seen in the results section, service unavailability duration is

highly variable. By spacing out measurements we have a higher probability of viewing a specific

event.

Measurement results are batched, compressed, and sent to a bridge application instance peri-

odically. Additionally, vantages periodically poll bridges for measurement definition (ie. which

domains to measure) and scheduling updates. The protocol used internally leverages hashing to

reduce message size by providing a "diff" of the requested information.

2.3 Bridge

Bridges act as an intermediary, providing communication between the MongoDB backend and

vantages. They play a few vital roles in the application. First they encapsulate database read/write

operations. Meaning vantages never write to the database directly, instead data is sent to a bridge

and inserted into the database from there. This reduces the complexity of the vantages to allow for

their extremely lightweight resource footprint. Second, as briefly discussed in the vantage section,

measurement definition and scheduling updates use a collection of hashing techniques to reduce

bandwidth usage between vantages and the bridge.

2.4 Robustness

This system has been designed to continue operating regardless of failures in individual com-

ponents. This is extremely important for a network measurement application. The system is tasked

with monitoring service availability, as such it needs to be highly available itself. Any downtime

could result in missing measurements that catalog a significant event. Additionally, users rely-

ing on the service expect it to be available. If it’s not, it looses credibility. We have chosen to

implement all components using Mozilla’s Rust language [17]. This low-level language requires

extensive error handling resulting in very resilient systems.

MongoDB provides failure tolerance through the notion of master/slave replication. In this

paradigm all data in a master node is replicated to its slave nodes as well. It also provides data

7

sharding functionality which allows sets of master/slave clusters to be responsibly for separate

portions of the data. Combined these properties provide a robust, scalable backend for the system.

Two fail-over techniques are implemented in the vantage application to ensure message con-

sistency in the event of any variety of communication failure between a vantage and bridges. The

first is a simple bridge fail-over. Basically, we provide multiple bridge addresses when configuring

the vantage application. A vantage will attempt to connect to each address in it’s bridge config-

uration in a round-robin style, stopping once a successful communication occurs. This provides

resilience during both intermittent link and bridge application failures. The second technique is

flushing batched measurement results to disk if RAM hits a predefined usage threshold. This is

important as the vantage application is designed to require minimal resources. If the application is

unable to send the batch of measurement results to any of it’s configured bridges it stores them and

continues performing the measurements that have been scheduled. When communication with a

bridge is restored any measurement results that have been written to disk are read and sent to the

bridge.

Our current deployment consists of two separate bridge application instances This is vital to

the scalability and resilience of the system as vantages rely on multiple communication channels

as fail-over options. Additionally, as many vantages are initialized a single bridge application will

be unable to handle the load. The deployment of multiple bridge instances assists the infrastructure

in its scalability.

2.5 Security

In addition to resilience we strive to provide a secure system as well. There are two main

constructs. The first is encapsulating database interaction within the bridge application. Obviously

the goal of this work is to deploy an extensive application layer monitoring service. To achieve

that we are required to deploy vantages in untrusted environments and thus subject ourselves to

any variety of malicious actors. By forcing vantages to relay database read/write operations we

can ensure validity in a trusted environment. This provides a layer of security as the vantage

8

applications are unable to directly connect to the database, protecting our data from malicious

deletion, corruption, etc.

Second we use the LetEncrypt [18] service to deploy and manage SSL certificates on all of

the active bridge applications and the MongoDB instances. The benefits of SSL authentication /

authorization are immense. In addition to verifying the hosts authenticity we are able to encrypt

all of the data transfers in transit. Perhaps, this is currently not a high priority as all of the data

is publicly available. In the future we foresee a number of "private" measurements required to

expand the systems usability.

2.6 Libcurl

As stated earlier, we only leverage HTTP(S) GET measurements from Proddle for this par-

ticular work. At a low level we’ve used libcurl [19]. Using libcurl directly provides us many

advantages over other techniques in terms of configuration and verbosity. Theoretically, all aspects

of the request are able to be configured. We have spent considerable effort performing analysis

of HTTP(S) request headers from Mozilla’s Firefox and Google’s Chrome to ensure our measure-

ments most closely resemble browser requests. A few of the configuration options we use are listed

in Table 2.1 below.

Table 2.1: A table containing libcurl configuration options and a short description.

Configuration Option Description

HTTP User-Agent String describing client OS and browser version

Follow Redirects Allow request to follow up to 5 URL redirects

HTTP Transfer Encodings Accept multiple encoding protocols

Upgrade Insecure Requests Automatically attempt HTTPS requests on HTTP services

libcurl also makes a verbose variety of response attributes available. We are choosing to store

a large fraction of those, excluding only those where their large size outweighs the utility. For

example, the content of the request. The included attributes are listed below in Table 2.2.

9

2.7 Failure Detection

Here we will address the definition of measurement failures as it relates to this work. Since we

are using libcurl for the HTTP(S) measurements a failure is defined as a libcurl failure. This means

failures can be identified at multiple stages during the request. Individual error codes are explored

further in the Chapter 4 Event Detection. Failures begin when resolving the hostname with DNS

lookup issues and illegal URL formats. Then issues may arise during TLS/SSL certificate and

peer certificate lookups and validations. After that there are server connection failures including

general timeouts and the request reaching the maximum number of redirects (which we have set

to 5). Finally, we see issues with data transfer and parsing such as unrecognized HTTP content. It

should be noted that in the event of a measurement failure, a vantage will retry up to 2 more times

with random delays introduced between attempts.

Table 2.2: A table containing libcurl response attributes and a short description.

Response Attribute Description

HTTP Response Headers Complete list of HTTP response headers

Content Size Size in bytes (but not actual content)

Request Durations Durations of total latency, hostname lookup, connection, etc

HTTP Redirects List of HTTP URL redirects

Final Request URL URL of final successful request

Final Request Host Address IP address and port of final successful request

10

Chapter 3

Measurement Dataset

For this work we have decided to analyze a sample of just under 10 million HTTP GET mea-

surements gathered during the one week interval of May 1st 2017 - May 8th 2017. We monitored

the top 10,000 domains according to alexa.com [20] at 2 hour intervals. We performed measure-

ments using each of 10 unique vantages deployed in geographically diverse locations. One vantage

is deployed in the NetSec lab at Colorado State University in Fort Collins, CO. The other 9 were

deployed on Microsoft’s Azure cloud infrastructure with locations: East US, Central US, South

Central US, West US, West Central US, West Europe, Southeast Asia, Australia Southeast, and

Brazil South. All vantages are plotted on map below in Figure 3.1.

Figure 3.1: Proddle active vantage locations

Our initial analysis on this dataset revealed a failure rate (ratio of failed measurements to total

measurements) of 2.525% over the entire dataset. There were 1239 domains that contained at

least one failure. A plot of the failure rates for these domains ordered from highest to lowest

is provided in Figure 3.2. Surprisingly, we see that 200 of these domains have a 100% failure

rate, meaning all of the measurements performed for those domains failed. This is largely a result

of alexa.com assigning all sub-domain traffic to the top level domains. For example traffic to

a.foo.com and b.foo.com would be represented under the foo.com alexa domain. In this scenario

11

the sub-domains, a.foo.com and b.foo.com, may serve content through HTTP whereas the top level

domain, foo.com, may not. We have chosen to remove the measurements belonging to these 200

domains, resulting in a total failure rate drop to just 0.562%. We don’t believe this reduces the

utility of the dataset, as inclusion of the data would falsely skew our service availability findings.

Figure 3.2: Total failure rates for each alexa.com domain.

Analysis into the 200 100% failure rate domains is provided in Figure 3.3 which shows unique

error codes that were captured for the aforementioned domains. The largest portion of failures be-

longs to hostname resolution issues, an explanation for these cases is the instance described above

where alexa.com rolls sub-domain traffic into the top level domain. Other failures include SSL

certificate authentication issues, hitting the maximum number of redirects, and general timeouts

among others.

Domains with failures are extremely diverse. The top 3 domains, in terms of failure counts

during our sample, are runteki.com, nn.ru, and oeeee.com with 765, 762, and 748 failures respec-

tively. The total number of measurements on a domain was around 800 during the sample period.

There are a small number of domains that have an extremely high failure rate as seen here. Another

notable set of domains includes yxngmwzubbaa.com and wipjyzwavojq.com. These domains ex-

12

hibit similar characteristics to botnets using a DGA. While these examples are quite prevalent, they

are also quite easy to discover as well because the alexa.com domain rank is highly variable. Even

though these are quite irregular, we see no reason to exclude these domains from measurements

as they are included in the alexa.com file and have successful measurements. A final example, in-

cludes gamestop.org, thepiratebay.org, and nintendo.com (among many others), which contained

less than 5 failures during our measurement sample. We don’t believe many of these cases to

be terribly interesting, as experience shows a single vantage point may irregularly "timeout" on

a measurement. Deeper analysis into the domains is beyond the scope of this work, but may be

warranted for better insight into unavailability events.

Figure 3.3: libcurl failure counts for each of the domains with a 100% failure rate.

13

Chapter 4

Event Detection

4.1 Methodology

We have chosen to leverage the DBSCAN [21] general clustering algorithm to effectively

cluster individual measurement failures into service unavailability events. This algorithm has

been studied extensively and has often produced better results than similar clustering algorithms

[22–24]. Additionally it has been successfully applied to similar Internet based clustering appli-

cations [25]. Our current clustering criteria are quite elementary. We have chosen to focus on

measurement failure timestamps, where failures that are close together are more likely to be clus-

tered together. Usage of a clustering algorithm over other techniques, like manually designating

clusters based on timestamps, was chosen to simplify implementation of more complex future

analytics. There are many scenarios where we could extract more unintuitive relationships using

different sets of clustering criteria. In terms of our clustering algorithm choice, we found DBSCAN

provides many advantages, a few of which listed below.

• Does not require setting the number of clusters a priori

• Excels at grouping oddly shaped clusters

• Resistant to outliers by integration a notion of "noisy" points into the algorithm

The DBSCAN algorithm requires a user to define a distance function which calculates the

distance between two points. Additionally, just two parameters are required, namely epsilon and

min_points. Epsilon refers to the maximum distance allowed between two points for them to be in

the same cluster. min_points is the minimum number of points required in a cluster.

Our distance function only takes the domain and the timestamp into account when determining

the distance between two failures. Intuitively, this is all that is required to cluster failures into events

as an event (as currently defined) is unable to span multiple domains. Using these two attributes we

14

compute the distance as the difference between the two timestamps if the domains are the same; if

not, the distance is not defined. We have chosen two use 3 as the min_points parameter to reduce

false positives as the DBSCAN algorithm generally recommends a minimum value of 3. Finally,

we address the epsilon value. The general recommendation is to use a kdistance plot and analyze

sharp changes as permissible values. A k-distance plot is constructed by iterating through each

data point and gathering the list of distances to the knearest neighbors (k being 3 in our instance).

This results in a list of the distances to the k-nearest neighbors for each unique point. This list is

then sorted and plotted. The idea is that sharp changes in the graph indicate epsilon values that

will have a dramatic affect on the number of clusters / cluster size. The k-distance plot for our data

indicates the 2 hour mark to be a good value to use as epsilon, the maximum distance between

points in the same cluster. It is unsurprising that the 2 hour point is a good value because it’s the

interval at which measurements are executed. Our 2 hour measurement interval is a compromise

between detecting transient failures (for example those due to routing convergences) and longer

failures, and system resources. In our case, resources are the limiting factor and the interval can

easily be altered pending resource availability. A shorter measurement interval such as 10 to 30

minutes is longer than a typical routing convergence, but may report false-positive failures for the

monitored site. Alternatively an increasing measurement interval will require fewer resources but

may fail to detect short-lived failures.

4.2 Results

Using this approach we were able to cluster the 54,929 failures in our dataset to 535 events

spanning 342 unique domains. We can easily explore some example events in terms of the domains

they belong to. The first example domain is creditonebank.com. The data noted two separate

events, the first ran from May 1st at 12:08 AM to May 1st at 6:28 AM. In this event all 10 vantages

were "Unable to resolve hostname" and there were 28 total measurement failures. In a separate

event, the same domain had an "Unknown SSL protocol error in connect" failure from May 5th

8:07 PM to May 5th 10:47 PM encompassing 24 measurement failures. This exemplifies a situation

15

where a single domain contained two separate unavailability events over the sample period. A

second example is for the domain spiceworks.com. We noticed 4 vantages viewed a "URL using

bad/illegal format" failure from 4 vantages May 3rd 8:28 AM to May 3rd 10:51 AM. We will

explore these same events as we continue because they provide a good variety of event attributes.

Analysis of the events covering multiple facets presents interesting, even if intuitive, conclu-

sions about failures per event, event duration, and the number of vantages which viewed each

event. This information is included to lend credibility to the failure clustering techniques used. We

see a large variety in event attributes which is expected.

We’ll begin by addressing the number of failures per event. This data is displayed in Figure 4.1.

We see the majority of the events consisting of less than 30 failures; then the data trends towards an

exponential increase up to around 500 failures. We don’t believe this view presents revolutionary

findings, rather it reinforces the intuition one would expect.

Figure 4.1: Total number of failures in each detected event sorted from greatest to least.

Figure 4.2 shows the number of vantages which viewed each particular event. This graph is

rather interesting as we see large fluctuations between the number of vantages. It is reassuring

that events are most commonly seen by all 10 (or even 9) of the vantages as that lends additional

16

credibility to the event. The peak at 4 is explainable as a large number of events being short lived,

therefore fewer vantages had the ability to measure within the given duration. An example of such

an event is described earlier in this chapter as the lulumon.com event on May 5th (viewed by 2

vantages) lasted only 2 hours whereas the gamedog.cn event (viewed by all 10 vantages) lasted

upwards of 5 days.

Figure 4.2: Total number of unique vantages that viewed each detected event.

Finally, we can analyze the durations for each event in Figure 4.3. Again, based on our previous

data (number of failures per event, etc) this data is rather intuitive. The majority of events are

relatively short lived, with an exponential increase in time as the data continues. Perhaps, the most

noticeable facet of this data is the plateau around the 3000 minute mark. This is a construct of our

sample window cutting off many events at the end of our 1 week duration.

17

Figure 4.3: Duration (in minutes) of each detected event sorted greatest to least.

18

Chapter 5

Event Classification

5.1 Methodology

Classification of event cause is based directly on error codes/messages from libcurl. We have

discovered 13 unique error codes (provided in Table 5.1). for measurement failures in the sample

dataset. Of our 535 events 83% or 443 contain a single error code. This code is not necessarily

the same for every event, just for failures within an individual event. These events are easily

classifiable, as the cause is the single error code provided by their failures. Additionally, 15% or

81 contain 2 error codes where one error is a general timeout and related to the other, which we

refer to as the primary error code. The remaining 2% of events that contain more than 2 error

codes are currently unable to be classified. Our hypothesis is that the event detection algorithm is

merging two actual events into one.

Table 5.1: A table containing libcurl error codes and the corresponding error messages.

Error Code Error Message

3 URL using bad/illegal format

6 CouldnâĂŹt resolve hostname

7 CouldnâĂŹt connect to server

18 Transferred a partial file

23 Failed writing received data to disk/application

28 Timeout was reached

35 Unknown SSL protocol error in connect

47 Number of redirects hit maximum amount

51 SSL peer certificate was not OK

52 Server returned nothing

56 Failure when receiving data from peer

60 Peer certificate cannot be authenticated

61 Unrecognized HTTP Content or Transfer-encoding

19

5.2 Results

We have provided graph depicting the classification results is given in Figure 5.1 below. The x-

axis represents the error codes for which events are classified and the y-axis is the number of events

that fall into each classification. Classification frequencies range from the resounding majority, 249

events classified as "timeout" or error code 28, to the single event classified as error code 3 or "URL

using illegal/bad format". Characteristics of each classification are explored in-depth in Chapter 6

Event Characteristics.

Figure 5.1: Number of detected events viewed by the libcurl error code they are classified under.

20

Chapter 6

Event Characteristics

In this chapter we choose to explore various characteristics of the event classifications. We

have chosen to perform this analysis as a property of the Internet instead of focusing on a specific

domain. That way results can be applied broadly. For example, the characteristics we have chosen

to analyze can be applied whenever a failure occurs, even to sites that we don’t necessarily monitor.

We have identified four characteristics that present useful insight; namely frequency, duration, rate,

and visibility. Explanations of each characteristic will be covered further as they are explored.

Additionally we have devised a ranking system using High, Med (Medium), and Low and assigned

one of these values for each characteristic for each classification. The aim is to use these rankings

to construct a view of expected characteristics for each classification. Both service administrators

and users will benefit. For example, when reporting a service unavailable to an administrator the

service can gauge the potential visibility (or number of hosts that view an event). Similarly users

experiencing an unavailable service may be able to understand the duration the service is expected

to be unavailable for. All of this information is based on real observed events classified by the

same failure cause.

Even though we have analyzed measurements for a relatively short time period (1 week) we

are confident these results are representative of Internet failures. We performed over 800,000 mea-

surements including almost 55,000 libcurl failures presenting an extremely large sample size. Our

measurements were executed on the top 10,000 websites according to alexa.com which comprise

a large majority of Internet requests. Finally, we experienced libcurl measurement failures at all

stages of the HTTP request.

21

6.1 Frequency

Frequency refers to how often events of this classification occur. We have provided a graph

showing this characteristic in Figure 6.1. Description of the graph has been omitted as it was

covered extensively in Chapter 5 Event Classification.

Table 6.1 contains exact event counts and ranking values for each classification of events. The

ranks are based on a visual interpretation of the data. Classifications 28 and 7 are ranked as High

with 249 and 103 events respectively. Classifications 59, 47, and 56 are Med with 59, 48, and 36

events respectively. The rest of the classifications are ranked as Low.

Table 6.1: A table containing event counts for each libcurl error code/message classification.

Error Code/Message Event Count Class

(3) URL using bad/illegal format 1 Low

(6) Couldn’t resolve hostname 59 Med

(7) Couldn’t connect to server 103 High

(18) Transferred a partial file 5 Low

(28) Timeout was reached 249 High

(35) Unknown SSL connect protocol 12 Low

(47) Maximum number of redirects 48 Med

(51) SSL peer certificate was not OK 3 Low

(52) Server returned nothing 8 Low

(56) Failure when receiving data 36 Med

(60) Peer certificate authentication issue 9 Low

(61) Unrecognized HTTP content 2 Low

6.2 Duration

Duration refers to how long a particular event lasts. A graph showing the durations of events

in each event classification is provided in Figure 6.2. Each value on the x-axis is an event that

belongs to each classification and the corresponding y-axis value is the duration (in minutes) of

that event. The graphs contain 9 separate lines, one for each of 8 unique error codes and the

22

Figure 6.1: Number of detected events displayed as the libcurl error classification of the event.

final line encompasses the unrepresented error code classifications. Again, we see the plateau in

durations at around the 3000 minute mark, again this is a construct of our 1 week sample window

cutting off a number of events.

This graph provides a unique view of the large variances between event durations. For example,

we see events like 47 and 7 that have relatively short tails resulting in a large negative slope.

This attribute is contrasted by event classifications such as 28 and 6 that have longer tails and

a more gradual decline. Using this information we can infer that events belonging to specific

classifications will likely last longer than others. To quantify an event classifications duration we

take the average of the duration of all events in that classification. The results are presented in

Table 6.2 below. Again, we have chosen to split the durations into 3 ranks.

6.3 Rate

We next present the failure rate of event classifications as the number of failures per minute.

The merit of this characteristic is to provide deeper understanding of the relationship between

event size and event duration. For example, one would intuitively think the duration of an event is

directly correlated to the number of failures in each event. We find that is not necessarily the case.

The number of measurement failures is given in Figure 6.3. Each value on the x-axis represents a

23

Table 6.2: A table containing the average duration (in minutes) of an event for each libcurl error

code/message classification.

Error Code/Message Average Duration Class

(3) URL using bad/illegal format 141 Low

(6) Couldn’t resolve hostname 1583 Med

(7) Couldn’t connect to server 2793 High

(18) Transferred a partial file 678 Low

(28) Timeout was reached 820 Low

(35) Unknown SSL connect protocol 1615 Med

(47) Maximum number of redirects 3096 High

(51) SSL peer certificate was not OK 2468 High

(52) Server returned nothing 1898 Med

(56) Failure when receiving data 923 Low

(60) Peer certificate authentication issue 774 Low

(61) Unrecognized HTTP content 4655 High

Figure 6.2: Duration (in minutes) of each detected event (sorted greatest to least) displayed by as the libcurl

classification of the event.

24

single event, and the y-axis represents the number of measurement failures contained in that event.

The interesting observation comes when comparing this graph to the durations presented in Figure

6.2. We see that the lines depicting event classification 28 are quite similar, meaning the number of

failures and the duration of the event are highly correlated. When viewing the other lines we don’t

see this same level of correlation. We take this to mean that while events may be long lasting,

they are not necessarily viewable by all vantages. The predefined 2 hour measurement interval

means all vantages measure each domain the same amount of times within the interval, therefore

for events with similar durations the only way the measurement failure counts would be different

is that some vantages were having successful measurements within that duration.

Similar to previous characteristics we have provided Table 6.3 which contains the average

failure rate value for each of the event classifications. In it we see values ranging from 0.137 to

0.028. We’ve decided to rank High as being above 0.1, Mid as 0.7 to 0.1, and Low as below 0.7.

Table 6.3: A table containing the average number of failures per event for each libcurl error code/message

classification.

Error Code/Message Average Duration Class

(3) URL using bad/illegal format 0.028 Low

(6) Couldn’t resolve hostname 0.121 High

(7) Couldn’t connect to server 0.126 High

(18) Transferred a partial file 0.063 Low

(28) Timeout was reached 0.137 High

(35) Unknown SSL connect protocol 0.046 Low

(47) Maximum number of redirects 0.076 Med

(51) SSL peer certificate was not OK 0.164 High

(52) Server returned nothing 0.106 High

(56) Failure when receiving data 0.082 Med

(60) Peer certificate authentication issue 0.094 Med

(61) Unrecognized HTTP content 0.080 Med

25

Figure 6.3: Number of failures per event (sorted greatest to least) displayed as the libcurl error classification

of the event.

6.4 Visibility

Visibility is a simple characteristic, how many vantages view each event. We provide graph for

this characteristic in Figure 6.4. On the x-axis are the number of vantages that viewed an event.

The y-axis is the number of events. The various colors represent different event classifications as

described in the legend.

In this graph we see that some event classifications are likely to be observed globally while

others locally. This is determined by the number of vantages each event is viewable from. For

example, we see events classified as 7 or "Couldn’t connect to server" as having a large number of

events viewable by 9 or 10 vantages. Similarly 60 or "Peer certificate authentication issue" has all

events viewable by all 10 vantages. Another interesting example is 47 or "Maximum number of

redirects" where we see events are viewable by 2, 3, 4, or 10 vantages, but aren’t ever seen by 5 to

9 vantages. Rankings are displayed in Table 6.4. For ranking of this characteristic we have chosen

anything above 9.0 to be High, between 5.0 and 9.0 to be Med, and anything below 5.0 is Low. We

picked these numbers because there is a visible difference between the high and low values. 4, 9,

and 10 vantages view a proportionally larger number of events (nearly double of the 4th highest)

and 8 vantages view a very small number of events (less than half of the next smallest count).

26

Table 6.4: A table containing the average number of vantages that viewed an event for each libcurl error

code/message classification.

Error Code/Message Average Duration Class

(3) URL using bad/illegal format 4.0 Low

(6) Couldn’t resolve hostname 7.5 Med

(7) Couldn’t connect to server 7.9 Med

(18) Transferred a partial file 9.8 High

(28) Timeout was reached 6.8 Med

(35) Unknown SSL connect protocol 6.7 Med

(47) Maximum number of redirects 6.1 Med

(51) SSL peer certificate was not OK 8.3 Med

(52) Server returned nothing 6.3 Med

(56) Failure when receiving data 5.8 Med

(60) Peer certificate authentication issue 9.8 High

(61) Unrecognized HTTP content 10.0 High

Figure 6.4: Number of vantages that viewed each event broken down the the specific libcurl error classifi-

cation of the event.

27

6.5 Summary

In this section we present an aggregate of the characteristic rankings for each classification.

It’s provided in Table 6 below. The aim in providing this information is to effectively predict

service unavailability based on event classification. This information is applicable for both domain

administrators and service users alike. For example, if a measurement fails because "SSL peer

certificate was not OK" (error code 51), we know this is an infrequent error that will likely last

long and be viewable by most vantages. An administrator will find this information useful in

that the unavailability is quantifiable and already diagnosed. They understand issues with the

SSL certificate need to be resolved. Similarly service users, while likely uninterested in internal

intricacies, can gauge the scope of service unavailability. In critical workflows this high level

information can prove useful.

Table 6.5: A table containing an aggregation of characteristic rankings for each libcurl error code/message

classification.

Error Code/Message Frequency Duration Rate Visibility

(3) URL using bad/illegal format Low Low Low Low

(6) Couldn’t resolve hostname Med Med High Med

(7) Couldn’t connect to server High High High Med

(18) Transferred a partial file Low Low Low High

(28) Timeout was reached High Low High Med

(35) Unknown SSL connect protocol Low Med Low Med

(47) Maximum number of redirects Med High Med Med

(51) SSL peer certificate was not OK Low High High Med

(52) Server returned nothing Low Med High Med

(56) Failure when receiving data Med Low Med Med

(60) Peer certificate authentication issue Low Low Med High

(61) Unrecognized HTTP content Low High Med High

28

Chapter 7

Use Cases

Given all of this information, it may be difficult to comprehensively understand how to present

it in an actionable way to both service administrators and users alike. In this section we aim to

explain using the two domain examples provided in Chapter 4 Event Detection.

If you recall, the first domain explored was creditonebank.com. There were two separate

events, one spanning from May 1st 12:08 AM to May 1st 6:28 AM and the second from May

5th 8:07 PM to May 5th 10:47 PM. In this scenario we are able to provide actionable information

to a service administrator for both events, the communication might go something like this. "We

noticed creditonebank.com had hostname resolution issues from all 10 of our vantage locations

during May 1st 12:08 AM to May 1st 6:28 AM". With this information a service administrator

is able to make the correct changes to DNS configuration as necessary. The second event is per-

haps more interesting. "During May 5th 8:07 PM to May 5th 10:47 PM we found the service

was advertising unknown SSL protocols during connection". An event of this nature would likely

go undetected without the information available through our system. This is because the users

supported SSL protocols depend upon the medium used to retrieve the content. While develop-

ers often test with many browsers, it’s unlikely they have been entirely comprehensive. In this

instance it might be beneficial to add support for additional SSL protocols. In addition to service

administrators, service users can benefit from the information we make available as well. For the

first event, in near real-time, we can make available our predictions based on the characteristics

we’ve explored. For example, "creditonebank.com is experiencing hostname resolution issues.

Based on previous events we know this is a mildly frequent error. Additionally it will last for a

medium duration (measurable in hours to days at most) and be viewable globally". This gives

users the ability to take action on critical workflows relying on said service. Similarly the second

event detected for this domain can be portrayed as "We’re noticing some SSL protocol issues with

creditonebank.com. This is a very infrequent event that will likely last hours to days and will

29

not be viewable everywhere". If we wanted to provide more in-depth coverage of the event we

could combine the information that all 10 vantages are viewing the event, but we notice that there

are successful measurements within the event window. This could mean that a load balancer is

redirecting requests, and the backend services donâĂŹt support the same SSL protocols. In this

example we have provided information that is useful for both administrators and users.

The second example domain provided was spiceworks.com which contained a single event

where 4 vantages noticed a "URL has bad/illegal format" from May 3rd 8:28 AM to May 3rd

10:51 AM. Under deeper analysis into the measurement failures we see that an external advertis-

ing website link failed to load correctly. This information is useful for the service administrator

because a quantifiable error is restricting use of the site. The conversation might go "We noticed

an external URL on spiceworks.com is illegally formatted". Many services rely on advertising rev-

enue to remain profitable and as such this is an issue that should be fixed. This particular example

is more usage for service administrators than users.

30

Chapter 8

Conclusion

In this thesis we presented Proddle, a reliable distributed application layer measurement frame-

work. We cover the design decisions to improve over existing frameworks in the areas of scalabil-

ity, security, and robustness. Using this infrastructure we are able to execute highly configurable,

scriptable measurements. This work focuses on HTTP(S) GET requests. We successfully apply

the DBSCAN clustering algorithm on one week of HTTP(S) GET measurement failures to iden-

tify service unavailability events. We then classified events, by their cause, based on the individual

measurement failures that comprised them. Finally, we analyzed various characteristics of the clas-

sified events including frequency, duration, rate, and visibility. We then provided an aggregation

of the various characteristics for service administrators and users.

31

Bibliography

[1] Savage, Stefan. "Sting: A TCP-based Network Measurement Tool." USENIX Symposium on

Internet Technologies and Systems. Vol. 2. 1999.

[2] Luo, Xiapu, Edmond WW Chan, and Rocky KC Chang. "Design and Implementation of TCP

Data Probes for Reliable and Metric-Rich Network Path Monitoring." USENIX Annual Tech-

nical Conference. 2009.

[3] Wenwei, Li, et al. "On evaluating the differences of TCP and ICMP in network measurement."

Computer Communications 30.2 (2007): 428-439.

[4] Luckie, Matthew. "Scamper: a scalable and extensible packet prober for active measurement of

the internet." Proceedings of the 10th ACM SIGCOMM conference on Internet measurement.

ACM, 2010.

[5] Paxson, Vern, Andrew K. Adams, and Matt Mathis. "Experiences with NIMI." Applications

and the Internet (SAINT) Workshops, 2002. Proceedings. 2002 Symposium on. IEEE, 2002.

[6] Spring, Neil T., David Wetherall, and Thomas E. Anderson. "Scriptroute: A Public Internet

Measurement Facility." USENIX Symposium on Internet Technologies and Systems. 2003.

[7] Staff, R. N. "RIPE Atlas: A Global Internet Measurement Network." Internet Protocol Journal

18.3 (2015).

[8] site24x7. https://www.site24x7.com/

[9] uptimerobot. https://uptimerobot.com/

[10] uptrends. https://www.uptrends.com/

[11] binarycanary. https://www.binarycanary.com/

[12] alertra. https://www.alertra.com/

32

[13] statuscake. https://www.statuscake.com/

[14] thousandeyes. https://www.thousandeyes.com/

[15] MongoDB. https://www.mongodb.com/

[16] Van der Veen, Jan Sipke, Bram Van der Waaij, and Robert J. Meijer. "Sensor data storage

performance: SQL or NoSQL, physical or virtual." Cloud computing (CLOUD), 2012 IEEE

5th international conference on. IEEE, 2012.

[17] Matsakis, Nicholas D., and Felix S. Klock II. "The rust language." ACM SIGAda Ada Letters.

Vol. 34. No. 3. ACM, 2014.

[18] LetsEncrypt. https://letsencrypt.org/

[19] libcurl. https://curl.haxx.se/libcurl/

[20] Alexa.com. https://www.alexa.com/

[21] Ester, Martin, et al. "A density-based algorithm for discovering clusters in large spatial

databases with noise." Kdd. Vol. 96. No. 34. 1996.

[22] Chakraborty, Sanjay, N. K. Nagwani, and Lopamudra Dey. "Performance comparison of

incremental k-means and incremental dbscan algorithms." arXiv preprint arXiv:1406.4751

(2014).

[23] Suthar, Nidhi, Indr jeet Rajput, and Vinit kumar Gupta. "A Technical Survey on DBSCAN

Clustering Algorithm." International Journal of Scientific and Engineering Research (2013).

[24] Chakraborty, Sanjay, and Naresh Kumar Nagwani. "Analysis and study of Incremental DB-

SCAN clustering algorithm." arXiv preprint arXiv:1406.4754 (2014).

[25] Yang, Caihong, Fei Wang, and Benxiong Huang. "Internet traffic classification using dbscan."

Information Engineering, 2009. ICIE’09. WASE International Conference on. Vol. 2. IEEE,

2009.

33

	Abstract
	List of Tables
	List of Figures
	Introduction
	Service Motivation
	Related Work

	Measurement Infrastructure
	MongoDB
	Vantage
	Bridge
	Robustness
	Security
	Libcurl
	Failure Detection

	Measurement Dataset
	Event Detection
	Methodology
	Results

	Event Classification
	Methodology
	Results

	Event Characteristics
	Frequency
	Duration
	Rate
	Visibility
	Summary

	Use Cases
	Conclusion
	Bibliography

