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ABSTRACT 
 
 
 

ANTICIPATION  ENHANCED  

BEHAVIOR-BASED  ROBOTICS  USING 

INTEGRATED  SYSTEM  DYNAMICS 
 
 
 

Behavior-based robotics specifies behavior as the interaction between the task, environment, and 

agent with specific capabilities that creates a successful behavior to attain task achievement. 

Observed task achieving behavior is confirmed and validated by a prespecified performance 

criteria. For behavior-based robotics, conditions in the niche environment are directly matched to 

and cue behavior choice that yields task achievement by the robot agent. A minimalist approach 

attains this behavior choice from only a few possible scenarios for the niche environment and a 

simple associated response. Previous work in behavior-based robotics has been generally limited 

to a reactive response to environmental conditions, with little or no notion of looking ahead to 

potential successful future outcomes. 

 

Focus on the notion of anticipation provides a novel addition to the task achieving behavior-

based robotics approach. Anticipation is the formulation of suitable processes to manifest 

behavior from a small set of feasible scenarios in the near future before the outcome is certain. 

Anticipation results in successful behavior beyond mere reactions to niche conditions that leads 

to desired task achievement with expected perceived immediate or later reward based on suitable 

fitness matched to the niche.   
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The approach to add anticipation developed a formal system dynamics model to represent 

previously known behavior archetypes, extended them with the notion of anticipation, and 

enhanced the system dynamics operation. Simulation of a robot instance using anticipation for 

wall following, called the TOURIST, was conducted to gain insight into behaviors that would be 

observable in a real world natural system. Simulation of the TOURIST robot with anticipation 

built into the archetype programming illustrated the advantages of including the notion of 

anticipation. Anticipation allows a TOURIST robot agent to travel a smoother path and make 

choice of small increments in behavior change that produce more desired longer term responses. 

With anticipation, numerous small adjustments are made that require less energy than large spins 

of the SEEK behavior, so only one third of the SEEK behaviors occur, and thus wastes less 

energy and time. Also with anticipation, the TOURIST makes twice as many cycles of the area at 

the same speed and in the same time, so a broader range of area is covered and can more readily 

perceive any dynamic changes in the overall arena. The methods and insights were added to a 

real world robot instance, and the benefits of anticipation were observed to occur. A specific 

metric, ANNum, was developed for describing operation of the TOURIST robot. Greater metric 

values were found with anticipation on, reflecting more behavior responsiveness to the niche per 

unit time when anticipation was used. 

 

In conclusion, anticipation enhances robotic performance by manifesting task achieving behavior 

that is properly matched to a specific niche condition. Anticipation extends beyond the merely 

reactive behavior previously used in behavior-based robotics by acting like a funnel or channel to 

guide the behavior choice to match a specific niche. The observed behavior choice is manifest 

before the outcome is realized and certain to occur. As a practical result, the robot agent is able 
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to make many smaller adjustments earlier and faster with better chance for desired outcome than 

would be observed without anticipation. It circumvents repeated larger adjustments that waste 

more resources and take more time for task achievement. Such enhanced anticipation behavior 

avoids obstructions and potential destructive paths or motion, and is more able to achieve tasks 

such as to find objects and move along walls with minimal effort. Thus, anticipation that is added 

to robot architecture improves behavior choices to realize desired task achievement. Future work 

could add anticipation to real world practical automation and robotics to further test the 

improved operation with anticipation.  In summary, anticipation observed in a robot agent should 

act before the outcome is known, make timely small adjustments toward a goal, and appear as if 

the future were known ahead of time. 
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CHAPTER 1.  INTRODUCTION 
IN SECTION BREAK 3  . 

 
 

OVERVIEW  OF  THE  PROBLEM 

Focus of the Study 

Anticipation is the focus of this study, and how it can be included in robotics. The intent is to 

understand the entire notion of anticipation, from what it is, to how it acts, to how it is 

recognized, to describing a congruence framework, to defining means and methods that include 

anticipation in robotic architecture to effect behavior and realize task achievement.  

Robotic  Systems 

Robotics is a rapidly growing field. It includes aspects of automation, traditional classical 

artificial intelligence (AI), newer behavior-based robotics (BBRs), human in the loop (HIL) and 

hybrid systems with aspects across defined areas. Approaches vary from that of minimalist that 

perform only necessary operations, to complex sophisticated planning algorithms that define a 

myriad of problem solutions. Control systems vary from open loop (no feedback for error 

control), to feedback control that may include components of proportional, derivative, and 

integral (PID) algorithms, to neural net learning type algorithms. Systems themselves may be 

closed systems, somehow isolated from the outside world, to open systems that continuously 

receive input from and provide output to the surrounding environment. Form of robots is as 

simple as devices such as a washing machine with a specific purpose, to more complex Mars 

rovers that must cope with uncertain environments, to humanoid robots that are intended to work 

with humans to provide daily assistance and have potential for social interactions. Aside from 
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understanding the broad range of definitions and applications in robotics, a contribution to 

robotics necessitates one to focus on some area in which to provide novel advancements. 

 

Behavior-Based Robotics Architecture Approach 

Behavior-based robotics (BBRs) is defined as an approach that matches robot agent behavior 

directly to a specific environmental niche condition to promote desired task achievement. A 

robot agent can be a specific physical robot or programed process that performs a behavior to 

attain desired task achievement. The minimalist BBRs approach provides ample opportunity for 

study and advancement of robotics as an engineering discipline.  Overall, one BBR principle is 

that there is no general purpose robot, but instead a robot is designed to perform a specific task in 

a specific environmental niche context, and that yields desired observed behavior. For early 

instances, a BBR agent (robot) reacted directly to specifics in the niche to create behavior, thus 

operating in a reactive mode. Outcomes followed the traditional view of science that causation 

operates only in one direction, so that all future events are based entirely on direct causation 

from certain specific past events. A current state is dictated specifically by a set of past states, so 

the future is always known based on the past. This view aligns with traditional disciplines of 

physics and chemistry, the hard sciences, where purpose and human emotions are ignored. More 

soft sciences such as psychology, philosophy, and theology take a less strict world view. 

Biochemistry as a discipline embraces a less structured causality with pathways that include 

probabilistic stochiometric equation relations. All of the life sciences embrace the scientific 

method that seeks to remove human judgement from the determination of truth, instead basing 

the determination on results from strict experimentation. Here biology shares the reductionist 

approach with physics and chemistry, contending that all causality can be broken down into 
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components to be further understood, and then reassembled to find the overall truth for actions of 

a system. 

 

Systems Approach Studies 

On the other hand, the general systems and wholistic approaches vehemently argue that the 

system is much more, and indeed quite different, than the sum of its parts. Dismantling the 

system to study it destroys the very thing of interest that generates the observed behavior: 

interrelations among the connected essential components. The most important and valuable 

aspects of the system are embedded in the structure that maintains proper relations, so must be 

studied as a whole.  Even studies of model systems, such as ‘lower’ animals in biology, are not 

sufficient to understand the interrelationships important to complex human biological systems, or 

as represented more broadly in society and economics. To understand internal system dynamics, 

one is persuaded to turn away from reductionism as the source of all truth, and instead study the 

entire system to understand nuances and dynamics that affect observed behavior. Modeling of 

whole systems requires techniques that capture the archetypal causes for various types of 

behavior in an architecture that includes traits such as time delays and looping pathways that 

cause positive reinforcement even to the brink of instability, or balancing elements that keep the 

entire system stable for a range of expected conditions.  

 

Anticipation Architecture 

Though the previous BBR approach is reactionary in nature and concentrates on response to a 

single or limited inputs, in contrast, anticipation added to a BBR system involves inclusion of 
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previous potential behaviors that can arise in response to multiple factor levels in the niche 

environment. A desired behavior choice is manifest from a range or small set of values in the 

niche; selection from a repertoire of preconceived responses, an anticipation set, is based on 

some suitable fitness to match the current conditions.  

 

If conditions occur outside previously expected conditions, no logical or reasonable response can 

be made, except possibly one of total inactivity, though that also may not be adequate. Indeed, 

small repeated minor adjustments over time should produce desired results better than larger 

abrupt changes.  Adding anticipation to a system should provide for adequate beneficial 

responses, even acting before an outcome is certain, that make it seem the system appears to 

know the future.  

 

Nature and biology, indeed human existence, are filled with examples of behaviors that involve 

the notion of anticipation, so that when future niche conditions are right, an almost explosive 

action occurs to choose and execute the correct behavior to permit task achievement. In some 

systems, the structure develops months in advance of a process that may unfold rapidly in the 

future (e.g., spring flowering).  Anticipation has been thought of as a trait of open systems, that 

includes the classification of all living systems in the world. Living systems are even able to 

locally reverse the law of entropy by creating organization from apparent disorder, yet at the 

expense of creating greater disorder, or more entropy, in the surrounding environment, and thus 

upholding the Second Law of Thermodynamics. Including anticipation in any system should 

enable tangible benefits to be realized, acting before outcomes are certain, appearing to know the 

future, and leading to previously determined desired results. 
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THESIS STATEMENT 

Anticipation that is added to robot architecture should improve choice of behavior to perform 

desired task achievement. A congruence framework is employed to ensure that an abstracted 

formal system model is in agreement with some robotic natural system that has engineered 

desired observable behaviors. The formal system model includes equations to represent 

previously known archetypes of behavior, and extends them by including methods of 

anticipation, and thereby represents the system dynamics of operation. Simulation of an instance 

of a robot having anticipation is studied to gain insight into congruent behaviors expected in a 

natural system. The methods seek to successfully operate an instance of a real world robot, and 

were demonstrated to successfully manifest anticipation behavior. 

Problem  and  Organization 

Therefore, as mentioned before, anticipation has become the focus of study, and how it can be 

included in robotics. The intent has been to understand the entire notion of anticipation, from 

what it is, to how it acts, to how it is recognized, to describing a congruence framework, to 

defining means and methods that include anticipation in robotic architecture to effect behavior 

and realize task achievement. The path is an intellectual journey that recognizes and builds on 

existing theory, evolving into an understanding as to the role of anticipation, and culminates with 

use in robotics. The path starts in Chapter 2 by examining previous opinions on the notion of 

anticipation, and explores the traits of systems that can possess anticipation (ostensibly open 

systems). The task continues in Chapter 3 as a system dynamics approach is used to include 

known behavior archetypes. The next step in Chapter 4 develops a computer simulation model 

that can operate with or without anticipation, and the path eventually leads to considering 

methods that extend anticipation into the workings of real world robotics. The work is 
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summarized in Chapter 5 with statements of conclusions, and the possibilities for future work on 

anticipation is discussed, along with some potential related elements to pursue in more depth. 

Definition: Anticipation is the creation, formation, formulation, or determination of a suitable 
process to manifest behavior from a small set of feasible future scenarios before the outcome is 
certain for successful behavior beyond mere reactions to items in the niche that leads to desired 
task achievement with expected immediate or later reward based on perceived fitness matched to 
the niche. 
ITEMS  FROM PRH: 
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ROBOT 
AGENT 

 
 
 
 
 
 
  TASK       ENVIRONMENT 
 
Figure 1. Task-environment-agent interlinked 

triangle representing behavior for robotics 
(Nehmzow, 2000). 

CHAPTER 2.  BACKGROUND 
 
 
 

THE  NOTION  OF  ANTICIPATION  

A behavior is a specific reaction by an agent to a condition in the environment.  The behavior-

based robotics (BBRs) approach directly matches a specific behavior to current environment 

conditions (Brooks, 1999; Connell, 1990). The behavior is a reaction that directly follows the 

sensed condition, and is the observed interaction between the agent, task, and environment 

(Nehmzow, 2000) (Fig. 1). The reaction response is a typical cause and effect relation for science 

that views the world as marching in one direction in time, where effect always follows cause and 

is dependent on a specific cause or chain of causal events (Rosen, 1991). It is so embedded in 

scientific thinking one hardly considers the possibility that aspects of the future might somehow 

affect the present, thereby inferring that time does not move in just one direction for causality. 

 

 

 

 

 

 

Anticipation is a quality of Life that provides a means for the future to have an effect on the past 

(Nadin, 2002; Rosen , 1991, 2012). Anticipation involves an expectation about future events, and 

that expectation about the future changes behavior in the present, and also uses elements of past 

experience to form the expectations (Nadin, 2002). In biology, living systems can develop 

models of the future that can allow an agent to evaluate possible outcomes, and thus create 
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behavioral response to conditions that may not yet have occurred, but have a high likelihood to 

occur (Rosen, 2012). The likelihood is based on results drawn from past experience.  

These models can be as simple as chemical pathways, chemical and physical structures, or more 

complex models created by thinking such as is done by humans every day (Rosen, 1991, 2012). 

Behavior that results from anticipation has the quality that the outcome is known before 

conditions exist in a specific niche environment to confirm that particular outcome is certain. 

The niche environment, or simply niche, is a specific condition of the overall surrounding 

environment of an agent. Hence, the nature of anticipation is that it goes beyond mere reaction to 

existing conditions, but looks to the future to provide for manifesting a preferred behavior 

choice. Anticipation is observed daily for human actions that appear to think ahead and be ready 

for some future event that is expected to occur. All living systems include qualities that can be 

termed anticipation, such as formation of flower buds that may bloom months later, or building a 

nest in which to rear young. Since these anticipation responses from living organisms (or living 

systems) involve creation of models within the organism to predict the future (Rosen, 2012), 

manmade artificial systems that can create models of future conditions also possess the 

ability to exhibit the notion of anticipation. Adding the notion of anticipation to a nonliving 

robotic agent system involves building models of the potential future world based on past 

experience, and using the model results to manifest the behavior choice for the agent. This 

requires the human designer to describe specific niche conditions that are expected to occur, and 

directly match a specific behavior to that niche when the niche is perceived to occur, and that 

observed behavior appears to respond before the outcome is known, yet it results in desired task 

achievement. The journey begins by enlisting a framework for abstraction and deabstraction that 

can instill the notion of anticipation into a robotic agent. 
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MODELING  CONGRUENCE  FRAMEWORK 

An overall framework approach for modeling and prediction was described to recreate a natural 

system (NS) with all its entailments (implied interactions and causation) into an abstracted 

formal system (FS) that acts as a representative predictive model of the NS (Rosen, 2012) 

(Figure 2). Observations and causation from the NS are encoded into the FS  using observation 

and measurement, allowing inferences and predictions to be made in the FS, and these 

predictions are decoded by prediction back to the NS for corresponding operation. For robotics, 

the mathematical models of theory in the FS are decoded by creation of a physical robot in the 

NS. Our representations of how natural biological systems operate are always model abstractions 

used to understand function in reality. Operation of anticipatory systems was based on a 

modification of this modeling abstraction by using methods in agreement with physics, and that 

theory of anticipation provides a basis to apply anticipation to robotics. 

 

 

 

 

 

 

 

A congruence framework for modeling a real world system ensures that the causality is first 

abstracted by encoding into a formal system (FS) of equation relations and rules, and the 

inference captured in the FS is decoded back to the natural system (NS) of the real world (Fig. 

3). The framework is said to be congruent, or agrees, if the entailments (implications) in the 

 
Figure 2. Representing the Natural System (NS) as a Formal 

System (FS), and decoding back to the NS (from: Rosen, 
2012, p. 72). 
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causality of the original NS can be reproduced when the inference of the FS is decoded back to 

the NS (Rosen, 1991). A physical engineered robot and its behaviors with implied causal 

entailments exist in the NS. Experimentation and measurements of observed behaviors are used 

to encode in a creative manner (in only one of many ways) the NS into an abstracted FS. The 

inferences of the entailments are structured as a model with system dynamics in an abstract 

architecture that a designer believes captures the desired operation of the NS. Simulations of 

various conditions can be done in the FS to obtain insight and ideas for application of 

improvements or preferred changes for the NS. Requirements and specifications are decided for 

the preferred operation as observed in the FS simulation, and thereby decode back to the NS, 

devising ways to create the behavior to achieve task performance. Various supplemental methods 

can be used to aid in the decoding, using scaling in both space and time, identifying key 

operations, developing connections, sequentially ordering the events for proper operation, 

attaining congruence of operations with outcomes, and devising methods of production. If the 

encoding, abstract modeling, and creative decoding are successful, there will be observed 

agreement (congruence) between the operation of the NS with the predicted performance 

outcomes simulated and inferred in the FS. Only with such observed congruence of the NS 

operation with the FS can the FS be properly called a model of the NS (Rosen, 1991). 
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Congruence Via Encoding and Decoding (Rosen, 1991) . 

 

 

 

 

 
 
 
 
 
  Figure 3. Rosen proposed the need for encoding and decoding to link causation relations 

between world phenomena into an embodied model structure. 
 A Natural System (N, or later referred to in this discussion as NS) can be modeled by a 
Formal System (F, or herein FS) by adding processes of encoding and decoding as 
creative acts. The circled labeled paths are related by the equivalence: 1 = 2 plus 3 plus 4, 
or meaning that path 1 is equivalent to the combination of the other three paths.  (from: 
Rosen, 1991, p. 60; Fig. 3H.2)  

h(2014.02.27) 
ttp://books.google.com/books?hl=en&lr=&id=DR8L4snDnkIC&oi=fnd&p
g=PR11&dq=rosen+life+itself&ots=jJJcLkWd21&sig=DbbNw3_NAeiD3
VNJGhBURKgzeeY#v=onepage&q=rosen%20life%20itself&f=false).  
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ANTICIPATORY SYSTEMS 

Rosen (2012) begins developing a Theory of Anticipation (AN) by stating the behavior of 

anticipatory systems (anticipatory paradigm) differs from that of the reactive system (reactive 

paradigm), and leads to better understanding of biological phenomena as adaptation, learning, 

evolution, and other basic organic behaviors. The anticipatory paradigm extends the reactive 

paradigm, and does not actually replace it (p. 319). Underlying principles for defining 

anticipatory systems are developed in a modeling context (Rosen, 2012).  

Variables are assigned as S for the natural system, M for the model as a formal system, and EF 

for effectors linking between them (Figure 4).  

 

 

 

 

 

 

 

 

Timing of trajectories or paths in the model, M, is much faster than in the natural system, S, so 

predictions of behavior generated in M are later observed in S due to coupled meaningful 

specific interactions. M has a set of effectors, EF, to operate on S or environmental inputs to S.  

Overall this is considered an adaptive system, and acts as an anticipatory system if M is a perfect 

model of S (or if imperfect: quasi-anticipatory). Because M is faster, it predicts the future of S. 

To formalize this interaction, the state space of S (and thus M) is partitioned to regions as 

    
 
Figure 4. Interaction of the natural system, 

S, the formal system, M, and the effector 
linkages, EF, for anticipatory systems 
(from: Rosen, 2012). 

3 2 

EF 
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desirable and undesirable. If M moves into an undesirable region, the effectors, EF, activate to 

change dynamics of S to keep the path of S out of the undesirable region. Thus, M anticipates 

future activity of S, and coupling through the effectors, EF, allows predictions from M to change 

present S behavior to attain a chosen future behavior or situation. This creates a means by which 

predictions can be made about S from M, and produce an anticipatory system. A similar previous 

method coupled a three step delay for short term memory with both a predictor and comparator 

to create expectations for action from observed events (Braitenberg, 1986). 

 

Since the theory of anticipatory systems is based in biology, a few terms from that discipline 

must be understood. From genetics, a genotype (or genome) is the full complement of genetic 

material that makes up the individual. In contrast, the phenotype is the expression of that 

genotype as visible in the environment. Survival and selection of the individual works on the 

phenotype, yet it is the DNA of the genotype that is transmitted to offspring. The biologist 

defines fitness as the number of progeny produced by an individual. For robotics, this definition 

does not apply to measure performance via behavior. Instead, robot fitness will be a calculated 

weighted sum of identified sensed environmental values that indicate the perceived value for 

performance of a certain behavior. Rosen (2012) contends that over time there are selection 

pressure dynamics that move the genome (the genotype) toward increasing fitness, in whatever 

way that is quantified (p. 343). A phenotype (or behavior) can be thought of as a path in the 

process, and genotype as a desired task. Selection forces organisms toward a genome having 

maximal fitness. This concept applies for robotic behavior selection as well: a behavior (or path) 

is selected to maximize fitness of performance from that behavior. How behavior is generated 

and fitness is assessed are independent of one another; since they involve entirely different 
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observables for both the environment and organism. Yet, both are coupled by some selection 

mechanism, and that allows phenotypes to act on genomes through the associated fitnesses. For 

example, behavior is generated for an organism to move towards walls or lower light locations, 

while fitness is determined by the structure of the organism to undertake the behavior, involving 

structures for perception and locomotion. The selection mechanism is effective by hiding from 

predators that are not able to see in the low light to catch the prey organism. Thus the behavior 

for moving toward low light has cues for behavior choice, and need of physical capability, but is 

independent of the predators’ ability to catch them, which acts as the selection mechanism. The 

resulting evolution mechanism generates increasingly adaptive behaviors that are most fit for 

task achievement.  Rosen (2012) represents this as a mathematical formalism that relates a 

desired path traveled to an actual path, and discrepancy between the paths, is defined as an area 

over time, A(t). The inverse, or F(t) = 1/ A(t), is a fitness observable for the two paths, and their 

relationship, with a larger value being more desirable as more adaptive. In this way (1) values are 

associated values paths, and (2) values are independent of the specific selection mechanism. 

There is no link between the mechanism for generating the paths, and the determination of their 

fitness (p. 342). A scalar field is defined on the space A of genomes, so at each point, a, there is 

an associated fitness, F(a). A gradient field, F, is constructed on space A and from that the 

dynamics relation can be given as: 

      da/ds =  K F(a)       (2.1) 

where K is a constant, and ds is a shorter time interval than that for the dynamics of the original 

time, t, for the behavior to develop. Thus, dynamics of the selection mechanism are captured in 

equation 2.1. Movement towards a steady state finds that value for genomes for which fitness is 

maximal.  
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Such a behavior, or phenotype, is adaptive if it is anticipatory in nature. Rosen (2012) 

demonstrates this by defining two related environmental cofactors, E and U. The organism can 

only perceive the environmental quality, E, while the adaptive behavior of the organism is, in 

fact, determined by the other environmental quality, U. Also, the action of an organism at the 

present instant has direct effect on effectiveness for later task achievement. The organism’s 

present change of state directly effects what will happen at subsequent events or states. Since 

there is a link between the cofactor, E, sensed by the organism, and the related unperceived 

quality, U, the reaction to some value of E has a predictive relation with that of U. The 

relationship between the gradients of the qualities may be expressed as a function where the 

maxima (or minima) can be given by calculus as: 

    ф ( E, U ) = 0      (2.2) 

Determining the equation of state can relate E to U, and the associated gradients. According to 

equation 2.2, an organism will respond to the environment in a way to follow the desired path of 

U. Thus, E is treated as an indicator or predictor of U. By orienting properly with the gradient, 

E, they automatically align with the gradient, U. An important insight is that orientation 

with E automatically maximizes fitness at a later time. Through selection, the organism has 

generated a prediction about how present behavior will affect future task achievement. Rosen 

(2012) cites an example, where E is a measure of light (that can be perceived and used by a 

phototropism), while U is a measure of predator density. By following the negative gradient of 

light (towards darkness), the organism automatically follows a negative gradient for predator 

density, and thus avoids predators. It maximizes fitness by moving towards dark now (behavior), 

and results in an opportunity to live to reproduce later (task achievement). Interestingly, the 

actual mechanism for the behavior, that of moving in the gradient field, is independent of the 
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relation between the gradients. The notion of fitness can be considered a common currency for 

choosing between events or behaviors, similar to energy in physics or value in economics. The 

application of the notion of fitness to robotics should enable a means for choice of behavior 

based on anticipation about future events. 

 

Rosen (2012, p. 320) illustrates the notion of anticipation with a biosynthetic pathway that acts 

as a simple anticipatory system (Figure 5). The concentration of precursor substrate, P0(t) at 

time, t, affords forward activation (Anticipation) to control activity rate of catalyst, Cn, that 

controls the rate of conversion of Pn-1 to Pn at a later time, t+h. The system is anticipatory since 

P0(t) is a predictor of the later concentration and  

 

 

 

 

 

 

reaction of Pn-1(t+h) with activated Cn at the later time, t+h. By modulating Cn, P0 pre-adapts 

the catalyst to process the substrate Pn-1 at a future time.  Balance (or homeostasis) is 

maintained only through the predictive modeling relation between initial P0 and later Pn-1, and 

that relation links the model prediction to the rate of catalyst enzyme action of Cn. There is no 

feedback in the pathway, and no mechanism to measure the quantity that is actually controlled 

(p. 323). Since increase in Po converts a greater amount of Pn-1 to Pn by catalyst Cn, system 

dynamics identifies this as a reinforcing loop, though with no feedback, that continually is 

 
 
 
 
 
 
 
 
Figure 5. A metabolic pathway shows the notion of 

anticipation by a predictive model for Cn to catalyze Pn-1 
at a later time, t+h (modified from: Rosen, 2012, p. 320). 

3 3 
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unstable as an ever increasing trend. In reality, some system dynamics balancing loop will 

counteract and control the whole process by some limiting factor to constrain amounts to some 

asymptotic level. The constraint may be as simple as some means that restricts the amount of Pn 

that can be produced, possibly by limiting precursor substances for the reactions. 

 

ANTICIPATION  PRINCIPLES 

A comprehensive theory of anticipation (AN) is considered difficult by Nadin (2002, p. 53) 

because awareness of AN is not easy to attain. He presents AN as feedforward thinking that will 

create determination in a future state, and that produces feedback causation to the present state 

(p. 53). He offers several definitions relating to AN. 

1.  An anticipatory system (AS) has a current state determined by a future state. 

2.  The source of AN is interaction between minds, and shared experiences. 

3.  An AS has predictive models of itself and/or environment, allowing instant change of state. 

4.  AN arises from a correlation process, thus allowing an organism to anticipate sensory data, or 

act on scarce data. 

5.  AN is an expression of connectedness with the world. 

6.  AN is a mechanism of synchronization and integration, and an attractor in dynamic systems. 

7.  AN is a recursive process. To an external observer, the system appears to act as if it knows its 

own future. 

8.  AN is one realization of an instance of many possibilities. AN is a realization of a possibility. 

AN is shown in many areas in the world: building a cyclotron to find neutrinos (p. 83), migration 

by birds,  birds increasing song production at the start of breeding season (p. 73), growing longer 

fur by mammals before winter, trees preparing to lose leaves for winter based on daylength, 
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genetic resistance to specific diseases, investment decisions, swarm behavior by flocks (p. 78), 

playing of an orchestra (p. 78), and adaptive robotics. 

SYSTEM  TYPES 

General Systems Theory  

A field of science, termed General System Theory (GST), as developed by von Bertanffy (1968, 

p. 253) strives to formulate and derive general principles that apply to any systems in general 

over all of science: wholism, differentiation, centralization (or the convex), finality, causality, 

and isomorphism. The previous view of a Newtonian reductionist mechanistic world viewed 

living beings (and humans) as machines, but is replaced by one of whole systems with vital 

embedded relations that promote understanding of even life itself (von Bertanlanffy, 1968; 

Rosen, 1991). The whole of human culture and society depends on structure dependent on 

language and human derived symbols (von Bertalanffy, 1968, p. 251 & 252). Two aspects arise 

from this: 1) specificity of human history, shown by traditions (in contrast to heredity of 

evolution), and 2) mental experimentation using conceptual symbols to achieve goal-

directedness for production and reproduction of life in a whole organism (permitting the 

organism anticipation of an expected future). The teleology of these aspects are explained by von 

Bertanffy (1968, p. 252): 

“True purposiveness, however, implies that actions are carried out with knowledge of 
their goal, of their future final results: the conception of the future goal does already 
exist and influences present actions. This applies to primitive actions of everyday life 
as well as to the highest achievements of the human intellect in science and 
technology… [I]t is up to him [read: mankind], however, whether he applies his 
power of foresight [read: anticipation] for his enhancement or his own annihilation.” 

 

Thus, the language and symbolism within a human mind creates the organizational structure with 

potential not only to see and perceive a specific future, but to anticipate a path to that goal that 
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invokes action and behavior before an outcome is certain to lead to the desired result. Mental 

experimentation can construct a new world before it exists in physical reality. As a result, the 

future influences the past. A general aim of GST is to find isomophisms, or a one-to-one 

correspondence mapping between objects in vastly different systems in different fields 

(http://www.politicalsciencenotes.com/articles/general-systems-theory-concepts-and-limits/510, 

von Bertanlanffy, 1968, p. 80). Scientific laws can be thought of as abstractions or idealizations 

to express aspects of reality, such as ensuring a design on paper corresponds to (is congruent 

with) some construction in the physical real world (von Bertanlanffy, 1968, p. 83). In other 

words, science shows perceived orderly traits of reality have conceptual constructs. Implied is 

that order exists in some reality. A system is viewed as a number of interacting elements with 

relations expressed as differential equations of the form (p. 56 & 83): 

  dQi/dt  =  fi (Q1, Q2, … Qn),    i= 1, …, n       (2.3) 

Reworded: the changes per unit time for each significant element is a unique function of the 

current values for all of those elements. This implies a type of entailment, causality, and finality 

(as found in the Rosen congruence framework) where a set of element values implies the specific 

changes that ensue. Three descriptive levels can be expressed in concepts of relation: 1) analogy 

as superficial similarities between relations with no correspondence as to cause or relevant laws, 

2) homologies having different effective factors with the same formal underlying rules, and 3) 

explanation that provides a set of conditions or rules valid of an individual item or class of items. 

By comparison, analogies are not useful in science, while homologies can present useful models, 

not necessarily reductionist in nature, and with a formal correspondence between abstraction and 

reality for various kinds of systems (p. 85). Additionally, explanation replaces the general 
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differential equation form with specific differential equations for a specific individual case, with 

direct correspondence between the equation rules and the individual case. 

  

Open  Systems  Enable  Self-Organization  

For a system to be self-organizing, as for living organisms, von Bertalanffy (1968, p. 96) 

discusses that Ashby has shown that a self-organizing system must be an open system (OS), one 

that exchanges flows of resources (in and out) with the environment. Though Ashby starts with a 

dynamic system of differential equations to describe the machine homology, von Bertalanffy 

counters this as too restrictive for biological systems rampant with discontinuities (p. 96). Ashby 

explains the self-organizing system maps inputs into the next state of the system, in one of two 

ways: 1) separate parts of a system form connections, or 2) the system changes from a 

nonoperational to an operational one. But Ashby states no system as a machine can do this, since 

the change does not occur from inside the system. Instead, some outside agent provides input 

that changes the system. Thus, for any machine to be self-organizing, it must couple to 

something outside that system (p. 97), so the system machine is not closed, but should be termed 

open. Input is required for self-organization of any system. Organization implies decreasing 

entropy, by definition. Recall from the Second Law of Thermodynamics that order is ever 

decreasing for systems, so entropy (which is the degree of disorder) is always increasing over 

time (Rifkin, 1980). To conform to the Second Law of Thermodynamics, disorder must occur 

somewhere, and for the self-organizing system that is actually outside the defined system.  So 

entropy decreases inside the self-organizing system, while the inputs and outputs of the system 

transfer increased entropy to the external environment (p. 97). Energetically, organization can 

increase inside the living biological system, but the inputs (e.g., oxygen and nutrition) make this 
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possible, while outputs (e.g., CO2 and waste products) pass increased entropy or disorder outside 

the system to the environment (p. 98). Obviously, any organization, including self-organization, 

has a cost in terms of entropy increase to the environment. Robotic systems having anticipation 

are actually open systems that still follow the entropy law to create disorder in the environment. 

Thus, all behavior will lead to some larger form of disorder even when the robotic agent appears 

to create order, if only by use of energy from the environment, and some type of waste 

generation such as by structural degradation and need for maintenance or replacement parts.  

 

Whole Systems 

Health for both humans and robots is considered relevant (Goldstein, 1995, p.11, first printed in 

1934, in German). Well-being allows for ordered behavior in spite of limits (p. 11) imposed on 

the organism. Symptoms are attempted solutions undertaken by the organism, and may be either 

successful or unsuccessful. In the forward to “The Organism: A Holistic Approach” by Goldstein 

(1995), a theme is discussed by Oliver Sacks (p. 29) concerning pathology and its value to the 

nature of health.  The notion of order is central to health:  

  “Thus, being well means to be capable of ordered behavior. which may prevail in 
spite of the impossibility of certain performances which were formerly possible… 
Recovery is a newly achieved state of ordered functioning [as ] a new individual 
norm.” 

 
 Symptoms are both an attempted solution, and an adaptation to an altered inner state (and 

world). A Holistic approach seeks to understand behavior of the organism as a whole. A 

biological approach deals with brain damage (from war), and leads to a theory of understanding 

organism function (Goldstein, 1995, Preface, p. 15). For robotic agents, maintaining correct 

operation of the agent for task achievement is needed for the robot to be considered healthy. 
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In his introduction (p. 13), Goldstein contends that using an approach lower to higher is 

incorrect, such as to study lower organisms (e.g., birds) to understand higher ones (e.g., humans). 

Instead, to study humans directly allows one to understand the whole organism. Organisms are 

made simple only through abstraction, and that is a misplaced concept, since all living organisms 

are in many ways quite complex. By the study of simpler organisms: we simplify them 

artificially (p. 14), which is an inappropriate approach. The nature of simpler beings is so remote 

from us that we lack any real understanding of their functional operation, and the potential 

complexities they possess. Gross mistakes are best avoided by studying human behavior directly 

[or for any other such complex agent, such as a robot]. Goldstein opposes transferring findings 

from one field/being to another, and also thinks it is wrong to apply human findings to animals. 

Thus, robotic agents should be studied directly in their niche context to ensure the resulting 

behavior in actually correct and congruent for desired task achievement.  However, he agrees 

that study of the central nervous system (CNS) may generalize to other organisms with similar 

systems of a CNS. Goldstein (1995) describes his overall view for formalization of such a 

process as:  

“Any formalization of the subject matter of a science is useful only if it follows, 
not precedes, the investigation. This inevitably must be the case since the subject 
matter itself becomes apparent only during the process of research, as it emerges 
from the indefinite province in which it was embedded. This is equally true for 
biological research.” 
 

This stance takes the approach to first study an organism through observation and 

experimentation before developing any theory as to the operation of such an organism or system. 

Goldstein’s view tends to conflict with the observation of Rosen (1990) that contends the use of 

metaphor has been used, though not as true science, to study and predict about systems before a 

true encoding of causality is conducted from the natural system to inferences in a formal system. 
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Yet, Rosen contends rightly the use of metaphor limits the possibility to verify the proper 

application of a formal system abstraction to the desired real world natural system. 

 

Motivation For Organisms 

Maslow’s theory of human motivation identifies five prioritized levels of needs that determine 

behavior, from physiological (highest priority), to safety, to love, self-esteem, and lastly self-

actualization (lowest priority). An average person actually is motivated by partial satisfaction or 

gratification in all these categories, requiring higher satisfaction in the higher priority categories. 

By homology of structure (more comparable than analogy) for motivation, a robot also has 

highest priority to maintain its physical structure (akin to a physiology). The human designer 

should focus most strongly on building a robust lasting structure that operates in its world 

environmental that is not endangering the physical structure or programmed operational 

behavior. Robot behavior should always seek to preserve the basic physical structure, and thus 

potential for operation. In the next lowest priority category, the human designer must include 

physical structure and behavior choice that ensures safety of the robot, human beings, and nearby 

surroundings key to continued desired operation. Behavior of the robot would appear to be 

motivated by safety, or as Maslow puts it for humans: “…we may then fairly describe the whole 

organism as a safety-seeking mechanism.” (1943b, p. 376).  

 

It would seem more difficult to ascribe the lower priority categories to a robot agent (love, self-

esteem, and self-actualization), since we think of them as purely human qualities. Yet, Maslow 

also states the ‘love’ category as a ‘belongingness’ need (p. 380), in which case the robot and 

processes belong to groups and networks or even model types that the behavior of the robot 
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could be accurately labeled as belonging to provide for task achievement. The ‘self-esteem’ 

category also is identified to be ‘soundly based upon real capacity, [task] achievement, and 

respect from others’ (p. 381). Hence, robot capacity for performance, task achievement as core to 

behavior-based robotics, and respect (or appreciation) of ability to perform by human observers 

or control mechanisms endow a type of esteem onto the robot agent, notably from an outside 

source or observer. The ‘self-actualization’ category is even more challenging a homology. 

Though the statement by Maslow: ‘What a man can be, he must be.’ (italics in original, p. 381) 

could find a parallel in: ‘What an agent can be, it must be.’ Here the parallel statement implies a 

purpose for which the agent is designed and structured, and obviously the agent must perform 

that task achievement, as would be observed and measured by someone else or a control system. 

Curiously, Maslow points out that in society, people that are basically satisfied are the exception 

(italics added here), not the norm, and thus at the time of his proposing of the theory there was 

little experimental or clinical evidence for self-actualization, with the need for further research 

(p. 383). With little evidence available even for humans, the proper application of self-

actualization to robot agents also requires copious additional research and homology of 

principles. Recall in all cases for categories, Maslow proposes the theory for motivation of a 

behavior. From such a point of view, a robot agent is observed to make a behavior choice 

according to an internalized motivation that overall fits Maslow’s theory for motivation, so it 

may apply to robots as well as humans, using the homologies discussed immediately above. 

 

More broadly applicable is the assertion by Maslow that motivation of a behavior is based on 

multiple basic needs simultaneously (behavior is multi-motivated, p. 390), and that there are 

other multiple determinants aside from basic needs and desires that determine the behavior 
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choice (p. 387). Similarly, robot agent behavior is surely based on multiple cues that combine to 

create the behavior choice. Maslow (1943b, p. 389) suggested that unconscious needs and 

associated motivations are more important than conscious ones, and since we as humans do not 

ascribe consciousness to robot actions, the driving force for robots can easily be said to be 

unconscious or subconscious. An attempt was described by Malcolm and Smithers (1990) to 

structure robot processes in an architecture of subcognitive behavior modules that encapsulated 

the cues and specifics of behavior, while a driving force was derived from cognitive modules 

without the details of behavior. This approach implies a type of cognitive consciousness 

identified as the observed active direction for choice of behavior. In addition to motivations, as 

Maslow (1943b) contends, the choice of behavior depends on the field or context the agent is 

situated in, as well as external stimuli (sensed cues), association of ideas (or rules), and basic 

reflexes (e.g., basic motions possible).  The two main types of behavior and combinations of 

them can be distinguished as expressiveness behavior (something a robot might do for show as 

entertainment and play, or display of built-in capability) or more coping behavior that is 

purposeful in attaining a goal of task achievement (p. 391). 

 

Anticipation is alluded to by Maslow in two ways. First, he refers to the work of Goldstein 

(1995, reprinted from 1934 in German) that whole organisms avoid the unfamiliar by attempting 

to maintain orderly surroundings, so that unexpected dangers cannot occur (p. 380). An 

unexpected event is labeled as a grave danger, causing a panic reaction for humans. If panic 

reaction can be observed as an unexpected or illogical reaction to the outside world, then a robot 

agent may react in a parallel manner with unsuccessful behavior to some unexpected event. Since 

there is no anticipation of the event in the robot repertoire, no logical or successful behavior 
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results. Only situations or events anticipated by the robot (included in its structure and 

programming) can evoke successful behavior that results in task achievement. Otherwise, a 

seemingly ‘panicked’ illogical unpreferred behavior occurs. Second, Maslow also illustrates that 

both current and future world outlook or philosophy for humans is dictated by how well basic 

needs across categories have been met in the past (p. 376). If a human appears solely as 

employing a safety-seeking mechanism, it infers all safety needs have not been satisfied in the 

past, thus creating anticipation that the safety needs must be the focus to be met in the future. 

The anticipated future includes a philosophy of the future that all else is less important than 

safety, where even physical or physiological needs have been satisfied and are now 

underestimated. Here the situations of the past have created the expectations for what is 

anticipated to be focused on in the future. The focus for the future is on what is most anticipated 

to happen. Thus, for robotics, situations encountered previously that have a high expectation to 

be met in the future create anticipation by the robot agent to make a choice behavior from an 

existing repertoire of behaviors for desired task achievement. The goal of the robot designer is to 

include a choice of behaviors to cover anticipated past events that are expected to occur again in 

the future, thus assuring task achievement. 

Behaviorism as Studies of Unconscious Actions 

Watson (1913), referred to as the father of behaviorism, discussed how a behaviorist should view 

the field of psychology as a strictly experimental branch of science intent on predicting and 

controlling behavior (ostensibly in a positive manner). He scoffed at introspection and using 

consciousness to interpret meaning and results. He reasoned humans will respond biologically 

similar to other (closely related) animals, so experiments on animals can be deductively applied 

to humans, an idea that conflicts with the specific whole organism approach of Goldstein (1995, 
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reprinted from 1934 in German). Focus should be on the external observable behavior and 

reactions of people rather than their internal mental state.  Words and memory are devices to 

permit thinking, or as Senge (2006) stipulated that allows thinking as a process that leads to 

thoughts, and these in turn lead to action or behavior. For Watson, with emphasis on behavior, 

emotions are only incidental physical responses. Since studies of consciousness for causation 

resulted in various different and inconclusive outcomes, conscious should not be considered as 

an element of scientific psychological study. Instead of a study of the mind, psychology should 

study behavior of individuals, and not individual consciousness (from: 

https://en.wikipedia.org/wiki/John_B._Watson). As a homology with robotics, implications of 

consciousness should not be considered or studied, only the conditions that resulted in behavior.  

 

Simple Systems 

Design as Choices 

Decision making and the theory of design has been presented in a rigorous manner in a 

curriculum that defines present commitments of resources to follow choices toward desired 

outcomes (Simon, 1996). Such decisions are made with bounded rationality, meaning not all 

information is known that affects the outcome of the decision, and realize that future 

contingencies that do not affect the present commitments are irrelevant to the design process 

(Simon, 1996). Simon discussed the evolution of complex systems from more simple ones, most 

likely by combining stable subassemblies in a hierarchical manner. An agent performs a task 

using simple procedures in a complex task environment (TE). Complex systems, defined as those 

with many interacting parts, most likely arise from stable subsystem blocks, while previous 

experience selects the most successful path to a desired outcome. Methods to maintain 
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homeostasis and provide correcting feedback lead to adaptation and coping for the future. 

Though rigorous methods for optimization might be used, in most cases a satisficing solution is 

discovered using bounded rationality that is acceptable but not the absolute optimum, since too 

much time and too many resources would be needed to search across an almost infinite number 

of possible solutions. Also, Simon (1996) suggests it is most important to define a problem into 

the proper representation to see a successful transparent solution. 

 

A tale by Keijzer (2001, p. 106) illustrates that a robot may spend so much time divining 

between relevant tasks and an infinite number of irrelevant tasks is stuck in the process of 

deciding (or indecision), and never is able to act. This may be termed the frame problem, where 

considering too many irrelevant alternatives results in inaction and task incompletion. For any 

uncertain task, one might find a very high number of alternatives that could not be performed by 

the agent. Thus, the agent must employ a means of deciding a path based on constraints, and a 

designer is required to initially set as many such constraints as possible. This also defines what 

tasks, or environments, are considered unsuited for the agent behavior. 

 

Journey of the Ant 

Science unmasks complexity to describe with simplicity. What scientists observe may differ 

from actual underlying mechanisms in the NS (Simon, 1996). For an autonomous robot, the goal 

is to turn on a switch and observe that it works for task achievement. This is similar to an ant that 

moves in its niche on a sandy beach. In an illustration that is known as Simon’s ant, simple 

movements by an ant are able to traverse a complex niche.  Realize here the niche environment is 

the complex thing, not the ant. (http://everything2.com/title/Simon%2527s+ant  and Simon, 
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1996). Principles of engineering should be used in a simple direct manner to design and build 

robust and reliable robots in a specific real world niche. The goal: design and synthesize a 

specific solution for a specific real world concept or problem. 

 

Future Course 

As discussed, Simon (1996) has contended the complexity of the path of an ant is in the context 

of the niche environment, not in the operational rules of the ant itself, so understanding the niche 

is as important as understanding the inner workings of the ant locomotion. Interestingly, in the 

history of science all past theories have turned out to be false, so those we hold to now probably 

will be false as well (Dupre, 1993). In the field of robotics, this already has transpired as the 

sense-plan-act horizontal architecture of classical robotics (CR) has been shown to be replaced at 

least in part by the sense-act vertical architecture of behavioral-based robotics (BBR) in a 

subsumption architecture that creates levels of behavior through module interactions that result 

in robots that are situated and embodied as physical real world robots (Brooks, 1999). To return 

to the thinking of Simon (1996, p. 128), evolution is a design process that devises multiple 

alternatives, and then selects the best agents through multiple tests on a nested series of cycles.  

Humans solve problems by a mixture of trial and error using some means of selectivity heuristics 

(rules of thumb) in the simplest process possible (p, 195). Selectivity is aided by relying on 

stable blocks for subsystem configurations to build up from incremental stable blocks into more 

complex configurations. Previous experience can be used to identify a previous viable solution, 

and build on that further. Thus, both stability and experience are needed, or at least preferred, to 

perform successful designs even in natural evolutionary settings. Simon goes as far as to describe 

genetic DNA as software (p. 213), so that state and process are entailed in DNA. DNA constructs 
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and maintains the organism, contains the recipe for programmed instructions, and makes copies 

of itself and subassemblies. Ontogeny recapitulates phylogeny, where developmental stages are 

rebuilt from the past, so that many problems are reduced to ones previously solved (e.g., an 

embryo becomes a fetus, etc.). Overall, a whole system is constructed of many interacting parts 

in a hierarchy of ‘nested’ subsystems (p. 184). The concept of satisficing is always present, so 

that a workable solution is found, though it may not be an optimized or theoretical ‘best’ 

solution, at least due to time constraints (p. 119) 

 

Churchland’s Crab 

A simple ‘crab-like’ fictitious creature can be constructed to have a sensory grid as a point by 

point projection from an orthogonal grid at the eye receptor to a ‘distorted’ view in motor space 

(Churchland, 1986) (Fig.6). A mapping function, (θ,ψ)= f(α,β), maps the motor arm angles (θ,ψ) 

as a function of eye angles., (α,β). Coordinates in real 2D space (a,b) for the eye angles are: 

  a= -4 (tan α + tan β) / (tan α - tan β)       

  b= -8 (tan α * tan β) / (tan α - tan β)       
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Figure 6. Transformation mapping of the ‘crab-like’ schematic of a fictitious creature from 
orthogonal sensory eye space angles (α,β) to ‘distorted’ nonlinear motor arm angle state 
space (θ,ψ) [from: Churchland, 1986, Fig. 6]. 5.2.0.2.5.20150622M 

 

More elaborate equations can relate (a,b) to elbow coordinate angles. Deformations are mapped 

to an appropriate correspondence, termed the state-space sandwich. Damage to a small portion 

of the sandwich still allows for operation. Indeed, the system is considered to be fast enough with 

biological conduction fibers to conduct the movement in real time. Nonlinearity of the mapping 

infers a small error may be magnified disproportionally, which may create undesireable large 

errors. This structure is biologically realistic, and could be grown by life. Overall, it is an 
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example of a simple connected biological system that translates eye movement into movement of 

the crab claw to reach the desired item that is being looked at.  

 

The goal for minimalist robotics is to construct such simple mapping relations using physical 

connections from one point to another so little or no processing is needed in between. Of course, 

such connections and changes can be made with switching within programming and processing 

of a microprocessor, having direct connections made from perceiving sensed inputs to the 

corresponding desired activated outputs. Therefore, the preferred current method for application 

of such a mapped system is to incorporate both robust physical connections along with simply 

activated internal electrical microprocessor connections that can directly lead from sensing to 

acuation. The desired goal is to avoid complicated calculation and analysis that delays processing 

time and overly complicates the decision for performance of the needed action. 

 

ANTICIPATION  PROMOTES  HABITS 

The nature of habits in organisms is explored by Duhigg (2014). He cites an example how 

neuron excitation in a rat’s brain decreases with repeated runs through a familiar unchanging 

maze to reach chocolate (p. 16) (these rats were upgraded from cheese…). The perceived change 

(a form of learning) in brain activity reflects the formation of a habit. Duhigg contends habits 

form through the sequence of a cue, routine, and reward. The routine itself is formed by a 

process termed chunking. [In psychology, chunking is combining several items together in a way 

so they are remembered together and easily recalled later. Letters in a word are a form of 

chunking, and repeated expressions are chunking of smaller chunks.] Sound cues at the start, as 

clicks versus meows, may be used to initiate a specific behavior that easily reaches the chocolate 
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reward. The cycle of cue, routine, reward is defined by Duhigg to be a reoccurring habit that a 

person, or any organism, can be fixed into performing repeatedly. 

 

Habituation is defined in biology as a form of neural plasticity in organisms that is a simple type 

of learning (BZ580 Biological Basis of Behavior notes, CSU, 2010-9-21; 

https://en.wikipedia.org/wiki/Habituation). Neural plasticity reflects a physical and/or chemical 

change in an organism’s neurons that cause a change in behavior in the future. Habituation is a 

decrease in response to repeated stimulus presentation (BZ580 notes). For example, one stops 

smelling bacon or fish smell in the house after a bit of exposure to that stimulus, yet you still 

smell other odors. After one leaves the house and returns, dishabuituation occurs so that one can 

smell the bacon or fish again. A classic example of habituation is the sea slug (Aplysia 

californica) that is poked and it withdraws its siphon initially. With repeated stimulus poking 

applications, the duration of withdrawal decreases (Fig. 7). Habituation may continue longer 

term depending on the training (practice) regime. Such studies show the nature of altered neural 

impulses that reflect a change in physical neuron firing and the resulting changed behavior, 

similar to the example in rats given by Duhigg (2014). The mechanism is reduced neuron firing 

after repeated training by stimulus application. 
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Figure 7. After repeated training times of poking the sea slug, habituation occurs over time so 
that the duration of siphon withdrawal is reduced in response to the poke stimulus.   ( 
1.1.20160926M.). 

 

Fixed action patterns (FAPs) are similar habitual responses to cues that are defined by behavioral 

biologists (Tinbergen, 1951). Examples in biology range from a goose using a scooping notion of 

its head and neck to return an egg into the nest, to a bird feeding fish in a pool because the open 

mouths of the fish resemble those of young nestlings, and thereby cues the feeding action 

response by the bird. Humans use similar cues to initiate getting up in the morning with an alarm 

clock, or turning at a specific corner while driving to reach a familiar destination. In that sense, 

much of human daily behavior can be thought of as automatic and unconscious, and may occur 

similarly for other organisms as well.  
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Anticipation is an accessory to habits. Duhigg (2014, p. 46) explains how a monkey forms a 

habit by reacting to a shape displayed on a computer screen: it presses a lever to obtain a 

raspberry juice reward. Over time, the electrode in the monkey brain changes profile response.  

 

 

 

 

 

 

 

 

 

 

Figure 8. After repeated training times of providing raspberry juice to the monkey, 
anticipation of the reward increases prior to the lever press and juice reward, and drink 
juice reward response is reduced [modified from: Duhigg (2014, p. 46)].  
(1.2.20160926M). 

 

Initially, the neural response spike is highest just after receiving the raspberry reward. After 

some time, the spike in response occurs just after seeing the shape appear on screen. This is 

before the pressing of the lever and the actual reward (Fig. 8). This seemingly early response is 

an indication of anticipation of reward by the monkey brain. The combination of forming the 

habit and anticipation of reward is termed a craving (expecting the reward to come). An 

intersecting response behavior becomes associated with this. If the reward continues as 

anticipated, all is well, and we have a happy monkey. However, if the reward is delayed or 
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removed, we now have a very unhappy monkey that shows signs of anger and depression. The 

moral becomes that if we no longer receive the anticipated reward, we become irritated in the 

execution of the habit, although we continue to apply the routine response.  

 

Changing a habit actually involves linking the cue to a new routine, and preserving some reliable 

reward after the routine completes. Duhigg (2014) explains that the benefit of recognizing the 

habit (cue, routine, and reward) is that one is then able to replace the routine after the cue, and 

thereby convert an adverse addiction habit into some more favorable desirable habit routine. In a 

more complex application, a National Football League (NFL) coach of the Tampa Bay 

Buccaneers, Tony Dungy, attempted to change and redirect his players’ behavior by instructing 

them to focus on small specific details as cues. He had the players practice repeated specific 

routine responses to the small specific cues until the response was so automatic that the players 

no longer had to think (p. 64). By not requiring them to think, the response was more direct and 

faster to the initial cues. That extra speed in decreased response time, although only 

milliseconds, was enough to provide an edge so that his team outperformed the opponents, even 

though the opponents might know what was coming. The outperformance leads to scoring and 

winning as a reward. Hence, in this example thinking actually got in the way of execution, by 

delaying reaction time, and was not preferred. Ingraining the habit response to the cues was more 

important. Indeed, the focus here was to `develop direct input perception to output connections 

similar to those operating for Chruchland’s crab (1986). Little processing was needed, so 

response was faster, and in sports competition that is the preferred edge that one would expect to 

lead to more consistent winning, whatever the sport. 
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 In parallel, though Duhigg did not explicitly discuss it here, if the cues provide an anticipation 

of the reward, the behavior can be encouraged to occur more expediently, and in this case is 

more desirable to produce the task achievement outcome. The lesson here is that proper practice 

to a small number of cues can set the desired habit response that performs more quickly and 

effectively. Anticipation, as shown earlier with the monkey (p. 46), unconsciously becomes 

included in the process, after the cue and before the actual routine, that is preemptive and 

enhances the routine action that attains a desired craved reward. Anticipation becomes an 

unconscious prior-occurring supplement to the habit routine that enhances its performance. Thus, 

anticipation is beneficial as a performance enhancer. 

 

Indeed, for any general system, defining of a set of desired behaviors constructs the types of 

‘habits’ that are expected to be observed in the specific environment being considered. Proper 

definition of these behaviors should devise an anticipation set of possible behavior selections. 

Specific cues that are perceived in the immediately surrounding niche environment should 

directly manifest the desired behavior for that condition, or group of conditions. Just as a 

monkey brain can be ‘wired’ to perform the habit (cue, routine, and reward), a robotic system 

can perform behaviors that appear to be ‘habit’ due to internal wiring of the connected 

components and actuators. Also like the monkey brain, the cued habit can be enhanced to 

perform more quickly and efficiently by including predetermined connecttions for direct linking 

of the cue to the desired performed action. This predetermined expectation of the performance 

can be thought of as anticipation that can be built into any automated system. Therefore, 

anticipation can be added to robotics by incorporating predetermined routines that enhances 

performance of a behavior that appears to act like a habit. 
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ARCHETYPES   

Discussion Versus Dialog 

The concept of business archetypes was proposed in relation to team cooperation and learning by 

Senge (2006). Although the idea of a generalized archetype was proposed earlier by psychologist 

Carl Young, showing archetypes as broad patterns of ideas (e.g., beauty, nature, or God), Senge 

applied them to the business world to describe recurring problems and develop solutions. Solving 

problems requires exchange of ideas, leading Senge to discuss two types of discourse: discussion 

and dialogue (p. 223). Discussion has a goal to win a point versus finding truth and coherence. In 

contrast, dialogue is a free flow of meaning between people, and goes beyond understanding of 

one individual. It gains insight that cannot be gained individually. The purpose of dialogue is to 

reveal incoherence in thought. In dialogue, people observe their own thinking. People together 

observe the collective nature of thought. Thus, thinking is a process; thoughts are the result of the 

process. People tend to ignore the thinking process, and instead tend to own thoughts. Yet, 

collective learning arises, and is vital to potential for human intelligence. Dialogue shows 

incoherence in thoughts, allowing more coherence of collective thought. 

 

Team Learning 

Dialogue is important because it is ‘open to a flow of larger intelligence’, and has goals of truth 

and coherence. However, discussion (p.223) has a goal to win a point versus truth and coherence. 

It is presented that all scientific theories are eventually proved false (p. 222) (quote Bohm, 1965, 

The Special Theory of Relativity.), as was also presented by Dupre (1993). More useful is the 
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concept that the essential purpose of science is to create mental maps to guide perception and 

action. As a result, there is a mutual participation between nature and consciousness. 

 

In addition, thought is a collective phenomenon. As with collective properties or particles (e.g., 

electrons for electricity), thought must be coherent across individuals to be productive. Senge 

presents that Bohm says (1965) dialogue needs three conditions: (p. 26): 

   1. Everyone suspends assumptions. 

    2. Everyone is regarded as an equal colleague. 

    3. A Facilitator maintains context of the discussion. 

 Resistance wastes energy, just as electric resistance wastes energy (heat). All views are based on 

assumptions that should be identified. Unfortunately, the flow of dialogue is blocked by accepted 

assumptions. Suspending assumptions unravels the reasoning behind abstractions. Viewing all 

ideas as colleagues makes a positive tone to allow vulnerability. Everyone must want benefits of 

dialogue more than privileges of rank. In dialogue, complex issues are explored. In contrast, in 

discussion, decisions are made, so both must be balanced in discourse. Common ground must be 

found on which to agree. Personal vision provides a foundation for shared vision, just as 

reflection and inquiry are foundation for dialogue and discussion. The essence of visioning is 

that shared vision arises from personal visions. Organizations can be viewed as Living Systems 

(Senge, 2006, p. 267). Organizations are communities, not just production machines. (p. 267). 

Dialogue implies interaction and listening, while discussion, on the other hand, has the sole goal 

to win a point. Knowledge is created in a social process (p. 270), involving what we know how 

to do, and things done with one another. People work together to create value. The goal is to 

understand how one’s own work occurs, and how to explain it to others. 
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Rise of the Archetypes 

To explain how patterns of behavior develop in business, Senge (2006) built on the ideas of 

dialog and team learning to describe a set of nine underlying business archetypes. The inner 

workings of archetypes are presented in system dynamics terms as causal loop diagrams with 

interlinking loops, both reinforcing and balancing types, that illustrate behavior interactions with 

innate delays. In many cases, the structure of a specific archetype describes a recurring 

operation that is likely not desired, but in which the business operation is stuck, and cannot 

escape. Essentially an archetype denotes a specific defined business problem. The goal is to 

recognize the archetype as a recurring problem, and add a new path to the structure that allows a 

more preferred solution.  

 

The original Shifting The Burden or goal archetype implies that problems arise from the actions 

that only solve symptoms (Senge, 2006, p. 391). A solution only works in the short-term with 

some immediate positive results, but in the long-term is not sufficient. The ineffective attempted 

solution is repeated at the expense of an actual fundamental solution that would work in the long-

term. Unfortunately, eventually the actual fundamental solution may no longer work either, as 

the symptomatic solution is blindly, repeatedly applied. Example: selling more to existing 

customers rather than increasing market share by selling to new customers. 

 

Although it sounds like a fit, shifting of burden does not mean to make dynamic changes in a 

system model to find creative new solutions matched to the context observed, as would contrast 

with that originally presented by Senge (2006). Rather, the ‘Shifting The Burden’ archetype 

points to the fact that unproductive behavior tends to arise in the long-term from some behavior 
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that seemed to be working in the short-term, while it actually is not, but just treats symptoms, 

while not treating the core problem. Senge (2006) contends Tragedy of the Commons combines 

Limits to Growth and Shifting of Burdens/Goals. 

 

Similarly, the Limits to Growth (LTG) archetype refers to negative factors that slow or halt 

desired growth of a system. In studying this (and all) archetypes, the lesson is to find the element 

that is creating the problem, and choose actions that reverse or correct the undesirable looping of 

the archetype. Senge (2006) explains this in more detail for the LTG archetype since it may 

negate momentum to vision (read: Anticipation). Vision spreads as a reinforcing loop (p. 211), 

however, limiting factors slow down the desired vision cycle (balancing). Such limiting factors 

can be: 

  1. Viewing different ideal futures generates unmanageable conflicts. 

        Based on increasing diversity and polarization. 

        Leverage (solution) lies in identifying and understanding a limiting factor. 

        Finding a common vision solves this. 

  2. Discouragement (like polarization) may create the limit. 

       Capacity to keep creative tension may be lost, and thus effort. 

       Encourage personal mastery to foster sustained commitment to vision. 

 3. Overwhelmed workers also lose focus on the vision.  

       To solve this, pursue new vision vs. focus on managing current reality. 

  4. Forgetting connections to the others/team. 

       To solve this, encourage reflecting and sharing on personal and overall vision. 
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Vision (or what might be viewed as longer term anticipation) becomes a ‘living force’ when 

people truly believe that they create their own future (p. 215). Managers must see themselves as 

creating current reality, and that they contribute to changing that reality. Unfortunately, a major 

threat to the anticipated vision is the concept that we can’t change reality. In contrast, Senge 

contends the recognition of constraining archetypes empowers teams to change reality for the 

better for desired task achievement. 

 

Enhanced  System  Archetypes   

Systemic Thinking 

Systemic (Systems) Thinking behavior is created from loops having interrelated variables 

(Flood, 1999, p. 85). Complexity Theory is part of Systemic Thinking. (p. 85). Flood contends 

that complex interrelationships and emergent behavior are unknowable (p. 87). This builds on 

the ideas from Senge (2006) that explain thinking is a process that leads to thoughts (or 

assumptions). From this, reflection and action are linked, leading to a goal. Thus, proper use of 

team reflection takes action towards a desired goal or task achievement. 

 

Structure includes organizational functions and forms of coordination, communication, and 

control. (p. 104). Bureaucracy is the establishment of lines of authority, both rational and legal 

(p. 105). The whole organization, like a whole organism, contains structure and lines of 

communication to impart authority for action to all sections of the organization. 
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Whole Organism 

A whole organism is more than the sum of its parts. (synergy: p. 29). Existence of an organism 

cannot be properly understood merely as the behavior of some fundamental parts. An organism 

co-exists in relation to its environment (niche). Function (operation) and structure diversity are 

maintained by continuous flow of energy and information between organism and environment. 

(p. 106). Open Systems Theory (OST) (also called organismic biology) uses functional 

(operational) and relational criteria rather than a reductionist approach that analyzes fundamental 

parts (organism with environment). An organism is a complex thing of many interrelating parts, 

resulting in a whole with overall integrity. It includes several processes: 

     Self-organization: attained through differentiation. 

     Equifinality: reaching a final state from initial conditions. 

     Teleology: behavior for a purpose ‘known in advance’ (implied anticipation). 

OST contrasts with closed systems thinking (ClST) that contends organism behavior is based on 

fundamental principles and laws just as physics. Emphasized is efficiency and effectiveness of 

interacting parts. 

 

For  ClST, the organism is a mere machine of simple interworking parts. Success (in ClST) 

arises from repetitive performance of routine tasks to produce a single specific product. (Senge 

ignored this). In addition, drudgery and demotivation arise from mindless activity. OST, on the 

other hand, contends physics is unable to ‘appreciate’ dynamics of organization, so parts are 

better studied as a whole. The organism is open to the environment, with survival via 

transforming inputs and by adapting to change. Parts of a society (people) have needs; 

motivation enriches satisfaction and productivity, including democracy and autonomy.  
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OST actually is the forerunner to General System Theory (GST) (p. 31). GST envisions a unity 

of science, formulating and deriving principles that apply to all systems in general. The Society 

for General Systems Research (SGSR) exists today; (initially it was: Society for Advancement of 

General Systems Theory.) The founding aims were: 

       1. Investigate isomorphy (similarity) of concepts/models across fields. 

        2. Develop theoretical models for various fields. 

        3. Minimize duplicate model efforts across fields. 

        4. Improve communication among specialists for unity of science. 

Senge (2006) suggested systemic thinking used archetypes to these aims. Von Betanlanffy saw 

specialization as breaking down integrated science, and sought to prevent closed/isolated 

research in specialized fields. Rosen (1979) (who developed the Rosen Model for congruent 

systems) compared similarities across systems, showing that one can use system A to learn about 

similar system B. 

 

Systemic Thinking  

Interrelatedness infers everything is interrelated with everything else (Flood, 1999, p. 91). Thus, 

systemic appreciation is an ever-expanding activity. Complexity Theory (CT) adds the insight 

that emergence results from dynamics and spontaneous self-organization. In contrast, Chaos 

Theory tries to explain that even a butterfly can change the weather worldwide. Thus, the total 

dynamic is even more complex by CT. Any comprehensive systemic representation is 

overwhelming in interrelationships and recurring emergence. (p. 92). A further distance from a 

locality in space and time blurs interpretation of events. Thus, people only can deal with items 

close to them in space and time. This leads to bounding formulation/appreciation in local terms. 
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All in terpretations are only partial and temporary views. Flood states that Churchman contends 

bounded appreciation is most relevant and acceptable. In addition, boundary judgements include 

a debate on ethical issues and dilemmas. Each boundary is a choice for who benefits, and who 

does not. Thus, setting boundaries has a moral implication. A key principle of systemic thinking 

is to remain ethically alert to choices. Boundary choice also sets a purpose to pursue, and values. 

For example, unemployed people are excluded from organizational analysis. Thus, perpetual 

unemployment is not recognized. Including the unemployed in such an analysis opens up equal 

opportunity issues. Boundary judgements create an action area that is partial and temporary, 

where systemic appreciation may deepen for a specific idea or item. To summarize this view, a 

boundary must be set for any system, and setting that boundary is a moral decision as to the 

purpose of the system and possible behaviors that may be included for successful observable task 

achievement.  

 

Limits To Growth Archetype Structure 

A formal process program code was developed by Hayward and Boswell (2014) to represent the 

Limits to Growth archetype. It included the interaction of dynamic looping to capture the overall 

priority execution of the items in related and overlapping loops. The work was built on a simple 

set of four atomic behaviors that represented the responses of reinforcing and balancing loops 

(Fig. 9). 
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Figure 9. Atomic behaviors of convergence observed in system dynamics loops as 
reinforcing (R, unstable) or balancing (B, stable) having trends as increasing (+) or 
decreasing (-).  Individual or combinations of loops will exhibit these nonlinear trends 
(from: Hayward and Boswell, 2014, Fig. 1). (5.2.0.2.22.20160107R) 

 
The underlying differential equation for the Limits to Growth archetype is captured in a stock 

and flow map that relates various elements in the system to key limiting factors (Fig. 10.). The 

specific differential equations for the process for the change in x (derivative with time): 

 dx/dt=  ẋ=  ax ( 1 – x/M)  - bx       (2.4) 

    and 

 x(t)= x(t-1) + ẋ    (Euler integration)    (2.5) 

Recall the definition for equations within the stock and flow map is (Sterman, 2000, p. 194): 

d(Stock)/dt= ∆Stock= Inflow(t)-Outflow(t) 

    and thus: Stock(t)= Stock (t-1) +  ʃ
t-1

t
  [Inflow(s) – Outflow(s)] ds   (2.6) 
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Thus, formulation of the equation in process program code is representative of the relations show 

in the stock and flow map. 

 

      

Figure 10. Simulation stocks & flows map for Archetype Limits to Growth as a first order 
model (one variable only: x) (from: Hayward and Boswell, 2014, Fig. 2, related eq. 6). 

(5.2.0.2.23.2.20160107R). 
Difficulty arises in that the arrows do not represent a specific operation (could be a sum or 

product). In the map (Fig. 10), M => p means p= x/M, while p => q means q= 1-p, so adding a 

unique symbol is clearer. These conventions change between sources to make it more confusing. 

Also, in a causal loop diagram, the sign (+/-) merely indicates the polarity (positive direct or 

negative opposing), so the symbols and arrows are even more confusing. Hence, Hayward and 

Boswell developed the process program code to remove ambiguity from such unclear 

representations, and also presented resulting graphs of output for the various processes. 

 

Sterman (2000) points out that other work by Richardson points out pitfalls of causal diagrams, 

most serious that of not distinguishing between stocks or flows. Even more importantly, 

Dowling, MacDonald, & Richardson (1995) label causal loop diagrams as ‘inherently weak’, not 

distinguishing conserved vs. information flows, and unclear as to hidden flows, net rates, and 

parameter limits. Thus, causal loop diagrams are limited for presenting structure and behavior 
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clearly. Instead, actual specific computer language code is needed, and multiple versions may 

seem to represent the same causal loop diagram. Thus, one must refine such diagrams to code 

that is clear as to intent and functional results. 

 

Dowling et al. (1995, p. 455) contend causal loop diagrams are too general, so specific computer 

code must be created to embody the desired relations and behaviors: 

 “While causal loop diagrams are a simple tool to use in communicating system structure, 

they are inherently weak because they do not distinguish between conserved flows and 

information flows. As such, they obfuscate [confuse] direct causal relationships between 

rates and levels. This is an important factor since most of the structures presented by 

Senge and by Wolstenholme and Corben represent conserved flows.”   

Also they present the following (p. 455):   

 “Further, it has been argued by Richardson… it is impossible to determine behavior 

simply from loop polarity because loop polarity does not create behavior. Rather it is the 

rate-level structure that determines behavior. The fact that causal loop diagrams do not 

reflect important factors such as hidden loops, net rates, and parameters further limits 

their ability to provide a clear understanding of structure and behavior.” 

 

Shifting The Burden  (Goals) Archetype Structure 

The original Shifting The Burden or goal archetype implies that problems arise from the actions 

that only solve symptoms (Senge, 2006, p. 391) (Fig. 11). A solution only works in the short-

term with some immediate positive results, but in the long-term is not sufficient. The ineffective 

attempted solution is repeated at the expense of an actual fundamental solution that would work 
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in the long-term. Unfortunately, eventually the actual fundamental solution may no longer work 

either, as the symptomatic solution is blindly and repeatedly applied. Example: selling more to 

existing customers rather than increasing market share by selling to new customers. 

           

Figure 11. Shifting the Burden archetype causal loop diagram (left) and stock and flow map 
(right) evidencing the degree of detail added to clarify beyond the causal loop diagram. 

      The system contains two stocks as a second order system, and one pipeline delay 
(outflow=inflow after delay time) shown as a separate stock. Two negative 
feedback balancing loops and one dominant positive reinforcing loop interact to 
create the system dynamics (From: Dowling et al., 1995, Figs. 2A & B, p. 458 & 
459). 5.2.0.2.27.20160119T. 

 

Shifting of Burdens/Goals does not just make dynamic changes in a system to find creative new 

solutions matched to the context observed. Instead, the ‘Shifting The Burden/Goal’ archetype 

represents that unproductive behavior arises long-term from a behavior that seemed to be 

working in the short-term, while it actually is not. It only treats symptoms, not the core problem.  
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As with the Limits To Growth archetype, specifics for the Shifting The Burden archetype must 

be specifically given in detailed processing code to understand the actual operation of the 

underlying loops and delays to create the behaviors (Fig. 12). 

 

     

Figure 12. Shifting the Burden archetype process code with equations and tables to represent 
system dynamics (from: Dowling et al., 1995, Table 3). 

       One equation is not on the previous flow map, so is an anomaly:   
      ProblemOutflow= (ProblemSymptom * SymptomaticSolution) + 

(ProblemSymptom * 0.1) 
 5.2.0.2.27.20160119T. 

 

For this specific construct of the Shifting the Burden (STB) archetype, typical system dynamics 

programing defines the inflows, outflows, and values for each of the stocks in the system. The 

important consideration here is that the underlying relations suggested in the causal loop map 
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and the stock and flow diagram are represented as conceptual equation relations that can more 

specifically express the connections and relations that will reflect the actual operation of the 

archetype, and thus captures more completely the behaviors to be observed as a result of 

operation of the archetype. As an added item, the inclusion of table lookup functions (shown as 

GRAPHs at the bottom of the code) provide for specific direct relations between essential 

components within the overall looping structure. Therefore, the less obvious relations are 

represented in designated calculations that should lead to reproducibility of the results by 

creation of another instance of the STB archetype representation. Representation of the STB 

archetype code is much preferred to the mere presentation as loop diagrams with poorly defined 

interations between the components. 

 

Archetype Game Irony 

Complex systems are difficult to understand, and the underlying generic structures might not be 

recognizable, as was demonstrated by a system dynamics business game simulation developed 

and tested with participants by Bagodi and Mahanty (2015). The game was based on a Shifting 

the Burden archetype structure for an architecture (Fig. 13 & 14), where symptomatic solutions 

tend to be chosen by the participants (acting managers) rather than the preferred fundamental 

solution, mainly because the system is generally too complex to recognize both the underlying 

system archetype and the need for the alternate preferred solution. Unfortunately, the 

symptomatic solution allows for perceived minor improvements in the short run (hire more 

salespeople to increase sales) but fails to work over the long run where a more fundamental 

solution is needed (improved product quality via attractiveness) (Fig. 13). [This is ironic, since 

the choice for a symptomatic solution  (creating failure) contradicts what is expected (success). It 
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is not a paradox, since a paradox is a statement that contradicts itself, such as: “I always lie.”  

See: http://english.stackexchange.com/questions/344071/the-difference-between-irony-and-

paradox ] None of the participants that played the game was able to recognize either the 

archetype or the preferred fundamental solution, and hence did not attain the desired outcome of 

a successful growing business. 

 

Indeed, the results of this study quite plainly illustrate how one can operate within a system with 

underlying operation of that of a know archetype, yet not recognize the principles at work. In that 

sense, we all may be like fish living in the water, and not realize the importance and limitaions of 

the water to fundamental operations for our existence. The case also suggests one must look 

closely and critically at overall operations in attempt to tease out and recognize the mechanism at 

work, and make concerted effort to identify what the underlying archetype might be. Once 

identified, the know aspects of the defined archetype should assist in leading to understanding of 

system operation, pitfalls, possibilities, and means to alter the operation that may lead to desired 

or more meaningful results. The is no simple avenue, as this case shows. Instead, one must 

become familiar enoughwith individual archetypes to map the components of a system onto the 

conceptual description of the archetype. Only then can the archetype become a tool that can be 

used for further understanding and analyses. 
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Figure 13. Sectoral overview diagram (top) and underlying Shifting the Burden archetype 
(bottom).   Note there are two balancing loops (negative signs) and one reinforcing loop 
(positive sign) of the side effects (Bagodi and Mahanty, 2015, pp. 385 & 387, Figs. 1 & 
2). 1.2.20160703U 
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Figure 14. Flow diagram of the simulation model for the Shifting the Burden archetype 
business system game.  The unpreferred short-term solution hires more salespeople, and 
eventually fails, while the preferred long-term solution is to increase product 
attractiveness, which in turn increases sales, and is thereby successful (Bagodi and 
Mahanty, 2015, p. 389, Fig. 3). 1.3.20160703U 
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Simplified Basic Archetypes 

There are around 10 recognized system archetypes, depending on the source consulted (Senge, 

2006; Wolstenholme, 2003, 2004). Each archetype generally defines an undesirable operation for 

a system (problem) that can be corrected if a proper solution link is introduced, and generally 

must pass across perceived system boundaries (Fig. 15) (Wolstenholme, 2003, Fig. 1). Both 

intended and unintended consequences are involved. Four distinct two loop system archetypes 

have been identified, using the four possible combinations of reinforcing and balancing loops, 

that can represent all the other more specialized archetypes: 1) Underachievement, 2) Out of 

Control, 3) Relative Achievement, and 4) Relative Control (Wolstenholme, 2003, p. 11) (Fig. 

16).  

        

Figure 15. Flow diagram structure of the Problem (left) and Solution (right) totally generic 
archetypes, indicating the presence of intended and unintended consequences (from: 
Wolstenholme, 2003, Fig. 1). 

1.4.20160704M 
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Figure 16. Set of four flow diagram structures for both the Problem and Solution totally 
generic archetypes, indicating the presence of intended and unintended consequences.  
R= reinforcing loop. B= balancing loop. O= opposing action (from: 
Wolstenholme, 2003, Fig. 2). 1.5.20160704M. 

 

Each totally generic archetype represents one or more specific archetypes based on the relations 

of the loops, with both intended and unintended consequences (Wolstenholme, 2003, Figs. 3 to 

6).   

1. Underachievement generic archetype.  

Archetypes (three different ones): Limits to Growth/Success, Tragedy of the Commons, and 

Growth and Underinvestment.   

Loops: reinforcing as intended consequences, balancing as unintended consequences. 

2. Out of Control generic archetype. 

Archetypes (three different ones): Fixes That Fail, Shifting the Burden, and Accidental 

Adversaries. 
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Loops: reinforcing as unintended consequences, balancing as intended consequences. 

3. Relative Achievement generic archetype. 

Archetypes (one only): Success to the Successful. 

Loops: two reinforcing as either intended consequences and unintended consequences. 

4. Relative Control generic archetype. 

Archetypes (two different ones): Escalation, and Drifting Goals. 

Loops: two balancing as either intended consequences and unintended consequences. 

 

Systems thinking using system dynamics must recognize system boundaries and make them as 

transparent as possible. Adding a path to the system that crosses the boundary is a crucial step to 

provide a solution to the archetype identified (Wolstenholme, 2003, p. 25 & 26; Wolstenholme, 

2004). 

 

ROBOTIC  ARCHITECTURES 

Subsumption Architecture  

The earliest work in BBR used a computation model called subsumption architecture (SA) that 

aimed to program intelligent, situated, and embodied robotic agents based on well-defined 

robotic principles which follow (Brooks, 1999, p. 172). Computation is organized as 

asynchronous networks of active elements with fixed topology and unidirectional connections. 

Messages through connections have no implicit semantics, and meanings are dependent on 

dynamics built into both sender and receiver. Sensors and actuators are connected 

asynchronously to the network. The goal is to study complete integrated intelligent autonomous 

agents embodied as mobile robots, and situated in the research lab world and operate in real 
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time; environments should not be changed in any way for the robots. No central model of the 

world is maintained; all data are distributed over computational elements. There is no central 

control, and there are no separate systems for perception or actuation. There is no hierarchy; 

results of needed computations are available on input lines with no synchronization of 

production and use of messages. The user piece of the network uses whatever information is 

available at the time it is required. All layers (or behaviors) run in parallel, with each layer as a 

behavior, and a conflict resolution method may be needed to resolve differing commands. The 

world is used as a communication medium for processes within a single robot. 

 

Connell (1990, p. 154) used a colony architecture that was expanded from the subsumption 

architecture of Brooks (1999) to build an autonomous robot, Herbert, that collected soda cans. 

Colony architecture had 1) independent agents: modularity for each agent to be independent so 

any agent can be replaced or upgraded independently, and 2) local control: information 

collection and decisions for control should be in temporally local modules (p. 12). There is no 

internal world model, and the world is used directly as a model of itself for direct sensing and 

acting.  Simple systems are combined with a behavior fusion to obtain the same result as fusing 

multiple sensors (p. 14). The local control dictates a means of reactive programming that 

responds to specific events in the world.  Connell (1990) compared colony architecture with four 

other architectures, emphasizing advantages of the independence and local control features of 

Herbert that were effective through suppression of lower level behaviors by higher ones. For the 

more current application of anticipation to robust robot design, the advantages of colony 

architecture are apparent to use independence and local control to attain desired hierarchy by 
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behavior suppression, and could be included to provide for effective application of anticipation 

to overall agent control. 

 

Robotic Principles  

A set of eight Agent Design Principles have been defined that are similar to those of Brooks 

(Pfeifer & Bongard, 2007). The overall three-constituents principle stipulates that designing an 

intelligent agent involves the interaction between an ecological niche (environment), desired 

tasks and behaviors, and a specific robotic agent. A complete agent must behave in the real world 

and is built to exploit properties of a specific ecological niche so that interaction with the niche 

will have a much easier (cheaper) design and construction.  For redundancy, intelligent agents 

have different subsystems function based on different physical processes, and a partial 

functionality overlap exists between different subsystems. Sensory stimulation is induced 

through sensory-motor coordination. For ecological balance in a certain task niche, a match exits 

between complexities of the sensory, motor, and neural systems, with a balance between 

morphology, materials, and environment. Intelligence emerges from a large number of parallel 

processes that are often coordinated through embodiment, and embodied interaction with the 

environment. A value system is included that contains a basic set of assumptions about what is 

good for the agent. These agent design principles, along with those from colony and subsumption 

architectures, provide a strong basis for designing robots that could use the principles of 

anticipation to operate more robustly in the real world. Indeed, the focus here is to use a 

principled approach that matches behavior directly to perceived niche conditions to result in 

desired tack achievement. 
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BEHAVIOR   

Task, Niche Environment, and Agent 

Behavior is the observed response of an organism or robotic agent to current niche 

environmental conditions to create task achievement. This definition of behavior was extended 

from three previous ones of Nehmzow (2000), Brooks (1999), and Malcolm and Smithers 

(1990). A robot agent can be a specific physical robot or programed process that performs a 

behavior to attain desired task achievement. 

 

Previously for behavior-based robotics (BBR), Nehmzow (2000, p. 10) contends behavior of a 

robot is dependent on the task to be achieved and the environment the robot is in, and the three 

elements influence each other (see beginning of Chapter 2, Fig. 1, p. 7). It is represented as the 

task-environment-agent (TEA) triangle that interlinks the three dependent elements. Nehmzow 

credits Smithers with the example of a spider that survives in the outdoors, but is ‘incompetent’ 

in a bathtub. This spider example shows how an organism (animal or robot agent) is best fit to a 

specific task in a specific context (niche environment), and that organism or agent will not 

necessarily operate correctly in a different context. The organism or agent is matched to its niche 

environment, with behavior coupled to the niche conditions. Hence, Nehmzow thinks a general 

purpose robot cannot exist, but each robot has the specific purpose or a task to be achieved. 

Thus, functional operation defines the behavior of a robot in an environment for the specific task. 

Defining all three TEA elements together simultaneously defines the agent completely. 

 

Another similar version of the TEA behavior explanation is presented by Brooks (1999). An 

organization of subsumption architecture (SA) uses successive incremental layers of 
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  Figure 17. Two kinds of grounding: Dual (left) verses Unitary 

Grounding (Malcolm & Smithers,1990). 
 

programming linking sensing to action. Each layer operates autonomously by assuming control 

from lower levels, connecting the real world with lower levels. The result is a simple type of 

distributed control. The SA is based on a collection of individual processors, each an augmented 

finite state machine (AFSM), with simple messages passing between them, permitting activation 

or deactivation of each AFSM as dictated by the sensed environment (Brooks, 1999, p. 40). 

Multiple AFSM processors are grouped to perform a behavior (Brooks, 1999, p. 41). Each 

behavior acts as an internal abstraction barrier, so that each behavior (group of AFSMs) is 

separate from another (a different group of AFSMs). A behavior is thus a group of AFSM 

processors between which simple messages are passed, causing suppression or inhibition 

between processors both within the behavior group, or passed messages to suppress or inhibit 

other lower level behavior as other processor groups. 

 

A robotic assembly system, SOMASS, by Malcolm and Smithers (1990) included behavioral 

modules that encapsulate useful elements of specific behaviors to be  

 

 

 

 

 

 

executed by the assembly system. These behavior modules are used by an overall cognitive 

system to achieve desired behavior for functional capability. The behavioral modules ground the 

behavior in the real world through a behavior-based system using unitary grounding that places 
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both abstraction and effective capability in a single behavioral module, in contrast to dual 

grounded system that grounds abstraction and effective capability in two separate units instead of 

one, as Malcolm and Smithers contend occurs in the Explicit-World-Model (Fig. 17). The 

behavioral modules are considered the subcognitive part of the system. Thus, the hybrid system 

constructed for SOMASS uses an overall cognitive system to direct the use of subcognitive 

behavioral modules to perform desired behavior. The term hybrid implies two kinds of  

components are in an autonomous system: cognitive (traditional Knowledge-Based from 

classical artificial intelligence, AI) and subcognitive ones (Behavior-Based as described by 

Brooks). 

 

Social Robotics With Theory of the Mind 

Social robotics has earned increased interest in recent years. Breazeal (2000) and Scassaletti 

(2001) explored ways to add social behavior to robots. Breazeal (2000) developed a social robot 

named Kismet that recognizes facial gestures and simple words (auditory signals) from humans 

to cue behavior that created facial expressions on Kismet, thus encouraging people to interact 

with Kismet like it is an infant. Going further, Scassaletti (2001) based his approach on the 

Theory of the Mind from philosophy to attempt to incorporate behavior and thinking into the 

robot processes to resemble the thinking of humans. Though they both used the small robot 

Kismet for their work, similar to a human infant in size, the background technology and 

electronics enlisted the support of a bank of over 10 computers in an adjoining room to allow the 

reactions of Kismet to humans to proceed. Thus, in structure as well as function the small robot 

agent was considerably larger than life, and one might say the observed behavior responses were 

not entirely just in the observed robot Kismet. Further work by Breazeal has developed a more 
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compact Jibo robot (a social family robot) that is stationary for home use, and strives to provide 

everyday informational support for typical technology laden human lifestyle 

(https://www.jibo.com). All these cases have moved beyond the basics of a subsumption 

architecture to more elaborate interacting descriptions that could be said no longer are strictly 

behavior-based robotics. 

 

ANTICIPATION  FOR  BEHAVIOR-BASED  ROBOTICS 

An anticipation set contains a small number of specific well-defined behaviors that can be 

manifest as a choice for the agent that matches the current niche condition. A niche is a specific 

environment where the behavior of an agent is expected to have successful task achievement. 

The niche may afford for more than one behavior, yet one niche condition is best matched to one 

specific behavior at a current time. Fitness is a measure of how well a behavior is matched to the 

niche environment. The best value of fitness cues a specific choice of behavior. Percepts are 

perceptions of the niche environment by the agent to determine what behavior is best afforded to 

the current niche condition. Threshold coupling uses the value of fitness to cue selection of a 

choice behavior from the overall anticipation set.   

 

Percepts arise from the area of psychology, where a percept is the mental recreation of a distal 

(external) stimulus. For robotics, the mental reference is replaced by an agent. A real world 

object is the distal stimulus or distal object. Through a physical process (light, sound, etc.) a 

sensory device/organ is stimulated, in turn using energy to create neural activity (called 

transduction). The internal raw pattern is the proximal stimulus, which is transmitted to the brain 

(agent processor) for processing. The resultant recreation of the distal stimulus in the brain is a 
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percept. Overall, perception is creation of mental representations (images or archetypes) using 

the proximal stimuli derived from distal stimuli. For example, a cat as a distal stimulus is 

detected by light energy entering the eye to form an image on the retina as a proximal stimulus, 

and the reconstruction of the image in the brain (agent processor) is the percept.  A bird singing 

as a distal stimulus uses sound energy to move auditory receptors as the proximal stimulus, and 

interpretation by the brain (agent processor) is the percept. Intelligent agents choose to act both 

on individual and sequences of multiple percepts. An agent function maps each percept to an 

action, and subsequently to the next action. (From: https://en.wikipedia.org/wiki/Perception ; and 

https://en.wikipedia.org/wiki/Percept_%28artificial_intelligence%29).  

 

For the purposes of this study, a percept is an abstract representation of an element or factor in 

the niche. Synonyms include: form, rule, habit, image, code, and covenance. In brief, a percept in 

the FS is the abstraction of an elemental factor in the NS. Anticipation acts by using percepts of 

the niche to cue a behavior that is manifest to produce a matching behavior by the agent, and 

lead to successful observed task achievement. 
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CHAPTER 3.  ANTICIPATION  IN  ROBOTICS 
 
 

OVERVIEW 

The notion of anticipation involves understanding what anticipation is, what it looks like, how it 

operates, and how it might be included in artificial robot agent systems. The discussion begins 

with a historical perspective and description of how anticipation appears to work so that the 

future actually influences the present (or the past leading to the present). The key is for a living 

biological system, or an artificial robotic system, that can conceive of an outcome prior to its 

occurrence (Rosen, 1991; Rosen, 2012), to actually use the expectations about that outcome to 

manifest a choice of behavior that leads to a goal for desired task achievement. For the previous 

design model robot that operated as a wall follow (or MURAMATOR), and for the new design 

model TOURIST, the ultimate goal for task achievement is to both follow a wall and to avoid 

stationary stray objects. Using the congruence framework (Rosen 1991; Rosen 2012), an 

anticipation simulation model (ANSIM) is developed to study responses to various situations. 

The implications for properly adding anticipation to a working base simulation formal system 

model abstraction are described. The outcome of these formal system simulations will be 

described in more detail in Chapter 4. We begin the process by first looking at and defining in 

detail the traits of anticipation both in biological living and artificial robotic systems. 

 

DESCRIPTION  OF  ANTICIPATION 

Overall architecture of a robotic system using anticipation has been formalized using system 

dynamics for a mechanism of anticipation to cue direct behavior (Figure 18). 
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Figure 18. System dynamics model of how past stages of events create expectations of task 

achievement in the future, producing anticipation with associated fitness that permits choice 
to change present behavior and future events. Gray paths are not chosen. 3.1 

 

Stages (Sgi) in the past create expectations (ENj) for many possible outcomes in the future. Each 

expectation for a specific future task achievement has some mechanism (MMj) to create a 

specific anticipation (ANj) with an associated fitness (Fj) that is calculated from invariant sensed 

percepts (p1, …, pn) in the environment (Figure 19 & 20), each with some weighting (a1, …, an)  

based on past experiences. Only the minimum set of invariants that are needed in the contextual 

environment are included to afford a specific behavior with greatest fitness. The anticipation 

with maximum fitness is chosen to change present behavior and the one set of future stages that 

follow from it (the gray stages are not chosen, Figure 18). Sensed qualities in the environment 

are measured as cofactor E, and the level of related causal cofactor U is predicted that eventually 

directly influences future events (Rosen, 2012).  
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Task achievement is set in the future, and may differ for each associated expectation (ENj), and 

causes specific elements to be identified that are required to reach that task, including invariants 

with their affordances, a time frame for action, and previous estimated value for a fitness. From 

these, resources are identified that need to be deployed along some timeline for action, and the 

fitness is updated based on any current percepts with some weighting as to importance for an 

organism relating to the task, and these differ from the environmental measurement, E, that 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 19.   Dynamics of cofactors, E and U, for future task achievement using 

niche invariants to afford deployment of resources by anticipation and 
associated fitness to make a choice of present desired behavior (after: 
Sterman, 2000). 
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initially created the expectation. These items all combine to form some anticipation for a specific 

outcome, and the one anticipation with maximum fitness prompts selection of a choice that cues 

a behavior in the present time stage. 

 

A revised fitness value is calculated from current relevant percept inputs, as invariants in the 

niche, using weightings of importance to the organism and task achievement that promote or 

inhibit fitness (Figure 20). After some time constant delay coupled with dynamics of the process, 

the calculated fitness, Fj, is compared to some threshold value based on previous experience or 

knowledge, and a high enough value or appropriate range can cue a discrete action (on/off) 

output (one that is discontinuous or nonlinear), or a continuously variable action choice 

(magnitude of Cj) inheriting its value from the derived fitness itself. The cued choice selects a 

specific desired behavior that is afforded by invariants as matched to the contextual environment, 

and ensures deployment of needed resources in a timely scheduled manner with the current 

maximum desired fitness (Fig. 20). This overall architecture based on anticipation is considered 

able to extend the colony architecture that revised basic subsumption architecture from the 

founding of BBRs (Connell, 1990; Brooks, 1999). 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Figure 20. Weighted percepts join with delays to calculate 

fitness to compare with thresholds that create discrete or 
continuous outputs. (modified from: Connell, 1990). 
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RECOGNIZING  ANTICIPATION 

For humans, and some animals and plants in biology, it is possible to view behavior that is 

readily labeled to exhibit anticipation (AN). For example, scheduling of events by humans from 

business meetings to sports events, are all longer term displays of anticipation. For animals and 

plants, building a nest to rear young or forming flower buds during the summer that will bloom 

the next spring are similar scheduling examples (Rosen, 2012; Nadin, 2002). Shorter term 

displays of the notion of AN are desired for robotics, since the time frame for action and speed of 

operation are generally in a briefer time that the biological examples above. This leads to the 

questions of what does AN involve, how is AN recognized or observed, and how can it be 

included in robotics. 

 

A discussed above, AN relates to an expectation about the future, either by some neural system 

in biology for animals or humans, or a structure and chemical pathway such as for flower bud 

formation. As a very basic level, a reductionist might contend this is a linking of many chemical 

pathways in response to environment. A wholistic approach, as a preferred approach, realizes 

there are relations between many component parts within a natural biological organism that are 

able to coordinate to display AN.  Thus, the overall developed structure is sufficient and 

equipped to sustain the necessary relations for AN that could not occur if the system were 

dismantled (Rosen, 1991). AN in a system provides desired task achievement by acting before 

the outcome of the situation is certain, so the system appears to know the future. The structure 

and inner workings of the system and system dynamics all manifest the best behavior choice for 

existing niche conditions. In biological systems, for choice of behavior, an organism may need to 

practice to develop the quick response to the perceived conditions. The system designer builds 
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into the system the means to manifest that behavior. For a robotic system, the designer identifies 

the most likely conditions to be encountered, and the direct matched response is tied to that by a 

means to detect fitness of the situation, considering multiple factors summed to determine a cue 

value, and that manifests the behavior by the robotic agent. Several indications are observed to 

identify that AN is indeed at work (Nadin, 2002). The current behavior is actually determined by 

an expected future condition. The system contains models of itself and the niche environment. A 

correlation is made between the perceived niche and resulting behavior, even if existing 

perceptions are minimal. As a result, the artificial robot organism appears to have a 

connectedness with the real world. There is apparent synchronization of activity and integration 

within a dynamic system. Though AN realizes a single behavior choice at a time, it appears to 

know the future outcome that is best for the manifested behavior. When these elements are 

observed for any system, whether natural biological ones, or artificial robotic ones, the system 

can be said to have anticipation. The most important elements to observe are that the system 

manifests behavior before an outcome is certain, so that the observed behavior appears to have 

known the future outcome ahead of time. 

 

ANTICIPATION  ARCHETYPES 

Although there are around 10 difference business system archetypes, the two that apply most 

directly to robotics are the Limits To Growth  (LTG) archetype, having a reinforcing and a 

balancing loop with a delay implied in the balancing loop, and the Shifting The Burden  (or 

Goals) (STB) archetype with two balancing and a reinforcing loop. As the name implies, a 

system showing the LTG contains some constraint or limited factor that directs the system to 

some asymptotic stability, and this is discussed immediately below. Slightly less clear, the STB 
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archetype includes a symptomatic short-term solution loop pathway that is easy to implement, 

but does not solve the problem, while the fundamental solution loop pathway is more difficult to 

implement, yet leads to a more desirable long-term solution. The STB archetype is presented 

following the LTG archetype. 

 

Causal loop diagrams represent the LTG archetype (Figs. 21 & 22). 

Archetype: Limits to Growth (Hayward & Boswell, 2014):   .  

          

  Limits to Growth (Limited Success) (Original) 

  S=Self -enhancing; O=Opposing Balancing 
 

          

  Limits to Growth Due to Light Level 

  S=Self-enhancing; O=Opposing Balancing 
 
     Figure 21. Limit To Growth causal loop diagrams for describing a general situation or  

response to a light level. (3.10.    20161025W)  
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        Limit to Growth Due to Robot Distance from Object 

  S=Self-enhancing; O=Opposing Balancing 
 

          

  Limit to Growth Due to Robot Percept 

  S=Self-enhancing; O=Opposing Balancing 
 
     Figure 22. Limit To Growth causal loop diagrams for describing distance traveled or  percept 

effects in the niche environment. (3.11.   20161025W)   

The LTG archetype is a kind of tug of war between two opposing factors, one that increases 

response in the reinforcing loop (shown on the left side as R) and reduces response in the 

balancing loop (right side shown as B). Some limiting element is working on the balancing side 

to create a constraint so the overall action is to move to some asymptotic value for a stable 

equilibrium state. Although this may be a desired effect, most likely the balancing loop with the 

limiting element is some undesired effect that limits the growth or expansion of the system. In 

business or biology, and likely in robotics, the constraint might be altered to increase the 

asymptotic performance value without creating an unstable condition. 
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The LTG archetype is a first order system dynamics model that can be represented in some detail 

by a stocks and flows map (Fig. 23).  

  

Figure 23. Simulation stocks & flows map for archetype Limits to Growth as a first order 
model (one variable only: x) (from: Hayward and Boswell, 2014, Fig. 2, related eq. 6).  
5.2.0.2.23.20160107R 

 
Differential equations represent the process for the change in x (derivative with time): 
 
   dx/dt=  ẋ=  ax ( 1 – x/M)  - bx       (3.1) 
      and 
   x(t)= x(t-1) + ẋ    (Euler integration)    (3.2) 
 
Recall the definition (Sterman, 2000, p. 194): d(Stock)/dt= ∆Stock= Inflow(t)-Outflow(t) 
 

and thus: Stock(t)= Stock (t-1) + ʃ
t-1

t
  [Inflow(s) – Outflow(s)] ds      (3.3) 

The LTG archetype is thus a single differential equation (3.1) that is integrated, and can be 

easily used in a computer program with the form above. The LTG archetype version shown here 

combines one reinforcing  (R) and two balancing (B1 & B2) loops, one having the limiting 

element. The interaction between the various values of the parameters (a, p, q, and M) create the 

system dynamics. Again, this may constrain the system, or altered values may allow stable 

equilibrium to be reached at some higher level. 
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Behavior Inflow Behavior, 
Bm 

Behavior Outflow 

Rate Out B

Maximum Percept, M B

R

Bm/M 
1 - Bm/M 

Minimum 
Percept, a 

The LTG archetype can be rewritten to be described for a robotic scenario that uses a percept in 

the niche and resulting behavior (Fig. 24). 

   PERCEPT  LIMIT  TO  GROWTH  BEHAVIOR 
 
  
 
 

 
 
 
 

 
 
  
 

Figure 24. Simulation stocks & flows map for archetype Limits to Growth (Success) for robot 
distance from an object as a first order model (one variable only: x) (modified from: 
Hayward and Boswell, 2014, Fig. 2, related eq. 6). 5.2.0.2.23b.20160107R 

 
The relations between the values of the factors is shown here for more detailed clarification. 

Inflows to behavior values and outflows represent the changes in behavior that are observed for 

the system.  

 

 

PERCEPT  LIMIT  TO  SUCCESS 
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B

Details of the LTG archetype were organized into a Simulink model to illustrate the system 

dynamics (Fig. 25) or for an individual percept (Fig. 26). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 25. Limit to Growth archetype stocks and flows (levels and rates) map.  (File: 

ArchLimitToGrowth20160112T###.slx) 1.0.25.20160119T 
 
   LIMIT  TO GROWTH ARCHETYPE: PERCEPT 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
Figure 26. Limit to Growth (Success) for Percept archetype stocks and flows (levels and rates) 

map with resulting Behavior. Bm  (File: ArchLimitToGrowth20160112T###.slx) 
1.0.25c.20160119T 
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System dynamics for the Limit to Growth archetype as presented by Hayward & Boswell (2014) 

have been recreated in simulation for the same parameter set of a=0.4, b=0.1, xo=1.0 as a starting 

value, and a limit of M=20 (Fig. 27). Note the convergence to output growth value of Xs=15 at 

about time t=20 to 25 for both simulation models, verifying correct operation for the program of 

the LTG archetype. 

                

                
 

Figure 27. Output for first order loop model for archetype Limit to Growth with loop 
dominance shown from Hayward & Boswell (2014) (top) and the recreated archetype 
with similar resulting output (bottom) (From, Hayward & Boswell, 2014, Fig. 3, p. 34).   
5.2.0.2.24.2.20160119T 
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The original shifting the burden (STB) or goal archetype implies that problems arise from the 

actions that only solve symptoms (Senge, 2006, p. 391), ansd was represented in detail by 

Dowling et al. (1995) (Fig. 28). A solution only works in the short-term with some immediate 

positive results, but in the long-term is not sufficient. The ineffective attempted solution is 

repeated at the expense of an actual fundamental solution that would work in the long-term. 

Unfortunately, eventually the actual fundamental soultion may no longer work either, as the 

symptomatic solution is blindly and repeatedly applied. Example: selling more to existing 

customers rather than increasing market share by selling to new customers. 

Archetype: Shiftng the Burden (Dowling et al., 1995):   .  

       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 28. Shifting the Burden archetype causal loop diagram (left) & stock & flow map 
(right) evidencing the degree of detail added to clarify beyond the causal loop diagram. 

 The system contains two stocks as a second order system, and one pipeline delay 
(outflow=inflow after delay time) shown as a separate stock. Two negative feedback 
balancing loops and one dominant positive reinforcing loop interact to create the system 
dynamics (From: Dowling et al., 1995, Figs. 2A&B, p. 458&459). 
5.2.0.2.27.20160119T 

Although it sounds like a fit, shifing of goals (or burden) does not mean to make dynamic 

changes in a system model to find creative new solutions matched to the context observed, as 
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would contrast with that originally presented by Senge (2006). Rather, the ‘shifting the burden 

(or goal)’ archetype points to the fact that unproductive behavior tends to arise in the long-term 

from some behavior that seemed to be working in the short-term, while it actually is not, but just 

treats symptoms, while not treating the core problem.  

 

The STB archetype can be described for a specific situation of path behavior with an altered 

stock & flow map (Fig. 29). Causal relations are represented by the interactions with Initial Turn 

(Symptomatic Solution), Distance (Symptom), and creation of a Sussessful Heading 

(Fundamental Solution), based on a Turn Delay and the limiting side effect of a Late Turn. These 

are represented in more detail in the stock & flow map (Fig. 29, right). 
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 Turn Initiates 

Shifting the Burden for Robot Percept (after: Dowling et al., 1995):  .   

 
 PERCEPT:  PATH  BEHAVIOR 
   
  

 
 
 
 
 
 
 
 
   
 
 
 
 
   
 
 
 
 
 
 
Figure 29. Altering the Shifting The Burden archetype to describe Path Behavior. 

Shifting The Burden archetype causal loop diagram (left) & stock & flow map (right) 
evidencing the degree of detail added to clarify beyond the causal loop diagram. The 
system contains two stocks as a second order system, and one pipeline delay 
(outflow=inflow after delay time) shown as a separate stock. Two negative feedback 
balancing loops and one dominant positive reinforcing loop interact to create the system 
dynamics (Modified From: Dowling et al., 1995, Figs. 2A&B, p. 458&459). 
5.2.0.2.27b.20160119T 

 

The STB archetype was represented in Simulink based on work by Dowlinget al. (1995), in 

attempt to reproduce similar system response (Fig. 30). Overall performance of the previous 

work was captured and agreed well when the results when the policy lever was set to zero (PL=0, 

or policy off). However, when the policy lever was turned on (PL=1), the response became 

unstable in comparison with the previous work. It was possible to change parameters to match 

the response shown in the previous work, but that showed inconsistencies as the no policy lever 

setting. Though program code was presented in the previous work, some missing details are 
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Shifting the Burden (Goal) Archetype 

thought to result in this lack of agreement. Thus, a similar STB archetype was developed, yet 

with some differences in response. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 30. Shift The Burden (Goal) archetype for comparison with Dowling et al., (1995, 

Fig. C&D). Problem Symptom (PSymp, left) represents short-term solutions that may 
create a Side Effect (SideEff, bottom), while the preferred long-term Fundamental 
Solution (FundSoln, right) takes over when the Policy Lever is turned on (PL=0.0 or 1.0 
as off or on) (from: Dowling et al., 1995). 1.0.40.20160222M 

 
 

Shifting the Burden archetype game  

A system dynamics business game was developed and tested (Bagodi and Mahanty, 2015) for a 

Shifting the Burden archetype architecture, and showed symptomatic solutions were chosen by 

participant managers instead of the preferred fundamental solution.  Apparently the system is too 
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complex to recognize both the underlying system archetype and a necessary preferred 

fundamental solution. Perceived improvements in the short run (more hiring and more sales) 

failed in the long run, since fundamental solution is needed (improved quality) No participant 

managers could either recognize the STB archetype or find the preferred fundamental solution, 

and so failed in performance. The underlying causal structure was revised to be representative of 

a robotic architecture (Fig. 31). Also, the flow map was revised as a potential underlying 

structure for the STB archetype both in a biological plant (bioplant) growth system and for a 

mobile robot system (Figs. 32 & 33). This illustrates how a generalized STB archetype structure 

can be revised to conform to similar homologous systems. The first is a bioplant growth system 

with shifts to flowering based on photoperiod (daylength). The second is a mobile robotic system 

that changes heading to match percepts from the niche environment. Thus, aspects of diverse yet 

homologous systems can be represented with the STB archetype.  
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Figure 31. Underlying causes for Shifting the Burden archetype for robot path behavior  
(after: Bagodi and Mahanty, 2015, pp. 387, Fig. 2). 

1.2c.20160703U. 
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Figure 32. Flow diagram of the simulation model for the Shifting the Burden archetype 
business system game, revised to reflect photoperiod affects on buds and flowers 
(after: Bagodi and Mahanty, 2015, p. 389, Fig. 3). 

1.3b.20160703U 



84 
 

Initiate Turn 

Initiation Lever 

Successful Heading 

Optimal Induction 

Turn Traits 

Energy to Turn 

Initiation In Initiation Out 

Need For Induced  Initiation      

Late Turn 
Distance 

Shorter Distance 

Longer 
Friction  Hurts Turn 

Heading 

Time to Induce 
Induction State 

Average Time 

Time to Induce Turn 

Robot Initia Effect on Turning 

Turn Made 

Turn 

Turn 

Flower Ratio 

Flower Size 

Turn Change  Rate 
Turning Rate 

Added  Turn 

Energy Drain Rate 

Energy Reserves 

Energy Total 

Turn Decline Turn Increase 

Motor Efficiency 
Turn Rate 

Initiation Lever 

Turn Initiation Initiation Rate 

Turn Time Passed 

Time Left 

BrieferTurn More Turn 

(IN) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33. Flow diagram of the simulation model for the Shifting the Burden archetype 
business system game, revised for percept effect on robot behavior path by turn and 
heading change (after: Bagodi and Mahanty, 2015, p. 389, Fig. 3). 

1.3c.20160703U. 
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ANTICIPATION  IN  ARCHITECTURE 

Anticipation (AN) goes beyond mere reactive behavior normally used in behavior-based robotics 

(BBR). As with BBR, the initial defined levels can be built upon in a vertical structure. Simple 

behaviors used by the wall follower (WF), or MURAMATOR for ‘wall lover’ in Latin, are 

EXPLORE, AVOID, and SEEK. A simple addition of AN to the WF to create a TOURIST can 

be achieved by addition of just three additional behaviors: WAIT, AHEAD, and FIND (Fig. 34). 

A basic WAIT behavior procedure is included at the start to allow all systems to come up to 

speed, and can be cued whenever an uncertain situation is encountered, so the robot does not 

appear to panic with an illogical behavior in response to an unexpected, and thus unanticipated, 

situation.  

 

 

 

 

 

  

    WALL  FOLLOWER            TOURIST 

Figure 34. Representation of behavior choices in the wall follower robot (or 
MURAMATOR) for three basic behaviors (left) and addition of three behaviors to the 
TOURIST robot (right) to include anticipation for task achievement of finding objects 
and following walls.   1.7.20160718M 

 

AHEAD is included to extend beyond mere reaction to a wall at a specific distance (a cue for 

AVOID), and thus includes an extended gradual response to presence of an ongoing wall object 

rather than an abrupt direction change at some critical distance, and possibly unsafe approach 
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distance reached. Lastly, FIND is added in relation to the SEEK behavior procedure to search out 

potential objects and walls nearby during the SEEK spin motion, and thus may easily locate a 

more acceptable object to approach and follow along as a wall. 

 

MODELING  ANTICIPATION  SYSTEMS 

Architecture for anticipation has a linkage between the niche environment and the observed 

behavior choice (Fig. 35). 

Analogy relating Plants to Robots (modified 2015-10-13T):  .   
 
        THRESHOLD    CHOICE 
  NICHE PERCEPTS CONTEXT   COUPLING     BEHAVIOR 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   ROBOT  BEHAVIOR  ARCHITECTURE 
 

Figure 35. Architecture for robotics relating perceived environmental niche to context for 
robot behavior with reinforcing loop back to the niche  [causal diagram and flow map].   
(5.2.0.2.18.20151013T). 

 

The causal diagram and flow map above was provided with more detail and specific coded 

processes to represent the underlying routines and looping structure, and delays to represent the 

notion of anticipation (Fig. 36)   
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Figure 36. Anticipation simulation model for TOURIST robot agent. NICHE creates a 100 X 
100 pixel arena within which the agent perceives the conditions (PERCEPTS) and from 
that determines a CONTEXT fitness value  that is used through THRESHOLD 
COUPLING to manifest a CHOICE BEHAVIOR that matches the current Niche 
conditions, thereby producing the OBSERVED RESPONSE that leads to successful task 
achievement. Anticipation can be turned off or on as desired. (1.0.81.20160923F) 

 

A niche is a specific environmental surrounding perceivable by the agent. It can be considered as 

a smaller subset of the overall environment or arena that the robot agent is able to exist within, 

and is a local condition or context that is relevant to manifestation of a behavior choice (Fig. 37). 

As implied by Simon (1996), items that are too far removed in space and/or time from an 

organism (or robot agent) should not be considered relevant to the problem at hand, and thus the 

behavior choice. Indeed, the term environment generally is used broadly to indicate almost any 

area that an organism (living or a robotic agent) can move in and exist within, and may be 



88 
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Touch, Light 

 

 

 

considered as broad as the entire planet earth, especially when we consider broad effects to the 

environment such as global climate change. However, on a realistic scale the location and typical 

movement of an individual within the larger environment is quite readily refined to a smaller 

localized area, one considered as home, or a slightly larger territory. Therefore, the operation 

environment for an organism or agent is curtailed to one that to which it is functionally matched. 

The immediate area influencing behavior choice is smaller still, defined by the local area in 

which significant effects are perceived, and thus manifest some behavior. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 37. A niche is shown as a specific environmental surrounding perceivable by the 
agent, and is in the immediate vicinity as a local condition or context.   

1.0.82.20160421R 
Percepts are the current perceived conditions in the niche. They are used in combination to 

determine a suitable fitness level. That suitable fitness is matched to a behavior that is manifest 

in response to the niche conditions. A sequence of behavior choices based on the threshold levels 

leads to desired task achievement as an observed response.  



89 
 

CONGRUENCE  FRAMEWORK   

A congruence framework for modeling a real world system ensures that the causality is first 

abstracted by encoding into a formal system (FS) of equation relations and rules, and the 

inference captured in the FS is decoded back to the natural system (NS) of the real world (Fig. 

38). The framework is said to be congruent, or agrees, if the entailments (implications) in the 

causality of the original NS can be reproduced when the inference of the FS is decoded back to 

the NS (Rosen, 1991).  

 

Rosen terms metaphor the process of decoding without encoding, or forming a theoretical model 

of inferences without initial measurements (p. 65), perhaps by only the application of first 

principles of physics or other disciplines (and he says this is not science, p. 66). He refers to the 

efforts of von Bertalanffy in the 1930’s or later (or von Bertanffy, 1968) drawing metaphors 

between open systems and biological development in morphogenesis (p. 65). The result is a 

belief or expectation that a metaphor can be a useful model to be decoded into some biological 

open system, thereby establishing a modeling relationship to better understand the biological 

system (p. 65).  Unfortunately, skipping the encoding loses precise verifiability. Yet, the 

metaphor can embody truth, yielding some type of gain for free, though it is unverified (p. 66). 
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Congruence Via Encoding and Decoding (Rosen, 1991) . 

 

 

 

 

 
 
 
 
 

Figure 38. Rosen proposed the need for encoding and decoding to link causation relations 
between world phenomena into an embodied model structure.  A Natural System (N, 
or later referred to in this discussion as NS) can be modeled by a Formal System 
(F, or herein FS) by adding processes of encoding and decoding as creative acts. 
The circled labeled paths are related by the equivalence: 1 = 2 plus 3 plus 4, or 
meaning that path 1 is equivalent to the combination of the other three paths.  
(from: Rosen, 1991, p. 60; Fig. 3H.2)  

            1.1(2014.02.27) 
http://books.google.com/books?hl=en&lr=&id=DR8L4snDnkIC&oi=fnd&
pg=PR11&dq=rosen+life+itself&ots=jJJcLkWd21&sig=DbbNw3_NAeiD
3VNJGhBURKgzeeY#v=onepage&q=rosen%20life%20itself&f=false).  
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Since the modeling relation includes the notion of prediction, the future is implied (or entailed) 

by the present in the causality of the NS (Rosen, 1991, p. 64). The individual must decide a 

course to provide the proper encoding and decodings. It is imperative to discover the right 

encodings (and decodings). As the metaphor provides the decoding without encoding, the 

advantage is to decode to the NS from some devised FS without bothering to encode the 

particulars known about the NS. All of science, and biology specifically, uses such metaphors, so 

that metaphors about machines can be used to decode predictions about organisms (p. 65). Thus, 

Rosen explains away the need for encoding in his original model of abstraction, though this 

seems less than logical. 

 

Yet from Rosen (1991) there would need to be a means of decoding, though it is not specific, but 

is necessary for the individual to perform as a creative act (p. 54). Many means may be possible 

to achieve this. Several logical processes would seem needed to be included in a useful method, 

and those can be identified as: scaling in both space and time, key operations, forming 

connections, sequential ordering, comparison of options, and design for manufacturing and 

assembly. 

 

Scaling of the system in both space and time is crucial to identify means of producing some 

desired task achievement. Taking a point of view that zooms out (reduces to a bird’s-eye view) 

or zooms in (enlarges) for a factor of 10 times (or even 100 times), either with technology or at 

least with ones own imagination, should uncover elements that can be exploited to achieve a 

task. By comparing with a mental view, by describing the new point of view, or listing items in a 

table one can discover intricacies basic to the solution of the problem. These items and relations 
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must be captured in the FS, or additional mathematical equation relations devised to represent 

any new found concerns. Most importantly, one is less likely to overlook any items of 

importance that can be enlisted to achieve the task. Scaling in time can range from nanoseconds 

(for speed of program execution or biological chemical reactions) to decades or more (product 

life cycle, reuse, recycling, or expected appropriateness of technology). For a robot, the turning 

mechanism would be considered for a distant view, or a detail of sensing may be improved for an 

enlarged view. Time of processing should be fast enough to sense and interpret percepts in real 

time, while moving around fast enough in an arena to achieve a task in a reasonable expected 

time frame. Einstein (1905) had used this stance in his quest to form the theory of relativity, as 

he explained his ideas came at least in part from imagining riding on a beam of light, requiring 

scaling in both space and time. 

 

Key operations must be described as relations among parts so that desired steps in operation can 

be accomplished toward the goal. This can be done both in a normal view, and in the scaled 

views already mentioned. This identifies key parts and the features of each to be altered and 

possibly optimized, or in contrast generalized, so a proper description made mathematically in 

the FS can be assured to be translated into a feasible NS. Size and shape of individual parts, as 

well as strength and compliance properties, should be transferred to the NS from a FS. A mobile 

robot would need proper wheel size with angular velocity and torque such as needed to navigate 

in a desired arena.  

 

Forming connections that are robust and yet tenable for the prescribed operation are a more 

detailed manner in which the operations must be related and carried out. Connections between 
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various component parts must be strong yet able to provide needed movement. Many times 

failure is known to occur at connections, either from poor initial forming of the connection, or 

mistaken consideration of how the system operation will add stress or undue forces at the 

connection. The nature of the connection likely is critical to proper operation of the system, and 

alternative forms of connection can drastically change performance. The interactions that result 

from the connection are key to producing the desired behavior. Recall that forming connections 

is one means of self-organization (Ashby discussed by von Bertalanffy, 1968, p. 96) that requires 

an open system, decrease in entropy inside the system, and both inputs and outputs from/to 

outside the system with the environment. The decrease in entropy is counter to the Second Law 

of Thermodynamics, and would likely naturally lead to breaking such connections for increased 

entropy with resulting failures during system operation. A mobile robot needs axle connections 

to both a motor and the wheels to provide aligned motion of all wheels to make for ease of 

movement without pinching or obstruction.  

 

Sequential ordering should assure all needed items are included, and can proceed in time to lead 

to task achievement. Parts, connections, and their interactions must perform in a proper sequence 

to add up to the desired result. Invariants in the environment cue the sequence for successful 

operation. These cues are provided both internally to the system and externally from the 

environmental niche. Altering the order and timing leads to degraded or lack of performance. A 

mobile robot must have perception of the niche in a way that avoids striking objects in its direct 

path, and must look for objects that it would anticipate to encounter in the niche. 
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Comparison of options that arise during the previous formulations provides a means by which to 

select those individual steps that are considered most successful, and ensure the combination is 

one that produces the most elegant successful result. Comparisons can be made on desirability of 

operation, cost, feasibility of production, or efficiency of operation. For a mobile robot, desirable 

operation is preferred as observed operation in the real physical world. 

 

And in final production, design for manufacturing and assembly instills in the solution the means 

of engineering that is most likely to make a useful item that also is economical to create 

(Boothroyd, 1994). Creation of simple pieces, and the fewest number of pieces, favors both 

manufacture and assembly. Design is an iterative process that considers both design knowledge 

(Kdn) and domain knowledge (Kdm) while considering specifications and requirements for 

construction (Troxell and Troxell, 2014). Requirements include both criteria and constraints. 

Criteria are desired traits for successful structure (e.g., functional operation or efficiency), while 

constraints are limitations to producing the solution (e.g., funding or size) 

(https://www.nagb.org/publications/frameworks/technology/2014-technology-

framework/toc/ch_2/design/design2.html). A minimalist view for a mobile robot uses the fewest 

motors and wheels needed, while using a minimum of microprocessing power, especially by 

building the robot with structures that are well-matched to the environmental niche. Indeed, a 

smaller number of simply designed parts is much easier to assemble. Having fewer parts requires 

less fasteners to connect them together, thereby greatly reducing time, labor, and resources for 

the proper production of the final product. Overall, consideration of scaling, identifying key 

operation, connections, sequencing, comparing all options, and design for assembly lead to a 

more effective design process. 



95 
 

INSTANCE  OF  ANTICIPATION 

A simple mobile robot was designed and built according to a minimalist approach philosophy to 

permit study of the basic notion of anticipation. A foundation structure and operation was 

followed from Connell (1990) who made a wall following robot (termed MURAMATOR, 

meaning “wall lover” in Latin) using subsumption architecture of Brooks (1999) developed for 

behavior-based robotics. It included only three behaviors: EXPLORE, AVOID, and SEEK. A 

single infrared (IR) sensor was mounted at a slight angle from straight forward to detect any 

object in the path of forward travel, with no other sensing capability added. Its realm of knowing 

was only briefly in front (slightly angled) and the open area just traveled behind it. When some 

object is detected, the simple AVOID behavior moves backward briefly and turns by locking a 

ratchet mechanism in the right wheel to make a left turn in place. When EXPLORE continues for 

some designated amount of time without detecting an object (or wall), the simple SEEK behavior 

cues to make an uninterrupted 270 degree counterclockwise (CCW) turn to the left (by adjusting 

a voltage trimpot to generally time the spin motion), which is effectively a 90 degree clockwise 

(CW) turn to the right. The overall outcome of these three behaviors working together is to 

produce task achievement that is twofold: 1) follow along a wall in reaction to detecting the 

wall, and 2) avoid any stationary objects that are encountered separate from the wall. Note that 

the three behaviors (EXPLORE, AVOID, and SEEK) each by themselves do not achieve 

the task, but the interrelation of the three individual behaviors result in an overall behavior 

result that is the task achievement of wall following and object avoidance. Thus, a principled 

approach with rules of operation for coordination of the behaviors results in task achievement. 
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Initially the TOURIST robot was studied in an arena as a natural system (NS) to confirm and 

validate function, and the processing program on a microprocessor (i.e., Arduino Nano) was 

encoded into a simulation program for further study.  The name TOURIST was coined to reflect 

the robot agent tendencies to look ahead to search out objects to find, encounter, avoid and 

follow when subsequently approached close enough. SIMULINK was used as a graphic virtual 

programming language to encode the desired minimalist anticipation architecture formal system 

framework, called ANSIM (for ANticipation SIMulation). SIMULINK provides benefits for a 

useful graphic display of programming architecture with structured framework for underlying 

coding, and allows for additional features to be coded at lower levels using MATLAB  subsystem 

modules that can carry out the details of the operations, similar to subcognitive modules enlisted 

by Malcom and Smithers (1990).  Archetypes of Limits To Growth  (LTG) and Shifting The 

Burden (STB)  (Senge, 2006) were first developed after existing coded examples of the 

archetypes functions (Hayward and Boswell, 2014; Dowling et al., 2006) so that correct 

operation was verified, and the essential component code was added into the ANSIM model 

architecture to enable addition of the notion of anticipation with system dynamics as traits of the 

archetypes. First, modifications were initially made iteratively to the ANSIM FS model to attain 

desired behaviors for the simple wall follower robot agent (i.e, reasonably short enough response 

time, and proper AVOID response to arena boundaries and objects). The three basic behaviors of 

Connell (1990) as EXPLORE, AVOID, and SEEK were all shown to work correctly in 

combinations possible to exist in the arena and with up to two stationary objects present. This 

basic framework was then used to add the notion of anticipation with additions of the archetype 

programming to the ANSIM FS.  
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Archetype operation for the notion of anticipation was added to the ANSIM FS model in three 

specific ways. First, the WAIT behavior was added at the beginning of the robot startup 

initialization to allow for equilibrium to be achieved internally before any response to the niche 

was taken. WAIT might also be used later during runtime when an unknown condition (e.g.. 

unexpected and unaccounted for) is encountered, and thus keep from performing any illogical or 

unreasonable behavior with potentially destructive or injurious results to the robot. Thus, 

potential injurious results were anticipated and a behavior in place to respond reasonably.  A 

second more active AHEAD behavior, using the LTG archetype, was added previous to the 

existing AVOID behavior module to scale reduction of the time of turning for AVOID in relation 

to an object at a distance, one that has yet to be encountered for needed avoidance, but still in 

need of response to in an expected future. A third FIND behavior, representing the STB 

archetype, was added to interrupt the 270 degree spin in the SEEK behavior that was previously 

not interrupted for SEEK with no anticipation. Thus, FIND locates objects (or a wall) in the 

distance, and halts the SEEK spin to begin EXPLORE, a straight forward movement, to move 

toward the found object. So unlike the SEEK with no anticipation that attempted to travel along 

the wall the robot was already next to, the FIND and SEEK behaviors with anticipation turned on 

may locate another object (or wall ) to move toward.  If only one wall is near that the TOURIST 

robot is already following, it still will return to follow that nearby wall. The combination of these 

three additional behaviors (WAIT, AHEAD, and FIND) with the previous ones of wall following 

(EXPLORE, AVOID, and SEEK) from Connell (1990) are an anticipation set of a few needed 

behaviors that add anticipation to the ANSIM model. A simple switch was added to ANSIM to 

allow anticipation to be left off or turned on, and thus study by comparison the addition of 

anticipation to the ANSIM operation in the same niche environment. 
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Various simulations of the inference entailments captured in the code were studied. First, the 

ability of the TOURIST to follow the arena wall was verified in simulation, and resulting path 

and behavior over time was graphed to show the overall results to be consistent with 

expectations for a physical world. This operation was shown both with No Anticipation (NO 

AN) or with Anticipation On (AN ON). Again the results were displayed over simulated time by 

showing the resulting path and corresponding behavior choices. The results of these comparisons 

are shown in detail in the next Chapter 4 for applications of the simulation. Results are shown for 

both the open arena having only wall boundaries, and for two stationary objects place in the 

arena. The graphs demonstrate the feasibility of adding anticipation to a robot in simulation 

using a minimalist approach, and points out potential flaws that actually are typical of even a 

simple niche environment, and of the operation of the previous simple robot approach of Connell 

(1990) to follow walls.  

 

Subsequently, following the congruence framework, the abstracted ANSIM inferences in the 

formal system (FS) were decoded back into the NS of the physical TOURIST robot by making of 

SIMULINK code into the Processing code used by the robot microprocessor (i.e., Arduino 

Nano). Trials were conducted to confirm the effects that addition of the methods for 

incorporating anticipation had on the operation of the physical TOURIST robot. Video records of 

the trial showed how the operation with No Anticipation (NO AN) or with Anticipation On (AN 

ON) differed and resulted in observable benefits from anticipation. 
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ANTICIPATION  ENHANCED  HABITS 

A cycle that includes cue, routine, reward is defined by Duhigg (2014) to be a habit that an 

organism is conditioned to perform repeatedly. A study with a monkey recognized an increase in 

neural activity at a surprising point in the sequence: after the cue (display on a computer screen), 

and before any routine action (alever press) and reward (a juice offering). This activity was 

termed anticipation, and rightly so because it occurred before the routine action that would 

produce the reward. As for living organisms, a robotic agent can display anticipation by any 

activity that comes before the certainty of the outcome even if a chain of events is destined to 

occur that looks like a habit. Another term for habits in natural living organisms is a fixed action 

pattern (FAP), or a series of actions that follow a cue to carry out a specific task, and end when 

some target is reached, and thus runs to completion (Hopper, 2008; Tinbergen, 1951). FAPs are 

thought to be hard-wired and possibly instinct driven. Since they are built in, FAPs act like habits 

to attain task achievement. The addition of anticipation to either FAPs or habits enhances the 

execution of the overall sequence (cue, routine, reward), and promotes successful completion of 

the habitual response. With a focus on robotics, the cue of a routine may have some associated 

fitness of suitability that enhances the behavior choice to match the cue in the niche condition. 

Proper definition of a fitness that cues the behavior entails the inference and causality, thus 

obtaining a congruence of observed behavior in a natural system that one built in to the formal 

system model. Thus, a component of anticipation is built in to the robot behavior choices, and 

that can promote a matching behavior to be manifest for the appropriate niche condition, and run 

a sequence to completion before the outcome is certain. 
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IMPLICATIONS  OF ANTICIPATION  

Since AN manifests response behavior before an actual outcome is certain, the response has 

potential to be quicker and more reliable than reactionary response without AN. Operation with 

AN continuously updates the response to the perceived niche, and can make adjustments for 

perceived changes in the niche that cue a change in the behavior. Small adjustments over time 

use less energy in a timely manner to stay on track with desired behavior choices, so ultimately 

use less energy over time than would occur for reactionary approaches that use large amounts of 

energy to make bigger more abrupt adjustments. Though some AN responses may make abrupt 

adjustments when needed, those occur less frequently, and only when the niche changes abruptly 

(e.g., at corners), and thus again use less resources. Unfortunately, the early response enabled by 

AN may actually create an undesirable response if the actual future condition of the niche does 

not align with that which was expected. Yet, the continuous update with AN should allow an 

organism or agent to make some type of adjustment, albeit slightly delayed, that should bring the 

situation under control again to match the niche condition to a desirable behavior for task 

achievement. Overall, anticipation should develop a smoother operation than for pure reactions, 

with quick response time, reliable behavior choice, incremental changes, and resulting response 

before the outcome is certain that appears to respond in a way that the organism or agent seemed 

to know the future outcome ahead of time. 
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CHAPTER 4.  APPLICATION  AND  SIMULATIONS 
 
 

OVERVIEW 

An anticipation simulation (ANSIM) was developed to allow various formal system (FS) 

conditions to be studied. ANSIM was based initially on working robot microprocessor 

programming, and was modified to a version that was verified to operate as expected in the 

virtual FS arena. Two different system dynamic archetypes (Limits To Growth, and Shifting The 

Burden) were incorporated into the ANSIM model to add the notion of anticipation (AN) to the 

model operation. The model was able to operate either with or without anticipation turned on to 

make similar simulation runs that can be compared for response in the virtual arena. Insights 

from the comparisons were incorporated into a TOURIST robot with operation having the traits 

of anticipation. 

 

CONGRUENCE  SIMULATION  MODEL 

A congruence model framework was built on the work of Rosen (1991, 2014). Causality of 

entailments (implications) in a natural system (NS) are encoded into the inference entailments in 

an abstracted formal system (FS). The rules in the abstracted FS can be studied in simulation to 

determine likely results expected to be realized in the NS. The rules and equations must be 

decoded through engineering efforts back to an instance of the NS. When congruence 

(agreement) is realized between the results in both the FS and NS, then the FS can be termed a 

model of the NS, and the NS is truly an instance of the abstractions designed into the FS (Fig 

39). This framework is used to develop an abstracted FS representing a robotic agent system with 

anticipation, and decoding methods used to translate those rules back into a physical instance NS 

that can perform behaviors showing the notion of anticipation.  
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Congruence Via Encoding and Decoding (Rosen, 1991) . 

 

 

 

 

 
 
 

 
 

Figure 39. Rosen proposed the need for encoding and decoding to link causation relations 
between world phenomena into an embodied model structure. A Natural System (N, 
or later referred to in this discussion as NS) can be modeled by a Formal System 
(F, or herein FS) by adding processes of encoding and decoding as creative acts. 
The circled labeled paths are related by the equivalence: 1 = 2 plus 3 plus 4, or 
meaning that path 1 is equivalent to the combination of the other three paths.  
(from: Rosen, 1991, p. 60; Fig. 3H.2) 

      (20161019T) 
http://books.google.com/books?hl=en&lr=&id=DR8L4snDnkIC&oi=fnd&pg=P
R11&dq=rosen+life+itself&ots=jJJcLkWd21&sig=DbbNw3_NAeiD3VNJGhB
URKgzeeY#v=onepage&q=rosen%20life%20itself&f=false). (2014.02.27 & 
20161019T) 

When an NS already exists in the natural world, encoding from the NS to a FS can be derived 

through experimentation and observation. If actual NS does not yet exist, the idea of metaphor is 

used to create the inference rules of the FS, by using rules about the real world as expressed by 

laws of physics, chemistry, and mathematics (Rosen 1991, 2014). For robotics, it was possible to 
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use example program code from a preliminary instance of the TOURIST robot to devise the 

basics of a simulation in the virtual realm as a base model, termed ANSIM (for ANticipation 

SIMulation). However, no robot is thought to exist that has the actual notion of anticipation. 

Instead, the idea of metaphor was used to incorporate anticipation into the robot operation. Two 

archetypes based on system dynamics principles were used to make the rules for behavior 

response that included a notion of anticipation into the robot FS. Study of various scenarios of 

anticipation in the FS provided insight as to how anticipation would be observed in a NS when 

the mathematical rules were decoded back to a modified NS. The rules in program code could be 

translated from the ANSIM FS model to the Processing program (decoding) in the physical robot 

microprocessor. This allows for the notion of anticipation that is studied in the FS to be decoded 

back into a physical robot to operate in a NS. 

 

BIOLOGICAL  PARALLELS  IN  BIOPLANT  DEVELOPMENT 

Architecture created for the operation of an artificial system such as a robot agent can be applied 

more generally to a natural biological system for an architecture of the multiple stages for 

biological plant (bioplant) growth, development, and reproduction (Fig. 40). In both the artificial 

robot system and the natural bioplant system, a niche environment is perceived to form percepts 

for the current condition. A combination of the percept factors (infrared or IR, light, temperature, 

etc.) is used to determine a fitness or suitability for a specific behavior to match the niche  
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Figure 40. Architecture for robotics relating perceived environmental niche to context for 
robot behavior with reinforcing loop back to the niche (top) and modified for plant 
architecture (bottom) [causal diagram and flow map]. 5.2.0.2.18.20151013T 
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multiple niche percept factors that cue a change in behavior. For the bioplant, the integration 

occurs in biochemical pathways that create threshold levels of chemical molecules that can cue 

the initiation, and subsequent continuation, of a change in development stage, or nuances within 

that stage. Hence, a bioplant changes from the vegetative stage (forming only leaves) to a 

reproductive stage (forming flower buds) based on a combination of percepts of the niche that 

cue the change.  

 

As with the artificial robot architecture, delays and looping of system dynamics impart a time 

frame for system response time, or time constants, of the system. Interestingly, bioplant growth 

is relatively slow compared to that of animal daily activities, so the time constants for bioplants 

appear to be orders of magnitude slower (longer times) than one would determine for animals 

(and what we ascribe to robotic systems). Bioplant time constants may be as short as hourly for 

leaf alignment to light, to a day for circadian rhythms, to months or seasonal for flower buds that 

develop in the summer to bloom the next spring. Of course, animal and robotic responses are on 

the order of milliseconds for quick responses, or may be up to months for animal preparation for 

reproductive cycles and rearing of young, and possibly longer for creation of living quarters to 

span over decades.  

 

Anticipation of future events is tied up with the time constants for response. Both natural 

bioplants and animals have inherent physical structures and biochemical pathways that lead to 

preparation for and subsequent manifesting of behavior choices that lead to attaining desired 

goals for survival and reproduction.  
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Evolutionary processes have worked on the ontogeny and phyllogeny of these natural biological 

living systems (considered open systems in general systems theory) to develop specific behaviors 

to match a niche, and attain survival outcomes. The structure and operation of a model termed 

Churchland’s crab presents a theoretical discussion of such principles (Churchland, 1986).  The 

anticipation is built into the physical structure and biochemical pathways that allows behavior 

change in a shorter time frame than is needed to attain the results that ensure survival. Here 

anticipation works to benefit the organism, since it acts before the outcome is certain, yet the 

behavior choice leads to a preferred task achievement. The behavior may change again before a 

negative effect is realized if the change in behavior was premature as cued by the niche, and thus 

not preferred at that time. Thus, the quick and malleable behavior choice is a trait of anticipation 

that leads to preferred task achievement, and it appears the organism knew the future before it 

actually occurred. 

 

INFUSING  ARCHETYPES 

Although about 10 archetypes have been defined (Senge, 2006) or simplified for easier 

application (Wolstenholme, 2003, 2004), the two that most appropriate archetypes for use with 

simulating anticipation in robots are the Limits To Growth (LTG) and Shifting The Burden (or 

Goals) (STB) archetypes. The LTG archetype is appropriate since it approaches some asymptotic 

limit value based on some constraint in the system, as illustrated by the atomic behaviors 

described by Hayward and Boswell (2012).   

 

The STB archetype has the attribute to change from a symptomatic solution to a more favorable 

fundamental solution with longer-term success. Unfortunately, the seemingly simpler short-term 



107 
 

symptomatic solution (SympSol) eventually leads to system failure. In contrast, the less obvious 

and likely more difficult to implement fundamental solution (FundSol) leads to a useful stable 

long-term solution. The key is to identify the archetype that is stuck in the repeated execution of 

a symptomatic solution headed for failure, and instead commit the resources needed to find and 

implement the process that carries out the fundamental solution. Realize the symptomatic 

solution is deceptive, because it actually seems to work in the short run, but does not in the long 

run.  Ironically, the fundamental solution may not seem to have much of a positive effect in the 

short run, but increases the benefits the longer it is repeatedly applied.  [This is ironic, since the 

choice for a symptomatic solution (creating failure) contradicts what is expected (success). It is 

not a paradox, since a paradox is a statement that contradicts itself, such as: “I always lie.”  See: 

http://english.stackexchange.com/questions/344071/the-difference-between-irony-and-paradox ] 

Thus, adding the STB archetype to a basic system creates a desired solution, and moves from a 

simple reactive system to one that anticipates how to create an effective lasting solution. Such a 

system will have the traits of anticipation, acting before the outcome is certain, and yet reaching 

a result that appears to know the future before it happens. 

 

ANTICIPATION  ARCHITECTURE 

A basic architecture was designed for the ANSIM (ANticipation SIMulation) model based on the 

causal loop and flow map diagrams that extract percepts from the niche environment, determined 

a suitable fitness level from a combination of factors, and used that along with threshold values 

to cue a behavior choice (Fig. 41). Specific coded processes represent the underlying routines, 

looping structure, and delays in which to place the notion of anticipation. The architecture can 

operate with No Anticipation (NO AN), or cued to operate with Anticipation On (AN ON).  
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Each behavior executes independently of the cue that makes it fire for operation, in the CHOICE 

BEHAVIOR (SCENARIO) module set, and choice of a behavior process excludes execution of 

another behavior process, meaning the behaviors are mutually exclusive. Explicitly, EXPLORE 

moves straight forward, AVOID turns counterclockwise (CCW), and SEEK turns CCW for a 

longer time period than AVOID and for a different cue. Each of the behaviors operates for a 

single time step. The overall process loops back for the next time step, and in the CONTEXT 

THRESHOLD determines the behavior choice for the next time step. Of course, the behavior 

choice is based on a suitable fitness value determined in the CONTEXT module based on the 

combination of values in the PERCEPT module. Percepts are measured in the NICHE 

environment to represent the current condition. Obviously, the current condition of the niche can 

change with each time step, thus resulting in a cue for a new behavior choice.  

 

Anticipation in the CONTEXT module by includes methods for both the Limits To Growth 

(LTG) and Shifting The Burden (STB) archetypes. A WAIT behavior also was included in the 

BEHAVIOR CHOICE (SCENARIO) modules to allow for initialization at startup, and choice of 

a period of inactivity if unexpected conditions occur that do not match the three core behaviors 

(EXPLORE, AVOID, and SEEK).  

SECTION BREAK 4 NEXT . 



109 
 

 

109 

 

 IN  SECTION BREAK 4  . 

 
Figure 41. Anticipation simulation model for TOURIST robot agent.  Niche creates a 100 X 100 pixel arena within which the agent 

perceives the conditions (Percepts) and from that determines a Context fitness value that is used through Threshold Coupling to 
manifest a Choice Behavior that matches the current Niche conditions, thereby producing the Observed Response Behavior that 
leads to successful task achievement. Anticipation can be turned off or on as desired. 1.0.81.20160923F   SECTION BREAK 5 
NEXT .…    
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An AHEAD behavior was added in the CONTEXT module to reflect the system dynamics of the 

LTG archetype. AHEAD measures a percept of up to a maximum distance, a distance that is 

greater than needed for a turn to miss an object or wall, and scales the timing of the subsequent 

AVOID behavior relative to a minimum safe turn distance (28 cm). The scaled timing of AVOID 

may execute for several brief time steps within the model looping structure. In this way, a 

smaller turn is made than would occur for the case if no anticipation is on (no AN ON). This 

allows for the EXPLORE behavior to be cued again in a shorter time span than for no 

anticipation on.  The overall result is a series of smaller AVOID turn adjustments with integrated 

EXPLORE forward behavior. Thus, the TOURIST responds to an object that is farther away in 

anticipation of a future encounter. The result is still to perform the task to travel along an 

extended wall, response to and miss objects, and make abrupt changes when a new wall is 

encountered based in a different orientation (north and south versus east and west).  

IN SECTION BREAK 5 . 

Anticipation also was included by adding the FIND behavior that also was placed in the 

CONTEXT module using the system dynamics of the STB archetype. FIND also uses the 

percept of a maximum distance (50 cm) that is greater than needed for a safe turn (minimum 28 

cm) to miss an object or wall, and uses that detection to halt (interrupt) the SEEK behavior when 

it is actively executing. With anticipation on (AN ON), the interrupt of SEEK allows cue of the 

EXPLORE behavior to initiate a move towards the perceived new object, so the SEEK behavior 

no longer is set to a mandatory turn of a total of 270 degrees CCW, but may halt the turn at any 

point in rotation that an object is detected. The halt of SEEK and cue of EXPLORE may occur in 

any time step within the normal period needed for the 270 degree turn. Thus, the time for a spin 

turn in SEEK may be reduced if an object is close enough for the TOURIST to FIND it within 



111 
 

the maximum set distance. Once EXPLORE has been cued, in subsequent time steps the 

AHEAD and AVOID behaviors operate to make the small adjustments to again follow a wall or 

miss an object. The result of FIND is to locate the nearest object or wall, and to begin to 

undertake a new heading toward that object or wall. Thus, the maximum energy as was used by 

SEEK is reduced if another option is found. However, the wall that was previously being 

followed, though not detected for a set time (to cue SEEK), would be abandoned for the newly 

found wall. However, if no object is in the maximum distance range during the spin of a SEEK 

behavior, the TOURIST would again encounter and follow the previous wall.  

 

VERIFIED  SYSTEM  DYNAMICS  SIMULATION 

Anticipation was applied in simulation for a systems architecture in a simple square arena that 

could contain no objects or multiple objects. Coded behaviors were matched to the arena 

boundaries and the objects inside, with intended observed criteria to be to follow the arena 

boundary walls or move near yet not contact the objects for successful task achievement. The 

robot agent was located at various initial (x,y) locations with chosen heading and forward 

motion, and the resulting path was tracked and plotted for the travel within the arena. 

 

Time Step and Sensing 

Repeated simple relatively short time tests were run to verify the simulated agent performed as 

would be expected in a real-world arena. Initial testes were successful at creating expected 

behaviors and task achievement of wall following and avoidance of objects. However, on rare 

occasions the agent seemed to escape from the bounded arena., and the suspect behavior could 

be recreated by starting with known settings that led to the escapes. Further examination of the 
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coded procedures revealed the two undesired traits: first, the time step resolution was not small 

enough at 0.1 sec steps to capture certain timed sequences correctly, and second the model of the 

infrared (IR) sensor perception was not refined enough to truly capture a distance measurement 

that would be realized from a real-world IR sensor. The time step was reduced to 0.01 sec at the 

expense of increased simulation time, yet the tracking of behavior and motion was considerably 

improved. For distance sensing, the testing of increments in a straight line for the sensor was 

refined to ensure all cells (or pixels) were sampled to find a wall or object. After these simple 

changes, the agent always remained in the arena, and had reactions to the walls and objects as 

desired and expected. Note that these problems were traits of the simulation, and not of the 

behavior responses chosen, meaning that proper description of the virtual simulation 

environment was the source of errors rather than simulation of agent response to the 

environment. A real-world agent with correctly operational sensors would be able to perform the 

assigned behaviors.  

 

SEEK behavior 

Simulation allows for precise geometric timing responses for behavior. Based on the original 

strategy from Connell (1990), the simulated SEEK behavior should rotate 270 degrees CCW, 

and that effectively looks like a 90 degree CW rotation in a path drawing. Placement of the agent 

near the middle of the arena with a heading away from a wall (and no objects in the arena) and 

with a short enough time delay before a cue of SEEK should create an unending square path near 

the middle of the arena. The path created in simulation was found to agree with this expectation, 

and provided evidence the simulation model is verified to perform correctly as one would 
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observe in a real-world arena (Fig. 42, left). Greater detail of the dynamics of the travel show the 

SEEK cue occurs repeatedly over time (Fig. 43, right). 

 

SECTION BREAK 6 NEXT  . 
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            NO   ANTICIPATION.  28 cm    NO  ANTICIPATION.  28 cm    
 
Figure 42. AN path simulated for 78 s (25*pi). No  Anticipation: 28 cm; Initial: xpos=40, ypos=60 (left); No  Anticipation on: 28 cm, 

Initial: xpos=70, ypos=25 (right);.  When Minimum= Maximum distance=  28 cm, there is effectively No Anticipation; When 
starting in the upper left, yet near the middle, 270 deg CCW turns (90 deg CW) for SEEK make a perfect square path, yet the robot 
is trapped in space indefinitely (left). When starting in the lower right near the wall, a roughly square path follows near the wall 
arena boarder, again indefinitely. 

      SEEK not interrupted (every 10th pt. darker) Path: start heading= 0 deg.; Initial: xpos=varies, ypos=varies, tAVOID=0.125s, 
tWaitSEEK=5s, NicheLayout=100X100cm, IROffset= 30 deg, speed= 15 cm/s; IRDistMin= 28 cm; IRDistMax= 28 cm.  
(ANSimDelay20160121R.  1.0.75.20160911U 

 
IN SECTION BREAK  6 . 
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73a.    73b  
Figure 43. TOURIST   No AN: path simulated for 47 s (15*pi). 73a. Arena bounded with no internal objects 73b. Behaviors over time and 

locations in x-y plane.  The TOURIST turns CCW at each corner as SEEK wait time cues, so 270 degree CCW rotation actually 
turns 90 CW each time, and near middle of the arena no walls are ever found:‘stranded’ in space.   SEEK not interrupted (10th pt. 
darker) Start heading= 0 deg.; Initial: xpos=40, ypos=60, tAVOID=0.125s, tWaitSEEK=5s, NicheLayout=100X100cm, IROffset= 
30 deg, speed= 15 cm/s; IRDistMin= 28 cm; IRDistMax= 60 cm.  (ANSimDelay20160121R.slx   1.0.73.20160909F 
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74a.   74b  
Figure 44. TOURIST No AN: path simulated for 78 s (25*pi). 74a. Arena bounded with no internal objects and shown path;            74 

b. Behaviors over time and locations in x-y plane.  The TOURIST is near the wall boarder, so AVOID & SEEK work together to 
follow the wall. SEEK not interrupted (every 10th pt. darker) Start heading= 0 deg.; Initial: xpos=70, ypos=25, tAVOID=0.125s, 
tWaitSEEK=5s, NicheLayout=100X100cm, IROffset= 30 deg, speed= 15 cm/s; IRDistMin= 28 cm; IRDistMax= 60 cm.   

(ANSimDelay20160121R.slx )  1.0.74.20160910A  SECTION BREAK 7 NEXT . 
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AVOID and SEEK Behavior Mixed 

A simple application of the AVOID behavior results from initial placement of the agent near a 

wall (in an arena with no objects) and allowing for continuous operation near the arena boundary 

wall. Proper AVOID behavior maintains a minimal distance from the wall, while SEEK invokes 

on occasion to move back closer to the wall. Again, the path created in simulation was found to 

agree with this expectation, and provided evidence the simulation model is verified to perform 

correctly as one would observe in a real-world arena (Fig. 42, right). Additional detail of the path 

traveled shows both AVOID and SEEK behaviors work together to follow the wall, and the path 

nearly overlaps as a full cycle is traveled around the arena (Fig. 44, left). 

IN SECTION BREAK 7  . 

Anticipation Simulation: AVOID and SEEK Behavior Mixed 

A relatively brief time run of the simulation with No Anticipation or with Anticipation On shows 

the nature of the addition of anticipation (Figs. 45, 46, &  47). With no anticipation (NO AN), 

the simply reactive behavior merely travels a path closely along the wall. In contrast, with 

anticipation on (AN ON), the TOURIST reacts to a wall in the distance that will be encountered 

in the future, and makes smaller adjustments to trend away from the wall before any direct 

encounter is realized. Several comparisons were made to show the results with or without 

anticipation (Figs. 50 to 62) 

 

Brief runs with anticipation off or on was used to illustrate the effect of increasing the maximum 

distance used for calculation of anticipation in the AHEAD and FIND behaviors (Figs. 48 & 49). 

Again, no anticipation has the TOURIST merely follow closely along the wall. With anticipation 

on, increasing the maximum distance moderately has marginally increased reaction effects. 
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Perceived distant objects cause behavior to adjust earlier to avoid and follow along a wall. As 

this extends to farther maximum distances (greater ranges), eventually the effect is premature, 

and over-anticipation of future object or wall encounters actually prohibits the TOURIST from 

effectively navigating the arena. As with many favorable items, it is possible to have too much of 

a good thing. So it is best to limit the maximum distance (to perhaps 50 cm), and thus ultimate 

range considered, so as not to react so early that a reasonable result does not occur. This agrees 

with the contention of Simon (1996), that items too distant in space or time should not be 

considered in design, or in practical application. 

 

SEE MORE DISCUSSION AFTER GRAPHS . 

 

SECTION BREAK 8 NEXT . 
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            NO   ANTICIPATION.  28 cm       ANTICIPATION  ON.  28 & 50 cm    
 
Figure 45. AN path simulated for 15 s (5*pi). No  Anticipation: 28 cm; (left); Anticipation On: 28 cm (right), Both initial: xpos=70, 

ypos=25 (right);. When Minimum= Max =  28 cm, there is effectively No Anticipation;      Left: No Anticipation: The TOURIST 
is near the wall boarder, so AVOID & SEEK work to follow the wall.   

      Right: Anticipation moves away from the expected wall, and after the delay, SEEK cues at 6.76 s, yet before 270 deg is turned, at 
7.08 s a wall is found by FIND, and the TOURIST moves towards it, combining with AHEAD & AVOID  to again move along the 
wall. No other SEEK & FIND behavior is cued over the interval. Path: start heading= 0 deg.; Initial: xpos=varies, ypos=varies, 
tAVOID=0.125s, tWaitSEEK=5s, NicheLayout=100X100cm, IROffset= 30 deg, speed= 15 cm/s; IRDistMin= 28 cm; 
IRDistMax= 28 & 50 cm.  (ANSimDelay20160121R.   1.0.76&77.20160911U  IN SECTION BREAK  8  . . 
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76a.   76b  
Figure 46. TOURIST   No AN: path simulated for 15 s (5*pi). 76a. Arena bounded with no internal objects and shown path; 76b.       

b. Behaviors over time and locations in x-y plane.  The TOURIST is near the wall boarder, so AVOID & SEEK work to follow the 
wall.  SEEK not interrupted (every 10th pt. darker) Path: start heading= 0 deg.; Initial: xpos=70, ypos=25, tAVOID=0.125s, 
tWaitSEEK=5s, NicheLayout=100X100cm, IROffset= 30 deg, speed= 15 cm/s; IRDistMin= 28 cm; IRDistMax= 28 cm.                            
(ANSimDelay20160121R.slx1.0.76.20160911U   
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77a.   77b  
Figure 47. TOURIST   Anticipation ON: path simulated for 15 s (5*pi). 77a. Arena bounded with no internal objects and path shown; 

b. Behaviors over time and locations in x-y plane.  Anticipation moves away from the expected wall, and after the delay, SEEK 
cues at 6.76 s, yet before 270 deg is turned, at 7.08 s a wall is found and TOURIST moves towards it, combining with AHEAD & 
AVOID to again move along the wall. No other SEEK & FIND behavior is cued over the interval. Path: start heading= 0 deg.; 
Initial: xpos=70, ypos=25, tAVOID=0.125s, tWaitSEEK=5s, IROffset= 30 deg, speed= 15 cm/s; IRDistMin= 25 cm; IRDistMax= 
50 cm.  (ANSimDelay20160121R.slx     1.0.77.20160911U 
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         NO  ANTICIPATION.  28cm     ANTICIPATION  ON.  28&35cm     ANTICIPATION  ON.  28&40cm 
 
Figure 48. AN path simulated for 15 s (5*pi). No anticipation (left); Anticipation on: 28 & 35 cm (middle); Anticipation on: 28 & 40 

cm. Minimum distance is 28 cm for all;  Looks AHEAD further to distance of 35 or 40 cm. Perceived distant objects cause 
behavior to adjust earlier to avoid and follow along a wall. 

      SEEK not interrupted (every 10th pt. darker) Path: start heading= 0 deg.; Initial: xpos=70, ypos=23, tAVOID=0.125s, 
tWaitSEEK=5s, NicheLayout=100X100cm, IROffset= 30 deg, speed= 15 cm/s; IRDistMin= 28 cm; IRDistMax= varies cm.  
(ANSimDelay20160121R.   1.0.70.20160731U 
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         NO  ANTICIPATION.  28cm      ANTICIPATION  ON.  28&50cm    ANTICIPATION  ON.  28&60cm 
Figure 49. AN path simulated for 15 s (5*pi). No anticipation (left); Anticipation on: 28 & 50 cm (middle); Anticipation on: 28 & 60 

cm. Minimum distance is 28 cm for all;  Looks AHEAD further to distance of 50 or 60 cm. Cases show proper Anticipation 
(middle), and OVER-Anticipation (right) that is reacting too early and in extreme to objects perceived in the distance. 

      SEEK not interrupted (every 10th pt. darker) Path: start heading= 0 deg.; Initial: xpos=70, ypos=23, tAVOID=0.125s, 
tWaitSEEK=5s, NicheLayout=100X100cm, IROffset= 30 deg, speed= 15 cm/s; IRDistMin= 28 cm; IRDistMax= varies cm.  
(ANSimDelay20160121R.  1.0.69.20160731U 
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            NO   ANTICIPATION.  28 cm       ANTICIPATION  ON.  28 & 50 cm    
Figure 50. AN path simulated for 78 s (25*pi). No Anticipation: 28 cm; Anticipation On: 28 cm (right); Both initial: xpos=70, 

ypos=25;. When Minimum= Maximum distance=  28 cm, there is effectively No Anticipation;        
      Left: No Anticipation: Combined AHEAD & AVOID  move along the wall; after the delay, SEEK cues at 10.5s, & 6 later times. 
      Right: Anticipation moves away from the expected wall, and after the delay, SEEK cues at 6.76 s, yet before 270 deg is turned, at 

7.08 s a wall is found and TOURIST moves towards it, combining with AHEAD & AVOID  to again move along the wall. Two 
more SEEK & FIND behaviors are cued over the interval shown. Dynamic changes in movement are more gradual and preemptive 
with Anticipation, or abrupt if Anticipation shows that is needed, as in corners and a new wall encounter.  

      Path: start heading= 0 deg.; Initial: xpos=varies, ypos=varies, tAVOID=0.125s, tWaitSEEK=5s, IROffset= 30 deg, speed= 15 
cm/s; IRDistMin= 28 cm; IRDistMax= 28 & 50 cm.  (ANSimDelay20160121R. 1.0.81.20160911U 
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79a.   79b  
Figure 51. TOURIST  NO AN: path simulated for 78 s (25*pi). 79a. Arena bounded with no internal objects and path shown; 79b.     

b. Behaviors over time and locations in x-y plane.  Combined AHEAD & AVOID  moves along the expected wall, and after the 
delay, SEEK cues at 10.5 s, and at 6 later times. Path: start heading= 0 deg.; Initial: xpos=70, ypos=25, tAVOID=0.125s, 
tWaitSEEK=5s, IROffset= 30 deg, speed= 15 cm/s; IRDistMin= 28 cm; IRDistMax= 28 cm.  (ANSimDelay20160121R.slx   
1.0.79.20160911U 
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80a.   80b  
Figure 52. TOURIST   AN ON: path simulated for 78 s (25*pi). 80a. Arena bounded with no internal objects and path shown; 80b.      

b. Behaviors over time and locations in x-y plane.  Anticipation moves away from the expected wall, and after the delay, SEEK 
cues at 6.76 s, yet before 270 deg is turned, at 7.08 s a wall is found and TOURIST moves towards it, combining with AHEAD & 
AVOID to again move along the wall. Two more SEEK & FIND behaviors are cued over the interval shown. Path: start heading= 
0 deg.; Initial: xpos=70, ypos=25, tAVOID=0.125s, tWaitSEEK=5s, IROffset= 30 deg, speed= 15 cm/s; IRDistMin= 28 cm; 
IRDistMax= 50 cm.  (ANSimDelay20160121R.slx   1.0.80.20160911U 

NO OBJECTS 

END  

START 

CCW  

ACTIVE  BEHAVIOR 

XPOS 
YPOS 



127 
 

 

127 

   
            NO   ANTICIPATION.  28 cm       ANTICIPATION  ON.  28 & 50 cm    
Figure 53. AN path simulated for 78 s (25*pi). No  Anticipation: 28 cm (left); Anticipation On: 28 cm (right); Both initial: xpos=70, 

ypos=25;. When Minimum= Maximum distance=  28 cm, there is effectively No Anticipation;  Twice as many cycles occur with 
Anticipation On (Right: 2.5 cycles) vs. No Anticipation (Left: 1.25 cycles), thus permitting more rapid and thorough coverage over 
time for the arena. Both travel the same forward speed: 15 cm/s. 

      Left: No Anticipation: Combined AHEAD & AVOID  move along the wall; after the delay, SEEK cues at 10.5 s, and at 6 later 
times. 

      Right: Anticipation moves away from the expected wall, and after the delay, SEEK cues at 6.76 s, yet before 270 deg is turned, at 
7.08 s a wall is found and TOURIST moves towards it, combining with AHEAD & AVOID  to again move along the wall. Two 
more SEEK & FIND behaviors are cued over the interval shown. 

      Path: start heading= 0 deg.; Initial: xpos= 70, ypos=25, tAVOID=0.125s, tWaitSEEK=5s, IROffset= 30 deg, speed= 15 cm/s; 
IRDistMin= 28 cm; IRDistMax= 28 & 50 cm.                       (ANSimDelay20160121R. 1.0.82.20160911U 

NO  OBJECTS NO  OBJECTS 

CCW: 1.25 cycles  

XPOS 
YPOS XPOS 

YPOS 

CCW: 2.5 cycles  



128 
 

 

128 

 

    
            NO   ANTICIPATION.  28 cm     ANTICIPATION  ON.  28 & 50 cm    
Figure 54. AN path simulated for 66 s (21*pi). No Anticipation: 28 cm; (left); No  Anticipation on: 28 cm, Both Initial: xpos=70, 

ypos=25 (right);. Time shown of 66 s is for about one cycle around the area with No AN, but results in about 2 cycles with AN 
On.  Dotted lines show path of IR sensor percept beam at each second from the robot location to the IR endpoint 50 cm away, 
darker line only 28 cm. Random appearing directions occur during the SEEK routine spin that may point in almost any direction, 
but is only used when AN in On. Dynamic changes in movement are more gradual and preemptive with Anticipation ON, or 
abrupt if Anticipation shows that is needed, as in corners and a new wall encounter. Two cycles are made around the arena with 
AN On, versus only one cycle with No AN, lending for more area covered and more dynamic discovery. 

      Path: start heading= 0 deg.; Initial: xpos=varies, ypos=varies, tAVOID=0.125s, tWaitSEEK=5s, NicheLayout=100X100cm, 
IROffset= 30 deg, speed= 15 cm/s; IRDistMin= 28 cm; IRDistMax= 28 cm.  (ANSimDelay20160121R. 1.0.85.20160926M 
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83a.  83b  
Figure 55. TOURIST   No AN: path simulated for 66 s (21*pi). 83a. Arena bounded with no internal objects and path shown; 83b.     

b. Behaviors over time and locations in x-y plane.  Combined AHEAD & AVOID  moves along the expected wall, and after the 
delay, SEEK cues at about 13 s, and at 5 later times. Path is one full cycle around the arena. SEEK interrupted (every 10th pt. 
darker) Path: start heading= 0 deg.; Initial: xpos=70, ypos=25, tAVOID=0.125s, tWaitSEEK=5s.  1.0.83.20160926M 
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84a.  84b  
Figure 56. TOURIST   AN ON: path simulated for 66 s (21*pi). 84a. Arena bounded with no internal objects and path shown; 84b.     

b. Behaviors over time and locations in x-y plane.  Anticipation moves away from the expected wall, and after the delay, SEEK 
cues at 6.76 s, yet before 270 deg is turned, at 7.08 s a wall is found by FIND and TOURIST moves towards it, with AHEAD & 
AVOID again follow the wall. SEEK & FIND are cued once more over 66 s, the same as one cycle for NO AN. SEEK interrupted 
(every 10th pt. darker) Path: start heading= 0 deg.; Initial: xpos=70, ypos=25, tAVOID=0.125s, tWaitSEEK=5s.  
1.0.84.20160926M 
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            NO   ANTICIPATION.  28 cm     ANTICIPATION  ON.  28 & 50 cm    
Figure 57. AN path simulated for 44 s (14*pi). No Anticipation: 28 cm; (left); No  Anticipation on: 28 cm (right). Both initial: 

xpos=70, ypos=25; When Minimum= Maximum distance= 28 cm, there is effectively No Anticipation;   Time shown of 44 s 
encounters Object 2 with No AN, but passes both Objects with AN On. Dotted lines show path of IR sensor percept beam at each 
second from the robot location to the IR endpoint 50 cm away, darker line only 28 cm. Random appearing directions occur during 
the SEEK routine spin that may point in almost any direction, but is only used when AN is On. 

      SEEK not interrupted (every 10th pt. darker) Path: start heading= 0 deg.; Initial: xpos=varies, ypos=varies, tAVOID=0.125s, 
tWaitSEEK=5s, NicheLayout=100X100cm, IROffset= 30 deg, speed= 15 cm/s; IRDistMin= 28 cm; IRDistMax= 28 cm.  
(ANSimDelay20160121R. 1.0.91.20161003M 
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89a.   89b  
Figure 58. TOURIST  NO  AN: path simulated for 44 s (14*pi). 89a. Arena bounded with no internal objects and path shown; 89b.     

b. Behaviors over time and locations in x-y plane.  Combined AHEAD & AVOID moves along the expected wall, and after the 
delay, SEEK cues at about 7 s, and at 2 later times. Error: Agent passes through Object2, as is not possible in the real world.  

      SEEK interrupted (every 10th pt. darker) Path: start heading= 0 deg.; Initial: xpos=70, ypos=25, tAVOID=0.125s, tWaitSEEK=5s.  
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90a.   90b  
Figure 59. TOURIST  AN ON: path simulated for 44 s (14*pi). 90a. Arena bounded with no internal objects and path shown; 90b.     

b. Behaviors over time and locations in x-y plane.  Combined AHEAD & AVOID moves along the expected wall, and after the 
delay, SEEK cues at about 7 s, and at 3 later times. Agent passes around both Objects 1 & 2, as desired. 1.0.90.20161003M 

      SEEK interrupted (every 10th pt. darker) Path: start heading= 0 deg.; Initial: xpos=70, ypos=25, tAVOID=0.125s, tWaitSEEK=5s.  
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            NO   ANTICIPATION.  50 cm     ANTICIPATION  ON.  28 & 50 cm    
Figure 60. AN path simulated for 44 s (14*pi). No  Anticipation: 50 cm (left); No  Anticipation on: 28 & 50 cm (right); Both Initial: 

xpos=70, ypos=25 (right);. Minimum= Maximum distance= 50 cm, there is effectively No Anticipation;   Time shown of 44 s 
encounters no Objects with No AN, and passes both Objects with AN On. Dotted lines show path of IR sensor percept beam at 
each second from the robot location to the IR endpoint 50 cm away, darker line only 28 cm. Random appearing directions occur 
during the SEEK routine spin that may point in almost any direction, but is only used when AN is On. 
SEEK interrupted (every 10th pt. darker) Path: start heading= 0 deg.; Initial: xpos=varies, ypos=varies, tAVOID=0.125s, 
tWaitSEEK=5s, NicheLayout=100X100cm, IROffset= 30 deg, speed= 15 cm/s; IRDistMin= 28 cm; IRDistMax= 28 cm  
(ANSimDelay20160121R. 1.0.93.20161004T 
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92a.    92b  
Figure 61Figure 61. TOURIST  NO  AN: path simulated for 44 s (14*pi). 92a. Arena bounded with 2 internal objects and path shown; 

b. Behaviors over time and locations in x-y plane. When Minimum= Maximum distance= 50 cm.  Combined AHEAD & AVOID 
moves along the expected wall, and after the delay, SEEK cues at about 7 s, and at 3 later times. Agent passes around both Objects 
1 and 2, as desired in the real world. 1.0.92.20161004T 

      SEEK not interrupted (10th pt. darker) Path: start heading= 0 deg.; Initial: xpos=70, ypos=25, tAVOID=0.125s, tWaitSEEK=5s. 
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90a.   90b  
Figure 62. TOURIST  AN ON: path simulated for 44 s (14*pi). 90a. Arena bounded with no internal objects and path shown; 90b.     

b. Behaviors over time and locations in x-y plane.  AHEAD & AVOID move along the expected wall, and after the delay, SEEK 
cues at about 7 s, and at 3 later times. Agent passes around both Objects 1 and 2, as desired.SEEK interrupted (10th pt. darker) 
Path: start heading= 0 deg.; Initial: xpos=70, ypos=25, tAVOID=0.125s, tWaitSEEK=5s. 1.0.90.20161003M SECTION BREAK 9 NEXT . 
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For a relatively extended run time for ANSIM, a run with AN ON shows earlier and repeated 

response to the wall to follow along but not reach a critical distance that is too close to allow the 

robot to miss the wall (Figs. 50, 51, & 52). Anticipation moves away from the expected wall, and 

after the delay, SEEK cues at 6.76 s, yet before 270 degrees is fully turned, at 7.08 s a wall is 

found by FIND and TOURIST moves towards it by a halt of SEEK and initiation of the 

EXPLORE behavior. Both AHEAD and AVOID again work together to follow the wall. SEEK 

and FIND are cued only once more over the total run time (66s), which is the same as one cycle 

for NO AN.  Dynamic changes in movement are more gradual and preemptive with Anticipation, 

or abrupt if Anticipation shows that is needed, as in corners and a new wall encounter. This 

shows that small adjustments effectively attain task achievement to follow the wall, while 

avoiding several cues of the SEEK behavior that use larger energy and effort to spin 270 degrees 

that is considerably more wasteful of resources. 

IN SECTION BREAK 9 . 

A benefit of anticipation also is shown in these comparisons (Fig. 53). Only a little over one 

cycle of the arena is made with NO AN, but with AN ON the TOURIST covers the arena twice 

that much (about 2.5 cycles). Hence, the addition of anticipation allows for a quicker and more 

thorough coverage of the area, which has advantages in dynamic situations.  

 

For another relatively extended run time for ANSIM, a run with AN ON shows earlier and 

repeated response to the wall to follow along but not reach a critical distance that is too close to 

allow the robot to miss the wall (Figs. 54, 55, & 56). The paths of the IR beam were included at 

one second intervals in these comparisons to more clearly show the range covered by the 

perceptions by the beam. These illustrate that the repeated cycling with AN ON and the range of 
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the beam is considerably greater over time than with NO AN. Thus, having anticipation covers a 

broader range in the same time, and would be able to pick up dynamic changes in the niche more 

readily than without anticipation. 

 

For two objects in the arena and relatively medium length run time for ANSIM, a run with NO 

AN collides with an object (Object 2) because the IR sensor perceives slightly to the side instead 

of directly to the front (Figs. 57, 58, & 59). So in this specific case of timing and path traveled, 

the collision occurs. However, AN ON responds earlier and with more distance from the wall 

also allows the robot to miss the object. Anticipation appears preemptive for this case, though 

may partially be a result of the specific setup of the arena with objects. 

 

In addition, for two objects in the arena and relatively medium length run time for ANSIM, a run 

with a longer IR beam (50 instead of 28 cm) and with NO AN no longer collides with an object 

but moves a greater distance from the wall that also allows the TOURIST to miss the objects 

(Figs. 60, 61, & 62). Similarly, with AN ON and the same distances used as before, the 

TOURIST misses the objects while following the wall, and does so even more smoothly and 

preemptively than just with the single lengthened distance reference. Thus, adding the 

anticipation concept makes small adjustments instead of larger ones, so results in less abrupt 

movements that appear less wasteful of energy and appear to more responses to the objects rather 

just the arena wall.  

 

When placing a single object in the center of the arena, different behavior responses are observed 

for NO AN or for AN ON (Figs. 63, 64, & 65). With NO AN, the TOURIST does not encounter 
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the object, and only follows the arena wall. When AN is added (AN ON), the object is found 

during a SEEK spin, and the TOURIST moves towards yet passes by it without any collision. On 

a second cycle, the results of AHEAD and AVOID along the arena wall do not cue SEEK, so no 

spin occurs, and thus no encountering of the object. A tighter circle around the center is made, 

but there is no perception or interaction with the object during the second cycle. Overall, these 

slightly differing behavior sequences suggest the addition of anticipation allows for greater 

flexibility in traveling the arena. 

 

When adding two objects in opposing corners, response with AN ON is much more concentrated 

on the objects (Figs. 66, 67, & 68). With NO AN, the TOURIST only encounters object 2, and 

uses AVOID to pass round it. With AN ON, the TOURIST passes by both objects in multiple 

cycles around the arena. Thus, with AN ON, the TOURIST is more responsive to the objects in 

the arena than without AN. Both objects are anticipated, and AHEAD & AVOID  move away 

from them before any destructive encounter. Location of the objects in relation to arena walls 

does affect the outcome, and cued behaviors operate before any negative encounters occur for 

the simulations, as was expected. 

SECTION BREAK 10 NEXT . 
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            NO   ANTICIPATION.  28 cm     ANTICIPATION  ON.  28 & 50 cm    
 
Figure 63. AN path simulated for 66 s (21*pi). No Anticipation: 28 cm (left); Anticipation On: 28 & 50 cm (right); Both Initial: 

xpos=70, ypos=25 (right); For Minimum= Maximum distance= 28 cm, there is effectively No Anticipation;   Time shown of 66 s 
encounters no object with No AN, and passes by the one object with AN On. Dotted lines show path of IR sensor percept 
beam at each second from the robot location to the IR endpoint 50 cm away, darker line only 28 cm. Random appearing directions 
occur during the SEEK routine spin that may point in almost any direction, but is only used when AN in On. 

      SEEK not interrupted (every 10th pt. darker) Path: start heading= 0 deg.; Initial: xpos=varies, ypos=varies, tAVOID=0.125s, 
tWaitSEEK=5s, NicheLayout=100X100cm, IROffset= 30 deg, speed= 15 cm/s; IRDistMin= 28 cm; IRDistMax= 28 cm  
(ANSimDelay20160121R. 1.0.96.20161027R 
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94a.   94b  
Figure 64. TOURIST  No AN: path simulated for 66 s (21*pi). 94a. Arena bounded with no internal objects and path shown; 94b.      

b. Behaviors over time and locations in x-y plane.  Combined AHEAD & AVOID moves along the expected wall, and after the 
delay, SEEK cues at about 13 s, and at 5 later times.  1.0.94.20161027R 

      SEEK interrupted (every 10th pt. darker) Path: start heading= 0 deg.; Initial: xpos=70, ypos=25, tAVOID=0.125s, tWaitSEEK=5s,  
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95a.    95b  
Figure 65. TOURIST   AN ON: path simulated for 66 s (21*pi). 95a. Arena bounded with no internal objects and path shown; 95b.    

b. Behaviors over time and locations in x-y plane. Anticipation moves away from the expected wall,  and after the delay, SEEK 
cues at 6.76 s, yet before 270 deg is turned, at 7.08 s an object is found and the TOURIST moves towards it, combining with 
AHEAD & AVOID to again move near the object. One more SEEK & FIND behavior combination is cued over the interval 
shown. The insert small graph shows the path more clearly without indicated IR beam (upper left). 1.0.95.20160926M 

      SEEK interrupted (every 10th pt. darker) Path: start heading= 0 deg.; Initial: xpos=70, ypos=25, tAVOID=0.125s, tWaitSEEK=5s. 
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            NO   ANTICIPATION.  28 cm     ANTICIPATION  ON.  28 & 50 cm    
 
Figure 66. AN path simulated for 66 s (21*pi). No Anticipation: 28 cm (left); Anticipation On: 28 & 50 cm (right); Both Initial: 

xpos=70, ypos=25 (right); For Minimum= Maximum distance= 28 cm, there is effectively No Anticipation;  Time shown of 66 s 
encounters only object 2 with No AN, and passes by both objects with AN On. With AN ON, the TOURIST is more 
responsive to the objects in the arena than without AN. Dotted lines show path of IR sensor percept beam at each second from 
the robot location to the IR endpoint 50 cm away, darker line only 28 cm. Random appearing directions occur during the SEEK 
routine spin that may point in almost any direction, but is only used when AN in On.    1.0.99.20161027R 

      SEEK not interrupted (every 10th pt. darker) Path: start heading= 0 deg.; Initial: xpos=varies, ypos=varies, tAVOID=0.125s, 
tWaitSEEK=5s, NicheLayout=100X100cm, IROffset= 30 deg, speed= 15 cm/s; IRDistMin= 28 cm; IRDistMax= 28 cm  
(ANSimDelay20160121R. 
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97a.   97b  
Figure 67. TOURIST  No AN: path simulated for 66 s (21*pi). 97a. Arena bounded with two internal objects and path shown; 97b.     

b. Behaviors over time and locations in x-y plane. Combined AHEAD & AVOID moves along the expected wall, and after the 
delay, SEEK cues at about 13s, and  5 later times. The TOURIST goes around object 2 when it is encountered.  1.0.97.20161028F 

      SEEK not interrupted (every 10th pt. darker) Path: start heading= 0 deg.; Initial: xpos=70, ypos=25, tAVOID=0.125s, 
tWaitSEEK=5s.  
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98a.    98b  
Figure 68. TOURIST   AN ON: path simulated for 66 s (21*pi). 98a. Arena bounded with two internal objects and path shown; 98b.    

b. Behaviors over time and locations in x-y plane. Anticipation moves away from the expected wall & objects. SEEK cues at 6.76 
s, yet before 270 deg is turned, at 7.08 s a wall is found and the TOURIST moves towards it. Both objects are anticipated and 
AHEAD & AVOID move away from them before any destructive encounter. No more SEEK & FIND are cued over the period, 
since objects are readily responded to. Insert graph shows the path more clearly (upper left).  SEEK interrupted (10th pt. darker) 
Path: start heading= 0 deg.; Initial: xpos=70,  ypos=25, tAVOID=0.125s, tWaitSEEK=5s, 1.0.98.20161028F SECTION BREAK 11 NEXT
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ANTICIPATION  BENEFITS 

Simulations above illustrate how adding anticipation to the TOURIST robot agent by infusing 

the system dynamics of improved archetypes demonstrates the benefits of including anticipation 

in a simple robotic system. First, the system performance in the arena was verified to be that 

expected for the previous wall following robot from the work of Connell (1990), both traveling 

along the wall and avoiding objects using the three behaviors EXPLORE, AVOID, and SEEK. 

Then anticipation (AN) was added via the two system archetypes: Limits To Growth (LTG) and 

Shifting The Burden (STB). Since a key trait of AN is to observe agent behavior before the 

outcome of the situation is certain, the illustration showing small adjustments to the AN path 

prior to encountering the wall or objects is evidence of AN working in the altered system. In 

essence, the system appears to know the future of later interaction with the wall or object, and 

makes the adjustments prior to that. The system dynamics to the archetypes working within the 

system structure manifests the behavior choice that best matches the niche condition. 

IN SECTION BREAK 11  . 

In biological systems, an organism may need to practice to develop the quick response behavior 

to the perceived niche conditions. Similarly, in artificial robotic systems the designer builds in 

the response behavior that matches the expected niche conditions. A relatively small set of likely 

conditions must be identified by the designer, and the direct desired behavior is matched to the 

niche conditions. This choice to manifest the specific behavior is based on some method to 

calculate a fitness or suitability of the current behavior to match the niche. In general, a weighted 

combination of several factors can be combined to determine such a suitable fitness value. For 

the TOURIST, distance to a wall or object is perceived by the infrared (IR) sensor, and a ratio of 

the distance to a critical minimum distance is used to form a relative scaled value that allows 
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execution of the choice behavior. This application of anticipation dictates use of the AHEAD 

behavior to cue the AVOID behavior more often, yet for briefer time periods, and as needed for 

smaller path adjustments that move away from the wall before it is encountered. Effectively, 

with AN the SEEK behavior occurs less often (about only a third as much), and thus keeps from 

using large amounts of energy associated with the 270 degree CCW spin. Considerably smaller 

adjustments, and much fewer larger adjustments, represent both an energy savings, and coverage 

of a relatively larger area in a repeated manner. The increased coverage enables more rapid and 

effective identification of objects and potential dynamic changes within the arena. In this way, 

behavior choice is effectively determined by an expected future condition, that of 

encountering a wall or object. Varying locations of the objects in relation to arena walls does 

affect observed outcomes, yet cued behaviors operate before any negative encounters occur for 

the simulations, as was expected. 

 

The simulation contains models of both the agent itself and the niche environment. The model 

keeps track of the location and traveled path, as well as the heading for the next forward travel. 

Current and past behaviors are tracked, too. The simulation contains a simple description map of 

the initial layout of the arena and objects. Distance from the robot agent to the arena boundaries 

is perceived within desired ranges, so the situated location of the robot in relation to other items 

in the arena is also known, at least in the forward looking direction (with a slight angle offset). 

These parameters correlate the robot agent with the niche and resulting behavior, so there is a 

connectedness with the niche world, though the perceptions are minimal. Hence, the robot 

appears to be synchronized in the arena as it moves dynamically in the overall system arena. 

Observing these combinations of behavior for the artificial robot arena system, similar to what 
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might be observed for a biological organism in an arena, indicates that the overall robot with its 

niche world has the elements of anticipation. Especially, the most important elements to observe 

are that the system manifests behavior before the outcome is certain, so that observed behavior 

appears to have known the future outcome before it occurs. 

 

ROBOT  INSTANCE  OF ANTICIPATION  

The TOURIST robot was fashioned after the example of the wall follower (e.g., 

MURAMATOR, meaning ‘wall follower’ in Latin) designed and built by Connell (1990) using a 

colony architecture as a revised subsumption architecture after that developed by Brooks (1999). 

The TOURIST originally contained the three behaviors (EXPLORE, AVOID, and SEEK) as 

used by Connell to exhibit behavior-based robotics reactive response to a simple bounded arena 

and to objects placed in the arena. The TOURIST robot was observed to perform to verify the 

behaviors as expected for desired task achievement, to follow the wall and avoid objects to 

protect from collisions and destruction of the robot physical structure. The embedded 

microprocessor contained a Processing code that was ported to a computer simulation, ANSIM 

(for ANticipation SIMulation) in SIMULINK  with underlying behaviors translated into a 

subsystems in MATLAB representation. A virtual niche environment was constructed as an 

arena with objects for the robot to virtually travel within. A virtual sensing procedure was 

developed to mimic the operation of an infrared (IR) sensor, to perceive and form a percept of 

the niche conditions at any set time. Initial tested results ensured the expected operation of the 

virtual robot in the arena, using graphs of the sequence of behaviors and the path traveled in the 

arena. These steps allowed for the ANSIM model to depict robot response using a reactive 

behavior-based robotics approach to navigate in a simple niche. 
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The notion of anticipation (AN) was added to the TOURIST using the system dynamics of the 

archetypes Limits to Growth (LTG) and Shifting The Burden (STB). The LTG archetype 

includes asymptotic approach to some value based on a system constraint. The first LTG 

archetype was added to the ANSIM model by adding an AHEAD behavior routine that used a 

further perception of distance to objects and walls, and scaled the turn aspect of the AVOID 

behavior to make relative small adjustments in a ratio of perceived object distance to that of 

some minimum distance for a safe turn to miss the object or wall.  The LTG archetype is 

considered appropriate for this response since it sets asymptotic limits to results realized by the 

AVOID behavior. The second STB archetype was added to the ANSIM model by adding a FIND 

behavior routine that interrupts the spin portion of the SEEK behavior if some object or wall is 

perceived at a further distance in a prescribed range. This invokes the TOURIST to stop SEEK 

behavior and start the EXPLORE behavior to move toward any object or wall. The STB 

archetype is considered appropriate here since it replaces the symptomatic solution as the SEEK 

spin with a fundamental solution to approach an object or follow a wall that is perceived nearby. 

Simulations of various scenarios show the effects of the archetypes to add anticipation to the 

robot navigation. Anticipation enables small adjustments before any critical approach distance is 

reached to a wall or object. Changes are less abrupt, and the cumulative effect is to move along 

the wall or pass objects without any contact. Fewer cues of the SEEK behavior (only a third as 

many) keeps from wasting relatively large amounts of energy merely to spin in place as the 

SEEK behavior to reach a new heading. Also, by using various maximum distances to use with 

anticipation on, very little effect was seen if there is a zero range of distances used, increasing to 

a useful level that anticipated walls and moved before contacts, to a longer-range detection that 

was actually too excessive. The excess case is over-anticipation, and reacts so prematurely as to 
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create turning that is not productive, never approaching a wall or object.  Thus, application of 

methods to enable anticipation can actually be overdone to the point of deleterious effects. On a 

more positive note, striking a balance between a minimum (28 cm) and maximum (50 cm) 

distance for turn scaling can produce a useful range that demonstrates the traits of anticipation. 

 

Currently, the abstracted ANSIM inferences in the formal system have been decoded back into 

the NS of the physical TOURIST robot, overcoming the challenges of making SIMULINK code 

into the Processing code used on the robot microprocessor (i.e., Arduino Nano). Initially, 

microprocessing code on the TOURIST robot used to manifest behavior choice was embedded in 

only about 40 lines of Processing code, and was a key portion of the code translated by encoding 

to SIMULINK/MATLAB subsystems to enact the behaviors correctly in simulation by ANSIM. 

Actually, this was the easiest part of the ANSIM simulation to enact, since the more difficult 

programing effort was to represent the surrounding arena environment, and the percepts of the 

local niche that manifest behavior. Once proper behavior operation was verified in simulation 

(behaviors resulted as expected), anticipation was added with a switch variable (AN01) that 

allowed simulation either without or with anticipation archetype system dynamics behaviors. 

Working simulation added code was decoded back to the Processing language for the 

microprocessor operation on the TOURIST robot. Effectively this was about 20 lines of code in 

two different subsystems. A minimalist perspective aligns well here with the idea that a 

significant change was possible with small alterations in operation of the actual physical 

TOURIST robot.  

Several demonstration runs of the TOURIST robot showed the effect of decoding the simulation 

FS to the robot NS. Setting the switch to select operation without anticipation (NO AN) resulted 
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in behaviors like those observed originally in the robot before simulations, with expected wall 

following and object avoidance. Thus, it was verified the same behaviors were observed for the 

TOURIST after the NS was encoded to the FS, and also after the FS was decoded from 

simulation back to the NS. Video records of the runs showed successful operation most of the 

time, but occasional collisions with walls occurred for certain specific angles that the wall 

follower was not able to effectively detect the wall to be avoided and followed (Fig. 69). Thus, 

AVOID behavior is limited by the angle setting of the IR beam, yet that angle is necessary to 

enable the wall following task achievement. The SEEK behavior similarly would lead to wall 

collisions if the angle of approach after the resulting spin was undesirable. Thus, both successes 

and limitations of the original TOURIST robot performance for task achievement was validated 

to occur after decoding back to the robot NS. 

 

Anticipation was added by setting the switch to activate anticipation behaviors (AHEAD and 

FIND). AHEAD was added to the selection for initiating and scaling timing of the AVOID 

behavior, while FIND permitted interruption of the SEEK behavior to engage new nearby walls 

and objects. With anticipation on (AN ON), the TOURIST robot made earlier smaller 

adjustments to the upcoming walls or objects using AHEAD and AVOID behaviors, staying 

farther away from them than was observed when there was no anticipation (NO AN). When 

SEEK was invoked, which was less often, FIND was shown to interrupt the spin as expected and 

move towards (yet AVOID) nearby walls and objects, as shown by video record (Fig. 70). These 

near walls and objects would not have been detected without anticipation, since the original spin 

of the wall follower was a timed procedure process that was not interrupted until it was 

complete. Occasionally the robot would collide with the wall at a certain unfortunate angle, yet 
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generally the workings of SEEK and FIND would move away successfully to continue 

EXPLORING of the arena. Thus, with anticipation on (AN ON), the TOURIST robot moved 

more smoothly along walls and more readily located walls and objects to approach, yet had 

fewer collisions, and resolved them more adequately than occurred without anticipation. 

 

ANTICIPATION METRIC 

A specific metric (ANNum) was developed for operation of the TOURIST robot considering the 

distance measured by the IR beam and the area covered by the motion of the robot at any time 

instance (Appendix A4). The metric (ANNum) can be used to compare travel of robot paths from 

ANSIM model for a set time and arena configuration. Area covered by the IR beam during each 

occurrance of behavior for EXPLORE, AVOID, and SEEK/AHEAD (anticipation on only) 

reflected impulse response to the niche conditions and were accumulated over time. Greater 

metric values were found with anticipation on, reflecting more behavior responsiveness to the 

niche per unit time when anticipation was used. 
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Figure 69. TOURIST robot video with no anticipation (NO AN). The TOURIST robot 

occasionally collides with and is stuck at a wall.  Video 
DSCI0026NOANv64sBESTStuckTwiceStuckEnd.AVI at 50 sec (20161130W). 

 

    
Figure 70. TOURIST robot video with anticipation on (AN ON). The TOURIST robot 

successfully escapes from a collision with the wall.  Video 
DSCI0028ANONvBESTGood2Unstuck.AVI at 57 sec (20161130W). 
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CHAPTER 5.  SUMMARY 
 
 
 

OVERVIEW  

Notion of Anticipation 

Anticipation is considered to have benefits beyond mere reaction to present niche conditions. 

The notion of anticipation presented here assumes predetermined choices exist that can be used 

to manifest behavior for certain expected conditions, yet concedes a logical reasonable response 

may not be available for uncertain and previously unknown and unconsidered conditions. Since a 

general purpose robot is not considered to exist, instead a robot agent with specific task 

achievement, or purpose, is considered to have a known set of behaviors that match a set or 

repertoire of expected conditions in a specific defined niche environment. The goal for future 

work with anticipation is to define the specific desired behaviors that match the expected niche 

conditions and result in desired task achievement.  Encountering unexpected niche conditions 

should result in safe behavior that does not appear illogical or unreasonable from a human 

perspective, and may be as simple as a noncommittal behavior that waits for the next known 

expected condition to occur. 

 

Anticipation Traits 

The major benefit of anticipation may be a more timely reaction to change that occurs in the 

niche. The main trait of anticipation is that action occurs before an expected outcome is certain, 

so quicker action should suggest the agent knew what was about to happen all along. This trait 

has advantages across many areas where conditions are likely to change, albeit within a range of 
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standard values that are matched to an appropriate behavior response. On a simple daily basis, 

this is akin to using robot agents to perform menial tasks on timers to make coffee or start a 

routine process such as closing blinds on windows and reducing temperatures for the night. 

Scheduling the movement of trains, such as those at an airport (e.g., Denver International 

Airport, CO), is a larger and more impactful procedure seen by many people. These simple items 

we already view as automation, and are commonplace. But anticipation has the additional 

requirement, that of acting before an outcome is certain. Although current automation processes 

work well in a sequence of scheduled events, such as train schedules, anticipation has the trait of 

including behaviors that are matched to niche conditions that are expected, yet not know when, 

where, and how they might be occurring. Anticipation has a type of flexibility to deal with a 

wider range of possible outcomes, and yet behave in a way that appears to have known the final 

outcome all along. This requires definition of a specific anticipation set repertoire, though it may 

still be small in size, yet enables quick and decisive action when conditions favor a certain 

expected outcome. Unfortunately, the early reaction could have adverse effects if a slight change 

in niche conditions actually favors a different outcome than the chosen behavior. Thus, 

anticipation also requires the ability to make behavior change rapidly and repeatedly with those 

changes found in the niche. 

 

Anticipation Benefits 

Considering these traits, anticipation has significant benefits due to its quick choice of a behavior 

and ability to switch to another more favored behavior. This should provide more rapid response 

than occurs for a strictly reactive system, and produce outcomes that better fit the dynamic 

changing current niche. The more decisive anticipatory behavior may be more explosive in 
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nature to create a stronger impact as perceived by an observer. The behavior arises from a model 

of the existing world view that determines a certain response is most likely favorable and 

rewarded, and thus make choice of the best matched behavior.  

 

Anticipation should enable smoother and more effective behavior choices. Wait and indecisive 

time should be reduced, while effective action should flow from step to step fluently without 

glitches or failures. Less problems should be observed in general. But more importantly, a series 

of successful behaviors should repeatedly result in desired task behavior in both the short and 

long run. The preconceived behaviors that are matched to expected niche conditions are endowed 

in the system structure by the designer through previous understanding of the likely situations, 

understanding and preparing for likely system archetypes flaws and acceptable solutions, and 

building in the correct most favorable responses. This requires a designer or system constructor 

to fully understand the niche environment and potential behavior outcomes that are desired to be 

reached to provide task achievement. 

 

Anticipation in Robotics 

Anticipation and its operation applies to robotics specifically in at least two separate ways. First, 

it requires the designer to fully describe expected goals and operation of the system within 

constraints, and to produce the robot structure and process responses in software programming 

that can sufficiently attain those goals and operation. Secondly, the autonomous operation of the 

robot must properly acquire percepts of the niche to allow the correct matched selection of a 

choice behavior, and to do so autonomously and repeatedly as long as it has sufficient power to 



157 
 

operate. Granted, a mobile robot has an obvious constraint of limited energy supply that 

eventually restricts ongoing successful operation.  

 

Anticipation is not able to avoid all possible negative situations that might occur for a robotic 

system.  Indeed, the early action before the outcome is known might actually choose the wrong 

behavior, or one less suited, if the conditions in the environment unfold differently than the local 

area of the niche indicated. Recall the niche is the area local to the robot that is sensed. 

Conditions slightly outside that perceive niche may differ, or the percept might be erroneous due 

to unexpected conditions in the larger environment, something as simple as bright light or 

shadows. It has been observed in testing that bright light that contains a high level of IR can 

actually be perceived as an object, when in reality there is no nearby object. To counteract a 

premature behavior choice, the robot system must continually sample the niche often enough to 

permit a subsequent change in behabior that makes the desired adjustment that truly matches the 

actual niche. Therefore, the robot ‘catches’ itself in a possible incorrect choice, and makes a 

proper adjustment, on that will allow for overall task achievement in the niche.  

 

Overall, anticipation must go beyond a robot merely reacting to an object, but should combine 

percepts of the niche to choose behavior that smoothly and gradually moves to a desired 

outcome, rather than having to make last second abrupt changes that are uncertain and may 

require more energy and resources to immediately solve the problem or perform an operation. 

The result should allow the robot agent to act in a way that an observer would say the agent 

already knows the outcome ahead of time, before the outcome is actually certain.  
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CONCLUSIONS 

Insights and Contributions  

This work contributes to the field of robotics with the following findings: 

1. A robot architecture that includes anticipation performs more smoothly and preemptively to 

make choice of behavior to better fit the niche condition and attain desired task achievement.  

2. The congruence framework assists in engineering a robot to perform in the natural system 

based on correctly decoding inferences simulated and shown successful in an abstracted 

formal system.  

3. Two known system archetypes can readily be coded into a formal system model to affect 

system operation: Limits to Growth, and Shifting of the Burden (or Goals). Simulation of the 

system archetypes allows system dynamics to be understood and documented, and allows 

possible solutions to known problem archetype results to be understood and modified for 

desired problem solutions.  

4. Applying the simulation to operation of a TOURIST robot with anticipation built into the 

archetype programming illustrates the advantages of including the notion of anticipation. The 

anticipation methods allow a TOURIST robot agent to travel a smoother path and make 

choice of small increments in behavior change that produce more desired longer term 

responses. With anticipation, numerous small adjustments are made that require less energy 

than large spins of the SEEK behavior, so only one third of the SEEK behaviors occur, and 

thus waste less energy and time. Also with anticipation, the TOURIST makes twice as many 

cycles of the area at the same speed and in the same time, so a broader range of area is 

covered and can more readily perceive any dynamic changes in the overall arena. The 

ANNum metric as developed for describing operation of the TOURIST robot showed greater 
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metric values were found with anticipation on, reflecting more behavior responsiveness to 

the niche per unit time when anticipation was used. 

5. The path traveled by the TOURIST with anticipation appears to know in advance the presence 

of objects or walls, and to undertake a choice of behavior to avoid negative contact and move 

along the wall in a desired fashion for task achievement, and to do so in a way that the robot 

appeared to know the outcome before it was certain to occur. 

 

FUTURE  WORK 

Anticipation Application 

It is ironic to discuss future work regarding anticipation, since anticipation is always about future 

expectations. The task before us now is to extend anticipation of robotics into other currently 

unused and untested areas, and especially those with shorter cycle times. A fundamental example 

is that of self-driving vehicles, one where much classical robotics has so far been applied to 

attempt to overcome the many complicated uncertainties in a driving environment that has been 

created for humans. Though a human in the loop (HIL) approach may be laudable and prudent 

from a safety standpoint, the more likely approach to be successful should craft the niche to align 

with needs of a robotic agent using current affordable technology. Anticipation added to 

driverless vehicles would reduce response time and provide smoother operation. 

 

Operational Description 

Overall, anticipation is used to define a repertoire of desired behaviors that match a specific 

niche setting, such as movement of busses or similar transports in a known corridor. This 
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approach is actually already in place for subway trains, with humans routinely vigorously 

forbidden from the domain of the vehicle. So instead of attempting to design a driverless vehicle 

for an innumerable n-p complete set of solutions, the niche should be better defined for the agent 

itself, to make the repertoire of reasonable behaviors finite and manageable. So part of the 

application of anticipation to control and robotics is to establish a known environment where 

niche conditions are readily known, and proper behavior responses can be matched to the current 

niche. 

 

Instances In Agriculture 

As an example instance, environment redesign for anticipation already exists in agricultural 

systems at some basic levels. Most obvious, agricultural equipment is built to standard width and 

row sizes to accommodate all processes from planting, to cultivation, to harvesting, eventual 

processing, and preparation for the succeeding crop. The choices for plant behaviors favors the 

ones desired for human benefit, and allows for the greatest or at least some measured level of 

reward for the efforts and costs incurred. Anticipation is incorporated in the plants themselves by 

selecting species and indeed cultivars that make it readily possible to enlist aid of machinery for 

the processes mentioned above. Unfortunately, conflicting views may arise, such as needing firm 

fruit for transport at the expense of flavor quality. Such tradeoffs are part of the notion of 

anticipation, since managers and operators must make real choices as to what traits are 

acceptable for at least a marginable number of individuals to favor and use the product. 

Anticipation is considered a benefit to add to future robotic machine designs, especially those for 

improving culture of intensely grown plants (e.g., hops for flavoring) or for improvement of 

menial harvesting procedures (e.g., strawberries that are still picked by human hands). The niche 
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must be sufficiently and properly understood to allow for the robot agent to select specific 

behaviors to successfully achieve desired tasks. 

 

Instance In Space Exploration 

On a broader scale, anticipation can be incorporated into such far-reaching areas as space 

exploration. Indeed, calculations of planet movements already are used to determine locations for 

possible and more importantly reasonable goals of space travel and exploration. Physical factors 

of gravity and inertia are included to anticipate what may be an acceptable payload, and we must 

take along enough of our own air to make a safe return trip. In a more refined way, anticipation 

by robotic agents can be enlisted to undertake maintenance schedules for living quarters both 

inside and out, while making sure food preparation and waste disposal are most pleasurable or 

tolerable for participants. This may be especially vital as we begin to undertake recreational trips 

into space. Robots may take on the likely servant role, or be devised specifically for 

entertainment, and in such cases using anticipation to meet both our physical comfort needs (e.g., 

food and drink) as well as interact with us in ways that are entertaining for most people (e.g., 

social interactions akin to games with appropriate challenges, and physical exercise). 

Anticipative ordering, as is already patented on earth for the Internet, might be commonplace. 

Robotic decisions might be enlisted to provide for human safety, making hard but reasonable 

choices when resources are limited, and return to a safer venue may be in order. Though we are 

reluctant to agree that actions by the robot or machine are to our benefit, we still respond to 

warning lights in our car, and let traffic lights dictate our daily travel routines. This requires that 

some operator and designer of the overall systems is constrained to build in anticipated choices 

that can ensure successful task achievement and completion. 
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Ideas Related to Anticipation 

There are many related areas of study to undertake. The selection of anticipation as a topic for 

study arose from consideration of all elements that might make a system robust. This exercise 

resulted in a ‘robustness orbit’ diagram, having a variety of 28 related elements ripe for similar 

future academic theoretical and practical study (Fig. 71).  Ordering the elements 

 

Robustness Orbit Components 
 
            Anticipation (Equipped) 
      Proactive    Make Links 
      Connectedness     Isolation 
            Stability     Previous Experience 
       Focus           Barriers 
     Recorded/Documented       Retain Information 
     Identify Parts                  Clarity 
      Energy Convertibility          Time Dependency 
         Skill (Innate& Acquired)              External Perspective 
           Continuous Improvement            Inclusiveness 
       Influence                Working Space 
          Multiple Items       Rank Importance 
      Trade-offs                 Overshoot 
            Results Check     Propinquity 
            Selective cues 
 

Figure 71. Robustness can be thought to include a collection of elements that work together 
to provide observed robust behavior,  and those elements are shown in an orbit 
arrangement for ease of recollection, and some priority importance. (20160906T)  

 

at least partially in terms of perceived priority or importance indicated that anticipation rose to 

the top, and some studies by previous researchers in a theoretical manner supported the necessity 

to look at anticipation for further study. The progress made with this one important element can 

be extended to the rest of the elements in the diagram. 
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Incorporating Anticipation Into Agents 

Scale of the situation (in size and time), key connections, operation sequences, tested 

performance, and design for manufacturability or harvest and processing must all be regarded as 

key to a framework that converts an abstract formal system into a realistic natural system 

solution. At all times, the notion of anticipation is still constrained by the Second Law of 

Thermodynamics, for ongoing increases in entropy will tend to favor and select for the 

minimalist simplest solution. 

 

Embracing Anticipation In The Future 

In all such cases, the robot designer should build in anticipation by realistically considering what 

simple small set of operations is indeed possible using existing technology, and that which is 

available in the near future (months to a year). Considering ideas too far removed in space and 

time are likely to be unsuccessful, and should only be attempted with acknowledgment of the 

large risks to be undertaken, and indeed the undesirable possible failures. Yet, the past bears 

many examples of such risks being taken, and we remember those that succeeded, while many 

times ignoring or forgetting those unsuccessful ones. We remember the Wright brothers’ first 

flights at Kitty Hawk, NC, and the crash of the Hindenburg, yet for quite different reasons. Both 

had strong impacts on air travel, even for today. One must realize and accept the fact that 

humans live in a social world that invites robotic agents to serve them, but does not encourage 

the robots to become more important that the creators themselves. Anticipation must have that 

benefit of helping humans to have a less menial, more safe, and fulfilling life, while the robotic 

agents themselves take on the underlying difficulties, and deliver what is expected by human 
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operators and users. In all cases, the robot must still measure up to human expectations and align 

with desired anticipation for a future world. 
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APPENDICES 
 
 
 

A1.  PERCEPTS 

Percepts arise from the area of psychology, as mentioned briefly in the main literature review of 

Chapter 2, where a percept is the mental recreation of a distal (external) stimulus. For robotics, 

the mental reference is replaced by an agent. A real world object is the distal stimulus or distal 

object. Through a physical process (light, sound, etc.) a sensory device/organ is stimulated, in 

turn using energy to create neural activity (called transduction). The internal raw pattern is the 

proximal stimulus, which is transmitted to the brain (agent processor) for processing. The 

resultant recreation of the distal stimulus in the brain is a percept. Overall, perception is creation 

of mental representations (images or archetypes) using the proximal stimuli derived from distal 

stimuli. For example, a cat as a distal stimulus is detected by light energy entering the eye to 

form an image on the retina as a proximal stimulus, and the reconstruction of the image in the 

brain (agent processor) is the percept (Fig. A.1.1).  A bird singing as a distal stimulus uses sound 

energy to move auditory receptors as the proximal stimulus, and interpretation by the brain 

(agent processor) is the percept. Intelligent agents choose to act both on individual and sequences 

of multiple percepts. An agent function maps each percept to an action, and subsequently to the 

next action. (From: https://en.wikipedia.org/wiki/Perception ; and 

https://en.wikipedia.org/wiki/Percept_%28artificial_intelligence%29) 

 

For the purposes of this study, a percept is an abstract representation of an element or factor in 

the niche. Synonyms include: form, rule, habit, image, code, and covenance. In brief, a percept in 

the FS is the abstraction of an elemental factor in the NS. Anticipation acts by using percepts of 
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the niche to cue a behavior that is manifest to produce a matching behavior by the agent, and 

lead to successful observed task achievement. Therefore, the percept is the perceived version of 

the item in the niche that is used to manifest behavior choice. 

 

  

Figure A1.1. Understanding of percepts derived from an external stimulus, transformed to be 
captured in the brain as abstract conceptual graphs (from: 
http://kremer.cpsc.ucalgary.ca/courses/CG/L3.html). This representation is quite detailed and 
complex on the abstraction side (right), and one might contend it resembles Classical 
Robotics and involved artificial intelligence as opposed to the behavior-based approach that 
matches action directly to conditions in the niche environment. 20160801M. 
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A2.  BIOPLANT  ANALOGY  

Plant Development,  

Architecture created for the operation of an artificial system such as a robot agent can be applied 

more generally to a natural biological system for an architecture of the multiple stages for 

biological plant (bioplant) growth, development, and reproduction (Fig. A2.1). In both the 

artificial robot system and the natural bioplant system, a niche environment is perceived to form 

percepts for the current condition. A combination of the percept factors (infrared or IR, light, 

temperature, etc.) is used to determine a fitness or suitability for a specific behavior to match the 

niche condition.  Within that niche context, a threshold coupling makes a type of selection to 

manifest the preferred behavior for that condition. For the robot, it is a mathematically integral of 

the multiple niche percept factors that cue a change in behavior. For the bioplant, the integration 

occurs in biochemical pathways that create threshold levels of chemical molecules that can cue 

the initiation, and subsequent continuation, of a change in development stage, or nuances within 

that stage. Hence, a bioplant changes from the vegetative stage (forming only leaves) to a 

reproductive stage (forming flower buds) based on a combination of percepts of the niche that 

cue the change.  

 

Anticipation of future events is tied up with the time constants for response. Both natural 

bioplants and animals have inherent physical structures and biochemical pathways that lead to 

preparation for and subsequent manifesting of behavior choices that lead to attaining desired 

goals for survival and reproduction.  
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Figure A2.1. Architecture for robotics relating perceived environmental niche to context for 
robot behavior with reinforcing loop back to the niche (top) and modified for plant 
architecture (bottom) [causal diagram and flow map].  5.2.0.2.18.20151013T 
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and biochemical pathways that allows behavior change in a shorter time frame than is needed to 

attain the results that ensure survival. Here anticipation works to benefit the organism, since it 

acts before the outcome is certain, yet the behavior choice leads to a preferred task achievement. 

The behavior may change again before a negative effect is realized if the change in behavior was 

premature as cued by the niche, and thus not preferred at that time. Thus, the quick and malleable 

behavior choice is a trait of anticipation that leads to preferred task achievement, and it appears 

the organism knew the future before it actually occurred. 

 

Hops Production Congruence Framework  

Hops (Humulus lupulus, from Wikipedia) can be modeled within the congruence framework as 

patterned after Rosen (1991), by considering the elements, 1. Natural System, NS (Hops plant 

system), 2. Encoding, 3. Formal system model, FS, and 4. Decoding back to the NS. 

1. Natural System, NS (Hops plant system): Hops (Humulus lupulus, from Wikipedia) are 

harvested as the unfertilized flower structure that develops on vines grown on upright string 

structures. The plant is a herbaeceous perennial bearing a single annual crop of fresh hops under 

natural conditions within the USA that provide adequate light and temperature (daylength 

sensitivity to induce flowering is not known), while proper nutrition and soil conditions must be 

provided, along with a mechanical superstructure support system that allows the plants to grow 

vining in a vertical direction for several meters. Plants are dioecious, meaning separate plants are 

either male or female, so only the female plants are propagated using asexual means by cuttings, 

and male plants are removed since pollination actually forms seeds, which is undesirable since it 

prevents the desired oil production. Various cultivars produce different desired oils that provide 

specific flavors, and may vary in growth habit as to total production time and total yield. Plants 
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are subject to known pests such as spider mites and powdery mildew that limit overall yield. 

Quality of the hops is influenced by freshness of harvest at peak oil production that may be used 

directly within a few hours in brewing, or the hops may be dried and stored for later use. 

Brewmasters vary the amount and cultivars of hops used to regulate the traits of beer produced 

from the brewing and fermentation process. Note there may be considerable difference in a 

specific biological effect for different crop species. For hops, pollination is a problem (not 

wanted!), and for strawberries, pollination also is a problem (wanted to be thorough!) which is 

for the opposite reason! 

 

2. Encoding: Niche conditions must be encoded to capture the specific cues that combine to 

produce hops plant growth through stages of VEGETATION, BUD INDUCTION, 

FLOWERING, HOP DEVELOPMENT, HARVEST, and DORMANCY between annual growth 

cycles. Environmental factors to consider include light (LT), temperature (both for day and 

night: DT and NT), nutrition (NUT), soil media type (ST), water needs (WT), pest problems 

(PEST), and mechanical support (MST) needed to hold the crop upright due to the crop vining 

habit. Temperature is separated into two factors since it is known for plants generally that the 

rate of plant development is most correlated with night temperature, while plant habit such as 

stem elongation is controlled by the difference between day and night temperature (DIF). 

Conditions of light and temperature are presented as total accumulation for each day, while for 

temperature the values used are an average over the lighted and dark periods. Also for light, if 

FLOWER or other key response, such as DORMANT, behavior can be determined as cued by 

some critical daylength, then the length of the lighted and dark periods must be specifically 

tracked to determine the effect on behavior. Experimentation and measurement of plant traits 
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must be used to initially abstract the understanding of plant growth into terms that can be 

described in the mathematical formal system. Possibly overall age (YEARs) the crop has been 

grown has an effect. Because of the relatively high number of niche factors to consider, the 

relationships to determine first are those thought to have greatest influence, and the factors above 

are listed generally in that order. Efforts would be made in the later decoding process to maintain 

the levels of certain factors constant, in hopes that has the lest significance at some preassigned 

level. This incorporates the notion of metaphor, for by using conditions that are known to work 

well in a natural setting, and to reduce pests through environmental means or with pesticides, and 

to use other relations of nutrition that work well for other related crops, the FS model may 

include inherent inferences within the model structure, though the true effects of certain factors 

are never specifically tested and relations determined. Only in extremes or with a change in the 

cultural growing system, such as to minimize inputs, would the factor relations be determined, 

and included in subsystems to the original FS model. 

 

3. Formal system model, FS: The formal system includes two rather different types of 

mathematical relations: 1. ‘Black box’ relations, and 2. Differential equations of physical 

processes. ‘Black box’ relations can be represented through statistical fit of regression 

parameters to linear equation terms or certain nonlinear constructs that directly reflect the 

observed output behavior values in response to specific input values over some range of 

experimentation and direct measurement of observed output. This abstraction ignores the 

mechanism in the underlying process, and merely relates output to input through a mathematical 

construct. At some level of reductionism, this technique is almost always used, and assumes 

constants for terms that can be readily controlled, and may assume certain factors of no concern 



176 
 

have no effect in the current niche situation. Differential equations are used to capture relations 

where the mechanism is understood or desired to be represented for further mathematical 

analysis, such as extrapolation beyond experimental conditions that gave rise to the initial 

relations, or to study the relationship more detail. Even these attempts to represent the 

mechanism will eventually reach limits and failure as the desire to simulate extremes become 

vastly different from the test conditions that are known to work for observed plant system 

growth. This principle follows that of Simon (1996), where he contends only local levels of input 

in space and time are of concern, and the farther one moves from known conditions, the less sure 

one is of the results to expect. In this way, anticipation of results is limited to conditions that are 

expected and known, while widely varying conditions would actually be expected to produce 

results that differ greatly from those observed for known conditions. The two types of equations 

can be combined to capture the entailments of inference that will make a behavior choice (a 

particular output value) based on multiple input cues. The black box regression equations may be 

thought of as: 

  BIOMASS= f(LT, DT, NT, NUT, PEST, WT, YEAR),   (A1.1) 

where each of these factors was define above. 

Generally, these may be linear, quadratic or cubic regressions for each of the pertinent factors, or 

may involve a sinusoidal varying input of any of the factors. 

Slightly differently, the differential equations may be represented as: 

  d(BIOMASS)/dt= f(An, An', An'')      (A1.2) 

where An, and the successive primes are the derivatives with respect to time. Either of the two 

types of equations might be used for a trait (e.g., height, time to harvest) or the two types might 

be used in unison to capture nuances of the relations in the niche and in time. Simulations may 
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be run for various inputs of interest, such as reducing inputs to lowest possible levels while 

maintaining desired quality or timing for harvest. Results of the simulations point to the direction 

of interest for applying the results found in the FS to improve results in the NS. 

 

4. Decoding back to the NS: Once simulation has determined courses of action or niche 

conditions of interest to be used in the NS, the simulated results must be decoded back to the 

congruent entailments of causation in the NS. On the simplest level, decoding for a greenhouse 

of growth chamber allows setting of fairly precise niche conditions, and thus the resulting 

behavior can be observed to be congruent or not with simulated results. For a more natural 

setting, measured environmental niche conditions must be input to the model, and the results 

compared with observations to affirm congruence. If results are not as congruent as desired, 

several items should be considered for making changes to the FS model, including scaling in 

space and time, key operations, forming connections, sequential ordering, comparison of options, 

and design for manufacturing and assembly type operations that include harvest. Each of these 

can be described for the hops production with a couple examples that follow. 

 

Scaling aspects (Large-scale): 

Desired: An arena must be large enough to produce a quantity of hops for commercial use.  

Decode: A crop size must include enough plants so minimum produced can make a batch. 

Scaling aspects (Small-scale): 

Desired: Individual flowers should be close together for easy harvest. 

Decode: Niche conditions should limit growth rate to keep flowers close together. 
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A3.  ANTICIPATION  SIMULATION  PROGRAM  CODE  

ANSIM CODE 

Program for ANSIM (file: ANSimDelay20160121R.slx; ver. 10-28-2016): . 
 
NICHE: Subsystem NICHE LAYOUT 
function  [xgrid, ygrid, WallObj] = NicheLayoutfcn(ctimein1)  
%#codegen  
global  NicheLayout; %from NICHE section ML function; 201X201X1 init  
%NicheLayout(x,y,zval)= (x,y )biomass/locations; NicheLayout(x layout,ylayout)  
%NicheLayout(:,:,1)= xval, min to max  
%NicheLayout(:,:,2)= yval, min to max  
%NicheLayout(:,:,3)= zval wall or object: 0=open, 1=solid  
%center (0,0,:) at NicheLayout(101,101,:)  
  
coder.extrinsic( 'sprintf' , 'strcat' );  
coder.extrinsic( 'format ' , 'display' );  
  
if  (ctimein1 == 0); %create Niche at time=0  
%Decide not to use negative numbers for range covered. 2015 - 12- 5Sa 
%Since 28cm=11in is real bot, using 200 as max range  
  
%[m,n] = size(obj) from 
http://www.mathworks.com/help/distcomp/size.html?requestedDomain=www.mathwork
s.com  
[xmaxNL,ymaxNL, zmaxNL] = size(NicheLayout);  
  
%......Wall #1 bottom  
xmin=0; %-10;  
ymin=0; %-10;  
xminwall01=0;  
xmaxwall01=xmaxNL; %80;%5;  
yminwall01=0; %-0.1;  
ymaxwall01=1.0; %0.0;  
  
%...... wall #2 top  
xminwall02=0;  
xmaxwall02=xmaxNL; %50;%5;  
%subtract 3 & 2 below to make in 99 and 100 locations,  
%  since matrix contents is: index -2  
%  specifically: NicheLayout(xlayout,ylayout,1)= xmin + (xlayout - 2);  
yminwall02=ymaxNL - 3; %49;%- 0.1;  
ymaxwall02=ymaxNL - 2; %50.0;%0.0;  
%......  
  
%...... wall #3 left  
xminwall03=0;  
xmaxwall03=1;  
%subtract 3 & 2 below to make in 99 and 100 locations,  
%  since matrix contents is: index -2  
%  specifically: NicheLayout(xlayout,ylayout,1)= xmin + (xlayout - 2);  
yminwall03=0; %49;%- 0.1;  
ymaxwall03=ymaxNL - 2; %50.0;%0.0;  
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%......  
  
%......wall #4 right  
xminwall04=xmaxNL - 3;  
xmaxwall04=xmaxNL - 2;  
%subtract 3 & 2 below to make in 99 and 100 locations,  
%  since matrix contents is: index -2  
%  specifically: NicheLayout(xlayout,ylayout,1)= xmin + (xlayout - 2);  
yminwall04=0;  
ymaxwall04=ymaxNL - 2;  
%......  
  
%......objects #1 to # 2  
% 70 73 73  70 70  
xminobj01=70; xmaxobj01=73; yminobj01=70; ymaxobj01=73; %upper right  
%xminobj01=50; xmaxobj01=53; yminobj01=50; ymaxobj01=53; %center  
%xminobj01=51; xmaxobj01=54; yminobj01=21; ymaxobj01= 24;%original  
  
xminobj02=17; xmaxobj02=20; yminobj02=20; ymaxobj02=23; %lower left  
%xminobj02=21; xmaxobj02=24; yminobj02=51; ymaxobj02=54;%original  
%......  
  
  
xyNiche= ' ' ;  
spcolon= ':' ;  
  
for  ylayout= ymaxNL : - 1 : 1; %52;%total 52 elements; lowest as - 1: see eqs 
below  
%for ylayout= 52 : - 1 : 1;%52;%total 52 elements; lowest as - 1: see eqs below  
%index must be 1 or greater (no index zero)%NicheLayout(xlayout,ylayout,2)= 
ymin + (ylayout - 1);%((ylayout - 1)/10.0) ;  
%for ylayout= 201 : - 1 : 1;%1 : 121;%201;%total 201 elements; 101 is middle=0  
%NicheLayout as global variable on highest level system window  
%zeros(52,52,3)%previous took 10 min to run  
%zeros(201,201,3)%previous took 10 min to run  
     
%NicheLayout initialized as a global: NicheLayout(201,201,3)  
%if not  start  at either end, matrix will have unwanted zeros  
%if not finish at either end, matrix will have unwanted zeros  
     
 yrowprt= ': ' ;    
 for  xlayout= 1 : xmaxNL; %52;%total 52 elements; lowest as - 1: see eqs below  
 %for xlayout= 1 : 52;%52;%total 52 elements; lowest as - 1: see eqs below  
 %index must be 1 or greater (no index zero)  
 %NicheLayout(xlayout,ylayout,1)= xmin + (xlayout - 1);% ((xlayout - 1)/10.0 ) ;  
 %for xlayout= 1 : 201;%201;%total 201 elements; 101 is middle=0  
  NicheLayout(xlayout,ylayout,1)=  xmin + (xlayout - 2); % ((xlayout - 1)/10.0 ) ;  
  NicheLayout(xlayout,ylayout,2)= ymin + (ylayout - 2); %((ylayout - 1)/10.0) ;  
  %NicheLayout(xlayout,ylayout,1)= xmin + (xlayout - 1);% ((xlayout - 1)/10.0 ) ;  
  %NicheLayout(xlayout,ylayout,2)= ymin + (ylayout - 1);%((ylayout - 1)/10.0) ;  
   
  if  (ylayout == 5) && (xlayout == 5);  
    spxlayout= xlayout; %inner loop: xlayout  
    %spylayout= xlayout;  
  end ; %if (ylayout== 5)  
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  %=====add wall and objects here  
 
  
  %=======create a wall #1 Bottom of Graph===============  
  x1=xlayout;  
  y1=ylayout;  
  if  (NicheLayout(x1,y1,1) >= xminwall01) && (NicheLayout(x1,y1,1) <= 
xmaxwall01);  
    if  (NicheLayout(x1,y1,2) >= yminwall01) && (NicheLayout(x1,y1,2) <= 
ymaxwall01);  
         NicheLayout(x1,y1,3)= 1;  
    end ; %if (NicheLayout(x1,y1,2) >= ...  
  end ; %if (NicheLayout(x1,y1,1) >= ...  
  %=======end create a wall #1 Bottom of Graph===============  
   
  %=======create a wall #2 Top of graph===============  
  %x1=xlayout;  
  %y1=ylayout;  
  if  (NicheLayout(x1,y1,1) >= xminwall02) && (NicheLayout(x1,y1,1) <= 
xmaxwall02);  
    if  (NicheLayout(x1,y1,2) >= yminwall02) && (NicheLayout(x1,y1,2) <= 
ymaxwall02);  
         NicheLayout(x1,y1,3)= 1;  
    end ; %if (NicheLayout(x1,y1,2) >= ...  
  end ; %if (NicheLayout(x1,y1,1) >= ...  
  %=======end create a wall #2 Top of Graph===============  
   
  %=======create a wall #3 Left of graph===============  
  %x1=xlayout;  
  %y1=ylayout;  
  if  (NicheLayout(x1,y1,1) >= xminwall03) && (NicheLayout(x1,y1,1) <= 
xmaxwall03);  
    if  (NicheLayout(x1,y1,2) >= yminwall03) && (NicheLayout(x1,y1,2) <= 
ymaxwall03);  
         NicheLayout(x1,y1,3)= 1;  
    end ; %if (NicheLayout(x1,y1,2) >= ...  
  end ; %if (NicheLayout(x1,y1,1) >= ...  
  %=======end create a wall #3 Left of Graph===============  
  
  %=======create a wall #4 Right of graph============== = 
  %x1=xlayout;  
  %y1=ylayout;  
  if  (NicheLayout(x1,y1,1) >= xminwall04) && (NicheLayout(x1,y1,1) <= 
xmaxwall04);  
    if  (NicheLayout(x1,y1,2) >= yminwall04) && (NicheLayout(x1,y1,2) <= 
ymaxwall04);  
         NicheLayout(x1,y1,3)= 1;  
    end ; %if (NicheLayout(x1,y1,2) >= ...  
  end ; %if (NicheLayout(x1,y1,1) >= ...  
  %=======end create a wall #4 Right of Graph===============  
  
% {  
%add space after % to reactivate block  
%start of block comment for objects 2 & 1  
  %=======create an object #1 ===============  
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  if  (NicheLayout(x1,y1,1) >= xminobj01) && (NicheLayout(x1,y1,1) <= 
xmaxobj01);  
    if  (NicheLayout(x1,y1,2) >= yminobj01) && (NicheLayout(x1,y1,2) <= 
ymaxobj01);  
         NicheLayout(x1,y1,3)= 1;  
    end ; %if (NicheLayout(x1,y1,2) >= ...  
  end ; %if (NicheLayout(x1,y1,1) >= ...  
  %=======end create an object #1 ===============  
  
% }   
%add space after % to reactivate block  
%end of block comment for object 1  
  
% {  
%add space after % to reactivate block  
%start of block comment for objects 2  
  %=======create an object #2 ===============  
  if  (NicheLayout(x1,y1,1) >= xminobj02) && (NicheLayout(x1,y1,1) <= 
xmaxobj02);  
    if  (NicheLayout(x1,y1,2) >= yminobj02) && (NicheLayout(x1,y1,2) <= 
ymaxobj02);  
         NicheLayout(x1,y1,3)= 1;  
    end ; %if (NicheLayout(x1,y1,2) >= ...  
  end ; %if (NicheLayout(x1,y1,1) >= ...  
  %=======end create an object #2 ===============  
% }   
%add space after % to reactivate block  
%end of block comment for objects 2 & 1  
   
  
   
 end ; %for xlayout= 1 : 201;%201;  
  
  
 %coder.extrinsic('format','display');  
 spy1= ylayout;  
 %spx1= xlayout;  
  
  if  (ylayout >= - 1) %all rows  
  %if (ylayout >= (yminwall01 - 1)) && (ylayout <= (ymaxwall01+1))%rows having 
ones in them  
  %if (ylayout >= 90) && (ylayout <= 110)%rows having ones in them  
   spy1= ylayout;  
   %spx1= xlayout;  
   spNR= NicheLayout(:,ylayout,3);  
   ID= sprintf( '%03d' , ylayout);  
   ID2= strcat (ID, char(58) ); %add a colon: as char(58)  
   %http://www.mathworks.com/help/matlab/ref/char.html?searchHighlight=char  
   %NH= sprintf('%0.0f', xlayout, spNR )  
   %NH2= strcat (ID, sprintf('%0.0f', spNR ) )  
   NH3= strcat (ID2, sprintf( '%0.0f' , spNR ) ); %concatenate only 2 strings at 
a time  
   disp(NH3) %displays without variable name  
   %sptNR= sprintf('%0.0f', NicheRow )  
   %sptNR= sprintf('%0.0f', trNicheRow  )  
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   %yrowprt= strcat (yrowprt , NicheRow1 )  
    
   % %spfc1= sprintf('%0.0f', tANiche(:,1));  
   % %names = strcat(spfc3, {':::'}, spfc2);  
    
   %xyNiche = [ xyNiche char(10) yrowprt]  
   %names3 = [ names3 char(10)  spfc4]  
  
 
  end%if(x1 <= 5)  
  
   
 %els eif (ylayout <= 120) %syntax may not be correct here  
   %return %exits this call function: stop niche definition  
 end%for ylayout= 1 : 121;%201;  
  
  
 %--- add routine here to take rows of NicheLayout(:,:,3)  
 %need to correct the code below  
  
 %for 201: - 1:1  
   %print x row values successively  
   %alternate is to generate nested loop with y on outer loop, x as inner 
loop  
 %end%for 201: - 1:1  
  
 %--- test an array output  
  %...example  
  % Creating Multi - Dimensional Arrays  
  % Multidimensional arrays in MATLAB are  created the same way as  
  % two - dimensional arrays. For example, first define the 3 by 3 matrix, and  
  % then add a third dimension.  
  
  %A = [5 7 8;  
  %     0 1 9;  
  %     4 3 6];  
  %A(:,:,2) = [1 0 4;  
  %            3 5 6;  
  %            9 8 7];  
  %...end example  
   
  % 
  %Format a floating - point number using %e, %f, and %g specifiers.  
  %A = 1/eps;  
  %str_e = sprintf('%0.5e',A)  
  %str_f = sprintf('%0.5f',A)  
  %str_g = sprintf('%0.5g',A)  
  
   
 %--- end test array output  
   
%====end of add wall and objects here  
  
%============Add surface plot of NicheLayout (once after generated)  
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%http://www.mathworks.com/help/matlab/ref/surface.html?searchHighlight=surfac
e 
%surface(X,Y,Z,C) plots the parametric surface specified by X, Y, and Z, with 
color specified by C.  
%http://www.mathworks.com/help/matlab/ref/primitivesurface - properties.html  
%CData is of type uint8, then [0 0 0] corresponds to black and [255 255 255] 
corresponds to white.  
  
%hold on; %keeps previous plot and adds new lines to it.  
%hold off; %replaces previous plot.  
hold off ; %not seem to work between runs  
hNL= figure( 'Name' , 'Niche Layout' , 'NumberTitle' , 'off' , ...  %figure with handle 
hNL 
            'MenuBar' , 'none' , 'ToolBar' , 'none' ); %figure with handle hNL  
            %'Visible', 'on' );%figure with  handle hNL  
%255 is for some othether system  
%ClrData= ( [255 255 255] ; [0 0 0] );%syntax not correct  
%map = [255, 255, 255  
%       0, 0, 0];  
%colormap([255  255  255; 0  0  0]);%black=255 255 255; white= 0 0 0  
  
%http://www.mathworks.com/help/matlab/ref/colorspec.html  
%colormap([1  1  0; 0  1  1])  
%colormap([1 1 1; 0 0 0]);%white= 1 1 1; black=0 0 0;  
  
%blending of colors: no grid...  
%http://www.mathworks.com/help/matlab/visualize/representing -a- matrix - as -a-
surface.html  
%http://www.mathworks.com/help/matlab/ref/surface.html?searchHighlight=surfac
e 
%surface(XD,YD,ZD,C,...  
%    'FaceColor','texturemap',...  
%    'EdgeColor','none',...  
%    'CDataMapping','direct')  
  
% to remove grid, so use: 'EdgeColor','none',...     
  
%CData is color data, as zero or one for this matrix  
hNHs1=surf( NicheLayout(:,:,1) , NicheLayout(:,:,2) , NicheLayout(:,:,3), ...  
    'CData' ,  NicheLayout(:,:,3), ...  
    'EdgeColor' , 'none' ); %no grid drawn? or set to 'w' for white or [1 1 1]  
colormap([1 1 1; 0 0 0]); %white= 1 1 1; black=0 0 0;  
%surf differs from surface  
%hNHs1=surface(NicheLayout(:,:,1) , NicheLayout(:,:,2) , 
NicheLayout(:,:,3),...  
%         'CData',  NicheLayout(:,:,3) );  
  
%http://www.mathworks.com/help/matlab/ref/axis.html  
%axis(limits) sets the limits for the current axes.  
%If the current axes is a Cartesian axes, then specify limits as a  
%four - element vector of the form [xmin xmax ymin ymax] to set the  
%x- axis and y - axis limits. To also set the z - axis limits,  
%specify a six - element vector. To also set the color limits, specify an  
%eight - element vector. If the current axes is a polar axes, then specify  
%limits as a four - element vector to set the theta - axis and r - axis limits.  
%axis([xmin xmax ymin ymax zmin zmax] );  
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%axis([ - 10  110  - 10  110  0    2   ] );  
 axis([ - 5  105    - 5  105  0    2   ] );  
  
%hold on; %keeps previous plot and adds new lines to it.  
%View the object from directly overhead: azimuth, elevation.  
%az = 0; %el = 90;  
view(0, 90); %azimuth, elevation  
%view( - 35,45);  
%refresh(hNL);%not needed?  
%refresh(hNHs1);% block error: why%  
  
spctimein1= ctimein1 %print to see if reach here  
  
%Ctrl - [break/pause] key to stop the program  
%next 3 lines force an error and stops program run 'Name' not allowed here.  
%hNHs2=surface(NicheLayout(:,:,1) , NicheLayout(:,:,2) , 
NicheLayout(:,:,3),...  
%        'Name','JunkNiche LayoutJunk',...  
%         'CData',  NicheLayout(:,:,3) );  
  
%===========end Add surface plot  
  
end ; %if (ctimein1 ==0);%create Niche at time=0  
  
%y = NicheLayout;  
xgrid = NicheLayout(:,:,1);  
ygrid = NicheLayout(:,:, 2);  
WallObj  = NicheLayout(:,:,3);  
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PERCEPTS: Subsystem ML IRSen01 value 
function  [IRSen01, yGain, yIR, xOut, yOut, aGainOut, bGainOut, BotHead, 
IRHead,xFixMin, yFixMin, xFixMax, yFixMax]= IRSen01fcn(u)  
%function [IRSen01, BotHead, IRHead]= IRSen01fcn(u) %#codegen  
%Use to determine if IRSen01 detects a wall.  
global  NicheLayout; %from NICHE section ML function; 201X201X1 init  
%know previous behavior for changes  
global  aGain;  
global  bGain; %keeps values between loops  
global  daGain;  
global  dbGain; %keeps values between loops  
global  heading;  
global  speed; %keeps values between loops  
global  HoldTimeAll dtimeall ; %keeps values between loops  
global  IRSen01Dist IRSen01Min IRSen01Max; %Use in AHEAD_AVOID and/or 
FIND_SEEK;  
global  AN01; %AN 0=off, 1=0n  
global  xReadingFi xPlot yReadingFixPlot; %Plot IR distance boundary  
global  xReadingMinPlot yReadingMinPlot; %Plot Min IR distance boundary  
  
persistent  IROffset IRHeading IR01Prev; %headng IR sensor is pointing  
persistent  IRReading; %distance reading convert from voltage  
persistent  xReading yReading; % 
persistent  xReadingMin yReadingMin; % 
persistent  IRDistMax; %closeness value to trigger sensor (may use later?)  
%persistent HoldyTest;%allow only +1 yTest increment (previous value)  
  
coder.extrinsic( 'sprintf' , 'strcat' );  
coder.extrinsic( 'format' , 'display' );  
coder.extrinsic( 'find' );  
  
if  isempty(IROffset);  
 IROffset= pi()/6; % pi()/6= 180/6= 30 degrees% pi()/4= 180/4= 45 degrees  
 %for ANNum calc in EXPLORE as 30 default; need reset for any other angle  
 % actually in EnabledSybsystem/ML  EXPLORE C1* 
 IRReading= 100; %init as far from any object  
 xReading=0;  
 yReading=0;  
 xReadingMin=0;  
 yReadingMin=0;  
 xTest=0;  
 yTest=0;  
 IRDistMax= IRSen01Max; %60;%28;%initial value %Setting as 28cm=11in. 
closeness boundary to cue AVOID  
 %2016-7- 22F global  variables handle in multiple routines.  
 %Must also change in Context function:  Fitnessfcn(ctimein02,u)  
 %about line 89: if (IR01cm < 40);%28);%//28cm=11in//25 cm=10in  
  %may set IRDistMax in another function  
     %Also change in AHEAD_AVOID function line  57 as base to divide into.  
  
 %HoldyTest=1;%allow only +1 yTest increment (previous value)  
 %NewyTest=1;%allow only +1 yTest increment (new calced value)  
end ; %if isempty(IROffset)  
  
IRHeading= heading - IROffset; %heading IR sensor is pointing; neg=CW  
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%initialize  
IR01=100;  
yTest=1;  
HoldyTest=1; %allow only +1 yTest increment (previous value)  
NewyTest=1; %allow only +1 yTest increment (new calced value)  
  
 
  
%===see items needed below: trig  
%also: AVOID change heading?  
  
  
%%%%%%%%%%%%%%%%%%%  ANticipation additions %%%%%%%%%%%%%%%%%%%% 
 %set test value for distance with or w/o AN 2016 -7- 25; 4:30pm.  
 if  (AN01 > 0); %AN is on  
  IRSen01Test= IRSen01Max; %wide range  
 else ; %AN01=0: AN off  
  IRSen01Test= IRSen01Min; %narrow range  
 end ; %if (AN01 > 0);%AN is on  
%%%%%%%%%%%%%%%%  END ANticipation additions %%%%%%%%%%%%%%%%%%%%%% 
  
  
%(aGain,bGain) is (x,y) in area; assumed as IRSen01 location (stretch?)  
%(daGain,dbGain) are previous moves in (dx, dy) directions.  
%Agent is pointing in heading absolute direction in area.  
%IRSen01 is pointing in IRHeading absolute direction in area.  
  
%2016- 09- 23F revised test distance  
xDelta= IRSen01Test* cos (IRHeading);  
yDelta= IRSen01Test* sin (IRHeading);  
xReading= aGain + IRSen01Test* cos (IRHeading);  
yReading= bGain + IRSen01Test* sin (IRHeading);  
xReadingMin= aGain + IRSen01Min* cos (IRHeading);  
yReadingMin= bGain + IRSen01Min* sin (IRHeading);  
  
%Old calc using IRDistMax  
%xDelta= IRDistMax* cos (IRHeading);  
%yDelta= IRDistMax* sin (IRHeading);  
%xReading= aGain + IRDistMax* cos (I RHeading);  
%yReading= bGain + IRDistMax* sin (IRHeading);  
  
%next line for debug to stop at a specific time range.  
if  (HoldTimeAll > 3.4 && HoldTimeAll < 3.6);     
%if (HoldTimeAll > 3 && HoldTimeAll < 4);     
   ARunTime2=HoldTimeAll; %exit for loop  
   Junk=1;  
end ; %(HoldTimeAll > 3 && HoldTimeAll < 4);  
  
%++++++++++++++++++++++++++++++++  
%must check if pointed directly +/ - x or +/ - y for infinite value  
%================================  
  
%=====is IRHeading in positive x dir  
if  (xReading > aGain); %positive x  dir  
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  xStepOne= 1; %add in extra step  
elseif  (xReading == aGain); %along y axis ( need double equal signs)  
  xStepOne= 1;  
else ; %xReading < aGain: neg x dir  
  xStepOne= - 1;  
end ; %if (xReading > aGain);%positive x dir  
%============================  
  
%=====is IRHeading in positive y dir  
if  (yReading > bGain); %positive y dir  
  yStepOne= 1; %add in extra step  
elseif  (yReading == bGain); %along x axis (need double equal signs)  
  yStepOne= 1;  
else ; %xReading < aGain: neg x dir  
  yStepOne= - 1;  
end ; %if (xReading > aGain);%positive x dir  
%============================  
  
[mMax,nMax,qMax ] = size(NicheLayout);  
   %[m,n] = size(X) example f size return ML help  
    
xFixMin=min(fix(aGain), fix(xReading) );  
xFixMax=max(fix(aGain), fix(xReading) );  
yFixMin=min(fix(bGain), fix(yReading) );  
yFixMax=max(fix(bGain), fix(yReading) );  
  
[xMinIndex, xcol1]= find(NicheLayout(:,:,1)>=xFixMin,1, 'first' );  
  %k = find(X,4,'last')  
[yMinIndex, ycol1]= find(NicheLayout(:,:,2)>=yFixMin,1, 'first' );  
  
%==========IR range aGain to xReading, bGain to yReading=======  
aGainFix=max(fix(aGain), 1 );  
bGainFix=max(fix(bGain), 1 );  
%Plot of xReading & yReading  
xReadingFixPlot=fix(xReading); %Plot on final path graph  
yReadingFixPlot=fix(yReading); %Plot on final path graph  
  
xReadingMinPlot=fix(xReadingMin); %Plot on final path graph  
yReadingMinPlot=fix(yReadingMin); %Plot on final path graph  
  
  
  
%xReading and yReading can be calculated outside arena  
xReadingFix=max(fix(xReading), 1 );  
xReadingFix=min(fix(xReading), mMax); %100 );%above [mMax,nMax,qMax ] = 
size(NicheLayout);  
yReadingFix=max(fix(yReading), 1 );  
yReadingFix=min(fix(yReading), nMax); %100 );% above[mMax,nMax,qMax ] = 
size(NicheLayout);  
%Bounded Plot of xReading & yReading  
%xReadingFixPlot=min(100,xReadingFix);%Plot on final path graph  
%yReadingFixPlot= min(100,yReadingFix);%Plot on final path graph  
%xReadingFixPlot=max(0,xReadingFixPlot);%Plot on final path graph  
%yReadingFixPlot=max(0,yReadingFixPlot);%Plot on final path graph  
%==========END IR range aGain to xReading, bGain to yReading=======  
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%.................................  
if  (xFixMin <  NicheLayout(1,1,1));  
   spNR= aGain;  
   ID= sprintf( '%03d' , xFixMin);  
   ID2= strcat (ID, char(58) ); %add a colon: as char(58)  
   %http://www.mathworks.com/help/matlab/ref/char.html?searchHighlight=char  
   %NH= sprintf('%0.0f', xlayout, spNR )  
   %NH2= strcat (ID, sprintf('%0.0f', spNR ) )  
   %formatSpec = 'The array is %dx%d.';  
   %A1 = 2;  
   %A2 = 3;  
   %str = sprintf(formatSpec,A1,A2)  
   NH3= strcat (ID2, sprintf( ' =xFixMin, HALTED: aGain= %0.0f' , spNR ) 
); %concat enate only 2 strings at a time  
   disp(NH3) %displays without variable name  
elseif  (xFixMax > NicheLayout(mMax,nMax,1) );  
   spNR= aGain;  
   ID= sprintf( '%03d' , xFixMax);  
   ID2= strcat (ID, char(58) ); %add a colon: as char(58)  
   %http://www.mathworks.com/help/matlab/ref/char.html?searchHighlight=char  
   %NH= sprintf('%0.0f', xlayout, spNR )  
   %NH2= strcat (ID, sprintf('%0.0f', spNR ) )  
   %formatSpec = 'The array is %dx%d.';  
   %A1 = 2;  
   %A2 = 3;  
   %str = sprintf(formatSpec,A1,A2)  
   NH3= strcat (ID2, sprintf( ' =xFixMax, HALTED: aGain= %0.0f' , spNR ) 
); %concatenate only 2 strings at a time  
   disp(NH3) %displays without variable name             
else  
 %continue        
end ; %(xFixMin <  NicheLayout(1,1,1));  
%................................  
  
 
  
%need to test this in its own little program...  
%fix rounds to the nearest integer toward zero (up if neg).  
xfor=0; %flag leave exit for loop  
yfor=0; %flag leave exit for loop  
IR01Prev=IR01;  
  
%**********************************************************************  
%2016-1- 22F; 7pm  
%need to locate max and min values in NicheLayout(x,y,z) to stay in niche  
%***********************************************************************  
  
%LoopMin=min(aGain, xReading);  
%LoopMax=max(aGain, xReading);  
%*************************************************************************  
  
%******next line wrong: has upper end as neg, so loops once.*************  
%for xTest= fix(aGain)+ xStepOne : 1 : fix(xReading)+ xStepOne;%xStepOne set 
above based on pos or neg direction  
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%**********Need work here. 2016 -1- 25M, 2:34pm  
%see changed (but seems wrong) code in : IRSen01fcnSeemsOverWriting.m  
%next 2 lines need revision for looping of x and y distances  
for  xTest= aGainFix : xStepOne : xReadingFix; %xStepOne: aGain to xReading  
%for xTest= xFixMin : 1 : xFixMax;%xStepOne may not be needed anymore  
%for xTest= fix(aGain)+ xStepOne : xStepOne : fix(xReading)+ 
xStepOne;%xStepOne set above based on pos or neg direction  
 %floor rounds towards neg infinity: rounds down, or truncate.  
 %first time through loop is tested below as:  if (xTest<= xFixMin);%first 
time through loop  
 %-------  for bGainFix to yReadingFix  
 if  (aGainFix ~= xReadingFix); %not divide by zero  
  xFactor=abs(  (xTest - aGainFix)/(fix(xReading) - aGainFix)   );  
  yTest= bGainFix + floor (xFactor *  (fix(yReading) - bGainFix) ); %linear y 
value along line  
  %Chnaged two lines below to get range for XReading & YReading correct.  
  % 2016 -7- 8F; 2:30pm  
  %xFactor=abs(  (xTest - aGainFix)/(xReadingFix - aGainFix)   );  
  %yTest= bGainFix + floor (xFactor * (yRead ingFix - bGainFix) );%linear y 
value along line  
  testXReading=fix(xReading); %view variable values  
  testYReading=fix(yReading); %view variable values  
  testYReading; %view variable values  
 else ;  
  yTest = bGainFix; %keep at one value: maybe should be changed...step through 
y values  
 end ; % if (xFixMax > xFixMin)    
 %------- END for bGainFix to yReadingFix  
  
 
  
 %------- replaced for  bGainFix to yReadingFix  
 %if (xFixMax > xFixMin);%not divide by zero  
 % yTest= yFixMin + floor ( ( (xTest - xFixMin)/(xFixMax - xFixMi n))   * 
(yFixMax - yFixMin) );%linear y value along line  
 %else;  
 % yTest = yFixMin;%keep at one value: maybe should be changed...step through 
y values  
 %end;% if (xFixMax > xFixMin)    
 %------- END replace for  bGainFix to yReadingFix  
  
 %for yTest= yFixMin : 1 : yFixMax;%yStepOne may not be needed anymore  
       
       
  %Trig still needed even if min and max values used for both x and y 
directions  
    %want a line traveled, not a square  
  %yTest= fix(bGain) + fix( (xTest - aGain)*sin(IRHeading) );%yStepOne set 
above based on pos or neg direction  
  
  %---- for range: bGain to yReading; may not be correct place ------   
  if  (xTest== aGainFix); %first time through loop  
   HoldyTest=  yTest; %force OK for 1st yTest value  
   xReading;  
   yReading;  
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   IRHeading;  
   HoldTimeAll;  
   HoldyTest=max(yTest, 1);  
  end ; %if (xTest== xFixMin);  
%---- not seem to be correct place ------   
  
   
 %---- before range bGain to yReading; may not be correct place ------   
 % if (xTest<= xFixMin);%first time through loop  
 %  HoldyTest=  yTest;%force OK for 1st yTest value  
 %  xReading;  
 %  yReading;  
 %  IRHeading;  
 %  HoldTimeAll;  
 %  HoldyTest=max(yTest, 1);  
 % end;%if (xTest== xFixMin);  
%---- not seem to be correct place ------   
  
  %constrain in NichELayout index bounds  
  xTest= max(xTest, 1); % NicheLayout(1,1,1) );% 1 is y value  
  xTest= min(xTest, mMax); %NicheLayout(mMax,nMax,1) );%1 is y value  
  yTest= max(yTest, 1); %NicheLayout(1,1,2) );% 2 is y value  
  yTest= min(yTest, nMax); %NicheLayout(mMax,nMax,2) );%2 is y value  
  %.....is the NicheLayout value a one (solid)  
   
  
  %........time check.................................  
  if  (HoldTimeAll<10);  
      ATime= HoldTimeAll;  
  end ; %if (HoldTimeAll<10);   
  %.........end of  time check......................  
   
  %look for wall location ------------------------------------  
  %if ((yTest >= 2) && (yTest <= 4));%wall in y dir  
  %  if ((xTest >= 1) && (xTest <= 50));%may go to 80; wall in x dir  
  %    xTextck= xTest;  
  %    yTestck= yTest;  
  %    Nicheck= NicheLayout(xTest,yTest,3);  
  %    StopHereck=0;  
  % end;%if (xTest >= 2) && (xTest <= 4);%wall in x dir    
  %end;%if (yTest >= 2) && (yTest <= 4);%wall in y dir  
  %Endlook for walllocation ------------------------------------  
   
  NewyTest= yTest; %allow only +1 or - 1 increments in yTest  
   
  for  incTes t= HoldyTest : yStepOne : NewyTest; %increment only by 1 for each 
test  
  %for incTest= HoldyTest : 1 : NewyTest;%increment only by 1 for each test  
   if  (xTest< 1 );  
    xTest;  
    xTest=1;  
    %break;%exit for loop for yTest  
   end ; %if (xfor == 1)  
  
   if  (incTest < 1);   
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    incTest;  
    incTest=1;  
    %break;%exit for loop for yTest  
   end ; %if (xfor == 1)  
       
   if  ( NicheLayout(xTest,incTest,3)==1 ); %solid object detected at this 
distance  
     xfor=1;  
     yfor=1;  
     aRunTime1=HoldTimeAll; %previous time likely...  
     xdist= NicheLayout(xTest,incTest,1) - aGain; %xTest - aGain;%cos(xTest -
aGain);  
     ydist= NicheLayout(xTest,incTest,2) - bGain; %yTest - bGain;%sin(yTest -
bGain);  
     IR01= sqrt(xdist*xdist + ydist*ydist); %Pythagorus distance  
     IR01=min(IR01Prev,IR01);  
     IR01Prev=IR01;  
   elseif  (yfor == 0); %not solid object and none yet found in IR path scan  
     IR01=100; %set outside of range to cue close to object  
   else ;  
    %continue  
   end ; %if ( NicheLayout(xTest,yTest,3)==1 )  
  
   if  (yfor == 1);     
      break ; %exit for loop for yTest  
   end ; %if (xfor == 1)  
  
  end ; %for incTest= HoldyTest : 1 : NewyTest;  
  %...................    
   
 %In wrong place?: HoldyTest= yTest;%hold for test increment=1 for each test.  
 %end;%for yTest= yFixMin : 1 : yFixMax;%yStepOne may not be needed anymore  
  
 HoldyTest= yTest; %hold for test increment=1 for each test.  
  
 if  (xfor == 1);     
  break ; %exit for loop for xTest  
 end ; %if (xfor == 1)  
  
  %xOut=fix(xTest);%  
  %yOut=fix(yTest);%  
end ; %for xTest= xFixMin : 1 : xFixMax;%xStepOne may not be needed 
anymore%was:for xTest= aGain : 1 : fix(xReading)...  
  
%next line for debug to stop at a specific time range.  
if  (HoldTimeAll > 6.9 && HoldTimeAll < 7.1);     
%if (HoldTimeAll > 3 && HoldTimeAll < 4);     
   ARunTime2=HoldTimeAll; %exit for loop  
   Junk=1;  
end ; %(HoldTimeAll > 3 && HoldTimeAll < 4);  
  
%BotHead=heading;%for scope graph  
%IRHead=IRHeading;%for scope graph  
yGain=bGain; % black  
yIR=yReading; %blue  
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xOut=fix(xTest); % red  
yOut=fix(yTest); %0;%fix(yTest);%orange  
aGainOut=aGain; %track x over time  
bGainOut=bGain; %track y over time  
BotHead=heading; %for scope graph  
IRHead=IRHeading; %for scope graph  
IRSen01Dist=IR01; %For AHEAD_AVOID and/or FIND_SEEK; Used before ANNum calc of 
2017 - 0207T  
%2017- 02- 07T Used Global var. IRSen01Dist to calc ANNum later  
%  in CHOICE BEHAVIOR modules EXPLORE, AVOID, SEEK  
% 
%Below IRSen01=IR01=IRSen01Dist passed to CONTEXT routine directly for tests.  
IRSen01 = IR01; %set above in test loop  
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CONTEXT: Subsystem MATLAB function2 
function  [BEH,XPOS,YPOS]= Fitnessfcn(ctimein02,u)  
%#codegen  
%2017- 0207T IR01=u(3) passsed from previous routine, and it  
%  was used last fall 2016 for Dissertation ANSIM runs  
%2015- 12- 05Sa Currently u values passed in are not used;  
%only CueMoveStFBS is passed out (no scaling need ed).  
global  HoldTimeAll dtimeall TotalTime; %keeps values between loops  
global  aGain bGain; %keeps values between loops  
global  tAvoidRun; %keeps values between loops  
global  tSeekWait; %keeps values between loops  
global  tSeekRun; %keeps value between loops  
global  AN01; %AN 0=off, 1=0n  
global  IRSen01Min IRSen01Max; %closest to object or wall  
  
dtimeall=ctimein02 - HoldTimeAll; %across all behaviors  
TotalTime= TotalTime + dtimeall;  
HoldTimeAll=ctimein02;  
%Possibly: Reset this in behaviors, not in cue.%HoldTimeAll= 
ctim ein02;%across all behaviors  
  
persistent  ctimeprev; %keep value between loops  
persistent  CueMoveStFBSp tSpinWaitStart tForwStart; %keep value between loops  
persistent  tAvoidStart tAvoidRunFit; % 
persistent  tSpinDelay  tSpinRunStart;  
persistent  tSpinRun;  
persistent  IRSen01Test; %set test value with or w/o AN  
persistent  AheadFrac; %Reduce AvoidTime by some ratio  
  
%coder.extrinsic('format','display');  
  
if  isempty(CueMoveStFBSp);  
%if isempty(ctimeprev);  
% ctimeprev=0.0;  
 CueMoveStFBSp=0;  
 tSpinWaitStart=ctimein02; %set below as: =ctimein02;%millis();%//times start 
to wait before spin  
 tSpinRunStart=ctimein02; %set below as: =ctimein02;%millis();  
 tForwStart=ctimein02;  
 tAvoidStart=ctimein02;  
 tAvoidRunFit=tAvoidRun; %=0.125 %=0.2 %0.125;%0.125s  
 tSpinDelay=tSeekWait; %=5.0s  %6.5;%6.5s  
 tSpinRun=tSeekRun; %=0.5s %2.0;%2.0s  
 AheadFrac=1; %total tAVOIDRunFit rotate time  
  
 %test and set correct possible value ranges 2016 -7- 25; 4pm.  
 if  (IRSen01Min > 99); %should not occur  
  IRSen01Min = 99; %keep in range  
 elseif  (IRSen01Max  > 99); %should not occur  
  IRSen01Max = 99; %keep in range  
 elseif  (IRSen01Min > IRSen01Max);  
  IRSen01Max=  IRSen01Min;  
 end ; %if (IRSen01Min > 99);%should not occur  
  
end ; %if isempty(ctimeprev)  
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%moved next line here from below 2016 -7- 30A 
IR01cm= u(3); %read from IR sensor as u(3); Added to Arduino Bot code  
  
 
%%%%%%%%%%%%%%%%%%%  ANticipation additions %%%%%%%%%%%%%%%%%%%% 
 %set test value for distance with or w/o AN 2016 -7- 25; 4:30pm.  
 if  (AN01 > 0); %AN is on  
  IRSen01Test= IRSen01Max; %wide range  
 else ; %AN01=0: AN off  
  IRSen01Test= IRSen01Min; %narrow range  
 end ; %if (AN01 > 0);%AN is on  
  
 %=============2nd set ANticipation additions ==============  
 %From AVOID routine; shut off in AVOID: only here now  
 %keep for block comment{  
%Block comment line one abo ve  
%=================================  
%===AN should *not* be in AVOID; keep in Cue routine ML Function2  
%===AVOID should just change heading; already cued to turn  
%================================  
%ANticipation: AN01:0=Off; 1=ON.  
if  (AN01 > 0); %ANticipatio n turned on.   
 if  (IR01cm== 100); %=  equal to max distance.   
 %if (IR01cm~= 100);%~= not equal to max distance.  
  AheadFrac=1; %minimum should never get here, but a protective test       
 elseif  (IR01cm<= IRSen01Min+1)  
  AheadFrac=1; %minimum distance       
 else  
  %AheadFlag=1;    
  AheadFrac= 1/(IR01cm - IRSen01Min); %Inverse relation, asymptote zero  
  %AheadFrac= IRSen01Min/IR01cm;%40/IR01cm;%Base value= 40 set in Percepts 
function  
   %if (IR01cm < 40);%28);%//28cm=11in//25 cm=10in  
     %2016-7- 22F global variables handle in multiple routines.  
     %Must also change in Percept function:  IRSen01fcn(u)  
     %about line 31: IRDistMax=60;%28;%initial value %Setting as 28cm=11in. 
closeness boundary to cue AVOID  
     %Also change in AHEAD_AVOID function line 57 as base to divide into.  
  AheadFrac=min(1,AheadFrac); % range <=1; should not get here, but protection  
 end ; %(AN01 > 0);%ANticipation turned on.  
 %next 2 lines for places to stop in debug  
 ARunTime2=ctimein02; %exit for loop  
 Junk=1;  
else  
 AheadFrac=1; %Max AVOID turn time: tAvoidRun.  
end ; %(AN01 > 0);%ANticipation turned on.  
%=================================  
%===AN should *not* be in AVOID; keep in Cue routine ML Function2  
%===AVOID should just change heading; already cued to turn  
%================================  
%Block comment line2 follows  
%keep for block comment}  
  
 %=============END 2nd set ANticipation additions ==============  
  
%%%%%%%%%%%%%%%%  END ANticipation additions %%%%%%%%%%%%%%%%%%%%%% 
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%Next 2 lines not used in this function  
%dtime= ctimein02  - ctimeprev;%time since last trip through loop (simulation, 
not actual time)  
%ctimeprev= ctimein02;%time now entered loop this time (simulation, not real 
time)  
  
 
%===code from Arduino:Nano20150608MvPWMSpin.t14ExtraForSLMLcode.txt  
%===== void ChoiceBehavi or()  
%//****************************************************  
%//****************************************************  
%//Binary sketch size: 6,318 bytes (of a 30,720 byte maximum) 3:34 PM 
9/1/2015  
  
%% 
%void ChoiceBehavior()  
%...{  
 %//Use to create function  6:10 PM 8/31/2015  
 %//Cue Behavior: WAIT=0; EXPLORE=1; AVOID=2; SEEKCW=3; SEEKCCW=4; Back 
only=5  
 %keep these values for SL and Arduino Bot  
 %//Cue OLD Move: Stop=0; Forward=1; Back=2; SpinCW=3; SpinCCW=4  
 %//.............................  
 if  (ctimein02 <  1.0); %(millis() < 1000);%//1 sec  
 %...{//WAIT before start  
  CueMoveStFBSp= 0; %//Motion Forw, Back, Spin;  
  %//Cue Behavior: WAIT=0; EXPLORE=1; AVOID=2; SEEKCW=3; SEEKCCW=4  
  %keep these values for SL and Arduino Bot  
  %//  
  %//Test prints ++++++++++++++ ++++++++++++++++++++++++++++++++++++++++++  
  %Serial.print(CueMoveStFBSp);//Serial.print(" , "); 
Serial.print(Sonar01cm);  
  %Serial.println(" =CueMoveStFBSp; millis() < 1000");  
  spCueMoveStFBSp= CueMoveStFBSp;   %print to ML Command Window  
  spTotalTime= TotalTime; %print to ML Command Window  
  %//  
 %no end needed here because of else following. %...}//end first test if 
(millis() < 1000)  
 else   
 %...{  
  if  (CueMoveStFBSp == 0)  
  %...{  
   tSpinWaitStart= ctimein02; %millis();%//times start to wait before sp in  
   tForwStart=ctimein02; %millis();  
   CueMoveStFBSp= 1;  
  end ; %...}//EXPLORE start  
  %...}//EXPLORE start  
 %next line moved to end of SEEKfcn inclusive loop so not AVOID at start of 
at time=0  
 %end;%...}//end final if (millis() < 1000)  
 %...}//end final  if (millis() < 1000)  
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 %//====================================================================  
 %//AVOID only if AVOID started (CueMoveStFBSp= 3)  
     % or EXPLORE current (CueMoveStFBSp= 1)  
 %AVOID no longer interrupts SEEK  
 if (CueMoveStFBSp== 1 || CueMoveStFBSp== 2); %(CueEXPLORE==1 || CueAVOID==2)   
      
      
      
      
 %//...............................  
 %moved next line above to use in ANticipation 2016 -7- 30A 
 %IR01cm= u(3);%read from IR sensor as u(3); Added to Arduino Bot code  
 if  (IR01cm  < IRSen01Test); %IRSen01Min);%40);%28);%//28cm=11in//25 cm=10in  
  %above: AN01=0: IRSen01Min=IRSen01Test;  AN01=1: IRSen01Max=IRSen01Test  
 %if (IR01cm < IRSen01Max);%IRSen01Min);%40);%28);%//28cm=11in//25 cm=10in  
     %2016-7- 22F global variables handle in  multiple routines.  
     %Must also change in Percept function:  IRSen01fcn(u)  
     %about line 31: IRDistMax=60;%28;%initial value %Setting as 28cm=11in. 
closeness boundary to cue AVOID  
     %Also change in AHEAD_AVOID function line 57 as base to divide i nto.  
  
 %...{//AVOID flag: Back & turn from wall  
  
  if  (CueMoveStFBSp ~= 2); %!= 2)//not equal to 2  
  %...{  
   tAvoidStart=ctimein02; %millis();  
  end%...}end if (CueMoveStFBSp ~= 2)//AVOID start;  
   
  CueMoveStFBSp= 2; %...//AVOID start;  
  %//Cue Behavior: WAIT=0; EXPLORE=1; AVOID=2; SEEKCW=3; SEEKCCW=4  
   
  %//......................  
  if  ( ((ctimein02 - tAvoidStart) > tAvoidRunFit*AheadFrac) && (CueMoveStFBSp 
== 2)); %//2 sec; && is AND  
  %if ( ((ctimein02 - tAvoidStart) > tAvoidRunFit) && (CueMoveStFBSp == 
2) );%//2 sec; && is AND  
  %if ( ((millis() - tAvoidStart) > tAvoidRunFit) && (CueMoveStFBSp == 2));%//2 
sec; && is AND  
  %...{  
   tSpinWaitStart= ctimein02; %millis();%//times start to wait before spin  
   tForwStart=ctimein02; %millis();  
   CueMoveStFBSp= 1; %//E XPLORE start;  
   %//Cue Behavior: WAIT=0; EXPLORE=1; AVOID=2; SEEKCW=3; SEEKCCW=4  
  end  %...}//end if ( (ctimein02 - tAvoidStart) > tAvoidRunFit)  
 %...}//end if ( (millis() - tAvoidStart) > tAvoidRunFit)  
 %//  
  %//Test prints +++++++++++++++++++++++++++++++++ +++++++++++++++++++++++  
  %Serial.print(CueMoveStFBSp);//Serial.print(" , "); 
Serial.print(Sonar01cm);  
  %Serial.println(" =CueMoveStFBSp; IR01cm < 25");  
  spCueMoveStFBSp= CueMoveStFBSp; %print to ML Command Window  
  %//  
 %no end needed here since else follows. %...}//end first test if (IR01cm < 
28 ) //25)  
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%..........................................................  
 else  %for this section, IR01cm > 28, so not near wall  
     %else:  if (IR01cm < 
IRSen01Test);%IRSen01Min);%40);%28);%//28cm=11in//25 cm=10in  
 %...{  
  if  ( ((ctimein02 - tAvoidStart) > tAvoidRunFit*AheadFrac) && (CueMoveStFBSp 
== 2)); % //2 sec; && is AND  
  %if ( ((millis() - tAvoidStart) > tAvoidRunFit) && (CueMoveStFBSp == 2));% 
//2 sec; && is AND  
  %...{  
   tSpinWaitStart= ctimein02; %millis();%// times start to wait before spin  
   tForwStart=ctimein02; %millis();  
   CueMoveStFBSp= 1; %//EXPLORE start; a  
   %//Cue Behavior: WAIT=0; EXPLORE=1; AVOID=2; SEEKCW=3; SEEKCCW=4  
  end  %...}//end if ( (millis() - tAvoidStart) > tAvoidRunFit)  
  %...}//end if ( (m illis() - tAvoidStart) > tAvoidRunFit)  
   
  %//  
  %//Test prints ++++++++++++++++++++++++++++++++++++++++++++++++++++++++  
  %Serial.print(CueMoveStFBSp);//Serial.print(" , "); 
Serial.print(Sonar01cm);  
  %Serial.println(" =CueMoveStFBSp; IR01cm > 25");  
  spCueMoveStFBSp= CueMoveStFBSp; %print to ML Command Window  
  %//  
  %//...............................  
 end ; %if (IR01cm < IRSen01Test);%IRSen01Min);%40);%28);%//28cm=11in//25 
cm=10in  
 %..........................................................  
  
   
   
 
  
  
  
 %changes 2016 -7- 25M;4:30pm  
 %end %...}//end final if (IR01cm < 28);//25)  
 %...}//end final if (IR01cm < 28);//25)  
 %checked to here 2015 - 11- 16M, 1:15pm  
  
 %//...............................  
 Sonar01cm=u(2);  
 if  (Sonar01cm < 0.1); %0.1 as small value out of bounds %20)//20cm  
 %...{//ANticipate: AVOID flag: Back & turn from wall  
  %//need rule here  
 end  %...}//end if (Sonar01cm < 28)  
 %...}//end if (Sonar01cm < 28)  
   
end ; %if (CueMoveStFBSp== 1 | CueMoveStFBSp== 2);  %(Cue EXPLORE || Cue  AVOID  
)  
%//====================================================================  
  
  
 %//.............................  
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 if  (CueMoveStFBSp== 1); %//SEEK Spin start and test to continue/end  
 %...{//EXPLORING timed for Spin of SEEK  
 %//  
  %//Test prints 
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++  
  %Serial.print(CueMoveStFBSp);Serial.print(" , "); Serial.print(millis() -
tSpinWaitStart);  
  %Serial.println(" =CueMoveStFBSp; millis() - tSpinWaitStart; CueMoveStFBSp== 
1");  
  spCueMoveStFBSp=CueMoveStFBSp; %print to ML Command Window  
  %//  
   if  ( (ctimein02 - tSpinWaitStart) > tSpinDelay); %//1 sec  
   %if ( (millis() - tSpinWaitStart) > tSpinDelay);%//1 sec  
   %...{  
   tSpinWaitStart=ctimein02; %millis();  
   tSpinRunStart=ctimein02; %millis();  
   CueMoveStFBSp= 3; % 3 for SLML, but 4 for Arduino Bot;%4;%//Motion Spin;  
   %//Cue Behavior: WAIT=0; EXPLORE=1; AVOID=2; SEEKCW=3; SEEKCCW=4  
   %no end needed here since else follows. %...}//end first if ( (millis() -
tSpinWaitStart> tSpinDelay)  
   
  %//...............................  
  els e %//no Spin not EXPLOREing  
  %...{  
   CueMoveStFBSp= CueMoveStFBSp; %//no change to CueMoveStFBSp  
   %//junk//let time pass by no update of start time: tSpinRunStart  
   %//junk//tSpinWaitStart=millis();//Advance of start time to wait before 
next SEEK Spin  
  end%...}//end final if ( (ctimein02 - tSpinWaitStart) > tSpinDelay)  
  %...}//end final if ( (millis() - tSpinWaitStart) > tSpinDelay)  
  %//*****************************************  
   
   
  %checked to here 2015 - 11- 16M, 1:30pm  
  %rechked to here 5:35pm, 2015 - 11- 16M 
   
 %no 'end' needed here since elseif follows. %...}//end first test if 
(CueMoveStFBSp== 1)  
 %//.............................  
 %//....SEEK RUNS HERE...........SEEKRUNSHERE..............elseif,else,end  
 %//.............................  
 elseif  (CueMoveStFBSp== 3); %3 for SLML, but 4 for Arduino Bot;%4);%//SEEK 
Spin in Progress  
 %...{  
  if  ( (ctimein02 - tSpinRunStart) > tSpinRun); %//2.0 sec  
  %if ( (millis() - tSpinRunStart) > tSpinRun);%//2.0 sec  
  %...{  
   
  %only if spin time has reached max as tSpinRu n 
   tSpinWaitStart=ctimein02; %millis();%//times start to wait before spin  
   tSpinRunStart=ctimein02; %millis();  
   tForwStart=ctimein02; %millis();  
   CueMoveStFBSp= 1; %//EXPLORE again  
   %//Cue Behavior: WAIT=0; EXPLORE=1; AVOID=2; SEEKCW=3; SEEKCCW=4  
  else ; %if ( (ctimein02 - tSpinRunStart) > tSpinRun);: SEEK strill spinning  
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   %------- Check if AN01=1 is on ------------     
   if  (AN01 > 0); %AN is on  
    %set above: IRSen01Test= IRSen01Max;%wide range  
    if  (IR01cm < IRSen01Max); %object in range of IRSe n01Max  
     %only if object in range of IRSen01Max  
      tSpinWaitStart=ctimein02; %millis();%//times start to wait before spin  
      tSpinRunStart=ctimein02; %millis();  
      tForwStart=ctimein02; %millis();  
      CueMoveStFBSp= 1; %//EXPLORE again  
      %//Cue Behavior: WAIT=0; EXPLORE=1; AVOID=2; SEEKCW=3; SEEKCCW=4  
  
    else ; %if (IR01cm < IRSen01Max);%object in range of IRSen01Max  
    %no change if no object in range of IRSen01Max.  
    end ; %if (IR01cm < IRSen01Max);%object in range of IRSen01Max     
  
   else ; %AN01=0: AN off  
    %no change if AN01 not on.  
   end ; %if (AN01 > 0);%AN is on    
   %------- end Check AN01=1 is on ------------     
              
  end%...}//end if (ctimein02 - tSpinRunStart) > tSpinRun)   
  %...}//end if (millis() - tSpinRunStart) > tSpinRun)   
   
 %no 'end' needed here since else follows. %...}//end second elseif 
(CueMoveStFBSp== 3);%3 for SLML, but 4 for Arduino Bot;%4)  
 %//................................  
 else   
 %...{  
  CueMoveStFBSp= CueMoveStFBSp; %//no change to CueMoveStFBSp  
 end; %...}//end final if (CueMoveStFBSp== 1)  
 %...}//end final if (CueMoveStFBSp== 1)  
 %checked to here 1:45pm, 2015 - 11- 16M 
 %rechked to here 5:40pm, 2015 -1- 16M 
  
 %%// 
 %if ( (millis() - tPrint01Start) > tPrint01)  
 %%...{  
 % tTimeTrak01= millis() - tPrint01Star t;%//time gap  
 % tPrint01Start=millis();//reset time for printing  
 % Serial.print(CueMoveStFBSp);Serial.print(" , "); 
Serial.print(tTimeTrak01);  
 % Serial.println(" =CueMoveStFBSp, tTimeTrak01, time=tPrint01");  
 %end%...}//end first if ( (millis() - tPrint01 Start) > tPrint01)  
 %%...}//end first if ( (millis() - tPrint01Start) > tPrint01)  
 %%// 
  
%no 'end' needed here since ML entire function is in this call.%...}//end: 
ChoiceBehavior()  
  
%next line moved here from above WAIT set, so no start with AVOID at time= 0 
end ; %...}//end final if (millis() < 1000)  
  
  
%=====End Arduino code  
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%====Time flag examine code=========  
if  (ctimein02> 1.1 && ctimein02< 1.2) ;  
 ctimein02;  
end ; %if (ctimein02> 17.4 && ctimein02< 18.1)  
%====Time flag examine code=========  
  
XPOS= aGai n; %show on Scope13  
YPOS= bGain; %show on Scope13  
utotal= u(1)+u(2)+u(3); %weighted sum might not be used  
%y = CueMoveStFBSp;%utotal;  
if  (ctimein02 == 20); % test of values at specific time  
  CueMoveStFBSp;  
  aGain;  
  bGain;  
end ; %if (ctimein02 == 19);  
     
BEH = CueMoveStFBSp; %utotal;  
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THRESHOLD COUPLING:  Four potential choices  
 
   WAIT  Behavior (Default): Pass through for Case =0 
   EXPLORE Behavior: Pass through for Case =1  
   AVOID Behavior: Pass through for Case =3  
   SEEK Behavior: Pass through for Case =4  
   Note for AHEAD and FIND Behaviors: 
       AHEAD: routine is part of the earlier code in CONTEXT function. 
       FIND routine is a specific situation of the SEEK Behavior. 
 
 
CHOICE  BEHAVIOR: only one of four possibilities is manifest or activated. 
WAIT Behavior (Default): Case=0; Enabled Subsystem1/ML WAIT C0 
function  [da, db]= Waitfcn(ctimein4,u) %Code for WAIT  
%#codegen  
global  aGain;  
global  bGain; %keeps values between loops  
global  daGain;  
global  dbGain; %keeps values between loops  
global  heading;  
global  speed; %keeps values between loops  
%global variables initialized in Data Store Memory blocks in main SL  
%   window.  
  
global  HoldTimeAll dtimeall TotalTime; %keeps values between loops  
%see Fitnessfcn in Context section for dtimeall  
%dtimeall=ctimein4 - HoldTimeAll;%across all behaviors  
%HoldTimeAll= ctimein4;%across all behaviors  
  
%persistent dxy;%keeps values between loops  
%persistent countpos;%keeps value between loops  
daGain= dtimeall * 0; %dtimeall * speed * cos (heading);  
dbGain= dtimeall * 0 ; %dtimeall * speed * sin (heading);  
aGain= aGain +daGain; %Accumulate biomass/distance in 'a' direction.  
bGain= bGain +dbGain; %Accumulate biomass/distance in 'b' direction.  
da= daGain;  
db= dbGain;  
 
 
 
EXPLORE Behavior: Case=1; Enabled Subsystem2/ML EXPLORE C1 
function  [da, db]= EXPLOREfcn(ctimein1,u)  
%EXPLORE: fitness cues choice to EXPLORE  
%Sensor readings already taken & used to decide fitness.  
global  PrevBehavior; %know previous behavior for changes  
global  aGain;  
global  bGain; %keeps values between loops  
global  daGain;  
global  dbGain; %keeps values between loops  
global  heading;  
global  speed; %keeps values between loops  
global  AN01; %ANticipation: 0=OFF; 1=ON  
global  IRSen01Dist; %IR sensor 1 distance sensed  
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global  IRSen01Min IRSen01Max; %closest to object or wall  
global  dANNum ANNumTot ANNum;%calc ANNum value; no commas between variables  
  
global  HoldTimeAll dtimeall TotalTime; %keeps values between loops  
%see Fitnessfcn in Context section for dtimeall  
%global variables initialized in Data Store Memory blocks in main SL  
%   window.  
  
coder.extrinsic( 'format' , 'display' , 'sprintf' , 'strcat' );  
  
%persistent dtime1 HoldTime1;  
%persistent dxy;%keeps values between loops  
%persistent countpos;%keeps value between loops  
  
%if isempty(dtime1);  
% dtime1=0;  
% HoldTime1=0;  
%end 
  
%dtime1= ctimein1 - HoldTime1;%remove if not needed  
%HoldTime1= ctimein1;%remove if not needed  
  
%dtimeall=ctimein1 - HoldTimeAll;%across all behaviors  
%HoldTimeAll= ctimein1;%across all behaviors  
  
daGain= dtimeall * speed * cos (heading);  
dbGain= dtimeall  * speed * sin (heading);  
aGain= aGain +daGain; %Accumulate biomass/distance in 'a' direction.  
bGain= bGain +dbGain; %Accumulate biomass/distance in 'b' direction.  
  
PrevBehavior= 1; %EXPLORE now as PrevBehavior=1  
  
   NH3= strcat (sprintf( 'in EXPLORE at %0.1 0f' ,ctimein1 ) ); %concatenate only 
2 strings at a time  
   %NH3= strcat (ID2, sprintf(' =tNow01, at heading= %0.0f', spNR ) 
);%concatenate only 2 strings at a time  
   disp(NH3) %displays without variable name  
    
if  (ctimein1 == 21); %check at specific tim e 
    ctimein1;  
end ; % if (ctimein1 == 21);   
  
%=========START ANNum calc add 2017 - 02- 07T===============================  
  
%++++++Set IRFactor distance to multiply by++++++  
IRFactor=0; %init before IR value set for calc  
if  (AN01 > 0); %AN ON when AN01=1  
 if  (IRSen01Dist < IRSen01Max);  
  IRFactor= IRSen01Dist; %<50cm 
 else ;  
  IRFactor= IRSen01Max; %=50cm    
 end ; %if (IRSen01Dist < IRSen01Max);  
else ; %NO AN when AN01=0     
 if  (IRSen01Dist < IRSen01Min);  
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  IRFactor= IRSen01Dist; %<28cm 
 else ;  
  IRFactor= IRSen01Mi n; %=28cm    
 end ; %if (IRSen01Dist < IRSen01Min);  
end ; %if (AN01 > 0);%AN ON when AN01=1  
%++++++END Set IRFactor distance to multiply by++++++  
  
% For EXPLORE:  
% Area covered by IR beam is parallelogram: Ap= sin(IROffset) * b * h  
% sin(IROffset)= sin(30 deg as default)= 0.5 for 30 deg default  
 %for IROffset calc in PERCEPT as 30 default; need reset for any other angle  
 % actually in ML IRSen01 value*  
% b= IRFactor [was IRSen01Dist (global var.)];  
% h= DistanceTraveled= sqrt (daGain*daGain + dbGain*dbGain);  
%Thus the following equation:  
dANNum= 0.5 * IRFactor * ( sqrt (daGain*daGain + dbGain*dbGain) );  
%dANNum= 0.5 * IRSen01Dist * ( sqrt (daGain*daGain + dbGain*dbGain) );  
ANNumTot= ANNumTot + dANNum;  
  
if  (ctimein1 > 0);  
 ANNum= ANNumTot / ctimein1;  
end ; %if (ctimein1 > 0);  
  
% Need ANNum output in OBSERVED RESPONSE section of Architecture  
% actually in MATLAB Function1; when run is over at end time  
%=========END ANNum calc add 2017 - 02- 07T=================================  
  
da= daGain;  
db= dbGain;  
 
 
 
 
AVOID Behavior: Case=2; Enabled Subsystem3/ML AVOID C2 
function  [daAvoid, dbAvoid, dheadAvoid,AheadFlag]= AVOIDfcn(ctimein2, cue4)  
%SEEK: fitness cues choice to SEEK  
%Sensor readings already taken & used to decide fitness.  
global  PrevBehavior; %know previous behavior  for changes  
global  aGain;  
global  bGain; %keeps values between loops  
global  daGain;  
global  dbGain; %keeps values between loops  
global  heading;  
%global speed;%keeps values between loops; Removed from GV list in this 
module  
%global tSeekWait;%keeps values between loops  
global  tAvoidStart; %keeps values between loops  
global  tAvoidRun; %keeps value between loops  
global  AVOIDAngle; %keeps value between loops  
%global variables init in Data Store Memory blocks in main SL window.  
global  AN01; %ANticipation: 0=OFF; 1=O N 
global  IRSen01Dist; %IR sensor 1 distance sensed  
global  IRSen01Min IRSen01Max; %closest to object or wall  
global  dANNum ANNumTot ANNum;%calc ANNum value; no commas between variables  
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global  HoldTimeAll dtimeall TotalTime; %keeps values between loops  
%see Fitnessfcn in Context section for dtimeall  
%dtimeall=ctimein3 - HoldTimeAll;%across all behaviors  
%HoldTimeAll= ctimein3;%across all behaviors  
  
persistent  HeadingStart AVOIDRateSpin; %keeps value between loops  
%persistent AheadOn AheadFrac;%Flag & Reduce AvoidTime by some ratio  
%persistent SEEKAngle;%keep values between loops  
  
coder.extrinsic( 'format' , 'display' , 'sprintf' , 'strcat' );  
  
AheadFlag=0; %Not used as of 2016 -7- 30A; keeps as SL in function output.  
  
if  isempty(HeadingStart); %initialize holdtime only  
   HeadingStart=0.0;  
   AVOIDRateSpin=0.0;  
   daAvoid=0.0;  
   dbAvoid=0.0;  
   dheadAvoid=0.0;  
   %AheadOn=0.0;  
   %AheadFlag=0.0;  
   %AheadFrac=1;  
   %AVOIDAngle= (1/12)* 2 * pi()  
   %2015- 11- 21Sat AVOIDAngle as global to include in Figure plot in EXPLORE  
end  
  
tNow01= ctimein2; %time of simulation  
AVOIDRateSpin= AVOIDAngle/tAvoidRun; %rate of spin in radians  
  
%next line for debug to stop at a specific time range.  
if  (tNow01 > 2.9 && tNow01 < 3.4);     
%if (HoldTimeAll > 3 && HoldTimeAll < 4);     
   ARunTime2=tNow01; %exit for loop  
   Junk=1;  
end ; %(HoldTimeAll > 3 && HoldTimeAll < 4);  
  
%{ 
%Block comment line one above  
%=================================  
%===AN should *not* be in AVOID; keep in Cue routine ML Function2  
%===AVOID should just change heading; already cued to turn  
%================================  
%ANticipation: AN01:0=Off; 1=ON.  
if (AN01 > 0);%ANticipation turned on.   
 if (IRSen01Dist== 100);%=  equal to max distance.   
 %if (IRSen01Dist~= 100);%~= not equal to max distance.  
  AheadFrac=1;%mini mum should never get here, but a protective test       
 elseif (IRSen01Dist<= IRSen01Min+1)  
  AheadFrac=1;%minimum distance       
 else  
  AheadFlag=1;    
  AheadFrac= 1/(IRSen01Dist - IRSen01Min);%Inverse relation, asymptote zero  
  %AheadFrac= IRSen01Min/IRSen01Dist;%40/IRSen01Dist;%Base value= 40 set in 
Percepts function  
   %if (IR01cm < 40);%28);%//28cm=11in//25 cm=10in  
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     %2016-7- 22F global variables handle in multiple routines.  
     %Must also change in Percept function:  IRSen01fcn(u)  
     %about line 31: IRDistMax=60;%28;%initial value %Setting as 28cm=11in. 
closeness boundary to cue AVOID  
     %Also change in AHEAD_AVOID function line 57 as base to divide into.  
  AheadFrac=min(1,AheadFrac);% range <=1; should not get here, but protection  
 end;%(AN01 >  0);%ANticipation turned on.  
 %next 2 lines for places to stop in debug  
 ARunTime2=tNow01;%exit for loop  
 Junk=1;  
else  
 AheadFrac=1;%Max AVOID turn time: tAvoidRun.  
end;%(AN01 > 0);%ANticipation turned on.  
%=================================  
%===AN should  *not* be in AVOID; keep in Cue routine ML Function2  
%===AVOID should just change heading; already cued to turn  
%================================  
%Block comment line2 follows  
%} 
  
%if (tAvoidStart == 0  );%AVOID not started yet, start this time.  
%if (PrevBehavior ~= 2  );%~= means not equal (see ML relational operators  
if  (PrevBehavior ~= 2 || (PrevBehavior == 2 && tAvoidStart==0) ); %~= means 
not equal (see ML relational operators  
  %first time to run SEEK as Behavior 3; restart timer  
  PrevBehavior=2; %rese t PrevBehavior  
  tAvoidStart = tNow01; %set tSeekStart time  
  HeadingStart = heading;  
else %continue     
end ; %if (PrevBehavior ~= 2);  
  
%replaced by above test: if (PrevBehavior ~= 3)  
%if (tSeekStart == 0.0);%first time to run SEEK  
%  tSeekStart = tNow01;%set tSeekStart time  
%  HeadingStart = heading;  
%else%continue     
%end;%if (tSeekStart == 0.0)  
  
%=====AVOID Spin to (1/12)* 2 * pi()= 15 deg =================  
%Test on next line not needed in AVOID  
%if ( (tNow01 - tAvoidStart) < tAvoidRun * AheadFrac )%SEEK running  
 heading= heading + dtimeall * AVOIDRateSpin  ;  
 difHead= dtimeall * AVOIDRateSpin;  
  
   spNR= heading;  
   ID= sprintf( '%0.3f' , tNow01);  
   %ID= sprintf('%03d', tNow01);  
   ID2= strcat (ID, char(58) ); %add a colon: as char(58)  
   %http://www.mathworks.com/help/matlab/ref/char.html?searchHighlight=char  
   %NH= sprintf('%0.0f', xlayout, spNR )  
   %NH2= strcat (ID, sprintf('%0.0f', spNR ) )  
   %formatSpec = 'The array is %dx%d.';  
   %A1 = 2;  
   %A2 = 3;  
   %str = sprintf(formatSpec,A1,A2)  
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   NH3= strcat (ID2, sprintf( ' =tNow01, AVOID at heading= %0.3f' , spNR ) 
); %concatenate only 2 strings at a time  
   %NH3= strcat (ID2, sprintf(' =tNow01, at heading= %0.0f', spNR ) 
);%concatenate only 2 strings at a time  
   disp(NH3) %displays without variable nam e 
  
   PrevBehavior=2; %reset PrevBehavior  
  
%else     
 %tAvoidStart = 0.0;%reset to wait for next SEEK start  
 %difHead= 0.0;%no change in heading  
 %PrevBehavior=2;%reset PrevBehavior  
  
%Test end on next line not needed in AVOID  
%end;%if ( (tNow01 - tAvoidS tart) < tAvoidRun )  
  
%=========Adjust - 2*pi()<heading< 2*pi()===================  
if  (heading < - 2*pi() ); %low range of heading  
  heading= heading + 2*pi(); %  
elseif  (heading > 2*pi() ); %high range of heading   
  heading= heading - 2*pi(); %  
else %continue:  in range  
end ; %if (heading < - 2*pi() );  
  
%========no move Forward/Back ==========================  
daGain= dtimeall * 0; %no change; %was: dtimeall * speed * cos (heading);  
dbGain= dtimeall * 0; %no change; %was: dtimeall * speed * sin (heading);  
aGain= aGain +daGain; %Accumulate biomass/distance in 'a' direction.  
bGain= bGain +dbGain; %Accumulate biomass/distance in 'b' direction.  
  
PrevBehavior= 2; %AVOID now as PrevBehavior=2  
  
%=========START ANNum calc add 2017 - 02- 07T===============================  
  
%++++++Set IRFactor distance to multiply by++++++  
IRFactor=0; %init before IR value set for calc  
if  (AN01 > 0); %AN ON when AN01=1  
 if  (IRSen01Dist < IRSen01Max);  
  IRFactor= IRSen01Dist; %<50cm 
 else ;  
  IRFactor= IRSen01Max; %=50cm    
 end ; %if (IRSen01Dist < IRSen 01Max);  
else ; %NO AN when AN01=0     
 if  (IRSen01Dist < IRSen01Min);  
  IRFactor= IRSen01Dist; %<28cm 
 else ;  
  IRFactor= IRSen01Min; %=28cm    
 end ; %if (IRSen01Dist < IRSen01Min);  
end ; %if (AN01 > 0);%AN ON when AN01=1  
%++++++END Set IRFactor distance to multiply by++++++  
  
% For both AHEAD_AVOID and SEEK when AN01=1:  
% Area covered by entire IR beam is triangle: At= 0.5 * b * h  
% b= IRFactor [was IRSen01Dist (global var.)];  
% h= sin(difHead) * IRSen01Dist; should work for small angles  
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%Thus the following equat ion:  
dANNum= 0.5 * IRFactor * ( sin(difHead) * IRFactor);  
%dANNum= 0.5 * IRSen01Dist * ( sin(difHead) * IRSen01Dist);  
ANNumTot= ANNumTot + dANNum;  
  
if  (ctimein2 > 0);  
 ANNum= ANNumTot / ctimein2;  
end ; %if (ctimein2 > 0);  
  
% Need ANNum output in OBSERVED RESPONSE section of Architecture  
% actually in MATLAB Function1; when run is over at end time  
%=========END ANNum calc add 2017 - 02- 07T=================================  
  
spctimein2= ctimein2;  
daAvoid= daGain;  
dbAvoid= dbGain;  
dheadAvoid= difHead;  
%AheadFlag=AheadOn;  
spdheadAvoid= dheadAvoid;  
 
 
 
 
SEEK Behavior: Case=3; Enabled Subsystem4/ML SEEK C3 
function  [da, db, dhead]= SEEKfcn(ctimein3, u)  
%SEEK: fitness cues choice to SEEK  
%Sensor readings already taken & used to decide fitness.  
global  PrevBehavior; %know previous behavior for changes  
global  aGain;  
global  bGain; %keeps values between loops  
global  daGain;  
global  dbGain; %keeps values between loops  
global  heading;  
global  speed; %keeps values between loops  
global  tSeekWait; %keeps values between loops  
global  tSeekStart; %keeps values between loops  
global  tSeekRun; %keeps value between loops  
global  SEEKAngle; %keeps value between loops  
global  AN01; %ANticipation: 0=OFF; 1=ON  
global  IRSen01Dist; %IR sensor 1 distance sensed  
global  IRSen01Min IRSen01Max; %closest to object or wall  
global  dANNum ANNumTot ANNum;%calc ANNum value; no commas between variables  
%global variables init in Data Store Memory blocks in main SL window.  
  
global  HoldTimeAll dtimeall TotalTime; %keeps values between loops  
%see Fitnessfcn in Context section for dtimeall  
%dtimeall=ctimein3 - HoldTimeAll;%across all behaviors  
%HoldTimeAll= ctimein3;%across all behaviors  
  
coder.extrinsic( 'format' , 'display' , 'sprintf' , 'strcat' );  
  
persistent  HeadingStart RateSpin; %keeps value between loops  
%persistent SEEKAngle;%keep values between loops  
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if  isempty(HeadingStart); %initialize holdtime only  
   HeadingStart=0;  
   RateSpin=0.0;  
   %SEEKAngle= (3/4)* 2 * pi();%(3/4)*pi();%SEEK total spin angle  
   %2015- 11- 5R SEEKAngle as global to include in Figure plot in EXPLO RE 
end  
  
tNow01= ctimein3; %time of simulation  
RateSpin= SEEKAngle/tSeekRun; %rate of spin in radians  
  
%coder.extrinsic('get_param');%function defined in ML (external to program).  
%coder.extrinsic('get_param','getSimulinkBlockHandle');  
  
%tNow= get_param('Y ourModel','SimulationTime');  
%double tNow01= get_param('ANSimDelay20151102M','SimulationTime');%name of SL 
file  
%BlockHandle = getSimulinkBlockHandle('vdp/Fcn',true);  
%tNow01= get_param(BlockHandle,'SimulationTime');  
  
if  (PrevBehavior ~= 3); %~= means not equal (see ML relational operators  
  %first time to run SEEK as Behavior 3; restart timer  
  PrevBehavior=3; %reset PrevBehavior  
  tSeekStart = tNow01; %set tSeekStart time  
  HeadingStart = heading;  
else %continue     
end ; %if (PrevBehavior ~= 3);  
  
%replaced by above test: if (PrevBehavior ~= 3)  
%if (tSeekStart == 0.0);%first time to run SEEK  
%  tSeekStart = tNow01;%set tSeekStart time  
%  HeadingStart = heading;  
%else%continue     
%end;%if (tSeekStart == 0.0)  
  
%=====Spin to (3/4)* 2 * pi()=================  
if  ( (tNow01 - tSeekStart) < tSeekRun ) %SEEK running  
 heading= heading + dtimeall * RateSpin  ;  
 difHead= dtimeall * RateSpin;  
 %--------- old version without dtimeall    
 %{ 
 prevHeading= heading;  
 deltaHead= SEEKAngle * ((tNow01 - tSeekStart)/tSeekRun);  
 %heading= HeadingStart +  ( (3.0*pi()/4) * ((tNow - tSeekStart)/tSeekRun) );  
 heading= HeadingStart +  deltaHead;%may allow for ML variable time step  
 difHead= heading - prevHeading;  
 %} 
 %-------- end old version without dtimeall  
  
else      
 tSeekStart = 0.0; %reset to wait for next SEEK start  
 difHead= 0.0; %no change in heading  
end ; %if ( (tNow - tSeekStart) < tSeekRun )  
  
%=========Adjust - 2*pi()<heading< 2*pi()===================  
if  (heading < - 2*pi() ); %low range of heading  
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  heading= heading + 2*pi(); %  
elseif  (heading > 2*pi() ); %high range of heading   
  heading= heading - 2*pi(); %  
else %continue: in range  
end ; %if (heading < - 2*pi() );  
  
%========no move Forward/Back ==========================  
daGain= dtimeall * 0; %no change; %was: dtimeall * speed * cos (hea ding);  
dbGain= dtimeall * 0; %no change; %was: dtimeall * speed * sin (heading);  
aGain= aGain +daGain; %Accumulate biomass/distance in 'a' direction.  
bGain= bGain +dbGain; %Accumulate biomass/distance in 'b' direction.  
  
PrevBehavior= 3; %SEEK now as PrevBehav ior=3  
  
spctimein3= ctimein3;  
   NH3= strcat (sprintf( 'in SEEK at %0.10f' ,ctimein3 ) ); %concatenate only 2 
strings at a time  
   %NH3= strcat (ID2, sprintf(' =tNow01, at heading= %0.0f', spNR ) 
);%concatenate only 2 strings at a time  
   disp(NH3) %display s without variable name  
  
%nmot work: disp ('in SEEK at %0.10f',ctimein3);%shows ctimein3 without 
variable name, only value show.  
%disp (ctimein3);%shows ctimein3 without variable name, only value show.  
  
%=========START ANNum calc add 2017 - 02- 07T===============================  
  
%++++++Set IRFactor distance to multiply by++++++  
IRFactor=0; %init before IR value set for calc  
if  (AN01 > 0); %AN ON when AN01=1  
 if  (IRSen01Dist < IRSen01Max);  
  IRFactor= IRSen01Dist; %<50cm 
 else ;  
  IRFactor= IRSen01Max; %=50cm    
 end ; %if (IRSen01Dist < IRSen01Max);  
else ; %NO AN when AN01=0     
 if  (IRSen01Dist < IRSen01Min);  
  IRFactor= IRSen01Dist; %<28cm 
 else ;  
  IRFactor= IRSen01Min; %=28cm    
 end ; %if (IRSen01Dist < IRSen01Min);  
end ; %if (AN01 > 0);%AN ON when AN01=1  
%++++++END Set IRFactor distance to multiply by++++++  
  
% SEEK IR beam does not respond during spin for NO AN  
%  thus, only count coverage for AN01==1  
% For both AHEAD_AVOID and SEEK when AN01==1:  
if  (AN01==1); %only cover area when AN is ON, for AN01==1.  
% Area covered by entire IR beam is triangle: At= 0.5 * b * h  
% b= IRFactor [was IRSen01Dist (global var.)];  
% h= sin(difHead) * IRSen01Dist; should work for small angles  
%Thus the following equation:  
dANNum= 0.5 * IRFactor * ( sin(difHead) * IRFactor);  
%dANNum= 0.5 * IRSen01Dist * ( sin(difHead) * IRSen01Dist);  
ANNumTot= ANNumTot + dANNum;  
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if  (ctimein3 > 0);  
  ANNum= ANNumTot / ctimein3;  
 end ; %if (ctimein3 > 0);  
end ; %if (AN01==1);%only cover area when AN is ON, for AN01==1.  
  
% Need ANNum output in OBSERVED RESPONSE  section of Architecture  
% actually in MATLAB Function1; when run is over at end time  
%=========END ANNum calc add 2017 - 02- 07T=================================  
  
da= daGain;  
db= dbGain;  
dhead= difHead;  
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OBSERVED RESPONSE: Subsystem MATLB Function1 
function  [y, theading, tANNum, EXPLORENumOut, AVOIDNumOut, SEEKNumOut]= 
Behsfcn(Beh02)  
%#codegen  
%2016-5- 9M 6:35pm  
%size of NicheLayout:  zeros(52,52,3)  
  
global  heading;  
global  StopAtTime aGain bGain; %keeps value between loops  
global  HoldTimeAll dtimeall To talTime; %keeps values between loops  
global  NicheLayout; %from NICHE section ML function  
global  xReadingFixPlot yReadingFixPlot; %Plot IR distance boundary  
global  xReadingMinPlot yReadingMinPlot; %Plot Min IR distance boundary  
global  AN01; %AN 0=off, 1=0n  
globa l  IRSen01Dist; %IR sensor 1 distance sensed  
global  dANNum ANNumTot ANNum;%calc ANNum value; no commas between variables  
  
%see Fitnessfcn in Context section for dtimeall  
persistent  BehM6xPts; %keeps value between loops  
persistent  Beh5xPts; %keeps value between loops: final print to ML  Command 
Window .  
persistent  Pos3xPts Pos2xPts Pos2xPts10th; %position values retained b/t loops  
persistent  IREnd01 IREndMin; %Max & Min Ends of IR reading beam retained 
between loops.  
persistent  count01; %keeps value between loops  
persistent  HoldBeh; %keeps value between loops  
persistent  IRPathBotMinDist IRPathBotMaxDist;  
persistent  EXPLORENum AVOIDNum SEEKNum uNum; 
  
coder.extrinsic( 'format' , 'display' , 'annotation' , 'sprintf' , 'strcat' );  
% coder.extrinsic('format','display', 'sprintf', 'strcat');  
  
nPtsMax=160;  
n10PtsMax=1+nPtsMax/10;  
  
if  isempty(BehM6xPts);  
 BehM6xPts=zeros(8,nPtsMax); %2016-7- 21R;size increased to 8 vs. 6  
 Beh5xPts=zeros(7,nPtsMax); %2016-7- 21R;size increased to 7 vs. 5  
 Pos3xPts=zeros(3,nPtsMax);  
 Pos2xPts=zeros(2,nPtsMax);  
 IREnd01 =zeros(2,nPtsMax); %2016- 09- 23F Plot end of IR sense reading  
 IREndMin =zeros(2,nPtsMax); %2016- 09- 26M Plot Min end of IR sense reading  
 Pos2xPts10th=zeros(2,n10PtsMax);  
 IRPathBotMinDist=zeros(2,3*nPtsMax); %2016- 09- 26M Plot IRPath bot to min dist  
 IRPathBotMaxDist=zeros(2,3*nPtsMax); %2016- 09- 23F Plot IRPath bot to max dist  
  count01=0;  
 HoldBeh= - 1;  
 EXPLORENum=0;  
 AVOIDNum=0;  
 SEEKNum=0; 
 uNum= [0 0 0];  
 uNumOut= [0 0 0]; %not used as of 2017 -2- 9R 
 EXPLORENumOut=0;  
 AVOIDNumOut=0;  
 SEEKNumOut=0; 
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end ; %if isempty(BehM6xPts);  
  
%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+ 
  
%======ANNum for each Behavior: EXPLORENum, AVOIDNum, SEEKNum  
%==passed in: Beh02(1to6)= [clocktime clocktime  CueEXP CueAVOID CueSEEK  
CueWAIT CueAHEAD CueAHEAD] 
if  (Beh02(3)==1); %Beh02(3) is CueEXPLORE:0=off; 1=ON  
 EXPLORENum= EXPLORENum + dANNum;  
elseif  (Beh02(4)==2); %Beh02(4) is CueAVOID:0=off; 2=ON  
 AVOIDNum= AVOIDNum + dANNum;  
elseif  (Beh02(5)==3); %Beh02(5) is CueSEEK:0=off; 3=ON  
 if  (AN01==1); %when AN is ON: AN01==1  
  %only change in SEEKNum when AN is ON: AN01==1  
  SEEKNum= SEEKNum + dANNum; 
 else ; %when NO AN: AN01==0  
   %No change in SEEKNum  
 end ; %if (AN01==1);%when AN is ON: AN01==1  
else  
 %no cue of EXPLORE, AVOID, or SEEK. Possibly WAIT or AHEAD  
 %WAIT: no accummulation of dANNum    
 %AheadFlag not used in AHEAD_AVOID as of 2017 -2- 9R 
end ; %if (Beh02(3)==1);%Beh02(3) is CueEXPLORE:0=off; 1=ON  
uNum=[ EXPLORENum AVOIDNum SEEKNum ] ; %pass out for plot  
  
%======END ANNum for each Behavior: EXPLORENum, AVOIDNum, SEEKNum  
  
%Setup XYGraph in EXPLORE subsystem  
%http://www.mathworks.com/help/matlab/creating_plots/access - and - modify -
property - values.html  
%already declared above: global StopAtTime;  
 persistent  holdtime2;  
 coder.extrinsic( 'format' , 'display' )  
  
 if  isempty(holdtime2); %initialize holdtime only  
   holdtime2=0;  
 end  
%set(0,'ShowHiddenHandles','on')  
%set(gcf,'menubar','figure','toolbar','none');%add menubar to the figure  
set(gcf, 'menubar' , 'none' , 'toolbar' , 'none' ) %no menubar or toolbar on figure  
ctime2= Beh02(1); %u(1);%time from clock  
%ctime= u(1);%time from clock  
  
%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+ 
  
%next line for debug to stop at a specific time range.  
if  (HoldTimeAll > 2.9 && HoldTimeAll < 3.4);     
%if (HoldTimeAll > 18.7 && HoldTimeAll < 20); 6*pi    
%if (HoldTimeAll > 3 && HoldTimeAll < 4);     
   ARunTime2=HoldTimeAll; %exit for loop  
   StopAtTime;  
   holdtime2;  
   ctime2;  
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   Junk=1;  
end ; %(HoldTimeAll > 3 && HoldTimeAll < 4);  
  
%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+ 
  
%=================================  
%NOT WORKING 2016- 07- 31U, 3:05pm  
%WORKING: 2015- 10- 27T, 3:30pm  
%NOT WORKING as of 2015 - 10- 26M, 6:30PM  
  
%choose only samples on each second  
%ceil (x) == floor(x) from  
%https://www.mathworks.com/matlabcentral/newsreader/view_thread/163080  
%Persistent example  
%http://stackoverflow.com/questions/16097708/storing - data - in - matrix - format -
in - simulink  
%persistent mat  
%if isempty(mat)  
%  mat = zeros(10,2);  
%  cnt = 1; % Counter to count number of times enabled  
%end 
% 
%if cnt <= 10  
%  mat(cnt,1) = A;  
%  mat(cnt,2) = B;  
%end 
%cnt = cnt + 1;  
BehSize01= size(Beh02);  
Pos3xPtssize= size(Pos3xPts);  
  
%for ncol1   = 1: 1: BehSize01(2);%check all cols  
 %prtncol1= ncol1;       
 %prtflrBeh6X190intrans=floor(Beh6X190intrans(1,ncol1))  
  %floor rounds a number to the next smaller integer.  
 if  Beh02(1)==0; %1st row, 1st col tested  
  count01=count01+1;  
   
  %..........................  
  %limit of matrices ranges  
  if  count01 >  nPtsMax;  
   count01= nPtsMax; %limit of matrix index  
  end ; %if count01> nPtsMax;%20;  
  %..........................  
  
  BehM6xPts(:,count01)= Beh02; %first col  
  HoldBeh= Beh02(1); % keep value to test against next loop  
  %Place Positions into matrix  
  %from file: ANSimandML20150225W.m  
  %A = [5 7 8;  
  %     0 1 9;  
  %     4 3 6];  
  %HoldPos= [  Beh02(1) ; aGain ; bGain ]  
  Pos3xPts(:,count01)= [  Beh02(1) ; aGain ; bGain ];  
  IREnd01(:,count01)= [  xReadingFixPlot ; yReadingFixPlot ];  
  IREndMin(:,count01) = [  xReadingMinPlot ; yReadingMinPlot ];  
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  %below works 2 lines  
  %HoldPos= [  Beh02(1) ; aGain ; bGain ]  
  %Pos3xPts(:,count01)= HoldPos;  
 elseif  (floor(Beh02(1)) == Beh02(1)) && (HoldBeh < Beh02(1));  
  count01=count01+1;  
   
  %......................... .  
  %limit of matrices ranges  
  if  count01 > nPtsMax;  
   count01= nPtsMax; %limit of matrix index  
  end ; %if count01> nPtsMax;%20;  
  %..........................  
  
  BehM6xPts(:,count01)= Beh02; %Error Here; each col  
  %floor rounds a number to the next smaller integer.  
  HoldBeh= Beh02(1); % keep value to test against next loop  
  %Place Positions into matrix  
  Pos3xPts(:,count01)= [  Beh02(1) ; aGain ; bGain ];  
  IREnd01(:,count01)= [  xReadingFixPlot ; yReadingFixPlot ];  
  IREndMin(:,count01)= [  xReadingMinPlot ; yReadingMinPlot ];  
   
 elseif  (Beh02(1)> (StopAtTime - 0.01) ) && (HoldBeh < StopAtTime); %max run 
time=18.8496 = 6*pi()  
 %elseif (Beh02(1)> (StopAtTime - 0.0001) ) && (HoldBeh < StopAtTime);%max run 
time=18.8496 = 6*pi()  
 %elseif (Beh02(1)> 9.4247) && (HoldBeh < 9.4247);%max run time=18.8496 = 
6*pi()  
 %elseif (Beh02(1)> 18.81) && (HoldBeh < 18.81);%max run time=18.8496 = 
6*pi()  
  %count01=count01+1;  
   
  %Use below 7 lines code if StopAtTime < 20; such as 6*pi  
  %comment out section  
  %{ 
  BehM6xPts(:,20 )= Beh02;%each col  
  HoldBeh= Beh02(1);% keep value to test against next loop  
  BehM6xPts(1,20)= floor(BehM6xPts(1,20)+1);%each col  
  %Place Positions into matrix  
  Pos3xPts(:,20)= [  Beh02(1) ; aGain ; bGain ];  
  %Pos3xPts(1,20)= 19;  
  Pos3xPts(1,20)= flo or(Pos3xPts(1,20)+1);  
  %}  
  %end of comment out section  
  
  format( 'short' ); %see above: coder.extrinsic('format','display')  
  Beh5xPts=BehM6xPts( [1 3 4 5 6 7 8], :) %output to ML Command Window  
  format( 'bank' ); %round to 2 digits right of decimal  
  Pos2x Pts=Pos3xPts( [2 3], :) %output to ML Command Window  
  format( 'bank' ); %round to 2 digits right of decimal  
  B5X20P2X20=cat(1, Beh5xPts,  Pos2xPts ) %output to ML Command Window  
   
  spTotalTime=TotalTime %should agree with StopAtTime (of prog) & StopTime 
(of SL)  
   
 else  %no action  
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 end%if Beh6X190intrans(1)==0;%first col tested  
    
%Beh5X19=Beh1scol( [1 3 4 5 6], :);  
%Beh4X19=Beh1scol( [  3 4 5 6], :)  
%Next line needed for reference; see aabove in elseif  
%Beh5xPts=BehM6xPts( [1 3 4 5 6], :)%moved to elseif for single output to 
Command Window 
  
%=========Figure inserted here from EXPLORE===========================  
% Graph below=============================================  
%http://www.mathworks.com/help/matlab/creating_plots/access - and - modify -
property - values.html  
%if (ctime2 >= 18.8  );% global end is StopTime;pi()*6=9.4248  
  
%Major length of simulation note:  
%in Simulink diagram, upper left, set StopAtTime=n*pi to match value of n*pi 
at top of simuation window.  
%This will automatically output graph at end of  simuation runtime:  
StopAtTime  
  
if  (ctime2 > (StopAtTime - 0.01)  )&& (holdtime2<ctime2) && (ctime2 < 
StopAtTime+0.0001); % global end is StopTime;pi()*6=9.4248  
%if (ctime2 > (StopAtTime - 0.01)  )&& (holdtime2<ctime2) && (ctime2 < 
StopAtTime+0.0001);% global  end is StopTime;pi()*6=9.4248  
%if (ctime2 > (StopAtTime - 0.0001)  )&& (holdtime2<ctime2) && (ctime2 < 
StopAtTime+0.0001);% global end is StopTime;pi()*6=9.4248  
%if (ctime > 9.4247)&& (holdtime<ctime) && (ctime < 9.4249);% global end is 
StopTime;pi()*6=9.4248  
%if (ctime > 18.8495)&& (holdtime<ctime) && (ctime < 18.8497);% global end is 
StopTime; pi()*6=18.8496  
  
 for  iFill = count01: 1 : nPtsMax; %Fill zeros of matrix with end point 
reached  
   %Pos2xPts=Pos3xPts( [2 3], :)%output to ML Command Window [from ab ove]  
   %Pos2xPts(:, iFill )= [ aGain, bGain];  
   Pos2xPts(:, iFill )= [ Pos2xPts(1, count01 ), Pos2xPts(2, count01 )]; %Fill 
Matrix to end with last point  
   IREnd01(:, iFill )= [ IREnd01(1, count01 ) , IREnd01(2, count01 )]; %Fill 
Matrix to end with last p oint  
   IREndMin(:, iFill )= [ IREndMin(1, count01 ) , IREndMin(2, count01 
)]; %Fill Matrix to end with last point  
  
 end ; %for iFill = count01: 1 : nPtsMax;  
  
 %------------- Find points to graph every 10th point -------------  
  for  i10Pts = 10: 10 : nPtsMax; %Fill zeros of matrix with end point reached  
   %Pos2xPts=Pos3xPts( [2 3], :)%output to ML Command Window [from above]  
   %Pos2xPts(:, iFill )= [ aGain, bGain];  
   if  (i10Pts > nPtsMax);  
       break ;  
   end ; %(i10Pts > n10PtsMax);  
   %if(i10pts == 0);%start index at 1, not zero.  
   % Pos2xPts10th(:, 1 )=[ Pos2xPts(1, 1 ), Pos2xPts(2, 1 )];    
   %else     
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   % Pos2xPts10th(:, (i10Pts/10) )=[ Pos2xPts(1, i10Pts ), Pos2xPts(2, i10Pts 
)];  
   %end;%(i10pts == 0);  
   Pos2xPts10th(:, (i10Pts/10) )=[ Pos2xPts(1, i10Pts ), Pos2xPts(2, i10Pts 
)];  
  end ; %for i10Pts = 0: 10 : nPtsMax;  
  Pos2xPts10th(:, n10PtsMax )=[ Pos2xPts(1, nPtsMax ), Pos2xPts(2, nPtsMax 
)];  
  Pos2xPts10th %print every 10th pt.  
 %------------- end Find points to  graph every 10th point ----------  
  
 IREnd01 %print IR end points  
 IREndMin %print IR Min beam end points  
  
   
 %------------- Gen path bot to min distance -------------  
  for  iIRminPts = 0 : 3 : 3*nPtsMax; %Join all points together  
   %Pos2xPts=Pos3xPts( [2 3], :)%output to ML Command Window [from above]  
   %Pos2xPts(:, iFill )= [ aGain, bGain];  
   if  (iIRminPts > 3*nPtsMax);  
       break ;  
   end ; %(i10Pts > n10PtsMax);  
   if  (  ((iIRminPts/3)+1) > nPtsMax);  
       break ;  
   end ; %(i10Pts > n10PtsMax);  
   %if(i10pts == 0);%start index at 1, not ze ro.  
   % Pos2xPts10th(:, 1 )=[ Pos2xPts(1, 1 ), Pos2xPts(2, 1 )];    
   %else     
   % Pos2xPts10th(:, (i10Pts/10) )=[ Pos2xPts(1, i10Pts ), Pos2xPts(2, i10Pts 
)];  
   %end;%(i10pts == 0);  
   %Pos2xPts10th(:, (i10Pts/10) )=[ Pos2xPts(1, i10Pts ), Pos2xPts(2, i10Pts 
)];  
    
   %IR Max dist  
   IRPathBotMaxDist(:, iIRminPts+1 ) = Pos2xPts(:, (iIRminPts/3)+1  );  
   IRPathBotMaxDist(:, iIRminPts+2 ) = IREnd01( :, (iIRminPts/3)+1  );  
   IRPathBotMaxDist(:, iIRminPts+3 ) = Pos2xPts(:, (iIRminPts/3)+1  );  
   %IR min  distance  
   IRPathBotMinDist(:, iIRminPts+1 ) = Pos2xPts(:, (iIRminPts/3)+1  );  
   IRPathBotMinDist(:, iIRminPts+2 ) = IREndMin( :, (iIRminPts/3)+1  );  
   IRPathBotMinDist(:, iIRminPts+3 ) = Pos2xPts(:, (iIRminPts/3)+1  );  
    
  end ; %for iIRminPts = 1: 1 : nPtsMax;%Join all points together  
  %Pos2xPts10th(:, n10PtsMax )=[ Pos2xPts(1, nPtsMax ), Pos2xPts(2, nPtsMax 
)];  
  IRPathBotMinDist %print every Min pt.  
  IRPathBotMaxDist %print every Max pt.  
 %------------- end Gen path bot to min distance ----------  
  
 holdtime2= ctime2;    
 showu=Beh02;  
  
    FName01= strcat (sprintf( '%0.0f =ANNum, INTEGRATED PATH' ,ANNum ) 
); %concatenate only 2 strings at a time  
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   %FName01= strcat (sprintf('INTEGRATED PATH, ANNUM= %0.0f',ANNum ) 
);%concatenate only 2 strings at a ti me  
   %NH3= strcat (sprintf('in EXPLORE at %0.10f',ctimein1 ) );%concatenate 
only 2 strings at a time  
   %NH3= strcat (ID2, sprintf(' =tNow01, at heading= %0.0f', spNR ) 
);%concatenate only 2 strings at a time  
   disp(FName01) %displays without variable  name 
  
 NameFig1= FName01;  
 %NameFig1= 'INTEGRATED PATH, v=15cm/s';  
 if  count01 == nPtsMax;  
    NameFig1= 'INTEGRATED PATH, Max # Points' ;       
 end ; %if count01 == nPtsMax;  
  
 figure1 = figure( 'Tag' , 'SIMULINK_XYGRAPH_FIGURE' , 'NumberTitle' , 'off' , ...  
    ' Name' ,NameFig1, ...  
    'IntegerHandle' , 'off' );  
%    'Name','INTEGRATED PATH, v=2cm/s',...  
%fig = gcf %returns the current figure handle. If a figure does not exist, 
then gcf creates a figure and returns its handle.  
% Create axes  
%axes1 = axes(figure1,...  %not work  
axes1 = axes( 'Parent' ,figure1, ...  
    'Position' ,[0.150 0.1500 0.81 0.7300]); %'Position',[0.130 0.2000 0.86 
0.7900]);  
%    'Position',[0.11437908496732 0.178082191780822 0.853223506825338 
0.718144223313517]);  
%Position — Location and size of figure's drawable area: [left bottom width 
height]  
%    'OuterPosition',[0.120 0.1900 0.96 0.8500],...  
%OuterPosition — Location and size of figure's outer bounds: [left bottom 
width height]  
  
xPosMin= min(Pos2xPts(1,:)) - .1*abs(min(Pos2xPts(1,:))) - 1;  
xPosMax= max(Pos2xPts(1,:)) + .1*abs(max(Pos2xPts(1,:))) + 1;  
yPosMin= min(Pos2xPts(2,:)) - .1*abs(min(Pos2xPts(2,:))) - 1;  
yPosMax= max(Pos2xPts(2,:)) + .1*abs(max(Pos2xPts(2,:))) + 1;  
  
% Uncomment the following 2 lines for X - limits & Y - limits of the axes  
 xl im(axes1,[xPosMin xPosMax]); %[- 4 5]);  
 ylim(axes1,[yPosMin yPosMax]); %[- 4 5]);  
% Uncomment next 2 lines to set specific axis range  
 xlim(axes1,[ - 5 110]);  
 ylim(axes1,[ - 5 110]);  
 %xlim(axes1,[0 101]);  
 %ylim(axes1,[0 101]);  
  
 %xlim(axes1,[ - 150 350]);%[ - 4 5 ]);  
 %ylim(axes1,[ - 0 320]);%[ - 4 5]);  
  
%first plot line originally here  
%line01 = line('XData',Pos2xPts(1,:),'YData',Pos2xPts(2,:),...  
%        'MarkerSize', 8 , 'LineWidth', 2 ,...  
%        'Marker','square','color','black');  
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%next line from EXPLORE   
%line01 = line('XData',abGain3X20(2,:),'YData',abGain3X20(3,:),...  
%        'Marker','square','color','black');  
  
% Create xlabel & ylabel & title  
xlabel( 'DISTANCE (x)' );  
ylabel( 'DISTANCE (y)' );  
%xlabel('BIOMASS/DIST (x)');  
%ylabel('BIOMASS/DIST (y)');  
t itle( 'LOCATION' );  
  
  
hold on;  
%----------- IR Sense End Pts ----------------  
%line03 = line('XData',IREnd01(1,:),'YData',IREnd01(2,:),...  
%              'LineStyle',':','MarkerFaceColor', 'red',...  
%              'MarkerSize', 3 , 'LineWidth', 2 ,...  
%              'Marker','o','color','red');%'LineStyle',':', makes dots  
%           
  %2016-9- 23F Error Caused by:  
  %While setting the 'Marker' property of 'Line': 'circle' is not a valid 
value.  
  %Use one of these values: '+' | 'o' | '*' | '.' | 'x' | 'square' | 
'diamond' | 'v' | '^' | '>' | '<' | 'pentagram' | 'hexagram' | 'none'.  
%----------- end IR Sense End Pts ----------------  
  
%%%%%%%%%%IRPathBotMaxDist;%%%%%%%%%%%%%%%%%%%%%%%%%%% 
hold on;  
%-----------IRPathBotMaxDist----------------  
line04 = line( 'XData ' ,IRPathBotMaxDist(1,:), 'YData' ,IRPathBotMaxDist(2,:), ...  
              'LineStyle' , ':' , 'MarkerFaceColor' , 'blue' , ...  
              'MarkerSize' , 1 , 'LineWidth' , 2 , ...  
              'Marker' , '.' , 'color' , 'blue' ); %'LineStyle',':', makes dots  
  %2016-9- 23F Error Caused by:  
  %While setting the 'Marker' property of 'Line': 'circle' is not a valid 
value.  
  %Use one of these values: '+' | 'o' | '*' | '.' | 'x' | 'square' | 
'diamond' | 'v' | '^' | '>' | '<' | 'pentagram' | 'hexagram' | 'none'.  
%-----------end IRPathBotMaxDist----------------  
  
if  (AN01 == 1); %plot if AN01=1 =ON  
%%%%%%%%%%IRPathBotMaxDist;%%%%%%%%%%%%%%%%%%%%%%%%%%% 
hold on;  
%-----------IRPathBotMinDist----------------  
line05 = line( 'XData' ,IRPathBotMinDist(1,:), 'YData' ,IRPathBotMinDist(2,:), ...  
              'LineStyle' , '-' , 'MarkerFaceColor' , 'red' , ...  
              'MarkerSize' , 1 , 'LineWidth' , 3 , ...  
              'Marker' , '.' , 'color' , 'red' ); %'LineStyle',':', makes dots  
           
  %2016-9- 26M: An error occurred while running the simulation  and the 
simulation was terminated  
  %Caused by:  
  %While setting the 'LineStyle' property of 'Line': '*' is not a valid 
value. Use one of these values: ' - ' | ' -- ' | ':' | ' - .' | 'none'.         
  %2016-9- 23F Error Caused by:  
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  %While setting the 'Marker' property of 'Line': 'circle' is not a valid 
value.  
  %Use one of these values: '+' | 'o' | '*' | '.' | 'x' | 'square' | 
'diamond' | 'v' | '^' | '>' | '<' | 'pentagram' | 'hexagram' | 'none'.  
%----------- end IRPathBotMaxDist ----------------  
end ; %If (AN01 == 1);%plot if AN01=1 =ON  
  
  
%Path last to accent over top of IR beam.  
hold on;  
  
%First plot line moved here 2016 -9- 26M 
line01 = line( 'XData' ,Pos2xPts(1,:), 'YData' ,Pos2xPts(2,:), ...  
        'MarkerSize' , 8 , 'LineWidth' , 2 , ...  
        'Marker' , 'square' , ' color' , 'black' );  
  
  
hold on;  
%----------- Every 10th point ----------------  
line02 = line( 'XData' ,Pos2xPts10th(1,:), 'YData' ,Pos2xPts10th(2,:), ...  
              'LineStyle' , 'none' , 'MarkerFaceColor' , 'black' , ...  
              'Marker' , 'square' , 'color' , 'black' );  
%----------- end Every 10th point ----------------  
  
  
%{  
%add space after % to reactivate block  
%---------------------------------------  
%annotations as walls and objects in arena  
%These must be made to agree manually with ML sub: Niche Layout   
%dimensions in fraction of plot area  
dimxywhWalls=[ 0.01 0.01 0.99 0.99 ];%dimensions as x,y lower left corner, 
width&ht of plot in fraction of area  
annotation('rectangle',dimxywhWalls,'FaceColor','cyan',...  
           'Color','black','FaceAlpha', 0.2,'LineWidth',2);        
%transparency:FaceAlpha from 0 (transparent) to 1 (opaque)  
%http://www.mathworks.com/help/matlab/ref/annotation.html?searchHighlight=ann
otate  
%annotations in general  
%http://www.mathworks.com/help/matlab/ref/annotationrectangle - properties.html  
% 'LineWidth',2     0.5 as default  
  
%add objects as rectangles  
dimxywhObj1=[ 0.51 0.21 0.04 0.04 ];%dimensions as x,y lower left corner, 
width&ht of plot in percent of area  
annotation('rectangle',dimxywhObj1,'FaceColor','black',...  
           'Color','bla ck','FaceAlpha', 1.0,'LineWidth',2);  
  
dimxywhObj2=[ 0.21 0.51 0.04 0.04 ];%dimensions as x,y lower left corner, 
width&ht of plot in percent of area  
annotation('rectangle',dimxywhObj2,'FaceColor','black',...  
           'Color','black','FaceAlpha', 1.0,'Lin eWidth',2);  
  
%----------- end annotations ----------------  
%}  
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%add space after % to reactivate block  
  
hold on;  
%----------- plotted annotations ----------------  
%http://www.mathworks.com/help/matlab/ref/annotation.html?searchHighlight=ann
otate  
xWalls = [ 0 100 100  0   0 ]; %walls  
yWalls = [ 0 0   100  100 0 ]; %walls  
plot(xWalls,yWalls, 'LineWidth' , 3, 'Color' , 'black' );  
  
%Objects defined in NICHE section  
  
%{  
%add space after % on line above to reactivate block  
%Start block comment objects 2&1  
%Object 1  
xObj1 = [ 70 73 73  70 70 ];%Object1 upper right  
yObj1 = [ 70 70 73  73 70 ];%Object1 upper right  
%xObj1 = [ 50 53 53  50 50 ];%Object1 center  
%yObj1 = [ 50 50 53  53 50 ];%Object1 center  
%xObj1 = [ 51 54 54  51 51 ];%Object1 original  
%yObj1 = [ 21 21 24  24 21 ];%Object1 original  
plot(xObj1,yObj1, 'LineWidth', 4, 'Color','black');  
%}  
%add space after % on line above to reactivate block  
%End block comment objects 2&1  
  
%{  
%add space after % on line above to reactivate block  
%Object 2  
xObj2 = [ 17 20 20  17 17 ];%Object2 lower left  
yObj2 = [ 20 20 23  23 20 ];%Object2 lower left  
%xObj2 = [ 21 24 24  21 21 ];%Object2 original  
%yObj2 = [ 51 51 54  54 51 ];%Object2 original  
plot(xObj2,yObj2, 'LineWidth', 4, 'Color','black');  
%}  
%add space after % on line above to reactivate block  
%End block comment objects 2&1  
  
  
%----------- end plotted annotations ----------------  
  
  
% 
%str = {'Straight Line Plot','from 1 to 10'};  
%strStart = {'START'};  
dimxywhStart= [(Pos2xPts(1,1)/100)+.05 (Pos2xPts(2,1)/100) - .15 0.2  0.2];  
%annotation('textbox',dim,'String',str,'FitBoxToText','on');  
  
%annotation('textbox',dimxywhStart,...  
%           'String','START',...            
%           'FitBoxToText','on',...  
%           'FontWeight', 'bold', 'Fontsize', 12,...  
%           'EdgeColor','none','FaceAlpha', 0.2,'LineWidth',2);        
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%transparency:FaceAlpha from 0 (transparent) to 1 (opaque)  
%http://www.mathworks.com/help/matlab/ref/annotation.html?searchHighlight=ann
otate  
%annotations in general  
%http://www.mathworks.com/help/matlab/ref/annotationrectangle - properties.html  
  
%str = {'Straight Line Plot','from 1 to 10'};  
%strEnd = {'END'};  
dimxywhEnd=[Pos2xPts(1,nPtsMax)/100+.05 Pos2xPts(2,nPtsMax)/100 - .15 .3 .3];  
  
  
%annotation('textbox',dimxywhEnd,'String','END','FitBoxToText','on',.. .  
%           'FontWeight', 'bold', 'Fontsize', 12,...  
%           'EdgeColor','none','FaceAlpha', 0.2,'LineWidth',2);        
% 
  
  
refresh(figure1); %redraws the figure identified by h.  
 
        
  
%%see above: coder.extrinsic('format','display')  
%format bank;%display 2 sig figs to right of decimal  
%showabGain3X20=abGain3X20 % print to Command Window  
%%disp(abGain3X20) % display in Command Window  
  
 Pos2xPts10th %show every 10th point darker  
  
  %======Print of ANNum value============  
  spTotalTime=TotalTime  %should agree with StopAtTime (of prog) & StopTime 
(of SL)  
  %prtdANNum= dANNum %leave semicolon off to print it  
  prtANNumTot= ANNumTot %leave semicolon off to print it  
  prtANNum= ANNum %leave semicolon off to print it  
   
  %====== END Print of ANNum va lue============  
   
end ; %if (ctime2 > (StopAtTime - 0.0001)  )&& (holdtime2<ctime2) && (ctime2 < 
StopAtTime+0.0001);  
%=========end of Figure inserted here from EXPLORE===========================  
  
%======Matrix create examples  
%% Creating Multi - Dimensional Ar rays  
% Multidimensional arrays in MATLAB are created the same way as  
% two - dimensional arrays. For example, first define the 3 by 3 matrix, and  
% then add a third dimension.  
  
%A = [5 7 8;  
%     0 1 9;  
%     4 3 6];  
%A(:,:,2) = [1 0 4;  
%            3 5 6;  
%            9 8 7];  
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%%  
% The CAT function is a useful tool for building multidimensional arrays.  
% B = cat(DIM,A1,A2,...) builds a multidimensional array by concatenating  
% A1, A2 ... along the dimension DIM.  
  
%B = cat( 3, [2 8; 0 5], [1 3; 7 9], [2 3; 4 6]); %cat along 3rd dimension  
% where A1=[2 8; 0 5], A2=[1 3; 7 9], and A3= [2 3; 4 6]  
  
%%  
% Calls to CAT can be nested.  
  
%A = cat(3,[9 2; 6 5], [7 1; 8 4]);  
%B = cat(3,[3 5; 0 1], [5 6; 2 1]);  
%C = cat(4,A,B,cat(3,[1 2; 3 4], [4 3; 2 1]));%cat on 4th dimension  
  
%% Finding the Dimensions  
% SIZE and NDIMS return the size and number of dimensions of matrices.  
  
%SzA   = size(A);  
%DimsA = ndims(A);  
%SzC   = size(C);  
%DimsC = ndims(C);  
  
%% Accessing Elements  
% To access a single element of a multidimensional array, use integer  
% subscripts. For example D(1,2,2,22), using D defined in the previous  
% slide, returns 6.  
%  
% Array subscripts can also be vectors. For example:  
  
%K = C(:,:,1,[1 3]);  
  
%% Selecting 2D Matrices From Multi - Dimensional Array s  
% Functions like EIG that operate on planes or 2D matrices do not accept  
% multi - dimensional arrays as arguments. To apply such functions to  
% different planes of the multidimensional arrays, use indexing or FOR  
% loops. For example:  
  
%A = cat( 3, [1 2 3; 9 8 7; 4 6 5], [0 3 2; 8 8 4; 5 3 5], ...  
%                 [6 4 7; 6 8 5; 5 4 3]);  
% The EIG function is applied to each of the horizontal 'slices' of A.  
%for i = 1:3  
%    eig(squeeze(A(i,:,:)))  
  
%======end matrix create examples  
%% 
theading=heading;  
tANNum=ANNum; 
uNumOut=uNum; 
  
if  (ctime2==0); %output to graph  
 EXPLORENumOut=EXPLORENum;  
 AVOIDNumOut=AVOIDNum;  
 SEEKNumOut=SEEKNum; 
else  
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 EXPLORENumOut=EXPLORENum/ctime2;  
 AVOIDNumOut=AVOIDNum/ctime2;  
 SEEKNumOut=SEEKNum/ctime2;  
end ; %if (ctime2>0);  
  
y = Beh5xPts;  
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ARDUINO  PROGRAM 

 
 
Program for Arduino Nano processor (file: Nano20161102WvPWMSpinAvoidAN01PhD.txt):  
 
/*  
//===11:14 AM 11/2/2016W  Nano20161102WvPWMSpinAvoidAN01PhD.ino & *.txt 
//===1:38 PM 6/8/2015  Nano20150608MvPWMSpin.ino & *.txt 
//===2:31 PM 2/21/2015Sat  Nano20150221SatPWMBot.ino & *.txt 
//===11:17 AM 12/31/2014W  NanoPWMBot20141231W.ino & *.txt 
//===10:28 AM 1/8/2014 Blink20140108.ino & *.txt 
 
//3:59 PM 11/4/2016 
//https://www.arduino.cc/en/Guide/Troubleshooting#upload 
//had to press reset button during upload to Nano 
 
parts also taken from (on 2:33 PM 2/21/2015):  
===7:56 PM 6/18/2014 NanoSDLCD20140618W.ino & *.txt 
*/ 
 
// 
 
/*  
  Blink 
  Turns on an LED on for one second, then off for one second, repeatedly. 
 
  This example code is in the public domain. 
*/ 
 
/*  
===2:36 PM 2/21/2015 
Nano Pin descriptions 
Pin assignments: 
PWM: 3,5,6,9,10,11 
Digital: 
D00: RX programming  
D01: TX programming 
D02: RelayBd1IN1and2D02 (Orange) 
D03: PWM MotPWMD03      (Yellow) 
D04: RelayBd2IN1and2D04 (Green)  
D05: PWM MotPWMD05      (Blue) 
D06: open PWM           (Brown) (reserve for: Sonar01CueD06) 
D07: open               (White) (reserve for: Sonar01EchoD07) 
D08: open AN01          (Orange) 
D09: open PWM           (Yellow) 
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D10: open PWM (add: SD card: CS sampling output)  (Green) 
D11: open PWM (add: SD card: MOSI)                (Blue) 
D12: open (add: SD card: MISO)                    (Brown) 
D13: open (add: SD card: SCLK)                    (White) 
 
Analog: 
A00/D14: open (add?: Photocell (Green)) 
A01/D15: open (add?: Thermister(Yellow)) 
A02/D16: open (IR01A02 (Green)) 1:39 PM 6/27/2015 
A03/D17: open (add?: MotA2 (Blue)) 
A04/D18: open (add?: MotA1 (Brown)) 
A05/D19: open (add?: MotB2 (White)) 
A06:     open (add: (cannot be digital)(Yellow)) 
A07:     open (add: (cannot be digital)(Green)) 
 
http://forum.arduino.cc/index.php?topic=48864.0 
Re: Making an analog pin output a signal Response 
Jul 17, 2010, 10:35 pm Last Edit: Jul 17, 2010, 10:36 pm by AWOL Reason: 1 
Digital pins 14 to 19 are analogue pins 0 to 5. 
Just set them up as normal digital pins. 
http://arduino.cc/en/Reference/PinMode 
 (next line conflicts with above, so try 14 to 19 first) 
 The analog input pins can be used as digital pins, referred to as A0, A1, etc.  
 
*/ 
 
// Pin 13 has an LED connected on most Arduino boards. 
// give it a name: 
//PWM pins 3,5,6,9,10,11 
int led = 13; 
int RelayBd1IN1and2D02 = 2; 
int MotPWMD03 = 3; 
int RelayBd2IN1and2D04 = 4; 
int MotPWMD05 = 5; 
int Sonar01CueD06= 6; 
int Sonar01EchoD07= 7; 
float Sonar01cm;//distance in cm 
int AN01p08=8;//Anticipation cue pin 8 
 
//analog pins 
int IR01A02= 2;//Analog A02 chan 
float IR01cm= 0;//cm distance for IR01cm on A02 
float IRSen01Test= 100;//cm distance scaled for AN01 on 
float IRSen01Min= 28;//cm distance min for scaling AN01 on  
float IRSen01Max= 50;//50;//cm distance max for scaling AN01 on 
float AheadFrac= 1;//scaling of timing for AVOID 
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//Movement Cue 
int CueMoveStFBSp= 0;//Motion Forw, Back, Spin; 12:56 PM 6/9/2015 
  //Cue Move: Stop=0; Forward=1; Back=2; SpinCW=3; SpinCCW=4 
 
//Anticipation: AN01=0(OFF); =1(ON) 
int AN01= 0;//Anticipation: AN01=0(OFF); =1(ON) 12:07 PM 11/2/2016 
 
//fan not in use 12:13 PM 6/9/2015 
int fanon = 0; 
 
 
//**************************************************** 
//Timers 11:54 AM 6/9/2015; millis() is unsigned long 
//12:38 PM 6/9/2015 Binary sketch size: 2,908 bytes (of a 30,720 byte maximum) 
//Forward 
unsigned long tForwStart=millis();//set Forward start time 
unsigned long tForw01=8140;//8140=8.14s//90=35%speed:1.43*2.2s=3140 //2200;//2.2s//2.7 s 
default initial 
 //tSpinDelay will preempt if a shorter time than tForw01; 2:49 PM 9/28/2015 
//tBack 
unsigned long tBackStart=millis();//set Backward start time 
unsigned long tBack01=3000;//less300=3s//90=35%speed:1.43*2.55s=3650 //2550;//2.55s//3.05 
s default initial 
//tAVOID 
unsigned long tAvoidStart=millis();//set Backward start time 
unsigned long tAvoidRun=125;//125=1.25s;//150=1.5s//125=1.25s//200=0.2s//300;//0.3s //0.5s 
workds AC test //2.0 s constant SEEK Spin run time 
  //140 for Vreg 8AAused set 3.5V on 11:38 AM 3/3/2016//125 OK for batt>5.5V 
//Spin/SEEK or AVOID 
unsigned long tSpinCW01=1700;//1.7s//1.9 s default initial 
unsigned long tSpinCCW01=2000;//2.0 s default initial 
unsigned long tSpinDelay=6500;//6.5s//2800;//2.8s//not work right test below:1000;//1.0 s; 
constant time to delay in EXPLORE before start SEEK Spin 
 //tSpinDelay will preempt if a shorter time than tForw01; 2:49 PM 9/28/2015 
unsigned long tSpinRun=2000;//2.0 s constant SEEK Spin run time 
unsigned long tSpinWaitStart=millis();//wait Start time in EXPLORE before start SEEK Spin 
unsigned long tSpinRunStart=millis();//start time of SEEK Spin 
//prints 
//CueMoveStFBSp 
unsigned long tPrint01Start=millis(); 
unsigned long tPrint01=3000; 
//time tracks 
unsigned long tTimeTrak01=0;// 
unsigned long tTimeTrak02=0;// 
unsigned long tTimeTrak03=0;// 
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//**************************************************** 
//**************************************************** 
void Example()//Template 
{ 
 //Use to create function 
   
}//end: void Example() 
 
 
//**************************************************** 
//**************************************************** 
void ANSettings()//Settings for ANticipation 
{ 
 //Note: AN01 digitalRead in SensorsRead();//Read all sensors 
  
 //%%%%%%%%ANticipation additions from MatLab %%%%%%%%%%%%%% 
 //%set test distance w/ or w/o AN 2016-7-25; 4:30pm. 
 if (AN01 > 0)//%AN is ON 
 { 
  IRSen01Test= IRSen01Max;//%wide range 
 }//%1st condition before else end: if (AN01 > 0);//%AN is ON 
 else//%AN01=1: AN OFF 
 { 
  IRSen01Test= IRSen01Min;//%narrow range 
 }//end;//%end final: if (AN01 > 0);//%AN is ON 
 
 //Test prints ++++++++++++++++++++++++++++++++++++++++++++++++++++++++  
 Serial.print(IRSen01Test);//Serial.print(" , "); Serial.print(Sonar01cm); 
 Serial.println(" =IRSen01Test; in ANSettings"); 
  
 
 
 //==== 2nd set ANticipation additions=========== 
 //%from AVOID routine in ML; shut off in AVOID: only here now 
 //%===================================================== 
 //%AN should *not* be in AVOID; Keep in this Arduino & Cue routine ML Function2 
 //%AVOID should just change heading; already cued to turn 
 //%===================================================== 
 //%ANticipation: AN01:0=OFF; 1=ON 
 if (AN01 > 0)//%ANticipation turned ON 
 { 
  if (IR01cm>=100)//%equal to ultimate distance   
  {  
   AheadFrac=1;//%mimimum should never get here, but a protective test 
  }//%1st condition before else if end: if (IR01cm=100);//%equal to ultimate distance 
  else if (IR01cm<= IRSen01Min+1) 
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  { 
   AheadFrac=1;//%minimum distance 
  }//%2nd condition before else end: if (IR01cm=100);//%equal to ultimate distance 
  else//%scaling ratio for AheadFrac 
  { 
   AheadFrac=1/(IR01cm-IRSen01Min);//%inverse relation, asymptote zero 
   //%2016-7-22F ML global variables handle in multiple routines 
   //%must also change in Percept function: ML IRSen01fcn(u) and Arduino ChoiceBehavior 
   //%ML note: about line 31: IRDistMax=60;%28;%initial value;   
   //%ML note: 28cm=11in closeness boundary to cue AVOID 
   //%ML note: Also change in AHEAD_AVOID func line 57 as base to divide into 
    
   AheadFrac=min(1,AheadFrac);//%range <==1  
  }//end;//%end final: if (IR01cm=100);//%equal to ultimate distance   
 
 
 }//%1st conditon before else end: if (AN01 > 0);//%ANticipation turned ON 
 else//%ANticipation turned off 
 { 
  AheadFrac=1;//%Max AVOID turn time: tAVOIDRun 
 }//end;//%end final: if (AN01 > 0);//%ANticipation turned ON 
 
 //Test prints ++++++++++++++++++++++++++++++++++++++++++++++++++++++++  
 Serial.print(AheadFrac);//Serial.print(" , "); Serial.print(Sonar01cm); 
 Serial.println(" =AheadFrac; in ANSettings"); 
   
 //==== 2nd set ANticipation additions=========== 
  
  
 //%%%%%%%%END ANticipation additions from MatLab %%%%%%%%%%%%%% 
 
  
}//end: void ANSettings(); 
//11:00 AM 11/3/2016 Binary sketch size: 8,034 bytes (of a 30,720 byte maximum) 
 
 
//**************************************************** 
//**************************************************** 
//Binary sketch size: 6,648 bytes (of a 30,720 byte maximum) 10:55 AM 9/2/2015 
void RunBehavior()//Run the cued behavior  
{ 
 //Cue Behavior: WAIT=0; EXPLORE=1; AVOID=2; SEEKCW=3; SEEKCCW=4; Back 
only=5 
 switch (CueMoveStFBSp)  
 { 
  case 0: 
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   //WAIT 
   WaitStop();//WAIT for time<1s 
   break; 
  //------------------------------------------ 
  case 1: 
   //EXPLORE 
   if ( (millis() -tForwStart) < tForw01)// 
   { 
    //tSpinDelay will preempt if a shorter time than tForw01; 2:49 PM 9/28/2015 
    Forward(); 
   }//end first if ( (millis()-tForwStart) < tForw01)) 
   //............................... 
   else //no Spin not EXPLOREing: time exceeded 
   { 
    CueMoveStFBSp= 5;//Back (or SpinCCW) after Forw time ends 
    //tAvoidStart=millis();//set Avoid start time 
    tBackStart=millis();//Advance of start time to wait before next SEEK Spin 
   }//end final if -tForwStart) > tForw01) 
   //............................... 
   break; 
  //------------------------------------------ 
  case 2: 
   //AVOID 
   if ( (millis() -tAvoidStart) < tAvoidRun) 
   { 
   SpinCCW();//Back and SpinCCW; kept9:55 AM 9/15/2015 
   }//end first if ( (millis()-tAvoidStart) < tAvoidRun) 
   //............................... 
   else //no Spin time exceeded, Done AVOIDing 
   { 
    tSpinWaitStart= millis();//times start to wit before spin 
    CueMoveStFBSp= 1;//Forw after AVOID/Spin time ends 
    tForwStart=millis();//Advance of start time to wait before next Forw 
   }//end final if-tAvoidStart) < tAvoidRun) 
   //............................... 
   break; 
  //------------------------------------------ 
  case 3: 
   //SEEK SpinCW 
   if ( (millis() -tSpinRunStart) < tSpinRun) 
   { 
   SpinCW();//Back and SpinCW 
   }//end first if ( (millis()-tSpinRunStart) < tSpinRun) 
   //............................... 
   else //no Spin time exceeded, not EXPLOREing 
   { 
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    tSpinWaitStart= millis();//times start to wait before spin 
    CueMoveStFBSp= 1;//Forw after SEEK/Spin time ends 
    tForwStart=millis();//Advance of start time to wait before next Forw 
   }//end final if-tSpinRunStart) < tSpinRun) 
   //............................... 
   break; 
  //------------------------------------------ 
  case 4: 
   //SEEK BackSpinCCW; 9:52 AM 9/15/2015 
   //Previous: SEEK SpinCCW; 9:52 AM 9/15/2015 
   if ( (millis() -tSpinRunStart) < tSpinRun) 
   { 
   //BackSpinCCW();//Back and SpinCCW;9:53 AM 9/15/2015 
   SpinCCW();//Back and SpinCCW; revert 11:25 AM 9/15/2015 
   }//end first if ( (millis()-tSpinRunStart) < tSpinRun) 
   //............................... 
   else //no Spin time exceeded, not EXPLOREing 
   { 
    tSpinWaitStart= millis();//times start to wait before spin 
    CueMoveStFBSp= 1;//Forw after SEEK/Spin time ends 
    tForwStart=millis();//Advance of start time to wait before next Forw 
   }//end final if-tSpinRunStart) < tSpinRun) 
   //............................... 
   break; 
  //------------------------------------------ 
  case 5: 
   //Back: straight Back 
   if ( (millis() -tBackStart) < tBack01)// 
   { 
   Back();//Back straight 
   }//end first if ( (millis()-tBackStart) < tBack01)) 
   //............................... 
   else //no Spin, not Backing: time exceeded 
   { 
    tSpinWaitStart= millis();//times start to wit before spin 
    tForwStart=millis();//Advance of start time to wait before next Forw 
    CueMoveStFBSp= 1;//Forw after Back time ends 
    tBackStart=millis();//Advance of start time to wait before next SEEK Spin 
   }//end final if -tBackStart) > tBack01) 
   //............................... 
   break; 
  //------------------------------------------ 
  default: 
   // if nothing else matches, do the default 
   // default is optional 
   break; 
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 }//end switch (CueMoveStFBSp) 
}//end: void RunBehavior() 
 
 
//**************************************************** 
//**************************************************** 
//Binary sketch size: 6,318 bytes (of a 30,720 byte maximum) 3:34 PM 9/1/2015 
void ChoiceBehavior() 
{ 
 //Use to create function 6:10 PM 8/31/2015 
 //Cue Behavior: WAIT=0; EXPLORE=1; AVOID=2; SEEKCW=3; SEEKCCW=4; Back 
only=5 
 //Cue OLD Move: Stop=0; Forward=1; Back=2; SpinCW=3; SpinCCW=4 
 //............................. 
 if (millis() < 1000)//1 sec 
 {//WAIT before start 
  CueMoveStFBSp= 0;//Motion Forw, Back, Spin;  
  //Cue Behavior: WAIT=0; EXPLORE=1; AVOID=2; SEEKCW=3; SEEKCCW=4 
  // 
  //Test prints ++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  Serial.print(CueMoveStFBSp);//Serial.print(" , "); Serial.print(Sonar01cm); 
  Serial.println(" =CueMoveStFBSp; millis() < 1000"); 
  // 
 }//end first test if (millis() < 1000) 
 else  
 { 
  if (CueMoveStFBSp == 0)  
  { 
   tSpinWaitStart= millis();//times start to wait before spin 
   tForwStart=millis(); 
   CueMoveStFBSp= 1; 
  }//EXPLORE start 
 }//end final if (millis() < 1000) 
 
 
 
 //%=============AVOID Start Cue================================= 
 //%AVOID only if AVOID started (CueMoveStFBSp== 4) or ==3 in ML 
 //%AVOID no longer interrupts SEEK 
 // || is OR operator 
 if(CueMoveStFBSp== 1 || CueMoveStFBSp== 2)//%(Cue EXPLORE=1 || Cue AVOID=2) 
 { 
 
 
 //............................... 
 //Next line changed to IRSen01Test from 28 on 2016-11-3R, 2pm 
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 if (IR01cm < IRSen01Test)//%28)//28cm=11in//25 cm=10in 
 //IRSen01Test is either IRSen01Min(=28) or IRSen01max(=50) in AN01Settings 2:14 PM 
11/3/2016 
 {/ /AVOID flag: Back & turn from wall 
 
  if (CueMoveStFBSp != 2)//not equal to 2 
  { 
   tAvoidStart=millis(); 
  }//AVOID start 
  CueMoveStFBSp= 2;//AVOID start;  
  //Cue Behavior: WAIT=0; EXPLORE=1; AVOID=2; SEEKCW=3; SEEKCCW=4 
 
  //...................... 
  if ( ((millis()-tAvoidStart) > tAvoidRun*AheadFrac) && (CueMoveStFBSp == 2)) //2 sec; && 
is AND 
  //%if ( ((millis()-tAvoidStart) > tAvoidRun) && (CueMoveStFBSp == 2)) //2 sec; && is AND 
  { 
   tSpinWaitStart= millis();//times start to wait before spin 
   tForwStart=millis(); 
   CueMoveStFBSp= 1;//EXPLORE start;  
   //Cue Behavior: WAIT=0; EXPLORE=1; AVOID=2; SEEKCW=3; SEEKCCW=4 
  }//end if ( (millis()-tAvoidStart) > tAvoidRun) 
  // 
  //Test prints ++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  Serial.print(CueMoveStFBSp);//Serial.print(" , "); Serial.print(Sonar01cm); 
  Serial.println(" =CueMoveStFBSp; IR01cm < 25"); 
  // 
 }//end first test if (IR01cm <IRSen01Test=28or50) 
 else //for this section, IR01cm>IRSen01Test=28or50, so not near wall 
 { 
  if ( ((millis() -tAvoidStart) > tAvoidRun*AheadFrac) && (CueMoveStFBSp == 2)) //2 sec; && 
is AND 
  //%if ( ((millis()-tAvoidStart) > tAvoidRun) && (CueMoveStFBSp == 2)) //2 sec; && is AND 
  { 
   tSpinWaitStart= millis();//times start to wit before spin 
   tForwStart=millis(); 
   CueMoveStFBSp= 1;//EXPLORE start; a 
   //Cue Behavior: WAIT=0; EXPLORE=1; AVOID=2; SEEKCW=3; SEEKCCW=4 
  }//end if ( (millis()-tAvoidStart) > tAvoidRun) 
  // 
  //Test prints ++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  Serial.print(CueMoveStFBSp);//Serial.print(" , "); Serial.print(Sonar01cm); 
  Serial.println(" =CueMoveStFBSp; IR01cm > 25"); 
  // 
  //............................... 
 }//end final if (IR01cm < 25) 
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 //............................... 
 if (Sonar01cm < 20)//20cm 
 {//ANticipate: AVOID flag: Back & turn from wall 
  //need rule here 
 }//end if (Sonar01cm < 20) 
 
 
 }//%end if(CueMoveStFBSp== 1 || CueMoveStFBSp== 2)//%(Cue EXPLORE || Cue AVOID); 
 // || is OR operator 
 //%=============END: AVOID Start Cue================================= 
 
 
 
 //............................. 
 if (CueMoveStFBSp== 1)//SEEK Spin start and test to continue/end 
 {//EXPLORING timed for Spin of SEEK 
 // 
  //Test prints 
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  Serial.print(CueMoveStFBSp);Serial.print(" , "); Serial.print(millis()-tSpinWaitStart); 
  Serial.println(" =CueMoveStFBSp; millis()-tSpinWaitStart; CueMoveStFBSp== 1"); 
  // 
   if ( (millis() -tSpinWaitStart) > tSpinDelay)//1 sec 
  { 
   tSpinWaitStart=millis(); 
   tSpinRunStart=millis(); 
   CueMoveStFBSp= 4;//Motion Spin;  
   //Cue Behavior: WAIT=0; EXPLORE=1; AVOID=2; SEEKCW=3; SEEKCCW=4 
  }//end first if ( (millis()-tSpinWaitStart> tSpinDelay) 
  //............................... 
  else //no Spin not EXPLOREing 
  { 
   CueMoveStFBSp= CueMoveStFBSp;//no change to CueMoveStFBSp 
   //junk//let time pass by no update of start time: tSpinRunStart 
   //junk//tSpinWaitStart=millis();//Advance of start time to wait before next SEEK Spin 
  }//end final if ( (millis()-tSpinWaitStart) > tSpinDelay) 
  //***************************************** 
 
 }//end first test before else if: if (CueMoveStFBSp== 1) 
 
 
 //%............................. 
 //%...SEEK RUNS HERE ...... SEEKRUNSHERE ......elseif,else,end} 
 //%............................. 
 else if (CueMoveStFBSp== 4)//SEEK Spin in Progress //% ==3 in SLML 
 { 
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  if ( (millis() -tSpinRunStart) > tSpinRun)//2.0 sec 
  { 
   tSpinWaitStart= millis();//times start to wait before spin 
   tSpinRunStart=millis(); 
   tForwStart=millis(); 
   CueMoveStFBSp= 1;//EXPLORE again  
   //Cue Behavior: WAIT=0; EXPLORE=1; AVOID=2; SEEKCW=3; SEEKCCW=4 
  // 
  //Test prints ++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  Serial.print(CueMoveStFBSp);//Serial.print(" , "); Serial.print(Sonar01cm); 
  Serial.println(" =CueMoveStFBSp; CueMoveStFBSp== 4"); 
  // 
 
 
  }//end 1st condition before else: if ( (millis()-tSpinRunStart) > tSpinRun)//2.0 sec 
    
  else////SEEK still spinning  
  { 
 
   //%---check if AN=1 is ON (decode to Arduino 4:23 PM 11/3/2016)----- 
   if (AN01 > 0)//%AN is ON 
   { 
    //....................................... 
    //%set above: IRSen01Test= IRSen01Max;%wide range 
    if (IR01cm < IRSen01Max)//%object in range of IRSen01Max 
    { 
     //%only if object in range of IRSen01Max 
     tSpinWaitStart= millis();//times start to wait before spin 
     tSpinRunStart=millis(); 
     tForwStart=millis(); 
     CueMoveStFBSp= 1;//EXPLORE again  
     //Cue Behavior: WAIT=0; EXPLORE=1; AVOID=2; SEEKCW=3; SEEKCCW=4 
    }//1st condition before else end: if (IR01cm < IRSen01Max)//%object in range of 
IRSen01Max  
 
    else//Object outside range of IRSen01Max 
    { 
     //%no change if no object in range of IRSen01Max 
    }//end final: if (IR01cm < IRSen01Max)//%object in range of IRSen01Max 
    //....................................... 
 
   }//1st condition end:if (AN01 > 0)//%AN is ON 
   else//AN01=0: AN OFF 
   { 
    //no change if AN is not ON 
   }//end final: if (AN01 > 0)//%AN is ON 
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   //%---end check if AN=1 is ON (decode to Arduino 4:23 PM 11/3/2016)----- 
 
  //Binary sketch size: 8,270 bytes (of a 30,720 byte maximum) 4:49 PM 11/3/2016 
 
   
 
  }//end final: if (millis()-tSpinRunStart) > tSpinRun)//2.0 sec  
 }//end second before else: if (CueMoveStFBSp== 4) 
 
 //................................ 
 else  
 { 
  CueMoveStFBSp= CueMoveStFBSp;//no change to CueMoveStFBSp 
 }//end final if (CueMoveStFBSp== 1) 
 
 // 
 if ( (millis() -tPrint01Start) > tPrint01) 
 { 
  tTimeTrak01= millis()-tPrint01Start;//time gap 
  tPrint01Start=millis();//reset time for printing 
  Serial.print(CueMoveStFBSp);Serial.print(" , "); Serial.print(tTimeTrak01); 
  Serial.println(" =CueMoveStFBSp, tTimeTrak01, time=tPrint01"); 
 }//end first if ( (millis()-tPrint01Start) > tPrint01) 
 // 
}//end: ChoiceBehavior() 
 
 
//**************************************************** 
//**************************************************** 
void ScreenPrint()  
{ 
 //Use to create function 
  // 
  Serial.print(IR01cm); Serial.print(" , ");Serial.print(Sonar01cm); 
  Serial.println(" =IR01cm,Sonar01cm"); 
  // 
   
}//end: void ScreenPrint(); 
 
//**************************************************** 
//**************************************************** 
float Sonarcm (int CuePin, int EchoPin)//12:50 PM 6/27/2015 
{ 
 //Cue and read a sonar 
 //4 pin sonar: HC-SR04 
 //http://www.grook.net/how-to-make-radar-using-arduino-uno 
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  digitalWrite(CuePin, LOW);  
  delayMicroseconds(2);  
  digitalWrite(CuePin, HIGH);  
  delayMicroseconds(10);  
  digitalWrite(CuePin, LOW); 
  // Distance Calculation 
  float distance = pulseIn(EchoPin, HIGH,5800);//58*100cmmax=5800 timeout 
  distance= distance/58;//distance in cm= time/58 conversion factor 
  //float distance=0;//test value only 
 
  return(distance); 
}//end: float Sonarcm (CuePin,EchoPin)//12:50 PM 6/27/2015 
 
//**************************************************** 
//**************************************************** 
 
void SensorsRead()//12:27 PM 6/27/2015  
{ 
 //Read as variable (1st) & store in an array (2nd) 
  //Anticiption: AN01=0(OFF; =1(ON) 
  AN01=digitalRead(AN01p08); 
  //Test prints ++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  //Serial.print(AN01);//Serial.print(" , "); Serial.print(Sonar01cm); 
  //Serial.println(" =AN01; in SensorsRead"); 
 
  //IR01cm= nearby distance on A02 
  //Sonar01cm= far distance using Cue D06 and Echo read D07 
  
 //IR01 read distance nearby 
 //Noah Stahl 5/25/2011 http://arduinomega.blogspot.com Arduino Mega 2560 
 //http://arduinomega.blogspot.com/2011/05/infrared-long-range-sensor-gift-of.html 
 //Calibration in Excel file: RobotArch20150122RCausalDiagStocks&Flows.xls : 
ANIMIRsensor20150508F 
 /*===2:22 PM 6/27/2015 
 See file for calibration: 
 RobotArch20150122RCausalDiagStocks&Flows.xls : ANIMIRsensor20150508F 
 IR sensor: 
 GP2Y0A02YK0F, 20 to 150cm 
 For V=< 1.15: 
 Inverse Graph: longer distance >50 cm 
 y=52/V + 5 
 For V>1.15: 
 Direct Graph: close distance <50 cm 
 y=-18.6V+62.4 
 */ 
 //IR01cm must be a float or double 
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 IR01cm= analogRead(IR01A02);//Initial reading 
 IR01cm= IR01cm*5/1024;//Volts: calc must be on different line than analogRead() 
 //2:20 PM 9/2/2015 
 //analogRead(): 5 volts / 1024 units, so multiply reading by *5/1024 
 if (IR01cm < 1.16) //long distance > 50 cm 
  { 
   IR01cm= 52/IR01cm + 5;//conversion to cm 
  } 
  else  //short distance < 50 cm 
  { 
   IR01cm= -18.6*IR01cm + 62.4;//conversion to cm 
  }//end: if (IR01cm < 1.16) 
 //alternative default from: 
 //http://arduinomega.blogspot.com/2011/05/infrared-long-range-sensor-gift-of.html 
 //IR01cm=   10650.08 * pow( IR01cm, -0.935) - 10; 
 //inches= 4192.936 * pow( IR01cm, -0.935) - 3.937; 
 
 //https://www.arduino.cc/en/Serial/Print 
 //Floats are similarly printed as ASCII digits, defaulting to two decimal places. 
 //Test prints ++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 Serial.print(IR01cm);//Serial.print(" , "); Serial.print(Sonar01cm); 
 Serial.println(" =IR01cm; in SensorsRead"); 
 
 //***************************** 
 //Sonar01 read distance far away 
 //4 pin sonar: HC-SR04 
 //http://www.grook.net/how-to-make-radar-using-arduino-uno 
 //int Sonar01CueD06= 6; //int Sonar01EchoD07= 7; 
 Sonar01cm= Sonarcm(Sonar01CueD06,Sonar01EchoD07); 
  
 
}//end: void SensorsRead();//12:27 PM 6/27/2015 
//Binary sketch size: 4,660 bytes (of a 30,720 byte maximum) 4:26 PM 6/27/2015 
 
//******************************************************* 
//******************************************************* 
void WaitStop() //8:57 AM 9/2/2015 
{ 
  //WaitStop: HIGH leaves relay at default Forward 
  //HIGH is unswitched relay (NC), LOW switches relay from NC to NO 
  digitalWrite(led, HIGH);   // turn the LED on (HIGH is the voltage level) 
  digitalWrite(RelayBd1IN1and2D02, HIGH);//RelayIN1on (HIGH=OFF=NC=Forward; 
LOW=ON=NO=Backward ) 
  analogWrite(MotPWMD03, 0);//Stop speed Forward; Min=0; Max=255 
  digitalWrite(RelayBd2IN1and2D04, LOW);//RelayIN2off (HIGH=OFF=NC=Forward; 
LOW=ON=NO=Backward ) 
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  analogWrite(MotPWMD05, 0);//Stop speed; Min=0; Max=255 
  //delay(tSpinCW01);//=1900;//1.9 s; not needed: test in ChoiceBehavior() 
 
}//end: WaitStop() //8:57 AM 9/2/2015 
 
//******************************************************* 
//******************************************************* 
void SpinCW() //12:18 PM 6/9/2015 CW only //1:41 PM 6/8/2015 
{ 
  //SpinCW: HIGH leaves relay at default Forward 
  //HIGH is unswitched relay (NC), LOW switches relay from NC to NO 
  digitalWrite(led, HIGH);   // turn the LED on (HIGH is the voltage level) 
  digitalWrite(RelayBd1IN1and2D02, HIGH);//RelayIN1on (HIGH=OFF=NC=Forward; 
LOW=ON=NO=Backward ) 
  analogWrite(MotPWMD03, 200);//Full speed Forward; Max=255 
  digitalWrite(RelayBd2IN1and2D04, LOW);//RelayIN2off (HIGH=OFF=NC=Forward; 
LOW=ON=NO=Backward ) 
  analogWrite(MotPWMD05, 200);//Full speed; Max=255 
  //delay(tSpinCW01);//=1900;//1.9 s; timing in RunBehavior() 
  //delay(1900);               // wait for 2.#s (about) 
  //delay(4000);               // wait for 4.0s 
 
}//end: void SpinCW() //12:18 PM 6/9/2015 CW only //1:41 PM 6/8/2015 
 
//******************************************************* 
//******************************************************* 
void BackSpinCCW() //9:45 AM 9/15/2015 //12:20 PM 6/9/2015 CCW only //1:41 PM 6/8/2015 
{ 
  //9:43 AM 9/15/2015 obsolete for SEEK SpinCCW(), replace: BackSpinCCW() 
  //9:56 AM 9/15/2015 kept SpinCCW() for AVOID 
  //10:45 AM 9/15/2015 Low batt<5.5V does not SpinCCW well; new batts my be OK 
  //BackSpinCCW: HIGH leaves relay at default Forward 
  //HIGH is unswitched relay (NC), LOW switches relay from NC to NO 
  digitalWrite(led, LOW);   // turn the LED OFF by making the voltage LOW 
  digitalWrite(RelayBd1IN1and2D02, LOW);//RelayIN1off (HIGH=OFF=NC=Forward; 
LOW=ON=NO=Backward ) 
  analogWrite(MotPWMD03, 150);//200);//near Full speed; Max=255 
  digitalWrite(RelayBd2IN1and2D04, LOW);//Prev: HIGH);//RelayIN2on 
(HIGH=OFF=NC=Forward; LOW=ON=NO=Backward ) 
  analogWrite(MotPWMD05, 25);//Prev: 200);//Full speed; Max=255 
  //delay(tSpinCCW01);//=2000;//2.0 s; timing in RunBehavior() 
  //delay(2000);               // wait for 1.#s 
  //delay(4000);               // wait for 4.0s 
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}//end: void BackSpinCCW() //9:45 AM 9/15/2015//12:20 PM 6/9/2015 CCW only //1:41 PM 
6/8/2015 
 
//******************************************************* 
//******************************************************* 
void SpinCCW() //12:20 PM 6/9/2015 CCW only //1:41 PM 6/8/2015 
{ 
  //9:43 AM 9/15/2015 obsolete for SEEK SpinCCW(), replace: BackSpinCCW() 
  //9:56 AM 9/15/2015 kept SpinCCW() for AVOID 
  //SpinCCW: HIGH leaves relay at default Forward 
  //HIGH is unswitched relay (NC), LOW switches relay from NC to NO 
  digitalWrite(led, LOW);   // turn the LED OFF by making the voltage LOW 
  digitalWrite(RelayBd1IN1and2D02, LOW);//RelayIN1off (HIGH=OFF=NC=Forward; 
LOW=ON=NO=Backward ) 
  analogWrite(MotPWMD03, 200);//prev200);//Full speed Forward; Max=255 
  digitalWrite(RelayBd2IN1and2D04, HIGH);//RelayIN2on (HIGH=OFF=NC=Forward; 
LOW=ON=NO=Backward ) 
  analogWrite(MotPWMD05, 200);//prev200);//Full speed; Max=255 
  //delay(tSpinCCW01);//=2000;//2.0 s; timing in RunBehavior() 
  //delay(2000);               // wait for 1.#s 
  //delay(4000);               // wait for 4.0s 
 
 
}//end: void SpinCCW() //12:20 PM 6/9/2015 CCW only //1:41 PM 6/8/2015 
 
 
//******************************************************* 
//******************************************************* 
void Forward() //1:08 PM 6/9/2015 
{ 
 
  //Forward: HIGH leaves relay at default Forward 
  //HIGH is unswitched relay (NC), LOW switches relay from NC to NO 
  digitalWrite(led, HIGH);   // turn the LED on (HIGH is the voltage level) 
  digitalWrite(RelayBd1IN1and2D02, HIGH);//RelayIN1off (HIGH=OFF=NC=Forward; 
LOW=ON=NO=Backward ) 
  analogWrite(MotPWMD03, 90);//90=35% speed//125);//Half speed Forward; Max=255 
  //digitalWrite(MotPWMD03, HIGH);   // turn the LED on (HIGH is the voltage level) 
  digitalWrite(RelayBd2IN1and2D04, HIGH);//RelayIN2off (HIGH=OFF=NC=Forward; 
LOW=ON=NO=Backward ) 
  analogWrite(MotPWMD05, 90);//90=35% speed//125);//Half speed; Max=255 
  //digitalWrite(MotPWMD05, HIGH);   // turn the LED on (HIGH is the voltage level) 
  //delay(tForw01);//=2700;//2.7 s; timing in RunBehavior() 
  //delay(2700);               // wait for 2.#s 
  //delay(4000);               // wait for 4.0s 
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}//end: Forward() //1:08 PM 6/9/2015 
 
//******************************************************* 
//******************************************************* 
void Back() //1:09 PM 6/9/2015 
{ 
  //Back: LOW switches relay to go Backward 
  digitalWrite(led, LOW);    // turn the LED off by making the voltage LOW 
  digitalWrite(RelayBd1IN1and2D02, LOW);//RelayBd1IN1and2D02 on 
(LOW=ON=NO=Backward) 
  analogWrite(MotPWMD03, 90);//90=35% speed//125);//Half speed; Max=255 
  //digitalWrite(MotPWMD03, HIGH);   // turn the LED on (HIGH is the voltage level) 
  digitalWrite(RelayBd2IN1and2D04, LOW);//RelayBd2IN1and2D04 on 
(LOW=ON=NO=Backward) 
  analogWrite(MotPWMD05, 90);//90=35% speed//125);//Half speed; Max=255 
  //digitalWrite(MotPWMD05, HIGH);   // turn the LED on (HIGH is the voltage level) 
  //delay(tBack01);//=3050;//3.05 s; timing in RunBehavior() 
  //delay(3000);               // wait for 3.#s 
  //delay(4000);               // wait for 4.0s 
 
}//end: Back() //1:09 PM 6/9/2015 
//1:14 PM 6/9/2015;Binary sketch size: 2,942 bytes (of a 30,720 byte maximum) 
 
 
//******************************************************* 
//******************************************************* 
 
 
// the setup routine runs once when you press reset: 
void setup()  
{ 
// initialize serial communications at 9600 bps: 
 Serial.begin(9600); 
  // initialize the digital pin as an output. 
  pinMode(led, OUTPUT); 
  pinMode(RelayBd1IN1and2D02, OUTPUT); 
  pinMode(MotPWMD03, OUTPUT); 
  pinMode(RelayBd2IN1and2D04, OUTPUT); 
  pinMode(MotPWMD05, OUTPUT); 
  digitalWrite(RelayBd1IN1and2D02, HIGH);//RelayIN1off (HIGH=OFF=NC, LOW=ON=NO ) 
  digitalWrite(MotPWMD03, LOW);   // turn the LED on (HIGH is the voltage level) 
  digitalWrite(RelayBd2IN1and2D04, HIGH);//RelayIN2off (HIGH=OFF=NC, LOW=ON=NO ) 
  pinMode(led05, OUTPUT); //fan High 
  digitalWrite(led04, LOW);   // turn the LED on (HIGH is the voltage level) 
  digitalWrite(MotPWMD05, LOW);   // turn the LED on (HIGH is the voltage level) 
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  //Sonar01cm pin directions 
  pinMode(Sonar01CueD06, OUTPUT);  
  pinMode(Sonar01EchoD07, INPUT);  
 
  //Anticipation pin direction 
  pinMode(AN01p08, INPUT);  
 
}//end: void setup()  
 
//******************************************************* 
//******************************************************* 
 
// the loop routine runs over and over again forever: 
void loop()  
{ 
 //Thermistor();//F from A01  
 
 SensorsRead();//Read all sensors 
 ScreenPrint();//Print to computer screen sensor readings 
 
 ANSettings();//Settings for ANticipation 
 ChoiceBehavior();//Choice of behavior 
 RunBehavior();//Run the cued behavior 
 
 //test back with delay 
 //Back();delay(3000);//Back only; base 
 
  
/* old code before 2:10 PM 9/2/2015 
 //Movement cues with delays 
 Forward();//Forward only; base 
 Back();//Back only; base 
 Forward();//Forward only; base 
 Back();//Back only; base 
 //ForwardBack();//Revised and gone 1:05 PM 6/9/2015; Move routine, simple 
 SpinCW();//Spin CW only 12:27 PM 6/9/2015 
 SpinCCW();//Spin CCW only 12:28 PM 6/9/2015 
 //Spin();//revised and gone 12:27 PM 6/9/2015 //Spin both CW & CCW 2:08 PM 6/8/2015 
*/ //end old code before 2:10 PM 9/2/2015 
 
 
  for (int irun=1; irun < 11; irun++) 
  {// 
  // 
 
  //Fan control (Extra routine) 
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  //for (int irun=1; irun < 11; irun++) 
  //{  
   if (irun == 10) 
   { //n cycles pass 
    if (fanon == 0) 
    {//turn fan on 
     fanon = 1; 
     digitalWrite(led05, HIGH);   // turn the LED on (HIGH is the voltage level) 
     //delay(4000);               // wait for a second 
    } 
     else 
     {//turn fan off 
      fanon = 0; 
      digitalWrite(led05, LOW);   // turn the LED on (HIGH is the voltage level) 
      //delay(100);               // wait for a 0.1 s 
    }//end: if (fanon = 0) 
   // 
   } 
    else 
   {// do nothing until n cycles 
   }//end: if (irun == 20) 
 
   }// end: for (int irun=1; irun = 21; irun++) 
 
 
}//end: void loop() 
 
 
//eof 
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A4.  ANTICIPATION  METRIC  

A specific metric (ANNum) was developed for operation of the TOURIST robot considering the 

distance measured by the IR beam and the area covered by the motion of the robot at any time 

instance (explained in this Appendix A4). The metric (ANNum) can be used to compare travel of 

robot paths from ANSIM model for a set time and arena configuration.  The same method is used 

for EXPLORE and AVOID behaviors both with no anticipation (NO AN) and with anticipation 

on (AN ON). However, for SEEK there is no calculation with NO AN since the spin during 

SEEK in that instance is not interrupted. However, with AN ON the area is calculated during the 

SEEK behvavior because the IR sensor is actively perceiving the niche during the spin, and the 

spin is interrupted when an object or wall is perceived.  

 

ANNum is integrated over the entire travel time, normalized by the total time to allow 

comparison among paths of different time duration:  

  dANNum(t)= DIR *  DistanceTraveled     (A4.1) 

 ANNumTot(t)= ANNumTot(t-1) + dANNum(t)    (A4.2) 

 ANNum= ANNumTot(t) / TotalTime     (A4.3) 

where each of the terms are: 

DIR: IR beam distance as the minimum of beam extension used (for NO AN: 28 cm; for AN 

ON: 50 cm.) or the distance reading to a wall or object [ DIR = min (IRMaxDist, 

IRReading).] 

DistanceTraveled: forward distance in EXPLORE (a parallelogram), or the heading change in 

either AVOID or SEEK behaviors as a distance at the extreme of the beam (a triangle, so 

must divide by 2 for the area covered). 
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ARENA  ENVIRONMENT 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dANNum(t): calculated change at any time interval. 

ANNumTot(t): total integrated value over the path at time, t. 

ANNum: value at any time as normalized for total time of travel. 

The result of A4.2 is to integrate over time, and A4.3 normalizes for the total travel time. 

 
 
 
 
 
 
 
 
 
 
 
 
    EXPLORE    AVOID and SEEK 
 
 

Figure 72. Metric ANNum is the integral of incremental area coverage of the niche 
environment, shown for EXPLORE (left) as a parallelogram, and both AVOID and 
SEEK (right) as a triangle.   1.0.82.20160421R 

 
There are potential relative sources of error in this calculation due to geometry (Fig. 72). For 

EXPLORE, due to the angle of 30 degrees offset from forward for the IR sensor beam, the 

parallelogram has a height that is htp= sin 30 * DistanceTraveled = 0.5 * DistanceTraveled, so 

adjustment by the factor of 0.5 must be made. For AVOID and SEEK, since the area of a triangle 

is At= 0.5 bh, the factor of 0.5 must be included. This uses the base as b= IR beam length, and 

the distance moved at the tip of the beam to be h= height of the triangle. For small angles it 

should be sufficient to consider a right angle between the IR beam and the tip distance traveled. 

As the SEEK behavior may spin as much as 270 degrees, the summation of all the triangles made 
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during the spin over multiple time increments accounts for the total covered area. Integration of 

these areas over both time and motion calculates the relative area covered that is able to be 

compared for the paths traveled over time, and normalized for total time traveled. 

 

Comparisons for two basic arena configurations show that the ANNum value is greater with 

anticipation on (AN ON) as compared with no anticipation (NO AN) (Table A.4.1, 

corresponding runs are shown in Figs. 54 and 66 in the main text).  

 

 Table A.4.1. ANNum values with no anticipation and with anticipation on. 
 ======================================================== 
    No Anticipation (cm2/s) Anticipation On (cm2/s) 
 ----------------------------------------------------------------------------------------------- 
 Walls Only   115    274 

 With 2 Objects  118    383 
 ======================================================== 

ANNum with Walls Only is about 2.38 times greater with AN ON. Similarly, With 2 Objects in 

the arena the ANNum value is greater by about 3.25 times. Since the ANNum value is essentially 

a normalized cummulative area calculation, it can be said the robot perceives and responds to an 

area 2 to 3 times greater with anticipation on (AN ON). Comparisons over time for ANNum 

calculations show that values are initially high for the area considered, but ongoing the 

normalization factor of time reduced the value to a rather stable one (Figs. 73 and 74).  

Therefore, overall the metric ANNum can be used to compare various responses of the robot to 

layouts of an arena. Generally, anticipation allows for higher values to occur, reflecting more 

behavior response per unit time, while the metric stabilizes to an asymptotic value as normalized 

over increasing time. 
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           NO   ANTICIPATION.  28 cm  ANTICIPATION  ON.  28 & 50 cm  
 
Figure 73. TOURIST path simulated for 66 s (21*pi) and Walls Only. ANNum metric over time 

for NO AN, ANNum= 115 cm2/s (left) and AN ON, ANNum= 274 cm2/s (right). Behaviors 
shown (bottom) to compare with ANNum calculated (above).   1.0.82.20160421R 

 

 ANNum Overall  ANNum Overall 

 ACTIVE  BEHAVIOR  ACTIVE  BEHAVIOR 
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           NO   ANTICIPATION.  28 cm  ANTICIPATION  ON.  28 & 50 cm  
 
Figure 74. TOURIST path simulated for 66 s (21*pi) and With 2 Objects. ANNum metric over 

time for NO AN, ANNum= 118 cm2/s (left) and AN ON, ANNum= 383 cm2/s (right). 
Behaviors shown (bottom) to compare with ANNum calculated (above).   1.0.82.20160421R 

 

 ANNum Overall  ANNum Overall 

 ACTIVE  BEHAVIOR  ACTIVE  BEHAVIOR 
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GLOSSARY 
 
 
 

agent: specific physical robot or programed process that performs a behavior to attain desired 

task achievement. 

anticipation: creation, formation, formulation, or determination of a suitable process to make a 

choice from a small set of feasible future scenarios before the outcome is certain for 

successful behavior beyond mere reactions to items in the niche that leads to desired task 

achievement with expected immediate or later reward based on perceived fitness matched 

to the niche. 

behavior: observed response of an organism or robotic agent to current niche environmental 

conditions to create task achievement. 

 previously from Behavior-based robotics: interaction between the task, environment, and 

agent with specific capabilities that creates a successful response 

behavior-based robotics: an approach that matches robot agent behavior directly to a specific 

environmental niche condition to promote desired task achievement. 

bounded rationality: not all information is known that affects the outcome of a decision.  

closed system: system with no inputs from or outputs to the surrounding environment. 

fitness: specific suitable agent condition that matches to a specific niche condition. 

metaphor: concept of using abstract principles to capture inferences in a formal system without 

deriving them directly from a congruent natural system by encoding with observation or 

experimentation. The metaphor principles must be verified to be congruent with the 

natural system by decoding the abstractions back to the specific instance of the natural 

system, and observing expected desired behavior and results. 
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niche: specific environmental surrounding perceivable by the agent. It is a smaller subset of the 

overall environment or arena that the robot agent is able to exist within, and is a local 

condition that is relevant to manifestation of a behavior choice. 

open system: system with inputs from and/or outputs to the surrounding environment. 

percept: creation of internal or mental representations (images or archetypes) using the proximal 

stimuli derived from distal stimuli. 

process: series of events leading to an outcome. 

satisficing: a solution is discovered using bounded rationality that is acceptable but not the 

absolute optimum, since too much time and too many resources would be needed to 

search across an almost infinite number of possible solutions. 

scenario: situation that matches behavior to a niche. 

system: collection of interacting components intended to perform a task. 

 see: closed system, open system. 

reaction: direct behavior following a specific niche situation. 

reward: confirmation that an action leads to task achievement. 

task: desired outcome from a behavior or sequence. 
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