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ABSTRACT

ANTICIPATION ENHANCED
BEHAVIOR-BASED ROBOTICS USING

INTEGRATED SYSTEM DYNAMICS

Behaviorbased robotics specifies behavior as the interaction between the task, enviy@amthe
agent with specific capabilities that creates a successful ibelbawattain task achievement.
Observedask achieving behavias confirmedand validated by a prespecifipdrformance

criteria For behavior-based robotics, conditions in the niche environment are directhedtch
and cue behavior choice thaeldstask achievement by the robot agent/kimalist approach
attains this behavior choiéem only a few possible scenarios for the niche environraeda
simpleassociated response. Previous work in behdased robotics has begenerallylimited

to a reactive response to environmental conditions, with little or no notion of looking ahead to

potentialsuccessfufuture outcomes.

Focus on the notion of anticipation provides a novel additidhe task achieving behavior-
based roboticapproachAnticipation is the formulation duitable processds manifest
behaviorfrom a small set of feasible scenaringhe near futurbefore the outcome is certain.
Anticipation results irsuccessful behavior beyond mere reactionsdbe conditionshat leads

to desired task achievement with expected percematediate oradter reward based on suitable

fitness matched to the niche.



Theapproacho add anticipation developedamal systendynamicsmodelto represent
previously known behavia@archetypes, extende¢kdem withthe notion of anticipation, and
enhancedhe system dynamiagperation Simulation ofa robotinstanceusng anticipatiorfor
wall following, called the TOURIST, was conducted to gain insight into behaviors that would be
observable in aed world natural systemSimulation of theTOURIST robot with anticipation
built into the archetypprogramming illustratethe advantages of including the notion of
anticipation. Anticipation allows 8OURIST robot agent to travel a smoother patld make
choice of small increments in behavior change that produce more desired lomgessigonses.
With anticipation, numerous small adjustments are made that require less earrigygh spps
of the SEEK behavior, so only one third of the SEEK behaviors occur, and thuslesstes
energy and time. Also with anticipation, the TOURIST makes twice as many oyc¢lesarea at
the same speed and in the same time, so a broader range otakeaad and can more readily
perceive any dynamic changes in the overall ar€ha.methods and insightgereaddedto a

real world roboinstance and the benefits of anticipation were observed to oécspecific
metric, ANNum, was developed for describing operation of the TOURIBAt. Greater metric
values were found with anticipation on, reflecting more behavior responsivenkssolte per

unit time when anticipation was used.

In conclusion, anticipation enhances robotic perforceaby manifesting task achieving behavior
that is properly matched to a specific niche condition. Anticipation extends beyondrélg m
reactive behavior previously used in behavior-based robotics by actingflikeed or channel to
guide the behaviarhoice to match a specific niche. The observed behavior choice is manifest

beforethe outcome is realized and certain to occur. As a practical result, the robosad@eat i



to make many smaller adjustments earlier and faster with better chance fed degitome than
would be observed without anticipatidhcircumvents repeated larger adjustments that waste
more resources and take more time for task achievement. Such enhanced anti@patimm b

avoids obstructions and potential destructive paths or motion, and is more able to achieve tasks
such as to find objects and move along walls with minimal effort. Thus, anticipatioa #umed

to robot architecture improséehaviorchoicesto realizedesired task achievememuture work

could add anticipation to real world practical automation and robotics to furthdreest t

improved operation with anticipation. In summary, anticipation observed in a roboshgait

act before the outcome is known, make timely small adjustments toward a goglpeadas if

the future were known ahead of time.
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CHAPTER 1. INTRODUCTION

OVERVIEW OF THE PROBLEM

Focus of the Study

Anticipation isthe focus othis study, and how it can be included in robotics. The iristot
understand the entire notion of anticipatibom what it is, to how it acts, to how it is
recognized, to describing a congruefreenework, to defining means and methods that include

anticipation in robotic archetctureto effect behavior and realize task achievement.

Robotic Systems

Robotics is a rapidlgrowingfield. It includes aspects of automation, traditional classical
artificial intelligence (Al), newer behavidrased robotics (BBRs), human in the I¢bipL) and
hybrid systems with aspects across defined areas. Approachdsowathat of minimalist that
perform only necessary operations, to complex sophisticated planning algdgh#trdsfine a
myriad of problem solutions. Control systems vary from open loop (no feedback for error
control), to feedback control that may include components of proportional, derivative, and
integral (PID) algorithms, to neural net learning type algorithms. Systemsé¢hes may be
closed sgtems, somehow isolated from the outside world, to open systems that continuously
receive input from and provide output to the surrounding environment. Form of robots is as
simple as devices such as a washing machine with a specific purpose, to mosz ttanpl
rovers that must cope with uncertain environments, to humanoid robots that are intended to work

with humans to provide daily assistance and have potential for social interacsatesfram



understanding the broad range of definitions and applications in robotics, a contribution to

robotics necessitates one to focus on some area in which to provide novel advancements.

Behavior-Based Robotics Architecture Approach

Behaviorbased robotics (BBRS) is defined as an approachtatthesobot agent behavior
directly to a specific environmental nichendition to promotéesiredtask achievemena

robot agent can be a specific physical robot or programed process that perbaimasiar to

attain desired task achievemehhe minimalist BBRs approach provides ample opportunity for
study and advancement of robotics as an engineering discipline. Overall, on@iB8Reis

that there is no general purpose robot, but instead a robot is designed to perforificcaagiensi

a specific environmental nicleentext, and that yields desired observed behavior. For early
instances, a BBR agent (robot) reacted directly to specifics in the nicheatebehavior, thus
operating in a reactive mode. Outcomes followed the traditional view of sciatia=atisation
operates only in one direction, so that all future events are based entirely boalisztion

from certain specific past events. A current state is dictated specificallydbypbpast states, so
the future is always known based on the past. This algns with traditional disciplines of
physics and chemistry, the hard sciences, where purpose and human emotionseateNrer
soft sciences such as psycholpglyilosophy, and théogy take a less strict world view.
Biochemistry as a discipline endmes a less structured causality with pathways that include
probabilistic stochiometric equation relations. All of the life sciences embraceigntific
method that seeks to remove human judgement from the determination of truth, instead basing
the detemination onresults fromstrict experimentation. Here biology shares the reductionist

approach with physics and chemistry, contending that all causality caokss lalown into



components to be further understood, and then reassembled to find the overall truth for actions of

a system

Systems Approach Studies

On the other hand, the general systems and wholistic approaches vehementlyaaripae t
systemis much more, and indeed quite different, than the sum of its pansabtisng the
system to study it destroys the very thofgnterestthat generates the observed behavior:
interrelationsamongthe connected essential components. The most important and valuable
aspects of the system are embedded in the structure thaaimaproper relations, so mums
studied as a whole. Even studies of model systems, such as ‘lower’ animals in bigogy, a
sufficient to understand the interrelationships important to complex human bioleyggtains, or
as represented more broadly in society and economics. To understand internatigpateins,
one is persuaded to turn away from reductionism as the source of all truth, artishsigahe
entire system to understand nuances and dynamics that affect observed behaviorg bde
whole systems requires techniques that capture the archetypal causes fertypaswf
behavior in an architectutkat includes traits such as time delays and looping pathways that
cause positive reinforcement even to the brinkstability, or balancing elements that keep the

entire system stable for a range of expected conditions.

Anticipation Architecture

Though the previous BBR approach is reactionary in nature and concentrates on response to a

single or limited inputs, in contrast, anticipat@aded to a BBR system involves inclusion of



previous potential behaviors that can arise in response to multiple factor tetredsniche
environment. A desired behavior choisenanifest fromarange or small set of values in the
niche; seleabn from a repertoire of preconceived respons@santicipation seis based on

somesuitablefitness to match the current conditions.

If conditions occur outside previously expected conditions, nodbgicreasonable response can
be made, except possibly one of total inactivity, though that also may not be adegiese, |
small repeated minor adjustments over time should produce desired resulthaetlarger
abrupt changesAdding anticipatiorto a system should provide for adequate beneficial
responsegven acting before an outcome is certain, that nitadeemthe system appesato

know the future.

Nature and biology, indeed human existencefibed with examples of behaviors that invelv

the notion of anticipation, so that when future niche conditions are right, an almostwexplosi
action occurs to choose and exedt&correcbehavior to permit task achievement. In some
systems, the structure develops months in advance of a process that may unfoldrgpedly i
future (e.g., spring flowering)Anticipation has been thought of as a trait of open systems, that
includes the classification of all living systems in the world. Living systemevam able to

locally reverse the law of ejpy by creating organization from apparent disorder, yet at the
expense of creating greater disorder, or more entropy, in the surrounding envisandehtis
upholding the Second Law of Thermodynamics. Including anticipation in any sysbehd s
enable angible benefits to be realized, acting before outcomes are certain,iagpe&now the

future, and leading to previously determined desired results.



THESISSTATEMENT

Anticipation that is added to robot architecture should improve choice of behavior to perform
desired task achievement. A congruefraenework issmployed to ensure that an abstracted
formal systemmodel is in agreement with some robotic natural system that has engineered
desired observable behaviors. The formal system model includes equationssentepre
previously known archetypes of behavior, and extends them by including methods of
anticipation and thereby represents the system dynamics of operation. Simulation of areinstanc
of a robot having anticipation is studied to gain insight into congruent behaviors expezted i
natural system. The methosksekto successfullyoperate amnstance of a real world robot, and

were demonstrated to successfully manifestiguation behavior.

Problem and Organization

Therefore, as mentioned before, anticipatias become the focus of study, and how it can be
included in robotics. The intent has been to understand the entire notion of anticipation, fro
what it is, to how it acts, to how it is recognized, to describing a congruence fraknewor
defining means and methods that include anticipation in robotic architézteifect behavior
and realize task achiewent.The path is an intellectual journey that recognizes and builds on
existing theory, evolving into an understanding as to the role of anticipation, aridatekrwith
use in roboticsThe pathstarts in Chapter 2 by examining previous opinions on the notion of
anticipation, and explores the traits of systems that can possess anticipeteosibly open
systems). The task continues in Chapter 3 as a systeamics approach is used to include
known behavior archetypes. The next step in Chapter 4 develops a computer simulation model
that can operate with or without anticipation, and the path eventually leads to cogsideri

methods that extend anticipation into the workings of real world robotics. The work is



summarized in Chapter 5 with statements of conclusions, and the possibilities ®mfatkron

anticipation is discussed, along with some potential related elements to pursue oeptbr



CHAPTER 2. BACKGROUND

THE NOTION OF ANTICIPATION

A behavior is a specific reaction by an agent to a condition in the environment. The behavio
based robotics (BBRs) approach directly matches a specific behavior to emveahment
conditions (Brooks, 1999; Connell, 1990). The behavior is a reacaulitiectly follows the

sensed condition, and is the observed interaction between the agent, task, and environment
(Nehmzow, 2000jFig. 1). The reaction response is a typical cause and effect relatisnience

that views the world as marching in oneegdtion in time, where effect always followauseand

is dependent on a specific cause or chain of causal events (Rosen, 1991). It is so embedded in
scientific thinking one hardly considers the possibility that aspects ofitilve fmight somehow

affect he presentherebyinferring that time does not move in just one direction for causality.

ROBOT
AGENT

N\

TASK €& ENVIRONMENT

Figurel. Taskenvironment-agent interlinked
triangle representing behavior for robotics
(Nehmzow, 2000).

Anticipation is a quality of Life that provides a means for the future to haviéemn @n the past

(Nadin, 2002; Rosen , 1991, 2012). Anticipation involves an expectation about future events, and
that expectation about the future changes behavior in the present, and alserisetsalf past
experience to form the expectations (Nadin, 2002). In biology, living systems\eople

models of the future that can allow an agent to evaluate possible outcomes, andatbus cre



behavioral response to conditions that may not yet have occurred, but have a high likelihood to
occur Rosen, 2012). The likelihood is based on results drawn from past experience.

These models can be as simple as chemical pathelsmical and physical structures,more
complex models created by thinking such as is done by humans every day (Rosen, 1991, 2012).
Behavior that results from anticipatibias the quality that the outcome is kndvefiore

conditions exist in a specific niche environment to confirm that particular outicsoreetain.

The niche environment, or simply niche, is a specific condition of the overall surrounding
environment of an agent. Hence, tlagure of anticipation is that joes beyond mere reaction to
existing conditions, but looks to the future to provide for manifesting a preferreddreha
choice. Anticipation is observed daily for human actions that appear to tieakl and be ready
for sone future event that is expected to occur. All living systems include qualities thia¢ ca
termed anticipation, such as formation of flower buds that may bloom months laterdordgoail
nest in which to rear young. Since these anticipation responsegvirognorganisms (or living
systems) involve creation of models within the organism to predict the future (Rosen, 2012)
manmade artificial systemsthat can create models of future conditions also possess the

ability to exhibit the notion of anticipation. Adding the notion of anticipation to a nonliving
robotic agent system involves building models of the potential future world based on past
experience, and using the model results to manifest the behavior choice for th&laigent
requireshe human designer to describe specific niche conditi@isare expected to occand
directly match a specific behavior to that niche when the niche is perceived tpazttimat
observed behavior appears to respond before the outcome is knowmneselts indesired task
achievement. The journey begins by enlisting a framework for abstraction dsdrdeon that

can instill the notion of anticipation into a robotic agent.



MODELING CONGRUENCE FRAMEWORK

An overallframeworkapproach for modeig and prediction was described to recreate a natural
system(NS) with all its entailments (implied interactions and causation) into an abstracted
formal system (FS) that acts as a representative predictive modelN tfieosen, 2012)
(Figure 2). Observations and causation from the NS are encoded into the FS using observation
and measurement, allowing inferences and predictiobs tbaden the FS, and these

predictions are decodday prediction back to the NS for corresponding operation. For robotics,
the mathematical models of theory in the FS are decoded by creation of alpfojst in the

NS. Our representations of how natural biological systems operate ars ahvdgl abstractions
used to understand function in reality. Operation of anticipatory systems wdobase
modification of this modeling abstraction by using methods in agreement witltphasd that

theory of anticipatiomprovides aasisto apply anticipation to robotics.

decoding
{prediction}

Natural Formal g.;Les

system system inference

\EEV

observation and )
measurement

Figure2. Representing the Natural System (NS) as a Formal
System (FS), and decoding back to the NS (from: Rc
2012, p. 72).

A congruence framewrk for modeling a real world system ensures that the causality is first
abstracted by encoding into a formal system (FS) of equation relations a)cnadehe
inference captured in the FS is decoded back to the natural §\¢$&wf the real world (Fa.

3). The frameworks said to be congruent, or agre&she entailments (implications) in the



causality of the original NS can be reproduced when the inference of the FS iddeackléo

the NS (Rosen, 1991). A physical engineered robot and its ibehawuth implied causal
entailments exist in the NS. Experimentation and measurements of observed beiravised

to encode in a creative manner (in only one of many ways) the NS into an abs$t&cidr
inference of the entailments are structureslamodel with system dynamics in an abstract
architecture that a designer believes captures the desired operation of the IN&idBisnof

varous conditions can be done in the FS to obtain insight and ideas for application of
improvements or preferred changes for the NS. Requirements and specificatidesided for

the preferred operation as observed in the FS simulation, and thereby decode back to the NS
devising ways to create the behavior to achieve task performance. Various sutgdlemthods
can be used to aid in the decoding, using scaling in both space and time, identifying key
operations, developing connections, sequentially ordering the events for propeooperati
attaining congruence of operations with outcomes, and devising methods of production. If the
encoding, abstract modeling, and creative decoding are successful, thereolviebeed
agreement (congruence) between the operation of the NS with the predictechpec

outcomes simulated and inferred in the FS. Only with suchw$eongruence of the NS

operation with the FS can the FS be properly called a model of the NS (Rosen, 1991).
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Requirements & Specifications

For Behavior to Achieve Performance:
Scaling (Time & Space),
Key Operations, Connections,
Sequential Ordering,
Congruence, Production

DECODING

I

C N

A @ E Model With

U System Dynamics

N y y

i @ E Architecture
N

L
C

® c
Engineered

Robot & Behaviors ENCODING

Experimentation
& Measurement.
Observable Behaviors

Figure3. Rosen proposed the need for encoding and decoding to link causation relations
between world phenomena into an embodied model structure.
A Natural System (N, or later referred to in this discussion as NS) can besthbgled
Formal System (F, or herein FS) by adding processes of encodingcaniihdeas
creative acts. The circled labeled paths are related by the equivalence: 1 = 2lypéué, 3 p
or meaning that path is equivalent to the combination of the other three paths. (from:
Rosen, 1991, p. 60; Fig. 3H.2)
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ANTICIPATORY SYSTEMS

Rosen (2012) begins developing a Theory of Anticipation (AN) by stating the bebavior
anticipatory systems (anticipatory paradigm) differs from that of théiveasysten(reactive
paradigm), and leads to better understanding of biological phenomena as adaggahory,|
evolution, andther basic organic behaviors. The anticipatory paradigm extends the reactive
paradigm, and does not actually replace it (p. 319). Underlying principles for defining
anticipatory systems are developed in a modeling context (Rosen, 2012).

Variables are asgned as S for the natural systdvhfor the model as a formal system, and EF

for effectors linking between them (Figute

@O
Environment| EF
@ |@
A S, I

Figure4. Interaction of the natal system,

S, the formal system, M, and the effector

linkages, EF, for anticipatory systems

(from: Rosen, 2012).
Timing of trajectories or paths in the model, M, is much faster than in the nasteahs S, so
predictions of behavior generated in M are later observed in S due to coupled meaningful
specific interactions. M has a set of effectors, EF, to operate on S or envirdnnpritato S.
Overall this is considered an adaptive system, and acts as an antycgyatem if M is a perfect

model of S (or if imperfect: quasinticipatory). Because M faster, it predictsthe future of S.

To formalize this interaction, the state space of S (and thus M) is partitioregldos as

12



desirable and undesirable. If M moves into an undesirable region, the effectorstj\i&fe 0
change dynamics of S to keep the pattls out of the undesirable region. Thus, M anticipates
future activity of S, and coupling through the effectors, EF, allows predictions frearchange
present S behavior to attain a chosen future behavior or situation. This creates aymadacis b
predictions can be made about S from M, and produce an anticipatory system. Amenilaus
method coupled a three step delay for short term memory with both a predictor andatompa

to create expectations for action from observed events (Braitenberg, 1986).

Since the theory of anticipatory systems is based in biology, a few termshiad discipline

must be understood. From genetics, a genotype (or genome) is the full complemastiof ge
material that makes up the individual. In contrast, the phenotype is the expiasiat

genotype as visible in the environment. Survival and selection of the individual works on the
phenotype, yet it is the DNA of the genotype that is transmitted to offspring. dlbgibt

defines fitness as the number of progeny produced by an individual. For robotics,itfii®def
does not apply to measure performance via behavior. Instead, robot fithess walltdated
weighted sum of identified sensed environmental values that indicate the pénealive for
performance of a certain behavior. Rosen (2012) contends that over time thelecamnse
pressure dynamics that move the genome (the genotype) tmweedsing fitnessn whatever

way that is quantified (p. 343). A phenotype (or behavior) can be thought of as a path in the
process, and genotype as a desired task. Selection forces organisms towardeshggimgm
maximal fithess. This coept appliedor robotic behavior selection as well: a behavior (or path)
is selected to maximize fitness of performance from that behavior. How belsagererated

and fitness is assessed are independent of one another; since they involve dfenety di
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observables for both the environment and organism. Yet, both are coupled by some selection
mechanism, and that allows phenotypes to act on genomes through the associssed Fitre
example, behavior is generated for an organism to move towards walls or Iéwéydagions,
while fitness is determined by the structure of the organism to undertakenthedogeinvolving
structures for perception and locomotion. The selection mechanism is effechidrgyfrom
predators that are not able to se¢hie low light to catch the prey organism. Thus the behavior
for moving toward low light has cues for behavior choice, and need of physical cgphbtlits
independent of the predators’ ability to catch them, whith as the selection mechanism. The
resulting evolution mechanism generates increasingly adaptive behawgioasetimost fit for
task achievement. Rosen (2012) represents this as a mathematical formalistatdsaar
desired pathiraveled to an actual path, and discreparatwben the paths, is defined as an area
over time, A(t). The inverse, or F(t) = 1/ A(t), is a fitness observable famh@aths, and their
relationship, with a larger value being more desirable as more adaptive.Wwayt{is) values are
associated valugsaths, and (2) values are independent of the specific selection mechanism.
There is no link between the mechanism for generating the paths, and the ddterrafribeir
fitness (p. 342). A scalar field is defined on the space A of genomes, so at each, poere is
an associated fitness, F(a). A gradient fiéld;, is constructed on space A and from that the
dynamics relation can be given as:

da/ds = KVF(a) (2.1)
where K is a constant, and ds is a shorter time interval than thiaefdynamics of the original
time, t, for the behavior to develop. Thus, dynamics of the selectioramsohare captured in
equation 2.1. Movement towards a steady state finds that value for genomes foitnsshi$

maximal.
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Such a behavior, or phenotype, is adaptive if it is anticipatory in nature. Rosen (2012)
demonstrates this by defining two related environmental cofactors, E and U.gahéor can
only perceive the environmental quality, E, while the adaptive behavior of the organism
fact, determined by the other environmental quality, U. Also, the action of an orgartisen a
present instant has direct effecteffectiveness folater task achievement. The organism’s
present change of state directly effects what will happen at subsegeeatd or states. Since
there is a link between the cofactor, E, sensed by the organism, and the relatedveaperce
quality, U, the reaction to some value of E has a predictive relation with that of U. The
relationship between the gradients of the gigalimay be expressed as a function where the
maxima (or minima) aabe given by calculus as:

d(VE,VU)=0 (2.2)
Determining the equation of state can relate E to U, and the associatedtgra&ccording to
equation 2.2an organism will regmd to the environment in a way to follow the desired péth
U. Thus, E is treated as an indicator or predictor of U. By orienting propehythtgradient,
VE, they automatically align with the gradiektlJ. An important insight is that orientation
with E automatically maximizes fitness at a later time. Through selection, thesongaas
generated a prediction about how present behavior will affect future taskexokia. Rosen
(2012) cites an example, where E is a measure of lightdq@imabe perceived and used by a
phototropism), while U is a measure of predator density. By following the neggtidient of
light (towards darkness), the organism automatically follows a negatdeegt for predator
density, and thus avoids predators. It maximizes fitness by moving towards datemawior),
and results in an opportunity to live to reproduce later (task achievemengstimgiy, the

actual mechanism for the behavior, that of moving in the gradient field, is independent of the
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relaion between the gradients. The notion of fitness can be considered a common darrency
choosing between events or behaviors, similar to energy in physics or value in esofibmic
application of the notion of fitness to robotics should enable a means for choice of behavior

based on anticipation about future events.

Rosen (2012, p. 320) illustrates the notion of anticipatitin a biosynthetic pathway that acts
as a simple anticipatory systéfigure5). The concentration of precursor substrate, PO(t) at
time, t, affords forward activation (Anticipation) to control activity rateathlyst, Cn, that
controls the rate of conversion of Brie Pn at a later time, t+h. The system is anticipatoresinc

PO(t) is a predictor of the later concentration and

Anticipation_

mc

1 2
TP T —mp —hep

Figure5. A metabolic pathway shows the notion of

anticipation by a predictive model for Cn toagze PRl
at a later time, t+h (modified from: Rosen, 2012, p. 320).

reaction of Prl(t+h) with activated Cn at the later time, t+h. By modulating Cn, RP@gbapts

the catalyst to process the substratel R a future time. Balance (or homeostasis) is

maintaned only through the predictive modeling relation between initial PO and later Pn-1, and
that relation links the model prediction to the rate of catalyst enzyme act@m dhere is no
feedback in the pathway, and no mechanism to measure the quanitsyeittaally controlled

(p. 323).Since increase in Rmnvertsa greater amount of Phto Pn by catalyst Cn, system

dynamics identifies this as a reinforcing loop, though with no feedback, that contisually
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unstable as an ever increasing trend. Ifityggome system dynamics balancing loop will
counteract and control the whole process by some limiting fastoonstrain amounts to some
asymptotic level. The constraint may be as simple as some means that restricts tiie@hRmu

that can be produced, possibly by limiting precursor substances for the reactions

ANTICIPATION PRINCIPLES

A comprehensive theory of anticipation (AN) is considered difficult by Nadin (2002, p. 53)

because awareness of AN is not easy to attain. Hergee8N as feedforward thinking that will

create determination in a future state, and that produces feedback causagqiréseht state

(p- 53). He offers several definitions relating to AN.

1. An anticipatory systeifAS) has a current state determined by a future state.

2. The source of AN is interaction between minds, and shared experiences.

3. An AShaspredictive models of itself and/or environment, allowing instéaingeof state

4. AN arises from a correlation process, thus allowing an organism to aetiegrestory data, or
act on scarce data.

5. AN is an expression of connectedness with the world.

6. AN is a mechanism of synchronization and integration, and an attractor in dygpsi®ins

7. AN is a recursive process. @&n external observer, the systappears to act as if it knows its
own future.

8. AN is one realization of an instance of many possibilities. AN is a realizateopaxsibility.

AN is shown in many areas in the world: building a cyclotron to find neutrinos (p. 83)tiorgra

by birds, birds increasing song production at the start of breeding season (p. 73)y tpogen

fur by mammals before winter, trees preparing to lose leaves for warted on daylength,
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genetic resistance to specdiseases, investment decisions, swarm behavior by flocks (p. 78),
playing of an orchestra (p. 78), and adaptive robotics.

SYSTEM TYPES

General Systems Theory

A field of science, termed General System Theory (GST), as developed Bgranffy (1968
p. 253) strives to formulate and derive general principles that apply to any systgemeral
over all of science: wholism, differentiation, centralization (or thever), finality, causality,
andisomorphism. The previous view of a Newtonian reduestomechanistic world viewed
living beings (and humans) as machines, but is replaced by one of whole sydtemtalvi
embedded relations that promote understanding of even life itself (von Bertgpnl®8;
Rosen, 1991). The whole of human culture and society depends on structure dependent on
language and human derived symbols (von Bertalanffy, 1968, p. 251 & 252). Two aspects arise
from this: 1) specificity of human history, shown by traditions (in contrast talie e
evolution), and 2) mental experimentation using conceptual symbols to achieve goal-
directedness for production and reproduction of life in a whole organism (perrttiging
organism anticipatioof an expected future). The teleology of these aspects are explgined b
Bertanffy (1968, p. 252):
“True purposiveness, however, implies that actions are carried out with knowledge of
their goal, of their future final results: the conception of the future goal tfeasya
exist and influences present actions. This appbegrimitive actions of everyday life
as well as to the highest achievements of the human intellect in science and
technology... [l]t is up to him [read: mankind], however, whether he applies his
power of foresight [read: anticipation] for his enhancement or his own annihilation.”

Thus, the language and symbolism within a human mind creates the organizatimhaiestvith

potential not only to see and perceive a specific future, but to anticipateta gshgoal that
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invokes action and behavibeforean outcome is certain to lead to the desired result. Mental
experimentation can construct a new world before it exists in physical réaigyresultthe
future influences the pa#t general aim of GST is to find islophisms, or a ont®-one
correspondence mapping between objects in vastly different systems in diifsddent
(http://www.politicalsciencenotes.com/articles/genasgtemsheoryconceptsandlimits/510,
von Bertanlanffy, 1968, p. 80). Scientific laws can be thought of as abstractions oaittwediz
to express aspects of reality, such as ensuring a design on paper correspsasgouent
with) some construction in the physical real world (von Bertanlanffy, 1968, p. 83). In other
words, science shows perceived orderly traits of reality have conceptualictsidmplied is
that order exists in some reality. A systenwiewed as a number of interacting elements with
relations expressed as differential equations of the form (p. 56 & 83):

dQi/dt = fi (Q1,Q2,...Qn), i=1,...,n (2.3)
Reworded: the changes per unit time for each significant element is a uniquenfonthe
current values for all of those elements. This implies a type of entailmesalicaland finality
(as found in the Rosen congruence framewmtk@re a set of element values implies the specific
changes that ensue. Three descriptive levels can be expressed in concepts oflletatadagy
as superficial similarities between relations with no comedpnce as to cause or relevant laws,
2) homologies having different effective factors with the same formal untgriyles, and 3)
explanation that provides a set of conditions or rules valid of an individual item or clems®f i
By comparison, analogies are not useful in science, while homologies can pssfahiodels,
not necessarily reductionist in nature, and with a formal correspondence betwesttiabsind

reality for various kinds of systems (p. 85). Additionally, explanation replacestiezal
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differential equation form witpecificdifferential equations for specificindividual case, with

direct correspondence between the equation rules and the individual case.

Open Systems Enable Self-Organization

For a systento be seHorganizing, as for living organisms, von Bertalanffy (1968, p. 96)
discusses that Ashby has shown that a self-organizing system must be aystgar(QS), one

that exchanges flows of resources (in and out) with the environment. Though Asttbwih a
dynamic system of differential equations to describe the machine homology, \‘alaBéy

counters this as too restrictive for biological systems rampant with disutias (p. 96). Ashby
explains the selbrganizing system maps inputs into the next state of the system, in one of two
ways: 1) separate parts of a system form connections, or 2) the systensdhamge
nonoperational to an operational one. But Ashby states no system as a machine canrethis, s
the change doe®toccur fran insidethe system. Instead, sometsideagent provides input

that changes the system. Thus, for any machine to bergalfiizing, it must couple to

something outside that system (p. 97), so the system machine is not closed, but shoukldbe term
open. hput is required for self-organization of any system. Organization impliesaiéog

entropy, by definition. Recall from the Second Law of Thermodynamics thatisreleer

decreasing for systems, so entropy (which is the degree of disorderays ahweasing over

time (Rifkin, 1980). To conform to the Second Law of Thermodynamics, disorder must occur
somewhere, and for the selfganizing system that is actually outside the defined system. So
entropy decreases inside the s®ijanizing system, while the inputs and outputs of the system
transfer increased entropy to the external environment (p. 97). Energeticgélgization can

increase inside the living biological system, but the inputs (e.g., oxygen andnyirtke this
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possible, while outputs (e.g., @@nd waste products) pass increased entropy or disorder outside
the system to the environment (p. 98). Obviously, any organization, including selifzaitgan,

has a cost in terms of entropy increase to the environment. Robotic systems haeipatian

are actuallyopen systemthatstill follow the entropy law to create disorder in the environment.
Thus, all behavior will lead to some larger form of disorder even when the roboticaageats

to create order, if only by use of energy from the environment, and some type of waste

generation such as by structural degradation and need for maintenance omemugeets.

Whole Systems

Health forboth humans and robots is considered relevant (Goldstein, 1995, p.11, first printed in
1934, in Geman). Wellbeing allows for ordered behavior in spite of limits (p. 11) imposed on
the organism. Symptoms are attempted solutions undertaken by the organism, anctithay be
successful or unsuccessfli.the forward to “The Organism: A Holistic Ap@adh” by Goldstein
(1995), a theme is discussed by Oliver Sacks (p. 29) concerning pathology and its tiaue
nature of health. The notion of ordergentrato health:

“Thus, being well means to be capable of ordered behavior. which may prevalil in

spite of the impossibility of certain performances which were formerlyilples..

Recovery is a newly achieved state of ordered functioning [as ] a new individual

norm.”
Symptoms are both an attempted solution, and an adaptation to an altered inner state (and
world). A Holistic approach seeks to understand behavior of the organism as a whole. A
biological approach desawith brain damage (from war), and leads to a theory of understanding

organism function (Goldstein, 1995, Preface, p. 15). For roboticgageaintaining correct

operation of the agent for task achievement is needed for the robot to be considéngd heal
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In his introduction (p. 13), Goldstein contends that using an approach lower to higher is
incorrect, such as to study lower organigmg, birds)to understand higher ones (e.g., humans
Instead, to study humans directly allows one to understand the whole organiams@egare
made simple only through abstraction, and that is a misplaced concept, sincegatiiganisms
are in many wgs quite complex. By the study of simpler organisms: we simplify them
artificially (p. 14), which is an inappropriate approach. The nature of simptegsie so remote
from us that we lack any reahderstanding of their functional operation, and the il
complexities they possess. Gross mistakes are best avoided by studyimgaeinanzor directly
[or for any other such complex agent, such as a robot]. Goldstein opposes transfetimyg fi
from one field/being to another, and also thinks it is wrong to apply human findings to animals
Thus, robotic agents should be studied diyan their niche context to eare the resulting
behavior in actually correct and congruent for desired task achievert@nwever, he agrees
that study of the central nerus systenfCNS) may generalize to other organisms with similar
systems of a CNS5o0ldstein(1995) describes his overalew for formalization of such a
process as

“Any formalization of the subject matter of a science is useful ontyfallows,

not precedes, the investigation. This inevitably must be the case since the subject

matter itself becomes apparent only during the process of research, as @ésemerg

from the indefinite province in which it was embedded. This is equally true for

biological research.”
This stanceakes the approach to first study an organism through observation and
experimentation before developing any theory as to the operation of such an orgasystarar
Goldstein’s view tends to conflict witihe observation of Rosen (1990) that contends the use of

metaphor has been used, though not as true science, to study and predict about syséeans befo

true encoding of causality is conducted from the natural system to irdsrgna formal system.
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Yet, Rosen contends rightly the use of metaphor limits the possibility to verify ther prope

application of a formal systeabstraction to the desired real world natural system.

Motivation For Organisms

Maslow’s theory of human motivation ideinds five prioritized levels of needs that determine
behavior, from physiological (highest priority), to safety, to love, asgiéem, and lastly self
actualization (lowest priority). An average person actualigotivated by partial satisfaction or
gratification in all these categories, requiring higher satisfaction in the highetyacategories.
By homology of structure (more comparable than analogy) for motivation, a rebdias
highest priority to maintain its physical structure (akin to a iygy). The human designer
should focus most strongly on building a robust lasting structure that operates indts wor
environmental that is not endangering the physical structure or programnmatioraé

behavior. Robot behavior should always seek ésgnve the basic physical structure, and thus
potential for operation. In the next lowest priority category, the human designeinciude
physical structure and behavior choice that ensures safety of the robot, hungand&imearby
surroundings key to continued desired operation. Behavior of the robot would appear to be
motivated by safety, or as Maslow puts it for humans: “...we may then fairlyiloesice whole

organism as a safeseeking mechanism.” (1943b, p. 376).

It would seem more difficulto ascribe the lower priority categories to a robot agent (love, self-
esteem, and se#fctualization), since we think of them as purely human qualities. Yet, Maslow
also states the ‘love’ category as a ‘belongingness’ need (p. 380), in akilthe robot and

processes belong to groups and networks or even model types that the behavior of the robot
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could be accurately labeled as belonging to provide for task achievement. Testsefh’

category also is identified to be ‘soundly based upon real capéagly] achievement, and

respect from others’ (p. 381). Hence, robot capacity for performance, task autr¢es core to
behavior-based robotics, and respect (or appreciation) of ability to perform lay lnlservers

or control mechanisms endow a type of esteem onto the robot agent, notably from an outside
source or observer. The ‘selétualization’ category is even more challenging a homology.
Though the statement by Maslow: ‘What a man can be, he must be.’ (italics inlppgBtil)

could find a paallel in: ‘What an agent can be, it must be.” Here the parallel statement implies a
purpose for which the agent is designed and structured, and obviously the agent must perform
that task achievement, as would be observed and measured by someone else or astemtrol sy
Curiously, Maslow points out that in society, people that are basically sdts® thexception
(italics added here), not the norm, and thus at the time of his proposing of the theory there was
little experimental or clirdal evidence for selictualization, with the need for further research

(p. 383). With little evidence available even for humans, the proper application-of self
actualization to robot agents also requires copious additional research and homology of
principles. Recall in all cases for categories, Maslow proposes the tbeongtivation of a
behavior. From such a point of view, a robot agent is observed to make a behavior choice
according to an internalizedotivation that overall fits Mdgw’s theory for motivation, so it

may apply to robots as well as humans, using the homologies discussed immeabmtely

More broadly applicable is the assertion by Maslow that motivation of a behalasad on
multiple basic needs simultaneously (behavior is amtitivated, p. 390), and that there are

other multiple determinants aside from basic needs and desires that deteentiabavior
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choice (p. 387). Similarly, robot agent behavior is surely based on multiple cuesntiéne to
create the behavior choiceaSlow (1943b, p. 389) suggested that unconscious needs and
associated motivations are more important than conscious ones, and since we as humans do not
ascribe consciousness to robot actions, the driving force for robots can easitytbebsa
unconscious or subconscious. An attempt was described by Malcolm and Smithers (1990) to
structure robot processes in an architecture of subcognitive behavior moduextpsulated

the cues and specifics of behavior, while a driving force was derived from gegnitidules

without the details of behavior. This approach implies a type of cognitive consci®usnes
identified as the observed active direction for choice of behavior. In addition to tiaotsyaas
Maslow (1943b) contends, the choice of behavior depends on the field or context the agent is
situated in, as well as external stimuli (sensed cues), association ofoda#eg), and basic

reflexes (e.g., basic motions possible). The two main types of behavior and danbina

them ca be distinguished as expressiveness behavior (something a robot might do for show as
entertainment and play, or display of built-in capability) or more coping behhabis

purposeful in attaining a goal of task achievement (p. 391).

Anticipation is aluded to by Maslow in two ways. Firsg neferdo the work of Goldstein

(1995, reprinted from 1934 in German) that whole organarogl the unfamiliaby attempting
to maintain orderly surroundings, so that unexpected dangers cannot occur (p. 380). An
unexpected event is labeled as a grave danger, causing a panic reaction for Hynaaics.
reaction can be observed as an unexpected or illogical reaction to the outside worldpbogén a
agent may react in a parallel manner witisuccessful behavito some unexpected evesince

there is no anticipatioaf the event in the robot repertoire, no logical or successful behavior
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results. Only situations or events anticipated by the robot (included in its straotlr
programming) can evoke successful behavior that results in task achievementigetler
seemingly ‘panicked’ illogical unpreferred behavior occurs. Seddadlow also illustrates that
both current and future world outlook or philosophy for humans is dictatadvoyvd basic
needs across categories have been met in thgpa3t6). If a human appears solely as
employing a safetgeeking mechanism, it infers all safety needs have not been satisfied in the
past, thus creating anticipation that the safety needs mtis¢ hecus to be met in the future.
The anticipated future includes a philosophy of the future that all else is les$anighan
safety, where even physical or physiological needs have been satisfied and are no
underestimated. Here the situations @f plast have created the expectations for what is
anticipated to be focused on in the future. The focus for the future is on what is nogatati
to happen. Thus, for robotics, situations encountered previously that hegleexpectation to
be met inthe futurecreate anticipation by the robot agent to make a choice behavior from an
existing repertoire of behaviors for desired task achievement. The goalrobtitalesigner is to
include a choice of behaviors to cover anticipated past events tleadpaated to occur again in

the future thus assuring task achievement.

Behaviorism as Studies of Unconscious Actions

Watson (1913), referred to as the father of behaviorism, discussed how a behaviorist siould vi
the field of psychology as a strictly experimental branch of science intenédictprg and
controlling behavior (ostensibly in a positive manner). He scoffed at introspestiarsang
consciousness to interpret meaning and results. He reasoned humans will responalbjologic
similar to other(closely related) animals, so experiments on animals can be deductively applied

to humans, an idea that conflicts with the specific whole organism approach of (Adlt385,
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reprinted from 1934 in German). Focus should be on the external observabliehahdv

reactions of people rather than their internal mental state. Words and neemdeyices to

permit thinking, or as Senge (2006) stipulated that allows thinking as a procesadisabl

thoughts, and these in turn lead to action or behavior. For Watson, with emphasis on behavior,
emotions are only incidental physical responses. Since studies of conscidasnagsation

resulted in various different and inconclusive outcomes, conscious should not be considered as
an element of scientific psyclogical study. Instead of a study of the mind, psychology should
study behavior of individuals, and not individual consciousness (from:
https://en.wikipedia.org/wiki/John_B._ Wat90As a homology with robotics, implications of

consciousness should not be considered or studied, only the conditions that resulted in behavior.

Simple Systems

Design as Choices

Decision making and the theory of design has been presented in a rigorousimanner

curriculum that defines present commitments of resources tovfoloices toward desired

outcomes (Simon, 1996). Such decisions are madebaithded rationalitymeaning not all
information is known that affects the outcome of the decision, and realize that future
contingencies that do not affect the present commiisreme irrelevant to the design process

(Simon, 1996). Simon discussed the evolution of complex systems from more simple ones, most
likely by combining stable subassemblies in a hierarchical manner. An agentysea task

using simple procedures in a complex task environment (TE). Complex systemesq @efithose

with many interacting parts, most likely arise from stable subsystem blocks prdwieus

experience selects the most successful fwaghdesired outcome. Methods to maintain
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homeostasis and provide correcting feedback lead to adaptation and coping farréhe fut
Though rigorous methods for optimization might be used, in most casdisfecingsolution is
discovered using bounded rationality that is acceptable but not the absolute optimutegosince
much time and too many resources would be needed to search across an almost infagite num
of possible solutions. Also, Simon (1996) suggests it is most important to define a prablem i

the proper representation to see a succksafisparent solution.

A tale byKeijzer (2001, p. 106)lustrates that a robot may spend so much time divining
between relevant tasks and an infinite number of irrelevant tasks is stuck in tespbc
deciding (or indecision), and never is abledb &his may be termed tlieame problemwhere
considering too many irrelevant alternatives results in inaction and taskgletmm. For any
uncertain task, one might find a very high number of alternatives that could not be pdriym
the agent. Thyghe agent must employ a means of deciding alpegbd on constraints, and a
designer is required to initially set as many such constraints as possiblalsthdefines what

tasks, or environments, are considered unsuited for the agent behavior.

Journey of the Ant

Science unmasks complexity to describe with simplicity. What scientists olvsayvéiffer

from actual underlying mechanisms in the NS (Simon, 1996). For an autonomous robot, the goal
is to turn on a switch and observe that itkegofor task achievement. This is similar to an ant that
moves in its niche on a sandy beach. In an illustration that is known as Simon’s ant, simple
movements by an ant are able to traverse a complex niche. Realize here the nichmentig

the complex thing, not the anht{p://everything2.com/title/Simon%2527s+aahd Simon,
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1996). Principles of engineering should be used in a simple direct manner to designdand buil
robust and reliable robots in a specific real world niche. The goal: desigyrahdsze a

specific solution for a specific real world concept or problem.

Future Course

As discussed, Simon (1996) has contended the complexity of the path of an ant is in the context
of the niche environment, not in the operational rules of the ant itself, so understandiicg¢he

is as important as understanding the inner workings of the ant locomotion. Inteyegtiigg

history of science all past theories have turned out to be false, so those we hold tobatly pr

will be false @ well (Dupre, 1993). In the field of robotics, this already has transpired as the
senseplanact horizontal architectura classical robotics (CR) has been shown to be replaced at
least in part by the senset vertical architecturef behavioral-based robotics (BBR) in a
subsumptiorarchitecture that creates levels of behavior through module interactionssiiat r

in robots that are situated and embodied as physical real world robots (Brooks, 1998&jrTo re
to the thinking of Simon (1996, p. 1R&volution is a design process that devises multiple
alternatives, and then selects the best agents through multiple tests on a nesteticeles.
Humans solve problems by a mixture of trial and error using so@ams of selectivity heuristics
(rules of thumb) in the simplest process possible (p, 195). Selectivity is aidelyibyg on

stable blocks for subsystem configurations to build up from incremental stable blacksonet
complex configurations. Previous experience can be used to identify a previous aliatiode s

and build on that further. Thus, both stability and experience are needed, or at leasidyrief
perform successful designs even in natural evolutionary setBimgen goes as far as to describe

genetic DNA as software (p. 213), so that state and process are entailed.iDRNAonstructs
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and maintains the organism, contains the recipe for programmed instructions kasdomes

of itself and subassemblies. Ontogeny recapitulates piiyyogvhere developmental stages are
rebuilt from the past, sihatmany problems are reduced to ones previously solved (e.g., an
embryo becomes a fetus, etc.). Overall, a whole syisteonstructed of many interacting parts
in a hierarchy b'nested’ subsystems (p. 184). The concedatisficingis always present, so
that a workable solution is found, though it may not be an optimized or theoretical ‘best’

solution, at least due to time constraints (p. 119)

Churchland’s Crab

A simple‘crab-like’ fictitious creature can be constructiedhave a sensory grid as a point by

point projection from an orthogonal grad the eye receptdo a ‘distorted’ view in motor space

(Churchland, 1986) (Fig)6A mapping function, (6,y)= f(a,), maps the motor arm angles (0,y)

as a function of eye angles., (a,). Coordinates in real 2D space (a,b) for the eye angles are:
a=-4 (tan a + tan B) / (tan o - tanP)

b=-8 (tan a * tan B) / (tan a - tanp)
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SENSORY
TOPOGRAPHILC MAP

(METRICALLY
DEFORMED)

MOTOR
TOPOGRAPHIC MAP

Figure6. Transformation mapping of the ‘créike’ schematic of a fictitious creature from
orthogonal sensory eye space angles (a,p) to ‘distorted’ nonlinear motor arm angle state
space (0,y) [from: Churchland, 1986, Fig. 6].

More elaborate equations can relate (a,b) to eloow coordinate angles. Defasrasgiomapped

to an appropriate correspondence, termedtidte space sandwictDamage to a small portion

of the sandwich still allows for operatidndeed, he system isonsideredo be fasenoughwith
biological conduction fiber® conduct the movement in real tindonlinearity of the mapping

infers a small error may be magnified disproportionalligich may create undesireable large

errors This gructure is biologically realistic, and could be grown by life. Overall, ihis a

31



example of a simple connected biological system that translates eye movement ertoemtonf

the crab claw to reach the desired item that is being looked at.

The goal fominimalist robotics is to construct such simple mapping relatisimgy physical
connections from one point to another so little or no processing is needed in between. Qf course
such connections and changes can be made with switching within programohpr@egssing

of a microprocessor, having direct connections made from perceiving sensed injpeats to t
corresponding desired activated outputs. Therefore, the pretemest method for application

of such a mapped system is to incorpokatth robust phgical connections along with simply
activated internal electrical microprocessor connections that can direatliréen sensing to
acuation. The desired goal is to avoid complicated calculation and anafy<igltys processing

time and overly complicas thedecision foperformance of the needed action.

ANTICIPATION PROMOTES HABITS

The nature of habits in organisms is explored by Duhigg (2014). He cites an exawpl
neuron excitation in a rat’s brain decreases with repeated runs through arfanghanging
maze to reach chocolate (p. 16) (these rats were upgraded from cheese...). Thedpeheeige
(a form of learning) in brain activity reflects the formation of a habit. Duhsggends habits
form through the sequence of a cue, routine, and reward. The routine itself id fyrme
process termed chunking. [In psychology, chunking is combining several items togetheayin
so they are renmebered together and easily recalled later. Letters in a word are a form of
chunking, and repeated expressi@re chunking of smaller chunks.] Sound cues atéreas

clicks versus meows, may be used to initiate a specific behavior that easihes the chocolate
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reward. The cycle of cue, routine, reward is defined by Duhigg to be a reochabinghata

person, or any organism, can be fixed into performing repeatedly.

Habituation is defined in biology as a foohneural plasticity in organisnthat is a simple type
of learning (BZ580 Biological Basis of Behavior notes, CSU, 2010-9-21,
https://en.wikipedia.org/wiki/Habituation). Neural plasticity reflects aspta and/or chemical
change in an organism’s neurons that cause a change in behavior in the futduatidahs a
decrease in response to repeated stimulus presentation (BZ580 notes). For, exaargitgs
smelling bacon or fish smell in the house after a bit of exposure to that stiyetlysu still
smell other odors. After one leaves the house and returns, dishabuituation occurs socdrat one
smell the bacon or fish again. A classicraxée of habituation is the sea slugplysia

californica) that is poked and it withdraws its siphon initially. With repeated stimulus poking
applications, the duration of withdrawal decreases (Fig. 7). Habituation mayusolunger

term depending on the training (practice) regime. Such studies show the natteeedfreeural
impulses that reflect a change in physical neuron firing and the resuianged behavior,
similar to the examplin rats given by Duhigg (2014). The mechanism is reduced netngn f

after repeated training by stimulus application.
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Figure7. After repeated training times of poking the sea slug, habituation occurs oeotim
that the duration of siphon withdrawal is reduced in response to thestpokeus.

Fixed action patterns (FAPs) are similar habitual responses to cues thefirsed dy behavioral
biologists (Tinbergen, 1951). Examples in biology range from a goose using a scooinghot

its head and neck to return an egg into the nest, to a bird feeding fish in a pool because the open
mouths of the fish resemble those of young nestlings, and thereby cues the deédimg

response by the bird. Humans use similar cues to initiate getting up in the nwithiag aarm

clock, or turning at a specific corner while driving to reach a familiairdgsn. In that sense,

much of human daily behavior can be thought of as automatic and unconscious, and may occur

similarly for other organisms as well.
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Anticipation is amaacessory to habits. Duhigg (2014, p. 46) explains how a monkey forms a
habit by reacting to a shape displayed on a computer screen: it presses adbtzen t@

raspberry juice reward. Over time, the electrode in the monkey brain chaofilesrpspons.

MONKEY
BRAIN

i

1 4 1 TIME
SEE PRESS DRINK
DISPLAY LEVER JUICE
REWARD
ANTICIPATE
REWARD

Figure8. After repeated training times of providing raspberry juice to the monkey,
anticipation of the reward increases prior to the lever press and juice rewardn&nd dr
juice reward response is reduced [modifiesn: Duhigg (2014, p. 46)].

Initially, the neural response spike is highest just after receivingspberry reward. After
some time, the spike in response occurs just after seeing the shape appesmmoi b is
beforethe pressing of the lever and the actual reward (Fig. 8). This seeminglyespdnse is
an indication of anticipation of reward by the monkey brain. The combination of forh@ng t
habit and anticipation of reward is termed a craving (expgthe reward to come). An
intersecting response behavior becomes associated with this. If the cewandies as

anticipated, all is well, and we have a happy monkey. However, if the rewgelhigd or
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removed, we now have a very unhappy monkey that shows signs of anger and depression. The
moral becomes that if we no longer receive the anticipated reward, we bectatediin the

execution of the habit, although we continue to apply the routine response.

Changing a habit actually involves linkingetcue to a new routine, and preserving some reliable
reward after theoutine completes. Duhigg (2014) explains that the benefit of recognizing the
habit (cue, routine, and reward) is that one is then able to replace the routitieeadtee, and
therebyconvert an adverse addiction hahtb some more favorable desle habit routine. In a
more complex application, a National Football League (NFL) coach of thealBenp

Buccaneers, Tony Dungy, attempted to change and redirect his playersobélyanstructing

them to focus on small specific details as cues. He had the players practice repectad

routine responses to the small specific cues until the response was so autantie players

no longer had to think (p. 64). Byt requiring them to think, the response was more direct and
faster to the initial cues. That extra speed in decreased response time hatthigug

milliseconds, was enough to provide an edge so that his team outperformed the opponents, even
though the opponents might know what was coming. The outperformance leads to scoring and
winning as a reward. Hence, in this example thinking actually got in the wagaiteon, by
delaying reaction time, and was not preferred. Ingraining the habit respoheectees was more
important. Indeed, the focus here was to "develop direct input perception to output connections
similar to those operating for Chruchland’s crab (1986). Little processingeeaed, so

response was faster, and in sports competition that is the preferred edge thatildnexpect to

lead to more consistent winning, whatever the sport.
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In parallel, though Duhigg did not explicitly discuss it here, if the cues provideiaipatidn

of the reward, the behavior can be encouraged to ocawr enpedientlyand in this case is

more desible to produce thiask achievement outcome. The lesson here is that proper practice
to a small number of cues can set the desired habit response that performs morauaickly
effectively. Anticipation, as shown earlier with the monkey (p. 46), unconsciously b&come
included in the process, after the cue and before the actual routine, that is peeantpt

enhances the routine action that attains a desired craved reward. Anticipatioedaoom
unconscious prior-occurring supplement to the habit routine that enhances its peréorhinase

anticipation is benefial as a performance enhancer.

Indeed, for angenerakystem, defining of a set of desired behaviors constructs the types of
‘habits’ that are expeed to be observed in the specific environment being considered. Proper
definition of these behaviors should devise an anticipation set of possible behaviasrselecti
Specific cues that are perceived in the immediately surrounding niche envitcsiroald
directly manifest the desired behavior for that condition, or group of condifiosisas a
monkey brain can be ‘wired’ to perform the habit (cue, routine, and reward), a rotsbéics
can perform behaviors that appear to be ‘habit’ due to internal wiring of the connected
components and actuators. Also like the monkey brain, the cued habit can be enhanced to
perform more quickly and efficiently by including predetermined cotioastfor direct linking
of the cue to the desired performed action. Theslerermined expectation of the performance
can be thought of as anticipation that can be built into any automated systenoréheref
anticipation can be added to robotics by incorporating predetermined routinestthees

performance of a behavior that appears to act like a habit.
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ARCHETYPES

Discussion Versus Dialog

The concept of business archetypes was proposed in relation to team cooperatiamiaugdolga
Senge 2006). Although the idea of a generalized archetype was propatied lapsychologist
Carl Young, showing archetypes as broad patterns of ideas (e.g., beauty, n&od, @enge
applied them to the business world to describe recurring problems and develop solutidmg. Sol
problems requires exchange of ideas, leading Senge to discutypés of discourse: discussion
and dialogue (p. 223Riscusson has a goal to win a point versus finding truth esiterenceln
contrast, dalogue is a freeldw of meaning between people, and goes beyond understanding of
one indvidual. It gains insight that cannot be gained individually. The purpose of dialogue is to
reveal incoherence in thougl. dialogue, people observe their own thinkiRgople together
observe the collective nature of thought. Thus, thinking is a process; thoughts aseltre the
processPeople tend to ignore the thinking process, and instead tend to own thoughts. Yet,
collective learning arises, amlvital to potential for human intelligendgialogue shows

incoherence in thoughts, allowingorecoherence of collective thought.

Team Learning

Dialogueis important becauseig ‘open to a flow of larger intelligence’, and has goals of truth
and coherence. Howevelisdussion (p.223) has a goal to win a point versus truth and coherence.
It is preented that all scientific theories are eventually proved {als222) (quote Bohm, 1965,

The Special Theory of Relativity.as was also presented by Dupre (1993). More useful is the
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concept thathte essentiapurpose of gence is to create mental mapsguide perception and

action. As a result, there isautual participation between nature and consciousness.

In addition, thought is a collective phenomenaga.with collective properties or particlesdg.
electrons for electricity)thought must be coherent across individuals to be produSereye
presents thaBohm says (1965) dialogue needs three conditions: (p. 26):

1. Everyone suspends assumptions.

2. Everyone is regarded as an equal colleague.

3. A Facilitator maintains context ofdldiscussion.
Resistance wastes energy, just as eleasistance wastes energy (heAt) views are based on
assumptions that should be identified. Unfortunately, the flow of dialoguedisdal by accepted
assumptions. Suspending assumptions unravels the reasoning behind abstvaenoms all
ideasas colleagues makes a positive tone to allow vulnerability. Everyone must wditslaéne
dialogue more than privileges of rank. In dialegaomplex issues are exploréucontrast, in
discussion, decisions are made, so both must be balanced in discourse. Common ground must be
found on which to agree. Personal vision provides a foundation for shared vision, just as
reflection andnquiry are foundation for dialogue and discussion. The essence of visioning is
thatshared vision arises from personal visions. Organizatande viewdas Living Systms
(Senge, 2006, p. 267). Organizations are communities, not just production machines. (p. 267).
Dialogue implies interaction and listening, whiieaussim, on the other hand, has taegoal
to win a point. Knowledge isreated in a social proce§s 270), involving what we know how
to do, and things done with one another. Pemolk together to create value. The goal is to

understand how ong’'own wok occurs, and how to explain it to others.
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Rise of the Archetypes

To explain how patterns of behavior develop in business, Senge (2006) built on the ideas of
dialog and team learning to describe a set of nine underlying business @@shétye inner
workings of archetypes are presented in systgnamics terms as causal lodipgrams with
interlinking loops, both reinforcing and balancing types, that illustrate behateoactions with
innate delays. In many cases, the structure of a spaoifietype describesarecurring

operation that islikely not desired, but in which the business operation is stuck, and cannot
escape. Essentially an archetype denotes a specific defined business problem. Theaoal i
recognize the archetype as a recurring problem, and add a netw graglstructure that allows a

more preferred solution.

The original Shifting The Burden or goal archetypelies that problems arise from the actions
thatonly solve symptoms (Senge, 2006, p. 391). A solution only works in thetshartwith

some immediate posre results, but in the longgrm is not sufficient. The ineffective attempted
solution is repeated at the expense of an actual fundamental solution that would wor&ng-the |
term. Unfortunately, evenally the actual fundamental stikn may no longer work either, as

the synptomatic solution is blindlyepeatedly applied. Example: selling more to existing

customers rather than increasing market share by selling to new customers.

Although it sounds like a fit, shifting of burdelmes not mean to make dynamic changes in a
systemmodel to find creative new solutions matched to the context observed, as would contrast
with that originally presented by Seng2(q06). Rather, the ‘Shifting The Burdexrchetype

points to the fact that unproductive behavior tends to arise in the long-term from somerbehavi
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that seemed to be working in the shiertm, while it actually is not, but just treats symptoms,
while not treatig the core problem. Seng2006) contends Tragedy of the Commons combines

Limits to Growth and Shifting dBurdengGoals

Similarly, the Limits to Growth (LTG) archetypefers to negative €&ors that slow or halt
desired growth of a system. In studying this (and all) archetypes, sioa lissto find the element
that is creating the problem, and choose actions that reverse or correct theablediesipingof
the archetype.&hge R006) explains this in more detail for the LTG archetype sincayt m
negate momentum to vision (read: Anticipajiovision spreads as a reinforcing loop (p. 211),
however limiting factors slow down the desired vision cycle (balancing). Such limitoctgria
can be:
1. Viewing different ideal futures generates unmanageable conflicts.
Based on increasing diversity and polarization.
Leverage (solution) lies in identifyg andunderstanding a limiting factor.
Finding a common vision solves this.
2. Discouragement (like polarization) may create the limit.
Capacity to keepreative tension may be lost, ahds effort.
Encourage personal mastery to foster sustained commitment to vision.
3. Overwhelmed workers also lose focus on the vision.
To solve this, pursue new vision vs. focus on managing current reality.
4. Forgetting connections to the others/team.

To solve this,recourage reflecting angharing on personal awderall vision.
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Vision (or what might be viewed as longer term anticipgtimctomes a ‘living force’ when
people truly believe that they create their own future (p. 215). Managers mtiseseselves as
creating current reality, and that they cdmite to changing that reality. Unfortunately, a major
threat to the anticipated vision is the concept that we can’t change realitytrisstaBenge
contends the recognition of constraining archetypes empowers teams to chétyg®rehe

better for @sired task achievement.

Enhanced System Archetypes

Systemic Thinking

Systemic (Systems) Thinking behavior is created from loops having intedekriables

(Flood, 1999, p. 85). Complexity Theory is part of Systemic Thinking. (p. 85). Flood centend
that complex interrelationships and emergent behavior are unknowable (p. 87). Thisiuilds
the ideas from Seng@@06)that explainthinking is a process that leads to thoughts (or
assumptions). From this, reflection and action are linked, leading to a goal. Thus,usepér

team reflection takes action towards a desired goal or task achievement.

Structure includes organizational functions and forms of coordinaonmiunication, and
control. (p. 104)Bureaucracy is the est&iiment of lines of @thority, both rational antkgal
(p. 105). The whole organization, like a whole organism, contains structure and lines of

communication to impart authority for action to all sections of the organization.
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Whole Organism

A whole organism is more than the sum of its parts. (synergy: p. 29). Existence gaaisror
canna be properly understood merelg the behawr of some fundamental parts. An organism
co-exists in reldbn to its environment (niche). Function (operation) and siradiversity are
maintained by continuous flow of energy and informati@iween organism arehvironment.
(p. 106). Open Systems Theory (OST) (also called organismic biology) uses functiona
(operationalandrelational crieria rather than a reductionist approach that anslymelamental
patts (organism with environment). An organism is a complengtiof many interrelating parts,
resulting in a whole with overall integrity.iticludes severgrocesses:

Selforganization: attained through differentiation.

Equifindity: reaching a final state from initial conditions.

Teleology: behavior for a purpose ‘known in advaniceplied anticipatioi.
OST wontrasts with closed systems thinkif@gJST) that contends organism behavior is based on
fundamental principles and laws just as physics. Emphasized is efficietheffectiveness of

interacting parts.

For CIST, the organism ismaeremachire of simple interworking part&uccessi CIST)
arisesfrom repetitive performace of routine tasks to produce a single specific product. (Senge
ignored this). In addition, drudgery addmotivation arise from mindless activiQST, on the
other hand, contends y#ics is unable to ‘appreciatéynamics of organization, so pasie

better studied as a wholEhe organism is open to the environment, with survival via
transforming inputs and by adapting to champatsof a society(people) have needs;

motivation enriches satisfaction apbductivity, including democracy and autonomy.
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OSTactuallyis the forerunner to General System Theory (GST) (p. 31). GST envisions a unity
of science, formulating and deriving principtbat apply to all systems in generblhe Society
for General Systems Research (SGSR) exists tdiatyally it was: Society for Advanceamt of
General Systems Theory.) Thmuhding aimsvere

1. Investigate isomorphy (similarity) of concepts/models across fields.

2. Develop theoretical models for various fields.

3. Minimize duplicate modefforts across fields.

4. Improve communication among specialists for unity of science.
Senge 2006)suggestedystemic thinkingised archetypes to these aims. Von Betanlanffy saw
specialization as baking down integrated science, and soughtdwgnt closed/isolated
research in specialized field®osen (1979) (who developed the Rosen Méatetongruent
system¥ compaed similarities across systensgilowing that one can use system A to learn about

similar system B.

Systemic Thinkng

Interrelatedness infeesrerything is interrelated with everything e(§¢ood, 1999, p. 91). Thus,
systemic appreciation is an ex@panding activityComplexity Thery (CT) adds the insight
thatemergence results from dynami@nd spontaneous self-organization. In contrast, Chaos
Theory tries to explain that everbatterfly can change the weather worldwidéwus, thetotal
dynanmic is even more complex by CAny comprehensive systemicoresentation is
overwhelming in interrelationships anecurring emergence. (p. 94 further disance from a
locality in space and timielurs interpretation of events. Thus, people only can dehlitgins

close to them in space and timidis leads to bounding formulation/appreciation in local terms.
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All interpretaitions are only partial and temporary views. Flood states that Churchman contends
bounded appreciation is most relevant and acceptable. In addition, boundary judgements include
a debate on ethical issues and dilemr&ash boundary is a choice for who benefits, and who
does not. Thus, setting balaries has a moral implication. &¥principle of systemic thinking

is toremain ethically alert to choices. Boundary choice also sets agautp pursue, and values.
For exampleunemployed people are excludedn organizational analysi$hus, perpetual
unemployment is not recognized. Including the unemplaysdch an analysigpens up equal
opportunity issuedBoundary judgements create an action area that is partiéeaporary,

where systemic appreciationay deepefor a specific idea or itenf.o summarize this view, a
boundary must be set for any system, and setting that boundary is a moral ded¢®ibe as
purpose of the system and possible behaviors that may be included for successfablEbtesk

achievement.

Limits To Growth Archetype Structure

A formal process program code was developed by Hayward and Boswell (2014) semefne
Limits to Growth archetypdt included the interaction of dynamic loopingctpturethe overall
priority execution of the items in related and overlapping loops. The work was builirapla s

set of four atomic behaviors that represented the responses of reinforcingasihigdbops

(Fig. 9).
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Figure9. Atomic behaviors of convergence observed in system dynamics loops as
reinforcing (R, unstable) or balancing (B, stable) having trends as imgy€a3 or
decreasing-]. Individual or combinations of loops will exhibit thesenlinear trends
(from: Hayward and Boswell, 2014, Fig. 1}

The underlying differential equation for the Limits to Growth archetypeptioad in a stock
and flow map that relates various elements in the sysidmylimiting factors (Fig.10). The

specific differential equations for the process for the changéderivative with time):

dx/dt= x= ax ( 1-x/M) - bx (2.4)
and
X(t)=x(t-1) + x (Euler integration) (2.5)

Recall the definition for equations within the stock and flow map is (Sterman, 2000, p. 194):

d(Stock)/dt= AStock= Inflow(t)-Outflow(t)

and thus: Stdgt)= Stock (t1) + ft _; [Inflow(s) — Outflow(s)] ds (2.6)
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Thus, formulation of the equation in process program code is representative oftibesrslzow

in the stock and flow map.

/
l )
a \\ ’ //O
€3 Y ,/@,}M \ﬁ/’/
Ly
x inflow xnutflc:-w

Figurel0. Simulation stocks & flaes map for Archetype Limits to Growth as a first order
model (one variable only: x) (from: Hayward and Boswell, 2014, Fig. 2, related eq. 6).

Difficulty arises in that the arrows do not represent a specific operatoitd(be a sum or

product). In the map (Fig. 10), M => p meansx, while p => g means gq=f, so adding a

unique symbol is clearer. These conventions change between sources to makeadnfusieg.

Also, in a causal loop diagram, the sign ##erdy indicates the polarity (positive direct or
negative opposing), so the symbols and arrows are even more confusing. Hence, Hayward and
Boswell developed the process program code to remove ambiguity from such unclear

representations, and also presentedltieg graghs of output for the various processes.

Sterman (2000) points out that other workRighardsorpoints outpitfalls of causal diagrams,
most serious that of not distinguishing between stocks or flows. Even more importantly
Dowling, MacDonald & Richardson (1995) label causal loop diagrams as ‘inherently weak’, not
distinguishing conserved vs. information flows, and unclear as to hidden flows, searate

parameter limits. Thus, causal loop diagrams are limited for presentictustrand behavior
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clearly. Instead, actual specific computer language code is needed, ancermalgpdns may
seem to represent the same causal loop diagram. Thus, one must refine sucls tacpdm

that is clear as to intent and functional results.

Dowling et al (1995, p. 455) contend causal loop diagrams are too general, so specific computer
code must be created to embody the desired relations and behaviors:
“While causal loogliagrams are a simple tool to use in communicating systeroture,
they are inherently weak because they do not distinguish between conserved flows and
information flows. As such, they obfuscate [confuse] direct causal relationshipsebe
rates and levels. This is an importardtéa since most of the structures presented by
Senge and by Wolstenholme andri@mn represent conserved flows.”
Also they present the following (p. 455):
“Further, it has been argued by Richardsomis impossible to determine behavior
simply from laop polarity because loop polarity does not create behavior. Rather it is the
ratelevel structure that determines behavior. The fact that causal loop dsadoamot
reflect important factors such as hidden loops, net rates, and parameiexnslifmits

their ability to provide a clear understanding of structure and behavior.”

Shifting The Burden (Goals) Archetype Structure

The original ®ifting The Burden or goal archetypmplies that problems arise from the actions
thatonly solve symptoms (Senge, 2006, p. 3%ly. 11). A solution only works in the short-
term with some immediate positive results, but in the-@ngn is not sufficient. The ineffective

attempted solution is repeated at the expense of an actual fundamental soluti@mi ith&tark
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in the long-term. Unfortunately, eveally the actual fundamental salon may no longer work
either, as the symptomatic solution is blindly and repeatedly applied. Exaweifpey sore to

existing customers rather than inciegsnarket share by selling to new customers.

Symptomatic solution Conversion coefficient

Policy lever

()

Problem inflow normal

Symptornatic Problem inflow,
“Solution’

Problem outflow

( ') Fundamental conversion factor
’ Fundamental
Problem Side
Symptom \ ( -|-) Effect
Delay
Fundamental Fundamental solution
Solution Fundamental solution atrophy

Figurell. Shifting the Burden archgte causal loop diagram (left) and stock 8od map
(right) evidencing the degree of detail added to clarify beyond the caogadldgram.
The systentontains two stocks as a second order system, and one pipeline delay
(outflow=inflow after delay time) shown as a separate stock. Two negative
feedback balancing loops and one dominant positive reinforcing loopanhter
create the system dynamics (From: Dowling gtl#195, Figs. 2A & B, p. 458 &

459).

Shifting of Burdens/Goals does not jusake dynamic changes in a systenfind creative new
solutionsmatched to the conterbserved. Insteadhe ‘Shifting The Burden/@al’ archetype
represents thatnproductive behavior arises loteym fromabehavior that seemed to be

working in the shorterm, while it actually is noft only treats symptomsyotthe cae problem.
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As with the Limits To Growth archetype, specifics for the Shifting ThelBumarchetype must
be specifically given in detailed processing code to understand the actuébopathe

underlying loops and delays create the behaviors (FitR).

Equation List For “Shifting The Burden”

Fundamental_solution(t) = Fundamental_solution(t - dt) + (Fundamental_solution_inflow -
Fundamental_solution_atrophy) * dt

INIT Fundamental_solution =0

INFLOWS: .

Fundamental_solution_inflow = Fundamental _conversion_factor

OUTFLOWS:

Fundamental _solution_atrophy =Fundamental _solution*Side_effect

Problem_symptom(t) = Problem_symptom(t - dt) + (Problem_inflow - Problem_outflow) * dt

INIT Problem_symptom = 100

INFLOWS:

Problem_inflow = Problem_symptom*(Problem_inflow_normal-Fundamental_solution_multiplier)
OUTFLOWS:

Problem_outflow = (Problem_symptom*Symptomatic_solution)+(Problem_symptom*, 1)

Side_effect(t) = Side_effect(t - dt) + (Side_effect_inflow) * dt

INIT Side_effect=0

INFLOWS:

Side_effect_inflow = Conversion_coefficient*Symptomatic_solution

Conversion_coefficient = .05

Policy lever= 1

Problem_inflow_normal = .2

Fundamental conversion_factor=GRAPH(SMTH1(Problem_symptom,1))

(0.00, 0.00), (20.0, 0.01), (40.0, 0.02), (60.0, 0.03), (80.0, 0.04), (100, 0.05), (120, 0.062), (140, 0.077), (160,
0.098), (180, 0.117), (200, 0.133)

Fundamental _solution_multiplier = GRAPH(Fundamental _solution)

(0.00, 0.00), (0.1, 0.00), (0.2, 0.001), (0.3, 0.0163), (0.4, 0.035), (0.5, 0.0663), (0.6, 0.0963), (0.7, 0.126), (0.8,
0.152), (0.9, 0.182), (1, 0.2)

Symptomatic_solution = GRAPH(Problem_symptom*Policy)

(0.00, 0.00), (20.0, 0.0675), (40.0, 0.155), (60.0, 0.188), (80.0, 0.228), (100, 0.268), (120, 0.295), (140, 0.34),
(160, 0.405), (180, 0.46), (200, 0.492)

Figurel2. Shifting the Burden archetype process code with equations and tables to represent
system dynamics (from: Dowling et al., 199%ble 3.
One equation is not on the previous flow map, so is an anomaly:

ProblemOutflow= (ProblemSymptom * SymptomaticSolution) +
(ProblemSymptom * 0.1)

For this specific construct of the Shifting the Burden (STB) arcleetypical system dynamics
programing defines the inflows, outflows, and values for each of the stocks in the. Shisée

important consideration here is that the underlying relations suggested in tHéarguszap
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and the stock and flow diagram are representedm@septuakquation relations that can more
specificallyexpress theonnections and relations that will reflect the actual operation of the
archetype, and thus captures more completely the behaviors to be observed asfa resul
operation of the archetype. As an added item, the inclusion of table lookup functions (shown as
GRAPHSs at the bottom of the code) provide for specific direct relation®brtassential
components within the overall looping structure. Therefore, the less obvious redmgons
represented in designated calculations that should lead to refmbétiucf the results by

creation of another instance of the STB archetype representation. RepresenthiEoSTB
archetype code is much preferred to the mere presentation as loop diagrams \jttigdimed

interations between the components.

Archetype Game lrony

Complex systems are difficult to understand, and the underlying generic gsuctight not be
recognizable, as was demonstrated by a sydtegramics business game simulati@veloped

and tested with partipants by Bagodi and Mahanty (2015). The game was based on a Shifting
the Burden archetypmsructure for an architectu(gig. 13 & 14), where symptomatic solutions
tend to be chosen by the participants (acting managers) rather thpaafdreed fundamental
solution, mainly because the system is generally too complex to recogrizédonderlying
system archetype and the need for the alternate preferred solution. Untfegtutine

symptomatic solution allows for perceivednorimprovements in the short run (hire more
salespeople to increase sales) but fails to work over the long run where aindamaéntal

solution is needed (improved product quality via attractiveness) (Big.Tks is ironic, since

the choice for a symptomatsolution (creating failure) contradicts what is expected (success). It
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is nota paradox, since a paradox is a statement that contradicts itself, such asyslliga
See:http://english.stackexchange.com/questions/34407 tiitferencebetweenrrony-and

paradox ] None of the participants that played the gaasable to recognize either the
archetype or the preferred fundamental solution, and hence did not attain the desired otitcom

a successful growing business.

Indeed, the results of this studyite plainly illustratenow one can operate within a system with
underlying operation of that of a know archetype, yet not recognize the pesaiplvork. In that
sense, we all may be like fish living in the water, and not realize the importachtengaions of
the water to fundamental operations for our existence. The case also saggenstsst look
closely and critically at overall operations in attempt to tease out and reedlg@imechanism at
work, and make concerted effort to identify what the underlying archetype migbhbe
identified, the know aspects of the defined archetype should assist in leading to nddeysih
system operation, pitfal] possibilities, and means to alter the operation that may lead to desired
or more meaningful results. The is no simple avenue, as this case shows. Insteagstone
become familiar enoughwith individual archetypes to map the components of a sysiaéheont
conceptual description of the archetype. Only then can the archetype become a tawl bteat

used for further understanding and anadyse
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Figurel3. Sectoral overview diagram (top) and underlying Shifting the Burden ygpehet
(bottom). Note thereare two balancing loops (negative signs) and one reinforcing loop
(positive sign) of the side effects (Bagodi and Mahanty, 2015, pp. 385 & 387, Figs. 1 &
2).
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Figurel4. Flow diagram of the simulation model for the Shifting the Burden archetype
business system gam&he unpreferred short-term solution hires more salespeople, and
eventually fails, while the preferred loigrm solution is to increase product
attractiveness, which in turn increases sales, atiérsby successful (Bagodi and
Mahanty, 2015, p. 389, Fig. 3).
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Simplified Basic Archetypes

There are around 10 recognized systenhetypes, depending on the source consulted (Senge,
2006; Wolstenholme, 2003, 2004). Eachhatgpe generally defines an undesiie operation for

a system (problem) that can be corrected if a proper solution link is introducecreamelky

must pass across perceived system boundariesl@ig¢wWolstenholme, 2003, Fig. 1). Both
intended and unintended consequences are involved. Four distinct twaysbem archetypes
have been identified, using the four possible combinations of reinforcing and balaogag |
that can represent all the other more specializectiobs: 1) Underachievement, 2) Out of

Control, 3) Relative Achievement, and 4) Relative Control (Wolstenholme, 2003, (fid.1)

16).
Problem Solution
Archetype Archetypa
4 3

action : cli
e / .
miended consequence | intendad consequence

' \  {ic) leedbark loop

EyElam soluson |
boundary feedback
"'\-\.._\_\H |
delay / y /
sequence 1T funint

system
reachon reachion

A

Figurel5. Flow diagram structure of the Problem (left) and Solution (right) tajatgric
archetypes, indicating the presence of intended and unintended consequences (from:
Wolstenholme, 2003, Fig. 1).
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Figurel6. Set of four flow diagram structures for both the Problem and Solution totally
generic archetypes, indicating the presence of intended and unintended consequence
R= reinforcing loop. B= balancing loop. O= opposing action (from:
Wolstenholme, 2003, Fig. 2).
Each totally generic archetypepresents one or more specific archetypes based on the relations
of the loops, with both intended and unintended consequences (Wolstenholme, 2003, Figs. 3 to
6).
1. Underachievement generic archetype.
Archetypes (three different eg: Limits to Growth/Success, Tragedy of the Commons, and
Growth and Underinvestment.
Loops: reinforcing as intended consequences, balancing as unintended consequences.
2. Out of Control generic archetype.

Archetypes (three differenneg: Fixes That Fail, Shifting the Burden, and Accidental

Adversaries.
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Loops: reinforcing as unintended consequenicakincing agtended consequences
3. Relative Achievement generic archetype

Archetypes (one onjy Success to the Successful.

Loops: two reinforcing as either intended consequences and unintended consequences.
4. Relative Control generic archetype

Archetypes (two different ong<Escalation, and Drifting Goals.

Loops: two balancing as eithietended consequences amintended consequences

Systems thinking using systamignamics must recognize system boundaries and make them as
transparent as possible. Adding a patkthe system that crosses the boundary is a crucialcstep
provide a solution to the archetype identified (Wolstenholme, 2003, p. 25 & 26; Wolstenholme,

2004).

ROBOTIC ARCHITECTURES

Subsumption Architecture

The earliest work in BBR used a computation model called subsungstibitecturgSA) that
aimed to program intelligent, situated, and embodied robotic agents based on wetl-define
robotic principles which follow (Brooks, 1999, p. 172). Computation is organized as
asynchronous networks of active elements with fixed topology and unidirectional cons.ect
Messages through connections have no implicit semantics, and meanings arerdepende
dynamics built into both sender and receiver. Sensors and actuators are connected
asynchronously to the network. The goal is to study complete integrated intefligenomous

agents embodied as mobile robots, and situated in the research lab world and opetate in rea
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time; environments should not be changed in any way for the robots. No central model of the
world is maintained; all data are distributed over computational elements. Theresistrab ¢
control, and there are no separate systems for perception or actuation. There arclayhier
results of needed computations are available on input lines with no synchronization of
production and use of messages. The user piece of the network uses whatever inf@mation i
available at the time it is required. All layers (or behaviors) run in parallel, adith layer as a
behavior, and a conflict resolution method may be needed to resolve differing commands. The

world is used as a communication medium for processes within a single robot.

Connell (1990, p. 154used a colony architectutieat was expanded from the subsumption
architecture of Brooks (1999) to build an autonomous robot, Herbert, that collected soda cans.
Colony architecture had 1) independent agents: modularity for each agent to be indegendent
any agent can be replaced or upgraded independently, and 2) local control: information
collection and decisions for control should be in temporally local modules (p. 12). There is no
internal world model, and the world is used directly as a model of itself for dersing and
acting. Simple systems are combined witheavior fusion to obtain the same result as fusing
multiple sensors (p. 14). The local control dictates a means of reactive progratimaing
responds to specific events in the world. Connell (1990) compared colony archiattufcr
other architectres, emphasizing advantages of the independence and local control features of
Herbert that were effective through suppression of lower level behaviors by biggee For the
more current application of anticipation to robust robot design, the advantages of colony

architecture are apparent to use independence and local control to attain desiredyhby
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behavior suppression, and could be included to provide for effective application of anticipation

to overall agent control.

Robotic Principles

A set of eight Agent Design Principles have been defined that are simiastdf Brooks

(Pfeifer & Bongard, 2007). The overall threenstituents principle stipulates that designing an
intelligent agent involves the interaction betweereemlogical niche (environment), desired
tasks and behaviors, and a specific robotic agent. A complete agent must behavesainibdd
and is built to exploit properties of a specific ecological niche so that interagtiothe niche

will have a mucheasier (cheaper) design and construction. For redundancy, intelligent agents
have different subsystems function based on different physical processes, aral a parti
functionality overlap exists between different subsystems. Sensory stonutainduced

through sensory-motor coordination. For ecological balance in a certain task nictehaerits
between complexities of the sensory, motor, and neural systems, with eeldaddnveen
morphology, materials, and environment. Intelligence emerges from a large numbratlef pa
processes that are often coordinated through embodiment, and embodied interdctioa wit
environment. A value system is included that contains a basic set of assumptions abmut wha
good for the agent. These agent design principles, along with those from colony and sebsumpti
architectures, provide a strong basis for designing robots that could usentigesiof
anticipationto operate more robustly in the real wotltleed, the focus here is to use a
principled approach that matches behavior directly to perceived niche conditr@ssilt in

desired tack achievement.
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BEHAVIOR

Task, Niche Environment, and Agent

Behavior is the observed response of an organism oticagent to current niche
environmental conditions to create task achievement. This definition of behaviortemdesk
from three previous ones of Nehmzow (2000), Brooks (1999), and Malcolm and Smithers
(1990).A robot agent can be a specific physicddobor programed process that performs a

behavior to attain desired task achievement.

Previously for behavior-based robotics (BBR), Nehmzow (2000, p. 10) contends behavior of a
robot is dependent on the task to be achieved and the environment the robot is in, and the three
elemens influence each other (see beginning of Chapterg2;1, p. 7). It is represented as the
taskenvironmentagent (TEA) triangle that interlinks the three dependent elements. Nehmzow
credits Smithers with the example of a spithat survives in the outdoors, but is ‘incorrgrg’

in a bathtub. This spider example shows how an organism (animal or robot agent) isdoast fit t
specific task in a specific context (niche environment), and that organism or @tent w
necessarily operate correctly in a different context. The organism or agesicised to its niche
environment, with behavior coupled to the niche conditions. Hence, Nehmzow thinks a general
purpose robot cannot exist, but each robot has the specific purpesaskrto be achieved.

Thus, functional operation defines the behavior of a robot in an environment for the spskific t

Defining all three TEA elements together simultaneously defines the ameptetely.

Another similar version of the TEA behavior explanation is presented by Brooks (1909). A

organization of subsumpti@architecturg§SA) uses successive incremental layers of
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programming linking sensing to action. Each layer operates autonomously byrassantrol

from lower levels, connecting the real world with lower levels. The result is a siypplef
distributed control. The SA is based on a collection of individuadgssors, each an augmented
finite state machine (AFSM), with simple messages passing between them, permittatgactiv

or deactivation of each AFSM as dictated by the sensed environmeonk$34999, p. 40).

Multiple AFSM processors are grouped to perform a behavior (Brooks, 1999, p. 41). Each
behavior actssan internal abstraction barrieo that each behavior (group of AFSMs) is
separate from another (a different group of AFSMs)eARavioris thus a group of AFSM

procesors between which simple messages are passed, causing suppressioitioninhi

between processors both within the behavior group, or passed messages to suppress or inhibi

other lower level behdor as other processor groups.

A robotic assembly system, SOMASS, by Malcolm and Smithers (1990) included behaviora
modules that encapsulate useful elements of specific behaviors to be

symbolic _ l symbolic ]
. task-achievin
Pt’rcep{oi_ system command sk-achieving sysiem

___—-/ \ﬁﬁ

symbol -> signal J

Figurel7.Two kinds of grounding: Dual (left) verses Unit:
Grounding (Malcolm & Smithers,1990).

executed by the assembly system. These behavior modules are used by an gwéraé co
system to achieve desired behavior for functional capability. The behavioral sigduled the

behavior in the real world through a behavior-based system using unitary groundingcést pla
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both abstraction and effective capability in a single behavioral module, in cdatcast|
grounded system that grounds abstraction and effective capability in two sepatsiinstead of
one, as Malolm and Smithers contend occurs in the Expli¢drld-Model (Fig. 17. The
behavioral modules are considered the subcognitive part of the system. Thus, theykidmd s
constructed for SOMASS uses an overall cognitive system to direct the useajrstine
behavioral modules to perform desired behavior. The term hybrid implies two kinds of
components are in an autonomous system: cognitive (traditional KnovwBzdge+ from
classical artificial intelligence, Al) and subcognitive ones (BehaBawed as escribed by

Brooks).

Social Robotics With Theory of the Mind

Social robotics has earned increased interest in recent years. Breaz@ph(fRDScassaletti

(2001) explored ways to add social behavior to robots. Breazeal (2000) developed alsocial r
named Kismet that recognizes facial gestures and simple words (audgoays3ifrom humans

to cue behavior that created facial expressions on Kismet, thus encouragingeupladt

with Kismet like it is an infant. Going further, Scassaletti (2001¢thdwss approach on the

Theory of the Mind from philosophy to attempt to incorporate behavior and thinking into the
robot processes to resemble the thinking of humans. Though they both used the small robot
Kismet for their work, similar to a human infantdize, the background technology and

electronics enlisted the support of a bank of over 10 computers in an adjoining room to allow the
reactions of Kismet to humans to proceed. Thus, in structure as well as functiomlihelson

agent was considerablgriger than life, and one might say the observed behavior responses were

not entirely just in the observed robot Kismet. Further work by Breazeal haspsya@ more

62



compact Jibaobot (a social family robot) that is stationary for home use, and strives to provide
everyday informational support for typical technology laden human lifestyle
(https://www.jibo.con). All these cases have moved beyond the basics of a subsumption
architecturéo more elaborate interactingstriptions that could be said no longer are strictly

behavior-based robotics.

ANTICIPATION FOR BEHAVIOR-BASED ROBOTICS

An anticipationset contains a small number of specific wekdfined behaviors that can be
manifest as a choider the agent that matches the current niche condition. A niche is a specific
environment where the behavior of an agent is expected to have successful taskremitie

The niche may afford for more than one behavior, yet one niche condition is bestdatche
specific behavior at a current time. Fitness is a measure of how well a bekawaiched to the
niche environment. The best value of fithess cues a specific choice of beRavapts are
perceptions of the niche environment by the agedetermine what behavior is best afforded to
the current niche condition. Threshold coupling uses the value of fithness to cue sele&tion of

choice behavior from the overall anticipation set.

Percepts arise from the area of psychology, where a pesdbet imental recreation of a distal
(external) stimulus. For robotics, the mental reference is replaced bg@in Ageal world
object is the distal stimulus or distal object. Through a physical process (tight,®tc.) a
sensory device/organ is stimulated, in turn using ernergyeate neural activity (called
transduction). The internal raw pattern is the proximal stimulus, which is transtoittesl brain

(agent processor) for processing. The resultant recreation of the tiistalis in the brai is a
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percept. Overall, perception is creation of mental representations (imaebetypes) using

the proximal stimuli derived from distal stimuli. For exampleatas a distal stimulus is
detected by light energy entering the eye to form an imagdkeoretina as a proximal stimulus,
and the reconstruction of the image in the brain (agent processor) is the perceptsiAgiong

as a distal stimulus uses sound energy to move auditory receptors as the mtxiahas, and
interpretation by the brain (agent processor) is the percept. Intelligamsadnoose to act both

on individual and sequences of multiple percepts. An agent function maps each pemept to a
action, and subsequently to the next action. (From: https://en.wikipedia.org/weckiien ; and

https://en.wikipedia.org/wiki/Percept_%?28artificial_intelligence%?29).

For the purposes of this studypercept is an abstract representation of an element or factor in
the niche. Synonyms include: form, rule, habit, image, code, and covefraboef, a percept in
the FS is the abstraction of an elemental factor in the NS. Anticipation acsgypercepts of
the niche to cue a behavior that is manifest to produce a matching behavior byntharae

lead to successful observed task achievement.
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CHAPTER 3. ANTICIPATION IN ROBOTICS

OVERVIEW

The notion of anticipation involves understanding what anticipation is, what it looks like, how it
operates, and how it might be included in artificial robot agent systems. The disduesgins

with a historical perspective and description of how anticipation appears to work geethat

future actually influences the present (or the past leading to the prddeniey is for a living
biological system, or an artificial robotic system, that conceive of an outcome prior to its
occurrence (Rosen, 1991; Rosen, 2012), to actually use the expectations about that outcome t
manifesta choice of behavior that leads to a goal for desired task achievémetite previous
desgn model robot that operated as a wall follow (or MURAMATOR), and for the neigrdes
model TOURIST the ultimate goal for task achievement is to both follow a wall and to avoid
stationary stray objects. Using the congruence framework (Rosen 1991; Rosenr2012), a
anticipation simulation model (ANSIM) is developed to study responses to vatioatsosis.

The implications for properly adding anticipation to a working base simulairamaf system

model abstraction are described. The outcome of these formal systatations will be

describé in more detail in Chapter Ve begin the process by first looking at and defining in

detail the traits of anticipation both in biological living and artificial robotic systems.

DESCRIPTION OF ANTICIPATION

Overall architeaire of a robotic system using anticipation has been formalized using system

dynamics for a mechanism of anticipation to cue direct behavior (Figure 1
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Figurel8. System dynamlcs model of how past stages of evente evgzectations of task
achievement in the future, producing anticipation with associated fitness tmatispehoice
to change present behavior and future events. Gray paths are not chnsen.
Stages (Syin the past create expectations (Efdr manypossible outcomes in the future. Each
expectation for a specific future task achievement has some mechanism (Mbteate a
specific anticipation (AN with an associated fitness)\Ehat is calculated from invariant sensed
percepts (p ..., p) in theenvironment (Figure 19 & 3P0each with some weightingi(a.., a)
based on past experiences. Only the minimum set of invariants that are needed in xiwatonte
environment are included to afford a specific behavior with greatest fitness. Ttipadion
with maximum fitness is chosen to change present behavior and the one set of futarthatage
follow from it (the gray stages are nctosen, Figure 18). Sensed qualities in the environment
are measured as cofactor E, and the level of related cadiseiar U is predicted that eventually

directly influences future events (Rosen, 2012).
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Figurel9. Dynamics of cofactors, E and U, for future task achievement using
niche invariants to afford deployment of resources by anticipation and
associated fitness to make a choice of present desired behavior (after:
Sterman, 2000).

Task achievement is set in the future, and may differ for each associated expgEfg), and
causes specific elements to be identified thategaired to reach that task, including invariants
with their affordances, a time frame for action, and previous estimated faal a fithess. From
these, resources are identified that need to be deployed along some tioredicgon, and the
fitness isupdated based on any current percepts with some weighting as to importance for a

organism relating to the task, and these differ from the environmental muastyrds, that
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initially created the expectation. These items all combine to form some ambicifeata specific
outcome, and the one anticipation with maximum fitness prompts selection of a chomeethat

a behavior in the present time stage.

A revised fitness value is calculated from current relevant percept inputs/aamnts in the
niche using weightings of importance to the organism and task achievement that povmote
inhibit fitness (Figure 20 After some time constant delay coupled with dynamics of the process,
the calculated fitness,,Hs compared to some threshold value basedrewious experience or
knowledge, and a high enough valae appropriate rangean cue a discrete action (on/off)
output (one that is discontinuous or nonlinear), a continuously variable action choice
(magnitude of ¢ inheriting its value from the deed fitness itself. The cued choice selects a
specific desired behavior that is afforded by invariants as matched to thetgahéewironment,

and esures deployment of needed resources in a timely scheduled manner with the current
maximum desired fitres Eig. 20). This overall architecture based on anticipation is considered
able to extend the colony architecture that revised basic subsumption cauckittom the
founding of BBRs (Connell, 1990; Brooks, 1999).

Precept Fitness/
Inputs Weights Sum Delay Threshold Output

=0

Figure20. Weighted percepts join with delays to calculate
fithess to compare with thresholds that create discrete or
continuous outputs. (modified from: Connell, 1990).
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RECOGNIZING ANTICIPATION

For humans, and some animals and plants in biology, it is possible to view behavior that is
readily labeled to exhibit anticipation (AN). For example, scheduling oftex® humans from
business meetings to sports events, are all longer term displays ofauaticipor animals and
plants, building a nest to rear young or forming flower buds during the summeiilthiddoom

the next spring are similar scheduling examgissen, 2012; Nadin, 2003 horter term

displays of the notion of AN are desired for robs, since the time frame for action and speed of
operation are generally in a briefer time that the biological examples abosdedds to the
guestions of what does AN involve, how is AN recognized or observed, and how can it be

included in robotics.

A discussed above, AN relates to an expectation about the future, either by sorheystama
in biology for animals or humans, or a structure and chemical pathway slactlaser bud
formation. As a very basic level, a reductionist might contendslaidinking of many chemical
pathways in response to environment. A wholistic approachpesferred approachealizes
there are relations between many component parts within a natural biologicasordfaat are
able to coordinate to display ANLhus, the overall developed structure is sufficient and
equipped to sustain the necessary relations for AN that could not occur if the systeem w
dismantledRosen, 1991)AN in a system provides desired task achievement by dotifoge
the outcome of the situation is certain, so the system appears to know the futureuciiest
and inner workings of the system and system dynamics all manifest theehastor choice for
existing niche conditions. In biological systems, for choice of behavior, an sngamay need to

practice to develop the quick response to the perceived conditions. The system deddger bui

69



into the system the means to manifest that behavior. For a robotic systensjgherdéeentifies

the most likely conditions to be encounteredj ¢he direct matched response is tied to that by a
means to detect fitness of the situation, considering multiple factors summed rartketecue
value, and that manifests the behavior by the robotic agent. Several indication®arects
identify that AN is indeed at work (Nadin, 2002). The current behavior is actually determined by
an expected futureondition. The system contains models of itself and the niche environment. A
correlation is made between the perceived niche and resulting behagioif existing

perceptions are minimal. As a result, the artificial robot organism appearsta hav
connectedness with the real world. There is apparent synchronization of activitytegration
within a dynamic system. Though AN realizes a single Wehahoice at a time, it appears to
know the future outcome that is best for the manifested beh§viwn these elements are
observed for any system, whether natural biological ones, or artificial cabws, the system

can be said to have anticipatidine most important elements to observe are that the system
manifests behavidreforean outcome is certain, so that the observed behapp®ars to have

known the futur@utcome ahead of time.

ANTICIPATION ARCHETYPES

Although there are around 10 dift@ce business system archetypes, the two that apply most
directly to robotics are the Limits To Growth (LTG) archetype, havingnéoreing and a
balancing loop with a delay implied in the balancing loop, and the Shifting The Burden (o
Goals) (STB) azhetype with two balancing and a reinforcing loop. As the name imalies,
system showing the LTG contains some constraint or limited factor that diresistam to

some asymptotic stability, and this is discussed immediately below. Slightly lagshe#eSTB
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archetype includes a symptomatic sktertn solution loop pathway that is easy to implement,
but does not solve the problem, while the fundamental solution loop pathway is more difficult to
implement, yet leads to a more desirable targn solutim. The STB archepe is presented

following the LTG archetype.

Causal loop diagrams represent the LTG archetype (Fig&.22).

Lirniting
State

GENERAL 7 =, e Y !

= 4

] \
f 4 b J
! » ,’ "|| r

Growing Current Slowing 0
Aotion R S{af.e- B Action -
» I A
8 _)" L s
= - s

—_

Limitsto Growth (Limited Success) (Original)

S=Sdf-enhancing; O=Opposing Balancing

Limiting
LIGHT High Light Low Light

//(H ™ 5 = J|J

lr"f ; ,, .\l E_,."I
Growing R Current B Slowing ‘l:r’

» 4

=3 /r(j \\‘ S

e " o S —_s

Limitsto Growth Dueto Light Level
S=Seltenhancing; O=Opposing Balancing

Figure2l. Limit To Growth causal loop diagrams for describing a general situation or
respamse to a light level.
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Figure22. Limit To Growth causal loop diagrams for describing detaraveled or percept
effectsin the niche environment.

The LTG archetype is a kind of tug of war between two opposingr&aoe that increases
response in the reinforcing loop (shown on the left side as R) and reduces response in the
balancing loop (right side shown as B). Some limiting element is working on theibglaiae

to create a constraint so the overall actionoisnove to some asymptotic value for a stable
equilibrium state. Although this may be a desired effect, most likely thadiag loop with the

limiting element is some undesired effect that limits the growth or expaosie system. In
business or biogy, and likely in robotics, the constraint might be altered to increase the

asymptotic performance value without creating an unstable condition.
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The LTGarchetypes a first order systa dynamics model that can be represented in some detail

by a stocks and flows map (Fg).

,ﬂo“{“ﬁ
g\x\ﬁ (G ld 7

€3 ¥ {J

X mﬂaw x x outflow

Figure23. Simulation stocks & flows map for archetype Limits to Growth as tadider
model (one variable onlx) (from: Hayward and Begell, 2014, Fig. 2, related ef).

Differential equations represdhe process for the change in x (derivative with time):

dx/dt= x= ax (1-x/M) - bx (3.1
and
X(t)=x(t-1) +x (Euler integration) 3.2

Recall the definition (Sterman, 2000, p. 194): d(Stock)Afitock= Inflow(t)-Outflow(t)
t
and thus: Stock(t)= Stock 1t} + ft . [Inflow(s) — Outflow(s)] ds (3.3)

The LTG archetype is thus a single differential equation (3.1) that is integrated, anukca
easily used in a computer prag with the form ative. The LTGarchetypeversion shown here
combines one reinforcing (R) and two balancing (B1 & B2) loops, one having the limiting
element. The interaction between the various values of the parameters (a, p, §jceeatdthe
system dynamics. Again, this may constrain the system, or altered values mastalbbe

equilibrium to bereachedat some higher level.
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The LTG archetype can be rewritten to be described for a robotic scenausdhat percept in
the niche and resulting behavior (Fig).24

PERCEPT LIMIT TO GROWTH BEHAVIOR
Bm/M

1-Bm/M o
p/Q Maximum Percept, M
Minimum ) ) e ' Rate Out
s\ i

€3 (O D
Behavior Inflow Behavior BehaV|or Outflow

Bm

Figure24. Simulation stocks & flowsnap for archetype Limits to Growth (Success) for robot
distance from an object as a first order model (one variable only: x)f(eabiiom:

Hayward and Boswell, 2014, Fig. 2, related eq. 6.

The relations between the values of the factors is shown here for more ddtaifexhtion.
Inflows to behavior values and outflows represent the changes in behavior thlasemeed for

the system.
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Details of the LTG archetype were organized into a Simulink model to illust@atgystem

dynamics (Fig25) or for an individual percepFEig. 26).

LIMIT TO GROWTH ARCHETYPE

li
-l BT
0
Fn
[

&

J' e -0 M) @ —R
)

; j ; . gl

@ . .

[ e 1 )
CLOUDIN

CLOUDOUT
STOCK

H-ll—
q

L
1
6
=
_|

Figure25. Limit to Growth archetype stocks and flows (levels and rates) may..
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System dynamics for the Limit to Growth archetype as presented by Hbg®oswell (2014)

have been recread in simulation for the same parameter set of a=0.4, b=0.1, x0=1.0 as a starting
value, and a limit of M=20 (Fig. 27). Note the convergence to output growth value of Xs=15 at
about time t=20 to 25 for both simulation models, verifying correct operatiadhdgrogram of

the LTG archetype.
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Figure27. Output for first order loop model for archetype Limit to Growth with loop
dominance shown from Hayward & Boswell (2014) (top) and the recreatedygrehe
with similar resulting output (bottom) (From, Hayward & Boswell, 2014, Fig. 3, p. 34).

76



The original shifting the burden (STB) or goal archetype implies that problems arise lieom t
actions thatonly solve symptoms (Seng2p06, p. 391) ansd was represented detail by
Dowling et al. (1995 (Fig. 28). A solution only works in the shetérm with some immediate
positive results, but in the lortgrm is not sufficient. The ineffective attempted solution is
repeated at the expsm of an actual fundamental solution that would work in the-termyg.
Unfortunately, eventually the actual fundamental soultion may no longer work, eathe¢he
symptomatic solution is blindly and repeatedly applied. Example: selling morgidtng

cudomers rather than increasing market share by selling to new customers.

Symptomatic solution Conversion coefficient

Policy lever

Problem inflow normal ( )
Side effect inflow

Problem symptom

Sideeffect

Symptomatic

“Solution” Froblem inflow a
Problem outflow
( -) ( Fundamental conversion factor
Fundamental splution multiplier )
Problem Side
Symptom \ ( -+ ) Effect Fundamental solution inflow (+)
Delay

(-) s
Fundz_unental Fundamental solution
Solution

Fundamental solution atrophy

Figure28. Shifting the Burden archetype causal loop diagram (leftp&ks& flow map
(right) evidencing the degree of detail added to clarify beyond the caogalliagram.
The system contains two stocks as a second order system, and one pipeline delay
(outflow=inflow after delay time) shown as a separate stock. Two imegaedback
balancing loops and one dominant positive reinforcing loop interact to create thmne syste
dynamics (From: Dowling et al 1995 Figs. 2A&B, p. 458&459).

Although it sounds like a fit, shifing of goa(sr burden)doesnot mean to make dynamic

changes in a system model to find creative new solutions matched to the coneexéabas
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would contrast with that origally presented by Seng2Q06). Rather, the ‘shifting theurden
(or goal)’ archetype points to the fact thatpnoductive behavior tends to arise in the lbaigm
from some behavior that seemed to be working in the-$dont, while it actually is not, but just

treats symptoms, while not treagithe core problem.

The STB archetype can lescriled for a specificsituation of path behavior with an altered
stock & flow map (Fig29). Causal relations are represented by the interactions with Initial Turn
(Symptomatic Solution), Distance (Symptom), and creation of a Sussessiading
(Fundamental Solution), based @urn Delay and the limiting side effect of a Late TUimese

are represented in more detail in the stock & flow map @gright).
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Figure29. Altering the Shifting The Burden archetype to describe Path Behavior.

Shifting The Burden archetype causal loop diagram (left) & stock & flow map (right)

evidencing the degree of detail added to clabéyond the causal loop diagram. The

system contains two stocks as a second order system, and one pipeline delay

(outflow=inflow after delay time) shown as a separate stock. Two nega@eibdck
balancing loops and one dominant positive reinforcing lotgract to create the system
dynamics Modified From: Dowling et al 1995 Figs. 2A&B, p. 458&459).

The STB archetype was represented in Simulink based on work by Dowlinget al, {(£1995)
attempt to reproduce similar system respdfsg. 30). Overall performance of the previous
work was captured and agreed well when the results when the policy levett veazese (PL=0,
or policy off). However, when the policy lever was turned on (PL=1), the responsedbecam
unstable in comparison with the previous work. It was possible to change pardmatatsh
the response shown in the previous work, but that showed inconsistencies as the no policy lever

setting. Though program code was presented in the previous work, some missiagoketail
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thought to result in this lack of agreement. Thus, a similar STB archetype waspdeyeget

with some differences in response.

Shifting the Burden (Goal) Archetype
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Figure30. Shift The Burden (Goal) archetype for comparison with Dowling et al., (1995,
Fig. C&D). Problem Symptom (PSymp, left) represents stesrt: solutions that may
create a Side Effect (SideEff, bottom), while the preferred-teng Fundamental

Solution (FundSoln, right) takes over when the Policy Lever is turned on (PL=0.0 or 1.0
as off or on) (from: Dowling et al 1995).

Shifting the Burden ar chetype game

A system dynamics business gawss developed and tested (Bagodi and Mahanty, 26di5a
Shifting the Burden archetype architectuamad showedymptomatic slutionswere chosen by

participant managetiastead ofthepreferred fundamental solution. Apparentig system is too
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complex to recognize both the underlying system archetype aantecessarypreferred
fundamental solution. d?Pceived improvements in @hshort run (mordiiring and more salgs
failed in the long run, sincédundamental solubn is needed (improved qualitido participant
manages could eitherrecognize thésTB archetype ofind the preferred fundamental solution,
andso failed in performare The underlying causal structure was revised to be representative of
a robotic architecture (Fig31). Also, the flow map was revised as a potential underlying
structure for the STB archetype both in a biological plant (bioplant) growth systdnfor a
mobile robot system (Fig82 & 33). This illustrates how a generalized STB archetype structure
can be revised to conform to similar homologous systems. The first is a bioplatih gystem
with shifts to flowering based on photoperiod (daylength). The second is a mobile robtem sy
that changes heading to match percepts from the niche environment. Thus, agfieets®fet

homologous systentan be represented with the STB archetype.
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PERCEPT: PATH BEHAVIOR

Initiate /‘\-\

(=}
Distance / ¥
{\+i Late
\ Turn
Turn
Delay A=)
Successful‘r

Heading

Figure31. Underlying causes for Shifting the Burden archetype for robot path behavior
(after: Bagodi and Mahanty, 2015, pp. 387, Fig. 2).
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Figure32. Flow diagram of the simulation model for the Shifting the Burden archetype
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(after: Bagodi and Mahanty, 2015, p. 389, Fig. 3).
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business system game, revised for percept effect on robot behavior path by turn and
heading change (afteBagodi and Mahanty, 2015, p. 389, Fig. 3).
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ANTICIPATION IN ARCHITECTURE

Anticipation (AN) goes beyond mere reactive behavior normally used in belteaged robots

(BBR). As with BBR, the initial defined levels can be built uporaiwertical structure. Simple
behaviors used by the wall follower (WF), BMURAMATOR for ‘wall lover’ in Latin, are
EXPLORE AVOID, and SEEKA simple addition oAN to the WF to create a TOURISTEN

be achieved bwddition of just three additional behaviors: WAIT, AHEAD, and FIY. 34).

A basic WAIT behavior procedure is included at the start to allow all systenmrte gp to

speed, and can be cued whenever an uncertain situation is encountered, so the robot does not
appear to panic with an illogical behavior in response to an unexpected, and thus unahticipate

situation.

FIND HSEEK

AHEAD HAVOID

CUE WAIT EXPLORE

WALL FOLLOWER TOURIST

EXPLORE

Figure34. Representation of behavior choices in the wall follower robot (or
MURAMATOR) for three basic behaviors (left) and addition of three behaviors to the
TOURIST robot (right) to include anticipation for task achievement of finding objects
and folloving walls.

AHEAD is included to extend beyond mere reaction to a wall at a specific distance (a cue for

AVOID), and thus includes an extended gradual response to presence of an ongoing wall objec

rather thanan abrupt direction change at some critical distance, and possibly unsafe approach
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distance reached. Lastly, FINDadded in relation to the SEEK behavior procedure to search out
potential objects and walls nearby during the SEpKd motion, and thus may easily locate a

more acceptable object to approach and follow along as a wall.

MODELING ANTICIPATION SYSTEMS
Architecture for anticipation has a linkage between the niche environment ariséneenl

behavior choice (Fig. 35

THRESHOLD CHOICE
NICHE PERCEPTS CONTEXT COUPLING BEHAVIOR
IR I N —»O—r_
iche CONTEXT1 | BLWAIT Task
aip1 Perceived | | 77 T 7 = |
Sonar \Context @
— > CONTEXT2 | 0. ex50 0RE y
Touch azp2 S N ' delay4
Light : CONTEXT3 _B>3:SEEK
Temperature anpn contexta > —
t @ T@ @j B4AVOID |
delayl delay2 elay3

ROBOT BEHAVIOR ARCHITECTURE

Figure35. Architecture for robotics relating perceived environmental niche to context for
robot behavior with reinforcing loop back to the niche [causal diagram and flow map].

The causal diagramnd flow map above was provalevith more detail and specific coded

processes to represent the underlying routines and looping structure, and delargsénté¢he

notion of anticipation (Fig. 36
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Figure36. Anticipation simulation moddor TOURIST robd agent. NICHEcreates a 100 X
100 pixel arena within which the agent perceives the conditiddRCEPTS and from
that determines @ONTEXT fitness value that is used throupHRESHOLD
COUPLING to manifest aCHOICE BEHAVIOR that matches the current Neh
conditions, thereby producing t@BSERVED RESPONSHat leads to successful task
achievement. Anticipation can be turned off or on as desired.
A niche is aspecific environmental surroundipgrceivabldoy the agentt can be consiered as
a smaller subset of the overall environment or arena that the robot agentasexiét within,
and is a local condition or context that is relevant to manifestation of a behavia @Figic37.
As implied by Simon (1996), items that are faoremoved in space and/or time from an
organism (or robot agent) should not be considered relevant to the problem at hand, and thus the

behavior choice. Indeed, the term environment generally is used broadly to iathvase any

area that an organisfiiving or a robotic agent) can move in and exist within, and may be
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considered as broad as the entire planet earth, especially when we considafiacts to the
environment such as global climate change. However, on a realistic scale tlom landtiypical
movement of an individual within the larger environment is quite readily refined tallesm
localized area, one considered as home, or a slightly larger territorgfdieithe operation
environment for an organism or agent is curtailed totlbatto which it is functionally matched.
The immediate area influencing behavior choice is smaller still, defined byddieatea in

which significant effects are perceived, and thus manifest some behavior.

ARENA ENVIRONMENT

IIIIIIIIIIIIIIIIIIIIII.

NICHE: IR, Sonar,
Touch, Light

G —

Figure37. A niche isshownasa specific environmental surrounding perceivable by the
agent, and is in the immediate vicinity as a local condition or context.

Percepts are the current perceived conditions in the niche. They are usedimation to
determine a suitable fitness level. That suitable fitness is matched to a belahi®ntanifest
in response to the niche conditions. A sequence of behavior choices based on the threshold levels

leads to desired task achievement as an vbdeesponse.
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CONGRUENCE FRAMEWORK

A congruence framework for modeling a real world system ensures that thétgasisirst
abstracted by encoding into a formal system (FS) of equation relations a)cnadehe
inference captured in the FS iscdded back to the natural sgst(NS) of the real world (Fig.
38). The frameworks said to be congruent, or agreéshe entailments (implications) in the
causality of the original NS can be reproduced when the inference of the FS isddesckiéo

theNS (Rosen, 1991).

Rosen termsetaphorthe process of decoding without encoding, or forming a theoretical model
of inferences without initial measurements (p. 65), perhaps by only the ajpplio&first

principles of physics or other disciplines (and he says this is not science, p. G&erdea the
efforts of von Bertalanffy in the 1930’s or later (or von Bertanffy, 1968) drawingphers

between open systems and biological development in morphogenesis (p. 65). The aesult i
belief or expectatin that a metaphor can be a useful model to be decoded into some biological
open system, thereby establishing a modeling relationship to better understantbthieabi

system (p. 65). Unfortunately, skipping the encoding loses precise veitifiabdt, the

metaphor can embody truth, yielding some type of gain for free, though it is wet/goif 66).
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Requirements & Specifications

For Behavior to Achieve Performance:
Scaling (Time & Space),
Key Operations, Connections,
Sequential Ordering,
Congruence, Production

DECODING

I
C N
A @ E Model With
U System Dynamics
N y y
i @ E Architecture
N
L
® c
Engineered

Robot & Behaviors ENCODING

Experimentation
& Measurement.
Observable Behaviors

Figure38. Rosen proposed the need for encoding and decoding to link causation relations
between world phenomena into an embodied model strucduiNatural System (N,
or later referred to in this discussion as NS) can be modeled by a Formal System
(F, or herein FS) by adding processes of encoding and decaslicreative acts.
The circled labeled paths are related by the equivalence: 1 = 2 plus 3 plus 4, or
meaning that path is equivalent to the combination of the other three paths.
(from: Rosen, 1991, p. 60; Fig. 3H.2)
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Since the modeling relation includes the notion of predictlmnfuture is implied (or entailed)

by the present in the causality of the NS (Rosen, 1991, p. 64). The individual must decide a
course to provide the proper encoding and decodings. It is imperative to discovehtthe rig
encodings (and decodings). As the metaphor provides the decoding without encoding, the
advantage is to decode to the NS from some devised FS without bothering to encode the
particulars known about the NS. All of science, and biology specifically, uses stagphors, so

that metaphors about machines can be used to decode predictions about organisms (p. 65). Thus,
Rosen explains away the need for encoding in his original model of abstraction, theugh t

seems less than logical.

Yet from Rosen (1991) there would need to be a means of decoding, though it is not specific, but
is necessary for the individual to perform as a creative act (p. 54). Many magree possible

to achieve this. Several logical processes would seem needed to be included in aatbetyl m

and those can be identified as: scaling in both space and time, key operations, forming
connections, sequential ordering, comparison of options, and design for manufacturing and

assembly.

Scalingof the system in botbpace and times crucial to identify means of producing some
desred task achievement. Taking a point of view that zooms out (reduces to aelygd/saw)
or zooms in (enlarges) for a factor of 10 times (or even 100 times), either vhtiol@gy or at
least with ones own imagination, should uncover elements théecexploited to achieve a
task. By comparing with a mental view, by describing the new point of view, or listimg in a

table one can discover intricacies basic to the solution of the problem. Theseniteramaons
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must be captured in the FS, oddobnal mathematical equation relations devised to represent
any new found concerns. Most importantly, one is less likely to overlook any items of
importance that can be enlisted to achieve the task. Scaling in time canrcangamhoseconds
(for speed bprogram execution or biological chemical reactions) to decades or more (product
life cycle, reuse, recycling, or expected appropriateness of techidkagya robot, the turning
mechanism would be considered for a distant view, or a detail of sensing may &eeuinjor an
enlarged view. Time of processing should be fast enough to sense and interpret pereapts
time, while moving around fast enough in an arena to achieve a task in a reasapalbted

time frame. Einsteif1905) had used this stanin his quest to form the theory of relativity, as

he explained his ideas came at least in part from imagining riding on a beam of djghinge

scaling in both space and time.

Key operationgnust be described as relations among parts so that desired steps in operation can
be accomplished toward the goal. This can be done both in a normal view, and in the scaled
views already mentioned. This identifies key parts and the features abdaelaltered and

possibly optimized, or in contrast generalized, so a proper description made ntigtdBnia

the FS can be assured to be translated into a feasible NS. Size and shape of ipdin&] s

well as strength and compliance properties, should be transferred to the NS fsor mébile

robot would need proper wheel size with angular velocity and torque such as neededate navig

in a desired arena.

Forming connectionthat are robust and yet tenable for the prescribed operation are a more

detailed manner in which the operations must be related and carried out. Connectiers betw
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various component parts must be strong yet able to provide needed movement. Many times
failure is known to occur at connections, either from poor initial forming of the coangoti
mistaken consideration of how the system operation will add stress or undue foinees at
connection. The nature of the connection likely is critical to proper operation ®fgtesn, and
alternative forms of connection can drastically change performance. The iotesdbat result

from the onnection are key to producing the desired behavior. Recall that forming connections
is one means of setfrganization (Ashby discussed by von Bertalanffy, 1968, p. 96) that requires
an open system, decrease in entropy inside the system, and both inputs and outputs from/to
outside the system with the environment. The decrease in entropy is counter twotick 1SV

of Thermodynamics, and would likely naturally lead to breaking such connectiansrieaised
entropy with resulting failures during system operation. A mobile robot netdsannections

to both a motor and the wheels to provide aligned motion of all wheels to make for ease of

movement without pinching or obstruction.

Sequential orderinghould assure all needed items are included, and camgarm time to lead
to task achievement. Parts, connections, and their interactions must perform in aguopece
to add up to the desired result. Invariants in the environment cue the sequence &sfiducce
operation. These cues are provided botérmally to the system and externally from the
environmental niche. Altering the order and timing leads to degraded or lack of @eréerm
mobile robot must have perception of the niche in a way that avoids striking objestdiraat

path, and must look for objects that it would anticipate to encounter in the niche.
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Comparison of optionthat arise during the previous formulations provides a means by which to
select those individual steps that are considered most successful, and ensurbihation is

one that produces the most elegant successful result. Comparisons can be madeboitydefsira
operation, cost, feasibility of production, or efficiency of operation. For a malhit#,rdesirable

operation is preferred as observed operation imgkephysical world.

And in final productiondesign for manufacturing and assemioistills in the solution the means
of engineering that is most likely to make a useful item that also is economical to create
(Boothroyd, 1994). Creation of simple pieces, and the fewest number of pieces, favors both
manufacture and assembly. Design is an iterative process that considersigutlkewledge
(Kdn) and domain knowledge (Kdm) while considering specifications and requireroents f
construction (Troxell and Troxell, 2014). Requirements include both criteria and aotsstrai
Criteria are desired traits for successful structure (e.qg., functionatmpeor efficiency), while
constraints are limitations to producing the solution (e.g., funding or size)
(https:/ivww.nagb.org/publications/frameworks/technology/2014-technology-
framework/toc/ch_2/design/design2.html). A minimalist view for a mobile roles thee fewest
motors and wheels needed, while using a minimum of microprocessing power, gspgcial
building the robot with structures that are well-matched to the environmental midbeed| a
smaller number of simply designed parts is much easier to assemble. Havemg#rts requires
less fasteners to connect them together, thereby greatly reducing tioneatabresources for
the proper production of the final product. Overall, consideration of scaling, identkging
operation, connections, sequencing, comparing all options, and design for assemblylead t

more effective design process.
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INSTANCE OF ANTICIPATION

A simple mobile robot was designed and built according to a minimalist approach philtsophy
permit study of the basic notion of anticipation. A foundation structure and operason wa
followed from Connell (1990) who made a wall following oblftermedVIURAMATOR,

meaning “wall lover” in latin) using subsumption architecture of Brooks (1999) developed for
behavior-based robotics. It included only three behaviors: EXPL@ARDPID, and SEEKA

single infrared (IR) sensor was mounted at a slight angle from straight forwarcett dey

object in the path of forward travel, with no other sensing capability addedalits s€knowing
was only briefly in front (slightly angled) and the opeeagust traveled behind it. When some
object is detected, tr@mple AVOID behavior moves backward briefly and turns by locking a
ratchet mechanism in the right wheel to make a left turn in place. When EXPL@REUes for
some designated amount of timehaitit detecting an object (or wall), the simple SEEK behavior
cues to make an uninterrupted 270 degree counterclockwise (CCW) turn to the left (bygadjus
a voltage trimpot to generally time the spin motion), which is effectively a 9@elefpckwise
(CW) turn to the right. The overall outcome of these three behaviors working together is
producetask achievement that is twofold: 1¥ollow along awall in reaction to detecting the

wall, and 2)avoid any stationary objectsthat are encountered separatenf the wall Note that
thethree behaviors (EXPLORE, AVOID, and SEEK) each by themselves do not achieve

the task, but theinterrelation of thethreeindividual behaviorsresult in an overall behavior
result that isthe task achievement of wall following and object avoidance. Thus, a principled

approach with rules of operation for coordination of the behaviors results in taskesmbnt.
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Initially the TOURISTrobot was studied in an areaa a natural system (N&) confirm and
validate function, and the processing program on a microprocessor (i.e., ArduinoAdano)
encoded into a simulation program for further stu@ige name TOURIST was coined to reflect
the robot agent tendencies to look ahead to search out objects to find, encounter, avoid and
follow when subsequently approached close eno8tMULINK was used as a graphic virtual
programming language to encode the desired minimalist anticipation archifectoaé system
framework, called ANSIM (for ANticipation SIMaton). SIMULINK provides benefits for a
useful graphic display of programming architecture with structured framewounéerlying
coding, and allows for additional features to be coded at lower levelsM8iMGAB subsystem
modulesthat can carry out theetails of the operations, similar to subcognitive modules enlisted
by Malcom and Smithers (1990). Archetypes of Limits To Growth (LTG) and &hifine

Burden (STB)(Senge2006)were first developed after existing coded examples of the
archetypes funons (Hayward and Boswell, 2014; Dowling et al., 2006) so that correct
operation was verifigdand the essential component code was added into the ANSIM model
architecture to enable addition of the notion of anticipation with system dynasiicsts othe
archetypesFirst, modifications were initially made iteratively to the ANSIM FS model to attain
desired behaviors for the simple wall follower robot agent (i.e, reasonably sbogtreresponse
time, and proper AVOID response to arena boundaries and objects). The three basicsbehavior
Connell (1990) as EXPLORE, AVOID, and SEEK were all shown to work correctly in
combinations possible to exist in the arena and with up to two stationary objsetstpidis

basic framework was then used to add the notion of anticipation with additions of the@echety

programming to the ANSIM FS.
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Archetype operation for the notion of anticipation was added to the ANSIM FS modelan thre
specific ways. First, the WAIT behariwas added at the beginning of the robot startup
initialization to allow for equilibrium to be achieved internally before angaese to the niche
was taken. WAIT might also be used later during runtime when an unknown condition (e.g..
unexpected and unaccounted for) is encountered, and thus keep from performing @ay dfogi
unreasonable behavior with potentially destructive or injurious results to the robat. Thus
potential injurious results were anticipated and a behavior in place to respsoihibba A
second more active AHEADehavior using the LTG archetypajas added previous to the
existing AVOID behavior module to scale reduction of the time of turning for AVOID in relation
to an object at a distance, one thas lget to be encountered for needed avoidance, but still in
need of response to in an expected future. A third FIND behagmesentinghe STB
archetypewas addedo interrupt the 270 degree spin in the SEEK behavior that was previously
not interrupted for SEEK with no anticipation. Thus, FIND locates objects (or a ik i
distance, and halts the SEEK spin to begin EXPLORE, a straight forward movemengto m
toward the found object. So unlike the SEEKhmo anticipation that attempted to travel along
the wall the robot was already next to, the FIND and SEEK behaviors witrpatitai turned on
may locate another object (or wall ) to move toward. If only one wall is near thaDthRIET
robot is already following, it still will return to follow that nearby wall. The combinatibthese
three additional behaviors (WAIT, AHEAD, and FIND) with the previous ones offal&diving
(EXPLORE, AVOID, and SEEK) from Connell (1990) are an ap#tion set of a few needed
behaviors that add anticipation to the ANSIM model. A simple switch was added td/ANSI
allow anticipation to be left off or turned on, and thus study by comparison the addition of

anticipation to the ANSIM operation in the same niche environment.
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Various simulations of the inference entailments captured in the code waisxldEirst, the

ability of the TOURISTto follow the arenavall was verified in simulation, and resulting path
and behavior over time was graphed to show the overall results to be consistent with
expectations for a physical world. This operation was shown both with No Anticipiitidn (

AN) or with Anticipation On (AN ON). Again the results were displayed oweukated time by
showing the resulting path and corresponding behavior choices. The results of thesesoompa
are shown in detail in the next Chapter 4 for applications of the simulation. Resgh®warefor
both the open arena having only wall boundaries, and for two stationary objects place in the
arena. The graphs demonstrate the feasibility of adding anticipation to arrgbutlation

using a minimalist approach, and points out potential flaws that actually ard tfpeean a
simple niche environment, and of the operation of the previous simple robot approach of Connell

(1990) to follow walls.

Subsequentlyfollowing the congruence framework, the abstracted ANSIM inferences in the
formal systen{FS)weredecoded back into the NS of the physical TRIST robotby makingof
SIMULINK code into the Processing code used by the robot microprocessor r@l@nad
Nano). Trials were conducted to confirm the effects that addition of the methods for
incorporating anticipation had on the operation of the physical TOURIST robot. Videdsex
the trial showed how the operation witlo Anticipation (NO AN) or with Anticipation On (AN

ON) differed and resulted in observable benefits from anticipation.
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ANTICIPATION ENHANCED HABITS

A cycle thatincludes cue, routine, reward is defined by Duhigg (2014) to be a habit that an
organism is conditioned to perform repeatedly. A study with a monkey recognized asencre
neural activity at a surprising point in the sequence: after the cue (dispdagoonputer screen)

and before any routine actigalever pressand rewarda juice offering) This activity was

termed anticipation, and rightly so because it occussfdrethe routine action that would

produce the reward. As for living organisms, a robotic agent can display anicipgtany

activity that comes before the certainty of the outcome even if a chain of exvdattined to

occur that looks like a habit. Another term for habits in natural living organisnfsxedaaction
pattern (FAP)or a series of actions that follow a cue to carry out a specific task, and end when
some target is reached, and thus runs to completion (Hopper, 2008; Tinbergen, 1951). FAPs are
thought to be hard-wired and possibly instinct driven. Since they arehurAPs act like habits

to attain task achievement. The addition of anticipation to either FAPs or habiseskize

executon of the overall sequence (cue, routine, reward), and promotes successful completion of
the habitual response. With a focus on robotics, the cue of a routine may have somedssocia
fitness of suitability that enhances the behavior choice to match the cue ioitbeondition.

Proper definition of a fithess that cues the behavior entails the inference aalitgatihus

obtaining a congruence of observed behavior in a natural system that one buliifotonial

system model. Thus, a component of anticipation is built in to the robot behavior choices, and
that can promote a matching behavior to be manifest for the appropriate niche conttitiam a

a sequence to completitveforethe outcome is certain.
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IMPLICATIONS OF ANTICIPATION

Since AN manifests response behavior before an actual outcome is certain,dhsad¢ss

potential to beyuicker and more reliable than réanary response without AN. Operation with

AN continuously updates the response to the perceived niche, and can make adjustments for
perceived changes in the niche that cue a change in the behavior. Small adjustendimntseov

use less energy in a timatyanner to stay on track with desired behavior choices, so ultimately
use les energy over time than would occur for reactionary approaches that usanhanges of
energy to make bigger more abrupt adjustments. TheougieAN responses may make abrupt
adjustments when needed, those occur less frequently, and/loafythe niche changes abruptly
(e.g., at cornersind thus again use less resources. Unfortunately, the early response enabled by
AN may actually create an undesirable response if the actuat feondition of the niche does

not align with that which was expected. Yet, the continuous update with AN should allow an
organism or agent to make some type of adjustment, albeit slightly delayeshdbkl bring the
situation under control again to toh the nichecondition to a desirable behavior for task
achievementOverall, anticipation should develop a smoother operation than for pure reactions,
with quick response time, reliable behavior choice, incremental changessaltitigaesponse
beforethe outcome is certain that appears to respond in a way that the organism or agesht seem

to know the future outcome ahead of time.
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CHAPTER 4. APPLICATION AND SIMULATIONS

OVERVIEW

An anticipation simulation (ANSIM) was developed to allow varioumtrsystem (FS)
conditions to be studied. ANSIM was based initially on working robot microprocessor
programming, and was modified to a version that was verified to operate as éxpéote

virtual FS arena. Two different system dynamic atgpes (Limits To Growth, and Shifting The
Burden) were incorporated into the ANSIM model to add the notion of anticipation (AR to t
model operation. The model was able to operate either with or without anticipaticsh dartee
make similar simulationuns that can be compared for response in the virtual arena. Insights
from the comparisonsereincorporated into a TOURIST robot with operation having the traits

of anticipation.

CONGRUENCE SIMULATION MODEL

A congruence model framework waslbaon the work of Rosen (1991, 2014). Causality of
entailments (implications) in a natural system (NS) are encoded into the iefer@adments in

an abstracted formal system (FS). The rules in the abstracted FS cadlidx ist simulation to
determine likely results expected to be realized in the NS. The rules and equaigirizem
decoded through engineering efforts back to an instance of the NS. When congruence
(agreement) is realized between the results in both the FS and NS, then theb&&oaed a
model of the NS, and the NS is truly an instance of the abstractions designed ir8q g F

39). This framework is used to develop an abstracted FS representing a robotigsigemt\sth
anticipation, and decoding methods used to trangiate rules back into a physical instance NS

that can perform behaviors showing the notion of anticipation.
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Requirements & Specifications

For Behavior to Achieve Performance:
Scaling (Time & Space),
Key Operations, Connections,
Sequential Ordering,
Congruence, Production

DECODING

I
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A @ E Model With

U System Dynamics

N :

i @ E Architecture
N

L C

® :
Engineered

Robot & Behaviors ENCODING

Experimentation
& Measurement.
Observable Behaviors

Figure39. Rosen proposed the need for encoding and decoding to link causation relations
between world phenomena into an embodied model struétiNatural System (N,
or later referred to in this discussion as NS) can be modeled by a Formal System
(F, or herein FS) by adding processes of encoding and decaslicreative acts.
The circled labeled paths are related by the equivalence: 1 = 2 plus 3 plus 4, or
meaning that path is equivalent to the combination of the other three paths.
(from: Rosen, 1991, p. 60; Fig. 3H.2)

When anNS already exists in the natural world, ediog from the NS to a FS can be derived
through experimentation and observation. If actual NS does not yet exist,alod naetaphoris
used to create the inference rules of the FS, by using rules about the reabvexipdesssed by

laws of physics, chemistry, and mathematics (Rosen 1991, 2014). For robotics, it siale pos
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use example program code from a preliminary instance of the TOURIST to devise the

basics of a simulation in the virtual realm dsage model, termed ANSIMof ANticipation
SIMulation). However, no robot is thought to exist that has the actual notion of andicipati
Instead, the idea @hetaphorwas used to incorporate anticipation into the robot operation. Two
archetypes based on system dynamics principles were used to make the rulesv/for beh
response that included a notion of anticipation into the robot FS. Study of various saaharios
anticipation in the FS provided insight as to how anticipation would be observed in a NS when
the mathematical rulesexre decoded back to a modified NS. The rules in program code could be
translated from thANSIM FSmodel to the Processing program (decoding) in the physical robot
microprocessor. This allows for the notion of anticipation that is studied in the FS todukeede

back into a physical robot to operate in a NS.

BIOLOGICAL PARALLELS IN BIOPLANT DEVELOPMENT

Architecture created for the operation of an artificial system such as sagdrdtcan be applied
more generally to a natural biological system foaarhitecture of the multiple stages for
biological plant bioplant) growth, development, and reproduction (Fig. #0both the artificial
robot system and the natural bioplant system, a niche environment is perceived to ¢eptsper
for the current condition. A combination of the percept factors (infrared or IR, kghperature,

etc.) is used to determine a fitness or suitability for a specific behavior th thatoiche
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AN in robot systemsfor AN analogy in bioplant systems.

THRESHOLD CHOICE
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ROBOT BEHAVIOR ARCHITECTURE
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Water LOW \Vj i @ 4
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BIOLOGICAL PLANT GROWTH ARCHITECTURE
Figure40. Architecture forobotics relating perceived environmental niche to context for
robot behavior with reinforcing loop back to the niche (top) and modified for plant
architecture (bottom) [causal diagram and flow mapi.

condition. Within that niche context, a threshold coupling makes a type of selectionitestna

the preferred behavior for that condition. For the robot, inmthematicaintegral of the
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multiple niche percept factors that cue a change in behavior. For the bioplant,dhetione

occurs in biochemical pathways that create threshold levels of chemical lesléai can cue

the initiation, and subsequent continuation, of a change in development stage, or nuances within
that stage. Hence, a bioplant changes from the vegetative stage (forigitepoas) to a

reproductive stage (forming flower buds) based on a combination of percepts of théatche t

cue the change.

As with the artificial robot architecture, delays and looping of system dynamyest a time

frame for system respse time, or time constants, of the system. Interestingly, bioplant growth
is relatively slow compared to that of animal daily activities, so the time constabisgtants
appear to be orders of magnitude slower (longer times) than one would detemainienfals

(and what we ascribe to robotic systems). Bioplant time constants may betas $toarly for

leaf alignment to light, to a day for circadian rhythms, to months or seasonal for bode that
develop in the summer to bloom the next spring. Of course, animal and robotic responges are
the order of milliseconds for quick responses, or may be up to months for animal pvadarati
reproductive cycles and rearing of young, and possibly longer for creatiomgfduarters to

span over decades.

Anticipation of future events is tied up with the time constants for response. BotH natura
bioplants and animals have inherent physical structures and biochemical patmavdgad to
preparation for and subsequent manifesting of behavior chomigle#a to attaining desired

goals for survival and reproduction.
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Evolutionary processes have worked on the ontogeny and phyllogeny of these natngaidbiol
living systems (considered open systems in general systems theory)lopdgpexific behavis
to match a niche, and attain survival outcomes. The structure and operation of a makl term
Churchland’s crab presents a theoretical discussion of such principles (Chdydi®&6). The
anticipation is built into the physical structure and biochahpathways that allows behavior
change in a shorter time frame than is needed to attain the results that ensuak Biene
anticipation works to benefit the organism, since it befsrethe outcome is certain, yet the
behavior choice leads to a peafed task achievement. The behavior may change bghirea
negative effect is realized if the change in behavior was premature as cued by thendi¢chas
not preferred at that time. Thus, the quick and malleable behavior choice iadrditipation
that leads to preferred task achievement, and it appears the orgaristhe future before it

actually occurrd.

INFUSING ARCHETYPES

Although about 10 archetypes have been defined (Senge, @08ignplified for easier

application (Wolstenholme, 2003, 2004), the two that most appropriate archetypes fahuse wi
simulating anticipation in robots are the Limits To Growth (LTG) and Shiftimg Burden (or
Goals) (STB) archetypes. The LTG archetype is appropriate since it apgsaachesymptotic
limit value based on some constraint in the system, as illustrated by the atomiornsehav

described by Hayward and Boswell (2012).

The STB archetype has the attribute to change from a symptomatic solutioite faworable

fundamental solution with fgerterm success. Unfortunately, the seemingly simpler sbort-

106



symptomatic solution (SympSol) eventually leads to system failure. In dpi@sess obvious
and likely more difficult to implement fundamental solution (FundSol) leads to a staifel
long-term solution. The key is to identify the archetype that is stuck in the edpeadcution of

a symptomatic solution headed for failure, and instead commit the resources neetkdrd f
implement the process that carries out the fundamentdl@ul Realize the symptomatic
solution is deceptive, because it actually seems to work in the short run, but does not in the long
run. lronically, the fundamental solution may not seem to have much of a positiveretfec
short run, but increases the benefits the longer it is repeatedly applied. [ifdmscissince the
choice for a symptomatic solution (creating failure) contradicts what is edp@ciecess). It is
nota paradox, since a paradox is a statement that contradicts itself, suchlmaysl lie.” See:
http://english.stackexchange.com/questions/34407 tifferencebetweerirony-andparadox]
Thus, adding the STB archetype to a basic system creates a desired solution, arfftbmaves
simple reactive system to one that anticipates teocreate an effective lasting solution. Such a
system will have the traits of anticipation, actbeforethe outcome is certain, and yet reaching

a result that appears koow the futurdefore it happens.

ANTICIPATION ARCHITECTURE

A basic architectie was designed for the ANSIM (AdNipation SIMulation) model based on the
causal loop and flow map diagrams that extract percepts from the niche enwitrotetermined
a suitable fitness level from a combination of factors, and used that along wstholdrealues

to cue a behavior choice (Fig.)4 Hoecific coded processes represent the underlying routines,
looping structure, and delays in which to place the notion of anticipdiinenarchitecture can

operate with No Anticipation (NO AN), or cued toavpte with Anticipation On (AN ON).
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Each behavior executes independently of the cue that makes it fire for opénatienCHOICE
BEHAVIOR (SCENARIO) module setind choice of a behavior process excludes execution of
another behavior process, meaning behaviors are mutually exclusixplicitly, EXPLORE

moves straight forward, AVOID turns counterclockwise (CCW), and Stek CCW for a

longer time period than AVOID and for a different cue. Each of thevi@isaoperates for a

single time stepThe overall process loops back for the next time step, and in the CONTEXT
THRESHOLD determines the behavior choice for the next time step. Of chwedmltavior

choice is based on a suitable fithess value determined in the CONTEXT module based on the
combination of values in the PERCEPT mod&ercepts are measured in the NICHE

environment to represent the current condition. Obviously, the current condition of the niche can

change with each timeegd, thus resulting in a cue for a new behavior choice.

Anticipation inthe CONTEXT module by includes methods for both the Limits To Growth
(LTG) and Shifting The Burden (STB) archetypes. A WAIT behavior alsonghsded in the
BEHAVIOR CHOICE (SCENARIQ modules to allow for initialization at startup, and choice of
a period of inactivity if unexpected conditions occur that do not match the three cormtseha

(EXPLORE, AVOID, and SEEK
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Figure4l. Anticipation simulation model for TOURIST robot agent. Niche creates a 100 X 100rpix&héthin which the agent
perceives the conditions (Percepts) and from that detesra Context fitness value that is used through Threshold Coupling to
manifest a Choice Behavior that matches the current Niche conditions, therebymydtiecObserved Response Behavior that
leads to successful task achievement. Anticipation can hedwff or on as desirerl.
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An AHEAD behavior was added in the CONTEXT module to reflect the system dynamics of the
LTG archetype. AHEAD measures a percept of up to a maximum distance, a distanee t
greater than needed for a turn to miss an object or wall, and scales the tirhmgubsequent
AVOID behavior relative to a minimum safe turn dista(®®cm).The scaled timing of AVOID
may execute for several brief time steps witihe model looping structure. In this way, a

smaller turn is made than would occur for the case if no anticipation is on (no AN O8). Thi
allows for the EXPLORBbehavior to be cued again in a shorter time span than for no
anticipation on.The overall result is a series of smaller AVOID turn adjustments with integrated
EXPLORE forward behavior. Thus, the TOURIST responds to an object that is favitheina
anticipation of a future encounter. The result is still to perfiv@rtask to travel along an

extended wall, response to and miss objects, and make abrupt changes when a sew wall i

encountered based in a different orientation (north and south versus east and west).

Anticipation also was included by adding the FIND behavior that also was pla¢ed in t
CONTEXT module using the system dynamics of the STB archetype. FIND alsthes

percept of a maximum distan(®0 cm)that is greater than needed for a safe (omnimum 28

cm)to missan object or wall, and uses that detection to halt (interrupt) the SEEK behavior when
it is actively executing. With anticipation on (AN ON), the interrupt of SEEK aloue of the
EXPLOREDbehavior to initiate a move towardstherceived new object, so the SEEK behavior

no longer is set to a mandatory turn of a total of 270 degrees CCW, but may halt thatyrn a
point in rotation that an object is detected. The halt of SEEK and cue of EXPLORE coaynoc

any time stepvithin the normal period needed for the 270 degree turn. Thus, the time for a spin

turn in SEEK may be reduced if an object is close enough for the TOUBIEND it within
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the maximum set distance. Once EXPLORE has been kusabhsequent time steps the

AHEAD and AVOID behaviors operate to make the small adjustments to again follow a wall or
miss an object. The result of FIND is to locate the nearest object or wall, andrtadegi
undertake a nelWweading toward that object or wall. Thus, the maximum energy as was used by
SEEK is reduced if another option is found. However, the wall that was previously being
followed, though not detected for a set time (to cue SEEK), would be abandoned for the newl
found wall. However, if no object is in the maximum distance range during the spBEEK

behavior, the TOURIST would again encounter and follow the previous wall.

VERIFIED SYSTEM DYNAMICS SIMULATION

Anticipation was applied in simulation for a systems architectuaesimple square aretfzat
could contain no objects or multiple objects. Coded behaviors were matched to the arena
boundaries and the objects inside, with intended observed criteria to be to falaveha
boundary walls or move near yet not contact the objects for successful tasiemene The
robot agent was located at various initial (x,y) locations with chosen heading aaddfor

motion, and the resulting path was tracked anttgador the travel within the arena.

Time Step and Sensing

Repeated simple relatively short time tests were run to verify the simulatecoagenmed as
would be expected in a reabrld arenalnitial testes were successful at creating expected
behaviors and task achievement of wall following and avoidance of objects. However, on rare
occasions the agent seemed to escape from the boundad arel the suspect behavior could

be recreated by starting with known settings that led to tteges. Further examination of the
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coded procedures revealed the two undesired traits: first, the timestégtion was not small
enough at 0.1 sec steps to capture certain timed sequences correctly, anchsemmuielt of the
infrared(IR) sensor perception was not refined enough to truly capture a distanceemnmesas
that would be realized from a reabrld IR sensor. The time step was reduced to 0.01 sec at the
expense of increased simulation time, yet the tracking of behavior and motion wdsredhg
improved. For distance sensing, the testing of increments in a straight line $entwe was
refined to ensure all cells (or pixels) were sampbeithd a wall or objectAfter these simple
changes, the agent always remainedhénarena, and had reactions to the walls and objects as
desired and expecteNote that these problems were traits of the simulation, and not of the
behavior responses chosen, meaning that proper description of the virtual simulation
environment was the source of errors rather than simulation of agent resptirese t
environment. A real-world agent with correctly operational sensors would be abléotonpne

assigned behaviors.

SEEK behavior

Simulation allows for precise geometric timirggponses for behavior. Based on the pabi

strategy from Connell (1990the simulated SEEKehavior should rotate 270 degrees CCW,

and that effectively looks like a 90 degree CW rotation in a ghaving. Pacement of the agen

near the middle of the aremath a heading away from a wall (and no objects in the arena) and
with a short enough time delay before a cue of SEEK should create an unending squai path ne
the middle of the arena. The path created in simulation was found to agree witlp&uisgan,

and provided evidence the simulation model is verified to perform correctly as oree woul
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obseve in a reaworld arena (Fig. 42eft). Greater detail of the dynamics of the travel show the

SEEK cue occurs repeatedly over time (B8, right).
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Figure42. AN path simulated for 78 s (25*pi). No Anticipation: 28 cm; Initial: xpos=40, ypose& (lo Anticipation on: 28 cm,
Initial: Xpos=70, ypos=25 (right);When Minimum= Maximum distance= 28 cm, there is effectively No Anticipation; When
starting in the upper left, yet near the middle, 270 deg CCW (@éhdeg CW) for SEEKnake a perfect square path, yet the robot
is trapped in space indefinitely (left). When starting in the lower right neavdliga roughly square path follows nehe twall
arenaboarder, again indefinitely.

SEEK not interrupted (every 10th pt. darker) Path: start heading= 0 deg.; Initial: wgyes; ypos=variesAVOID=0.125s,
tWaitSEEK=5s, NicheLayout=100X100cm, IROffset= 30 deg, speed= 15 cm/sstMiD+ 28 cm; IRDistMax= 28 cm
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Figure43. TOURIST No AN: path simulated for 47 s (15*pi}a. Arena bounded with no internal objects. Behaviors over time and
locations in x-y planeThe TOURIST turns CCW at each corner as Sk time cues, so 270 degree CCW rotation actually
turns 90 CW each time, and near middle ofarenano walls are ever found:‘stranded’ in space. SEEK not intedufOth pt.
darker)Start heading= 0 deg.; Initial: xpos=40, ypos=80y0OID=0.1255 tWaitSEEK=5s, NicheLayout=100X100cm, IROffset=
30 deg, speed= 15 cm/s; IRDistMin= 28 cm,; IRDistMax= 60 cm.
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Figure44. TOURIST No AN: path simulated for 78 s (25*pi;a. Arena bounded with no internal objects and shown path;
b. Behaviors over time and locations ity ylane. The TOURIST is near the wall boaml so AVOID& SEEK work together to
follow the wall. SEEK not interrupted (every 10th pt. darker) Start heading=.0ld#igl: xpos=70, ypos=253AVOID=0.125s
tWaitSEEK=5s, NicheLayout=100X100cm, IROffset= 30 deg, speed=r; IRDistMin= 28 cm; IRDistMax= 60 cm.
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AVOID and SEEK Behavior Mixed

A simple application of the AVOIlDehavior results from initial placeant of the agent near a

wall (in an arenavith no objects) and allowing for continuous operation near the arena boundary
wall. Proper AVOID behavior maintains a minimal distance from the wall, while Sh¥dkes

on occasion to move back closer to the wall. Again, the path created in simulation was found to
agree with this expectation, and provided evidence the simulation model is verifigtbtope
correctly as one would obse in a realworld arena Fig. 42, right). Additional detail of the path
traveled shows both AVOID and SEEK behaviors work together to follow the wall, andtthe p

nearly overlaps as a full cycle is traveled around the aFégadd, left).

Anticipation Simulation: AVOID and SEEK Behavior Mixed

A relatively brief time run of the simulation with No Anticipation or with Anticipation Ooveh

the nature of the addition of anticipati@#igs. 45, 46 & 47). With no anticipationNO AN),

the simply reactive behavior merely travels a path closely along the nvedirtrast, with
anticipation on (ANON), the TOURIST reacts to a wall in the distance that will be encountered
in the future, and makes smaller adjustments to trend awaythe wall before any direct
encounter is realized. Several comparisons were made to show the resultswititioatr

anticipation (Figs. 50 to 62)

Brief runs with anticipation off or on was used to illustrate the effect oéasing the maximum
distarce used for calculation of anticipationthe AHEAD and FIND behavior$igs.48 & 49).
Again, no anticipation has the TOURIST merely follow closely along the wath ®viticipation

on, increasing the maximum distance moderately has marginally increaseshrefetits.
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Perceived distant objects cause behavior to adjust earlier to avoid and folhmnaaklall As

this extends to farther maximum distances (greater ranges), eventualffiethésgfremature,
and over-anticipation of future object or wall encounters actually prohibits the TSIURM
effectively navigating the arena. As with many favorable items, it isilpleso have too much of
a good thing. So it is best to limit the maximdistance(to perhaps 50 cm), arnldus ultimate
range considered, so as not to react so early that a reasonable result does.nthieayrees
with the contention of Simon (1996), that items too distant in space or time should not be

considered in design, or in practical application.
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Figure45. AN path simulated for 15 s (5*pi). No Anticipation: 28 cm; (left); Anticipation On: 2&ight), Both initial: xpos=70,
ypos=25 (right);. When Minimum= Max = 28 cm, there is effectively No Antimpat Left: No Anticipation: The TOURIST
is near the wall boarder, so AVOK SEEK work to followthe wall.
Right: Anticipation moves away from the expected wall, and after the delays 8&dS at 6.76 s, yet before 270 deg is turned, at
7.08 s a wall is found by FIND, and the TOURI®bves towards icombining with AHEAD& AVOID to again move along the
wall. No other SEEK & FIND behavior is cued over the interfPath: start heading= 0 deg.; Initial: xpos=varies, ypos=varies,
tAVOID=0.125s tWaitSEEK=5s, NicheLayout=100X100cm, IROffset= 30 deg, speed= 15 cm/s; MRDist28 cm;
IRDistMax= 28 & 50 cm.
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Figure46. TOURIST No AN: path simulated for 15 s (5*p1 a. Arena bounded with no internal objects and shown psii;
b. Behaviors over time and locations ity ylane. The TOURIST is near the wall boarder, so AVA&LSEEK work to follow the
wall. SEEK not interrupted (every 10th pt. darker) Path: start heading= 0 deg.; kptak70, ypos=25AVOID=0.125s,
tWaitSEEK=5s, NicheLayout=100X100cm, IROffset= 30 deg, speed= 15 cm/sstMiD+ 28 cm; IRDistMax= 28 cm.
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Figure47. TOURIST Anticipation ON: path simulated for 15 s (5*pija. Arena bounded with no internal objects and path shown;
b. Behaviors over time and locations ity plane. Anticipaion moves away from the expected wall, and after the delay, SEEK
cues at 6.76 s, yet before 270 deg is turned, at 7.08 s a wall is found and TOURIST markassitpeombining with AHEALZ
AVOID to again move alonthe wall. No other SEEK & FINDbehavior is cued over the interval. Path: start heading= 0 deg.;
Initial: xpos=70, ypos=25AVOID=0.125s tWaitSEEK=5s, IROffset= 30 deg, speed= 15 cm/s; IRDistMin= 25 cmistRIax=
50 cm.
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Figure48. AN path simulated for 15 s (5*pi). No anticipation (left); Anticipation on: 28 & 35 cm (eliddhticipation on: 28 & 40
cm. Minimum distance is 28 cm for alLooks AHEAD further to distance of 35 or 40 dAerceived distant objects cause
behavior to adjust earlier to avoid and follow along a wall.
SEEK not interrupted (every 10th pt. darker) Path: start heading= 0 deg.; Initial: xpospdés2@, tAVOID=0.125s,
tWaitSEEK=5s, NicheLayout=100X100cm, IROffset= 30 deg, speed= 15 cm/sstNRB= 28 cm; IRDistMax= varies cm
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Figure49. AN path simulated for 15 s (5*pi). No anticipation (left); Anticipation on: 28 & 50 cm (eliddhticipation on: 28 & 60
cm. Minimum distance is 28 cm for all,ooks AHEAD further to distance of 50 or 60 cm. Cases show proper Anticipation
(middle), and OVERAnNticipation (right) that is reacting too early and in extrémebjects perceived in the distance.

SEEK not interrupted (every 10th pt. darker) Path: start heading= 0 deg.; Initial: xposp@és2@3, tAVOID=0.125s,
tWaitSEEK=5s, NicheLayout=100X100cm, IROffset= 30 deg, speed= 15 cm/sstibD= 28 cm; IRDistMax= varies cm
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Figure50. AN path simulated for 78 s (25*pi). No Anticipation: 28 cm; Anticipation On: 28 cm (rigbth iBitial: xpos=70,
ypos=25;. When Minimum= Maximum distance= 28 cm, there is effectively Noipatiicn;
Left: No Anticipation: Combined AHEALZ AVOID move along ta wall; after the delay, SEE&ues at 10.5s, & later times.
Right: Anticipation moves away from the expected wall, and after the delays 8&dS at 6.76 s, yet before 270 deg is turned, at
7.08 s a wall is found and TOURT moves towards it, combining with AHEAR AVOID to again move along the wall. Two
more SEEK & FINDbehaviors are cued over the interval shown. Dynamic changes in movementeugraual and pregative
with Anticipation, or abrupt if Anticipation shows that is needed, as in corners andvwaatieamcounter.
Path: start heading= 0 deg.; Initial: xpos=varies, ypos=va#a&)ID=0.1255 tWaitSEEK=5s, IROffset= 30 deg, speed= 15
cm/s; IRDistMine 28 c¢m; IRDistMax= 28 & 50 cm
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Figure51. TOURIST NO AN: path simulated for 78 s (25*pita. Arena bounded with no internal objects and path shown;
b. Behavors over time and locations inyplane. Combined AHEAD& AVOID moves along the expected wall, and after the
delay, SEEKcues at 10.5 s, and at 6 later timPsth: start heading= 0 deg.; Initial: xpos=70, y@is=tAVOID=0.125s
tWaitSEEK=5s, IROffset= 30 deg, speed= 15 cm/s; IRDistMin= 28 cm; IRDistMZ8 cm.
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Figure52. TOURIST AN ON: path simulated for 78 s (25*pi)a. Arena bounded with no internal objects and path shovin;
b. Behaviors over time and locations ity ylane. Anticipation moves away from the expected wall, and after the delay, SEEK
cues at 6.76 s, yet before 270 deg is turned, at 7.08 s a wall is found and TOURIST markass itpeombining with AHEALR
AVOID to again move along the wall. Two more SEEK & FIR&haviors are cued over the interval shoRath: start heading=
0 deg.; Initial: xpos=70, ypos=25AVOID=0.1255 tWaitSEEK=5s, IROffset= 30 deg, speed= 15 cm/s; IRDistMin= 28 cm;

IRDistMax= 50 cm.
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Figure53. AN path simulated for 78 s (25*pi). No Anticipation: 28 cm (left); Anticipation On: 2&ighmt); Both initial: xpos=70,
ypos=25;. When Minimum= Maximum distance= 28 cm, there is effectively Noipatiicn; Twice asmany cycles occur with
Anticipation On (Right: 2.5 cycles) vs. No Anticipation (Left: 1.25 cycles), thusitierg more rapid and thorough coverayesr
time for the arenaBoth travel the same forward speed: 15 cm/s.

Left: No Anticipation: Combined AHEAD& AVOID move along the wall; after the delay, SEEHes at 10.5 s, and at 6 later
times.

Right: Anticipation moves away from the expected wall, and after the delay 8&#sat 6.76 s, yet before 270 deg is turned, at
7.08 s a wall is found and TOURIStoves towards it, combining with AHEAR AVOID to again move along the wall. Two
more SEEK & FINDbehaviors are cued exthe interval shown.

Path: start heading= 0 deg.; Initial: xpos= 70, ypost2¥0OID=0.125s tWaitSEEK=5s, IROffset= 30 deg, speed= 15 cm/s;
IRDistMin= 28 cm; IRDistMax= 28 & 50 cm
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Figure54. AN path simulated for 66 s (21*pi). No Anticipation: 28 cm; (left); No Anticipation on: 28aoth Initial: xpos=70,
ypos=25 (righ);. Time shown of 66 s is for about one cycle around the area with No AN, but results in abdeas 2vih AN
On. Dotted lines show path of IR sensor percept beam at each second from the robot lodaitiR émtipoint 50 cm away,
darker line only 28 cm. Random appearing directions occur during the 8itfiKe spin that may point in almost any direction,
but is only used when AN in Omynamic changes in movement are more gradual and preemptive with Antici@atioar
abrupt if Anticipation shows that is needed, as in corners and a new wall encounter. Two yclexla around the arewdth
AN On, versus only one cycle with No AN, lending for more area covered and more dylscoiery.
Path: start heading= 0 deg.; Initial: xpos=varies, ypos=vatg¢QID=0.1255 tWaitSEEK=5s, NichelLayout=100X100cm,
IROffset= 30 deg, speed= 15 cm/s; IRDistMin= 28 cm; IRDistMax= 28 ¢m
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Figure55. TOURIST No AN: path simulated for 66 s (21*piia. Arena bounded with no internal objects and path shown;

b. Behaviors over time and locations ity ylane. Combined AHEAD& AVOID moves along the expected wall, and after the
delay, SEEKcues at about 13 s, and at 5 later tinieeth is one full cycle around the areB&EK interrupted (every 10th pt.
darker) Path: start heading= 0 deg.; Initial: xpos=70, ypodA2B)ID=0.1255 tWaitSEEK=5s.
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Figure56. TOURIST AN ON: path simulated for 66 s (21*pita. Arena bounded with no internal objects and path shouwn;

b. Behaviors over time and locations in pigne. Anticipation moves away from the expected wall, and after the delay, SEEK
cues at 6.76 s, yet before 270 deg is turned, at 7.08 s a wall isdpuHiND and TOURIST moves towards it, with AHEA®
AVOID again followthe wall. SEEK & FINDarecuedonce moreover66 s,the sameasone cycle foNO AN. SEEK interrupted
(every 10th pt. darker) Path: start heading= 0 deg.; Initial: Xxpos=70, yposARE)ID=0.1255 tWaitSEEK=5s.
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Figure57. AN path simulated for 44 s (14*pi). No Anticipation: 28 cm; (left); No Anticipation on: 2@igimt). Both initial:
xpos=70, ypos=25; When Minimum= Maximum distance= 28 cm, there is effectivelyntimpation; Time shown of 44 s
encounters Object 2 with No AN, but passes both Objects with AN On. Dotted lines shaa¥ [fatsensor percept beam at each
second from the robot location to the IR endpoint 50 cm away, darker line only 28 cm. Rape#@mng directions occur dugn
the SEEK routine spin that may point in almost any doecbut is only used when AN @n.
SEEK not interrupted (every 10th pt. darker) Path: start heading= 0 deg.; kpie=varies, ypos=variesAVOID=0.125s,
tWaitSEEK=5s, NicheLayout=100X100cm, IROffset= 30 deg, speed= 15 cm/sstMiD+ 28 cm; IRDistMax= 28 cm
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Figure58. TOURIST NO AN: path simulated for 44 s (14*pita. Arena bounded with no internal objects and path shown;
b. Behaviors over time and locations ity plane. Combined AHEAD & AVOID moveslong the expected wall, and after the
delay, SEEK cues at about 7 s, and at 2 later times. Error: Agent passes thraogh, &d$ not possible in the real world.
SEEK interrupted (every 10th pt. darker) Path: start heading= 0 deg.; kpite#70, ypos=25AVOID=0.125s tWaitSEEK=5s.
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Figure59. TOURIST AN ON: path simulated for 44 s (14*pia. Arena bounded with no internal objects and path shown;
b. Behaviors over time and locations ity plane. Combined AHEAD & AVOID moves along the expected wall, and after the
delay, SEEK cues at about 7 s, and at 3 later times. Agent passes around both Objects deSired.
SEEK interrupted (every 10th pt. darker) Path: start heading= 0 deg.; kpitiak70, ypos=25, tAVOID=0.1258NaitSEEK=5s.
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Figure60. AN path simulated for 44 s (14*pi). No Anticipation: 50 cm (left); No Anticipation on: 28 & 5Q@ight); Both Initial:
xpos=70, ypos=25 (right);. Minimum= Maximum distance= 50 cm, there is effgctieAnticipation; Time shown of 44 s
encounters no Objects with No AN, and passes both Objects with AN On. Dotted lines showlRasertgor percept beam at
each second from the robot location to the IR endpoint 50 cm away, darker line only 28 cm. Rppdaring directions occur
during the SEEK routine spin that may pamalmost any dire@bn, but is only used when AN is On.

SEEK interrupted (every 10th pt. darker) Path: start heading= 0 deg.}: Irjias=varies, ypos=variesAVOID=0.125s
tWaitSEEK=5s, NicheLayout=100X100cm, IROffset= 30 deg, speed= 15 cm/sstNRB+ 28 cm; IRDistMax= 28 cm
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Figure61Figure61l. TOURIST NO AN: path simulated for 44 s (14*pita. Arena bounded with 2 internal objects and path shown;
b. Behaviors over time and locations in x-y plane. When Minimum= Maximum distance= 3Danbined AHEAD & AVOID
moves along the expected wall, and after the delay, SEEK cues at about 7 s, and aiig@$atdgent passes around bothedts

1 and 2, as desired in the real worlci.
SEEKnNot interrupted (10th pt. darker) Path: start heading= 0 deg.; Initial: xpos=702#p0a¥0OID=0.125st{WaitSEEK=5s.
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Figure62. TOURIST AN ON: p¢h simulated for 44 s (14*pi}. a. Arena bounded with no internal objects and path shown;
b. Behaviors over time and locations ity plane. AHEAD & AVOID move along the expected wall, and after the delay, SEEK
cues at about 7 s, and at 3 laieres. Agent passes around both Objects 1 and 2, as desired.SEEK interrupted (10th pt. darker)
Path: start heading= 0 deg.; Initial: xpos=70, ypos=25, tAVOID=0,1¥%sitSEEK=5s.

136



For a relatively extended run tini@r ANSIM, a run with AN ON shows earlier and repeated
response to the wall to follow along but not reach a critical distance that is tedcckw the
robot to miss the wall (Figs0, 51 & 52). Anticipation moves away from the expected wall, and
after the delay, SEEKues at 6.76 s, yet before 270 degrees is fully turned, at 7.08 s a wall is
found by FIND and TOURIST moves towards it by a halt of SEEK and initiation of the
EXPLORE behavior. Both AHEARNd AVAD again work together to follow the wall. SEEK
and FIND are cued only once more over the total run time (66s), which is theasame cycle

for NO AN. Dynamic changes in movement are more gradual and preemptive with Anticipation,
or abrupt if Anticipation shows that is needed, as in corners and a new wall encbhister.
shows that small adjustments effectively attain task achievement to follow thevhibdl,

avoiding several cues of the SEEK behavior that use larger energy andioe$furt 270 degrees

that is considerably more wasteful of resources.

A benefit of anticipation also is shown in these compariseigs $3). Only a little over one
cycle of the arena is made with NO AN, but with AN ON the TOURIST cowerarena twice
that much (about 2.5 cycles). Hence, the addition of anticipation allows for a quidkeroae

thorough coverage of the area, which has advantages in dynamic situations.

For another relatively extended run time for ANSIM, a run with AN $bNws earlier and
repeated response to the wall to follow along but not reach a critical digtanhé®too close to
allow the robot to miss the wall (Fig#4, 55 & 56). The paths of the IR beam were included at
one second intervals in these comparssto more clearly show the range covered by the

perceptions by the beam. These illustrate that the repeated cycling with AMdiNe range of
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the beam is considerably greater over time than with NO AN. Thus, having arditipavers a
broader range ithe same time, and would be able to pick up dynamic changes in the niche more

readily than without anticipation.

For two objects in the arena and relatively medium length run time for ANSIM, attuN®@

AN collides with an object (Object 2) becauselfResensor perceives slightly to the side instead
of directly to the front (Figs. 57, 58, & 59). So in this specific case of timing and pattetia

the collision occurgdowever, AN ON respondsarlier and with more distance frahre wall

also allows tk robot to miss the object. Anticipation appears preemptive for this case, though

may partially be a result of the specific setup of the arena with objects.

In addition, for two objects in the arena and relatively medium length run timeéNf8H\ a run
with a longer IR beam (50 instead of 28 cm) and with NO AN no longer collides with ar obje
but moves a greater distance from the wall that also allows the TOURIST to mikgeitis
(Figs.60, 61 & 62). Similarly, with AN ON and the same distances used as before, the
TOURIST misses the objects while following the wall, and does so even morehgnaout
preemptively than just with the single lengthened distance reference. dGitdumsy the
anticipationconceptmakes smalladjustments instead of larger ones, so results in less abrupt
movements that appear less wasteful of energy and appear to more responsageottheather

just the arena wall.

When placing a single object in the center of the arena, different behesffmnses are observed

for NO AN or for AN ON (Figs.63, 64 & 65). With NO AN, the TOURIST does not encounter
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the object, and only follows theema wall. When AN is added (AQN), the object is found

during a SEEK spin, and the TOURIST moves towards yet passes by it withowtleigrc On

a second cye, the results of AHEAD and AVOID along the arena wall do not cue SEEK, so no
spin occurs, and thus no encountering of the object. A tighter circle around the<emddei

but there is no perception or interaction with the objedhduhe second cycle. Overall, these
slightly differing behavior sequences suggest the addition of anticipatiwvsédr greater

flexibility in traveling the arena.

When adding two objects in opposing corners, response with AN ON is much more céedentra
on the objects (Figs. 66, 6& 68). With NO AN, the TOURIST onlgncounters object, 2nd

uses AVOID to pass round With AN ON, the TOURISTpasses by both objedtsmultiple

cycles around the arena. Thus, with AN ON, the TOURIST is more responsive toetis abj

the arena than without AN. Both objects are anticipatedA&tteAD & AVOID move away

from them before any destructive encounter. Location of the objects in relati@movealls

does affect the outcome, and cued behaviors operate before any negative encountiens occur

the simulations, as was expected.
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Figure63. AN path simulated for 66 s (21*pi). No Anticipation: 28 cm (left); Anticipation On: 28 &b (right); Both Initial:
xpos=70, ypos=25 (right); For Minimum= Maximum distance= 28 cm, there is effigdweAnticipation; Time shown of 66 s
encounters no object with No AN, and passes by the one object with AN On. Dotted lines show path of IR sensor percept
beam at each second from the robot location to the IR endpoint 50 cm away, darkeyIR& @nl Random appearing direcson
occur during the SEEK routine spin that may point in almost any direction, but is odlwhea AN in On.
SEEK not interrupted (every 10th pt. darker) Path: start heading= 0 deg.; kpie=varies, ypos=variesAVOID=0.125s,
tWaitSEEK=5s, NicheLayout=100X100cm, IROffset= 30 degeed= 15 cm/s; IRDistMin= 28 cm; IRDistMax= 28 cm
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Figure64. TOURIST No AN: path simulated for 66 s (21*pi}a. Arena bounded with no internal objects and path shouwn;
b. Behaviors over time and locations ity ylane. Combined AHEAD & AVOID moves along the expected wall, and after the
delay, SEEK cues at about 13 s, and at 5 later times.
SEEK interrupted (every 10th pt. darker) Path: start heading= 0 deg.; kpitiak70, ypos=25, tAVOID=0.125s, tWaitSEEK=5s,
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Figure65. TOURIST AN ON: path simulated for 66 s (21*pija. Arena bounded with no internal objects and path shown;

b. Behaviors over time and locations ity plane. Anticipation moves away from the expected waatig after the delay, SEEK
cues at 6.76 s, yet before 270 deg is turned, at 7.08 s an object is found and the TOURIST naogesttmembining with
AHEAD & AVOID to again move near the object. One more SEEK & FIND behavior gmatibn is cued over the interval
shown. The insert small graph shows the path more clearly without indicatedhRuygzer left).

SEEK interrupted (every 10th pt. darker) Path: start heading= 0 deg.; kpitiak70, ypos=25, tAVOID=0.1258NaitSEEK=5s.
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Figure66. AN path simulated for 66 s (21*pi). No Anticipation: 28 cm (left); Anticipation On: 28 &b (right); Both Initial:
xpos=70, ypos=25 (right); For Minimum= Maximum distance= 28 cm, there is effigdweAnticipation; Time shown of 66 s
encounters only object 2 with No AN, and passes by both objects with AN On. With AN ON, the TOURIST is more
responsive to the objectsin the arena than without AN. Dotted lines show path of IR sensor percept beam at each second from
therobot location to the IR endpoint 50 cm away, darker line only 28 cm. Random appearingrdirectiur during the SEEK
routine spin that may point in almost any direction, but is only used when AN in Cn.
SEEK not interrupted (every 10th pt. darker) Path: start heading= 0 deg.; kpie=varies, ypos=varietAVOID=0.125s,
tWaitSEEK=5s, NicheLayout=100X100cm, IROffset= 30 deg, speed= 15 cm/sstNRB+ 28 cm; IRDistMax= 28 cm
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Figure67. TOURIST No AN: path simulated for 66 s (21*p)a. Arena bounded with two internal objects and path shown;

b. Behaviors over time and locations ity ylane.Combined AHEAD & AVOID moves along the expedtwall, and after the
delay, SEEK cues at about 13s, and 5 later times. The TOURIST goes around objettt2sidreountered.
SEEK not interrupted (every 10th pt. darker) Path: start heading= 0 deg.; Initi@=7poypos=25AVOID=0.125s,

tWaitSEEK=5s.
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Figure68. TOURIST AN ON: path simulated for 66 s (21*piia. Arena bounded with two internal objects and path shown;
b. Behaviors over time and locations in plgne. Anticipation moves away from the expected wall & obj&EEK cues at 6.76
s, yet before 270 deg is turned, at 7.08 s a wall is found and the TOURIST moves towards it. ddishaobjanticipated and
AHEAD & AVOID move away from them before ardestructive encounter. No more SEEK & FINiecued over thgeriod,
since objectare readily responded to. Insert graph shows the path more clearly (uppeSEEK interrupted (10th pt. darker)
Path: start heading= 0 deg.; Initial: xpos=7@pos=25, tAVOID=0.125stWaitSEEK=5s,
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ANTICIPATION BENEFITS

Simulations above illustrate how adding anticipation to the TOUR&®®dt agent by infusing
the system dynamics of improved archetypes demonsthetd®nefits of including anticipation
in a simple robotic system. First, the system performance in thewwasnzerified to be that
expected for the previous wall following robot from the work of Connell (1990), both traveling
along the wdland avoiding objects using the three behaviors EXPLORMID, and SEEK.
Then anticipation (AN) was added via the two system archetypes: LimitsovatliLTG) and
Shifting The Burden (STB). Since a key trait of AN is to observe agent bel@ftethe
outcome of the situation is certathe illustration showing small adjustments to the AN path
prior to encountering the wall or objects is evidence of AN working in the altgseshs In
essence, the system appeatsnow the futuref later interaction with the wall or object, and
makes the adjustments prior to that. The system dynamics to the archetykiag wahin the

system structure manifests the behavior choice that best matches theonidiien.

In biological systems, an organism may need to practice to develop the quick rdsgumser

to the perceived niche conditions. Similarly, in artificial robotic systemdehlrgner builds in

the response behavior thaatohes the expected niche conditions. A relatively small set of likely
conditions must be identified by the designer, and the direct desired behaviacthsdratthe

niche conditions. This choice to manifest the specific behavior is based on some method to
calculate a fitness or suitability of the current behavior to match the nicbenéral, a weighted
combination of several factors can be combined to determine such a suitalbdevitines For

the TOURIST distance to a wall or objers perceived by the infrared (IR) sensor, amdte of

the distance ta critical minimum distance is used to form a relative scaled value that allows
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execution of the choice behavidihis application of anticipation dictates use of the AHEAD
behavior to cue the AVOID behavior more often, yet for briefer time periods, aretded for
smaller patradjustments that move away from the vimgforeit is encountered. Effectively,

with AN the SEEKbehavior occurs less often (about only a third as much), and thus keeps from
using large amounts of energy associated with the 270 degree CCW spin. Considergdaly smal
adjustments, and much fewer larger adjustments, represent both an energy savirgygrayel ¢
of a relatively larger area in a repeated manner. The increased coverage enabtapichand
effective identification of objects and potential dynamic changes within tha.drethis way,
behavior choiceis effectively deter mined by an expected future condition, that of

encountering awall or object. Varying locations of the objects in relation to arena walls does
affect observed outcomes, yet cued behaviors operate before any negativéeemnoagnr for

the simulations, as was exped.

The simulation contains models of both the agent itself and the niche environment. The model
keeps track of the location and traveled pathwell as the heading for the next forward travel.
Current and past behaviors are tracked, too. The simulation contains a simpfgidasoap of

the initial layout of the arenand objects. Distance from the robot agent to the arena boundaries
is perceived within desired ranges, so the situated location of the robotionredadter items

in the arena is also known, at least in the forward looking direction (with a stiglet @ffset).

These parameters correlate the robot agent with the niche and resultinghetuathiere is a
connectedness with the niche world, though the perceptions are minimal. Hence, the robot
appears to be synchronized in the arena as it moves dynamically in the owteall agena.

Observing these combinations of behavior for the artificial robot arena systeitar to what
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might be observed for a biological organism in an arena, indicates that the mmailith its
niche world has the elements of anticipation. Especidlé/most important elements to observe
are that the system manifests behabforethe outcome is certain, so that observetidvior

appears to haviknown the futureutcomebefore it occurs

ROBOT INSTANCE OF ANTICIPATION

The TOURISTrobot was fashioned after the example of the wall follower (e.g.,
MURAMATOR, meaning ‘wall follower’ in Latin) designed and built by Connell (1990agia
colony architecture asravised subsumption architecture after that developed by Brooks (1999).
The TOURIST originally contained the three behaviors (EXPLOREOID, and SEEK as

used by Connell to exhibit behavior-based robotics reactive response to a simple boemaled ar
and to objects placed in the arena. The TOURIST robot was observed to perform ttheerify
behaviors as gected fordesired task achievement, to follow the wall and avoid objects to
protect from collisions and destruction of the robot physical structure. The embedded
microprocessor contained a Processing code that was portednpateosimulation, ANSIM

(for ANticipation SIMulation) inNSIMULINK with underlying behaviors translated into a
subsystems in MATLAB representation. A virtual niche environment was constrscéed a
arena with objects for the robot to virtually travel within. A virtual sensinggahaie was
developed to mimic the operation of an infrared (IR) sensor, to perceive and form a percept
the niche conditions at any s&he. Initial tested results sared the expected operation of the
virtual robot in the arena, using graphs of the sequence of behaviors and thavedétd in the
arena. These steps allowed for the ANSIM model to depict robot response usictiya rea

behavior-based robotics approach to navigate in a simple niche.

148



The notion of anticipation (AN) was added to the TOURIST using thersydgaamics of the
archetypes Limits to Growth (LTG) and Shifting The Burden (STBg ITG archetype
includes asymptotic approach to some value based on a system constrdingt Th&
archetype was added to the ANSIM model by adding an AHB&lavior routine that used a
further perception of distance to objects and walls, and scaled the turn aspect oDtiie AV
behavior to make relative small adjustments in a ratio of perceived object digighat of
some minimum distander a safe turn to miss the object or wall. The LTG archetype is
considered appropriate for this response since it sets asymptotic limitslte realized by the
AVOID behavior. The second STB archetype was added to the ANSIM model by adeiN®
behavior routine that interrupts the spin portion of the SBE&#avior if some object or wall is
perceived at a further distance in a prescribed range. This invokes the TOORISH SEEK
behavior and start the EXPLORE behavior to move toward any object or wall. The STB
archetype is considered appropriate here since it replaces the symptmiusiton as th6&EEK
spin witha fundamental solution to approach an object or follow a wall that is perceived.nearby
Simulations of various scenarios show the effects of the archetypes to add aatidipaiie
robot navigation. Anticipation enables small adjustments before any criticalbapplistance is
reached to a wall or object. Changes are less abrupt, and the ttvereff@ct is to move along
the wall or pass objects without any contact. Fewer cues of the B&d<ior (only a third as
many) keeps from wasting relatively large amounts of energy merely tagperceas the
SEEK behavioto reach a neweading. Also, by using various maximum distances to use with
anticipation on, very little effect was seen if there is a zero range of distsse®sncreasing to
a useful level that anticipated walls and moved before contacts, to a tangerdeteabn that

was actually too excessive. The excess case isamiipation, and reacts so prematurely as to
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create turning that is not productive, never approaching a wall or object. Thus, eppbtat
methods to enable anticipation can actually be overdone to the pdeietdriouseffects. On a
more positive note, striking a balance betweemramum (28 cm)and maximun(50 cm)

distancdor turn scaling can produce a useful range that demonstrates the traitsipaton.

Currently, the abstractedNSIM inferences in the formal system have been decoded back into
the NS of the physical TOURISBbot, overcoming the challenges of making SIMULINK code
into the Processing code used on the robot microprocessor (i.e., Arduino Nandy, Initia
microprocessing code on the TOURIST robot used to manifest behavior choicabekled in
only about 40 lines of Processing code, and was a key portion of the code translamatiimgen
to SIMULINK/MATLAB subsystems to enact the behaviors correittlgimulation by ANSIM.
Actually, this was the easiest part of the ANSIM simulation to enact, since tieediffecult
programing effort was to represent the surrounding arena environment, and the pétbepts
local niche that manifest behavior. Once proper behavior operation was verified iatisimul
(behaviors resulted as expected), anticipation was added with a switch vgk0le that
allowed simulation either without or with anticipation archetype system dynamiasibeh
Working simulation aded code was decoded back to the Processing language for the
microprocessor operation on the TOURIST robot. Effectively this was abourtte20df code in
two different subsystems. A minimalist perspective aligns well here with the idesa tha
significant change was possible with small alterations in operation of thé pitysaal

TOURIST robot.

Several demonstration runs of the TOURIST robot showed the effect of decodinguleatien

FS to the robot NS. Setting the switch to select operation witidigtpation NO AN) resulted
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in behaviors like those observed originally in the robot before simulations, withtes vesl|
following and object avoidance. Thus, it was verified the same behaviors were obeeithed f
TOURIST after the NS was encodedtie FS, and also after the FS was decoded from
simulation back to the NS. Video records of the runs showed successful operation most of the
time, but occasional collisions with walls occurred for certain specific atigéshe wall

follower was not able to effectively detect the wall to be avoided and follovigdo@). Thus,
AVOID behavior is limited by the angle setting of the IR beam, yet that angleasszyg to

enable the wall following task achievement. The SEEK behavior similarly wouddesall
collisions if the angle of approach after the resulting spin was undesifabke. both successes
and limitations of the original TOURIST robot performance for tadkevement was validated

to occur after decoding back to the robot NS.

Anticipationwas added by setting the switch to activate anticipation behaviors (AHEAD and
FIND). AHEAD was added to the selection for initiating and scaling timing cA¥@ID
behavior, while FIND permitted interruption of the SEEK behavior to engage nelynealts
and objects. With anticipation on (AQN), the TOURIST robot made earlier smaller
adjustments to the upcoming walls or objects using AHEAD and AVOID behavionsigstay
farther away from them than was observed when there was no anticipation (N@/Ad&h

SEEK was invoked, which was less often, FIND was shown to interrupt the spin ated>qret
move towards (yet AVOID) nearby walls and objects, as shown by video record (Figh&6e
near walls and objects would not have been detected without anticipation, since théspigina
of the wall follower was a timed procedure process that was not internupied was

complete. Occasionally the robot would collide with the wall at a certain unfagtangte, yet
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generally the workings of SEEK and FIND would move away successfulpnt;ae
EXPLORING of the arena. Thus, with anticipation on (AN ON), the TOURIST robot moved
more smoothly along walls and more readily located walls and objects to apprddad ye

fewer collisions, and resolved them more adequately than occurred without anticipat

ANTICIPATION METRIC

A specific metridANNum) was developed for operation of the TOURIST robot considering the
distance measured by the IR beam and the area covered by the motion of thearoptitreg
instancg/Appendix A4). The metric (ANNum) can be used to compare travel of robotfpatins
ANSIM modelfor a set time and arena configuration. Area covered by the IR beam during each
occurrance of behavior for EXPLORE, AVOID, and SEEK/AHEAD (anticipation on only)
reflected impulse response to the niche conditions and were accumulated overdater.

metric values were found with anticipation onJeefing more behavior responsiveness to the

niche per unit time when anticipation was used.
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Figure69. TOURIST robot video with no anticipation (NO AN). The TOURIST robot
occasionally collides with and is stuck at a wail.

Figure70. TOURIST robot video with anticipation on (AN ON). The TOURIST robot
successfully escapes from a collision with the well.
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CHAPTER 5. SUMMARY

OVERVIEW

Notion of Anticipation

Anticipation is considered to have benefits beyond mere reaction to present nicher®ndit

The notion of anticipatiopresented here assumes predetermtheitesexistthat can be used

to manifestbehavior for certain expectednditions yet concedes a logical reasonable response
may not be available for uncertain and previously unknown and unconsidered conditions. Since a
general purpose robot is not considered to exist, instead a robot agent with scific t
achievementor purpose, is considered to have a known set of behaviors that match a set or
repertoire of expected conditions in a specific defined niche environment. Themdalfe

work with anticipation is to define the specific desired behaviors that maaxgected niche
conditions and result in desired task achievement. Encountering unexpected niche conditions
should result in safe behavior that does not appear illogical or unreasonable from a human
perspective, and may be as simple as a noncommittavioehhat waits for the next known

expected condition to occur.

Anticipation Traits

The major benefit of anticipatianay be a more timely reaction to change that occurs in the
niche. The main trait of anticipation is that actionuwebeforean expected outcome is certain,
S0 quicker action should suggest #meent knew what was about to happdiralong. This trait

has advantages across many areas where conditions are likely to changeijthibeaitrange of
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standard values that are matched to an appropriate behavior response. On a gynyaleisla
this is akin to using robot agents to perform menial tasks on timers to make cofta¢ @r st
routine process such as closing blinds on windows and reducing temperatures for the night
Scheduling the movement of trains, such as those at an airport (e.g., Denvetidnigrna
Airport, CO), is a larger and more impactful procedure seen by many people sirhpkeitems
we already view as automation, and are commonplace. But anbaipets the additional
requirement, that of actingeforean outcome is certain. Although current automation processes
work well in a sequence of scheduled events, such as train schedules, anticisatthentizat of
including behaviors that are matchedhiche conditions that are expected, yet not know when,
where, and how they might be occurring. Anticipation has a type of flexibility tordénaa

wider range of possible outcomes, and yet behave in a way that appearskodvavéhe final
outcomeall along. This requires definition of a specific anticipation set repertoiregthibmay
still be small in size, yet enables quick and decisive action when conditiongfegdain
expected outcome. Unfortunately, the early reaction could have adverseie#esdight change
in niche conditions actually favors a different outcome than the chosen behavior. Thus,
anticipation also requires the ability to make behavior change rapidly andedipeeth those

changes found in the niche.

Anticipation Benefits

Considering these traits, anticipatibas significant benefits due to its quick choice of a behavior
and ability to switch to another more favored behavior. This should provide more rapid response
thanoccurs for astrictly reactive systemand produce outcomes that better fitdigaamic

changingcurrent niche. The more decisive anticipatory behavior may be more explosive in
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nature to create a stronger impact as perceived by an observer. The behavitsoariaaaodel
of the existing world view that determines a certain response is most kkelyable and

rewarded, and thus make choice of the best matched behavior.

Anticipation should enable smoother and more effective behavior choices. Wait ansiviedec

time should be reduced, while effective action should flow from step to step fluethibyutv

glitches or failures. Less problems should be observed in general. But more inhgatseties

of successful behaviors should repeatedly result in desired task behavior in bothtthedgshor

long run. The preconceived behaviors that are matched to expected niche conditions a@d endow
in the systenstructure by the designer through previous understanding of the likely sityations
understanding anpreparing for likely system archetypes flaws andeptable solutions, and

building in the correct most favorable responses. This requires a desigystear sonstructor

to fully understand the niche environment and potential behavior outcomes thesiegd tb be

reached to provide task achievement.

Anticipation in Robotics

Anticipation and its operation applies to robotics specifically in at least twoasepeays. First,
it requires the designer to fully describe expected goals and operatiorsgétd@within
constraints, and to produce the robot structure and process responses in softweaarenunuy
that can sufficiently attain those goals and operation. Secondly, the autonomotisropéthe
robot must properly acquire perd¢gpf the niche to allow the correct matched selection of a

choice behavior, and to do so autonomously and repeatedly as long as it has sufficietd power
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operate. Granted, a mobile robot has an obvious constraint of limited energy supply that

eventuallyrestricts ongoing successful operation.

Anticipation is not able to avoid all possible negative situations that might occurdbotic

system. Indeed, the early action before the outcome is known might actually choose the wrong
behavior, or one less suited, if the conditions in the environment unfold differently thanatihe loc
area of the niche indicated. Recall the niche is the area local to the robot thatds sens
Conditions slightly outside that perceive niche may differ, or the percept beghtoneous due

to unexpected conditions in the larger environment, something as simple as bright light
shadows. It has been observed in testing that bright light that contains a high IBvehof

actually be perceived as an object, when in realitsetigeno nearby object. To counteract a
premature behavior choice, the robot system must continually sample the niclenofigh to
permit a subsequent change in behabior that makes the desired adjustmarty tinatt¢hes the
actual niche. Therefore, the robot ‘catches’ itself in a possible incorracechod makes a

proper adjustment, on that will allow for overall task achievement in the niche.

Overall anticipationmust go beyond a robot merely reacting to an object, but should combine
percepts of the niche to choose behavior that smoothly and gradually moves to a desired
outcome, rather than having to make last second abrupt changes that are uncertajn and ma
require more energy and resources to immediately solve the problem or performagiomper
The result should allow the robot agent to act in a way that an observer wotlid sggnt

already knows the outconadead of timeheforethe outcome is actually certain.
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CONCLUSIONS

Insightsand Contributions

This work contributes to the field of robotics with the following findings:

1. A robot architecturéhat includes anticipatioperforms more smoothly and preemptively to
make choice of behavior to better fit the niche conditind attain desired task achievement.

2. The congruencéamework assists in engineering a robot to perform in the natural system
based on correctly decoding inferences simulated and shown successfabstranted
formd system.

3. Two known systerarchetypes can readily be coded into a formal system model to affect
system operation: Limits to Growth, and Shidtiof the Burden (or Goals). Simulation of the
system archetypes allows system dynamics tanbdenstood and documented, and allows
possible solutions to known problentletyperesultsto be understood and modified for
desired problem solutions.

4. Applying the simulation to operation of a TOURIST robot with @pditton built into the
archetypgorogramming illustrates the advantages of including the notion of anticipation. The
anticipation methods allow a TOURIST robot agent to travel a smootheaméitnake
chace of small increments irebavior change that prodeienore desired longer term
respmsesWith anticipation, numerous small adjustments are made that require less energy
than large spins of the SEEK behavior, so only one third of the SEEK behaviorsamctur
thus waste less energy and time. Also with anticipation, the TOURIST makesasnitany
cycles of the area at the same speed and in the same time, so a broader range of area is
covered and can more readily perceive any dynamic changes in the ararallhe

ANNum metric as developed for describing operation of the TOURIST robot showeergrea
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metric values were found with anticipation on, reflecting more behavior respoess/&
the niche per unit time when anticipation was used.
5. The pathtraveled by the TOURISWith anticipationappears to know in adves thepresence
of objects or walls, and to undertake a choice of behavior to avoid negative contact and move
along the wall ima desired fashion for task achievement, and to do so in a way that the robot

appeared t&now the outcome before it was certain to occur

FUTURE WORK

Anticipation Application

It is ironic to discuss future work regarding anticipatisince anticipation is always about future
expectations. The task before us now is to extend anticipation of robotics into othethcurrent
unused and untested areas, and especially those with shorter cycle times. A fuaddamerle

is that of seHdriving vehicles, one where much classical robotics has so far been applied to
attemptto overcome the many complicated uncertainties in a driving environment thaehas be
created for humans. Though a human in the loop (HIL) approach may be laudable and prudent
from a safety standpoint, the more likely approach to be successful should cnaghthéo align

with needs of a robotic agent using current affordable technology. Antaipadided to

driverless vehicles would reduce response timepaadde smoother operation.

Operatioral Description

Overall anticipationis used to define a repertoire of desired behaviors that match a specific

niche setting, such as movement of busses or similar transports in a known cobhiglor.
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approach is actually already in place for subway trains, with humans routigefpwsly

forbidden from the domain of the vehicle. So instead of attempting to design a drivehiets ve
for an innumerable p-completeset of solutions, the niche should be better defined for the agent
itself, to make the repertoire of reasonable behaviors finite and manag&apkat of the
application of anticipation to control and robotics is to establish a known environment where
niche conditions are readily known, and proper behavior responses can be matchedrterihe c

niche.

Instances In Agriculture

As an example instance, environment redesignritcipationalready exists in agricultural
systems at some basic levels. Most obvious, agricultural equipment is built toctarth and
row sizes to accommodate all processes from planting, to cultivation, to harvegéngial
processingand preparation for the succeeding crop. The choices for plant behaviorgtiavors
ones desired for human béiheand allows for the greatest at least some measured level of
reward for the efforts and costs incurred. Anticipation is incorporated in this pleemselves by
selecting species and indeed cultivars that make it readily possibléstcaghbf machinery for
the processes mentioned above. Unfortunately, conflicting views may aris@ssneeding firm
fruit for transport at the expense of flavor quality. Such tradeoffs are pae abtion of
anticipation, since managers and opesatoust make real choices as to what traits are
acceptable for at least a marginable number of individuals to favor and use thé.produc
Anticipation is considered a benefit to add to future robotic machine designs, ibgpease for
improving culture of intensely grown plants (e.g., hops for flavoring) or foraugment of

menial harvesting procedures (e.g., strawberries that are still pigkadhrian hands) he niche
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must be sufficiently and properly understood to allow for the robot agent to ssbedic

behaviors to successfully achieve desired tasks.

Instanceln Space Exploration

On a broader scale, anticipatioan be incorporated into such faaching areassapace
exploration. Indeed, calculations of plansovementsleeady are used to determine locations for
possible and more importantly reasonable goals of space travel and explorgtscalPactors

of gravity and inertiare included to anticipate what may be an acceptable payload, and we must
take along enough of our own air to make a safe return trip. In a more refined wagatati

by robotic agents can be enlisted to undertake maintenance schedules for livieis duodin

inside and out, while making sure food preparation and waste disposal are mostlgkasura
tolerable for participants. This may be especially vital as we begin totakeeecreational trips
into space. Robots may take on the likely servant role, or be devised specidically f
entertainment, and in such cases using anticipation to meet both our physical needsr{e.g.,
food and drink) as well as interact with us in ways that are entertaining fopeue (e.qg.,

social interactions akin to games with appropriate challenges, and physicidaxer

Anticipative ordering, as is@ady patented on earth for the Internet, might be commonplace.
Robotic decisions might be enlisted to provide for human safety, making hard but reasonable
choices when resources are limited, and return to a safer venue may be in ordgr.Wéawe
reludant to agree that actions by the robot or machine are to our benefit, we still respond t
warning lights in our car, and let traffic lights dictate our daily travel rositifkis requires that
some operator and designer of dwerallsystens is constramned to build inanticipated choices

that can esure successful task achievement and completion.
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Ideas Related to Anticipation

There are many related areas of study to undertake. The selection of aotiepat topic for
study arosérom consideration of all elements that might malsystenrobust. This exercise
resulted in arobustness orbitdiagram having a variety of 28lated elements ripe for similar

futureacademicheoreti@al and practical study (Fig. Y¥.1Ordering the elements

Robustness Orbit Components

Anticipation (Equipped)

Proactive MakeLinks
Connectedness | solation
Stability Previous Experience
Focus Barriers
Recor ded/Documented Retain Information
Identify Parts Clarity
Energy Convertibility Time Dependency
Skill (Innate& Acquired) External Per spective
Continuous I mprovement Inclusiveness
Influence Working Space
Multiple Items Rank Importance
Trade-offs Over shoot
Results Check Propinquity

Selective cues
Figure71. Robustness can be tight to include a collection of elements that work together
to provide observed robust behavior, and those elements are shown in an orbit
arrangement for ease of recollection, and some priority importance.
at least partially in terms of pmived priority or importance indicated that anticipation rose to
the top, and some studies by previous researchers in a theoretical manner supportedshg ne

to look at anticipation for further study. The progress made witlott@smportant element can

be extended to the resftthe elements the diagram.
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I ncor porating Anticipation Into Agents

Scale of the situation (in size and time), key connections, operation sequeneds, tes
performance, and design for manufacturabilityharvest and processing must all be regarded as
key to a framework that converts an abstract formal systena realistic natural system

solution. At all times, the notion of anticipatianstill constrained by theesond Law of
Thermodynamics, for ongoing increases in entropy will tend to favor and &elé&ot

minimalist simplest solution.

Embracing Anticipation In The Future

In all such cases, the robot designer should build in anticipayioealistically considering what
simple small set of operations is indeed possible using existing technology, tantitais
available in the near future (months to a year). Considering ideas too far ceimeypace and
time are likely to be unsuccdgk and should only be attempted with acknowledgment of the
large risks to be undertaken, and indeed the undesirable possible failures. Yet, tharpast be
many examples of such risks being taken, and we remember those that succeézlathny
times igroring or forgetting those unsuccessful ones. We remember the Wrigh¢ts/dirst
flights at Kitty Hawk, NC, and therash of theHindenburg, yet for quite different reasons. Both
had strong impacts on air travel, even for today. One must realize apl #eefact that
humans live in a social world that invites robotic agents to serve them, but does not encourag
the robots to become more important that the creators themselves. Anticipationvaukaha
benefit of helping humans to have a less memalkesafe, and fulfilling life, while theobotic

agents themselves take on the underlying difficulties, and deliver what idexkpgduman
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operators and users. In all cases, the robot must still measure up to humanierpectdtalign

with desiredanticipation for a future world.
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APPENDICES

Al. PERCEPTS

Percepts arise from the area of psycho)@gymentioned briefly in the main literature review of
Chapter 2where a percept is the mental recreation of a distal (external) stimulusebBbics,

the mental reference is replaced by an agent. A real world object is thetdrséls or distal
object. Through a physical process (light, sound, etc.) a sensory device/organletetinm

turn using energy to create neural activity (cattathsduction). The internal raw pattern is the
proximal stimulus, which is transmitted to the brain (agent processor) fagsing. The
resultant recreation of the distal stimulus in the brain is a percept. Overadptp@nds creation
of mental repesentations (images or archetypes) using the proximal stimuli derived friain dis
stimuli. For example, a cat as a distal stimulus is detected by light energy enteegg the

form an image on the retina as a proximal stimulus, and the reconstrudirenimiage in the
brain (agent processor) is the percept (Fig. A.1.1). A bird singing as a timtdls uses sound
energy to move auditory receptors as the proximal stimulus, and interpretattonbogin

(agent processor) is the percept. Intelligegents choose to act both on individual and sequences
of multiple percepts. An agent function maps each percept to an action, and subsegtiently t
next action. (From: https://en.wikipedia.org/wiki/Perception ; and

https://en.wikipedia.org/wiki/Percept_%?28artificial_intelligence%29)

For the purposes of this study, a percept is an abstract representation ofean etdactor in
the niche. Synonyms include: form, rule, habit, image, code, and covenance. In brieépd iper

the FS is the abstractiai an elemental factor in the NS. Anticipation acts by using percepts of
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the niche to cue a behavior that is manifest to produce a matching behavior byntharaye
lead to successful observed task achievenidmwrefore, the percept is the perceivedsiar of

the item in the niche that is used to manifest behavior choice.

ASSpCidTre
Counparat

Externai Entity

Canceptuat Graph

FigureAl.1l. Understanding of percepts derived from an external stimulus, transforived to
captured in the brain as abstract conceptual grda:
http://kremer.cpsc.ucalgary.ca/courses/CG/L3.html). This represenigijuite detailed and
complex on the abstraction side (right), and one might contend it resemblesaClassic
Robotics and involved artificial intelligence as opposed to the behavior-based appeatach t
matches action directly to conditions in the niche environmert.
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A2. BIOPLANT ANALOGY

Plant Development,

Architecture created for the operation of an artifisidtem such as a robot agent can be applied
more generally to a natural biological system for an architecture of the muitigés sor

biological plant (bioplant) growth, development, and reproduction &2dL). In both the

artificial robot system anthe natural bioplant system, a niche environment is perceived to form
percepts for the current condition. A combination of the percept factors (infrafiedlight,
temperature, etc.) is used to determine a fitness or suitability for a spebificibrto match the
niche condition. Within that niche context, a threshold coupling makes a type obselect
manifest the preferred behavior for that condition. For the robot, it is a mathdipatiegral of

the multiple niche percept factors that cughange in behavior. For the bioplant, the integration
occurs in biochemical pathways that create threshold levels of chemical leslai can cue

the initiation, and subsequent continuation, of a change in development stage, or nuances within
that stag. Hence, a bioplant changes from the vegetative stage (forming only leases)
reproductive stage (forming flower buds) based on a combination of percepts of théatiche t

cue the change.

Anticipation of future events is tied up with the time constéor response. Both natural
bioplants and animals have inherent physical structures and biochemical patmavdgad to
preparation for and subsequent manifesting of behavior choices that lead togttasired

goals for survival and reproduction.
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AN in robot systemsfor AN analogy in bioplant systems.

THRESHOLD CHOICE
NICHE PERCEPTS CONTEXT COUPLING BEHAVIOR
IR I , —»O—r_
Niche CONTEXT1 | BLWAIT Task
aip1 Perceived | | 77 T 7 = ]
Sonar \Context @
CONTEXT2 | go.eXPL ORE 4
Touch azp2 R Y —— delay4
Light : CONTEXT3 _B>3:SEEK
Temperature anpn contexta = —
@ @ a B4:AVOID ||
| w—/delayl delay2 elay3

<

ROBOT BEHAVIOR ARCHITECTURE

THRESHOLD CHOICE
NICHE PERCEPTS CONTEXT COUPLING BEHAVIOR
alpl\ierceived Dor mant ]
Temperature Context | |77
Water LOW v : @r
aop2 Y egetative delay4
Nutrition MEDIUM —>
0 I N (— Bud/Flower
S
anpn mon O

Pest
St
[@delayl T@delayz @dayS oo I

BIOLOGICAL PLANT GROWTH ARCHITECTURE

Figure A2.1. Architecture for robotics relating perceived environmental niche to context for
robot behavior with reinforcing loop back to the niche (top) and modified for plant
architecture (bottomcausal diagranand flow map

Evolutionary processes have worked on the ontogeny and phyllogeny of these nangaldiol

living systems (considered open systems in general systems theory)lopdpezific behaviors

to match a niche, and attain survival aumes. Anticipation is built into the physical structure
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and biochemical pathways that allows behavior change in a shorter time franmgerbadad to

attain the results that ensure survival. Here anticipation works to benefit tinésorgsince it
actsbeforethe outcome is certain, yet the behavior choice leads to a preferred task achievement.
The behavior may change agaieforea negative effect is realized if the change in behavior was
premature as cued by the niche, and thus not preferred at that time. Thus, the quickeatdemal
behavior choice is a trait of anticipation that leads to preferred task ati@e/end it appears

the organisnknewthe futurebefore it actually occurred.

Hops Production Congruence Framework

Hops Humulus lupulusfrom Wikipedia) can be modeled within the congruence framework as
patterned after Rosen (1991), by considering the elements, 1. Natural SyStéidgps plant
system), 2. Encoding, 3. Formal system model, FS, and 4. Decoding back to the NS.

1. Natural System\S (Hops plant system): Hopdi{mulus lupulusfrom Wikipedia) are
harvested as the unfertilized flower structure that develops on vines grown dit apingy
structures. The plant is a herbaeceous perennial bearing a single aopudlfoesh hops wer
natural conditions within the USA that provide adequate light and temperature ¢laylen
sensitivity to induce flowering is not known), while proper nutrition and soil conditions must be
provided, along with a mechanical superstructure support systraliows the plants to grow
vining in a vertical direction for several meters. Plants are dioecious, myeseparate plants are
either male or female, so only the female plantgparspagated using asexual means by cuttings,
and male plants are removegidce pollination actually forms seeds, which is undésér since it
prevents the desired oil production. Various cultivars produce different desired bpsotvide

specific flavors, and may vary in growth habit as to total production time and tdtalBli@nts
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are subject to known pests such as spider mites and powdery mildew that limityettall
Quality of the hops is influenced by freshness of harvest at peak oil production that nseyg be
directly within a few hours in brewing, or the hops may be dried and stored fandater
Brewmasters vary the amount and cultivars of hops used to regulate the tragisppbdeced
from the brewing and fermentation process. Notestheay be considerabtifference in a
specific biological effect for dierent crop species. For hops, pollinatisa prodem (not
wanted), and for strawberriespflination also s a problem (wanted to be thorough!) which is

for the opposite reason!

2. Encoding: Niche conditions must be encoded to capture the specific cues that combine t
produce hops plant growthrough stages of VEGETATION, BUD INDUCTION,

FLOWERING, HOP DEVELOPMENT, HARVEST, and DORMANCY between annual growth
cycles. Environmental factors to consider include light (LT), temperdboth for day and

night: DT and NT), nutrition (NUT), soil media type (ST), water needs (WT), pestepnsbl
(PEST), and mechanical support (MST) needed to hold the crop upright due to the crop vining
habit. Temperature is separated into two factors since it is known fos giemerally that the

rate of plant development is most correlated with night temperature, while phétnéunzh as

stem elongation is controlled by the difference between day and night temn@¢Eaf).

Conditions of light and temperature are presented as total accumulatiootfataga while for
temperature the values used are an average over the lighted and dark peroids.|igtst, if
FLOWER or other key response, such as DORMANT, behavior can be determined as cued by
some critical daylength, thehe length of the lighted and dark periods must be specifically

tracked to determine the effect on behavior. Experimentation and measurement oéjia
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must be used to initially abstract the understanding of plant growth into tertncahiae
described in the mathematical formal system. Possibly overall age (YEARs)op has been
grown has an effect. Because of the relatively high number of niche factorssider, the
relationships to determine first are those thought to have greatest influeth¢lee dactors above
are listed generally in that order. Efforts would be made in the lateridgquacess to maintain
the levels of certain factors constant, in hopes that has the lest signifitawree preassigned
level. This incorporates the notion of metaphor, for by using conditions that are known to work
well in a natural setting, and to reduce pests through environmental means pestitides, and
to use other relations of nutrition that work well for other related crops, the FS magel
include inherent inferences within the model structure, though the true effectsaof tactors
are never specifically tested and relations determined. Only in extremeth ar atiange in the
cultural growing system, such as to minimize inputs, wdubdfactor relations be determined,

and included in subsystems to the original FS model.

3. Formal system model, FS: The formal system includes two rather differestdlyp
mathematical relations: 1. ‘Black box’ relations, and 2. Differential equatibpisysical
processes. ‘Black box’ relations can be represented through statisticakfijre$sion
parameters to linear equation terms or certain nonlinear constructs thty dafect the
observed output behavior values in response to specific\ajuégs over some range of
experimentation and direct measurement of observed output. This abstraction igmnores th
mechanism in the underlying process, and merely relates output to input through aaneshem
construct. At some level of reductionism, this technique is almost always usedsanta

constants for terms that can be readily controlled, and may assume cettasxdano concern
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have no effect in the current niche situation. Differential equations are useduxecajdations
where the medmism is understood or desired to be represented for further mathematical
analysis, such as extrapolation beyond experimental conditions that gaeethisénitial
relations, or to study the relationship more detail. Even these attempts serg phe
mechanism will eventually reach limits and failure as the desire to simulate extrerneseb
vastly different from the test conditions that are known to work for observed plégmsys
growth. This principle follows that of Simon (1996), where he contends only local thviafsut
in space and time are of concern, and the farther one moves from known conditions sine less
one is of the results to expect. In this way, anticipation of results is limited ddioas that are
expected and known, while widely varying conditions would actually be expected to produce
results that differ greatly from those observed for known conditions. The twodlpgsations
can be combined to capture the entailments of inference that will make a behaizer(aho
particular output value) based on multiple input cues. The black box regression equations may be
thought of as:

BIOMASS=f(LT, DT, NT, NUT, PEST, WT, YEAR), (A1.2)
where each of these factors was define above.
Generally these may be linear, quadratic obiuregresions for each of the pertinent factors, or
may involve a sinusoidal varying input of any of the factors.
Slightly differently, the differential equations may be represented as:

d(BIOMASS)/dt= f(An, An', An") (A1.2)
where An, and the suessive primes are the derivatives with respect to time. Either of the two
types of equations might be used for a trait (e.g., height, time to harvést)tamwo types nght

be used in unison to capture nuances of the relations in the niche and inrolatiSns may
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be run for various inputs of interest, such as reducing inputs to lowest possible leiesls whi
maintaining desired quality or timing for harvest. Results of the simulationstpdhre direction

of interest for applying the results found in the FS to improve results in the NS.

4. Decoding back to the NS: Once simulation has determined courses of action or niche
conditions of interest to be used in the NS, the simulated results must be decoded back to the
congruent entailments of causation in the NS. On the simplest level, decodingdenhayrse

of growth chamber allows setting of fairly precise niche conditions, and thusstheng

behavior can be observed to be congruent or not with simulated results. For a more natural
setting, meased environmental niche conditions must be input to the model, and this resul
compared with observations affirm congruence. If results are not as congruent as desired,
several items should be considered for making changes to the FS model, includggrscal
space and time, key operations, forming connections, sequential ordering, companjstornsf

and design for manufacturing and assembly type operations that include harstestt thase

can be described for the hops production with a couplmpebes that follow.

Scaling aspects (Laregzale):

Desired: An arena must be large enough to produce a quantity of hops for commercial use
Decode: A crop size must include enough plants so minimum produced can make a batch.
Scaling aspects (Smadtale):

Desired: Individual flowers should be close together for easy harvest.

Decode: Niche conditions should limit growth rate to keep flowers close together
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A3. ANTICIPATION SIMULATION PROGRAM CODE

ANSIM CODE

Program for AN8M (file: ANSimDelay20160121RIx; ver. 10-28-2016): .

NICHE: Subsystem NICHE LAYOUT
function [xgrid, ygrid, WallObj] = NicheLayoutfcn(ctimeinl)

%#codegen
global  NicheLayout; %from NICHE section ML function; 201X201X1 init
%NicheLayout(x,y,zval)= (x,y )biomass/locations; NicheLayout(x layout,ylayout)

%NicheLayout(:,:,1)= xval, min to max
%NicheLayout(:,:,2)= yval, min to max
%NichelLayout(:,:,3)= zval wall or object: 0=open, 1=solid
%center (0,0,:) at NicheLayout(101,101,:)

coder.extrinsic( 'sprintf' , 'strcat' );

coder.extrinsic( ‘format ', 'display' );

if (ctimeinl == 0); %create Niche at time=0

%Decide not to use negative numbers for range covered. 2015 -12-5Sa

%Since 28cm=11in is real bot, using 200 as max range

%[m,n] = size(obj) from
http://www.mathworks.com/help/distcomp/size.html?requestedDomain=www.mathwork
s.com

[xmaxNL,ymaxNL, zmaxNL] = size(NicheLayout);

%......Wall #1 bottom

xmin=0; %-10;

ymin=0; %-10;

xminwall01=0;
xmaxwall0l=xmaxNL; %80;%5;
yminwall01=0; %-0.1;
ymaxwall01=1.0;  %0.0;

%...... wall #2 top

xminwall02=0;

xmaxwall02=xmaxNL; %50;%5;

%subtract 3 & 2 below to make in 99 and 100 locations,

% since matrix contents is: index -2

% specifically: NicheLayout(xlayout,ylayout,1)= xmin + (xlayout - 2);
yminwall02=ymaxNL - 3; %49;% 0.1;

ymaxwall02=ymaxNL - 2; %50.0;%0.0;

%...... wall #3 left

xminwall03=0;

xmaxwall03=1;

%subtract 3 & 2 below to make in 99 and 100 locations,

% since matrix contents is: index -2

% specifically: NicheLayout(xlayout,ylayout,1)= xmin + (xlayout - 2);
yminwall03=0;  %49;% 0.1,

ymaxwall03=ymaxNL - 2; %50.0;%0.0;
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%......wall #4 right

xminwall04=xmaxNL - 3;

xmaxwall04=xmaxNL - 2;

%subtract 3 & 2 below to make in 99 and 100 locations,

% since matrix contents is: index -2

% specifically: NicheLayout(xlayout,ylayout,1)= xmin + (xlayout - 2);
yminwall04=0;

ymaxwallod=ymaxNL - 2;

%......0bjects #1 to # 2
% 707373 7070

xminobj01=70; xmaxobj01=73; yminobj01=70; ymaxobj01=73; %upper right
%xminobj01=50; xmaxobj01=53; yminobj01=50; ymaxobj01=53; %center
%xminobj01=51; xmaxobj01=54; yminobj01=21; ymaxobj0l= 24;%original
xminobj02=17; xmaxobj02=20; yminobj02=20; ymaxobj02=23; %lower left

%xminobj02=21; xmaxobj02=24; yminobj02=51; ymaxobj02=54;%original

xyNiche= "' ;

spcolon= "' ;

for ylayout= ymaxNL : -1:1; 9%52;%total 52 elements; lowest as - 1: see eqs
below

%for ylayout= 52 : -1:1;%52;%total 52 elements; lowest as - 1: see eqs below
%index must be 1 or greater (no index zero)%NicheLayout(xlayout,ylayout,2)=

ymin + (ylayout - 1);%((ylayout -1)/10.0) ;

%for ylayout= 201 : -1:1;%1:121;%201;%total 201 elements; 101 is middle=0

%NichelLayout as global variable on highest level system window
%zeros(52,52,3)%previous took 10 min to run
%zeros(201,201,3)%previous took 10 min to run

%NicheLayout initialized as a global: NicheLayout(201,201,3)
%if not start at either end, matrix will have unwanted zeros
%if not finish at either end, matrix will have unwanted zeros

yrowprt= '

for xlayout= 1 : xmaxNL; %52;%total 52 elements; lowest as - 1: see eqs below

%for xlayout= 1 : 52;%52;%total 52 elements; lowest as - 1: see eqs below

%index must be 1 or greater (no index zero)

%NichelLayout(xlayout,ylayout,1)= xmin + (xlayout - 1);% ((xlayout -1)/10.0);

%for xlayout= 1 : 201;%201;%total 201 elements; 101 is middle=0
NicheLayout(xlayout,ylayout,1)= xmin + (xlayout -2); % ((xlayout  -1)/10.0);
NicheLayout(xlayout,ylayout,2)= ymin + (ylayout - 2); %((ylayout - 1)/10.0);
%NicheLayout(xlayout,ylayout,1)= xmin + (xlayout - 1);% ((xlayout -1)/10.0) ;
%NichelLayout(xlayout,ylayout,2)= ymin + (ylayout - 1);%((ylayout -1)/10.0) ;

if  (ylayout == 5) && (xlayout == 5);
spxlayout= xlayout; %inner loop: xlayout
%spylayout= xlayout;

end; %if (ylayout== 5)
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x1=xlayout;
yl=ylayout;
if  (NicheLayout(x1,y1,1) >= xminwall01) && (NicheLayout(x1,y1,1) <=
xmaxwall01);
if ~ (NicheLayout(x1,y1,2) >= yminwall01) && (NicheLayout(x1,y1,2) <=
ymaxwall01);
NicheLayout(x1,y1,3)=1;
end; %if (NicheLayout(x1,y1,2) >= ...
end; %if (NicheLayout(x1,y1,1) >= ...
%=======end create a wall #1 Bottom of Graph===============

0p=======create a wall #2 Top of graph:::::::::::::::
%x1=xlayout;
%yl=ylayout;
if  (NicheLayout(x1,y1,1) >= xminwall02) && (NicheLayout(x1,y1,1) <=
xmaxwall02);
if ~ (NicheLayout(x1,y1,2) >= yminwall02) && (NicheLayout(x1,y1,2) <=
ymaxwall02);
NicheLayout(x1,y1,3)= 1,
end; %if (NicheLayout(x1,y1,2) >= ...
end; %if (NicheLayout(x1,y1,1) >= ...
%=======end create a wall #2 Top of Graph===============

0p=======create a wall #3 Left of graph:::::::::::::::
%x1=xlayout;
%yl=ylayout;
if  (NicheLayout(x1,y1,1) >= xminwall03) && (NicheLayout(x1,y1,1) <=
xmaxwall03);
if  (NicheLayout(x1,y1,2) >= yminwall03) && (NicheLayout(x1,y1,2) <=
ymaxwall03);
NicheLayout(x1,y1,3)= 1,
end; %if (NicheLayout(x1,y1,2) >= ...
end; %if (NicheLayout(x1,y1,1) >= ...
%=======end create a wall #3 Left of Graph===============

%=======create a wall #4 Right of graph============== =
%x1=xlayout;
%yl=ylayout;
if ~ (NicheLayout(x1,y1,1) >= xminwall04) && (NicheLayout(x1,y1,1) <=
xmaxwall04);
if  (NicheLayout(x1,y1,2) >= yminwall04) && (NicheLayout(x1,y1,2) <=
ymaxwall04);
NicheLayout(x1,y1,3)= 1,
end; %if (NicheLayout(x1,y1,2) >= ...
end; %if (NicheLayout(x1,y1,1) >= ...
%=======end create a wall #4 Right of Graph===============

% {

%add space after % to reactivate block

%start of block comment for objects 2 & 1
0p=======create an ObjeCt #] ===============



if  (NicheLayout(x1,y1,1) >= xminobj01) && (NicheLayout(x1,y1,1) <=
xmaxobj01l);
if  (NicheLayout(x1,y1,2) >= yminobj01) && (NicheLayout(x1,y1,2) <=
ymaxobj01);
NicheLayout(x1,y1,3)=1;
end; %if (NicheLayout(x1,y1,2) >= ...
end; %if (NicheLayout(x1,y1,1) >= ...
0=======end create an ObjeCt #] ===============

% }
%add space after % to reactivate block
%end of block comment for object 1

% {
%add space after % to reactivate block
%start of block comment for objects 2
Op=======Create an object H#2 ===============
if  (NicheLayout(x1,y1,1) >= xminobj02) && (NicheLayout(x1,y1,1) <=
xmaxobj02);
if ~ (NicheLayout(x1,y1,2) >= yminobj02) && (NicheLayout(x1,y1,2) <=
ymaxobj02);
NicheLayout(x1,y1,3)=1;
end; %if (NicheLayout(x1,y1,2) >= ...
end; %if (NicheLayout(x1,y1,1) >= ...
0%=======end create an ObjeCt H2 ===============
% }
%add space after % to reactivate block
%end of block comment for objects 2 & 1

end; %for xlayout=1 : 201;%201;

%coder.extrinsic(‘format’,'display");
spyl= ylayout;
%spx1= xlayout;

if  (ylayout >= - 1) %all rows
%if (ylayout >= (yminwall01 - 1)) && (ylayout <= (ymaxwall01+1))%rows having
ones in them
%if (ylayout >= 90) && (ylayout <= 110)%rows having ones in them
spyl= ylayout;
Yspx1= xlayout;
spNR= NichelLayout(:,ylayout,3);
ID= sprintf( '%03d" , ylayout);
ID2= strcat (ID, char(58) ); %add a colon: as char(58)
%http://www.mathworks.com/help/matlab/ref/char.html?searchHighlight=char
%NH= sprintf('%0.0f', xlayout, SpNR )
%NH2= strcat (ID, sprintf('%0.0f', SpNR ) )
NH3= strcat (ID2, sprintf( '%0.0f" , spNR)); %concatenate only 2 strings at
atime
disp(NH3)  %displays without variable name
%sptNR= sprintf('%0.0f", NicheRow )
%sptNR= sprintf('%0.0f", trNicheRow )
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%yrowprt= strcat (yrowprt , NicheRowl )

% %spfcl= sprintf('%0.0f', tANiche(;,1));
% %names = strcat(spfc3, {:::'}, spfc2);

%xyNiche = [ xyNiche char(10) yrowprt]
%names3 = [ names3 char(10) spfc4]

end %if(x1 <= 5)

%els eif (ylayout <= 120) %syntax may not be correct here
%return %exits this call function: stop niche definition
end %for ylayout= 1 : 121;%201;

%-- add routine here to take rows of NicheLayout(:,:,3)
%need to correct the code below

%for 201: -1:1
%print x row values successively
%alternate is to generate nested loop with y on outer loop, x as inner
loop
%end%for 201: - 1:1

%-- test an array output

%...example
% Creating Multi - Dimensional Arrays
% Multidimensional arrays in MATLAB are created the same way as

% two - dimensional arrays. For example, first define the 3 by 3 matrix, and
% then add a third dimension.

%A =[578;

% 019;

% 436];
%A(:,:,2) =[104;
% 356;
% 987];

%..end example

%

%Format a floating - point number using %e, %f, and %g specifiers.
%A = 1/eps;

%str_e = sprintf('%0.5e",A)

%str_f = sprintf('%0.5f',A)

%str_g = sprintf('%0.5¢g',A)

%-- end test array output

%====end of add wall and objects here

%============Add surface plot of NicheLayout (once after generated)
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%http://www.mathworks.com/help/matlab/ref/surface.html?searchHighlight=surfac

e

%surface(X,Y,Z,C) plots the parametric surface specified by X, Y, and Z, with

color specified by C.

%http://www.mathworks.com/help/matlab/ref/primitivesurface - properties.html
%CData is of type uint8, then [0 0 0] corresponds to black and [255 255 255]

corresponds to white.

%hold on; %keeps previous plot and adds new lines to it.
%hold off; %replaces previous plot.
hold off ; %not seem to work between runs

hNL= figure(  'Name' , 'Niche Layout' , 'NumberTitle' ,'off ... %figure with handle
hNL
'MenuBar' , 'none' , 'ToolBar' , 'none' ); %figure with handle hNL
%'Visible', 'on" );%figure with handle hNL

%255 is for some othether system

%ClrData= ( [255 255 255] ; [0 0 0] );%syntax not correct

%map = [255, 255, 255

% 0,0, 0];

%colormap([255 255 255;0 0 0]);%black=255 255 255; white= 00 0

%http://www.mathworks.com/help/matlab/ref/colorspec.html
%colormap([1 1 0;0 1 1])
%colormap([1 1 1; 0 0 0]);%white=1 1 1; black=0 0 O;

%blending of colors: no grid...
%http://www.mathworks.com/help/matlab/visualize/representing -a- matrix -as-a-
surface.html
%http://www.mathworks.com/help/matlab/ref/surface.html?searchHighlight=surfac
e

%surface(XD,YD,zZD,C,...

% ‘'FaceColor','texturemap’,...

% 'EdgeColor','none’,...

% 'CDataMapping','direct)

% to remove grid, so use: 'EdgeColor’,'none’,...

%CData is color data, as zero or one for this matrix
hNHs1=surf( NicheLayout(:,:,1) , NicheLayout(:,:,2) , NicheLayout(;,:,3),
'CData’ , NichelLayout(:,:,3),
'EdgeColor' , 'none' ); %no grid drawn? or set to 'w' for white or [1 1 1]
colormap([1 1 1; 0 0 0)); %white=1 1 1; black=0 0 0;
%surf differs from surface
%hNHs1=surface(NicheLayout(:,:,1) , NicheLayout(:,:,2) ,
NicheLayout(:,:,3),...
% '‘CData’, NichelLayout(:,:,3));

%http://www.mathworks.com/help/matlab/ref/axis.html

%axis(limits) sets the limits for the current axes.

%If the current axes is a Cartesian axes, then specify limits as a

%four - element vector of the form [xmin xmax ymin ymax] to set the

%x axisandy - axis limits. To also set the z - axis limits,

%specify a six - element vector. To also set the color limits, specify an

%eight - element vector. If the current axes is a polar axes, then specify

%limits as a four - element vector to set the theta -axisandr - axis limits.
Y%axis([xmin xmax ymin ymax zmin zmax] );
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%axis(| -10 110 -10 110 0 2 ])
axis( -5 105 -51050 2 ]);

%hold on; %keeps previous plot and adds new lines to it.
%View the object from directly overhead: azimuth, elevation.
%az = 0; %el = 90;

view(0, 90); %azimuth, elevation

%view( - 35,45);

%refresh(hNL);%not needed?

%refresh(hNHs1);%  block error: why%

spctimeinl= ctimeinl %print to see if reach here

%Ctrl - [break/pause] key to stop the program

%next 3 lines force an error and stops program run 'Name' not allowed here.
%hNHs2=surface(NicheLayout(:,:,1) , NicheLayout(:,:,2) ,
NicheLayout(:,:,3),...

% ‘Name',"JunkNiche LayoutJunk’,...

% '‘CData’, NichelLayout(:,:,3));

%===========end Add surface plot

end; %if (ctimeinl ==0);%create Niche at time=0
%y = NichelLayout;

xgrid = NicheLayout(:,:,1);

ygrid = NicheLayout(:,:, 2);
WallObj = NichelLayout(;,:,3);
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PERCEPTS: Subsystem ML 1RSen01 value

function [[RSen01, yGain, yIR, xOut, yOut, aGainOut, bGainOut, BotHead,
IRHead,xFixMin, yFixMin, xFixMax, yFixMax]= IRSen01fcn(u)

%function [IRSen01, BotHead, IRHead]= IRSen01fcn(u) %#codegen
%Use to determine if IRSen01 detects a wall.

global  NicheLayout; %from NICHE section ML function; 201X201X1 init
%know previous behavior for changes

global  aGain;

global  bGain; %keeps values between loops

global daGain;

global  dbGain; %keeps values between loops

global  heading;

global  speed; %keeps values between loops

global  HoldTimeAll dtimeall ; %keeps values between loops

global  IRSen01Dist IRSen01Min IRSen01Max; %Use in AHEAD_AVOID and/or
FIND_SEEK;

global  ANO1; %AN 0=off, 1=0n

global xReadingFi xPlot yReadingFixPlot; %Plot IR distance boundary

global xReadingMinPlot yReadingMinPlot; %PIlot Min IR distance boundary
persistent IROffset IRHeading IRO1Prev; %headng IR sensor is pointing
persistent IRReading; %distance reading convert from voltage

persistent xReading yReading; %

persistent xReadingMin yReadingMin; %

persistent IRDistMax; %closeness value to trigger sensor (may use later?)
%persistent HoldyTest;%allow only +1 yTest increment (previous value)

coder.extrinsic( 'sprintf’ , 'strcat' );
coder.extrinsic( ‘format’ , 'display’ );
coder.extrinsic( find' );

if isempty(IROffset);

IROffset= pi()/6; % pi()/6= 180/6= 30 degrees% pi()/4= 180/4= 45 degrees
%for ANNum calc in EXPLORE as 30 default; need reset for any other angle

% actually in EnabledSybsystem/ML EXPLORE C1*

IRReading= 100;  %init as far from any object

xReading=0;

yReading=0;

xReadingMin=0;
yReadingMin=0;
XTest=0;
yTest=0;
IRDistMax= IRSen01Max;  %60;%28;%initial value %Setting as 28cm=11in.
closeness boundary to cue AVOID
%2016-7- 22F global variables handle in multiple routines.
%Must also change in Context function: Fitnessfcn(ctimein02,u)
%about line 89: if (IR01cm < 40);%28);%//28cm=11in//25 cm=10in
%may set IRDistMax in another function
%Also change in AHEAD_AVOID function line 57 as base to divide into.

%HoldyTest=1;%allow only +1 yTest increment (previous value)
%NewyTest=1;%allow only +1 yTest increment (new calced value)
end; %if isempty(IROffset)

IRHeading= heading - IROffset; %heading IR sensor is pointing; neg=CW
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%initialize

IR01=100;

yTest=1;

HoldyTest=1; %eallow only +1 yTest increment (previous value)
NewyTest=1; %allow only +1 yTest increment (new calced value)

%===see items needed below: trig
%also: AVOID change heading?

%9%%%%%%%%%%%% %% %% %% ANticipation additions %%%%%%%%%%%%%%%%%%%%
%set test value for distance with or w/o AN 2016 -7- 25; 4:30pm.
if  (ANO1>0); %ANIison
IRSen01Test= IRSen01Max;  %wide range
else ; %AN01=0: AN off
IRSen01Test= IRSen01Min; %narrow range
end; %if (ANO1 > 0);%AN is on
%% %% VP00 % % %% %% END ANticipation additions %%%%%%%%% % %% %% %% %% %% %%

%(aGain,bGain) is (x,y) in area; assumed as IRSen01 location (stretch?)
%(daGain,dbGain) are previous moves in (dx, dy) directions.

%Agent is pointing in heading absolute direction in area.

9%8RSen01 is pointing in IRHeading absolute direction in area.

%?2016- 09- 23F revised test distance

xDelta= IRSen01Test* cos (IRHeading);

yDelta= IRSen01Test* sin (IRHeading);

xReading= aGain + IRSen01Test* cos (IRHeading);
yReading= bGain + IRSen01Test* sin (IRHeading);
xReadingMin= aGain + IRSen01Min* cos (IRHeading);
yReadingMin= bGain + IRSen01Min* sin (IRHeading);

%0Id calc using IRDistMax

%xDelta= IRDistMax* cos (IRHeading);

%yDelta= IRDistMax* sin (IRHeading);

%xReading= aGain + IRDistMax* cos (I RHeading);
%yReading= bGain + IRDistMax* sin (IRHeading);

%next line for debug to stop at a specific time range.

if (HoldTimeAll > 3.4 && HoldTimeAll < 3.6);

%if (HoldTimeAll > 3 && HoldTimeAll < 4);
ARunTime2=HoldTimeAll;  %exit for loop
Junk=1;

end; %(HoldTimeAll > 3 && HoldTimeAll < 4);

Yo++++++++++++++++ttt b+

%must check if pointed directly +/ -xor+/ -y forinfinite value
%::::::::::::::::::::::::::::::::

%=====is IRHeading in positive x dir

if (xReading > aGain); %positive x dir
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xStepOne=1; %add in extra step

elseif (xReading == aGain); %along y axis ( need double equal signs)
xStepOne= 1,

else ; %xReading < aGain: neg x dir
xStepOne= - 1;

end; %if (xReading > aGain);%positive x dir

%=====is IRHeading in positive y dir
if (yReading > bGain); %positive y dir
yStepOne=1; %add in extra step

elseif (yReading == bGain); %along x axis (need double equal signs)
yStepOne= 1,

else ; %xReading < aGain: neg x dir
yStepOne= - 1;

end; %if (xReading > aGain);%positive x dir

[mMMax,nMax,qMax ] = size(NicheLayout);
%[m,n] = size(X) example f size return ML help

xFixMin=min(fix(aGain), fix(xReading) );
xFixMax=max(fix(aGain), fix(xReading) );
yFixMin=min(fix(bGain), fix(yReading) );
yFixMax=max(fix(bGain), fix(yReading) );

[XMinIndex, xcoll]= find(NicheLayout(:,:,1)>=xFixMin,1, first' );
%k = find(X,4,'last’)

[yMinIndex, ycoll]= find(NicheLayout(:,:,2)>=yFixMin,1, first' );

%==========|IR range aGain to xReading, bGain to yReading=======

aGainFix=max(fix(aGain), 1);
bGainFix=max(fix(bGain), 1 );
%Plot of xReading & yReading

xReadingFixPlot=fix(xReading); %PIlot on final path graph
yReadingFixPlot=fix(yReading); %PIlot on final path graph
xReadingMinPlot=fix(xReadingMin); %PIlot on final path graph
yReadingMinPlot=fix(yReadingMin); %Plot on final path graph

%xReading and yReading can be calculated outside arena
xReadingFix=max(fix(xReading), 1 );

xReadingFix=min(fix(xReading), mMax); %100 );%above [mMax,nMax,qMax | =
size(NicheLayout);

yReadingFix=max(fix(yReading), 1 );

yReadingFix=min(fix(yReading), nMax); %100 );% above[mMax,nMax,gMax ] =
size(NicheLayout);

%Bounded Plot of xReading & yReading
%xReadingFixPlot=min(100,xReadingFix);%Plot on final path graph

%yReadingFixPlot=" min(100,yReadingFix);%Plot on final path graph
%xReadingFixPlot=max(0,xReadingFixPlot);%Plot on final path graph
%yReadingFixPlot=max(0,yReadingFixPlot);%Plot on final path graph
%==========END IR range aGain to xReading, bGain to yReading=======
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if  (xFixMin < NicheLayout(1,1,1));

SpNR= aGain;
ID= sprintf( '%03d" , xFixMin);
ID2= strcat (ID, char(58) ); %add a colon: as char(58)

%http://www.mathworks.com/help/matlab/ref/char.html?searchHighlight=char

%NH= sprintf('%0.0f', xlayout, spNR )

%NH2= strcat (ID, sprintf('%0.0f', SpNR ) )

%formatSpec = 'The array is %dx%d.";

%Al = 2;

%A2 = 3;

%str = sprintf(formatSpec,A1,A2)

NH3= strcat (ID2, sprintf( ' =xFixMin, HALTED: aGain= %0.0f' , SPNR)
); %concat enate only 2 strings at a time

disp(NH3)  %displays without variable name
elseif (xFixMax > NicheLayout(mMax,nMax,1) );

spNR= aGain;
ID= sprintf( '%03d" , xFixMax);
ID2= strcat (ID, char(58) ); %add a colon: as char(58)

%http://www.mathworks.com/help/matlab/ref/char.html?searchHighlight=char
%NH= sprintf('%0.0f', xlayout, SpNR )
%NH2= strcat (ID, sprintf('%0.0f", spNR ) )
%formatSpec = 'The array is %dx%d.";
%Al = 2,
%A2 = 3;
%str = sprintf(formatSpec,A1,A2)
NH3= strcat (ID2, sprintf( ' =xFixMax, HALTED: aGain= %0.0f' , SPNR)
); %concatenate only 2 strings at a time
disp(NH3)  %displays without variable name
else
%continue
end; %(xFixMin < NicheLayout(1,1,1));

%need to test this in its own little program...

%fix rounds to the nearest integer toward zero (up if neg).
xfor=0; %flag leave exit for loop

yfor=0; %flag leave exit for loop

IRO1Prev=IR01,;

% * * * * * * * * * * * *

%2016-1- 22F; 7pm

%need to locate max and min values in NicheLayout(x,y,z) to stay in niche
% * * * * * * * * * * * *

%LoopMin=min(aGain, xReading);
%LoopMax=max(aGain, xReading);
% * * * * * * * * * * * *

%******next line wrong: has upper end as neg, So |00ps once. **xrkkkkkiik
%for xTest= fix(aGain)+ xStepOne : 1 : fix(xReading)+ xStepOne;%xStepOne set
above based on pos or neg direction
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Qp*rrxxiixkNeed work here. 2016 -1- 25M, 2:34pm
%see changed (but seems wrong) code in : IRSen01fcnSeemsOverWriting.m
%next 2 lines need revision for looping of x and y distances
for xTest= aGainFix : xStepOne : xReadingFix; %xStepOne: aGain to xReading
%for xTest= xFixMin : 1 : xFixMax;%xStepOne may not be needed anymore
%for xTest= fix(aGain)+ xStepOne : xStepOne : fix(xReading)+
xStepOne;%xStepOne set above based on pos or neg direction
%floor rounds towards neg infinity: rounds down, or truncate.
%first time through loop is tested below as: if (xTest<= xFixMin);%first
time through loop

%------ for bGainFix to yReadingFix
if (aGainFix ~= xReadingFix); %not divide by zero
xFactor=abs( (xTest - aGainFix)/(fix(xReading) - aGainFix) );
yTest= bGainFix + floor (xFactor * (fix(yReading) - bGainFix) ); %linear y

value along line
%Chnaged two lines below to get range for XReading & YReading correct.
% 2016 -7- 8F; 2:30pm
%xFactor=abs( (xTest - aGainFix)/(xReadingFix - aGainFix) );
%yTest= bGainFix + floor (xFactor * (yRead ingFix - bGainFix) );%lineary
value along line
testXReading=fix(xReading); %view variable values
testYReading=fix(yReading); %view variable values
testYReading;  %oview variable values
else ;
yTest = bGainFix; %keep at one value: maybe should be changed...step through
y values
end; % if (xFixMax > xFixMin)
%------ END for bGainFix to yReadingFix

%------ replaced for bGainFix to yReadingFix

%if (xFixMax > xFixMin);%not divide by zero

% yTest= yFixMin + floor ( ( (xTest - XFixMin)/(xFixMax - XFixMi n)) *
(yFixMax - yFixMin) );%linear y value along line

%else;

% yTest = yFixMin;%keep at one value: maybe should be changed...step through
y values

%end;% if (xFixMax > xFixMin)

%------ END replace for bGainFix to yReadingFix

%for yTest= yFixMin : 1 : yFixMax;%yStepOne may not be needed anymore

%Trig still needed even if min and max values used for both x and y

directions
%want a line traveled, not a square
%yTest= fix(bGain) + fix( (xTest - aGain)*sin(IRHeading) );%yStepOne set

above based on pos or neg direction

%--- for range: bGain to yReading; may not be correct place -

if (XTest==aGainFix); %first time through loop
HoldyTest= yTest; %force OK for 1st yTest value
xReading;
yReading;
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IRHeading;
HoldTimeAll;
HoldyTest=max(yTest, 1);
end; %if (xTest== xFixMin);
%--- not seem to be correct place = ---—--

%--- before range bGain to yReading; may not be correct place -
% if (XTest<= xFixMin);%first time through loop
% HoldyTest= yTest;%force OK for 1st yTest value
% xReading;
% yReading;
% IRHeading;
% HoldTimeAll;
% HoldyTest=max(yTest, 1);
% end;%if (XTest== xFixMin);
%--- not seem to be correct place = -

%constrain in NichELayout index bounds

xTest= max(xTest, 1); % NichelLayout(1,1,1) );% 1 is y value
xTest= min(xTest, mMax); %NicheLayout(mMax,nMax,1) );%1 is y value
yTest= max(yTest, 1); %NicheLayout(1,1,2) );% 2 is y value
yTest= min(yTest, nMax); %NicheLayout(mMax,nMax,2) );%?2 is y value

%.....is the NicheLayout value a one (solid)

%........ time checK........oovveiiiiiiieeienn.
if (HoldTimeAll<10);
ATime= HoldTimeAll;
end; %if (HoldTimeAll<10);
%..ccn.... end of time check............ceeen....

%look for wall location
%if ((yTest >= 2) && (yTest <= 4));%wall in y dir

% if (xTest >=1) && (XTest <= 50));%may go to 80; wall in x dir
% xTextck= xTest;

% yTestck=yTest;

% Nicheck= NicheLayout(xTest,yTest,3);

% StopHereck=0;

% end;%if (xTest >= 2) && (xTest <= 4);%wall in x dir

%end;%if (yTest >= 2) && (yTest <= 4);%wall in y dir

%Endlook for walllocation

NewyTest= yTest;  %allow only +1 or - lincrements in yTest
for incTes t= HoldyTest: yStepOne : NewyTest; %increment only by 1 for each
test

%for incTest= HoldyTest : 1 : NewyTest;%increment only by 1 for each test
if (XTest<1);
xTest;
xTest=1,;
%break;%exit for loop for yTest
end; %if (xfor == 1)

if (incTest<1);
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incTest;

incTest=1,;

%break;%exit for loop for yTest
end; %if (xfor == 1)

if  ( NicheLayout(xTest,incTest,3)==1); %solid object detected at this

distance

xfor=1;

yfor=1;

aRunTimel=HoldTimeAll;  %previous time likely...

xdist= NicheLayout(xTest,incTest,1) - aGain; %xTest - aGain;%cos(xTest
aGain);

ydist= NicheLayout(xTest,incTest,2) - bGain; %yTest - bGain;%sin(yTest
bGain);

IR01= sqrt(xdist*xdist + ydist*ydist); %Pythagorus distance

IRO1=min(IRO1Prev,IR01);
IRO1Prev=IR01;

elseif (yfor == 0); %not solid object and none yet found in IR path scan
IR01=100; %set outside of range to cue close to object
else ;

%continue
end; %if ( NicheLayout(xTest,yTest,3)==1)

if (yfor ==1);
break ; %exit for loop for yTest
end; %if (xfor == 1)

end; %for incTest= HoldyTest : 1 : NewyTest;

%In wrong place?: HoldyTest= yTest;%hold for test increment=1 for each test.
%end;%for yTest= yFixMin : 1 : yFixMax;%yStepOne may not be needed anymore

HoldyTest= yTest; %hold for test increment=1 for each test.

if  (xfor ==1);
break ; %exit for loop for xTest
end; %if (xfor == 1)

%xOut=fix(xTest);%

%yOut=fix(yTest);%
end; %for xTest= xFixMin : 1 : xFixMax;%xStepOne may not be needed
anymore%was:for xTest= aGain : 1 : fix(xReading)...

%next line for debug to stop at a specific time range.

if (HoldTimeAll > 6.9 && HoldTimeAll < 7.1);

%if (HoldTimeAll > 3 && HoldTimeAll < 4);
ARunTime2=HoldTimeAll;  %exit for loop
Junk=1;

end; %(HoldTimeAll > 3 && HoldTimeAll < 4);

%BotHead=heading;%for scope graph
%IRHead=IRHeading;%for scope graph
yGain=bGain; % black

yIR=yReading; %blue
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xOut=fix(xTest); % red

yOut=fix(yTest); %0;%fix(yTest);%orange

aGainOut=aGain; %track x over time

bGainOut=bGain; %track y over time

BotHead=heading; %for scope graph

IRHead=IRHeading; %for scope graph

IRSen01Dist=IR01;  %For AHEAD_AVOID and/or FIND_SEEK; Used before ANNum calc of
2017 - 0207T

%?2017- 02- 07T Used Global var. IRSen01Dist to calc ANNum later

% in CHOICE BEHAVIOR modules EXPLORE, AVOID, SEEK

%

%Below IRSen01=IR01=IRSen01Dist passed to CONTEXT routine directly for tests.
IRSen01 = IR01;  %set above in test loop
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CONTEXT: Subsystem MATLAB function2

function [BEH,XPOS,YPOS]= Fitnessfcn(ctimein02,u)

%#codegen

%2017- 0207T IR01=u(3) passsed from previous routine, and it

% was used last fall 2016 for Dissertation ANSIM runs

%2015 12- 05Sa Currently u values passed in are not used;

%only CueMoveStFBS is passed out (no scaling need ed).
global  HoldTimeAll dtimeall TotalTime; %keeps values between loops
global aGain bGain; %keeps values between loops

global tAvoidRun; %keeps values between loops

global  tSeekWait; %keeps values between loops

global  tSeekRun; %keeps value between loops

global  ANO1; %AN 0=off, 1=0n

global IRSen01Min IRSen01Max; %closest to object or wall

dtimeall=ctimein02 - HoldTimeAll;  %across all behaviors
TotalTime= TotalTime + dtimeall;

HoldTimeAll=ctimein02;

%Possibly: Reset this in behaviors, not in cue.%HoldTimeAll=
ctim ein02;%across all behaviors

persistent ctimeprev;  %keep value between loops
persistent CueMoveStFBSp tSpinWaitStart tForwStart; %keep value between loops
persistent tAvoidStart tAvoidRunFit; %

persistent tSpinDelay tSpinRunStart;

persistent tSpinRun;

persistent IRSen01Test; %set test value with or w/o AN
persistent AheadFrac; %Reduce AvoidTime by some ratio

%coder.extrinsic(‘format','display");

if isempty(CueMoveStFBSp);

%if isempty(ctimeprev);

% ctimeprev=0.0;
CueMoveStFBSp=0;

tSpinWaitStart=ctimein02; %set below as: =ctimein02;%millis();%//times start
to wait before spin
tSpinRunStart=ctimein02; %set below as: =ctimein02;%millis();

tForwStart=ctimein02;

tAvoidStart=ctimein02;

tAvoidRunFit=tAvoidRun; %=0.125 %=0.2 %0.125;%0.125s
tSpinDelay=tSeekWait; %=5.0s %6.5;%6.5s
tSpinRun=tSeekRun;  %=0.5s %2.0;%2.0s

AheadFrac=1; %total tAVOIDRunFit rotate time

%test and set correct possible value ranges 2016 -7- 25; 4pm.
if (IRSen01Min > 99); %should not occur
IRSen01Min =99;  %keep in range
elseif (IRSen01Max >99); %should not occur
IRSen01Max = 99; %keep in range
elseif  (IRSen01Min > IRSen01Max);
IRSen01Max= IRSen01Min;
end; %if (IRSen01Min > 99);%should not occur

end; %if isempty(ctimeprev)
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%moved next line here from below 2016 -7- 30A
IRO1cm=u(3); %read from IR sensor as u(3); Added to Arduino Bot code

%%%%%%%% %% % %% %% %% %% ANticipation additions %%%6%6%%%%%%%%%%%%%%%%
%set test value for distance with or w/o AN 2016 -7- 25; 4:30pm.
if  (ANO1>0); %ANIison
IRSen01Test= IRSen01Max;  %wide range
else ; %AN01=0: AN off
IRSen01Test= IRSen01Min; %narrow range
end; %if (ANO1 > 0);%AN is on

Op=============2nd set ANt|C|pat|on additions ==============
%From AVOID routine; shut off in AVOID: only here now
%keep for block comment{

%Block comment line one abo ve

%===AN should *not* be in AVOID; keep in Cue routine ML Function2
%===AVOID should just change heading; already cued to turn

%ANTticipation: AN01:0=0ff; 1=ON.
if (ANO1>0); %ANticipatio n turned on.
if (IRO1cm==100); %= equal to max distance.
%if (IRO1cm~= 100);%~= not equal to max distance.
AheadFrac=1; %minimum should never get here, but a protective test
elseif  (IRO1cm<=IRSen01Min+1)
AheadFrac=1; %minimum distance

else
%AheadFlag=1;
AheadFrac= 1/(IROlcm - IRSen01Min); %lnverse relation, asymptote zero

%AheadFrac= IRSen01Min/IR01cm;%40/IR01cm;%Base value= 40 set in Percepts
function
%if (IRO1cm < 40);%28);%//28cm=11in//25 cm=10in
%2016-7- 22F global variables handle in multiple routines.
%Must also change in Percept function: IRSen01fcn(u)
%about line 31: IRDistMax=60;%28;%initial value %Setting as 28cm=11in.
closeness boundary to cue AVOID
%Also change in AHEAD_AVOID function line 57 as base to divide into.
AheadFrac=min(1,AheadFrac); % range <=1; should not get here, but protection
end; %(ANO1 > 0);%ANTticipation turned on.
%next 2 lines for places to stop in debug
ARunTime2=ctimein02;  %exit for loop
Junk=1;
else
AheadFrac=1; %Max AVOID turn time: tAvoidRun.
end; %(ANO1 > 0);%ANticipation turned on.

%===AN should *not* be in AVOID; keep in Cue routine ML Function2
%===AVOID should just change heading; already cued to turn

%Block comment line2 follows
%keep for block comment}

%%%%%%%%%%%%%% %% END ANticipation additions %%%%%%%%%%%%%%%%%%%%%%
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%Next 2 lines not used in this function

%dtime= ctimein02 - ctimeprev;%time since last trip through loop (simulation,
not actual time)

%ctimeprev= ctimein02;%time now entered loop this time (simulation, not real
time)

%===code from Arduino:Nano20150608MvPWMSpin.t14ExtraForSLMLcode.txt

%===== void ChoiceBehavi or()
%//***********~k****************************************

Qfp [****kkkkkkm I KK KRR KNkl k
%l//Binary sketch size: 6,318 bytes (of a 30,720 byte maximum) 3:34 PM
9/1/2015

%%
%void ChoiceBehavior()
%...{
%l//Use to create function 6:10 PM 8/31/2015
%I//Cue Behavior: WAIT=0; EXPLORE=1; AVOID=2; SEEKCW=3; SEEKCCW=4; Back
only=5
%keep these values for SL and Arduino Bot
%//Cue OLD Move: Stop=0; Forward=1; Back=2; SpinCW=3; SpinCCW=4

if (ctimein02 < 1.0); %(millis() < 1000);%//1 sec

%...{//IWAIT before start
CueMoveStFBSp= 0; %l//Motion Forw, Back, Spin;
%I//Cue Behavior: WAIT=0; EXPLORE=1; AVOID=2; SEEKCW=3; SEEKCCW=4
%keep these values for SL and Arduino Bot
%l/
%//Test prints ++++++++++++++ L O
%Serial.print(CueMoveStFBSp);//Serial.print(" , *);

Serial.print(Sonar0lcm);

%Serial.printin(* =CueMoveStFBSp; millis() < 1000");

spCueMoveStFBSp= CueMoveStFBSp; %print to ML Command Window
spTotalTime= TotalTime; %print to ML Command Window
%I/

%no end needed here because of else following. %...}/end first test if
(millis() < 1000)

else
%...{
if (CueMoveStFBSp == 0)
%...{
tSpinWaitStart= ctimein02; %millis();%l//times start to wait before sp in
tForwStart=ctimein02; %millis();

CueMoveStFBSp=1;
end; %...}//EXPLORE start
%...}JJEXPLORE start
%next line moved to end of SEEKfcn inclusive loop so not AVOID at start of
at time=0
%end;%...}//end final if (millis() < 1000)
%...}//end final if (millis() < 1000)
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%//AVOID only if AVOID started (CueMoveStFBSp= 3)
% or EXPLORE current (CueMoveStFBSp= 1)
%AVOID no longer interrupts SEEK

if (CueMoveStFBSp==1 || CueMoveStFBSp== 2); %(CueEXPLORE==1 || CueAVOID==2)
Q0] e,
%moved next line above to use in ANticipation 2016 -7- 30A

%IR01cm= u(3);%read from IR sensor as u(3); Added to Arduino Bot code
if (IROlcm <IRSen0lTest); %IRSen01Min);%40);%28);%//28cm=11in//25 cm=10in
%above: AN01=0: IRSen01Min=IRSen01Test; AN01=1: IRSen01Max=IRSen01Test

%if (IRO1cm < IRSen01Max);%IRSen01Min);%40);%28);%//28cm=11in//25 cm=10in
%2016-7- 22F global variables handle in multiple routines.
%Must also change in Percept function: IRSen01fcn(u)
%about line 31: IRDistMax=60;%28;%initial value %Setting as 28cm=11in.

closeness boundary to cue AVOID

%Also change in AHEAD_AVOID function line 57 as base to divide i nto.

%...{//AVOID flag: Back & turn from wall

if (CueMoveStFBSp ~=2);  %!= 2)//not equal to 2
%...{

tAvoidStart=ctimein02; %millis();
end%...}end if (CueMoveStFBSp ~= 2)//AVOID start;

CueMoveStFBSp=2; %...//AVOID start;
%//Cue Behavior: WAIT=0; EXPLORE=1; AVOID=2; SEEKCW=3; SEEKCCW=4

if  (((ctimein02 - tAvoidStart) > tAvoidRunFit*AheadFrac) && (CueMoveStFBSp
==2)); %l/2 sec; && is AND

%if ( ((ctimein02 - tAvoidStart) > tAvoidRunFit) && (CueMoveStFBSp ==
2) );%lI12 sec; && is AND

%if ( ((millis() - tAvoidStart) > tAvoidRunFit) && (CueMoveStFBSp == 2));%//2
sec; && is AND

%...{
tSpinWaitStart= ctimein02; %millis();%l//times start to wait before spin
tForwStart=ctimein02; %millis();
CueMoveStFBSp=1; %//E XPLORE start;
%//Cue Behavior: WAIT=0; EXPLORE=1; AVOID=2; SEEKCW=3; SEEKCCW=4

end %...}//end if ( (ctimein02 - tAvoidStart) > tAvoidRunFit)
%...Y/lend if ( (millis() - tAvoidStart) > tAvoidRunFit)
%l/
%l//Test prints +++++++++++++++++++++++++++++++++ +++++++++H

%Serial.print(CueMoveStFBSp);//Serial.print(" , ");
Serial.print(Sonar0lcm);
%Serial.printin(" =CueMoveStFBSp; IRO1cm < 25");
spCueMoveStFBSp= CueMoveStFBSp; %print to ML Command Window
%!/
%no end needed here since else follows. %...}//end first test if (IRO1cm <
28) //25)
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else  %for this section, IRO1cm > 28, so not near wall
%else: if (IRO1lcm <
IRSen01Test);%IRSen01Min);%40);%28);%//28cm=11in//25 cm=10in

%...{
if  (((ctimein02 - tAvoidStart) > tAvoidRunFit*AheadFrac) && (CueMoveStFBSp
==2)); % //2 sec; && is AND
%if ( ((millis() - tAvoidStart) > tAvoidRunFit) && (CueMoveStFBSp == 2));%
/112 sec; && is AND
%...{
tSpinWaitStart= ctimein02; %millis();%!// times start to wait before spin
tForwStart=ctimein02; %millis();

CueMoveStFBSp=1; %//EXPLORE start; a
%//Cue Behavior: WAIT=0; EXPLORE=1; AVOID=2; SEEKCW=3; SEEKCCW=4

end %...}/end if ( (millis() - tAvoidStart) > tAvoidRunFit)
%...}lend if ((m illis() - tAvoidStart) > tAvoidRunFit)
%l

%I /Test pl’ints ++++++++++++++++++++++++++H+
%Serial.print(CueMoveStFBSp);//Serial.print(" , *);
Serial.print(Sonar0lcm);
%Serial.printin(" =CueMoveStFBSp; IRO1cm > 25");
spCueMoveStFBSp= CueMoveStFBSp; %print to ML Command Window
%l/

end; %if (IRO1cm < IRSen01Test);%IRSen01Min);%40);%28);%//28cm=11in//25
cm=10in

%hanges 2016 -7- 25M;4:30pm
%end %...}//end final if (IRO1cm < 28);//25)
%...}//end final if (IRO1cm < 28);//25)

%checked to here 2015 -11-16M, 1:15pm

Q] e

Sonar0lcm=u(2);

if (Sonar0lcm <0.1); %0.1 as small value out of bounds %20)//20cm

%...{//ANticipate: AVOID flag: Back & turn from wall
%l//need rule here

end %...}/end if (Sonar0lcm < 28)

%...}//lend if (SonarOlcm < 28)

end; %if (CueMoveStFBSp== 1 | CueMoveStFBSp==2); %(Cue EXPLORE || Cue AVOID

)
0p//[==== oo oo ———————
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if (CueMoveStFBSp==1); %//SEEK Spin start and test to continue/end
%...{//[EXPLORING timed for Spin of SEEK
%l/
%l//Test prints
B B I o o
%Serial.print(CueMoveStFBSp);Serial.print(" , "); Serial.print(millis()
tSpinWaitStart);
%Serial.printin(* =CueMoveStFBSp; millis() - tSpinWaitStart; CueMoveStFBSp==
1)
spCueMoveStFBSp=CueMoveStFBSp; %print to ML Command Window
%l/
if  ((ctimein02 - tSpinWaitStart) > tSpinDelay); %l//1 sec
%if (((millis() - tSpinWaitStart) > tSpinDelay);%//1 sec
%...{
tSpinWaitStart=ctimein02; %millis();
tSpinRunStart=ctimein02; %millis();
CueMoveStFBSp= 3; % 3 for SLML, but 4 for Arduino Bot;%4;%//Motion Spin;
%//Cue Behavior: WAIT=0; EXPLORE=1; AVOID=2; SEEKCW=3; SEEKCCW=4
%no end needed here since else follows. %...}/end first if ( (millis()
tSpinWaitStart> tSpinDelay)

els e %//no Spin not EXPLOREIng

%...{

CueMoveStFBSp= CueMoveStFBSp; %//no change to CueMoveStFBSp
%l//junk//let time pass by no update of start time: tSpinRunStart
%l//junk//tSpinWaitStart=millis();//Advance of start time to wait before

next SEEK Spin

end %...}//end final if ( (ctimein02 - tSpinWaitStart) > tSpinDelay)
%...}//lend final if ( (millis() - tSpinWaitStart) > tSpinDelay)

%//*****************************************

%checked to here 2015 -11-16M, 1:30pm
%rechked to here 5:35pm, 2015 -11- 16M

%no 'end' needed here since elseif follows. %...}//end first test if
(CueMoveStFBSp== 1)

%//....SEEK RUNS HERE........... SEEKRUNSHERE.............. elseif,else,end

elseif (CueMoveStFBSp==3); %3 for SLML, but 4 for Arduino Bot;%4);%//SEEK
Spin in Progress

%...{

if  ((ctimein02 - tSpinRunsStart) > tSpinRun); %I/2.0 sec

%if ( (millis() - tSpinRunStart) > tSpinRun);%//2.0 sec

%...{

%only if spin time has reached max as tSpinRu n
tSpinWaitStart=ctimein02; %millis();%l//times start to wait before spin
tSpinRunStart=ctimein02; %millis();
tForwStart=ctimein02; %millis();

CueMoveStFBSp=1; %//EXPLORE again
%//Cue Behavior: WAIT=0; EXPLORE=1; AVOID=2; SEEKCW=3; SEEKCCW=4
else ; %if ( (ctimein02 - tSpinRunStart) > tSpinRun);: SEEK strill spinning

198



%------ Check if ANO1=1ison --------mmm-
if  (ANO1>0); %ANison
%set above: IRSen01Test= IRSen01Max;%wide range

if (IRO1cm < IRSen01Max); %object in range of IRSe n01Max
%only if object in range of IRSen01Max
tSpinWaitStart=ctimein02; %millis();%l//times start to wait before spin
tSpinRunStart=ctimein02; %millis();
tForwStart=ctimein02; %millis();

CueMoveStFBSp=1; %//EXPLORE again
%I//Cue Behavior: WAIT=0; EXPLORE=1; AVOID=2; SEEKCW=3; SEEKCCW=4

else ; %if (IRO1cm < IRSen01Max);%o0bject in range of IRSen01Max
%no change if no object in range of IRSen01Max.
end; %if (IRO1cm < IRSen01Max);%object in range of IRSen01Max

else ; %AN01=0: AN off
%no change if ANO1 not on.
end; %if (ANO1 > 0);%AN is on

%------ end Check ANO1=1lison =  ------------
end %...}//end if (ctimein02 - tSpinRunStart) > tSpinRun)
%...}/lend if (millis() - tSpinRunStart) > tSpinRun)

%no 'end' needed here since else follows. %...}//end second elseif
(CueMoveStFBSp== 3);%3 for SLML, but 4 for Arduino Bot;%4)

%...{

CueMoveStFBSp= CueMoveStFBSp; %//no change to CueMoveStFBSp
end; %...}//end final if (CueMoveStFBSp== 1)
%...}//lend final if (CueMoveStFBSp== 1)

%checked to here 1:45pm, 2015 -11- 16M

%rechked to here 5:40pm, 2015 -1- 16M

%%/

%if (((millis() - tPrint01Start) > tPrint01)

%%...{

% tTimeTrak01= millis() - tPrint01Star t;%//time gap

% tPrint01Start=millis();//reset time for printing

% Serial.print(CueMoveStFBSp);Serial.print(" , ");
Serial.print(tTimeTrak01);

% Serial.printin(" =CueMoveStFBSp, tTimeTrak01, time=tPrint01");

%end%...}//end first if ( (millis() - tPrint01  Start) > tPrint01)
%%...}/end first if ( (millis() - tPrint01Start) > tPrint01)
%%/

%no 'end' needed here since ML entire function is in this call.%...}/end:
ChoiceBehavior()

%next line moved here from above WAIT set, so no start with AVOID at time=
end; %...}//end final if (millis() < 1000)

%=====End Arduino code
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%====Time flag examine code=========

if (ctimein02> 1.1 && ctimein02< 1.2) ;
ctimein02;

end; %if (ctimein02> 17.4 && ctimein02< 18.1)

%====Time flag examine code=========

XPOS= aGai n; %show on Scopel3
YPOS= bGain; %show on Scopel3
utotal= u(1)+u(2)+u(3); %weighted sum might not be used
%y = CueMoveStFBSp;%utotal;
if  (ctimein02 == 20); % test of values at specific time
CueMoveStFBSp;
aGain;
bGain;
end; %if (ctimein02 == 19);

BEH = CueMoveStFBSp; %utotal;
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THRESHOLD COUPLING: Four potential choices

WAIT Behavior (Default): Passthrough for Case =0

EXPLORE Behavior: Passthrough for Case=1

AVOID Behavior: Passthrough for Case =3

SEEK Behavior: Passthrough for Case =4

Notefor AHEAD and FIND Behaviors:
AHEAD: routineispart of theearlier codein CONTEXT function.
FIND routineisa specific situation of the SEEK Behavior.

CHOICE BEHAVIOR: only one of four possibilitiesis manifest or activated.

WAIT Behavior (Default): Case=0; Enabled Subsystem/ML WAIT CO
function [da, db]= Waitfcn(ctimein4,u) %Code for WAIT
%#codegen

global aGain;

global  bGain; %keeps values between loops

global daGain;

global  dbGain; %keeps values between loops

global  heading;

global speed; %keeps values between loops

%global variables initialized in Data Store Memory blocks in main SL
% window.

global  HoldTimeAll dtimeall TotalTime; %keeps values between loops
%see Fitnessfcn in Context section for dtimeall
%dtimeall=ctimein4 - HoldTimeAll;%across all behaviors

%HoldTimeAll= ctimein4;%across all behaviors

%persistent dxy;%keeps values between loops
%persistent countpos;%keeps value between loops

daGain= dtimeall * O; %dtimeall * speed * cos (heading);

dbGain= dtimeall * 0 ; %dtimeall * speed * sin (heading);

aGain= aGain +daGain; %Accumulate biomass/distance in 'a’ direction.
bGain= bGain +dbGain; %Accumulate biomass/distance in 'b' direction.
da= daGain;

db= dbGain;

EXPLORE Behavior: Case=1; Enabled Subsystem2/ML EXPLORE C1
function [da, db]= EXPLOREfcn(ctimeinl,u)

%EXPLORE: fithess cues choice to EXPLORE

%Sensor readings already taken & used to decide fitness.

global  PrevBehavior;  %know previous behavior for changes
global aGain;

global  bGain; %keeps values between loops

global daGain;

global  dbGain; %keeps values between loops

global  heading;

global  speed; %keeps values between loops

global  ANO1; %ANTticipation: 0=OFF; 1=0ON

global IRSen01Dist; %IR sensor 1 distance sensed
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global IRSen01Min IRSen01Max; %closest to object or wall
global  dANNum ANNumTot ANNum@b6calc ANNum value; no commas between variables

global  HoldTimeAll dtimeall TotalTime; %keeps values between loops
%see Fitnessfcn in Context section for dtimeall

%global variables initialized in Data Store Memory blocks in main SL

% window.

coder.extrinsic( ‘format’ , 'display' , 'sprintf' , 'strcat’ );

%persistent dtimel HoldTimeZl,;
%persistent dxy;%keeps values between loops
%persistent countpos;%keeps value between loops

%if isempty(dtimel);
% dtime1=0;

% HoldTimel1=0;
%end

%dtimel= ctimeinl - HoldTimel;%remove if not needed
%HoldTimel= ctimeinl;%remove if not needed

%dtimeall=ctimeinl - HoldTimeAll;%across all behaviors
%HoldTimeAll= ctimeinl;%across all behaviors

daGain= dtimeall * speed * cos (heading);

dbGain= dtimeall * speed * sin (heading);
aGain= aGain +daGain; %Accumulate biomass/distance in 'a’ direction.
bGain= bGain +dbGain; %Accumulate biomass/distance in 'b' direction.

PrevBehavior= 1; %EXPLORE now as PrevBehavior=1

NH3= strcat (sprintf( 'in EXPLORE at %0.1  Of ,ctimeinl)); %concatenate only
2 strings at a time

%NH3= strcat (ID2, sprintf(' =tNow01, at heading= %0.0f', SpNR )
);%concatenate only 2 strings at a time

disp(NH3)  %displays without variable name

if (ctimeinl == 21); %check at specific tim e
ctimeinl;
end; % if (ctimeinl == 21);

0p=========START ANNum calc add 2017 -02-07T===============================

%++++++Set IRFactor distance to multiply by++++++
IRFactor=0; %init before IR value set for calc
if  (ANO1>0); %AN ON when ANO1=1
if (IRSen01Dist < IRSen01Max);
IRFactor= IRSen01Dist; %<50cm
else ;
IRFactor= IRSen01Makx; %=50cm
end; %if (IRSen01Dist < IRSen01Max);
else ; %NO AN when AN01=0
if (IRSen01Dist < IRSen01Min);
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IRFactor= IRSen01Dist; %<28cm
else ;
IRFactor= IRSen01Mi  n; %=28cm
end; %if (IRSen01Dist < IRSen01Min);
end; %if (ANO1 > 0);%AN ON when ANO1=1
%++++++END Set IRFactor distance to multiply by++++++

% For EXPLORE:
% Area covered by IR beam is parallelogram: Ap= sin(IROffset) * b * h
% sin(IROffset)= sin(30 deg as default)= 0.5 for 30 deg default
%for IROffset calc in PERCEPT as 30 default; need reset for any other angle
% actually in ML IRSen01 value*
% b= IRFactor [was IRSen01Dist (global var.)];
% h= DistanceTraveled= sqrt (daGain*daGain + dbGain*dbGain);
% hus the following equation:
dANNum= 0.5 * IRFactor * ( sqrt (daGain*daGain + dbGain*dbGain) );
%dANNum= 0.5 * IRSen01Dist * ( sgrt (daGain*daGain + dbGain*dbGain) );
ANNumTot= ANNumTot + dANNum;

if  (ctimeinl > 0);
ANNum= ANNumTot / ctimein1,;
end; %if (ctimeinl > 0);

% Need ANNum output in OBSERVED RESPONSE section of Architecture
% actually in MATLAB Functionl; when run is over at end time

0p=========FEND ANNum calc add 2017 -02-07T=================—===—===—===—=======

da= daGain;
db= dbGain;

AVOID Behavior: Case=2; Enabled Subsystem3/ML AVOID C2
function [daAvoid, dbAvoid, dheadAvoid,AheadFlag]= AVOIDfcn(ctimein2, cue4)
%SEEK: fitness cues choice to SEEK

%Sensor readings already taken & used to decide fitness.

global  PrevBehavior;  %know previous behavior for changes
global aGain;

global  bGain; %keeps values between loops

global  daGain;

global  dbGain; %keeps values between loops

global  heading;

%global speed;%keeps values between loops; Removed from GV list in this
module

%global tSeekWait;%keeps values between loops

global  tAvoidStart; %keeps values between loops

global  tAvoidRun; %keeps value between loops

global  AVOIDANgle; %keeps value between loops

%global variables init in Data Store Memory blocks in main SL window.
global  ANO1; %ANTticipation: 0=OFF; 1=0 N

global IRSen01Dist; %IR sensor 1 distance sensed

global IRSen01Min IRSen01Max; %closest to object or wall

global  dANNum ANNumTot ANNum@b6calc ANNum value; no commas between variables
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global  HoldTimeAll dtimeall TotalTime; %keeps values between loops
%see Fitnessfcn in Context section for dtimeall

%dtimeall=ctimein3 - HoldTimeAll;%across all behaviors

%HoldTimeAll= ctimein3;%across all behaviors

persistent HeadingStart AVOIDRateSpin; %keeps value between loops
%persistent AheadOn AheadFrac;%Flag & Reduce AvoidTime by some ratio
%persistent SEEKANgle;%keep values between loops

coder.extrinsic( ‘format’ , 'display' , 'sprintf' , 'strcat’ );
AheadFlag=0; %Not used as of 2016 -7- 30A; keeps as SL in function output.

if isempty(HeadingStart); %initialize holdtime only

HeadingStart=0.0;

AVOIDRateSpin=0.0;

daAvoid=0.0;

dbAvoid=0.0;

dheadAvoid=0.0;

%AheadOn=0.0;

%AheadFlag=0.0;

%AheadFrac=1,;

%AVOIDANgle= (1/12)* 2 * pi()

%2015 11- 21Sat AVOIDANgle as global to include in Figure plot in EXPLORE
end

tNow01= ctimein2; %time of simulation
AVOIDRateSpin= AVOIDAnNgle/tAvoidRun; %rate of spin in radians

%next line for debug to stop at a specific time range.
if (tNowO1 > 2.9 && tNowO01 < 3.4);
%if (HoldTimeAll > 3 && HoldTimeAll < 4);
ARunTime2=tNowO01; %exit for loop
Junk=1;
end; %(HoldTimeAll > 3 && HoldTimeAll < 4);

%
%Block comment line one above

%===AN should *not* be in AVOID; keep in Cue routine ML Function2
%===AVOID should just change heading; already cued to turn

%ANticipation: ANO1:0=0ff; 1=ON.
if (ANO1 > 0);%ANticipation turned on.
if IRSen01Dist== 100);%= equal to max distance.
%if (IRSen01Dist~= 100);%~= not equal to max distance.
AheadFrac=1;%mini mum should never get here, but a protective test
elseif (IRSen01Dist<= IRSen01Min+1)
AheadFrac=1;%minimum distance
else
AheadFlag=1;
AheadFrac= 1/(IRSen01Dist - IRSen01Min);%lInverse relation, asymptote zero
%AheadFrac= IRSen01Min/IRSen01Dist;%40/IRSen01Dist;%Base value= 40 set in
Percepts function
%if (IRO1cm < 40);%28);%//28cm=11in//25 cm=10in
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%2016-7- 22F global variables handle in multiple routines.
%Must also change in Percept function: IRSen01fcn(u)
%about line 31: IRDistMax=60;%28;%initial value %Setting as 28cm=11in.
closeness boundary to cue AVOID
%Also change in AHEAD_AVOID function line 57 as base to divide into.
AheadFrac=min(1,AheadFrac);% range <=1; should not get here, but protection
end;%(ANO1 > 0);%ANTticipation turned on.
%next 2 lines for places to stop in debug
ARunTime2=tNow01;%exit for loop
Junk=1;
else
AheadFrac=1;%Max AVOID turn time: tAvoidRun.
end;%(ANO1 > 0);%ANticipation turned on.

%===AN should *not* be in AVOID; keep in Cue routine ML Function2
%===AVOID should just change heading; already cued to turn

%Block comment line2 follows
%}

%if (tAvoidStart == 0 );%AVOID not started yet, start this time.
%if (PrevBehavior ~= 2 );%~= means not equal (see ML relational operators
if  (PrevBehavior ~= 2 || (PrevBehavior == 2 && tAvoidStart==0) ); %~= means
not equal (see ML relational operators
%first time to run SEEK as Behavior 3; restart timer
PrevBehavior=2;  %reset PrevBehavior
tAvoidStart = tNow01; %set tSeekStart time
HeadingStart = heading;
else %continue
end; %if (PrevBehavior ~= 2);

%replaced by above test: if (PrevBehavior ~= 3)
%if (tSeekStart == 0.0);%first time to run SEEK
% tSeekStart = tNow01;%set tSeekStart time
% HeadingStart = heading;

%else%continue

%end;%if (tSeekStart == 0.0)

%=====AVOID Sp”‘] to (1/12)* 2 * p|(): 15 deg —————————————————

%Test on next line not needed in AVOID

%if ( (tNow01 - tAvoidStart) < tAvoidRun * AheadFrac )%SEEK running
heading= heading + dtimeall * AVOIDRateSpin ;
difHead= dtimeall * AVOIDRateSpin;

SpNR= heading;

ID= sprintf( '%0.3f" , tNow01);

%ID= sprintf('%03d', tNow01);

ID2= strcat (ID, char(58) ); %add a colon: as char(58)
%http://www.mathworks.com/help/matlab/ref/char.html?searchHighlight=char
%NH= sprintf('%0.0f', xlayout, spNR )

%NH2= strcat (ID, sprintf('%0.0f", spNR ) )

%formatSpec = 'The array is %dx%d.";

%Al = 2;

%A2 = 3;

%str = sprintf(formatSpec,A1,A2)
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NH3= strcat (ID2, sprintf( ' =tNow01, AVOID at heading= %0.3f' , SPNR)
); %concatenate only 2 strings at a time

%NH3= strcat (ID2, sprintf(' =tNow01, at heading= %0.0f", SpNR )
);%concatenate only 2 strings at a time

disp(NH3)  %displays without variable nam e

PrevBehavior=2; %reset PrevBehavior

%else
%tAvoidStart = 0.0;%reset to wait for next SEEK start
%difHead= 0.0;%n0 change in heading
%PrevBehavior=2;%reset PrevBehavior

%Test end on next line not needed in AVOID
%end;%if ( (tNow01 - tAvoidS tart) < tAvoidRun)

%:::::::::Adjust - 2*pi0<heading< 2*pi():::::::::::::::::::
if (heading< - 2*pi()); %low range of heading
heading= heading + 2*pi(); %
elseif (heading > 2*pi() ); %high range of heading
heading= heading - 2%pi(); %
else %continue:  inrange
end; %if (heading < - 2*pi() );

0p========n0 move Forward/Back ==========================

daGain= dtimeall * 0; %no change; %was: dtimeall * speed * cos (heading);
dbGain= dtimeall * 0; %no change; %was: dtimeall * speed * sin (heading);
aGain= aGain +daGain; %Accumulate biomass/distance in 'a’ direction.
bGain= bGain +dbGain; %Accumulate biomass/distance in 'b' direction.

PrevBehavior= 2; %AVOID now as PrevBehavior=2
0p=========START ANNum calc add 2017 -02-07T===============================

%+++++Set IRFactor distance to multiply by++++++
IRFactor=0; %init before IR value set for calc
if  (ANO1>0); %AN ON when ANO1=1

if (IRSen01Dist < IRSen01Max);

IRFactor= IRSen01Dist; %<50cm
else ;
IRFactor= IRSen01Max; %=50cm
end; %if (IRSen01Dist < IRSen 01Max);

else ; %NO AN when AN01=0
if (IRSen01Dist < IRSen01Min);
IRFactor= IRSen01Dist; %<28cm
else ;
IRFactor= IRSen01Min; %=28cm
end; %if (IRSen01Dist < IRSen01Min);
end; %if (ANO1 > 0);%AN ON when ANO1=1
%++++++END Set IRFactor distance to multiply by++++++

% For both AHEAD_AVOID and SEEK when ANO1=1:

% Area covered by entire IR beam is triangle: At=0.5*b * h
% b= IRFactor [was IRSen01Dist (global var.)];

% h= sin(difHead) * IRSen01Dist; should work for small angles
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%Thus the following equat ion:

dANNum= 0.5 * IRFactor * ( sin(difHead) * IRFactor);
%dANNum= 0.5 * IRSen01Dist * ( sin(difHead) * IRSen01Dist);
ANNumTot= ANNumTot + dANNum;

if  (ctimein2 > 0);
ANNum= ANNumTot / ctimein2;
end; %if (ctimein2 > 0);

% Need ANNum output in OBSERVED RESPONSE section of Architecture
% actually in MATLAB Functionl; when run is over at end time

0p=========END ANNum calc add 2017 -02-07T======================—==—=========

spctimein2= ctimein2;
daAvoid= daGain;

dbAvoid= dbGain;
dheadAvoid= difHead,;
%AheadFlag=AheadOn;
spdheadAvoid= dheadAvoid;

SEEK Behavior: Case=3; Enabled Subsystem4/ML SEEK C3
function [da, db, dhead]= SEEKfcn(ctimein3, u)

%SEEK: fitness cues choice to SEEK

%Sensor readings already taken & used to decide fitness.

global  PrevBehavior;  %know previous behavior for changes
global  aGain;

global  bGain; %bkeeps values between loops

global daGain;

global  dbGain; %keeps values between loops

global  heading;

global  speed; %keeps values between loops

global tSeekWait; 9%keeps values between loops

global tSeekStart;  %keeps values between loops

global  tSeekRun; %keeps value between loops

global SEEKAnNgle; %keeps value between loops

global  ANO1; %ANTticipation: 0=OFF; 1=ON

global IRSen01Dist; %IR sensor 1 distance sensed

global IRSen01Min IRSen01Max; %closest to object or wall
global dANNum ANNumTot ANNum@bcalc ANNum value; no commas between variables
%global variables init in Data Store Memory blocks in main SL window.

global  HoldTimeAll dtimeall TotalTime; %keeps values between loops
%see Fitnessfcn in Context section for dtimeall
%dtimeall=ctimein3 - HoldTimeAll;%across all behaviors

%HoldTimeAll= ctimein3;%across all behaviors
coder.extrinsic( ‘format’ , 'display’ , 'sprintf' , 'strcat’ );

persistent HeadingStart RateSpin; %keeps value between loops
%persistent SEEKANgle;%keep values between loops
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if isempty(HeadingStart); %initialize holdtime only
HeadingStart=0;
RateSpin=0.0;
%SEEKANgle= (3/4)* 2 * pi();%(3/4)*pi();%SEEK total spin angle

%2015 11- 5R SEEKANgle as global to include in Figure plot in EXPLO RE

end

tNow01= ctimein3; %time of simulation
RateSpin= SEEKAnNgle/tSeekRun; %rate of spin in radians

%coder.extrinsic('get_param');%function defined in ML (external to program).
%coder.extrinsic('get_param','getSimulinkBlockHandle");

%tNow= get_param('Y  ourModel','SimulationTime");

%double tNow01= get param('ANSimDelay20151102M','SimulationTime");%name of SL
file

%BlockHandle = getSimulinkBlockHandle('vdp/Fcn',true);

%tNow01= get_param(BlockHandle,'SimulationTime");

if (PrevBehavior ~= 3); %-~= means not equal (see ML relational operators
%first time to run SEEK as Behavior 3; restart timer
PrevBehavior=3;  %reset PrevBehavior
tSeekStart = tNow01; %set tSeekStart time
HeadingStart = heading;
else %continue
end; %if (PrevBehavior ~= 3);

%replaced by above test: if (PrevBehavior ~= 3)
%if (tSeekStart == 0.0);%first time to run SEEK

% tSeekStart = tNow01;%set tSeekStart time

% HeadingStart = heading;

%else%continue

%end;%if (tSeekStart == 0.0)

%:::::Spin to (3/4)* 2 * pi():::::::::::::::::

if ((tNowO1l - tSeekStart) <tSeekRun) %SEEK running
heading= heading + dtimeall * RateSpin ;
difHead= dtimeall * RateSpin;

%-------- old version without dtimeall

9%{

prevHeading= heading;

deltaHead= SEEKAnNgle * ((tNow01 - tSeekStart)/tSeekRun);

%heading= HeadingStart + ( (3.0*pi()/4) * ((tNow - tSeekStart)/tSeekRun) );

heading= HeadingStart + deltaHead;%may allow for ML variable time step
difHead= heading - prevHeading;

%}
%p------- end old version without dtimeall
else
tSeekStart = 0.0; %reset to wait for next SEEK start
difHead= 0.0; %no change in heading
end; %if ( (tNow - tSeekStart) < tSeekRun)
%=========Adjust - 2*pi()<heading< 2*pi()== ====

if (heading < - 2*pi() ); %low range of heading
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heading= heading + 2*pi(); %

elseif  (heading > 2*pi() ); %high range of heading
heading= heading - 20i(); %
else %continue: in range
end; %if (heading < - 2*pi() );
0p========n0 move Forward/Back ==========================
daGain= dtimeall * 0; %no change; %was: dtimeall * speed * cos (hea ding);
dbGain= dtimeall * 0; %no change; %was: dtimeall * speed * sin (heading);
aGain= aGain +daGain; %Accumulate biomass/distance in 'a’ direction.
bGain= bGain +dbGain; %Accumulate biomass/distance in 'b' direction.

PrevBehavior= 3; %SEEK now as PrevBehav ior=3

spctimein3= ctimein3;

NH3= strcat (sprintf( 'in SEEK at %0.10f' ,ctimein3) );
strings at a time

%NH3= strcat (ID2, sprintf(' =tNow01, at heading= %0.0f", SpNR )
);%concatenate only 2 strings at a time

disp(NH3)  %display s without variable name

%nmot work: disp ('in SEEK at %0.10f',ctimein3);%shows ctimein3 without
variable name, only value show.
%(disp (ctimein3);%shows ctimein3 without variable name, only value show.

0p=========START ANNum calc add 2017 - 02- 07T===============

%++++++Set IRFactor distance to multiply by++++++
IRFactor=0; %init before IR value set for calc
if  (ANO1>0); %AN ON when ANO1=1
if (IRSen01Dist < IRSen01Max);
IRFactor= IRSen01Dist; %<50cm
else ;
IRFactor= IRSen01Makx; %=50cm
end; %if (IRSen01Dist < IRSen01Max);
else ; %NO AN when AN01=0
if (IRSen01Dist < IRSen01Min);
IRFactor= IRSen01Dist; %<28cm
else ;
IRFactor= IRSen01Min; %=28cm
end; %if (IRSen01Dist < IRSen01Min);
end; %if (ANO1 > 0);%AN ON when ANO1=1
%++++++END Set IRFactor distance to multiply by++++++

% SEEK IR beam does not respond during spin for NO AN

% thus, only count coverage for ANO1==1

% For both AHEAD_AVOID and SEEK when ANO1==1:

if (ANO1==1); %only cover area when AN is ON, for ANO1==1.
% Area covered by entire IR beam is triangle: At=0.5*b * h

% b= IRFactor [was IRSen01Dist (global var.)];

% h= sin(difHead) * IRSen01Dist; should work for small angles
%Thus the following equation:

dANNum= 0.5 * IRFactor * ( sin(difHead) * IRFactor);
%dANNum= 0.5 * IRSen01Dist * ( sin(difHead) * IRSen01Dist);
ANNumTot= ANNumTot + dANNum;
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if (ctimein3 > 0);
ANNum= ANNumTot / ctimein3;
end; %if (ctimein3 > 0);
end; %if (ANO1==1);%only cover area when AN is ON, for ANO1==1.

% Need ANNum output in OBSERVED RESPONSE  section of Architecture
% actually in MATLAB Functionl; when run is over at end time
0p=========END ANNum calc add 2017 -02-07T==================—====—==—=========

da= daGain;
db= dbGain;
dhead= difHead;
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OBSERVED RESPONSE: Subsystem MATLB Functionl

function [y, theading, tANNum, EXPLORENumOut, AVOIDNumOut, SEEKNumOut]=
Behsfcn(Beh02)

%#codegen

%2016-5- 9M 6:35pm

%size of NicheLayout: zeros(52,52,3)

global  heading;

global  StopAtTime aGain bGain; %keeps value between loops

global  HoldTimeAll dtimeall To talTime; %keeps values between loops
global  NichelLayout; %from NICHE section ML function

global  xReadingFixPlot yReadingFixPlot; %PIlot IR distance boundary
global xReadingMinPlot yReadingMinPlot; %PIlot Min IR distance boundary

global  ANO1; %AN 0=off, 1=0n
globa | IRSen01Dist; %IR sensor 1 distance sensed
global  dANNum ANNumTot ANNum@bocalc ANNum value; no commas between variables

%see Fitnessfcn in Context section for dtimeall

persistent BehM6xPts; %keeps value between loops

persistent Beh5xPts; %keeps value between loops: final print to ML Command
Window .

persistent Pos3xPts Pos2xPts Pos2xPts10th; %position values retained b/t loops

persistent IREnd01 IREndMin;  %Max & Min Ends of IR reading beam retained
between loops.

persistent count0l; %keeps value between loops

persistent HoldBeh; %keeps value between loops

persistent IRPathBotMinDist IRPathBotMaxDist;

persistent EXPLORENum AVOIDNum SEEKNum uNum;

coder.extrinsic( ‘format’ , 'display' , 'annotation' , 'sprintf' , 'strcat’
% coder.extrinsic(‘format','display’, 'sprintf', 'strcat’);

nPtsMax=160;
n10PtsMax=1+nPtsMax/10;

if isempty(BehM6xPts);
BehM6xPts=zeros(8,nPtsMax); %2016-7- 21R;size increased to 8 vs. 6
Beh5xPts=zeros(7,nPtsMax); %2016-7- 21R;size increased to 7 vs. 5
Pos3xPts=zeros(3,nPtsMax);
Pos2xPts=zeros(2,nPtsMax);
IREnd01 =zeros(2,nPtsMax); %2016- 09- 23F Plot end of IR sense reading
IREndMin =zeros(2,nPtsMax); %2016- 09- 26M Plot Min end of IR sense reading
Pos2xPts10th=zeros(2,n10PtsMax);
IRPathBotMinDist=zeros(2,3*nPtsMax); %2016- 09- 26M Plot IRPath bot to min dist
IRPathBotMaxDist=zeros(2,3*nPtsMax); %2016- 09- 23F Plot IRPath bot to max dist

count01=0;

HoldBeh= - 1;
EXPLORENuUmM=0;
AVOIDNum=0;
SEEKNum=0;
uNum=1[0 0 0];
uNumOut= [0 0 O]; %not used as of 2017 -2- 9R
EXPLORENumMOut=0;
AVOIDNumOut=0;
SEEKNumOut=0;
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end; %if isempty(BehM6xPts);

Yo+++++++++++++++++H+HHHH R

%======ANNum for each Behavior: EXPLORENum, AVOIDNum, SEEKNum
%==passed in: Beh02(1to6)= [clocktime clocktime CueEXP CueAVOID CueSEEK
CueWAIT CueAHEAD CueAHEAD]
if (Beh02(3)==1); %Beh02(3) is CueEXPLORE:0=0ff; 1=ON
EXPLORENum= EXPLORENum + dANNum;
elseif (Beh02(4)==2); %Beh02(4) is CueAVOID:0=0ff; 2=ON
AVOIDNum= AVOIDNum + dANNum;
elseif  (Beh02(5)==3); %Beh02(5) is CueSEEK:0=0ff; 3=ON
if  (ANO1==1); %when AN is ON: ANO1==1
%only change in SEEKNum when AN is ON: ANO1==1
SEEKNum= SEEKNum + dANNum;
else ; %when NO AN: ANO1==0
%No change in SEEKNum
end; %if (ANO1==1);%when AN is ON: ANO1==1
else
%no cue of EXPLORE, AVOID, or SEEK. Possibly WAIT or AHEAD
%WAIT: no accummulation of dANNum
%AheadFlag not used in AHEAD_AVOID as of 2017 -2- 9R
end; %if (Beh02(3)==1);%Beh02(3) is CueEXPLORE:0=0ff; 1=ON
uNum=[ EXPLORENum AVOIDNum SEEKNum ] ; %pass out for plot

%======END ANNum for each Behavior: EXPLORENum, AVOIDNum, SEEKNum

%Setup XYGraph in EXPLORE subsystem
%http://www.mathworks.com/help/matlab/creating_plots/access - and- modify -
property - values.html

%already declared above: global StopAtTime;

persistent holdtime2;

coder.extrinsic( ‘format’ , 'display' )

if isempty(holdtime2); %initialize holdtime only
holdtime2=0;

end

%set(0,'ShowHiddenHandles','on")

%set(gcf,'menubar’,'figure’,'toolbar','none");%add menubar to the figure

set(gcf, 'menubar’ , 'none' |, 'toolbar' , 'none' ) %no menubar or toolbar on figure
ctime2= Beh02(1); %u(1);%time from clock

%ctime= u(1);%time from clock

L oS
+

%next line for debug to stop at a specific time range.
if (HoldTimeAll > 2.9 && HoldTimeAll < 3.4);
%if (HoldTimeAll > 18.7 && HoldTimeAll < 20); 6*pi
%if (HoldTimeAll > 3 && HoldTimeAll < 4);
ARunTime2=HoldTimeAll;  %exit for loop
StopAtTime;
holdtime2;
ctime2;
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Junk=1;
end; %(HoldTimeAll > 3 && HoldTimeAll < 4);

Yot+++++++++++++++++H+HHHH R

%NOT WORKING 201607- 31U, 3:05pm
%WORKING: 2015 10- 27T, 3:30pm
%NOT WORKING as of 2015 - 10- 26M, 6:30PM

%choose only samples on each second

%ceil (x) == floor(x) from
%https://www.mathworks.com/matlabcentral/newsreader/view_thread/163080
%Persistent example

%http://stackoverflow.com/questions/16097708/storing - data -in - matrix - format -
in - simulink

%persistent mat

%if isempty(mat)

% mat = zeros(10,2);

% cnt =1; % Counter to count number of times enabled

%end

%

%if cnt <= 10

% mat(cnt,1) = A;

% mat(cnt,2) = B;

%end

%cnt = cnt + 1;

BehSize01= size(Beh02);

Pos3xPtssize= size(Pos3xPts);

%for ncoll =1:1: BehSize01(2);%check all cols
%prtncoll= ncoll;
%prtflrBeh6X190intrans=floor(Beh6X190intrans(1,ncoll))

%floor rounds a number to the next smaller integer.
if Beh02(1)==0; %/1strow, 1st col tested
countO1=count01+1,;

%limit of matrices ranges
if count0l> nPtsMax;

count01= nPtsMax; %limit of matrix index
end; %if count01> nPtsMax;%20;

BehM6xPts(:,count01)= Beh02; %first col

HoldBeh= Beh02(1); % keep value to test against next loop
%Place Positions into matrix

%from file: ANSimandML20150225W.m

%A =[578;
% 0109;
% 436];

%HoldPos=[ Beh02(1) ; aGain ; bGain ]

Pos3xPts(:,count01)=[ Beh02(1) ; aGain ; bGain J;
IRENdO1(:,count01)= [ xReadingFixPlot ; yReadingFixPlot ];
IREndMin(:,count01) = [ xReadingMinPlot ; yReadingMinPlot ];
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%below works 2 lines
%HoldPos=[ Beh02(1) ; aGain ; bGain ]
%Pos3xPts(:,count01)= HoldPos;

elseif  (floor(Beh02(1)) == Beh02(1)) && (HoldBeh < Beh02(1));
countO1=count01+1,;

%limit of matrices ranges
if countO1 > nPtsMax;

countO1= nPtsMax;  %limit of matrix index
end; %if count01> nPtsMax;%20;

BehM6xPts(:,count01)= Beh02; %Error Here; each col
%floor rounds a number to the next smaller integer.

HoldBeh= Beh02(1); % keep value to test against next loop
%Place Positions into matrix

Pos3xPts(:,count01)=[ Beh02(1) ; aGain ; bGain J;
IRENndO1(:,count01)= [ xReadingFixPlot ; yReadingFixPlot ];
IREndMin(:,count01)= [ xReadingMinPlot ; yReadingMinPlot ];

elseif ~ (Beh02(1)> (StopAtTime - 0.01) ) && (HoldBeh < StopAtTime); %max run
time=18.8496 = 6*pi()
%elseif (Beh02(1)> (StopAtTime - 0.0001) ) && (HoldBeh < StopAtTime);%max run

time=18.8496 = 6*pi()
%elseif (Beh02(1)> 9.4247) && (HoldBeh < 9.4247);%max run time=18.8496 =
6*pi()
%elseif (Beh02(1)> 18.81) && (HoldBeh < 18.81);%max run time=18.8496 =
6*pi()
%count01=count01+1;

%Use below 7 lines code if StopAtTime < 20; such as 6*pi
%comment out section

%{

BehM6xPts(:,20 )= Beh02;%each col

HoldBeh= Beh02(1);% keep value to test against next loop
BehM6xPts(1,20)= floor(BehM6xPts(1,20)+1);%each col
%Place Positions into matrix

Pos3xPts(:,20)=[ Beh02(1) ; aGain ; bGain |;
%Pos3xPts(1,20)= 19;

Pos3xPts(1,20)= flo or(Pos3xPts(1,20)+1);

9%}

%end of comment out section

format( ‘'short’ ); %see above: coder.extrinsic(‘format’,'display’)
Beh5xPts=BehM6xPts([1 3456 7 8], :) %output to ML Command Window
format( 'bank’ ); %round to 2 digits right of decimal

Pos2x Pts=Pos3xPts( [2 3], :) %output to ML Command Window

format( 'bank’ ); %round to 2 digits right of decimal

B5X20P2X20=cat(1, Beh5xPts, Pos2xPts) %output to ML Command Window

spTotalTime=TotalTime %should agree with StopAtTime (of prog) & StopTime
(of SL)

else %no action
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end %if Beh6X190intrans(1)==0;%first col tested

%Beh5X19=Behlscol([1 3 45 6], 3);

%Beh4X19=Behlscol([ 345 6], :)

%Next line needed for reference; see aabove in elseif
%Beh5xPts=BehM6xPts( [1 3 4 5 6], :)%moved to elseif for single output to
Command Window

%:::::::::Figure inserted here from EXPLORE===========================

% Graph below===================== ———————————
%http://www.mathworks.com/help/matlab/creating_plots/access - and- modify -
property - values.html

%if (ctime2 >= 18.8 );% global end is StopTime;pi()*6=9.4248

%Major length of simulation note:
%in Simulink diagram, upper left, set StopAtTime=n*pi to match value of n*pi
at top of simuation window.

%This will automatically output graph at end of simuation runtime:
StopAtTime

if (ctime2 > (StopAtTime - 0.01) )&& (holdtime2<ctime2) && (ctime2 <
StopAtTime+0.0001); % global end is StopTime;pi()*6=9.4248

%if (ctime2 > (StopAtTime - 0.01) )&& (holdtime2<ctime2) && (ctime2 <
StopAtTime+0.0001);% global end is StopTime;pi()*6=9.4248

%if (ctime2 > (StopAtTime - 0.0001) )&& (holdtime2<ctime?2) && (ctime2 <

StopAtTime+0.0001);% global end is StopTime;pi()*6=9.4248

%if (ctime > 9.4247)&& (holdtime<ctime) && (ctime < 9.4249);% global end is
StopTime;pi()*6=9.4248

%if (ctime > 18.8495)&& (holdtime<ctime) && (ctime < 18.8497);% global end is
StopTime; pi()*6=18.8496

for iFill = countO1: 1 : nPtsMax; %Fill zeros of matrix with end point
reached
%Pos2xPts=Pos3xPts( [2 3], :)%output to ML Command Window [from ab ove]
%Pos2xPts(:, iFill )= [ aGain, bGain];
Pos2xPts(;, iFill )= [ Pos2xPts(1, count01 ), Pos2xPts(2, count01 )]; %Fill
Matrix to end with last point
IREndO1(:, iFill )= [ IREnd01(1, count01 ), IREnd01(2, count01 )]; %Fill
Matrix to end with last p oint

IREndMin(;, iFill )= [ IREndMin(1, count0l1 ) , IREndMin(2, countO1
)l;  %Fill Matrix to end with last point

end; %for iFill = count01: 1 : nPtsMax;

Y----mmmmmmmm Find points to graph every 10th point ~ —=—mememme
for i10Pts = 10: 10 : nPtsMax; %Fill zeros of matrix with end point reached
%Pos2xPts=Pos3xPts( [2 3], :)%output to ML Command Window [from above]
%Pos2xPts(:, iFill )= [ aGain, bGain];
if  (i10Pts > nPtsMax);
break ;
end; %(i10Pts > n10PtsMax);
%if(i10pts == 0);%start index at 1, not zero.
% Pos2xPts10th(:, 1 )=[ Pos2xPts(1, 1), Pos2xPts(2, 1)];
%else

215



% Pos2xPts10th(:, (i10Pts/10) )=[ Pos2xPts(1, i10Pts ), Pos2xPts(2, i10Pts
l;
%end;%(i10pts == 0);
Pos2xPts10th(:, (i10Pts/10) )=[ Pos2xPts(1, i10Pts ), Pos2xPts(2, i10Pts
)I;
end; %for i10Pts = 0: 10 : nPtsMax;
Pos2xPts10th(;, n10PtsMax )=[ Pos2xPts(1, nPtsMax ), Pos2xPts(2, nPtsMax
)I;
Pos2xPts10th  %print every 10th pt.
%p------------ end Find points to graph every 10th point ~ --m-meme-

IRENdO1 %print IR end points
IREndMin  %print IR Min beam end points

%p------------ Gen path bot to min distance = -------------
for iIRminPts = 0 : 3 : 3*nPtsMax; %Join all points together
%Pos2xPts=Pos3xPts( [2 3], :)%output to ML Command Window [from above]
%Pos2xPts(:, iFill )= [ aGain, bGain];
if  (iIIRminPts > 3*nPtsMax);
break ;
end; %(i10Pts > n10PtsMax);
if ( ((IRminPts/3)+1) > nPtsMax);
break ;
end; %(i10Pts > n10PtsMax);
%if(i10pts == 0);%start index at 1, not ze ro.
% Pos2xPts10th(:, 1 )=[ Pos2xPts(1, 1), Pos2xPts(2, 1)];
%else
% Pos2xPts10th(:, (i10Pts/10) )=[ Pos2xPts(1, i10Pts ), Pos2xPts(2, i10Pts

%end;%(i10pts == 0);
%Pos2xPts10th(:, (i10Pts/10) )=[ Pos2xPts(1, i10Pts ), Pos2xPts(2, i10Pts
Ik

%IR Max dist

IRPathBotMaxDist(;, iIRminPts+1 ) = Pos2xPts(;, (iIRminPts/3)+1 );
IRPathBotMaxDist(:, iIRminPts+2 ) = IREndO1( :, (ilIRminPts/3)+1 );
IRPathBotMaxDist(;, iIRminPts+3 ) = Pos2xPts(;, (iIRminPts/3)+1 );
%IR min distance

IRPathBotMinDist(:, iIRminPts+1 ) = Pos2xPts(:, (iIIRminPts/3)+1 );

IRPathBotMinDist(:, iIRminPts+2 ) = IREndMin( :, (iIRmMinPts/3)+1 );
IRPathBotMinDist(;, iIRminPts+3 ) = Pos2xPts(;, (IRminPts/3)+1 );

end; %for iIRminPts = 1: 1 : nPtsMax;%Join all points together
%P0s2xPts10th(;, n10PtsMax )=[ Pos2xPts(1, nPtsMax ), Pos2xPts(2, nPtsMax

IRPathBotMinDist %print every Min pt.

IRPathBotMaxDist %print every Max pt.
%p------------ end Gen path bot to min distance ~ ----------

holdtime2= ctimeZ2;
showu=Beh02;

FNameO01= strcat (sprintf( '%0.0f =ANNum, INTEGRATED PATH'" ,ANNum )
); %concatenate only 2 strings at a time
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%FName01= strcat (sprintf(INTEGRATED PATH, ANNUM= %0.0f ,ANNum )
);%concatenate only 2 strings at a ti me

%NH3= strcat (sprintf('in EXPLORE at %0.10f',ctimeinl ) );%concatenate
only 2 strings at a time

%NH3= strcat (ID2, sprintf(' =tNow01, at heading= %0.0f', SpNR )
);%concatenate only 2 strings at a time

disp(FName0l1l) %displays without variable name

NameFigl= FNameO01;
%NameFigl="INTEGRATED PATH, v=15cm/s’;
if count0l == nPtsMax;
NameFigl= 'INTEGRATED PATH, Max # Points' ;
end; %if count01 == nPtsMax;

figurel = figure( ‘Tag' , 'SIMULINK_XYGRAPH_FIGURE', 'NumberTitle' , 'off'
" Name',NameFig1,
'IntegerHandle’ ,off );

% 'Name''INTEGRATED PATH, v=2cm/s',...
%fig = gcf %returns the current figure handle. If a figure does not exist,
then gcf creates a figure and returns its handle.
% Create axes
%axesl = axes(figurel,... %not work
axesl = axes( 'Parent’  figurel,
'Position’ ,[0.150 0.1500 0.81 0.7300]); %'Position',[0.130 0.2000 0.86
0.7900]);
% 'Position’,[0.11437908496732 0.178082191780822 0.853223506825338
0.718144223313517]);
%Position — Location and size of figure's drawable area: [left bottom width
height]
% 'OuterPosition’,[0.120 0.1900 0.96 0.8500]...
%OuterPosition — Location and size of figure's outer bounds: [left bottom
width height]

xPosMin= min(Pos2xPts(1,:)) - .1*abs(min(Pos2xPts(1,:))) - 1
xPosMax= max(Pos2xPts(1,:)) + .1*abs(max(Pos2xPts(1,:))) + 1;
yPosMin= min(Pos2xPts(2,:)) - .1*abs(min(Pos2xPts(2,:))) - 1
yPosMax= max(Pos2xPts(2,:)) + .1*abs(max(Pos2xPts(2,3))) + 1;
% Uncomment the following 2 lines for X - limits & Y - limits of the axes
xl im(axes1,[xPosMin xPosMax]); %[- 4 5]);
ylim(axesl,[yPosMin yPosMax]); %][- 4 5]);

% Uncomment next 2 lines to set specific axis range
xlim(axes1,[ -5110]);
ylim(axesl,[ -5110];
%xlim(axes1,[0 101]);
%ylim(axes1,[0 101]);

%xlim(axesl,] -150350]);%[ -45]);
%ylim(axes1,[ -0320]):;%[ -45));

%first plot line originally here

%line01 = line('XData',Pos2xPts(1,:),"YData',Pos2xPts(2,:),...
% 'MarkerSize', 8 , 'LineWidth', 2 ,...

% '‘Marker','square','color','black’);
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%next line from EXPLORE
%line01 = line("XData',abGain3X20(2,:),'"YData',abGain3X20(3,:),...
% '‘Marker','square','color','black’);

% Create xlabel & ylabel & title
xlabel( 'DISTANCE (x)' );
ylabel( 'DISTANCE (y)" );
%xlabel('BIOMASS/DIST (x)");
%ylabel('BIOMASS/DIST (y));
title( 'LOCATION' );

hold on;

%---------- IR Sense End Pts ~ ----------------

%Iline03 = line("XData',IREnd01(1,:),"YData',IREnd01(2,:),...

% ‘LineStyle',":','MarkerFaceColor', 'red',...

% ‘MarkerSize', 3, 'LineWidth', 2 ,...

% ‘Marker','0','color’,'red');%'LineStyle’,"', makes dots
%

%2016-9- 23F Error Caused by:
%While setting the 'Marker' property of 'Line": ‘circle’ is not a valid

value.

%Use one of these values: '+'| '0" | *' | "." | X' | 'square’ |
'diamond' | 'V' | "M | >"| '<' | 'pentagram’ | 'hexagram' | 'none’.
%---------- end IR Sense End Pts =~ ---------m--m---

%%%%%%%%%%IRPathBotMaxDist; %%%%%%%%%%%%%%%%% %% %%%%%%%%

hold on;

%o---------- IRPathBotMaxDist----------------

line04 = line( ‘XData ' ,IRPathBotMaxDist(1,:), 'YData' ,IRPathBotMaxDist(2,:),
'LineStyle’ , "', 'MarkerFaceColor' , 'blue’ ..
‘MarkerSize' .1, ‘LineWidth' v 2,
'‘Marker' ,'." ,'color' ,'blue'’ ); %'LineStyle',":', makes dots

%2016-9- 23F Error Caused by:
%While setting the 'Marker' property of 'Line": ‘circle’ is not a valid

value.

%Use one of these values: '+'| 'o" | *' | "." | X" | 'square’ |
'diamond' | 'V' | "M | >"| '<' | 'pentagram’ | 'hexagram' | 'none’.
%o---------- end IRPathBotMaxDist----------------

if (ANOl1==1); %plotif ANO1=1 =ON
%6%%%%%%%%%| RPathBotMaxDist; %%6%%% %% %% %% % %% %% % %% %% %% %% %%

hold on;
%---------- IRPathBotMinDist----------------
line05 = ling( 'XData' ,IRPathBotMinDist(1,:), 'YData' ,IRPathBotMinDist(2,:),
'LineStyle’ , -, 'MarkerFaceColor' , ‘red ..
‘MarkerSize' .1, ‘LineWidth' '3, .
‘Marker' " ,'color' ,'red" ); %'LineStyle',", makes dots
%2016-9- 26M: An error occurred while running the simulation and the

simulation was terminated
%Caused by:
%While setting the 'LineStyle' property of 'Line": *' is not a valid

value. Use one of these values: ' - e -."| 'none".
%2016-9- 23F Error Caused by:
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%While setting the 'Marker' property of 'Line": ‘circle’ is not a valid

value.

%Use one of these values: '+'|'0" | *' | "." | X' | 'square’ |
‘diamond' | 'v' | "M | >"| '<' | 'pentagram’ | 'hexagram' | 'none".
%---------- end IRPathBotMaxDist ~ ----------------

end; %If (ANO1 == 1);%plot if ANO1=1 =ON

%Path last to accent over top of IR beam.

hold on;
%First plot line moved here 2016 -9- 26M
line01 = line( ‘XData' ,Pos2xPts(1,:), ‘YData' ,Pos2xPts(2,3),
'‘MarkerSize' ,8, ‘Linewidth' |2, .
'Marker' , 'square' , ' color' , 'black’ );
hold on;
%---------- Every 10th point ~ --------m--m----
line02 = ling( 'XData' ,Pos2xPts10th(1,:), 'YData' ,Pos2xPts10th(2,:),
'LineStyle’ , 'none' , 'MarkerFaceColor' , ‘'black’ ...
‘Marker' , 'square' , ‘color’ , 'black’ );
%o---------- end Every 10th point ~ --------m-mom--
9%{

%add space after % to reactivate block
[0)

(¢4

%annotations as walls and objects in arena

%These must be made to agree manually with ML sub: Niche Layout

%dimensions in fraction of plot area

dimxywhWalls=[ 0.01 0.01 0.99 0.99 ];%dimensions as x,y lower left corner,

width&ht of plot in fraction of area

annotation(‘rectangle',dimxywhWalls,'FaceColor','cyan’,...
'Color','black’,'FaceAlpha’, 0.2,'LineWidth',2);

%transparency:FaceAlpha from 0 (transparent) to 1 (opaque)

%http://www.mathworks.com/help/matlab/ref/annotation.html?searchHighlight=ann

otate

%annotations in general

%http://www.mathworks.com/help/matlab/ref/annotationrectangle - properties.html

% 'LineWidth',2 0.5 as default

%add objects as rectangles
dimxywhObj1=[ 0.51 0.21 0.04 0.04 ];%dimensions as X,y lower left corner,
width&ht of plot in percent of area
annotation(‘rectangle’,dimxywhObj1,'FaceColor','black’,...

'‘Color','bla ck','FaceAlpha’, 1.0,'LineWidth',2);

dimxywhObj2=[ 0.21 0.51 0.04 0.04 ];%dimensions as X,y lower left corner,

width&ht of plot in percent of area

annotation(‘rectangle’,dimxywhObj2,'FaceColor','black’,...
'Color','black’,'FaceAlpha’, 1.0,'Lin eWidth',2);

%---------- end annotations =~ ----------------
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%add space after % to reactivate block

hold on;

Yo---------- plotted annotations ~ -------m-mmmee-
%http://www.mathworks.com/help/matlab/ref/annotation.html?searchHighlight=ann
otate

XxWalls =[0100100 0 0F; %walls
yWalls=[00 100 10007, %walls
plot(xWalls,yWalls, 'LineWidth' ,3, 'Color' ,'black’ );

%O0bjects defined in NICHE section

9%{

%add space after % on line above to reactivate block
%Start block comment objects 2&1

%O0ODbject 1

XxObj1 =[7073 73 70 70 ];%O0bjectl upper right
yObj1 =[70 70 73 73 70 ];%O0bjectl upper right
%xO0bjl = [ 50 53 53 50 50 ];%0bjectl center
%yObjl =[50 50 53 53 50 ];%0bjectl center
%xObjl = [ 51 54 54 51 51 ];%O0bjectl original
%yObjl =[21 21 24 24 21 ];%O0bjectl original
plot(xObj1,yObj1, 'LineWidth', 4, 'Color','black’);

90}

%add space after % on line above to reactivate block
%End block comment objects 2&1

9%{

%add space after % on line above to reactivate block
%O0ODbject 2

xObj2 =[17 20 20 17 17 ];%0bject2 lower left
yObj2 =20 20 23 23 20 ];%O0bject2 lower left
%x0bj2 =[ 21 24 24 21 21 ];%0bject2 original
%yObj2 = [ 51 51 54 54 51 ];%0bject2 original
plot(xObj2,yObj2, 'LineWidth', 4, 'Color','black’);

90}

%add space after % on line above to reactivate block
%End block comment objects 2&1

%o---------- end plotted annotations ~ -------mmemee-

%

%str = {'Straight Line Plot','from 1 to 10};

%strStart = {START'};

dimxywhsStart= [(Pos2xPts(1,1)/100)+.05 (Pos2xPts(2,1)/100) -.150.2 0.2];
%annotation('textbox',dim,'String’,str,'FitBoxToText','on");

%annotation('textbox',dimxywhStart,...

% 'String’,'START,...

% 'FitBoxToText','on',...

% 'FontWeight', 'bold’, 'Fontsize', 12,...

% ‘EdgeColor','none','FaceAlpha’, 0.2,'LineWidth',2);
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%transparency:FaceAlpha from 0 (transparent) to 1 (opaque)
%http://www.mathworks.com/help/matlab/ref/annotation.html?searchHighlight=ann

otate

%annotations in general

%http://www.mathworks.com/help/matlab/ref/annotationrectangle - properties.html

%str = {'Straight Line Plot','from 1 to 10};

%strEnd = {{END'};
dimxywhEnd=[Pos2xPts(1,nPtsMax)/100+.05 Pos2xPts(2,nPtsMax)/100 -.15.3 .3];

%annotation(‘textbox’,dimxywhEnd,'String','END','FitBoxToText','on’,..

% 'FontWeight', 'bold’, 'Fontsize', 12,...

% 'EdgeColor','none','FaceAlpha’, 0.2,'LineWidth',2);
%

refresh(figurel); %redraws the figure identified by h.

%%see above: coder.extrinsic(‘format','display")

%format bank;%display 2 sig figs to right of decimal
%showabGain3X20=abGain3X20 % print to Command Window
%%disp(abGain3X20) % display in Command Window

Pos2xPts10th  %show every 10th point darker

%======Print of ANNum value============
spTotalTime=TotalTime %should agree with StopAtTime (of prog) & StopTime
(of SL)

%prtdANNum= dANNum %leave semicolon off to print it
prtANNumTot= ANNumTot  %leave semicolon off to print it
prtANNum= ANNum %leave semicolon off to print it

%====== END Print of ANNum va lue============
end; %if (ctime2 > (StopAtTime - 0.0001) )&& (holdtime2<ctime?2) && (ctime2 <
StopAtTime+0.0001);
%=========end of Figure inserted here from EXPLORE====== =====
%======Matrix create examples
%% Creating Multi - Dimensional Ar  rays

% Multidimensional arrays in MATLAB are created the same way as
% two - dimensional arrays. For example, first define the 3 by 3 matrix, and
% then add a third dimension.

%A =[578;

% 019;

% 436];

%A(:;,:,2) =[10 4;

% 35 6;
% 987];
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%%

% The CAT function is a useful tool for building multidimensional arrays.
% B = cat(DIM,A1,A2,...) builds a multidimensional array by concatenating
% Al, A2 ... along the dimension DIM.

%B =cat(3,[28;05],[13;79],[23; 4 6]); %cat along 3rd dimension
% where A1=[2 8; 0 5], A2=[1 3; 7 9], and A3=[2 3; 4 6]

%%
% Calls to CAT can be nested.

%A = cat(3,[9 2; 6 5], [7 1; 8 4]);
%B = cat(3,[35; 01], [56; 21)]);
%C = cat(4,A,B,cat(3,[1 2; 3 4], [4 3; 2 1]));%cat on 4th dimension

%% Finding the Dimensions
% SIZE and NDIMS return the size and number of dimensions of matrices.

%SzA = size(A);
%DimsA = ndims(A);
%SzC = size(C);
%DimsC = ndims(C);

%% Accessing Elements

% To access a single element of a multidimensional array, use integer
% subscripts. For example D(1,2,2,22), using D defined in the previous
% slide, returns 6.

%

% Array subscripts can also be vectors. For example:

%K = C(:,;,1,[1 3]);

%% Selecting 2D Matrices From Multi - Dimensional Array S
% Functions like EIG that operate on planes or 2D matrices do not accept
% multi - dimensional arrays as arguments. To apply such functions to
% different planes of the multidimensional arrays, use indexing or FOR

% loops. For example:

%A =cat(3,[123;987;465],[032;884;535], ...

% [647,685;543));

% The EIG function is applied to each of the horizontal 'slices' of A.
%fori=1:3

% eig(squeeze(A(i,:,)))

%======end matrix create examples
%%

theading=heading;

tANNum=ANNum;

uNumOut=uNum;

if (ctime2==0); %output to graph
EXPLORENuUmMOuUt=EXPLORENum;
AVOIDNumOut=AVOIDNum;
SEEKNumOuUt=SEEKNum;

else
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EXPLORENumMOut=EXPLORENum/ctime2;
AVOIDNumOut=AVOIDNum/ctime2;
SEEKNumOut=SEEKNum/ctime2;

end; %if (ctime2>0);

y = Beh5xPts;
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ARDUINO PROGRAM

Program for Arduino Nano processor (file: Nan020161102WvPWMSpinAvoidANO1PhD.txt

/*

[[===11:14 AM 11/2/2016W Nano020161102WvPWMSpinAvoidANO1PhD.ino & *.txt
/[===1:38 PM 6/8/2015 Nan020150608MvPWMSpin.ino & *.txt

[[===2:31 PM 2/21/2015Sat Nano020150221SatPWMBot.ino & *.txt

/I===11:17 AM 12/31/2014W NanoPWMBo0t20141231W.ino & *.txt

/[===10:28 AM 1/8/2014 BIlink20140108.in0 & *.txt

113:59 PM 11/4/2016
/Ihttps://www.arduino.cc/en/Guide/Troubleshooting#upload
//lhad to press reset button during upload to Nano

parts also taken from (on 2:33 PM 2/21/2015):
===7:56 PM 6/18/2014 NanoSDLCD20140618W.ino & *.txt
*/

I

/~k
Blink
Turns on an LED on for one second, then off for one second, repeatedly.

This example code is itne public domain.
*/

/*

===2:36 PM 2/21/2015

Nano Pin descriptions

Pin assignments:

PWM: 3,5,6,9,10,11

Digital:

D00: RX programming

DO1: TX programming

D02: RelayBd1IN1and2DO02 (Orange)
D03: PWM MotPWMDO03  (Yellow)
D04: RelayBd2IN1and2D04 (Green)

D05: PWM MotPWMDO5  (Blue)

D06: open PWM (Brown) (reserve for: Sonar01CueD06)
DO7: open (White) (reserve for: SonarO1EchoDQ7)
D08: open ANO1 (Orange)

D09: open PWM (Yellow)
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D10: open PWM (add: SD card: CS sampling output) (Green)

D11: open PWM (add: SD card: MOSI) (Blue)
D12: open (add: SD card: MISO) (Brown)
D13: open (add: SD card: SCLK) (White)
Analog:

A00/D14: open (add?: Photocell (Green))

A01/D15: open(add?: Thermister(Yellow))

A02/D16: open (IRO1A02 (Green)) 1:39 PM 6/27/2015
A03/D17: open (add?: MotA2 (Blue))

A04/D18: open (add?: MotAl (Brown))

A05/D19: open (add?: MotB2 (White))

A06: open (add: (cannot be digital)(Yellow))

AQ7: open (add: (cannot be digital)(Green))

http://forum.arduino.cc/index.php?topic=48864.0

Re: Making an analog pin output a signal Response

Jul 17, 2010, 10:35 pm Last Edit: Jul 17, 2010, 10:36 pm by AWOL Reason: 1
Digital pins 14 to 19 are analogue pins O to 5.

Just sethem up as normal digital pins.
http://arduino.cc/en/Reference/PinMode

(next line conflicts with above, so try 14 to 19 first)

The analog input pins can be used as digital pins, referred to as A0, Al, etc.

*/

/I Pin 13 has an LED connected on mosiuAno boards.
/I give it a name:

/[[PWM pins 3,5,6,9,10,11

intled = 13;

int RelayBd1IN1and2D02 = 2;

int MotPWMDO3 = 3;

int RelayBd2IN1and2D04 = 4;

int MotPWMDO5 = 5;

int Sonar01CueD06= 6;

int Sonar01EchoD07= 7;

float SonarOlcm:;//distance in cm

int ANO1p08=8;//Anticipation cue pin 8

/lanalog pins

int IROLAO02= 2;//Analog AO2 chan

float IRO1cm= 0;//cm distance for IRO1cm on A02

float IRSen01Test= 100;//cm distance scaled for ANO1 on

float IRSen01Min= 28;//cm distance min for scaling ANO1 on
float IRSen01Max=50;//50;//cm distance max for scaling ANO1 on
float AheadFrac= 1;//scaling of timing for AVOID
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//IMovement Cue
int CueMoveStFBSp= 0;//Motion Forw, Back, Spin; 12:56 PM 6/9/2015
//Cue Move: Stop=0; Forward=1; Back=2; SpinCW=3; SpinCCW=4

/[Anticipation: ANO1=0(OFF); =1(ON)
int ANO1= O;//Anticipation: ANO1=0(OFF); =1(ON) 12:07 PM 11/2/2016

/lfan not in use 12:13 PM 6/9/2015
int fanon = 0;

//****************************************************

/[Timers 11:54 AM 6/9/2015; millis() is unsigned long
//12:38 PM 6/9/2015 Binary sketch size: 2,908 bytes (of a 30,720 byte maximum)
/[Forward
unsigned long tForwStart=millis();//set Forward start time
unsigned long tForw01=8140;//8140=8.14s//90=35%speed:1.43*2.2s=3140 //2200;//2.2s//2.7 s
default initial
/ltSpinDehy will preempt if a shorter time than tForw01; 2:49 PM 9/28/2015
/ltBack
unsigned long tBackStart=millis();//set Backward start time
unsigned long tBack01=3000;//less300=3s//90=35%speed:1.43*2.555=3650 //2550;//2.55s//3.05
s default initial
IItAVOID
unsigned long tAvoidStart=millis();//set Backward start time
unsigned long tAvoidRun=125;//125=1.25s;//150=1.5s//125=1.25s//200=0.2s//300;//0.3s //0.5s
workds AC test //2.0 s constant SEEK Spin run time
/140 for Vreg 8AAused set 3.5V on 11:38 AM 3/3/2016//125 OK for batt>5.5V
[ISpin/SEEK or AVOID
unsigned long tSpinCW01=1700;//1.7s//1.9 s default initial
unsigned long tSpinCCW01=2000;//2.0 s default initial
unsigned long tSpinDelay=6500;//6.5s//2800;//2.8s//not work right test below:1000;//1.0 s;
constant tire to delay in EXPLORE before start SEEK Spin
/ltSpinDelay will preempt if a shorter time than tForw01; 2:49 PM 9/28/2015
unsigned long tSpinRun=2000;//2.0 s constant SEEK Spin run time
unsigned long tSpinWaitStart=millis();//wait Start time in EXPLORE before start S
unsigned long tSpinRunStart=millis();//start time of SEEK Spin
/lprints
/[CueMoveStFBSp
unsigned long tPrint01Start=millis();
unsigned long tPrint01=3000;
/ltime tracks
unsigned long tTimeTrak01=0;//
unsigned long tTimeTrak02=0;//
unsigned long tTimeTrak03=0;//
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//****************************************************

/ kkkkkkkkkkkkkkkkkkkkkhkkkkkhkkkhkkkkkkkkhkkhkkkkhkkkhkkkkkkkkkkx

void Example()//Template

{

/IUse to create function

Hlend: void Example()

//****************************************************

//****************************************************

void ANSettings()//Settings for ANticipation

{
//Note: ANOL1 digitalRead in SensorsRead();//Read all sensors

11%%%%%%%%ANticipation additions from MatLab %%%%%%%%%%%%%%
//%set testistance w/ or w/o AN 2016-7-25; 4:30pm.

if (ANO1 > 0)//%AN is ON

{

IRSen01Test= IRSen01Max;//%wide range

HI%1st condition before else end: if (ANO1 > 0);//%AN is ON

else//%AN01=1: AN OFF

{

IRSen01Test= IRSen01Min;//%narrow range

Hlend;//%endfinal: if (ANO1 > 0);//%AN is ON

[ITest prints +++++++++++++++++++++++++++H+++++++++HHH
Serial.print(IRSen01Test);//Serial.print(" , *); Serial.print(Sonan@l.c
Serial.printin(" =IRSen01Test; in ANSettings");

/l====2nd set ANticipation additions===========
1[%from AVOID routlne in ML; shut off in AVOID: only here now
/1% == == ——=——=—=—=—=—=—=—=—===—==== == == ====

//%AN should *not* be in AVOID; Keep in this Arduino & Cue routine ML Function2
1I%AVOID should just change heading; already cued to turn

//%ANthlpatlon ANOl 0=0OFF; 1=ON

if (ANO1 > 0)//%ANticipation turned ON

if (IR0O1cm>=100)//%equal to ultimate distance
{

AheadFrac=1;//%mimimum shalihever get here, but a protective test
HI%1st condition before else if end: if (IR01cm=100);//%equal to ultimate distanc
else if (IRO1cm<= IRSen01Min+1)
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{

AheadFrac=1;//%minimum distance
HI%2nd condition before else end: if (IR0O1cm=100);/ifj&l to ultimate distance
else//%scaling ratio for AheadFrac

AheadFrac=1/(IRO1cARSen01Min);//[%inverse relation, asymptote zero

1/%2016-7-22F ML global variables handle in multiple routines

//%must also change in Percept function: ML IRSen01fcn(u) and Arduino Choice@ehavi
I/%ML note: about line 31: IRDistMax=60;%28;%initial value;

I/%ML note: 28cm=11in closeness boundary to cue AVOID

/%ML note: Also change in AHEAD_AVOID func line 57 as base to divide into

AheadFrac=mir{,AheadFrac);//%range <==1
Hlend;//%end final: if (IRO1cm=100);//%equal to ultimate distance

HI%1st conditon before else end: if (ANO1 > 0);//%ANticipation turned ON
else//%ANTticipation turned off

{
AheadFrac=1;//%Max AVOID turn time: tAVOIDkh

Ylend;//%end final: if (ANO1 > 0);//%ANticipation turned ON

[ITest prints +++++++++++++++++++++++++++H+++++++++HHH
Serial.print(AheadFrac);//Serial.print(" , "); Serial.print(Sonard}c
Serial.printin(" =AheadFrac; in ANSettings"

/l====2nd set ANticipation additions===========

11%%%%%%%%END ANticipation additions from MatLab %%%%%%%%%%%%%%

Hlend: void ANSettings();
//11:00 AM 11/3/2016 Binary sketch size: 8,034 bytes (of a 30,720 byte maximum)

//****************************************************

/ kkkkkkkkkkkkkkkkkkkkkhkkkkhkkkhkkkkkkkkhkkhkkhkkkhkkkhkkkkkkkkkkkx

/[Binary sketch size: 6,648 bytes (of a 30,720 byte maximum) 10:55 AM 9/2/2015
void RunBehavior()//Run the cued behavior

/ICue Behavior: WAIT=0; EXPLORE=1; AVOIER; SEEKCW=3; SEEKCCW=4; Back
only=5

switch (CueMoveStFBSp)

{

case O:
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IIWAIT
WaitStop();//WAIT for time<1s
break;

case 1:

IIEXPLORE

if ( (millis() -tForwStart) < tForw01)//

{

/[tSpinDelay will preempt if a shorter time than tForw01; 2:49 PM 9/28/2015
Forward();

Hlend first if ( (millis()-tForwStart) < tForw01))

else //no Spin not EXPLOREIng: time exceeded

{

CueMoveStFBSp= 5;//Back (or SpinCCW) after Forw time ends
/ltAvoidStart=millis();//set Avoid start time

tBackStart=millis();//Advance of start time to wait before next SEEK Spin
Ylend final if -tForwStart) > tForw01)

case 2:

I/AVOID

if ( (millis() -tAvoidStart) < tAvoidRun)

{

SpinCCW();//Back and SpinCCW; kept9:55 AM 9/15/2015
Mlend first if ( (millis()-tAvoidStart) < tAvoidRun)

else //no Spin time exceeded, Done AVOIDing

{

tSpinWaitStart= millis();//times start to wit before spin
CueMoveStFBSp= 1;//Forw after AVOID/Spin time ends
tForwStart=millis();//Advance of start time to wait before next Forw
}lend final if-tAvoidStart) < tAvoidRun)

case 3:
/ISEEK SpinCW
if ( (millis()-tSpinRunStart) < tSpinRun)

{
SpinCW();//Back and SpinCW
Hlend first if ( (millis()-tSpinRunStart) < tSpinRun)

else //no Spin time exceeded, not EXPLOREing
{
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tSpinWaitStart= millis();/times start to wait before spin
CueMoveStFBSp= 1;//Forw after SEEK/Spin time ends

tForwStart=millis();//Advance of start time to wait before next Forw
Mlend final if-tSpinRunStart) < tSpinRun)

case 4:

/ISEEK BackSpinCCW; 9:52 AM 9/15/2015
/[Previous: SEEK SpinCCW; 9:52 AM 9/15/2015
if ( (millis()-tSpinRunStart) < tSpinRun)

//IBackSpinCCW();//Back and SpinCCW;9:53 AM 9/15/2015
SpinCCW();//Back and SpinCCW; revert 11:25 AM 9/15/2015
Hlend first if ( (millis()-tSpinRunStart) < tSpinRun)

else //no Spin time exceeded, not EXPLOREing

{

tSpinWaitStart= millis();//times start to wait before spin
CueMoveStFBSp= 1;//Forw after SEEK/Spin time ends

tForwStart=millis();//Advance of start time to wait before next Forw
}lend final if-tSpinRunStart) < tSpinRun)

case 5:
//Back: straight Back
if ( (millis()-tBackStart) < tBack01)//

{
Back();//Back straight
Hlend first if ( (millis()-tBackStart) < tBack01))

else //no Spin, not Backing: time exceeded

{

tSpinWaitStart= millis();/times start to wit before spin
tForwStart=millis();//Advance of start time to wait before next Forw
CueMoveStFBSp= 1;//Forw after Back time ends

tBackStart=millis();//Advance of start time to wait before next SEEK Spin
}lend final if -tBackStart) > tBack01)

default:

/I if nothing else matches, do the default
/l default is optional
break;
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}/end switch (CueMoveStFBSp)
Hlend: void RunBehavior()

//****************************************************

//****************************************************

/[Binary sketch size: 6,318 bytes (of a 30,720 byte maximum) 3:34 PM 9/1/2015
void ChoiceBehavior()

{

/IUse to create function 6:10 PM 8/31/2015

/ICue Behavior: WAIT=0; EXPLORE=1; AVOIE2; SEEKCW=3; SEEKCCW=4; Back
only=5

//Cue OLD Move: Stop=0; Forward=1; Back=2; SpinCW=3; SpinCCW=4

if (millis() < 1000)//1 sec

{{IWAIT before start

CueMoveStFBSp= 0;//Motion Forw, Back, Spin;

//Cue Behavior: WAIT=0EXPLORE=1; AVOID=2; SEEKCW=3; SEEKCCW=4

I

//Test prints +++++++++++++++-++ -+
Serial.print(CueMoveStFBSp);//Serial.print(" , "); Serial.print(S6ham);

Serial.printin(" =CueMoveStFBSp; millis() < 1000");

I

Mlend first test if (millis() < 1000)
else

{

if (CueMoveStFBSp == 0)

{

tSpinWaitStart= millis();/times start to wait before spin
tForwStart=millis();
CueMoveStFBSp= 1;

HIEXPLORE start

Mlend final if (millis() < 1000)

1[%AVOID only if AVOID started (CueMoveStFBSp==4) or ==3 in ML

/[%AVOID no longer interrupts SEEK

/'|| is OR operator

if(CueMoveStFBSp== 1 || CueMoveStFBSp== 2)//%(Cue EXPLORE=1 || C@B&2)

/INext line changed to IRSen01Test from 28 on 2016-11-3R, 2pm
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if (IRO1cm < IRSen01Test)//%28)//28cm=11in//25 cm=10in

/IRSen01Test is either IRSen01Min(=28) or IRSen01max(=50) in ANO1Settingsi:14 P
11/3/2016

{{/AVOID flag: Back & turn from wall

if (CueMoveStFBSp != 2)//not equal to 2

{

tAvoidStart=millis();

HIAVOID start

CueMoveStFBSp= 2;//AVOID start;

/[Cue Behavior: WAIT=0; EXPLORE=1; AVOID=2; SEEKCW=3; SEEKCCW=4

if ( ((millis()-tAvoidStart) > tAvoidRun*AheadFrac) && (CueMoveStFBSp == 2)) //2 sec; &&
is AND
11%if ( ((millis()-tAvoidStart) > tAvoidRun) && (CueMoveStFBSp == 2)) //2 sec; && is AND

tSpinWaitStart= millis();//times start to wait before spin
tForwStart=millis();
CueMoveStFBSp= 1;,//EXPLORE start;
//Cue Behavior: WAIT=0; EXPLORE=1; AVOID=2; SEEKCW=3; SEEKCCW=4
Hlend if ( (millis()-tAvoidStart) > tAvoidRun)
I
//Test prints +++++++++++++++-++ -+
Serial.print(CueMoveStFBSp);//Serial.print(" , "); Serial.print(S6ham);
Serial.printin(" =CueMoveStFBSp; IRO1cm < 25");
I
Hlend first test if (IRO1cm <IRSen01Test=280r50)
else //for this section, IRO1cm>IRSen01Test=280r50, so not near wall
{
if ( ((millis()-tAvoidStart) > tAvoidRun*AheadFrac) && (CueMoveStFBSp == 2)) //2 sec; &&
is AND
11%if ( ((millis()-tAvoidStart) > tAvoidRun) && (CueMoveStFBSp == 2)) //2 sec; && is AND
{
tSpinWaitStart= millis();//times start to wit before spin
tForwStart=millis();
CueMoveStFBSp= 1;,//[EXPLORE start; a
//Cue Behavior: WAIT=0; EXPLORE=1; AVOID=2; SEEKCW=3; SEEKCCW=4
Hlend if ( (millis()-tAvoidStart) > tAvoidRun)
I
[[Test prints +++++++++++++++++++++++++++H+H+H+++++++H+H b+
Serial.print(CueMoveStFBSp);//Serial.print(" , "); Serial.print(S6ham);
Serial.printin(" =CueMoveStFBSp; IRO1cm > 25");
I

Hlend final if (IRO1cm < 25)

232



if (Sonar01lcm < 20)/&m

{//ANticipate: AVOID flag: Back & turn from wall
/Ineed rule here

Hlend if (SonarOlcm < 20)

HI%end if(CueMoveStFBSp== 1 || CueMoveStFBSp== 2)//%(Cue EXPLORE |AEG¢D);
/I'|| is OR operator

if (CueMoveStFBSp== 1)//SEEK Spin start and test to continue/end
{{IEXPLORING timed for Spin of SEEK

Il

/[Test prints

S o o o 2 O L O B e e L o
Serial.prin(CueMoveStFBSp);Serial.print(" , "); Serial.print(millig§pinWaitStart);
Serial.printin(" =CueMoveStFBSp; millis{ppinWaitStart; CueMoveStFBSp==1");
I
if ( (millis() -tSpinWaitStart) > tSpinDelay)//1 sec

tSpinWaitStart=millis();

tSpinRunStart=millis();

CueMoveStFBSp= 4;//Motion Spin;

//Cue Behavior: WAIT=0; EXPLORE=1; AVOID=2; SEEKCW=3; SEEKCCW=4
Hlend first if ( (millis()-tSpinWaitStart> tSpinDelay)

else //no Spin not EXPLOREIng

{
CueMoveStFBSp= CueMoveStFBSp;//no change to CueMoveStFBSp

/ljunk//let time pass by no update of start time: tSpinRunStart
ljunk//tSpinWaitStart=millis();//Advance of start time to wait before next SEEK Spin
Hlend final if ( (millis()-tSpinWaitStart) > tSpinDelay)

/ kkkkkkkkkkhkkkkkkkkhkkhkkhkkhkkkhkkkkkkkkkkkkkhkkkkx

}lend first test before else if: if (CueMoveStFBSp== 1)

1/%...SEEK RUNS HERE ...... SEEKRUNSHERE ...... elseif,else,end}

else if (CueMoveStFBSp== 4)//SEEK Spin in Progress //% ==3 in SLML
{
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if ( (millis()-tSpinRunStart) > tSpinRun)//2.0 sec
{

tSpinWaitStart= millis();//times start to wait before spin
tSpinRunStart=millis();

tForwStart=millis();
CueMoveStFBSp= 1;,//EXPLORE again

//ICue Behavior: WAIT=0; EXPLORE=1; AVOID=2; SEEKCW=3; SEEKCCW=4
1

[[Test prints +++++++++++++++++++++++++++H+H++++++++++HH
Serial.print(CueMoveStFBSp);//Serial.print(" , "); Serial.print(S6ham);

Serialprintin(" =CueMoveStFBSp; CueMoveStFBSp== 4"),
I

}/end 1st condition before else: if ( (millis{ppinRunStart) > tSpinRun)//2.0 sec

else//l/SEEK still spinning
{

//%---check if AN=1 is ON (decode to Arduino 4:23 PM 11/3/2016)
if (ANO1 > 0)//%AN is ON

/[%set above: IRSen01Test= IRSen01Max;%wide range

if (IRO1cm < IRSen01Max)//%object in range of IRSen01Max
{

//%only if object in range of IRSen01Max

tSpinWiStart= millis();//times start to wait before spin
tSpinRunStart=millis();
tForwStart=millis();

CueMoveStFBSp= 1;//[EXPLORE again

//ICue Behavior: WAIT=0; EXPLORE=1; AVOID=2; SEEKCW=3; SEEKCCW=4

}/1st condition before else end(iIRO1cm < IRSen01Max)//%object in range of
IRSen01Max

else//Object outside range of IRSen01Max
{

//%no change if no object in range of IRSen01Max
Mlend final: if (IRO1cm < IRSen01Max)//%object in range of IRSen01Max

}/1st condition end:if (ANO1 > 0)//%AN is ON
else//AN01=0: AN OFF

{
/Ino change if AN is not ON
Mlend final: if (ANO1 > 0)//%AN is ON
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//%---end check if AN=1 is ON (decode to Arduino 4:23 PM 11/3/2616)

/[Binary sketch size: 8,270 bytes (of a 30,720 byte maximum) 4:49 PM 11/3/2016

Hlend final: if (millis()-tSpinRunStart) > tSpinRun)//2.0 sec
Hlend second before else: if (CueMoveStFBSp== 4)

CueMoveStFBSp= CueMoveStFBSp;//no change to CueMoveStFBSp
Hlend final if (CueMoveStFBSp==1)

I
if ( (millis()-tPrint01Start) > tPrint01)

tTimeTrak01= millis()tPrint0O1Start;//time gap
tPrint01Start=millis();//reset time for printing
Serial.prinfCueMoveStFBSp);Serial.print(" , "); Serial.print(tTimeTrak01);
Serial.printin(" =CueMoveStFBSp, tTimeTrak01, time=tPrint01");

Mlend first if ( (millis()-tPrint01Start) > tPrint01)

Il

Hlend: ChoiceBehavior()

//****************************************************

/ kkkkkkkkkkkkkkkkkkkhkkhkkhkkhkkkhkkhkkkkhkkhkkkhkkkhkkkhkkkkkkkkkkkx

void ScreenPrint()
{
//Use to create function
1
Serial.print(IRO1cm); Serial.print(" , *);Serial.print(Sonar01cm);
Serial.printin(" =IR01cm,Sonar01cm”);
I

Hlend: void SceenPrint();

/ kkkkkkkkkkkkkkkkkkkkkhkkhkkkhkkkkkkkkkkkkhkkkkhkkkkkkkkkkkkkx

//****************************************************

float Sonarcm (int CuePin, int EchoPin)//12:50 PM 6/27/2015
{

//Cue and read a sonar
//4 pin sonar: HC-SR04
/Ihttp:/lwww.grook.net/howe-makeradarusing-arduino-uno
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digitalWrite(CuePin, LOW);

delayMicroseconds(2);

digitalWrite(CuePin, HIGH);

delayMicroseconds(10);

digitalWrite(CuePin, LOW);

/l Distance Calculation

float distance = pulseln(EchoPin, HIGH,5800);//58*100cmmax=5800 timeout
distance= distance/58;//distance in cm= time/58 conversion factor

/[float distance=0;//test value only

return(distance);
Hlend: float Sonarcm (CuePin,EchoPin)//12:50 PM 6/27/2015

//****************************************************

/ kkkkkkkkkkkkkkkkkkkhkkhkkhkkkhkkkhkkkkkkkkhkkkkkkkkhkkkkkkkkkkkx

void SensorsRead()//12:27 PM 6/27/2015
{
//Read as variable (1st) & store in an array (2nd)
/[Anticiption: AN01=0(OFF; =1(ON)
ANO1=digitalRead(ANO1p08);
[[Test prints ++++++++++++++++++++++++++H+++H++H++H+H+ -+
/[Serial.print(ANO1);//Serial.print(" , "); Serial.print(Sonar0lcm);
/[Serial.printin(" =ANO1; in SensorsRead");

//IRO1cm= nearby distance on A02
//SonarO1cm= far distance using Cue D06 and Echo read D07

//IRO1 read distance nearby

/INoah Stahl 5/25/2011 http://arduinomega.blogspot.com Arduino Mega 2560
/Ihttp://arduinomega.blogspot.com/2011/05/infrared-lcamygesensosgift-of. html
/[Calibration in Excel file: RobotArch20150122RCausalDiagStocks&Fide/s
ANIMIRsensor20150508F

[*===2:22 PM 6/27/2015

See file for calibration:

RobotArch20150122RCausalDiagStocks&Flows.xIs : ANIMIRsensor20150508F
IR sensor:

GP2YOAO02YKOF, 20 to 150cm

For V=<1.15:

Inverse Graph: longer distance >50 cm

y=52/V + 5

For V>1.15:

Direct Graph: close distance <50 cm

y=-18.6V+62.4

*/

//IRO1cm must be a float or double
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IRO1cm= analogRead(IRO1A02);//Initial reading

IRO1cm= IR01cm*5/1024;//Volts: calc must be on different line than analogRead(
112:20 PM 9/2/2015

/lanalogRead(): 5 volts / 1024 units, so multiply reading by *5/1024

if (IRO1cm < 1.16) //long distance > 50 cm

{

IRO1cm= 52/IR01cm + 5;//conversion to cm

}

else //short distance <50 cm
{
IRO1cm=-18.6*IR01cm + 62.4;//conversion to cm
Hlend: if (IRO1cm < 1.16)
//alternative default from:
/Ihttp://arduinomega.blogspot.com/2011/05/infrared-loanggesensosgift-of.html
/[IR0O1cm= 10650.08 * pow( IRO1cm, -0.935) - 10;
/linches=4192.936 * pow( IRO1cm, -0.935) - 3.937;

/Ihttps://www.arduino.cc/en/Serial/Print

//[Floats are similarly printed as ASCII digits, defaulting to two decimal places.

//Test prints ++++++++++++++++++-+ -+t
Serial.print(IRO1cm);//Serial.print(" , "); Serial.print(Sonar01cm);

Serialprintin(* =IR01cm; in SensorsRead");

//*****************************

//Sonar01 read distance far away

//4 pin sonar: HC-SR04
/Ihttp://lwww.grook.net/howte-makeradarusing-arduino-uno
//int Sonar01CueD06= 6; //int SonarO1EchoD07= 7,
Sonar01cm= Sonarcm(Sonar01CueD06,Sonar01EchoD07);

Hlend: void SensorsRead();//12:27 PM 6/27/2015
/[Binary sketch size: 4,660 bytes (of a 30,720 byte maximum) 4:26 PM 6/27/2015

//*******************************************************

/ kkkkkkkkkkkkkkkkkkkhkkkkhkkkkkkkkhkkhkkhkkhkkkkkkkkkkkkkkkkkkkk

void WaitStop() //8:57 AM 9/2/2015
{
//WaitStop: HIGH leaves relay at default Forward
/IHIGH is unswitched relay (NC), LOW switches relay from NC to NO
digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage lgvel
digitalWrite(RelayBd1IN1land2D02, HIGH);//RelaylIN1lon (HIGH=OFF=N&xward,;
LOW=0ON=NO=Backward )
analogWrite(MotPWMDO3, 0);//Stop speed Forward; Min=0; Max=255
digitalWrite(RelayBd2IN1and2D04, LOW);//RelayIN2off (HIGH=OFFENForward,;
LOW=0ON=NO=Backwad )
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analogWrite(MotPWMDO05, 0);//Stop speed; Min=0; Max=255
/ldelay(tSpinCW01);//=1900;//1.9 s; not needed: test in ChoiceBehavior()

Hlend: WaitStop() //8:57 AM 9/2/2015

//*******************************************************

/ kkkkkkkkkkkkkkkkkhkkhkkkkkkkkkkkhkkhkkhkkkkkkkkkkkkkkkkkkkkk

void SpinCW() //12:18 PM 6/9/2015 CW only //1:41 PM 6/8/2015
{
/ISpiInCW: HIGH leaves relay at default Forward
/IHIGH is unswitched relay (NC), LOW switches relay from NC to NO
digitalWrite(led, HIGH); // turn te LED on (HIGH is the voltage level)
digitalWrite(RelayBd1IN1and2D02, HIGH);//RelaylIN1lon (HIGH=OFF=N&*xward,;
LOW=0ON=NO=Backward )
analogWrite(MotPWMDO03, 200);//Full speed Forward; Max=255
digitalWrite(RelayBd2IN1and2D04, LOW);//RelayIN2off (HIGH=GENC=Forward;
LOW=0ON=NO=Backward )
analogWrite(MotPWMDO5, 200);//Full speed; Max=255
/ldelay(tSpinCWO01);//=1900;//1.9 s; timing in RunBehavior()
//delay(1900); Il wait for 2.#s (about)
/[delay(4000); Il wait for 4.0s

}/end: void SpinCW() //12:18 PM 6/9/2015 CW only //1:41 PM 6/8/2015

/ kkkkkkkkkkkkkkkkkhkkhkkkkkkkkkkkkkhkkhkkkkhkkkkkkkkhkkkkkkkkkk

/ kkkkkkkkkkkkkkkkkkkhkkkkkhkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkk

void BackSpinCCW() //9:45 AM 9/15/2015 //12:20 PM 6/9/2015 CCW only //1:41 PM 6/8/2015
{
1/9:43 AM 9/15/2015 obsolete for SEEK SpinCCW(), replace: BackSpinCCW()
1/9:56 AM 9/15/2015 kept SpinCCW() for AVOID
//10:45 AM 9/15/2015 Low batt<5.5V does not SpinCCW well; new batts my be OK
/[BackSpinCCW: HIGH leaves relay atfdult Forward
/IHIGH is unswitched relay (NC), LOW switches relay from NC to NO
digitalWrite(led, LOW); /I turn the LED OFF by making the voltage LOW
digitalWrite(RelayBd1IN1and2D02, LOW);//RelayIN1off (HIGH=OFFENForward,;
LOW=0ON=NO=Backward )
analogWrite(MotPWMDO03, 150);//200);//near Full speed; Max=255
digitalWrite(RelayBd2IN1and2D04, LOW);//Prev: HIGH);//RelaylN2on
(HIGH=0OFF=NC=Forward; LOW=0ON=NO=Backward )
analogWrite(MotPWMDO5, 25);//Prev: 200);//Full speed; Max=255
/ldelay(tSpinCCWO0)//=2000;//2.0 s; timing in RunBehavior()
//delay(2000); I/ wait for 1.#s
/[delay(4000); Il wait for 4.0s
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Hlend: void BackSpinCCW() //9:45 AM 9/15/2015//12:20 PM 6/9/2015 CCW only //1:41 PM
6/8/2015

/ kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkhkkhkkkkkkkkkkkkkkkkkkkkk

//*******************************************************

void SpinCCW() //12:20 PM 6/9/2015 CCW only //1:41 PM 6/8/2015
{
1/9:43 AM 9/15/2015 obsolete for SEEK SpinCCW(), replace: BackSpinCCW()
1/9:56 AM 9/15/201%ept SpinCCW() for AVOID
/ISpiInCCW: HIGH leaves relay at default Forward
/IHIGH is unswitched relay (NC), LOW switches relay from NC to NO
digitalWrite(led, LOW); /I turn the LED OFF by making the voltage LOW
digitalWrite(RelayBd1IN1and2D02, LOYV/RelayIN1loff (HIGH=OFF=NC=Forward;
LOW=0ON=NO=Backward )
analogWrite(MotPWMDO03, 200);//prev200);//Full speed Forward; Max=255
digitalWrite(RelayBd2IN1and2D04, HIGH);//RelaylIN2on (HIGH=OFF=N&xward,;
LOW=0ON=NO=Backward )
analogWrite(MotPWMDO5, 200);//prev200);//Full speed; Max=255
/ldelay(tSpinCCWO01);//=2000;//2.0 s; timing in RunBehavior()
//delay(2000); Il wait for 1.#s
/[delay(4000); Il wait for 4.0s

Hlend: void SpinCCW() //12:20 PM 6/9/2015 CCW only //1:41 PM 6/8/2015

//*******************************************************

//*******************************************************

void Forward() //1:08 PM 6/9/2015
{

/[Forward: HIGH leaves relay at default Forward

/IHIGH is unswitched relay (NC), LOW switches relay from NC to NO

digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage level)

digitalWrite(RelayBd1IN1and2D02, HIGH);//RelayIN1loff (HIGH=OHRRE=Forward,
LOW=0ON=NO=Backward )

analogWrite(MotPWMDO03, 90);//90=35% speed//125);/fldpked Forward; Max=255

/[digitalWrite(MotPWMDO03, HIGH); // turn the LED on (HIGH is the voltage lgve

digitalWrite(RelayBd2IN1and2D04, HIGH);//RelayIN2off (HIGH=OHRRE=Forward,
LOW=0ON=NO=Backward )

analogWrite(MotPWMDO05, 90);//90=35% speed//14balf speed; Max=255

/[digitalWrite(MotPWMDO5, HIGH); // turn the LED on (HIGH is the voltage lgve

/ldelay(tForw01);//=2700;//2.7 s; timing in RunBehavior()

//delay(2700); Il wait for 2.#s

//delay(4000); I/l wait f@.0s
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}/end: Forward() //1:08 PM 6/9/2015

//*******************************************************

/ kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkhkkhkkkkkkkkkkkkkkkkkkkkk

void Back() //1:09 PM 6/9/2015
{
/[Back: LOW switches relay to go Backward
digitalWrite(led, LOW); // turn the LED off by making the voltage LOW
digitalWrite(RelayBd1IN1and2D02, LOW);//RelayBd1IN1and2D02 on
(LOW=0ON=NO=Backward)
analogWrite(MotPWMDO03, 90);//90=35% speed//125);//Half speed; Max=255
/[digitalWrite(MotPWMDO03, HIGH); //wrn the LED on (HIGH is the voltage level)
digitalWrite(RelayBd2IN1and2D04, LOW);//RelayBd2IN1and2D04 on
(LOW=0ON=NO=Backward)
analogWrite(MotPWMDO05, 90);//90=35% speed//125);//Half speed; Max=255
/[digitalWrite(MotPWMDO05, HIGH); // turn the LED ofHIGH is the voltage level)
/ldelay(tBack01);//=3050;//3.05 s; timing in RunBehavior()
//delay(3000); Il wait for 3.#s
/[delay(4000); Il wait for 4.0s

Hlend: Back() //1:09 PM 6/9/2015
//1:14 PM 6/9/2015;Binary sketch size: 2,942 bytes (of a 30,720 byte maximum)

/ kkkkkkkkkkkkkkkkkhkkhkkhkkkkkkkkkkkhkkhkkhkkkhkkkkkkkkkkkkkkkkkk

/ kkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkhkkhkkhkkkhkkkkkkkkkkkkkkkkkkkk

/l the setup routine runs once when you press reset:

void setup()

{

/l initialize serial commnications at 9600 bps:

Serial.begin(9600);

/ initialize the digital pin as an output.
pinMode(led, OUTPUT);
pinMode(RelayBd1IN1and2D02, OUTPUT);
pinMode(MotPWMDO03, OUTPUT);
pinMode(RelayBd2IN1and2D04, OUTPUT);
pinMode(MotPWMDO05, OUTPUT);
digitalWrite(RelayBd1IN1and2D02, HIGH);//RelayINloff (HIGH=0OFRE, LOW=0N=NO )
digitalWrite(MotPWMDO03, LOW); // turn the LED on (HIGH is the voltage level)
digitalWrite(RelayBd2IN1and2D04, HIGH);//RelayIN2off (HIGH=OFRE, LOW=0ON=NO )
pinMode(ledO5QUTPUT); //fan High
digitalWrite(led04, LOW); // turn the LED on (HIGH is the voltage level)
digitalWrite(MotPWMDO05, LOW); // turn the LED on (HIGH is the voltage level)
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//Sonar0lcm pin directions
pinMode(Sonar01CueD06, OUTPUT);
pinMode(SoarO01EchoDO07, INPUT);

/[Anticipation pin direction
pinMode(ANO1p08, INPUT);

Hlend: void setup()

//*******************************************************

/ kkkkkkkkkkkkkkkkkhkkhkkkkkkhkkkkkkkhkkhkkkkhkkkkkkkkhkkkkkkkkkk

/l the loop routine runs over and over again forever:
void loop()

{
/[Thermistor();//F from A0l

SensorsRead();//Read all sensors
ScreenPrint();//Print to computer screen sensor readings

ANSettings();//Settings for ANticipation
ChoiceBehavior();//Choice of behavior
RunBehavior();//Run the cued behavior

/ltest back with delay
//IBack();delay(3000);//Back only; base

/* old code before 2:10 PM 9/2/2015

//IMovement cues with delays

Forward();//Forward only; base

Back();//Back only; base

Forward();//Forward only; base

Back()//Back only; base

/[ForwardBack();//Revised and gone 1:05 PM 6/9/2015; Move routine, simple
SpinCW();//Spin CW only 12:27 PM 6/9/2015

SpinCCW();//Spin CCW only 12:28 PM 6/9/2015

I/Spin();//revised and gone 12:27 PM 6/9/2015 //Spin both CW & CCW 2:08 PM 6/8/2015
*/ [lend old code before 2:10 PM 9/2/2015

for (int irun=1; irun < 11; irun++)
{/
1

/[Fan control (Extra routine)
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[[for (int irun=1; irun < 11; irun++)
1K
if (irun == 10)
{/In cycles pass
if (fanon == 0)
{/lturn fan on
fanon = 1,
digitalWrite(led05, HIGH); // turn the LED on (HIGH is the voltage level)
//delay(4000); I/l wait for a second
}

else
{/lturn fan off
fanon = 0;

digitalWrite(led05, LOW); // turn theED on (HIGH is the voltage level)
//delay(100); /[ waitfora0.1s

Ylend: if (fanon = 0)

I

}

else

{/l do nothing until n cycles

Ylend: if (irun == 20)

Y/ end: for (int irun=1; irun = 21; irun++)

Mlend: void loop()

[leof
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A4. ANTICIPATION METRIC

A specific metrilANNum) was developed for operation of the TOURIST robot considering the
distance measured by the IR beam and the area covered by the motion of theaopdime
instarce (explained in this Appendix A4). The metric (ANNum) can be tsedmpare travel of
robot paths from ANSIM model for a set time and arena configuration. The same nsaiked i
for EXPLORE and AVOID behaviors both with no anticipation (NO AN) and waatticipation

on (AN ON). However, for SEEK there is no calculation with NO AN since the spin during
SEEK in that instance is not interrupted. However, with AN ON the area isateldwuring the
SEEK behvavior because the IR sensor is actively perceiving the niche dursmthend the

spin is interrupted when an object or wall is perceived.

ANNum is integrated over the entire travel time, normalized by the total time to allow

comparison among paths of different time duration:

dANNum(t)= Dr * DistanceTraveled (A4.1)
ANNumTot(t)= ANNumTot(t1) + dANNum(t) (A4.2)
ANNum= ANNumTot(t) / TotalTime (A4.3)

whereeach of the terms are:
Dir: IR beam distance as the minimum of beam extension used (for NO AN: 28 cm; for AN
ON: 50 cm.) or the diance reading to a wall or object g3 min (IRMaxDist,
IRReading).]
DistanceTraveled: forward distance in EXPLORE (ab@logram), othe heading change in
either AVOID or SEEK behaviors as a distaatéhe extreme of the beam (a triangle, so

must divide by 2 for the area covered).
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dANNum(t): calculated change at any time interval.
ANNumTot(t): total integrated value over the path at time, t.
ANNum: value at any time as normalized for total time of travel.

The result of A4.2 is to integrate over tinagd A4.3 normalizes for the total travel time.

ARENA ENVIRONMENT

EXPLORE AVOID and SEEK

Figure72.Metric ANNum is the integral of incrementalea coverage of the niche

environment, shown for EXPLORE (letiy aparallelogramand both AVOID and

SEEK (right)as a triangle
There are potential relative sources of error in this calculation due to gg¢Fig. 72). For
EXPLORE, due to the angle of 30 degrees offset from forward for the IRrdeeea, the
parallelogram has a height that is=hsin 30 * DistanceTraveled = 0.5 * DistanceTraveled, so
adjustment by the factor of 0.5 must be made. For AVOID and S&iR&e the area of a triangle
is A= 0.5 bh, the factor of 0.5 must be included.sTises the base as b= IR beam length, and
the distance moved at the tip of the beam to be h= height of the triangle. Formgieslia

should be sufficient to consider a right angle between the IR beam and the tipedisaaeled.

As the SEEK behavior may spin as much as 270 degrees, the summation of all thess treaag
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during the spin over multiple time increments accounts for the total covered aggaatinh of
these areas over both time and motion calculates the relative area covered thdbibeabl

compared for the paths traveled over time, and normalized for total time traveled.

Comparisons for two basic arena configurations show that the ANNum value is gnéate
anticipation on{AN ON) as compared with no anticipati@dO AN) (Table A4.1,

corresponding runs are shown in Figs. 54 anch@Be main text

Table A.4.1. ANNum values with no anticipation and with anticipation on.

No Anticipation (cri/'s) Anticipation On (cri/s)

Walls Only 115 274

With 2 Objects 118 383

ANNum with Walls Only is about 2.38 times greater with AN ON. Similarly, With 2 Qbjec

the arena the ANNum value is greater by about 3.25 times. Since the ANNumsvedgentially

a normalized cummulative area calculation, it can be said the robot perceivesnts to an

area 2 to 3 timesrgater with anticipation on (AN ONLomparisons over time for ANNum
calculations show that values are initially high for the area considered, buhgigei

normalization factor of time reduced the value to a rather stable one (Figs. 73.and 74)
Therefae, overall the metric ANNum can be used to compare various responses of the robot to
layouts of an arena. Generally, anticipation allows for higher values to, oeftectingmore

behavior response per unit time, while thetricstabilizes to anasymptoticvalue as normalized

overincreasing time.
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GLOSSARY

agent: specific physical robot or programed process that performs a behavior to atiied des
task achievement.

anticipation: creation, formation, formulation, or determination of a suitable process to make a
choice from a small set of feasible future scendrefsie the outcome is certafar
successful behavior beyond mere reactions to items in the niche that leadstbtdekir
achievement with expected immediate or later reward based on perceived fithegsimatch
to the niche.

behavior: observed response of an organism or robotic agent to current niche environmental
conditions to create task achievement.
previousy from Behavior-based robotics: interaction between the task, environment, and
agent with specific capabilities that creates a successful response

behavior-based robotics: an approach that matches robot agent behavior directly to a specific
environmental niche condition to promote desired task achievement.

bounded rationality: not all information is known that affects the outcome of a decision.

closed system: system with no inputs from or outputs to the surrounding environment.

fitness. specificsuitableagent condition that matches tegecificniche condition.

metaphor: concept of using abstract principles to capture inferences imalfgystem without
deriving them directly from a congruent natural system by encoding withvaltiser or
experimentation. The metaphor principles must be verified to be congruent with the
natural system by decoding the abstractions back to the specific instdheeafural

system, and observing expected desired behavior and results.
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niche: specific environmental surroundipgrceivableby the agentit is a smaller subset of the
overall environment or arena that the robot agent is able to exist vaittns a local
condition that is relevant to manifestation of a behavior choice.

open system: system with inputs from and/or outputs to the surrounding environment.

percept: creation of internal omental representations (images or archetypsing the proximal
stimuli derived from distal stimuli.

process: series of events leading to an outcome.

satisficing: a solution is discovered using bounded rationality that is acceptable but not the
absolute optimum, since too much time and too many resources would be needed to
search across an almost infinite number of possible solutions.

scenario: situation that matches behavior to a niche.

system: collection of interacting components intended to perform a task.
see:closed systepopen system.

reaction: direct behavior following a specific niche situation.

reward: confirmation that an action leads to task achievement.

task: desired outcome from a behavior or sequence.
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