

Overall Project Objective

Create a novel approach for studying the intestine and other barrier organs.

Barrier Tissues and Challenges

Skin

Fatty tissue

Barrier tissues act as a partition between two distinct environments

Serosa

Improving Existing Models

Ex Vivo

Intestine

Ex vivo mouse colon retains physiological accuracy

differential media

Acknowledgements

This project is partly funded by the NSF through the GAUSSI program at Colorado State University. A special thanks to the I2P Lab at CSU and Applied Medical Resources Corporation for their support.

3D-Printed Microfluidic Device for the Analysis of Intestinal Tissue Ex Vivo

Ian McLean¹, Luke Schwerdtfeger², Jessie Wilson¹, Chuck Henry³, and Stu Tobet¹ School of Biomedical Engineering¹, Department of Biomedical Sciences², Department of Chemistry³

Key Characteristics and Features

• Dual perifusion to mimic the dual microenvironment of the gut. • Differentially control media composition and drug delivery.

Collagen patterning surrounding crypt cells in intestinal wall

Mouse small intestine fillet was cultured for 24hr. Red label (ethidium homodimer) indicates physiological cell death near the apex of the villi

Translational Value and Application

The microfluidic instrumented tissue device can provide insight into complex physiological and pathogenic mechanisms in the intestines. There are potential applications in drug development and personalized medicine.

