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1.0 INTRODUCTION

The research effort reported on here is a subset of a total program.
The purpose of the total program is to evaluate the environmental impact
of primary and secondary pollutants due to AMAX, Incorporated mine devel-
opment in the vicinity of Crested Butte, Colorado. The purpose of the
study conducted at Colorado State University is to obtain quantitative
and qualitative information about the transport and diffusion processes
in the vicinity of the proposed mine site in Coal Creek and the proposed
mill site at Alkali Creek through physical modeling. This information,
once validated against field observation, will be used to test and refine
a numerical model that will ultimately be used to assess the environmental
impact of the primary and secondary pollutants.

To meet the objectives of the project, a 1:1920 scale model of the
topography for a west wind direction at Coal Creek and a 1:2560 scale
model of the topography for a west wind direction at Alkali Creek were
constructed. The model testing was divided into two phases: drainage
and forced flow. Drainage flow, referred to as "free convection", was
simulated by cooling the surface of the terrain model and thereby
establishing a density generated flow field. These tests were run outside
the wind tunnel in a specially constructed facility that prevented unwanted
drafts from affecting the flow field.

The tests referred to as "forced" were conducted in an environmental
wind tunnel. In the tunnel, two atmospheric stability categories (neutral
and stable) were simulated for each wind direction studied. At Coal Creek,
a west-southwest wind direction was tested, whereas at Alkali Creek, both
east and west winds were tested. Only the west wind direction was tested

for neutral stratification at Alkali Creek.



Once tﬁe desired atmospheric condition was set in the tunnel or
drainage flow facility, a series of velocity, temperature, concentration,
and photographic measurements were obtained. The purpose of this report
is to present the results of these measurements, to discuss the similar-
ity criteria for relating the model to the full-scale and to document
the experimental procedures employed. A complete set of black and white
photographs, color slides, and motion pictures supplement this report.
These photographic materials should be viewed to gain a more complete

understanding of the complicated flow and dispersion patterns simulated.



2.0 WIND-TUNNEL SIMILARITY REQUIREMENTS

2.1 Basic Equations

The basic equations governing atmoespheric and plume motion (conversion
of mass, momentum and energy) may be expressed in the following dimension-
less form (Cermak, 1974; Snyder, 1979):
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The dependent and independent variables have been made dimensionless
(indicated by an asterisk) by choosing appropriate reference values.
For exact similarity, the bracketed  quantities and boundary
conditions must be the same in the wind tunnel and in the plume as they
are in the corresponding full-scale case. The complete set of require-

ments for similarity is:



1) Undistorted geometry

LQ
2) Equal Rossby number: Ro = 90

o)

AT, 8 L,
3) Equal Richardson number: Ri = ———

T
o'

4) Equal Reynolds numbers: Re = uoLol\z0

5) Equal Prandtl number: Pr = (\:opocpo)/ko

6) Equal Eckert number: Ec = uOZ/[Cp (AT)O]
)

7)  Similar surface-boundary conditions

8) Similar approach-flow characteristics.
For exact similarity, each of the above parameters must be matched in
model and prototype for the stack gas flow and ambient flow separately.
Naturally, the reference quantities will change depending on which flow
is being considered. To insure that the stack gas rise and dispersion
are similar relative to the air motion, three additional similarity

parameters are required (Snyder, 1979; Petersen et al., 1977):

2
Psls
9) Momentum ratio: M = 5
Pala
Ug
10) Froude number : Fr =
vgyD
pa - pS
11) Density ratio : y = >
a

All of the above requirements cannot be simultaneously satisfied in
the model and prototype. However, some of the quantities are not impor-
tant for the simulation of many flow conditions. The parameters which
are equal and those which are not equal in model and prototype will be

discussed in the following subsections.



2.2 Non-Equal Scaling Parameters

For this study equal Reynolds number for model and prototype is not

possible since the length scaling is 1:1920 or 1:2560 and unreasonably
high model velocities would result. However, this inequality is not a
serious limitation.

The Reynolds number related to the stack exit is defined by

Hoult and Weil (1972) reported that plumes appear to be fully turbulent
for exit Reynolds numbers greater than 300. Their experimental data show
that the plume trajectories are similar for Reynolds numbers above this
critical value. In fact the trajectories appear similar down to Res = 28
if only the buoyancy-dominated portion of the plume trajectory is con-
sidered. Hoult and Weil's study was in a laminar cross flow (water tank)
with low ambient turbulence levels, and hence the rise and dispersion of
the plume would be predominantly dominated by the plume's own self-
generated turbulence. For this study neutrally buoyant plumes were
released horizontally at various altitudes above the ground. Since the
plume rise was not being studied, this Reynolds number is not important.
For similarity in the region dominated by ambient turbulence consider
Taylor's (1921) relation for diffusion in a stationary homogeneous turbu-

lencoe
t t
2 2
Oz(t) = 2w' J I R(E)dEdt (2.4)

o (o}

which can be simplified to (see Csanady, 1973)
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for short travel times; or,

Jo—

2 - 12 - . 2.6
Oz(t) 2w to(t tl) : (2.6)

for long travel times where

t = J R(t)dt @.7
© O

is an integral time scale and

1
tl = [ TR{t)dt (2.8)
o ‘o

is the center of gravity of the autocorrelation curve. Hence, for

geometric similarity at short travel times,
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For similarity at long travel times
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if it is assumed tl < < t, tO/u = A and t/u = L. Thus, the turbulence
length scales must scale as the ratio of the model to prototype length

scaling if (iz)m = (iz)p or,

Un Am
r = 71 - (2.10)
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* m refers to model, and p refers to prototype or full-scale



An alternate way of evaluating the similarity requirement is by

putting 2.4 in spectral form or (Snyder, 1972),

—— o0 . 2
02 - w,ZtZ f FL(n) [51n vnt] dn

z Tt
0
= w'2t2 1
where
© 2
- - sin mnt
I ! PL(n) [——;;E——] dn
0
FL = Langrangian Spectral function.

(2.11)

The quantity in brackets is a filter function the form of which can be

seen in Pasquill (1974). 1In brief for n > 1/t the filter function is

very small and for n < 1/10t virtually unity.

For geometric similarity of the plume the following must be true:

2 2 12,2 2.2
L. ) [oz]m ) [w'"t I]m _ [L 1ZI]m
2 2 - 2.2
Lp [oz]p [w'thI]p (L 1ZI]p
or,
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[1ZI]m
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IlzI]p

(2.12)

If [1z]m = {12]p the requirement is Im = 1 . For short travel

P
times, the filter function is essentially equal to one; hence, 1

=1 =

P

1

and the same similarity requirement as previously deduced for short travel

times is obtained (Equation 2.9).

For long travel times the larger scales (smaller frequencies) of

turbulence progressively dominate the dispersion process. If the spectra

in the model and prototype are of a similar shape, then similarity would



be achieved. However, for a given turbulent flow a decrease in Reynolds
number (hence, wind velocity) decreases the range (or enmergy) of the
high frequency end of the spectrum. vFortunately, due to the nature of
the filter function, the high frequency (small wave length) components
do not contribute significantly to the dispersion. There would be,
however, some critical Reynolds number below which too much of the high
frequency turbulence is lost. If a study is run with a Reynolds number
in this range, similarity may be impaired. |

The ambient flow field also affects the plume trajectories and
consequently similarity between model and prototype is required. The
mean flow field will become Reynolds number independent if the flow is
fully turbulent (Schlichting, 1968; Sutton, 1953). The critical
Reynolds number for this criteria to be met is based on the work of
Nikuradse as summarized by Schlichting (1968) and is given by

k u¥*
)

(Re)k = > 70.

s
In this relation kS is a uniform sand grain height. If the

scaled down roughness gives a (Re) less than 70, then exaggerated

kS

roughness would be required. In the tunnel ks may be approximated as
the average terrain step size of approximately 0.64 cm. With v = 0.15 cmz/s
that means wu* must be greater than 16.41 cm/s or assuming u*/uh ~ 0.06,
u_~ must be greater than 2.7 m/s. All neutral tests were run above this
speed. Reynolds number independence for stratified flow has not been
systematically studied and consequently the best evaluation tool is to
compare full-scale and model results.

The Rossby number, Ro, is a quantity which indicates the effect of

the earth's rotation on the flow field and resultant turning of the wind
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with height (Ekman spiral). In the wind tunnel, equal Rossby numbers
between model and prototype cannot be achieved. The effect of the earth's
rotation becomes significant if the distance scale is large. Snyder (1979)
puts a conservative cutoff point at 5 km for diffusion studies under neutral
or stable conditions in relatively flat terrain. Mery (1969) suggests a 15
km limit, Ukejurchi et al. (1967) suggest 40 to 50 km, and Cermak et al.
(1966) and Hidy (1967) recommend 150 km. A middle road would be that of
Orgill et al. (1971a and 1971b) who suggest that a length scale of 50 km
for rugged terrain in high winds is not unreasonable. The distances
studied are acceptable, whichever criteria is believed.

When equal Richardson numbers are achieved, equality of the Eckert
number between model and prototype cannot be attained. This is not a
serious compromise since the Eckert number is equivalent to a Mach number
squared. Consequently, the Eckert number is small compared to unity for
laboratory and atmospheric flows.

2.3 Equal Scaling Parameters

Since air is the transport medium in the wind tunnel and the atmosphere,

near equality of the Prandtl number is assured.

The remaining relevant parameters are the momentum ratio, Mo, buoyancy
ratio, Bo, density ratio, Y, and Richardson number, Ri. Since plume rise
is not being simulated, Mo, Bo’ and Y are of no consequence.

The remaining similarity parameter is the Richardson number, Ri.

For the atmosphere Ri is defined:

(Ri) - ;g; A622 - é(AT+I’;)z
P T u(z) T  u(z)
where
AT = temperature difference between z and surface--
T(z)-T
s}
T' = adiabatic lapse rate (v 1°C/100m)
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u(z) = wind speed at height z
z = height above ground--taken to be 250 m for all
forced flow tests and the height of maximum
velocity z, for drainage flow tests
T = mean temperature between surface and z

For the wind tunnel I'z is typically less than 0.002°C, whereas AT is
greater than 1°C. Hence for the wind tunnel, the Richardson number is

defined:

(Ri) = & (AT) =z
T u(z)?

Before comparing a laboratory to full-scale case, near equality of the
Richardson numbers for the two should first be checked. For the neutral
forced flow tests AT = 0 in model and AT + I'z = 0 in prototype; hénce,
(Ri)m = (Ri)p = 0. Thus, any neutral full-scale case (regardless of
wind speed) having the same free stream wind direction as studied in the
wind tunnel will have similar dispersion and flow patternms.

For the stable and drainage flow tests, the Ri values varied. A
(Ri)m was computed for each forced flow case based on z = 250 m in full-

scale (iggg or gggg in model for Coal Creek and Alkali Creek respectively).

For drainage flow z was set equal to the height of maximum velocity z -
To find corresponding full-scale values for the stable and drainage flow
tests, first consider only those cases having the same free stream wind
direction. Secondly, the Richardson number in model should be nearly
equal to that in the full-scale. If these two conditions are met, the
full-scale values in the field will correspond to those in the model.

If no field data are present, typical full-scale conditions may be

computed using the equation:

~Le y _ __ 1
("fu(z)?‘)p (® (=), 0
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In summary, the applicable scaling parameters for the neutral,
stable, and drainage flow boundary layer simulation are:

. (AT) 8L,
1) Ri = — (Ri)m = (Ri)p

u
[o I o]

0 for neutral
+ for stable

where the reference quantities are as defined above.

2) Similar geometric dimensions and dimensionless boundary
conditions (i.e., velocity and turbulence profiles).

3) Sufficiently high Reynolds number to insure Reynolds
number independence.
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3.0 EXPERIMENTAL METHODS

3.1 General

A 1:1920 scale model of the topography for a west wind direction at
Coal Creek and a 1:2560 scale model for a west wind direction at Alkali
Creek were constructed to study the transport and dispersion of effluent
under drainage and forced flow conditions. Figure 3-1-1 shows the terrain
areas modeled for the various atmospheric conditionms.

Each test was conducted in a similar manner. Measurements of wind
speed, temperature (for the drainage and stable tests only), and tracer
gas concentration were obtained at various locations to document the flow
pattern and for later use in developing and validating a numerical model.
Concentration measurements were obtained at ground level and in vertical
arrays. The release location, release height, volume flow, reference
wind speed, and sampling location for each run are given in Table 3-1.

Prior to testing the appropriate free stream velocity (zero for
drainage flow) and surface temperature (room temperature for neutral
stratification) were set in the wind tunnel or drainage flow test
facility. Velocity or concentration measurements did not begin until
the surface temperatures reached equilibrium, which was usually less than
15 minutes. Thereafter, all velocity measurements (and if time permitted,
concentration measurements) were obtained before shutting the system down.
The conditions were set again in the same manner if additional measurements
were required.

A complete discussion on every facet of the study will now follow.

3.2 Scale Model and Test Facilities

® Scale Models
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Construction of the topographic model entailed a two-step process.
The first involved constructing a Styrofoam model out of 0.64 em thick
Styrofoam sheets (corresponds to a 40-ft contour interval) for the Coal
Creek model and 0.95 cm thick Styrofoam sheets (corresponds to an 80-ft
contour interval) for the Alkali Creek model. United States Geological
Survey maps were photographed and the projected image used as patterns
from which the Styrofoam was cut. The second phase of construction
entailed fabricating a wood ribbed frame as shown in Figure 3-2-1. The
frame had wood supports approximately every 30 cm which were cut to
conform with the terrain elevation. Next, thin aluminum foil was
placed on the Styrofoam model and molded in 30 cm-wide strips to fit the
terrain contours. Once a strip was molded it was placed onto the wood
frame and fastened. This procedure was repeated until one model section
(normally 1.22 x 3.66 m) was complete. A picture of a completed section
is shown in Figure 3-2-2., At this stage the model section was ready for
installing either thermistors or concentration sampling lines. Thermistors
and ground-level sampling taps were installed at various locations on both
the Coal Creek and Alkali Creek models. Figures 3-2-3, 3-2-4, and 3-2-5
show the respective locations for each thermistor. A close-up of one ther-
mistor installation is shown in Figure 3-2-6 and a close-up of the concen-
tration sampling tubes is shown in Figure 3-2-7. The concentration sampling
locations are given with the data in Appendices A, B, C, D, E, F and G.

The complete model sections were then placed in either the Environmental
Wind Tunnel or the Drainage Flow Facility for testing of forced and drainage

flows.
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¢ Wind Tunnel

The Environmental Wind Tunnel shown in Figure 3-2-8 was used for
testing neutral or stable transport and diffusion over the Coal Creek and
Alkali Creek models. The terrain areas that were placed in the tunnel are
shown in Figure 3-1-~1. Upwind of the modeled topography a set of spires
was used to stimulate the boundary layer. The tunnel setup for the neutral
Alkali Creek and Coal Creek tests is shown in Figure 3-2-9. A similar setup
was used for the stable tests.

e Drainage Flow Facility

To study the natural mountain-~valley or slope winds a special enclosed
room was constructed. Inside this room a platform was built for position-~
ing the aluminum shell topographic model. Figure 3-2-10 shows the platform

in the final stages of construction. Holes were drilled through the top

of the frame for mounting fans. Figure 3-2-11 shows a techniclan
mounting these fans inside the frame.

Once the frame was completed the aluminum shell sections were
installed on top and the space under the model was then to be used as
a cold sink. The cold sink consisted of several short tons of dry ice
at approximately -80°C, loaded on carts. Figure 3-2-12 shows a technician
loading the ice on one of these carts prior to sliding the cart under the
frame. During the loading air packs were used to avoid breathing the
high concentrations of COZ' The loaded test bed with model in place is
shown in Figure 3-2-13. After installing the ice the side of the frame
and model were sealed with an insulating material.

The forced air circulation system for the cold sink consisted of

120 instrument fans connected to a motor speed controller. The rate
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of air circulation, as determined by the speed controller, made it
possible to adjust the surface temperature conditions or shut the cooling
system down entirely between experiments to conserve dry ice.

3.3 Gas Tracer Technique

* Test Procedure

The test procedure consisted of: 1) setting the proper tunnel wind
speed and/or surface temperatures, 2) releasing a metered mixture of
source gas of the required density (that of air) from the release probe,
3) withdrawing samples of air into a series of syringes at the locations

designated, and 4) analyzing the samples with a flame ionization gas

The procedure for analyzing air samples from the tunnel was as
follows: 1) a 2 cc sample volume drawn from the wind tunnel is intro-
duced into the flame ionization detector (FID), 2) the output from the
electrometer (in microvolts) is sent to the Hewlett-Packard 3380 Inte-
grator (HP 3380), 3) the output signal is analyzed by the HP 3380 to obtain
the proportional amount of hydrocarbons present in the sample, 4) the record
is integrated and the methane or ethane concentration as appropriate
is determined by multiplying the integrated signal (uv-s) times a cali-
bration factor (ppm/uv-s), 5) a summary of the integrator analysis (gas
retention time and integrated area (uv-s)) is printed out on the inte-
grator at the wind tunnel, 6) the integrated values and associated run
information are tabulated on a form, 7) the integrated values for each
tracer are keypunched into a computer along with pertinent run informa-
tion, and 8) the computer program converts the raw data to a dimension-
less concentration (K) and the results are printed out in report format

as shown in Appendices A, B, C, E, F and G.
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The integrated values are converted as follows:

rr (3.1)

m

where

K = dimensionless concentration

), = [(T - Tp)CF];
(x )m = tracer gas source strength in ppm
o)
I = integrated value of sample for tracer i
IBG = integrated value of background for tracer 1

CF, = calibration factor for tracer i

i
Hr = reference height in model (m)--equal to 0.32 cm
u. = model (m) reference wind speed (m/s)

The calibration factor was obtained by introducing a known quantity, Xg?

of tracer i in the HPGC and recording the integrated value, IS, in
yv-s.
The CFi value is then
X (ppm)
CF, = [—Ii-——--—] (3.2)
s (Wv-8) |4

Calibrations were obtained at the beginning and end of each measurement
period. The tracer gas mixtures were supplied by Scientific Gas Products.

To convert the results to %;- in the full scale the K value must be

2 2
1 _ 1
multiplied by [‘('1‘9"2"0‘ “)(.0032)] or [‘(2_560')‘(.0032)]'
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e Gas Chromatograph

The FID operates on the principle that the electrical conductivity
of a gas is directly proportional to the concentration of charged
particles within the gas. The ions in this case are formed by the
effluent gas being mixed in the FID with hydrogen and then burned in
air. The ions and electrons formed enter an electrode gap and decrease
the gap resistance. The resulting voltage drop is amplified by an
electrometer and fed to the HP 3380 integrator. When no effluent gas
is flowing, a carrier gas (nitrogen) flows through the FID. Due to
certain impurities in the carrier, some ions and electrons are formed
creating a background voltage or zero shift. When the effluent gas
enters the FID, the voltage increases above this zero shift iun propor-
tion to the degree of ionization or correspondingly the amount of tracer
gas present. Since the chromatograph1 used in this study features a
temperature control on the flame and electrometer, there is very low
zero drift. In case of any zero drift, the HP 3380 which integrates
the effluent peak also subtracts out the zero drift.

The lower limit of measurement is imposed by the instrument
sensitivity and the background concentration of tracer within the air
in the wind tunnel. Background concentrations were measured and
subtracted from all data quoted herein.

¢ Sampling System

The tracer gas sampling system shown in Figure 3-3-1 consists of
a series of fifty 30 cc syringes mounted between two circular aluminum

plates. A variable-speed motor raises a third plate which in turn

lA Hewlett Packard 5700 gas chromatograph was used in this study
(shown in Figure 3-3-1).
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raises all 50 syringes simultaneously. A set of check valves and tubing
are connected such that airflow from each tunnel sampling point passes
over the top of each designated syringe. When the syringe plunger is
raised, a sample from the tunnel is drawn into the syringe container.
The sampling procedure consists of flushing (taking and expending a
sample) the syringe three times after which the test sample is taken.
The draw rate is variable and generally set to be approximately 60 s.

The sampler was periodically calibrated to insure proper function
of each of the check valve and tubing assemblies. The sampler intake
was connected to short sections of tygon tubing which led to a sampling
manifold. The manifold, in turn, was connected to a gas cylinder having
a known concentration of tracer (100 ppm ethane). The gas was turned
on and a valve on the manifold opened to release the pressure produced
in the manifold. The manifold was allowed to flush for ™~ 1 min. Normal
sampling procedures were carried out to insure exactly the same procedure
as when taking a sample from the tunnel. Each sample was then analyzed
for methane, ethane, propane, and butane. Methane, ethane, and butane
were analyzed to insure that the tygon had not absorbed these hydro-
carbons and was not 'gassing" them off. Percent error was calculated,
and any '"bad" samples (error > 2 percent) indicated a failure in the
check valve assembly, and the check valve was replaced or the bad syringe
was not used for sampling from the tunnel. A typical sampler calibration
is shown in Figure 3-3-2,

® Averaging Time

To determine the averaging time for the predicted concentrations

from wind-tunnel experiments, the dispersion parameters~~oy and Uz-~
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for undisturbed flows in the wind tunnel have been compared to those used
for numerical modeling studies (Petersen et al., 1979; 1980) in the at-
mosphere. The dispersion rates used in the atmosphere are referred to

as the Pasquill-Gifford curves and are given in Turner (1970) and modified
values are given in Pasquill (1974, 1976). The results of this comparison
showed that the cy and o, values in the wind tunnel compare (when
multiplied by the length scaling factor) with these expected for the
atmosphere. Hence, the method used for converting numerical model pre-
dictions to different averaging times should also be used for converting
the wind-tunnel tests.

The EPA guideline series for evaluating new stationary sources
(Budney, 1977) conservatively assumes that the Pasquill-Gifford Uy and
9, values represent l-hour average values. To convert to a 3-hour value
multiply by 0.9 + 0.1 and if aerodynamic disturbances are a problem the

factor should be as high as 1.

Generally, steady-state average concentrations measured in the wind
tunnel are thought to correspond to a 10- or 1l5-minute average in the
atmosphere (Snyder, 1979). This line of reasoning is based on the
observed energy spectrum of the wind in the atmosphere. This spectrum
shows a null in the frequency range from 1 to 3 cycles per hour.
Frequencies below this null represent meandering of the wind, diurnal
fluctuations, and passage of weather systems and cannot be simulated in
the wind tunnel. The frequencies above this null represent the fluctu-
ations due to roughness, buildings and other local effects and are well
simulated in the tunnel. This part of the spectrum will be simulated
in the tunnel as long as the wind direction and speed characteristics

remain stationary in the atmosphere which is typically 10 to 15 minutes.
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At many locations, however, persistent winds of three or more hours may
occur. For these cases, the wind tunnel averaging time would ccrrespond
to the atmospheric averaging time. For the more typical cases, the
wind-tunnel results would have to be corrected for the large-scale
motion using power law relations such as given by Hino (1968) or
Turner (1970).

3.4 Velocity Profiles

¢ General

Vertical profiles of mean velocity were obtained for the various
tests at the locations indicated in Figures 3-2-3, 3-2-4, and 3-2-5.
The measurements were performed to 1) monitor and set f£low conditions,
2) document flow conditions, and 3) for use in calculating surface
roughness, power law exponent and Reynolds stress.

The velocity measurements for the Coal Creek drainage basin and

stable test, as well as the Alkali Creek stable tests, were made using

a Gould/Datametrics Model 800-LV temperature compensated linear velocimeter
without a probe shroud. The probe shroud was removed to minimize the
disturbance to the flow field by the bulk of the probe as it was lowered
near the model surface. The velocity measurements for the Alkali Creek
drainage basin test were made with a Thermosystems hot-film anemometer
system and a method of temperature compensation analysis. The hot film
was also used for all neutral stability tests where temperature compensa-
tion was not required.

The techniques used to obtain the velocity data will now be discussed
in detail.

e Hot-film Anemometry

The transducer for velocity measurement in the Alkali Creek drainage

flow and neutral stability tests was a Model 1210-20 hot-film sensor. The
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sensor consists of a platimun overlay deposited on a cylindrical quartz
fiber, the overall diameter of which is 51 microns. The sensor is capable
of resolving a velocity éomponent in the plane perpendicular to the length
of the element. The probe was positioned during the measurements so that
this direction corresponded to the orientation of the flow.

The governing mechanism of operation is defined by the first law of
thermodynamics: the heat removed from the probe element and delivered
to the surroundings equals the electrical power supplied to the wire

(Hinze, 1975). This is represented mathematically as:
Tk (T -T)Nu==12R (3.3)
g W g W )

where
I = electric current through the probe element

= electrical resistance of the probe element at Tw

Tw = effective operating temperature of probe element
Tg = temperature of surroundings
kg = thermal conductivity of air
£ = length of probe element
hd o =T »
Nu = Nusselt number = X " f |Re,Pr,Gr,Ek, ~—§-—g, g ¢
g g
h = heat transfer per unit time
¢ = diameter of probe element
p ud ~
Re = Reynolds number =
g
. Cu
Pr = Prandtl number = ~£~&
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g0 2a%B(T, - T )
Gr = Grashof number = -g-—~—-§—-—g

pg
u2
Ek = Eckert number = T T
p W g
pg = mass density of air evaluated at Tg
ug = molecular dynamic viscosity of air evaluated at Tg
B = coefficient of thermal expansion of air

g = gravitational acceleration
u = velocity of air
Cp = gpecific hear of air at constant pressure
Free convection from the wire may be neglected for Re > 0.5 when
the Rayleigh number satisfies:
Ra = GrPr < 107%
Collis and Williams (as reported in Hinze, 1975) concluded from their
low Reynolds number experiments in air that buoyancy effects are negligible
when:

Gr < Re3

In other words, when Re ~ 10“2, Gr should be smaller than 10°%. m
air, this corresponds to a film ten times smaller in diameter than that
used here and a velocity of 0.4 cm/s.

The temperature dependence of the electric resistance of the film
may be expressed as

R;W = Ri [1 + bl('rw - Tg) + bz(Tw - Tg)2 + ...]
Under the operating conditions usual for hot-film anemometers, the
nonlinear terms may be disregarded. For example, for platinum
1 2

by = 3.5 x 1073 k7t b, = 5.5 x 1077 ok~
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for tungsten

7 oK“'z

b. = 5.2 x103 °Y, b, =7.0x 10"

1 > "2

Ignoring the quadratic and higher order terms in Eq. (3.3), the temperature
difference (Tw - Tg) can be represented by the more easily measured quan-
tity (Rw - Rg), where Rg denotes the electrical resistance of the wire

at the ambient fluid temperature Tg, or

R R
. =" - 8

Substituting into Eq. (3.3) results in
9 ﬂﬁKg R R

IR, = —= - WI; & Nu . (3.5)

i
An empirical formula developed by Collis and Williams (Hinze, 1975)
represents the most accurate relation yet obtained for the prediction

of Nusselt number in forced flow.

Nu| = = A + BRe" (3.6)
g
where
0’2;< Re < 44 44 < Re < 140
n 0.45 0.51
0.24 0

B 0.56 0.48

and Te = (T, + Tp)/2

Substituting from relations (3.5) and (3.6) yields
2

R g AptBpR y
W 4
where
0.17
Tf/Tg
AT = A (3.8)

Cym C
Te /Tg
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and a
c
Te/Ts \ [P£ s

Cim ) L ug pcC
¢ /g £ Ps

B,.=3B

T (3.9)

T

where A and B are the constants obtained at calibration temperature,
pressure, and overheat ratio and AT and BT are the constants corrected
for temperature, viscosity and density variation. The terms with a super-

script ¢ are quantities measured at calibration conditionms.

TW+T
Now pf = p(Tf) = p -.__.2.__8.

Tw + T
and He = u(T.) = u|\—~—s—F
f £ 2
Using the Sutherland equation to represent in analytical form the variation
of the molecular viscosity of air with temperature near atmospheric pres-—

sure.

145,811+

w = 71104

and the equation of state for ideal gases

= L
°TRT
we can make the necessary substitutions into Eq. (3.9) and get
2.5 n
o, V| [+ T C T +T+zm£]
el e Ea—
Cim C c c
Te /'1?g c\'w g T, +Tg +220.8J
Finally using Ohm's law
2
EX .2

and combining (3.7) and (3.9) we get

E2 n
TR %) = A, +Bu
R, (R, - RY) Ap + By
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or,

u = . (3.11)

The constants A, B, and n from Eq. (3.8) and (3.9) were obtained
from a calibration at room temperature; AT’ BT and Rg were then deter-
mined for the temperature at which measurements were obtained.

e Experimental Technique

For the Alkali Creek drainage flow tests, a system providing a
source of reference air speeds was used immediately prior to each exper-
iment to calibrate the velocity measurement apparatus. This system
shown in Figure 3-4-1 consists of a discharge nozzle, having established
aerodynamic characteristics, constructed at the Colorado State University
Engineering Research Center machine shop facilities. This nozzle was
supplied with regulated air the quantity of which was monitored on a
Union Carbide linear mass flow meter. Regression analysis was used
to fit the calibration data to a suitable mathematical expression. The

results of the calibration are shown in Figure 3-4-2.

For the neutral stability tests, calibration of the hot film was
performed with the Model 1125 TSI calibrator and a type 120 Equibar

pressure meter where the following relation applies:

2AP
a
P

a
A calibration was performed at the beginning of each day's measurement.
After the wire was calibrated, the desired flow condition was set in
the wind tunnel. The free-stream velocity was monitored with the MKS

Baratron and pitot tube. Once the desired condition at the reference
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height was obtained the pressure meter setting was recorded and used to
set and monitor the tunnel conditions for all remaining tests. During
all subsequent velocity and concentration measurements care was taken
to ensure the pressure meter reading remained constant.

The Datametrics Model 800-LV temperature compensated linear velocity
meter was used for the Coal Creek drainage flow and all stable flow tests.
The principle of operation of this probe is the same as the hot film dis-
cussed above with the addition of an unheated element, the resistance of
which corresponds to ambient temperature and controls the overheat ratio
of the velocity sensing element. In this manner the probe is made insen-
sitive to temperature variations. The probe is normally configured with
a shield over the wire with a hole allowing air flow for measurement.
Since the shield restricted the closeness with which one could approach
the model surface, it was removed. Figure 3-4-3 shows the two sensing
elements, the top one being the velocity sensor and the bottom one the
temperature sensor, From an experimental standpoint, the Alkali Creek
technique is preferred to that used in the Coal Creek test which consisted

of the temperature compensated instrument., This is because the spatial

temperature gradient near the model surface is of a physical scale
comparable to the separation distance within the probe configuration of
the velocity and temperature sensing wires as shown in Figure 3-4-3.
This distance results in an inability within the instrument to satisfac-
torily control the overheat ratio as a function of local temperature
which results in an error in veloéity measurement close to the surface.
In a steady flow regime, this difficulty is overcome by combining the

functions of velocity and local temperature measurement in the same
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element as was done for the Alkali Creek tests. The two measurements
were made immediately subsequent to one another. The spatial temperature
gradient effect is likewise minimized by the smaller physical dimensions
of the Thermo Systems hot-film element.

The problem arising in the single element hot-film method lies in
analyzing the data with a heat transport model which can be adequately
supported by either theoretical argument or experimental evidence. Such
a model is available and was discussed above.

e Data Collection and Analysis

The manner of collecting the data was as follows:

1) The hot-film or datametrics probe was attached to a carriage.

2) The bottom height of the profile was set to the desired initial
height.

3) A vertical distribution of velocity was obtained using a
vertically traversing mechanism which gave a voltage output
corresponding to the height of the wire above the ground.

4) The signals from the anemometer and potentiometer device
indicating height were fed directly to a Hewlett-Packard
Series 1000 Real Time Executive Data Acquisition System.

5) Samples were stored digitally in the computer, and

6) The computer program converted each voltage into a velocity
(m/s) using the equation:

E2 1/n
Ry (Ry=R; ) -t
B

or printed out the mean voltage for the Datametrics. For the Alkali Creek

drainage flow tests it was found that Ay = A and B = B to within 3

percent accuracy. Hence no correction for temperature was applied to AT
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T

at local temperatures however was used when computing u.

and B and the calibration values were used. The wire resistance Rg

For the Alkali Creek and Coal Creek neutral flow studies, no
temperature compensation was necessary thus AT = A, BT = B and
Rc = Rg.

3.5 Temperature Measurement

Temperature measurements at the model surface for the drainage flow
and forced advection stable stratification cases and the local air temper-
ature at the air speed probe for the drainage flow, forced advection
neutral and stable stratification cases, were made by Yellow Springs
Instruments Model 44004 thermistors. The model surface temperature
measurement was made by mounting the thermistor on the model terrain so
that the lead wires passed beneath the model and the body of the thermis-
tor element was exposed to the air immediately above and adjacent to the
model surface material. The location of these probes is seen in
Figures 3-2-3, 3-2-4, and 3-2-5 for Coal Creek, Alkali Creek west wind,
and Alkali Creek east wind, respectively. Resistance measurements of the
thermistors were routed through a switch panel to a Keithley Instruments
Model 177 digital multimeter. The resistances were then converted to
temperature with a table supplied by Yellow Springs. The air speed probe
thermistor was mounted on a hot-wire probe fixture so that the body of the
thermistor was positioned lateral to the velocity probe but near it in the

flow field and at the same height.
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4.0 COAL CREEK-DRAINAGE FLOW RESULTS (Free Convection)

4.1 Velocity and Temperature Measurements

A series of seven velocity and temperature profiles were taken
at the following locations: 1) Thermistor 17 (denoted T17), 2) Coal
Creek below the proposed mine site (denoted VP), 3) T5, 4) T16,

5) concentration sampling locations 25 (C25), 6) Cl6, and 7) T13. The
location of these measurement positions relative to Crested Butte is
shown in Figure 3-2-3. The temperature boundary conditions during
testing are shown in Table 4-1. The temperatures along Coal Creek
range from -24 to 30°C, depending upon location. At the tops of the
mountains the temperatures are between -14 and 6°C. From the results
shown in Table 4-1 it was concluded that it would be sufficient to
monitor one temperature during testing with less frequent samplings of
all thermistor readings. Hence, in all subsequent tests (concentration
and visualization) this procedure was followed.

The seven velocity profiles shown in Figures 4-1-1 through 4-1-7
are reported in sequence starting at the location annotated T17 and
finishing in Crested Butte at T13. These profiles all show a similar
character, namely, a high wind speed at some varying distance above
the ground and a zero velocity at an upper altitude. Several of the
profiles show a double peak in the velocity profile. The common fact
about these double peak profiles is that they were obtained at the low-
est valley elevation or in Coal Creek. The two profiles not showing any
tendency for a double peak were taken at Tlé--which is on the bank above

Coal Creek--and at T13--which is out of the valley in Crested Butte.

This double peaks suggests there is a slope flow following Coal Creek
and superimposed upon this, the mountain wind which is also in the same

direction--toward Crested Butte.
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Another interesting feature about the profiles is the increase in
maximum velocity with distance down the valley. For example, at T17 the
maximum velocity (um) is 18.3 cm/s whereas at T1l3 in Crested Butte the
flow has accelerated sufficiently to attain u = 26.9 cm/s. The inter-
mediate values of u are 18.4 (at VP), 19.5 (T5), 20.5 (Tl6), 24.6 (C25),
and 27.9 (C16) cm/s. The height above ground of the lower peak velocity
ranges from 0.5 to 2.5 cm (9.6 to 48 m full-scale) with the more typical
value of 1.5 cm (28.8 m full-scale). The second or only maximum (which
is also the highest wind speed for all profiles) occurs from 2.5 to 8.5
cm (48 to 163 m full-scale) above the surface. At T16, which corresponds
to the field measurement site, the height of the maximum velocities is
6.5 cm (125 m full-scale) above the ground.

The temperature profiles are also shown in Figures 4-1-1 through
4~1-7, A surface temperature measurement (To) was used to calculate the
dimensionless temperature [(T—TO)/(Tm-TO)] using the nearest ground level
thermistor reading. The free stream temperature T_ was taken to be that
at the top of the profile. 1In general, Tw~To ranged from 40°C at T17 to
25.7°C at T13. The profiles show that an extremely stable layer was
generated in the test chamber.

A Richardson number was computed for each profile as discussed in
Section 2.3. The results of the computation are given on each figure.

4.2 Concentration Measurements

The concentration measurements for the drainage flow simulations down
Coal Creek are graphically presented in Figures 4-2-1 to 4-2-4. For these
tests, the surface temperatures were set to be nearly equal to those set
during the velocity measurement tests. The ground level isopleths resulting
when a tracer was emitted at T16 from a 6.1 m prototype stack are shown in

Figure 4~2-1. The emissions travel down Coal Creek, moving around Gibson
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Ridge and pass through Crested Butte. The concentration level diminishes
slowly over Coal Creek until the end of the valley where the plume is no
longer restricted laterally. In Figure 4-2-2, a cross section of the plume
is shown. This cross section was taken 1.35 km (full-scale) downwind of
the release point (A, A' in Figure 4-2-1). As is evident, the plume has
settled into the valley bottom and vertical mixing is restricted. It
appears that the plume is well mixed, however, within this confined layer.
Figure 4-2-3 shows another cross section taken 3.65 km downwind of the
release point just upwind of Crested Butte (B, B' in Figure 4-2-1). Here
the plume has grown laterally with almost no vertical spread. The uniform

mixing is even more pronounced at this location.

Figure 4-2-4 shows ground-level isopleths for a 49 m stack. As
expected the point of maximum concentration has moved down the valley
when compared to Figure 4-2-1 and the evidence of lateral spread upon
exiting the valley is still present. The maximum concentration for the
elevated release is over a factor of 10 less than that for the short
release. In Crested Butte the concentrations are nearly equal for the
two releases.

4.3 Visualization and General Flow Patterns

From visually observing the flow patterns established by cooling
the surface of the aluminum model some general features of the mountain
wind were noticed (Davidson, 1963; Defant, 1951). First the commonly
observed down-valley flow with a return flow above was evident. Figure
4-3-1 shows a top view of smoke being released over Tl6. Crested Butte
is at the top of the picture just outside the valley. As can be seen
the smoke follows the terrain confluences, changing direction and shape

as the valley changes shape or orientation. This down-valley flow
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generally extended up to 18 cm (350 m full-scale). Above this down-valley
flow a 180° reversal in the flow was seen. The documentation on this
reversal is best seen by viewing the motion pictures associated with this
report. Figure 4-3-2 does show the shape of the reversed flow. The
down-valley flow is not evident in the figure. On top of the down- and
up-valley flows were slope flows. These flows were very shallow (3 to 5 cm)
and were developed along all sloping valley side walls. The downslope
winds would flow into the valley center and merge with the down-valley
flow. Figure 4-3-3 shows the smoke wand positioned near the ground up

the valley side. As can be seen, the flow first goes toward the valley
center (Coal Creek) and then turns 90° and heads down the valley. What
was observed was the downslope flow coming down the slope and when it
converged with the down-valley flow, it would rise up above the ground
then turn down valley.

To aid in visually depicting the flow patterns a smoke wire technique
was used. Figure 4-3-4 shows the smoke wire positioned at Tl6 and the
shape of the lower profile. In the picture the solid metal rod which
supports a thin nichrome wire is visible as is the smoke produced by
instantaneously evaporating a thin oil film coated on the wire. Although
only a portion of the wire and support is visible in the picture, the
wire length was measured to be 5.94 cm in a different picture with the
same camera setup. Since the actual wire length is 66 cm, a conversion
factor of 5.94/66 was used to estimate model dimensions from the picture.
The height of drainage flow in the picture is 2.21 cm which converts to
24.6 cm in the model or 471 m full-scale. This compares reasonably with
a drainage flow thickness measured with the velocity probe of 18 cm as

seen in Figure 4~1-4., Also from the photograph it can be seen that the
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ratio of upslope velocity to downslope velocity is approximately 1 to 10.
Since the camera was not directed perpendicular to the flow a large error
can be expected in this ratio. The thickness of the upslope flow appears
to be at least 1.27 cm in the picture or 14 cm in the model (271 m full-
scale). This observed depth agrees with that shown in Figure 4-1-2.
The measured ratio of upslope to downslope velocity is 1 to 2.5. This
latter ratio is more accurate than that obtained from the picture analysis.
In summary, the visualization showed what was expected from a mountain
flow. Wind developed on all slopes and these slope winds moved toward the
valley center. At the valley center the slope wind merged with the down-
valley wind. Above the down-valley wind an up-valley component was

observed.
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5.0 ALKALI CREEK - DRAINAGE FLOW RESULTS (Free Convection)

5.1 Velocity and Temperature Measurements

For the Alkali Creek drainage flow test velocity and temperature
profiles were taken at four locations (designated T4, T6, T1ll and V2)
and a temperature profile was obtained at T8. These locations are marked
on Figure 3-2-4.

The temperature boundary conditions that were set during the velocity
measurements are given in Table 5~1. At a given thermistor the tempera-
ture during testing did not change by more than 4°C with most of the
readings staying within 2°C. The temperatures at the surface ranged from
-25°C at T12 to -49°C at T9 and T13. The free air temperature T, was
9°C for all tests.

The velocity and/or temperature profiles are shown in Figures 5-1-1
through 5-1-5. The velocity profile taken at T4, which corresponds to
the field and model tracer gas release locations, shows a light wind and
irregular profile. Between O and 6 cm essentially zero velocity is noted.
A zero reading is suspicious since visually smoke was observed to flow
over this location. It may be, however, that the speed is 2 to 3 cm/s
and due to inherent errors in measurement technique a value of zero is
calculated. Regardless, the speed is low--probably 2 to 3 cm/s. Between
7 and 15 cm a zone of higher velocity is noticed with a peak of 6.7 cm/s.
The region is probably the spillover from Alkali Creek that is moving in
a westerly full-scale direction. From 20 to 30 cm another region of high
velocity is observed with a peak of 8.3 cm/s at 28 cm. This region may
be a return flow moving easterly or a general circulation developed in
the drainage flow zone. Since the velocity probe does not indicate
direction and the flow was not noticed during the visualization phase,

only speculations can be made.
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The temperature profile at T4 shows an extremely stable layer
between 0 and 0.5 cm with a temperature difference of approximately
39°C. Between 0.5 and 10 cm the temperature changes 11°C and reaches
the free-stream value.

Velocity and temperature measurements at T6 are plotted in
Figure 5-1-2. The measurement location is west-southwest of T4 down the
slope toward Ohio Creek as shown in Figure 3-2-4. At this location an
organized sloped wind with a maximum velocity of 18.3 cm/s at 0.6 cm
(15.4 m full-scale) is observed. The profile reaches zero velocity at
approximately 8 cm (205 m full-scale). Above 8 cm the irregular flow
patterns as observed at T4 are seen. One profile (from 10 to 25 cm)
may still be the overflow from Alkali Creek and the other (from 25 to
31 cm) the return flow moving east or a general room circulation. At
this location the temperature does not reach a free-stream value until
30 cm where the temperature difference (Tm-TO) is 49°C.

On the east side of the saddle between Flat Top and Red Mountain
close to where the East River and Alkali Creek merge, a velocity profile
was taken at Tll. The location is shown in Figure 3-2-4. The velocity
profile shown in Figure 5-1-3 has a different character than those on the
west side of the saddle. The maximum speed is higher (50.2 cm/s) and
the layer of velocity is much deeper (approximately 24 cm). The reason
for both is that more energy is available to drive the flow. A large
amount of cold air from both Red Mountain and Flat Top feeds into Alkali
Creek and enhances the speeds. The change in elevation is also greater
on the east side of the saddle. The temperature profile at T1l shows
an irregular shape with an extremely stable layer between O and 5 cm.
Over this layer a 46°C temperature change is noted compared to an overall

change from 0 to 31 cm of 55°C.
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Visually it was noticed that slope winds off Red Mountain and Flat
Top were feeding into Alkali Creek. A velocity and temperature profile
was taken at one of these locations. A high-speed slope wind was noticed
coming down Red Mountain. Consequently, the profile shown’in Figure 5-1-4
was taken at the location marked "V2" in Figure 3-2~4. The maximum velocity
at this point is 42.9 cm/s and occurs at 1.3 cm (33.3 m full-scale) above
the ground. The region of flow extends to approximately 8 cm (205 m full-
scale). The temperature between 0 and 4 cm changes by 74°C, whereas
between 0 and 30 cm the change is 50°C.

Due to the complexity of the flow field--that is, wind direction
changes with height of 90° at several locations--no more velocity profiles
were obtained. One additional temperature profile was obtained at T8 which
is located at the origin at Alkali Creek in a basin where the flow was
stagnant close to the surface. Above the surface, the wind goes down
Alkali Creek while above this a flow off Red Mountain passes over the top
at a 90° angle. The profile in Figure 5-5-5 shows a deep stable layer
extending up to 14 cm (358 m full-scale). An overall temperature change
of 60°C between 0 and 30 cm is noticed at this location. This deep,
extremely stable layer is due to the stagnant air close to the surface
and the continuous supply of cold air off Red Mountain and Flat Top.

The Richardson number was computed for each profile as discussed in
Section 2.3. The values are tabulated on each figure.

5.2 Concentration Measurement Results

The concentration measurements made for the drainage flow
simulation near Alkali Creek consist of vertical and horizontal profiles
taken at three locations downwind of a 0.32 m release (8.1 m full-scale)
and a horizontal and vertical profile at one location downwind of a
2.54 cm release (65.0 m full-scale). This set of profiles is shown in

Figures 5-2-1 to 5-2-4. The temperature conditions during the run
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are given in Table 5-2. As can be noticed the temperatures are warmer
than those for the wind velocity tests. This is due to the fact that
the ice load was getting low and a lower temperature could not be
achieved. Scheduling prohibited another ice load to obtain data at a
colder temperature.

The concentration results are presented as a dimensionless

Xuerz
concentration K = ——— where um was taken to be the measured

x. .V
peak velocity over the;;istor 6, Hr was set equal to 0.32 and the
remaining parameters are given in Table 3-1. Figures 5-2-1 to 5-2-3
show the horizontal and vertical concentration profiles that were taken
at successive positions southwest of T4 for an 0.32 cm release (8.1 m
full-scale). In general the plume appears to get lower, wider and less
concentrated as it moves further from the release. At the closest pro-
file location (Figure 5-2-1) which is 26 cm from the release, the plume
centerline is 1.02 cm (26 m full-scale) above the ground and the plume
width is approximately 2.11 cm (54 m full-scale). The reason the plume
center is higher than the release height is because the release was on
a small knoll (approximately 40 ft high in full-scale) and the terrain
falls off quickly in the direction of flow. So in essence the release
was higher than 8.1 m above the effective ground level and may have
traveled horizontally for some distance due to the initial momentum
of the release before going down the slope. The horizontal and vertical
profile taken at 59 cm (1.5 km) from the 8.1 m release is shown in
Figure 5-2-2. At this distance the plume centerline is 0.78 cm (20 m)
above the ground and the width is 4.0 c¢m (102 m). The maximum concen-~
tration has been reduced to half of the value at the 26 cm location.

For“thg_profiles taken at 90 cm (2.3 km) the maximum value has reduced
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again by two from that at 59 cm and the height of the maximum is 0.59 cm
(15 m). The plume width at this location is 5 cm (128 m).

The profiles taken 26 cm (0.67 km) from a 2.54 em (65.0 m) release
are shown in Figure 5-2-4., At this location the plume centerline is 8.2 cm
(210 m) and its width is 3.1 cm. For this height release the plume must
be traveling horizontally and is not becoming trapped in the slope flow.
This fact is evident because the terrain has dropped approximately 3 cm
(70 m) which means the plume is slightly higher with respect to a hori-
zontal plane than when it was released. Also evident in the figure is a
vertical profile with two peaks. This double peak may be attributed to
the complex and irregular flow field above the slope wind field.

5.3 Visualization

The flow patterns for the Alkali Creek drainage flow tests were
extremely complicated. Consequently, additional movie footage of the
flow was taken. To obtain the best description of the flow the movies
should be viewed. The general features of the flow will be discussed
here.

On the east side of the ridge around the Alkali Creek Basin the
flow was quite complicated. Slope winds off Red Mountain were feeding
into Alkali Creek moving in a southerly direction. Upon reaching
Alkali Creek Basin (at the origin of the creek), a portion of flow
turns east and moves down Alkali Creek. In addition a small segment of
flow turns west and spills over the ridge and flows downslope toward
Ohio Creek. Figure 5-3~1 shows smoke being released near Big Alkali
Lake up the slope toward Red Mountain. As can be seen the flow moves
downslope in a southerly direction and turns east to move down Alkali

Creek. The spilling over the ridge to the west is evident on the
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right-hand side of the picture. Figure 5-3-2 shows the spillover flow
in more detail. This picture shows the flow moving southwesterly toward
Ohio Creek. The depth of this spillover is quite shallow and is shown
in Figure 5-3-3. In the picture a tape measure is placed on the rim of
the ridge around Alkali Creek. The one-foot marker on the tape measure
is visible in the picture and the spillover appears to be about 1/9 of a
foot or 3.4 cm (87 m full-scale).

Another interesting feature about the flow in the Alkali Creek Basin
is two flows~-one above the other--going in directions at 90° to each
other. The flow off Red Mountain toward the Alkali Creek Basin would
drain down toward the basin until it reached the height of the ridge.

At this point the flow would level off and flow either east or west as
described above. Below this south-moving slope wind a flow down Alkali
Creek was noticed moving in an easterly direction. In fact, a part of
the flow off Red Mountain would turn west and then turn a circle around
the Alkali Creek Ridge and become entrained in the flow moving east

down Alkali Creek. Figure 5-3-4 depicts these irregular flows.
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6.0 COAL CREEK - NEUTRAL STRATIFICATION RESULTS (Forced Flow)

6.1 Velocity Measurements

Mean velocity and turbulent intensity profiles were taken for the
Coal Creek - Neutral Stratification tests at T3, T7, T13, Tl4, T15, Tl6
and Tl7. The locations are marked in Figure 3-2-3. As a review for
these tests the aluminum topographic model of the area shown in Figures
3-1-1 and 3-2-3 was placed in the environmental wind tunnel and a free
stream velocity, u_, of 3 m/s set for all tests. The free stream
velocity was set 30.5 cm above T16.

To document the flow patterns the velocity profiles shown in Figures
6-1-1 through 6-1-7 were obtained. The profiles are presented in a
general sequence starting at the west end of the valley (T17) and moving
east. All of the profiles have a similar appearance except the one taken
at T7. This profile was taken about half way up Mt. Emmons and was in
the lee of high ground. Hence the profile shows the character of being
in a wake. It has reduced velocity and high turbulence within the
lower 20 cm (384 m full-scale). The turbulence‘intensity for this pro-
file reaches a maximum of about 32% whereas the maximum for the other
profiles is close to 20%.

Each profile was analyzed to obtain the surface roughness (zo),
friction velocity (u*), power law exponent (n) and the turbulent Reynolds

z_ u*
number ov . The z, and u* values were obtained by fitting the data

by least squares to the following equation:

u* k z

and the power law exponent by fitting to the equation

n
L
Yy 20
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Table 6-1 gives the results of the analysis. The surface roughness
values range from 0.027 cm to 0.445 cm (0.5 to 8.5 m full-scale) with
an average (excluding the highest value) of 0.05 cm (1.1 m full-scale).
The location showing the highest z, value was at T7 which was in a wake
and a higher z, is expected. The remaining profiles show relatively
little variation in zZ, e The turbulent Reynolds number Rez ranged from
2.4 to 77.1. All values were close to or exceeded the 1imgt of 2.5 to
ensure fully turbulent flow. The power law exponent ranged from 0.12

to 0.31 where the highest value was again at T7. The remaining locations
had an average n of 0.21. The value of u*/ua was 0.061, or less, at
all locations except T7 which had a value of 0.081.

In summary the velocity profiles show that a turbulent boundary
layer was simulated and that the velocity profile characteristics are
those expected for rough topography.

6.2 Concentration Measurements

The concentration measurements results for the Coal Creek Neutral
Stability Tests are given in Appendix C and summarized in Figures 6-2-1
to 6-2-6.

The ground-level isopleths shown in Figure 6-2-1 are for a 6.1 m
release over T16 and a model free stream velocity of 3 m/s. The plume
travels directly down the valley (east) reaching a maximum concentration
1.3 km downwind of the source. One might expect the maximum to occur
near the release since it was essentially a surface release. However the
release site was on a 25 m bank overlooking Coal Creek and the effective
release height was greater. Vertical cross sections of the plume were
taken at locations C-C' and DwD‘ as depicted in Figure 6-2-1. At C-C'

(1.3 km downwind of the release) the plume centerline is found effectively
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on the valley floor as shown in Figure 6-2-2. The plume spread in the
horizontal and vertical appears greater than that observed for the
drainage flow test. For the cross section taken 3.7 km downwind (D-D')
where the valley has opened up, the plume has grown in the horizontal
and vertical and the maximum normalized concentration has dropped from
2.1 x 1073 to 5.5 x 10™* or a factor of 4.

Ground-level isopleths are shown for a 49 m release height in
Figure 6-2-4. No significant change over the 6.1 m release is found in
the position or magnitude of maximum concentration. When the release
height is increased to 98 m, the point of maximum concentration is moved
only slightly downwind as shown in Figure 6-2-5. The increase in release
height from 6.1 to 98 m appears to have no appreciable effect on the
position or magnitude of the measured maximum ground-level concentration.

For a 6.1 m release 1.2 km upwind of T16 the position of maximum
concentration is moved upwind at least a kilometer as shown in Figure
6-2-6. The lack of data points closer to the release excludes the
possibility of determining the position and magnitude of the maximum

concentration.
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7.0 ALKALI CREEK - NEUTRAL STRATIFICATION RESULTS (Forced Flow)

7.1 Velocity Measurements

Mean velocity and turbulence intensity profiles were obtained at
five locations for the Alkali Creek Neutral Flow Tests. These locations
are annotated in Figure 3-2-4. All profiles were taken at a free stream
velocity of 3 m/s and the results are shown in Figure 7-1-1 through
7-1-5.

The velocity profile at Location A in Figure 7-1-1 was taken 61 cm
(1.56 km full-scale) upwind of T4. The profile shown in Figure 7-1-2
was taken at the release site -~ Location B in Figure 3-2-4. The two
profiles show how the velocity and turbulence profiles develop when
moving up a slope. An increase in velocity, accompanied by a decrease
in turbulence, is noticed at Location B, in comparison to the values for
those same qualities recorded at Location A. Location C, like Location B,
is also on rising terrain and the greater velocity and lesser turbulence
intensity close to the surface are, again, observed. Locations D and E
are each in the lee of a hill and a slowdown in the velocity and increase
in turbulence are evident near the surface as expected.

Each of the profiles was analyzed to obtain z,, u* and n, as
discussed in Section 6.1. The results are given in Table 7-1. The
surface roughness factor at locations (A, B, C) where the terrain is
rising in the direction of flow, range from 0.0001 to 0.00227 cm (0.03 cm
to 5.2 cm full-scale). At locations (D and E) in the lee of terrain,
the z, values are 0.057 and 0.082 em (1.5 to 2.1 m full-scale). The
power law exponent and u*/u°° values show the same trend. The n values

are low at A, B and C (0.08, 0.17 and 0.09, respectively) and high at D
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and E (0.21 and 0.23). The u*/udo values are 0.025, 0.039 and 0.035 at
A, B and C and 0.062 and 0.064 at D and E.

The turbulent Reynolds number values at A, B and C were below the
critical value of 2.5 to insure fully turbulent flow; whereas, the Rez
values at D and E are well above the minimum. These results suggest °
the flow is not Reynolds number independent. However, it should be
stressed fhat‘tﬁe criteria Rez > 2.5 was developed for horizontally
homogeneous flow. For the casg of flow over a hill the criteria is not
valid. In addition the computation of z, values for such a flow can
have large errors.

In summary the results show what one would expect for flow over a
hill--a speed-up in velocity on rising terrain and a decrease in wakes
and larger s u* and n values in wakes than on flat or rising terrain.

7.2 Concentration Measurements

The results of the concentration measurements for the Alkali Creek
Neutral Stability Tests are presented in Figure 7-2-1 to 7-2-6. All
runs were made with a 3 m/s free stream wind velocity.

Figure 7-2-1 shows the observed isopleths at ground-level when the
release height was 6.1 m. The maximum concentration is found 600 m down-
wind of the release. The effective release height is higher than 6.1 m
since the release was situated on a 20 m hill. The isopleths show that
the plume is diverted around Flat Top and does not follow a straight
trajectory. Figure 7-2-2 is a cross section taken 1.0 km east of the
release point (E-E' in Figure 7-2-1). The plume contour line is near
the ground and has maintained a high degree of symmetry. In Figure

7-2-3 a cross section 3.0 km east of the release point is shown (F-F'

in Figure 7-2-1). Again the symmetry is present but the plume has
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spread over a larger region. The maximum concentration has decreased
by a factor of four between 1 and 3 km.

Figures 7-2-4 and 7-2-5 show the effect of increasing the stack
height with ground-level isopleths plotted for a 65 and 130 m release
respectively. For the 65 m release the maximum concentration has moved
out to 1 km and has decreased by a factor of 5 over the 6.1 m release.
Also the plume appears to be diverted less as it goes over Flat Top.
For the 130 m release, shown in Figure 7-2-5, the maximum concentration
has moved to 3 km downwind and has decreased by a factor of 20 as com-
pared to the 65 m release. For this release the plume is diverted to
the east as it moves over Flat Top.

Figure 7-2-6 shows the ground-level isopleths of normalized
concentration (K) for an 8.1 m release height that is 2.1 km upwind of
the field release site (T4 in the model). The maximum value was not
measured because it occurred in front of the sampling grid. The plume

still appears to be diverted around Flat Top for this case.
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8.0 COAL CREEK -~ STABLE STRATIFICATION RESULTS (Forced Flow)

8.1 Velocity and Temperature Measurement

For the Coal Creek Stable Flow Tests, velocity and temperature
profiles were taken at the following six locations annotated in Figure
3-2~3: T17, VP, TS5, T16, T15, and T13. The surface temperature boundary
conditions that were set during the measurements are given in Table 8-1.
For all thermistors, the surface temperature during testing did not change
by more than 6° C, and for most locations it did not change by more than
1° C. The minimum temperature was 23.6° C at T15, and the maximum was
13.3° C at T4. The free stream temperature was approximately 20° C for
all tests, and the free stream velocity was approximately 64 cm/s.

The velocity and temperature profiles are shown in Figures 8-1-1
through 8-1-6. The profiles are arranged in a sequence starting toward
the origin of the valley (T17) and ending at the mouth (T13). The common
feature about all the velocity profiles is the speed-up near the ground.
This speed-up is attributed to the drainage flow which is superimposed
upon the forced flow. The height of peak velocity for the low level
drainage flow ranges from 2 to 5 c¢m. This corresponds closely to the
height observed when no free stream velocity was present (see Section 4.1)

To give an indication of the stability simulated, a Richardson number

(Ri) for each case was computed--(Ri) is defined:

glT(z) - To]z

(Ri) =
T ou(z)?

where z = 13 cm.
The Ri values for each profile are 0.5 (T17), 1.7, 2.1, 1.1, 1.4, and 1.0.
If we assume that a full-scale case has a u(z) of 5 m/s, then for Ri = 1.0

T, - To will equal 2.9° ¢ assuming T = 283° C and z = 250 m. When comparing
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these results against full scale values, the full scale (Ri) should
first be computed. The wind tunnel tests should then be compared with
full scale cases having a similar (Ri) and wind direction.

8.2 Concentration Measurement Results

A series of ground level and aerial concentration measurements were
obtained for the condition described in Section 8.1. To insure a similar
condition was set, the ambient temperature (Ta) and temperature at T15
were monitored during all concentration measurements. Table 8~2 gives
the values of Ta and TTlS for each test.

The measured concentrations and location of measurement are given
in Appendix E. Figures 8-2-1 through 8-2-4 surmarize these results in the
form of isopleths of log10 K. Figure 8-2-1 shows the ground level iso-
pleths of log10 K for a 0.32 cm (6.1 m full scale) release height. The
highest observed K value is 2.8 x 10_2 and occurs 0.4 km downwind of
the release site. In Crested Butte (3.7 km downwind of release) the
highest K wvalue is 1.1 x 10-3.

The effect of increasing the release height to 2.54 cm (49 m full
scale) can be seen by referring to Figure 8-2-2. At 0.4 km the K value
is now 1.9 x 10-4 and Crested Butte 1.0 x 10—4.

To assess the vertical distribution of pollutants within the valley,
plume cross-sections were obtained at A=-A' and B -B' as annotated in
Figure 8-2-1. Figure 8-2-3 shows the isopleths in the vertical of 1og10 K
at a downwind distance of 1.3 km. The distribution appears to be well
mixed in the vertical as compared to the drainage flow profile at the
same location (Figure 4~2-3). The horizontal mixing appears similar to
that observed in the drainage flow simulation. Also the maximum concen-

tration is greater (K = 3.2 x 10-3) for the stable case than for the

drainage case (K = 5.5 x 10~3).
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Figure 8-2-4 shows the isopleths in the vertical of log10 K at 3.7 km
from the source for a 0.32 cm release (6.1 m full scale). The vertical
mixing for this case is again greater than the drainage flow case (Figure
4~2~3) whereas the horizontal dispersion appears less than the drainage
case. The maximum concentration for the stable case is 1.6 x ILO._3 and

3

the drainage case 1.0 x 10 ~. At this distance the stable case has a

higher concentration than the drainage case.
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9.0 ALKALI CREEK WEST WIND - STABLE FLOW RESULTS (Forced Flow)

9.1 Velocity and Temperature Results

For the Alkali Creek West Wind - Stable Flow Tests velocity and tempera-
ture profiles were obtained at the following locations: T6, T4, T8, T9
and T10. The locations are annotated in Figure 4-2-4. The temperature
boundary conditions that were set during testing are given in Table 9-1.
In general the surface temperature at a fixed point remained within 1°c
for all velocity profiles. The lowest temperature was -61° C at T8 and the
highest was 1° ¢ at T7. The free stream temperature T for all tests was
approximately 17° C and free stream velocity was set to be 43 cm/s.

The velocity and temperature profiles are presented in Figures 9-1-1
through 9-1-5. Figure 9-1-1 shows the velocity/temperature profiles
taken at T6 which is west of Alkali Creek on a slope heading toward Ohio
Creek. The slope is angled such that a drainage flow is generated in an
opposite direction to the free stream. The magnitude of the peak velocity
in the low level drainage flow shown in Figure 9-1-1 is approximately
14 cm/s. For the drainage flow tests without an upper level flow the
magnitude of the low level flow was 19 cm/s (see Figure 5-1-2). The
depth of the stable layer extends to 5 cm at this location.

The velocity and temperature profiles at T4, which corresponds to
the field release location,are shown in Figure 9-1-2. At this location
no reverse flow toward Ohio Creek is noticed since the site is at the top
of the slope. The downslope velocity at this point was essentially zero
even when no free stream velocity was superimposed as discussed in Section
5.1 (see Figure 5-1-1).

The next three profiles were taken along Alkali Creek at locations

T8, T9 and T10. The first profile at T8 is shown in Figure 9-1-3. T8 is
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located near the origin of the Creek in a basin. As is evident from the
velocity profile, a drainage flow is superimposed upon the forced flow.
A speed-up in the velocity profile near the ground is noticed with a peak
velocity of 20 cm/s occurring at 4 cm above the ground. The stable layer
extends up to 10 cm in the basin and exhibits the largest temperature
differential (~ 78° C). As we move down Alkali Creek, the magnitude of
this low level maximum in the velocity profiles increases to 30 cm/s at
T9 (Figure 9-1-4) and 56 cm/s at T10 (Figure 9-1-5). In fact, at T10
the low level drainage flow velocity is higher than the free stream velocity
of 46.2 cm/s. The depth of the stable layer remains approximately 10 cm
at T9 and T10; however, the temperature differential (Tm - To) becomes
greater: 47° C at T9 and 49° C at T10.

Overall, this case was more stable than the Coal Creek simulafion
discussed in Section 8. For comparative purposes, the Richardson
numbers (Ri) for these profiles are 14.2 at T6, 6.9 at T4, 13.5 at T8,
7.4 at T9, and 3.0 at T10.

9.2 Concentration Measurement Results

Vertical concentration distributions were obtained at four distances
downwind of a 0.32 em (8.1 m full scale) and 2.54 cm (65 m full scale)
horizontal release situated at T4. The location of the release point and
downwind measurement locations are shown in Figure 9-2-1. The conditions
set in the tunnel were those described in Section 9.1. The surface and
ambient temperature recorded during the concentration measurements are
given in Tables 9-2 and 9-3. The concentration results and measurement
locations are given in Appendix F.

Figures 9-2-2 through 9-2-5 show vertical plume cross-sections taken

at respective locations A-A', B-B', C-C', and D-D' for a 0.32 cm (6.1 m
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full-scale) release. As is evident from the figures the plume did not
travel in a straight path. Instead the plume was deflected around Flat
Top and moved down into Alkali Creek. This occurred at the closest
measurement location (A-A'). Once in Alkali Creek the plume became caught
in the low level drainage flow and followed the creek as shown in Figures

9-2-3 through 9-2-5. The maximum observed K values are 2.0 x 10—3 at

3 4

A-A' (1.56 km downwind), 1.6 x 10 ~ at B-B' (3.1 km downwind), 6.3 x 10
at C-C' (4.7 km downwind) and 6.3 x 10—4 at D-D' (6.2 km downwind). At
all distances the plume is skewed toward Flat Top which is toward the
south.

For the 2.54 cm (65 m full-scale) release a completely different
result was obtained as shown in Figures 9-2-6 through 9-2-9. At A-A'
(Figure 9-2-6) the plume has moved in nearly a straight trajectory and
has not been deflected toward Alkali Creek. The maximum concentration
at this point (1.56 km downwind) is 1.3 x 10-3 which is less than that
observed for the 0.32 cm release. This is due to the fact that the plume
is in a less stable layer and more mixing is allowed. At B-B' (Figure
9-2-7) the plume is deflected toward Alkali Creek by the sloperflows
off Flat Top. The maximum K value at this location is 7.9 x 10-4,
again less than that observed for the 0.32 cm release. Moving to C-C'
and D-D' the plume travels in a straight trajectory and ié spread hori-
zontally by the slope flows. The maximum K values at C-C' and D-D'
are 4 x 10_4 and 5 x 10-4 respectively.

The results of this section show how the combined drainage and

forced flow can distort the plume shape and trajectory and that the

amount of distortion is a function of release height.
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10.0 ALKALI CREEK EAST WIND - STABLE FLOW RESULTS (Forced Flow)

10.1 Velocity and Temperature Measurements

Six velocity and temperature profiles were obtained for a stable
east wind simulation at Alkali Creek. The profiles were obtained at
locations A, B, C, D, E and F as annotated in Figure 3-2-5. The surface
temperature conditions that were set during the profile measurements are
given in Table 10-1. The maximum temperature was 6.9°C at T12 and the
minimum was -54°C at T8. The free stream air temperature was approximately
20°C and the free stream velocity was 72 cm/s.

Figures 10-1-1 through 10-1-6 show the velocity and temperature
profiles at locations A, B, C, D, E and F. The profile at A corresponds
to the field release site location and exhibits a speed-up in velocity
close to the ground. This is because the measurement site is on a small
hill. The velocity profile’at B has a similar shape as the one at A.
The temperature profile at B however shows a deeper stable layer. Loca-
tion C is in the Ohio Creek Valley and consequently shows reduced velocities
below 10 cm. This location also shows the most stable layer having a tem-
perature difference of 71°C between the surface and 15 cm. The profiles
at D, E and F were taken at progressively higher altitudes moving from
Ohio Creek toward the West Elk Wilderness Area. At D and E reduced veloc-
ities are noticed below 15 cm. This is due to the opposing gravity force
as the fluid moves up the slope. Location F is at the top of the slope
on a peak near the West Elk Wilderness Area and speed-up near the ground
is noticed.

All profiles show that an extremely stable layer was generated.

The Richardson numbers for the profiles are 0.24 at A, 0.2]1 at B, 0.77

at C, 0.30 at D, 0.16 at E and 0.12 at F.
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10.2 Concentration Measurement Results

Ground—level and aerial concentration distributions were measured
for the conditions described in Section 10.1. Figure 10-2-1 shows the
ground-level measurement locations and the locations where vertical plume
cross sections were obtained (A-A' and B-B'). The surface temperatures
were monitored during testing and are given in Table 10-2, The free
stream velocity was 72 cm/s above T4. The concentration data are tabu-~
lated in Appendix G.

Figures 10-2-2 and 10-2-3 show the respective ground-level values
of loglo K for a 0.32 cm (8.1 m full-scale) and 2.54 cm (65 m full-scale)
release above T4. The figures show a blow-up of that portion of the map
in Figure 10-2-1 that has the ground-level measurement locations. No
isopleths were plotted for these results since no uniform pattern could
be discerned. The ground-level concentrations appear to be almost uniform.
The highest K value for the 0.32 cm release was 1.78 x 10_4 at location

4 at location 72. The uniform

53 and for the 2.54 cm release, 2.13 x 10~
mixing was also evident from the visualization of the motion. Portions
of the plume would stagnate in the Ohio Creek Valley and gradually mix.
In fact a visualization at a lower wind tunnel speed (higher Richardson
number) showed that the plume would not move over the high terrain west
of Ohio Creek. Instead it would stagnate in the valley. This case would
not occur in nature since the valley is not blocked at one end as it is
in the tunnel. The visual results do suggest that at some critical
Richardson number a plume released from T4 would not travel over the

terrain toward the West Elk Wilderness Area but instead would turn and

flow down Ohio Creek toward Gunnison.
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Vertical plume cross sections taken 110.5 cm (2.8 km full-scale)
and 335 cm (8.6 km full-scale) downwind of T4 are shown in Figures 10-2-4
and 10-2-5. At 335 cm (Figure 10-2-4) the plume has a well-defined shape
and shows that the mixing is not uniform at this distance. At 335 cm
(Figure 10-2-5) the plume is uniformly mixed over a large region. This
location is on the west side of Ohio Creek.

The results of this section show that a plume moving toward the
West Elk Wilderness Area under stable conditions would be diverted down
Ohio Creek for a critical Richardson number. If the flow was forced over
the terrain toward the West Elk Wilderness Area the concentration would

be approximately uniformly mixed.
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11.0 SUMMARY
Physical modeling experiments were conducted simulating forced
flow (stable and neutral stratification) and free convection (drainage
flow). The simulations were made over east-west oriented scale models
of the topography in the vicinity of Coal Creek and Alkali Creek near
Crested Butte, Colorado. Vertical profiles of temperature and velocity
were obtained as well as ground level and aerial concentration dis-
tributions. The model tracer gas releases were at locations where
full-scale field releases were made. The purpose of this phase of
the overall program, directed and managed by Camp Dresser & McKee
(CDM), is to provide information for developing and validating a
numerical model as well as for assessing pollutant impact. The results
of the study can be summarized as follows:

® (oal Creek--Drainage Flow (Free Convection)

The velocity and temperature profiles showed a pattern character-
istic of a mountain - valley wind. An increase in the maximum velocity
with distance down the valley was noticed. Also, the depth of the
mountain - valley wind system was proportional to ridge height. Above
the down valley flow, a referse flow moving up-valley was observed.

The tracer gas released at a location similar to that in the
field showed that the effluent followed the valley confines. Upon
exiting the valley, the effluent flowed over Crested Butte. Vertical
mixing appeared restricted while horizontal mixing was enhanced as the

plume exited the valley.
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® Alkali Creek--Drainage Flow (Free Convection)

The flow measurements indicated that a complicated flow pattern
had developed in the Alkali Creek Basin. Wind direction changes with
height of 90° were evident. Shallow (~ 80 m) slope flows were
evident on exposed slopes, whereas deeper slope flows developed along
Alkali Creek. The deeper flows in Alkali Creek were the result of the
converging slope winds off Red Mountain and Flat Top. The flow in
Alkali Creek was also high in magnitude relative to other locatiomns.

The tracer gas released at the field release site was transported
westerly toward Ohio Creek. The plume was caught in the shallow slope
flow, and the plume center remained at about the same altitude above
ground level. As the release height was increased, portions of the
plume escaped the slope flow and diffused into the still air above.

® Coal Creek and Alkali Creek--Neutral Stratification (Forced Flow)

The velocity profiles for these cases are more regular in shape than
the stable and drainage cases. A speed-up in the velocity was noticed
near the ground on hill or mountain tops, whereas a slow-down was noticed
in hill or mountain wakes. Turbulence intensity also increased in hill
or mountain wakes. The surface rodghness was computed to be greater for
the Alkali Creek model as compared to the Coal Creek model.

The concentration measurements showed the plume being>transported in
the direction of the upper level flow. However, there was a slight
tendency for the plume to be diverted around Flat Top for the Alkali
Creek tests. The horizontal and vertical dispersion appeared greater for
these tests in comparison to the drainage flow cases or the stable forced

flow cases.
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® (Coal Creek--Stable Stratification (Forced Flow)

A deep stable layer (~ 400 m) was observed for these tests as well
as irregularly shaped velocity profiles. 1In the lower 200 m, profiles
similar to the drainage velocity profiles were observed, while above this
layer the velocity rapidly increased to the free-stream value.

The plume released from the field release location was transported
along Coal Creek. The horizontal and vertical dispersion appeared less
than the neutral case, but greater than the drainage case except at the
valley exit. The horizontal dispersion at the valley exit was enhanced
for the drainage case to such an extent as to be greater than the neutral
or stable cases.

® Alkali Creek West Wind--Stable Stratification (Forced Flow)

A shallow stable layer (~ 100 m) was developed over the surface of
this model, except in Alkali Creek where the layer extended to approximately
250 m. On the lower 100 m, a drainage flow profile was evident at all
locations while above this layer the velocity quickly approached the free-
stream value. On windward slopes, a slope flow in a direction opposite
the upper level flow was observed. In general, the wind direction near
the surface was in the direction of lower elevation.

The plume transport for this case was a function of release height.
For the low release height case (8.1 m full-scale), the plume was caught
in the slope flow and was transported into Alkali Creek Basin; thereafter
it was transported down Alkali Creek. For the high release (65 m full-
scale), the plume first was transported in a straight trajectory, after-
which it turned around Flat Top, became caught in the slope flow, and |

eventually was transported down Alkali Creek.
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Alkali Creek East Wind--Stable Stratification (Forced Flow)

For these tests, the wind was toward the West Elk Wilderness Area.
The velocity and temperature profiles were similar to the Alkali Creek
West Wind--Stable Case. Visual experiments showed that at a critical
stability the flow would stagnate in Ohio Creek and a plume released
at 8 or 65 m would not be transported toward the West Elk Wilderness
Area. For a case less stable than the critical stability, the plume
could be forced over the mountains near the Wilderness Area. Since in
the wind tunnel the ends of Ohio Creek Valley were blocked, the valley
could not be ventilated, hence stagnation occurred. In the full-scale,
it is expected that the plume released at the field release site would
not reach the West Elk Wilderness Area except under near neutral
conditions. For stable conditions, the slope and valley winds would

divert the plume down the Ohio Creek Valley.



59

REFERENCES

Budney, L. J., "Procedures for Evaluating Air Quality Impact of New
Stationary Sources," Guidelines for Air Quality Maintenance Plan-
ning and Analysis, Volume 10 (OAQPS No. 1.2-029R) Environmental
Protection Agency, Research Triangle Park, North Carolina, 27711,
July 1977.

Cermak, J. E. and J. Peterka, "Simulation of Wind Fields Over Point
Arguello, California, by Wind-Tunnel Flow Over a Topographic Model,"
Fluid Dynamics and Diffusion Laboratory, Report No. CER65JEC~JAP64,
Colorado State University, Fort Collins, 1966.

Cermak, J. E., "Applications of Fluid Mechanics to Wind Engineering,"
presented at Winter Annual Meeting of ASME, New York, November 17-
21, 1974,

Csanady, G. T., Turbulent Diffusion in the Environment, D. Reidel
Publishing Company, Doudrecht, Holland, 1973.

Davidson, B. and P. Krishna Rao, "Experimental Studies of the Valley~Plain
Wind," Int. J. Air Met. Poll., Vol. 7, 907 p., 1963.

Defant, F., Compendium of Meteorology, American Meteorological Society,
Boston, 662 p., 1951.

Hidy, G. M., "Adventures in Atmospheric Simulation," Bulletin of American
Meteorological Society, Vol. 48, pp. 143-161, 1967.

Hino, M., "Maximum Ground-Level Concentration and Sampling Time,"
Atmospheric Environment, Vol. 2, Pergamon Press, pp. 149-165, 1968.

Hinze, 0. J., Turbulence, 2nd Edition, McGraw-Hill, Inc., 1975.

Hoult, D. P. and J. Weil, "Turbulent Plume in a Laminar Cross Flow,"
Atmospheric Environment, Vol. 6, pp. 513-531, 1972.

Mery, P., "Reproduction en Similitude de la Diffusion dans la Cauche
Limite Atmospherique,” La Houille Blanche, No. 4 (Translation Air
Poll. Tech. Inf. Cent. No. 1104), 1969.

Orgill, M. M., J. E. Cermak, and L. O. Grant, "Laboratory Simulation and
Field Estimates of Atmospheric Transport-Dispersion Over Mountainous
Terrain," Technical Report No. CER70-71MMO-JEC-LOG40, Colorado State
University, Fort Collins, 302 p., 1971,

Orgill, M. M., J. E. Cermak, and L. O. Grant, "Research and Development
Technique for Estimating Airflow and Diffusion Parameters Related
to the Atmospheric Water Resources Program,' Final Report, Bureau

- of Reclamation Contract No. 14-06-D-6842, CER71-72MMO-JEC~LOG20,
111 p., 1971.



60

Pasquill, F., Atmospheric Diffusion, 2nd Edition, John Wiley and Soms,
New York, 1974.

Pasquill, F., "Atmospheric Dispersion Parameters in Gaussian Plume
Modeling, Part II," EPA Report No. EPA-600/4-76-0360, 1976.

Petersen, R. L., J. E. Cermak, R. N. Meroney, and E. L. Hovind, "A Wind
Tunnel Study of Plume Rise and Dispersion Under Stable Stratifica-
tion," presented at the Joint Conference on Applications on Air
Pollution Meteorology, Salt Lake City, Utah, November 29-December 2,
1977. :

Petersen, R. L. and J. E. Cermak, "Wind Tunnel Study of Downwash at the
Bayshore Power Station," Fluid Dynamics and Diffusion Laboratory,
Report No. CER78-79RLP-JEC54, Colorado State University, Fort Collins,
April 1979.

Petersen, R. L. and J. E. Cermak, "Wind Tunnel Model Tests of Kodak Park
Process Emissions,'" Fluid Dynamics and Diffusion Laboratory, Draft
Report, CER79-80RLP~-JEC64, Colorado State University, Fort Collins,
November 1979.

Petersen, R. L., J. E. Cermak, and R. A. Nelson, "Simulation of Pollutant
Dispersion in the Mountain Wind," presented at the Second Joint Con-
ference on Applications of Air Poliution Meteorology, New Orleans,
Louisiana, March 23-27, 1980.

Schlichting, H., Boundary Layer Theory, McGraw-Hill, Inc., New York, 1968.

Snyder, W. H;, "Similarity Criteria for the Application of Fluid Models
to the Study of Air Pollution Meteorology," Boundary Layer Meteorology,
Vol. 3, pp. 113-134, 1972, ,

Snyder, W. H., "Guideline for Fluid Modeling of Atmospheric Diffusion,"
USEPA Report EPA-450/4-79-016, draft dated June 1979.

Sutton, O. G., Micrometeorology, McGraw-Hill, Inc., New York, 1953.

Taylor, G. I., "Diffusion by Continuous Movements," Proceedings, London
Meteorological Society, Vol. 20, pp. 196-211, 1921.

Turner, P. B., Workbook of Atmospheric Dispersion Estimates, U.S.
Department of Health, Education and Welfare, Public Health Service
Publ. No. 999, Cincinnati, Ohio, AP-26, 88 p., 1970.

Ukejurchi, N., H. Sakata, H. Okamoto, and Y. Ide, "Study on Stack Gas
Diffusion," Mitsubishi Tech. Bull., No. 52, pp. 1-13, 1967.




61

TABLES



62

Table 3-1. Test Parameters for Forced and Drainage Flow Experiments

Rulrase  Velume Reference

e A T A S
cee 1 Coal Creek drainage flow/stable  TI6  0.318 2.4k 0.2 ground-lovel poines
8-10 0.318 2.44 0.2 o 1.3
3-7 0.318 2.44 0.2 196 3.7 ¥n
2 2.54 2.44 0.2 gromd~level points
ACC 1A Alkali Creek drainage flow/stable Th 0.318 2.38 n.u” 27
2 0.318  2.38 0.18 59
n 0.318 2.38 0.18 90
i 5.08 238 0.8 27
€CC 1A Coal Creek vest/aeutral T 0318 235 3.0% ground-level points
SA-SAS 0.318  23.5 3.0 68
6A-6AS 0318 23.% 3.0 196
2 2.5¢ 23.5 3.0 ground-level points
kY 5.08 23.5% 3.0 ground-level points
A * 2,54 235 3.0 ground-level points
ACC  Alkalf Cresk  wast/neutral T 0.m8 28 3.0% ground-level points
585 0.318  23.5 3.0 9,66
64585 0,318 235 3.0 2.1
2 2.5¢ 23.5 3.0 ground-level points
3 5.08 23.5 3.0 ground~level points
& - 2,54 23.5 3.0 ground~level points
o 1 Coal Craek vast/atable 16 0.318 1208 0,183 ground-level points
2 2.540 1,205 0.296 ground-level points
3 0.318 1,205 0.183 £5.5
4 0.318 1.208 0.183 192.5
5 0.31#  1.205 0,183 192.5
6 0.318 1,205 0,183 192.5
H 0.318 1.205  ©.183 65.5
] 0.318 1.205  0.183 65.5
oAl Alkali Creek west/stable T4 0.318 1205 0.129% 244
2 o.318 1.205  0.129 244
3 0.318 1,205 0.129 183
. 0.318 1.205 0.129 122
s 0.318 1.205  0.129 61
. 0.318 1.205  0.129 §1
7 0.318  1.205 0,129 122
s 2.5 1.205  0.15% 264
] 2.54 1,205 0.1%% 244
10 2.54 1.205  0.155 183
1 2.54 1.205  0.15% 183
12 2.54 1.205 0158 122
13 2.54 1.205  0.155 61
" 2.54 1.205  0.155 61
13 2.54 1.205 0.155 122
16 2.54 1.205 0.155 122
17 2.5 1,208 0.155 244
o1 Alkali Creek east/stable T 0318 1205 0.487%) ground-level points
2 2.54 1.205  0.542 ground-level points
3 0.318 1.205  0.487 10,5
4 0.318 1,205 0.487 10,5
s 0.318 1,205  ©0.487 335
6 0.318 1.205  0.487 335
? 0.318 1.208 0.487 135
De T16, maxt -

Dyt tocation T6, maximm velocity

”m free stresm velocity

$,¢ tocatton 116, velocity at releass height
$at Jocation 14, velocity st releass height

*relesse 60 cm upwind of #16
*hrelease 78 om upwind of Fl4
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Table 4-1. Crested Butte Drainage Flow Surface Temperatures Recorded
on 18 October 1979 during Velocity Measurements

Time of Day
Thermistor
10:08A4 10:25A 10:40A 10:50A 11:00A 11:10A 11:20A 11:30A 11:40A 11:50A
1 =15 ~16 ~-16 ~-16 -15 -15 ~15 -15 ~-15 -~15
2 -19 -20 =20 -20 -20 ~-20 ~20 -20 -20 -19
3 -22 -22 -23 -22 -23 -23 -23 -23 -22 -22
4 -24 -24 -25 -25 -25 ~25 -24 -24 -24 -24
5 -22 -23 =24 -24 -24 ~24 -24 =24 ~21 ~23
6 -18 -18 -18 ~18 -17 -18 =17 -17 -13 ~-17
7 -14 ~14 -14 -14 -14 -14 -14 -13 -13 -13
8 ~11 -~11 -11 ~11 -10 ~10 -10 -10 -~10 -~10
9 -9 -10 -10 ~10 -9 -10 -10 -10 -19 -9
10 -3 -3 -4 -3 -3 -3 -3 -3 -3 -3
11 + 1 0 0 0 0 0 + 1 + 1 + 1 +1
12 + 6 + 6 + 6 + 6 + 6 + 6 +7 + 7 + 7 + 7
13 -15 ~15 -15 ~16 ~15 ~16 ~16 -16 ~16 -15
14 -30 -30 -30 -30 -29 -29 -29 ~28 ~28 -28
15 -24 -24 ~24 -24 ~24 -24 =24 =24 =24 -24
16 off scale -+ +> + + -+ -+ * > -
17 -24 ~28 -30 -30 -30 ~30 -30 -29 -29 ~-28
18 =24 -24 =24 -24 -24 -24 ~24 -24 -24 -24
19 -24 ~24 ~24 -24 ~24 -23 -24 =23 ~23 -23
20 - - - - - - - - - -
21 -19 -19 -19 -19 ~-19 ~19 -19 -19 -19 -19
22 ~14 ~14 -~14 ~14 -14 -14 ~14 -14 ~14 ~14
23 -3 -4 -5 -5 -5 -5 -5 -5 -5 -5
24 -20 ~20 -21 ~-20 ~20 -20 -20 ~20 -20 ~-20

10:20A 10:40A 10:50A  11:00A 11:10A 11:20A 11:30A 11:40A 11:50A 12:00N
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Table 4~1 (continued)

Time of Day
Thermistor

2:10PM  2:20PM  2:30PM  2:40PM  2:50PM  3:03PM  3:15PM
1 ~-16 -15 -15 ~16 -15.7 -15.0 ~14.9
2 -17 -18 ~18 ~-19 ~18.9 ~18.5 -18.5
3 -22 -21 -21 -22 -21.5 -21.0 -20.7
& ~24 ~24 -24 ~24 -23.6 ~23.4 -23.0
5 ~24 ~22 ~-22 -22 -22.0 ~-22.0 -22.0
6 -17 ~17 ~17 ~17 -17.0 -17.0 -16.8
7 ~-12 -12 ~12 ~13 -12.4 -12.2 -12.0
8 - 8 -9 -9 -9 - 9.1 - 9.1 - 8.3
9 -9 -9 -9 - 8.9 - 9.1 - 8.9 - 9.4
10 -2 -2 -2 -2 - 2.2 - 2.1 - 2.5
11 + 1 +1 0 0 - 0.8 - 0.9 + 0.1
12 + 7 + 7 + 6 + 5.8 + 5.8 + 5.8 + 6.1
13 ~16 -15 -15 ~15 ~15.7 ~15.6 ~-15.6
14 -28 -27 ~27 -27 -26.2 ~26.3 -26.2
15 ~24 -24 ~24 ~24 ~23.8 ~23.5 -23.2
16 off scale =+ -+ - - - -
17 ~26 ~26 -26 ~26 -26.0 ~25.7 -25.7
18 ~-23 ~-23 -23 -23 -23.0 -23.0 -22.8
19 ~22 ~-22 -22 -22 -22.1 -22,2 -22,0
20 - - - - - - -
21 ~18 -18 -~18 ~18 ~17.8 ~17.5 -17.4
22 ~14 ~-13 ~-14 ~14 -14.1 -13.9 -13.7
23 -3 -4 - 4 ~ & - 4.9 - 4.0 - 4.2
24 -19 -18 ~19 ~19 ~19.0 -18.7 -18.3

2:20PM  2:30PM  2:40PM  2:50PM  3:03PM  3:15PM
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Table 5~1. Surface Temperature Conditions during Velocity/Temperature
Measurements for Alkali Creek on 18 October 1979

Temperatures (°C)

Thermistor 11:25 p.m. 1:45 a.m. 2:32 a.m.

1 -47 -44 ~-43

2 =45 -42 =41

3 -43 -40 -39

4 -44 =41 =40

5 -42 -39 -38

6 ~-42 -39 -39

7 -41 -38 -38

8 -41 -38 -38

9 =49 -46 -45

10 -39 -36 =35

11 ~48 =44 -44

12 -28 -25 =25

13 -49 -46 =45
Pa(in Hg) 24,487 24.502 24.526

T (°C) 9 9 9
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Table 5-2. Alkali Creek Drainage Flow Surface Temperatures during the Concentration
Measurement Tests

Theralstor Run #1 Run #2 Run #3 Run #4
Number
1 - -~ -31.10 -30.21 -28.97 -25.54 =-25.23
2 -26.3  -25.25 =-20.84 =-22.89 -20.05 ~19.49  -18.96
3 +3.13  +3.09 +5.83 +4.14 + 4.72 + 4.62  + 4.76
4 -24.61 =-25.58 -22.99 -21.63 -20.71 -23.16 -22.73
5 -23.54 -23.04 -20.39 -21.57 -17.07 -15.40 -14.72
6 -9.08 -9.28 - 7.32 -10.11 - 5.34 - 5.77 - 5.15
7 -27.37 -28.39 -24.97 -25.97 -23.48 -20.37 -19.80
8 -26.30 -26.67 -23.86 -24.29 -22.17 -20.05 -19.59
9 -35.81 -36.00 ~-33.59 =-33.24 -31.55 -28.02 -27.54
10 ~26.70 -26.77 -24.14 =-24.15 ~-21.93 ~19.93  -19.59
11 -36.04 -36.20 -34.13 -33.54 -31.93 ~28.36 -27.89
12 -16.85 -16.90 ~-16.07 -15.95 ~14.91 -12.86 -12.48
13 + 4.55 + 3.74 +6.32 + 4.28 + 6.28 + 5.5  + 5.69

T, = 20°C



Table 6-1. Summary of Coal Creek Neutral Stratification Velocity
Profile Analysis for u_ = 3.21 m/s.

Location zo(cm) u*(cm/s) R.ezO n u*/u
T16 0.02707 16.660 3.007 0.1808 0.052
T15 0.06649 19.525 8.655 0.2470 0.061
T14 0.07305 19.488 9.491 0.2280 0.061
T13 0.02337 15.322 2.387 0.1759 0.048
T17 0.08248 19.476 10.709 0.2012 0.061
T3 0.06674 19.495 8.674 0.1975 0.061
T7 0.44548 25.956 77.086 0.3050 0.081

L9



Table 7-1.

Summary of Velocity Profile Analysis for the Alkali Creek
Neutral Stability Tests and u_ = 3.0 m/s.

Location* zo(cm) u*(cm/s) d(cm) Re, n u*/u_
o

A 0.00001 7.478 0.275 3.507 X 10-4 0.0792 0.025

B 0.00227 11.754 0.450 0.1776 0.1661 0.039

c 0.00022 10.448 0.000 1.550 X 10-2 0.0946 0.035

D 0.05694 18.669 0.000 7.087 0.2069 0.062

E 0.08220 19.219 0.000 10.532 0.2323 0.064

*See Figure 3-2-4 for map location.

89
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Table 8-1. Surface Temperature Boundary Conditions during
Velocity/Temperature Profile Measurements for
Coal Creek Stable Flow Tests. Profiles Taken
from 1840 on 6 February 1980 to 0120 on
7 February 1980

THggﬁiéggR Velocity/Temperature Profile Location
NUMBER T16 VP T17 5 T15 i3
4 13.4° 13.3° 13.0° 12.9° 12.9° 12.7°
7 4.8° 4.6° 4.2° 4.0° 3.8° 3.7°
8 8.6° 8.6° 8.6° 8.6° 8.5° 8.4°
9 8.3° 7.9° 7.7° 7.6° 7.5° 7.3°
10 10.3° 10.4° 10.3° 10.1° 10.1° 9.8°
1 11.3° 11.3° 10.9° 10.9° 10.8° 10.5°
12 -8.9° -10.9° -11.2° -13.4° -13.3° -13.2°
13 -11.7° -13.4° -14.4° -14.4° -14.4° -17.3°
14 -16.4° -17.2° -17.4° -17.2° -17.5° -17.5°
15 -20.0° -21.2° -21.7° -21.7° -23.6° -
18 -3.7° -5.0° ~7.4° -8.1° -8.8° -9.4°
19 -3.9° -4.7° -5.5° -5.9° -6.3° -6.5°
21 3.3° 4.2° 3.4° 3.1° 2.7° 2.3°
24 3.5° 3.5° 2.9° 2.9° 2.8° 3.0°




Table 8-2.
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Surface and Ambient Temperatures Recorded from 0903
to 1900 on 6 February 1980 during Concentration
Measurements for the Coal Creek Stable Flow Tests

SURFACE Concentration Run Number
THSSﬁ;;iOR CBC1 CBC2 CBC3 CBC4 CBC5 CBC6 CBC7 CBC8
T15 -24.4 -24.0 ~-21.9 22,0 ~21.6 -21.4 -21.7 -22.3
T, +20 +20 +20 +20 +20 +20 +20 +20
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Table 9-1. Surface Temperatures Recorded from 1724 to 2154 on

12 February 1980 while taking Data for Velocity and

Temperature Profiles along Alkali Creek with Stable

Flow and Westerly Wind Conditions
Tugggggggk Velocity/Temperature Profile Location

NUMBER T4 Té T8 T9 T10 T11
1 -55.4 -56.1 ~-55.4 =55.4 -55.6 -55.8
2 -30.7 -29.6 -30.1 -30.5 -30.8 -31.9
3 -8.5 ~-8.5 -8.5 -8.2 -8.2 -8.2
4 -33.9 =54.4 -53.4 -53.2 -53.0 -53.1
5 -49.0 -50.0 -48.7 -48.9 -49.2 -49.3
6 -32.0 -33.2 -31.7 ~-32.0 -32.5 -32.5
7 +0.1 +0.3 +0.4 +1.0 +1.2 +1.0
8 -61.0 -61.0 -61.1 ~-60.5 -61.0 -61.2
9 -30.5 -30.1 -29.5 -29.6 -29.8 -30.0
10 -33.2 -33.5 -32.9 -32.4 -32.9 -32.9
11 -47.7 -48.5 -49.0 -48.9 -49.6 -49.1
12 +6.7 +6.4 +6.5 +6.5 +6.4 +6.2
13 -56.9 -57.0 -56.5 -56.7 -56.8 -56.8




Table 9-2. Surface Temperatures Recorded from 1100 to 2013 on
13 February 1980 while taking Concentration Samples
along Alkali Creek with Stable Flow (West Wind)
Conditions and a 0.318 cm Release Height
Tﬂggﬁgéggk CONCENTRATION RUN NUMBER
NUMBER CBA 1 CBA 2 CBA 3 CBA 4 CBA 5 CBA 6 CBA 7
1 -54.3 -52.2 -52.5 -53.0 -53.2 -51.7 -48.7
2 ~-30.2 -28.2 -27.0 -23.9 -25.1 -25.6 -22.9
3 -9.0 -7.2 -6.6 -6.3 -6.5 -6.3 -5.7
5 -50.9 -49.7 -49.1 -49.6 ~49.1 -47.8 =44.4
6 ~-34.6 -32.7 -32.3 -32.9 -32.5 -31.4 -26.0
7 +0.1 +1.0 +1.0 +1.5 +0.7 +0.7 +1.8
8 ~-56.8 -56.6 -56.5 -56.4 ~56.8 -56.0 -56.7
10 -37.2 ~-36.3 -37.8 -36.4 -34.4 -33.9 -29.3
11 -53.1 -51.4 -53.1 -50.7 -49.3 -48.9 -44.3
12 +6.9 +6.5 +6.9 +6.9 +7.3 +7.3 +7.7
13 -55.9 -54.6 -53.8 -53.6 -53.6 -52.9 -50.2
T, +18 +18 +18 +18 +18 +18 +19

(44



Table 9-3. Surface Temperatures Recorded from 2122 on 13 February 1980 to 1710 on
14 February 1980 while taking Concentration Samples along Alkali Creek
with Stable Flow (West Wind) Conditions and a 2.54 cm Release Height
SURFACE CONCENTRATION RUN NUMBER
THERMISTOR
NUMBER CBA 8 CBA 9 CBA 10 CBA 11 CBA 12 CBA 13 CBA 14 CBA 15 CBA 16 CBA 17
1 -51.6 -50.3 ~-50.8 -51.1 -50.1 -50.2 ~48.0 -49.0 -49.4 -48.0
2 -22.7 -23.0 ~23.3 -24.4 -23.6 -23.6 -23.3 -24.4 -25.1 -23.0
3 "'405 "'4‘03 "405 -407 —4-9 —5.7 -505 ‘601 "6.1 -5-9
5 ~45.3 -45.1 -46.0 -46.4 -44.9 -45.5 -45.5 -45.9 ~-46.1 -46.1
6 -27.8 ~28,0 ~-28.5 -28.8 -29.2 -30.1 -30.3 -30.0 ~29.8 -29.3
7 +3.4 +3.7 +3,1 +2.7 +2.4 +1.3 +1.3 +1.8 +1.3 +1.8
8 ~56.4 -56.5 ~-56.8 -56.7 -55.7 -56.8 ~56.2 -56.5 -56.4 -56.2
10 -29.5 -29.9 -29.9 -27.6 -30.3 ~-31.6 -30.0 ~-37.1 -30.9 -30.0
11 ~44 .4 -44.9 -45.7 ~-44.5 -45.5 -46.0 ~45.7 -46.2 -45.8 -43.5
12 +9.9 +9.9 +9.9 +9.5 +9.5 +9.5 +9.0 +9.0 +9.0 +9.0
13 - -50.2 -50.5 -50.5 -49.9 -51.0 -50.9 -51.2 -51.3 -50.8
T, +18 +18 +19 +18 +18 +18 +18 +18 +18 +18

€L
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Table 10-1. Surface Temperatures (°C) Recorded from 1614 to 2249 on
19 February 1980 while taking Data for Velocity and Tem-
perature Profiles along Alkali Creek with Stable Flow
and East Wind Conditions

VELOCITY PROFILE LOCATION
THERMISTOR
A B C D E F
1 -19.3 -19.8 -18.8 -18.8 -19.0 -19.5
2 -15.1 -17.5 -16.7 -17.0 -17.1 -17.4
5 -41.0 -40.2 -40.1 -39.9 -40.4 ~-40.6
7 -37.9 -34.2 -28.2 -32.1 -21.7 -26.3
8 -53.7 -53.1 -54.0 -53.6 -53.2 -53.1
10 -30.4 -31.1 -29.6 -30.2 -30.5 -30.5
11 -24.7 -32.0 -25.1 -26.7 -26.9 -31.2
12 +6.9 +6.5 +6.7 +6.9 +6.9 +6.5
13 -46.5 -40.8 -41.5 -44.8 -45.6 -45.3
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Table 10-2. Surface Temperatures (°C) Recorded from 0758 to 1732 on
20 February 1980 during Concentration Sampling for the
Alkall Creek Stable Flow and East Wind Conditions
CONCENTRATION RUN NUMBER
THERMISTOR

CEBM 1 CBM 2 CBM 3 CBM 4 CBM 5 CBM 6 CBM 7
1 -19.6 - -17.2 -19.1 ~-18.6 -19.4 -18.5
2 -17.7 - -16.5 ~-18.6 -18.5 -18.3 -17.8
5 ~-43.7 - 44,1 -46.9 -47.4 -47.8 =47.7
7 *48-7 - —50-2 "'52-6 ”5219 -52n7 -5209
8 -52.7 -53.1 -52.3 -52.9 -53.4 -53.2 -52.6
10 ~-29.6 - -39.5 ~44.5 -44.5 -43.1 -42.9
11 ~40.3 - -33.1 ~40.2 -35.5 -32.2 -30.8
12 +7~7 - +7‘3 +6i9 +6-5 +6¢9 +6¢9
13 -20.7 - -21.5 -25.5 ~26.7  -26.6 -25.1

Ta +20 +20 +20 +20 +20 +20 +20
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FIGURES
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Figure 3-1-1. Map Showing the Topographic Areas Modeled
for the Various Physical Simulations
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Figure 3-2-1. Picture of a Portion of Wood Frame Used to Support
Aluminum Surface Representing Model Topography
(Also Pictured is the Tubing Used for Tracer Gas
Sampling at Ground Level)
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Figure 3-2-2. Picture of One Complete Section
of Alkali Creek Model
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Figure 3-2-3. Map Showing Thermistor and Velocity/Temperature Profile Locations for Coal Creek Tests
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T - Thermistor
O - Velocity/ Temperature Profile Location
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Map Showing Location of Thermistors and Velocity-Temperature

Sampling Points for Alkali Creek (West Flow) Tests

Figure 3-2-4.
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Figure 3-2-5. Map Showing Velocity/Temperature Profile Locations for
Alkali Creek (East Wind) Tests



Figure 3-2-6.

Close-up of Surface
Mounted Thermistor

Figure 3-2-7.

Close~up of Ground-level Sampling
Point Number 11 at Alkali Creek
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Alkali Creek (a) and Coal Creek (b) Model Setup in the Environmental Wind Tunnel
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Figure 3-2-10. Platform Used as a Support for Hollow
Aluminum Model
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Figure 3-2-11. Fans Installed under Frame to Circulate
Cold CO, Vapors
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Figure 3-2-12, Technician Loading Dry Ice Blocks on Carts that are
Positioned under Aluminum Shell Model

Figure 3-2-13. A Picture of a Complete Dry Ice Load
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(a)

(b)

Figure 3-3-1. Photographs of (a) the Gas Sampling System, and
(b) the HP Gas Chromatograph and Integrator
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Syringe # Integrated Value (uv-s)
1 205694
2 203629
3 202583
4 204305
5 204430
] 203817
7 204636
8 204425
9 204820

10 202794
11 202874
12 203496
13 197171
14 203790
15 202432
16 202426
17 202317
18 200461
19 200372
20 201959
21 201829
22 201817
23 199365
24 201459
25 200297
26 200940
27 200012
28 200622
2 0 mmee—
30 199445
31 199914
32 198845
i3 198725
34 198899
35 198898
36 195163
37 198945
38 197443
39 197502
40 196235
41 196938
42 196890
43 147606
44 196634
45 196964
46 197027
47 195721
48 196414
49 196934
50 196582
Calibration Gas 197778

Figure 3-3-2. Typical Sampling System Calibration Showing the
Integrated FIGC Response after Injecting a Known
Concentration from Each Syringe
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Figure 3-4-1, Equipment Used for Calibrating Hot-film Anemometer at
Low Speeds
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Measured Calculated
Velocity--u Voltage—E Velocity--u Z Error

(cm/s) (cm/s)

7.175 2.880 7.186 .15
11.038 2.905 10.977 -.56
14.794 2.930 14.924 .88
18.522 2.952 18.507 -.08
22.126 2.973 22.012 -.52
25.725 2.994 25.592 -.52
29.406 3.017 29.595 .64
33.024 3.037 33.141 .35
36.687 3.056 36.563 -.34

Calibration is: = 24326
B = .00155
n = .,9111
where:
EZ n T:‘ -
RH(RH-RC) A + Bu T; 1.4278
£ - 156.942
RH = 9.925Q
Eo = 2,852V
I, = 288.72°K; Pa = 24.3"Hg
Rc =  6.6150

Figure 3-4-2. Hot-film Calibration Results for Alkali
Creek Test--Drainage Flow



Figure 3-4-3.

Photographs at Two Angles of Datametrics Probe with Shield Removed (Top Sensor
for Velocity and Bottom for Temperature)(Spacing is Approximately 0.5 mm)
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Figure 4-1-1. Velocity and Temperature Profiles Taken at T17
for the Coal Creek Drainage Flow Tests.
(Ri = 0.50)
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Figure 4-1-2. Velocity and Temperature Profiles Taken at VP

(Ri

Site for the Coal Creek Drainage Flow Tests.
1.69)
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(T-To) (Teo=To)
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Figure 4-1-3. Velocity and Temperature Profiles Taken at TS5

for the Coal Creek Drainage Flow Tests.

(Ri

= 2.20)
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(T-To) /(T To)
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201 |
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~ |6F
N
|14}
12
10
81
(3] o
41
2
0 1 =
-04 -0.2 0.2
u/um
Figure 4-1-4. Velocity and Temperature Profiles Taken at T16

for the Coal Creek Drainage Flow Tests.
(Ri = 1.14)
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-04 -0.2 0] 0.2 04 0.6 0.8
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Figure 4-1-5. Velocity and Temperature Profiles Taken at
Concentration Sampling Tap 25 (C25) for
the Coal Creek Drainage Flow Tests.

(Ri = 1.09)
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Figure 4-1-6. Velocity and Temperature Profiles Taken at

Concentration Sampling Tap 16 (Cl16) for
the Coal Creek Drainage Flow Tests.
(Ri = 0,54)
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Figure 4-1-7. Velocity and Temperature Profiles Taken at T13

for the Coal Creek Drainage Flow Tests.
(Ri = 0.07)
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Figure 4-2-1. Isopleths of Ground-level Normalized Concentration (K)
for Drainage Flow at Coal Creek with a 0.318 cm (6.1 m)
Release (Numbers are the Logarithm of the Normalized

Concentration).
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Release
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9160 ft, MSL
6 ! !50 ‘ 260m
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Figure 4-2-2.

Isopleths in the Vertical of the Normalized
Concentration (K) for the Coal Creek Drainage
Flow Test Taken 68 cm (1.3 km) Downwind of a
0.318 cm (6.1 m) Release (Numbers are the
Logarithm of the Normalized Concentration)
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Figure 4-2-3. Isopleths in the Vertical of the Normalized Concentration (K) for the Coal Creek
Drainage Flow Test Taken 196 cm (3.7 km) Downwind of a 0.318 cm (6.1 m) Release
(Numbers are the Logarithm of the Normalized Concentration)
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Figure 4-2-4. 1Isopleths of Ground-level Normalized Concentration (K)
for Drainage Flow at Coal Creek with a 2.54 cm (49 m)

Release (Numbers are the Logarithm of the Normalized
Concentration)



Figure 4-3-1.

Picture Taken above Coal Creek
Model of Smoke Released at T16.
Crested Butte is at Top Center
of Picture

Figure 4-3-2.

Picture Taken from Mt. Emmons
Side of Model at Up-valley
Return Flow (Slains Gulch Shows
in Lower Left)

SOT
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Figure 4-3-3. Picture Taken from Top of Smoke Released up the
North Side of Valley Showing the Slope Flow
Merging with the Down-valley Flow. Crested
Butte is at Top Center of Picture
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Figure 4-3-4. Photograph of Velocity Profile over T16 as Produced
by the Smoke Wire (the Down-valley Component has
the Largest Magnitude)
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Figure 5-1-1.

Velocity and Temperature Profile at T4 for the
Alkali Creek Drainage Flow Test
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Velocity and Temperature Profile at T6 for the
Alkali Creek Drainage Flow Test (Ri = 0.38)
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Figure 5-1-3. Velocity and Temperature Profile at T1l for
the Alkali Creek Drainage Flow Test (Ri = 0.05)
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Figure 5-1-4. Velocity and Temperature Profile at the Red Mountain

Set Location for the Alkali Creek Drainage Flow Test
(Ri = 0.10)
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Figure 5-1-5.
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um = No Velocity Data
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Temperature Profile at T8 for the
Alkali Creek Drainage Flow Test
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Figure 5-2-1. Vertical and Horizontal Profiles of the Normalized Concentration (K) for
the Drainage Flow Test at Alkali Creek Taken 27 cm (0.67 km) Downwind of
the 0.318 cm (8.1 m) Release
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Figure 5-2-2.

Vertical and Horizontal Profiles of the Normalized Concentration (X) for
the Drainage Flow Test at Alkali Creek Taken 59 cm (1.5 km) Downwind of
the 0.318 cm (8.1 m) Release
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Figure 5-2-3,

Vertical and Horizontal Profiles of the Normalized Concentration (XK) for the
Drainage Flow Test at Alkali Creek Taken 90 cm (2.3 km) Downwind of the
0.318 cm (8.1 m) Release

STT



116

600

Vertical

400

z {m)

200

Horizontal

o I3 1

0 0.7 14 -200 0 200
- Kxi0* y (m)

Figure 5-2-4. Vertical and Horizontal Profiles of the
Normalized Concentration (K) for the
Drainage Flow Test at Alkali Creek Taken
27 cm (0.67 km) Downwind of the 2.54 cm
(65 m) Release
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Figure 5-3-1. Visualization of Southerly Flow off Red Mountain
Turning East and Southwest with a Stagnant Zone
over the Alkali Creek Basin

Figure 5-3-2. Picture of the Spillover Flow Moving Southwest
toward Ohio Creek (Right Side of Picture)
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Figure 5-3-3.

Picture of Spillover Flow Moving Southwest
toward Ohio Creek (toward Left in Picture)
The Depth of the Flow is Evident in the
Picture
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Figure 5-3-4.

A
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Depiction of Flow Patterns in the Vieinity of Alkali Creek for Drainage Conditiomns
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Figure 6-1-1. Mean Velocity and Turbulence Intensity Profiles Taken at T17
for the Coal Creek Neutral Stability Tests.
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for the Coal Creek Neutral Stability Tests.
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(441



cM

HEIGHT

MEAN VELOCITY PROFILES

TURBULENCE PROFILES

lea i 1 i i I T 188 1 1 |
o CCRKIG o CCRK16
80 | ’ o 4 80 [ .
(0]
609 | o A 600 .
|
l_
a - a
a ) a
B J H 5 4
49 a m 4%+ O
a I
o
o o
20 + u} . 20 | a .
o a
s £
i B,
g 1 L' 1 1 1 1 0 1 i
2 50 109 150 28@ 250 308 3509 Q 12 20 30 49
UMEAN — CM/S LOCAL TURB INT - %

Figure 6-1-4. Mean Velocity and Turbulence Intensity Profiles Taken at T16
for the Coal Creek Neutral Stability Tests.
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Figure 6-1-5. Mean Velocity and Turbulence Intensity Profiles Taken at T15
for the Coal Creek Neutral Stability Tests.
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Figure 6-2-1.

127

~=" Y9810 |003

Isopleths of Ground-level Normalized Concentrations
(plotted logjy K) for the Coal Creek Neutral Stability
Test with a Free-stream Velocity of 3.0 m/s and a
0.318 cm (6.1 m full-scale) Release
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Figure 6-2-2. Isopleths in the Vertical of the Normalized Concen-
trations (plotted logig K) for the Coal Creek Neutral
Stability Test with a Free-stream Velocity of 3.0 m/s
and Measured 68 cm (1.3 km full-scale) Downwind from

a 0.318 em (6.1 m full-scale) Release
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Figure 6-2-3. Isopleths in the Vertical of the Normalized Concentrations (plotted logjiy K)
for the Coal Creek Neutral Stability Test with a Free-stream Velocity of 3.0
m/s and Measured 196 cm (3.7 km full-scale) Downwind from a 0.318 cm (6.1 m
full-scale)} Release
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Figure 6-2-4. Isopleths of Ground-level Normalized Concentrations
(plotted logjg K) for the Coal Creek Neutral Stability
Test with a Free-stream Velocity of 3.0 m/s and a
2.54 cm (49 m full-scale) Release
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Figure 6-2-5. Isopleths of Ground-level Normalized Concentrations
(plotted logjg K) for the Coal Creek Neutral Stability
Test with a Free-stream Velocity of 3.0 m/s and a
5.08 cm (98 m full-scale) Release
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Figure 6-2-6. Isopleths of Ground-level Normalized Concentrations
(plotted logjg K) for the Coal Creek Neutral Stability
Test with a Free-stream Velocity of 3.0 m/s and a
0.318 cm (6.1 m full-scale) Release - 60 cm (1.2 km)
Upwind from T16
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Figure 7-2-1. Isopleths of Ground-level Normalized Concentrations
(plotted logjy K) for the Alkali Creek Neutral Stability
Test with a Free-stream Velocity of 3.0 m/s and a
0.318 cm (8.1 m full-scale) Release at T4
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Figure 7-2-2. 1Isopleths in the Vertical of the Normalized Concentration (plotted logjg K) for
the Alkali Creek Neutral Stability Tests with a Free-stream Wind Velocity of
3 m/s and Taken 39 cm (1.0 km full-scale) Downwind from a 0.318 cm (8.14 m
full-scale) Release
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Isopleths in the Vertical of the Normalized Concentration (plotted logigo K) for
the Alkali Creek Neutral Stability Tests with a Free-stream Wind Velocity of

3 m/s and Taken 117 cm (3.0 km full-scale) Downwind from a 0.318 cm (8.14 m
full-scale) Release
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Figure 7-2-4. Isopleths of Ground-level Normalized Concentrations
(plotted logjg K) for the Alkali Creek Neutral Stability
Test with a Free-stream Velocity of 3.0 m/s and a
2.54 cm (65 m full-scale) Release at T4
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Figure 7-2-5. Isopleths of Ground-level Normalized Concentrations
(plotted logjp K) for the Alkali Creek Neutral Stability
Test with a Free-stream Velocity of 3.0 m/s and a
5.08 cm (130 m full-scale) Release at T4
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(plotted logjp K) for the Alkali Creek Neutral Stability
Test with a Free-stream Velocity of 3.0 m/s and a
0.318 cm (8.1 m full-scale) Release 78 cm (2.1 km)
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Figure 8-1-1. Velocity and Temperature Profiles Taken at
T17 for the Coal Creek Stable Flow Tests
(Ri = 0.5)
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Figure 8-1-2. Velocity and Temperature Profiles Taken at VP
Site for the Coal Creek Stable Flow Tests
(Ri = 1.7)
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Figure 8~1~4. Velocity and Temperature Profiles Taken at
T16 for the Coal Creek Stable Flow Tests
(Ri = 1.1)
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Figure 8-1-5. Velocity and Temperature Profiles Taken at
T15 for the Coal Creek Stable Flow Tests
(Ri = 1.4)
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Figure 8-1-6. Velocity and Temperature Profiles Taken at
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Figure 8-2-2. Isopleths of Ground-level Normalized Concentrations
(plotted logjg K) for the Coal Creek Stable Flow Test
with a Reference Velocity of 0.30 m/s and a 2.54 cm
(49 m full-scale) Release at T16
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Figure 8-2-3. Isopleths in the Vertical of the
Normalized Concentration (plotted
log10 K) for the Coal Creek Stable
Flow Tests Taken 6.35 em (1.3 km
full-scale) Downwind from a 0.318
cem (6.1 m full-scale) Release
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Figure 8-2-4. Isopleths in the Vertical of the
Normalized Concentration (plotted
logyy K) for the Coal Creek Stable
Flow Tests Taken 190.5 cm (3.66 km
full-scale) Downwind from a 0.318
em (6.1 m full-scale) Release
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Figure 9-1-1. Velocity and Temperature Profiles Taken at
T6 for the Alkali Creek Stable Flow (Westerly
Wind) Tests (Ri = 14.2)
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Figure 9-1-2., Velocity and Temperature Profiles Taken at
T4 for the Alkali Creek Stable Flow (Westerly
Wind) Tests (Ri = 6.9)
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Figure 9-1-3. Velocity and Temperature Profiles Taken at
T8 for the Alkali Creek Stable Flow (Westerly
Wind) Tests (Ri = 13.5)
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Figure 9-1-4. Velocity and Temperature Profiles Taken at
T9 for the Alkali Creek Stable Flow (Westerly
Wind) Tests (Ri = 7.4)
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Figure 9-1-5. Velocity and Temperature Profiles Taken at
T10 for the Alkali Creek Stable Flow (Westerly
Wind) Tests (Ri = 3.0)
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Isopleths in the Vertical of the Normalized Concentrations (plotted logjg K)
for the Alkali Creek Stable Flow (West Wind) Tests Taken 60.9 cm (1.56 km
full-scale) Downwind from a 0.318 em (8.14 m full-scale) Release
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Figure 9-2-3. 1Isopleths in the Vertical of the Normalized Concentrations (plotted logy K)
for the Alkali Creek Stable Flow (West Wind) Tests Taken 121.9 cm (3.12 gm
full-scale) Downwind from a 0.318 cm (8.14 m full-scale) Release
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Figure 9-2-4. 1Isopleths in the Vertical of the Normalized Concentrations (plotted logjg K)
for the Alkali Creek Stable Flow (West Wind) Tests Taken 182.8 cm (4.68 km
full-scale) Downwind from a 0.318 cm (8.14 m full-scale) Release
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Figure 9-2-5. 1Isopleths in the Vertical of the Normalized Concentrations (plotted logj K)
for the Alkali Creek Stable Flow (West Wind) Tests Taken 243.8 cm (6.24 km
full-scale) Downwind from a 0.318 cm (8.14 m full-scale) Release
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Figure 9-2-6. Isopleths in the Vertical of the Normalized Concentrations (plotted logjg K)
for the Alkali Creek Stable Flow (West Wind) Tests Taken 60.9 cm (1.56 km
full-scale) Downwind from a 2.54 cm (65.02 m full-scale) Release
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Figure 9-2-7. Isopleths in the Vertical of the Normalized Concentrations (plotted log10 K)

for the Alkali Creek Stable Flow (West Wind) Tests Taken 121.9 cm (3.127 'km
full-scale) Downwind from a 2.54 cm (65.02 m full-scale) Release
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Figure 9-2-8. Isopleths in the Vertical of the Normalized Concentrations (plotted logjgp K)
for the Alkali Creek Stable Flow (West Wind) Tests Taken 182.8 cm (4.68 km
full~scale) Downwind from a 2.54 cm (65.02 m full-scale) Release
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Figure 10-1-1. Velocity and Temperature Profiles Taken at Location
A (see Figure 3-2-5) for the Alkali Creek Stable
Flow (East Wind) Test (Ri = 0.24)
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Velocity and Temperature Profiles Taken at
Location B (see Figure 3-2-5) for the Alkali
Creek Stable Flow (East Wind) Test (Ri = 0.21)
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Figure 10-1-3. Velocity and Temperature Profiles Taken at
Location C (see Figure 3-2-5) for the Alkali
Creek Stable Flow (East Wind) Test (Ri = 0.77)
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Figure 10-1-4. Velocity and Temperature Profiles Taken at
Location D (see Figure 3-2-5) for the Alkali
Creek Stable Flow (East Wind) Test (Ri =.0.30)
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Figure 10-1-5. Velocity and Temperature Profiles Taken at
Location E (see Figure 3-2-5) for the Alkali
Creek Stable Flow (East Wind) Test (Ri = 0.16)
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Figure 10-1-6. Velocity and Temperature Profiles Taken at
Location F (see Figure 3-2-5) for the Alkali
Creek Stable Flow (East Wind) Test (Ri = 0.12)
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Figure 10-2-2. Ground-Level Values of Logig K for the Alkali Creek
Stable Flow (East Wind) Tests Taken Downwind of a 0.32

cm (8.1 m full-scale) Release
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Figure 10-2-3. Ground-Level Values of Log;y K for the Alkali
Creek Stable Flow (East Wing) Tests Taken Down-
wind of a 2.54 em (65 m full-scale) Release
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Isopleths in the Vertical of the Normalized Concentration
(plotted log;q K) for the Alkali Creek Stable Flow (East
Wind) Tests Taken 110.5 cm (2.83 km full-scale) Downwind
from a 0.318 cm (8.14 m full-scale) Release
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APPENDIX A
Coal Creek Drainage Flow Concentration Data

A-1 Ground-level Data and Sample Point Locations
A-2 Vertical Rake Data and Rake Locations
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A-1. Ground-level Data and Sample Point Locations
for Coal Creek Drainage Flow Tests
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A-2. Vertical Rake Data and Rake Locations
for Coal Creek Drainage Flow Tests
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Figure A-2-1. Sampling Rake Locations for Obtaining a Vertical
Cross Section of the Plume 68 cm (1.3 km) Downwind
of .318 cm Release Point at T16 for the Coal Creek
Drainage Flow Tests
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APPENDIX B

Alkali Creek Drainage Flow Concentration Profile Data

B-1 Vertical Rake Sampling Locations
B-2 Horizontal Rake Sampling Locations



Table B-1-1. Vertical Rake Sampling Locations for the Alkali Creek Drainage Flow Tests
with Azimuths and Distances Measured from the Release Point at T4
SAMPLE RUN ACClA RUN ACC2A RUN ACC3A RUN ACC4A
POINT | oy | 0° |z(ft,ms) | rm) | 6° |z(fr,ms1) | r(m) | ° |z(ft,msl) | r@@ | 6° |z(ft,msl)

1 699 | 239° | 9355 1593 | 245° ! 9160 2341 | 250°| 8950 699 | 239° | 9652
2 9389 9194 8984 9715
3 9422 9227 9017 9778
4 9464 9269 9059 9820
5 9489 9294 9084 9862
6 9557 9362 9152 9904
7 9615 9420 9210 9988
8 9666 9471 9261 10030
9 9725 9530 9320 10072
10 9775 9580 9370 10114
11 9842 9647 9437 10240
12 9901 9706 9496 10335
13 10035 9840 9630 10366
14 10136 9941 9731 10870
15 ¥ v 10254 i v 10059 v ¥ 9849 v v 11290

96T



Table B-1-2.

with Measurements Taken from the Release Point at T4

Horizontal Rake Sampling Locations for the Alkali Creek Drainage Flow Tests

SAMPLE RUN ACClA RUN ACC2A RUN ACC3A RUN ACC4A
POINT r(m) y(m) | z(ft,msl)} r(m) | y(m) | z(ft,msl) | r(m) y(m) z(ft,msl)}] r(m) y (m) z(ft,msl)

16 ~154 9355 1593 | -154 9160 -305 8950 -531 9652

17 ~-123 -123 ~187 -294

18 -102 -102 -133 -182

19 - 82 - 82 - 82 -128

20 - 56 - 56 - 56 - 58

21 - 33 - 33 - 33 - 38

22 - 18 - 18 - 18 - 26

23 699 0 1593 0 2341 0 699 0

24 + 26 + 26 + 26 + 26

25 + 38 + 38 + 38 + 38

26 + 77 + 77 + 77 + 58

27 + 92 + 92 + 92 +148

28 +118 +118 +143 +195

29 +141 +142 +189 +307

30 +164 v +164 ¥ +307 ¥ +563 ¥

5 = 239° 8 = 245° 6 = 250° 8 = 239°
Note: 1. (Azimuths measured from T4 to center of rake at sample point 23).

2. Negative offsets (y) measured to left when facing the release point.
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APPENDIX C
Coal Creek Neutral Flow Concentration Data

C~1 Ground-~level Data and Sample Point Locations
C-2 Vertical Rake Data and Rake Locations
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C-1. Ground-level Data and Sample Point Locations
for Coal Creek Neutral Flow Tests
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Flow Tests.
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C-2. Vertical Rake Concentration Data and
Rake Locations for Coal Creek Neutral
Flow Tests
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Figure C-2-1. Sampling Rake Locations for Obtaining a
Vertical Cross Section of the Plume 68 cm
(1.3 km) Downwind from a 0.318 cm (6.1 m)
Release Point at T16é for the Coal Creek
Neutral Stability Tests.
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APPENDIX D
Alkali Creek Neutral Flow Concentration Data

D-1 Ground-level Data and Sample Point Locations
D-2 Vertical Rake Data and Rake Locations
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D~1. Ground-level Concentration Data and
Sample Point Locations for Alkali
Creek Neutral Flow Tests



217

o\'KRe:&?.e;f@r%@..sa,s?'s'*ﬁ',\ MSL.

‘-‘ ”,

N
Snas

¥8847 oy

- o - ”
-

Figure D-1-1. Ground-level Sample Points Used to Obtain
Concentration Data for Alkali Creek Neutral

Flow Tests.
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D-2, Vertical Rake Concentration Data and
Rake Locations for Alkali Creek Neutral
Flow Tests



Figure D-2-1.
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Sampling Rake Locations for Obtaining a Vertical Cross Section of the Plume
39 em (1.0 km full scale) Downwind from a 0.318 cm (8.14 m full scale) Release
Point at T4 for the Alkali Creek Neutral Stability Tests.
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Sampling Rake Locations for Obtaining a Vertical Cross Section of the Plume
117 cm (3.0 km full scale) Downwind from a 0.318 cm (8.14 m full scale) Release

Point at T4 for the Alkali Creek Neutral Stability Tests.
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APPENDIX E
Coal Creek Stable Flow Concentration Data

E~1 Ground-level Data and Sample Point Locations
E~2 Vertical Rake Data and Rake Locations
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E-1l. Ground-level Data and Sample Point Locations
for Coal Creek Stable Flow Tests
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Figure E-1-1. Ground-level Sample Points Used to Obtain
Concentration Data for Coal Creek Stable
Flow Tests.
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E-2. Vertical Rake Data and Rake Locations
for Coal Creek Stable Flow Tests
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Figure E-2-2. Sampling Rake Position for Obtaining
a Vertical Cross Section of the Plume
192.5 cm (3.66 km) Downwind from a

.318 cm Release at T16 for the Coal
Creek Stable Flow Tests.
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APPENDIX F

Alkali Creek Stable Flow (Westerly Wind)
Concentration Profile Data



oo

*

L4

. .1
|
|

Co

co

. ———— —
l{ . "’““:mm____mr e e e e e e . s st
to sl e
| g /
Lo /
3 ° ¢ * ‘
’, ) ¢ . - : I' * . ol .
. .
,0 . ) * . - : r' OQI .

; [

-

»

.

-

L4

e

L] *

H N .
sty

T

Figure F-1.

8600ft MSL

Sampling Rake Locations for Obtaining a Vertical Cross Section of the
Plume 60.9 cm (1.56 km) Downwind from a 0.318 cm (8.14 m) Release Point

at T4 for the Alkali Creek Stable Flow (West Wind) Tests.
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Figure F-2. Sampling Rake Locations for Obtaining a Vertical Cross Section of the

Plume 121.9 cm (3.12 km) Downwind from a 0.318 cm (8.14 m) Release
Point at T4 for the Alkali Creek Stable Flow (West Wind) Tests.
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Figure F-3. Sampling Rake Locations for Obtaining a Vertical Cross Section of the Plume 182.8
cm (4.68 km) Downwind from a 0.318 cm (8.14 m) Release Point at T4 for the Alkali

Creek Stable Flow (West Wind) Tests.
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Figure F-4. Sampling Rake Locations for Obtaining a Vertical Cross Section of the
Plume 243.8 cm (6.24 km) Downwind from a 0.318 cm (8.14 m) Release
Point at T4 for the Alkali Creek Stable Flow (West Wind) Tests.
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Figure F-5. Sampling Rake Locations for Obtaining a Vertical Cross Section of the
Plume 60.9 cm (1.56 km) Downwind from a 2.54 cm (65.02 m) Release Point
at T4 for the Alkali Creek Stable Flow (West Wind) Tests.
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Figure F-6. Sampling Rake Locations for Obtaining a Vertical Cross Section, of the

Plume 121.9 cm (3.12 km) Downwind from a 2.54 cm (65.02 m) Release Point
at T4 for the Alkali Creek Stable Flow (West Wind) Tests.
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APPENDIX G
Alkali Creek Stable Flow (Easterly Wind) Concentration Data

G-1 Ground-level Data and Sample Point Locations
G-2 Vertical Rake Data and Rake Locations
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G-1. Alkali Creek Ground-level Data for
Stable Flow (Easterly Wind) Tests
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Alkali Creek Stable Flow (Easterly Wind) Tests.
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G-2. Vertical Rake Data and Locations
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Sampling Locations for Obtaining a Vertical Cross Section of the
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Point at T4 for the Alkali Creek Stable Flow (East Wind) Test.

Figure G-2-1.
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T4 for the Alkali Creek Stable Flow (East Wind) Test. '
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