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ABSTRACT OF DISSERTATION 

PROPAGATION AND FREQUENCY CONVERSION OF ULTRASHORT 

PULSES IN THE PRESENCE OF COHERENT NUCLEAR MOTION 

We have investigated linear as well as nonlinear propagation effects on a relatively 

weak ultrashort pulse arising from coherent nuclear motion. To this end, we have 

developed analytical and numerical models used to calculate the molecular response to 

a strong, ultrashort pump pulse, and propagate a weak probe pulse in the presence of 

the nuclear wave packet. The molecular response is described in terms of an "effective" 

susceptibility, which can be split into linear and nonlinear contributions. While a lot 

of what is discussed in terms of propagation effects is applicable to both rotational 

and vibrational wave packets, molecular alignment, i.e., coherent rotational motion 

of linear molecules, is where the focus lies. We have applied spectral interferometry 

to detect molecular alignment, both in scanning and single-shot configurations, to 

observe propagation effects due to the effective linear susceptibility, as well as carried 

out calculations and measurements showing the dependence of the effective third-

order susceptibility on coherent nuclear motion. Lastly, a strong enhancement in the 

conversion efficiency to the third harmonic of a relatively weak probe pulse is observed 

in a variety of molecular and atomic gases. 
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Colorado State University 

Fort Collins, CO 80523 
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Chapter 1 

Introduction 

The topic of molecules subject to intense laser fields has a rich history. In the cw 

and quasi-cw regime, an electric field produces an angular trap that tends to align 

molecules along the direction of the trap[l]. The interaction between an off-resonant 

cw or quasi-cw field and anisotropic molecules is adiabatic, i.e. the molecules' state 

follows the field and after the field is turned off returns to the initial state. In the 

pulsed regime, the molecular response may be quite different. Heritage and coworkers 

demonstrated that a picoseond laser pulse far detuned from excited state absorption 

in CS2 produced what they originally referred to as "susceptibility echoes" [2], and 

later identified as transient birefringence due to quantum beating between rotational 

states[3]. The quantum beating was observed by Heritage et al. because the duration 

of the laser pulse interacting with the molecule was much shorter than the rotational 

period of CS2. The interaction was therefore impulsive and energy was transferred 

between the pulse and the molecule via impulsive stimulated Raman scattering. 

Renewed interest in the field-free alignment first observed by Heritage et al has 

been driven by an interest in understanding the rotational wave packets formed by a 

short alignment laser pulse and by numerous applications. Two excellent reviews on 

the underlying theory, directions of the field, and applications are [4] and [5]. The 
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rotational wave packet formed by a short laser pulse is due to a coherent superposi­

tion of rotational states. The initial wave packet rapidly dephases and periodically 

rephases producing fractional and full revivals of the initial rotational wave packet. 

Initially, the focus lay on linear molecules since the alignment dynamic was easier 

to interpret than molecules of more complicated symmetry. A modern take on field 

free molecular alignment can be found in [6]. Different excitation schemes were pro­

posed in order to manipulate the recurring alignment, e.g., controlling the alignment 

by shaping the excitation pulse[7] or using an elliptically polarized pulse[8]. When 

using asymmetric-top molecules it is possible to align the molecules in three dimen­

sions using an elliptically polarized laser pulse[9, 10], where Viftrup et al. extended 

this control in a later experiment by combining a long nano-second pulse with a 

delayed femtosecond pulse[ll]. Applications of rotational wave packets exhibiting 

field-free alignment include molecular spectroscopy [12], manipulation of ultrafast 

laser pulses molecular phase modulation[13], control of high harmonic generation[14], 

phase matching for perturbative nonlinear optics[15], and many others - see [4] for 

additional application areas. A very recent accomplishment using rotational wave 

packets is the selective alignment of molecular isotopes as well as spin isomers[16]. 

By carefully timing the interaction of the molecules with two linearly polarized pulses 

different isotopes or spin isomers can be detected in a gas mixture, with the goal of 

ultimately using molecular alignment to separate the mixture into its components. 

Much has been explored regarding rotational wave packets already. The focus of 

this work lies on an aspect which has hitherto been mostly neglected - that of prop­

agation effects in the presence of coherent nuclear motion. While there is a focus on 

coherent rotational motion of molecules, much of what is explored here specifically 

for the case of rotational wave packets is true for coherent vibrational motion as well. 

For that reason, we will often refer to Coherent Nuclear Motion (CNM) to emphasize 

the applicability of what is being said to both. In Part I of the document we discuss 
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the theoretical background necessary to understand the propagation of short laser 

pulses in homogeneous, dilute, non-time stationary media. We specifically discuss 

the derivation of the nonlinear Schrodinger equation in Chap. 2. The derivation is 

slightly modified in order to accommodate experimental conditions which are not con­

sidered in the standard derivation. Since we discuss propagation effects on ultrashort 

laser pulses due to CNM, it is necessary to model the rotational and/or vibrational 

wave packets resulting from the interaction with a strong pump pulse and their effect 

on the polarization density induced by the weak probe pulse. This is discussed in 

Chap. 3, where we first review the Born-Oppenheimer approximation in Sec. 3.1. 

As a result of that derivation it is found that the presence of CNM can be viewed as 

an "effective" time-dependent susceptibility contribution to the induced polarization 

density. Many groups have developed numerical simulations specifically for rota­

tional wave packet excitation[6]. To model our experiments, we need to calculate the 

effective susceptibility resulting from rotational wave packets excited by arbitrarily 

polarized pump pulses for gases at room temperature. To that end, we have devel­

oped an analytic model in the limit of a purely impulsive excitation[17]. The model 

is presented in Sec. 3.2, and the resulting effective susceptibilities in Sec. 3.3. The 

contribution of the effective susceptibility to the induced polarization density can be 

separated into an effective linear, and an effective nonlinear part. The propagation 

effects observed experimentally are outlined in Sec. 3.4 for both linear and nonlinear 

contributions. One potential application originating from the time dependence of the 

effective third order susceptibility is a novel way of quasi-phase matching nonlinear 

optical frequency conversion[18] which is outlined in Chap. 4. 

Part II of the dissertation details the experimental observations regarding propa­

gation effects due to CNM. In Chap. 5 we discuss the effects due to the effective linear 

susceptibility. We have observed the phase modulation due to molecular alignment 

in various regimes, from weak to strong phase modulation. In Sec. 5.1 we show that 
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the transient molecular alignment can be detected using spectral interferometry. This 

measurement takes advantage of the fact that the index of refraction is modulated 

during a wave packet revival. In Sec. 5.2 we show how spectral interferometry can 

be utilized in a slightly modified manner to detect molecular alignment for arbitrar­

ily polarized pump pulses[19]. Then, we discuss briefly a modification of the probe 

pulse's group velocity due to molecular alignment. This behavior is expected based 

on theoretical considerations, and has been observed experimentally. However, there 

is no qualitative agreement between theory and experiment. This discrepancy has as 

of yet not been resolved. In Sec. 5.4 we show that, as opposed to "standard" bire-

fringent media, the transient birefringence present during molecular alignment leads 

to the splitting of a linearly polarized probe pulse in the strong phase modulation 

regime. As mentioned above, the contribution to the induced polarization density 

due to CNM may be split into linear and nonlinear parts. The nonlinear contribu­

tion, particularly the effective third-order susceptibility, is the subject of Chap. 6. 

It is expected that the conversion efficiency to the third harmonic depends on the 

pump-probe delay if CNM is present. This has been observed in CO2 and N2O for 

rotational wave packets and SF6 for vibrational coherent motion. The results for 

both cases are shown in Sec. 6.1 together with a way of detecting the change in the 

index of refraction concurrently with the modulation in conversion efficiency to the 

third harmonic. Improving the efficiency of nonlinear frequency conversion is a very 

important and active field of research. Moreover, the efficient conversion of a broad 

bandwidth is a highly sought after goal. The last section of the dissertation, therefore, 

describes a novel enhancement effect observed for a relatively weak probe pulse. The 

enhancement is attributed to the presence of a laser-induced plasma at the focal spot. 

While the exact physics of the enhancement at this point are unknown, experimental 

results clearly showing the effect in a variety of molecular as well as atomic gases are 

presented. 
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Part I 

Theory 



Chapter 2 

The propagation of an ultrafast 

pulse 

The electromagnetic field in space and time is completely described by Maxwell's 

equations. Solving these equations without adequate approximations, though, re­

quires a substantial amount of computing power. From Maxwell's equations one can 

derive the wave equation for the electric or magnetic field, which is classified as a 

hyperbolic second order partial differential equation (PDE). Solving the full wave 

equation for a particular experimental setup of interest is equally computationally 

expensive as directly solving Maxwell's equations for the field. In addition to that, 

solving the wave equation reliably, particularly when a non-linear driving term is 

present, can be very difficult. Therefore, suitable approximations which significantly 

reduce the computational effort are often made. The most notable approximation 

made frequently is the Slowly Varying Envelope Approximation (SVEA), which im­

plies that the backward propagating field is negligible[20]. The approximations may 

also include the separation of the field into a fast oscillating phase in space and time 

and a slowly varying envelope, the paraxial approximation, and/or expanding the 

wave vector in a Taylor series and neglecting dispersion terms above a certain or-
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der. A combination of these approximations and the SVEA will reduce the wave 

equation to unidirectional equations which are typically much easier to handle com­

putationally. The most common example for such an equation which has been used 

extensively for simulating the non-linear propagation of an ultrashort pulse is the Non­

linear Schrodinger equation (NLSE) in various forms[21]. The NLSE can be solved 

using very robust algorithms and is applicable to a variety of contexts. Given the 

conditions present in the experiments carried out in this work, the NLSE is sufficient 

to describe the pulse propagation, given some minor modifications to the traditional 

NLSE. With ever more intense and shorter pulses, the approximations made in the 

derivation of the NLSE make its accuracy questionable for highly non-linear and dis­

persive propagation. More accurate equations have been derived. For few-cycle pulses 

particularly the Non-linear Envelope Equation (NEE), derived by Brabec et al. [22], 

has been used quite extensively, since its validity is broader than that of the NLSE 

particularly in the time domain, i.e., it allows for the simulation of the propagation of 

very short pulses under non-linear conditions. In order to simulate pulse propagation 

in the presence of free charges and induced currents, as is the case in filamentation, 

Kolesik et al. have derived another propagation equation, called the Unidirectional 

Pulse Propagation Equation (UPPE) by expressing the field in terms of a superposi­

tion of electromagnetic modal fields[23, 24]. The UPPE, like the NLSE as well as the 

NEE, makes the assumption that the backward propagating field is negligible. Two 

examples for which this assumption breaks down are in the self-focussing regime[25], 

and for the non-linear propagation of few-cycle pulses in multicomponent media[26]. 

The primary problem in making the SVEA is of course that it may not be immediately 

obvious whether or not it applies for a given situation. Apart from this, the UPPE 

as derived by Kolesik et al. is formally exact for pulse propagation in homogeneous, 

non-magnetic media and more general than other unidirectional equations since free 

charges and the corresponding induced current densities are included in the descrip-
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tion. The UPPE is particularly useful when highly non-linear propagation effects, 

e.g., those present under tight focussing conditions, need to be considered, since the 

paraxial approximation is not being made, nor is the field assumed to be scalar. In 

the next section we will derive the NLSE with some modifications: We will include 

the presence of free charges, and hence the resulting current density, and dispersion 

will be taken into consideration more accurately than merely including second and 

third order. While the resulting equation thus differs somewhat from the traditional 

NLSE, its range of validity may be considered largely similar to that of the NLSE. 

The derivation of the UPPE by Kolesik at al. has been used as a guideline and inspi­

ration for the derivation presented here [27], particularly due to their inclusion of free 

charges. The reasoning behind not using the UPPE directly is that the generality 

provided by the UPPE is not necessary for the given experimental conditions. 

2.1 The Propagation Equation 

In this chapter, the goal will be to derive a propagation equation for the slowly varying 

envelope of an electric field. The final result will be a unidirectional propagation 

equation similar to the NLSE. There are three major assumptions which have to 

be made in order to simplify the wave equation, and which in turn of course limit 

the range of validity of the resulting propagation equation. The first assumption is 

to assume a homogeneous medium of non-interacting particles. Secondly, it will be 

assumed that the pulse will not be too tightly focussed, i.e., the spot size of the beam 

is always much larger than the wave length (paraxial approximation). Finally, it will 

be assumed that the contribution of the backward propagating field is negligible, i.e., 

P(E) PH P(Ef) and E m Ef, where Ef denotes the full field[27], which is to say, the 

slowly varying envelope approximation will be made. 

8 



2.1.1 Derivation of the Wave Equation 

First, the standard wave equation is derived from Maxwell's equations in the usual 

manner. Starting with Maxwell's Equations [24]: 

V-D(r,<) = p (2.1) 

V-B( r , t ) = 0 (2.2) 

VxE(F,t) = -*M (2.3) 

dDCr t) 
V x H ( r , i ) = J(r , i ) + ^ p , (2.4) 

where D(r, i) is the displacement field, p is the charge density, B(r, t) is the magnetic 

induction, E(r,£) is the electric field, H(r , i ) is the magnetic field, and J(r,£) is the 

induced current density. By taking the curl of Faraday's law (Eq. 2.3), 

V x V x E ( r , t ) = - V x ^ 

and with B(r,£) = jU0H(r, t) in a non-magnetic medium, using Ampere's Law (Eq. 

2.4), the wave equation is found to be 

V x V x E(r,i) = - ^ - y - L - ^—jj-U.} 

Next, substituting for D(r, t) = e0E(r,£) + P(r, £), where e0 = 1/C2/J0 is the permit­

tivity of free space and P(r , t ) is the induced polarization, 

„ „ ^ . ld2E(r,t) dJ(r,t) <92P(r,i) 

v x v x EM) + 72-^ = -*-$r - ^-w^' 

According to Helmholtzs' theorem[28], any vector field which is zero at infinity, which 

is true for the electric and magnetic fields, can be written as the sum of a component 
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that has zero divergence and another that has zero curl, so that 

E(r ) i ) = E-L(r,t) + E"(r )i). 

where V • E-L(f,t) = 0 is the transverse part of the field and V x E ^ r . t ) = 0 is the 

longitudinal part of the field. With this, V x V x E(r, t) can be expressed in terms 

of the transverse part of the field only: 

V x V x E(r, t) = V x V x ( E ^ F , * ) + E«(r,i)) = V x V x ( E X ( F , * ) ) 

And since V - E x ( r , i ) = 0, 

V x V x Ex(r,*) = V(V • Ex(f , t )) - V 2 E x ( r , i ) = - V 2 E ± ( r , t ) 

So the wave equation can be rewritten as 

which corresponds to an exact solution for the field. Eq. 2.5 will still result in an 

accurate description of the field if the current density J(r , t) as well as the polarization 

P(r , t ) are found from the complete field. For that purpose, the complete field can be 

reconstructed from its transverse components, if necessary [24]. It has been shown that 

for very intense pulses with strong non-linear interaction, e.g., extreme self-focussing, 

this is indeed necessary, and the longitudinal contribution to the field may not be 

neglected[23]. If the focussing of the beam is not extremely tight, it can be assumed 

that E1- « E(r , i ) , which, for the experimental situations at hand, is likely valid. 

With that in mind, the field is assumed to be a transverse field throughout and the 

wave equation for a weakly focussed pulse propagating in a homogeneous medium is 
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given by 

-VE(v,t) + -—Mr- = -Mo-^—-Mo-^r-} (2.6) 

i.e., from here on out E x = E(r, t) and E" = 0 will be assumed. Since this assumption 

restricts the validity of what follows to beams whose focus is not tight, i.e., the smallest 

spot size is much larger than the central wavelength, the paraxial propagation regime 

is implied from here on out. 

2.1.2 Slowly Varying Envelope in the Spectral Domain 

Keeping in mind that the objective is to find an equation which describes the evolution 

of the field envelope under propagation. For this purpose, one has to choose a central 

frequency and central wave vector, which is most meaningful if the spectrum of the 

field is not too broadband. Hence, the fast oscillating phase from the field may be 

separated from a slowly varying, complex envelope so that 

E(r, i) = i (A(r,t)ei(k°z-Wot) + c.c^j , 

where co0 and k0 are the chosen central frequency and wave vector, respectively, and 

c.c. is the complex conjugate. The spectrum of the field is then given by 

E(r, UJ) = i ( / dtX(r, t)e~iw'M4koZQiMt + c.c^j = ]- (A(r, W - u0)e
ik°z + c.c.^j . 

And transforming the transverse directions x and y into k-space, the field in the 

spectral domain is given by 

E(kx, ky, z,u) = l ( [ dx f dyA(r, u - Uo)^**-*"*-**"* + c.c. J 

= - (A(A*.,ky,z,u-to0)e ik°z + c.c.^j . 
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The induced polarization, P(r, t), can be separated into a linear and non-linear con­

tribution, so that 

P(r,t) = PL(r,t) +PNL(r,t). 

—* 
The linear material response Pi(f,t) is given by 

PL(f,t) = e0fdTS(1\r) : E(r,t-r), 

where S^(T), which is a tensor quantity, is the linear temporal response function[29]. 

In the frequency domain, 

PL(kx>ky)z,w) = e0X
(1)(^) : E(kx,ky,z,co), 

where x^ (^0 is the linear susceptibility, given by the Fourier transform of the linear 

response function, S^(r). The current density as well as the non-linear induced 

polarization may also be transformed to the frequency domain, and the wave equation 

in the spectral domain then reads 

d2 ^ CO 2 

(-kl-kl + -z-5)E(kx,ky,z,w) + —er(uj):E(kx,ky,z,uj)= (2.7) 
dz c 

3(kx,ky,z,u) - -ir-PNL{kx,ky,z,co), 
C t0 C t0 

where the differential operators have been formally replaced with their counterparts 

in the spectral domain, i.e., Ĵ  —>• — iu), Jp- —>• -co2, -^ —> —hi, and £? —> — k2, and 

Eq. 2.8 describes the propagation of an electric field in the spectral domain, bearing in 

mind the stated assumptions which limit its range of validity. Inserting the definition 
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of the field into Eq. 2.8 results in 

{-kl -kl + -^1)A(kx, ky, z,u- u0)e
ikoZ + —er(u) : A(kx, ky> z,u- co0)e

ikoZ = 

W ?„ , x U!2 -* 
2 J(kx,ky,z,u-u)0) — PNi(kx,ky,z,u-cj0) (2.8) 

C €0 C €0 

where PNL(kx, ky, z,u> — u0) denotes the contribution to the non-linear induced po­

larization at the chosen center frequency co0. The complex conjugate part of the field 

results in an identical equation, which for brevity is neglected here. It is kept in mind 

that of the resulting field the real part is to be taken. Making a last assumption, 

the slowly varying envelope assumption (SVEA), Eq. 2.8 can finally be written as a 

unidirectional propagation equation. The implications of this assumption are detailed 

in [23] and references therein. The final propagation equation which will be employed 

for calculations is then found to be 

{-kl -kl~kl + i2k0jj-)A(kx, ky,z,u- w0)e
lfc°* 4- — er(u) : A(kx, ky,z,u> -u0)& 

2 _ J.2 _ J.2 , , 0 J, _^_ \ K./J, U 

2 
'dz' v ' <" ' "' c 2 

-j-3(kx,ky,z,(j -co0) - -Y-^NL{kx,ky,z,uj-uj0) 
C KQ C 6 O 

And rearranging terms, 

3AfeA,,,o,-a,0) = ^(^Uuj)_kl_kl_k^]Mkx^z^_u}o) m 
dz 2k0 \ 6 

• 2 

~ 2 oh 3(kx> ky,z,u> - u0) + 2 , $NL(kx, ky, z,u>- u0)e~lkoZ 

In order to solve Eq. 2.10 a split-step approach will be taken[30]. Eq. 2.10 can be 

solved by taking dispersion and diffraction into account in the frequency domain, and 

the induced current and polarization densities in the time domain. This approach is 

valid if for a small enough step size it can be assumed that dispersion and diffraction 

act independently of the non-linear terms. Eq. 2.10 will therefore be split into two 

equations which will be considered independent of one another over a small enough 
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step size: 

dA(kx,ky,z,u — IJ0O) i (u> ,2 

Qz = 2k~ { ^ ^ ~ko~K- K) A(kx, ky, z,u- uJo) 

dA(x,y,z,t) = i dJ(x,y,z,t) i d2PNL(x,y,z,t) _ikoZ 

dz c2e02k0 dt c2e02k0 dt2 e { ) 

Written in this form, dispersion and diffraction amount to a simple spectral phase 

function accumulated in the frequency domain. The time-domain equation may be 

solved using a technique appropriate for the desired application and accuracy. Often 

used is a Runge-Kutta-Fehlberg type algorithm when the desired accuracy is not ex­

tremely high. A number of simple approaches are discussed in [21]. The split-step 

approach has been widely used as a method to describe non-linear pulse propagation 

and may be considered valid so long as the pulses under consideration are only mod­

erately intense and much longer than a single cycle. For intense pulse propagation 

the linear and non-linear interactions may no longer be considered independently and 

Eq. 2.10 has to be solved directly either in the frequency or time domain. 

2.2 The current density due to a laser induced 

plasma 

For certain experiments we will consider a plasma present in the focal region of a 

beam, hence, the charge density will not be zero, and neither will the current density. 

It is for this reason that free charges have not been neglected in this derivation. 

The current density induced by the field will be limited to convection current. For 

moderate field strengths a linear, non-relativistic relationship between the field and 

the current density is appropriate. The current density is then given by [24] 
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where p(r, t) is the charge density and v(r, t) is the velocity of the charges as a function 

of space and time and is given by the solution to 

— 7 ^ = — E r . t ) . 
at me 

The rate of change of the current for a general charge density, which may vary in time 

and space, for example, due to multi-photon ionization and/or tunneling ionization 

([31] and references therein) present as a consequence of the high field intensity is 

therefore given by 

With regards to p(r,t), its dependence on space and time may result from various 

ionization mechanisms, due to the electric field present, or due to a previous, strong 

pump pulse having ionized the medium and created a charge density in the focal re­

gion. If the pulses are strong enough, both tunnel as well as multi-photon ionization 

may contribute to p(r,i)[31]. The first model for obtaining an ionization rate for 

atoms in an external electromagnetic field where the ionization occurs due to tunnel­

ing of an electron through the Coulomb potential barrier was the ADK model[32]. 

More recently more accurate models incorporating more complex processes like dou­

ble and multi-photon ionization of not only atoms but also molecules have become 

necessary due to higher field intensities of modern laser sources. One example of 

these newer models is the S-matrix formalism (see for example [27],[31] and refer­

ences therein). If it is so desired, the charge density may be calculated accurately 

utilizing a sophisticated model for the interaction between a strong field and an atom 

or molecule. If that is not deemed necessary, a phenomenological description of the 

resulting charge density may be employed. Then, the rate of change of the charge 
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density may be parametrized in the following intuitive manner [31]: 

^ M = al(r,t)p(f,t) + b(l(r,t))-cp(r,t) (2.12) 

The first term describes avalanche free electron generation, the second term multi-

photon ionization where b depends on the field in a highly non-linear manner, and 

lastly, the third term described plasma recombination. In order to find the current 

density using this description, Eq.'s 2.11 and 2.12 have to be solved as a system of 

coupled equations. 

2.3 The non-linear induced polarization 

So far, no limitations have been imposed on the non-linear response of the medium, 

PNL (?,£)• A wide variety of non-linear interaction can be considered. For molecules, 

in addition to the purely electronic non-linear response often the Raman response, 

instantaneous as well as delayed, has to be taken into account. In general, non-linear 

response functions are complicated to calculate. The procedure for a wide variety of 

experimental situations and the corresponding non-linear response function is outlined 

in detail in [29]. For the purpose of this work, it will be assumed that the electronic 

response of the medium is instantaneous and all non-linear terms higher than third 

order in PjvL(r,t) will be neglected. 

To illustrate the above model for the non-linear response of the medium, we will 

show here explicitly how it applies to the instantaneous third order response of an 

isotropic medium, where the interaction is considered off-resonance and only the 

electronic contribution will be considered, i.e., what follows would apply for example 

to the interaction of an infrared laser pulse with an atomic gas. Including third order 

non-linear interaction implies that when starting with a field centered around u>0, 

with propagation there will be spectral components generated around 0J3 = 3u>0 due 
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to third harmonic generation. Other self-phase matched interactions occur, such as 

self phase modulation (SPM) or cross phase modulation (XPM). For the purpose 

of this example, J(r , t) = 0. Hence, the field under these circumstances should be 

described as 

E(kx,ky,z,u) = - (A0(kx,ky,z,u-uj0)e
ikoZ + A3(kx,ky, z,co - u>3)e

ik3Z + c.c.j , 

where A0(kx, ky, z, ui — cu0) and A3(kx, ky, z, u — u>3) are the slowly varying envelopes 

centered at u>0 and co3, respectively. Eq. 2.8 can then be split into two coupled 

equations, describing the evolution of the fundamental and third harmonic fields 

interacting via pNL(kx, ky, z,u). This result can be applied quite generally to a wide 

variety of situations. The limitations, given by the assumptions made in the process 

of the derivation, are most importantly that the non-linear contribution to P(r , t ) is 

small compared to the linear contribution, as well as that the medium be homogeneous 

and consist of non-interacting particles. 

The initial field is taken to be linearly polarized with a Gaussian distribution in 

the transverse directions as well as time, i.e., the field in space and time is given by 

E(x,y,z,t) = A0{x,y,z,tyKz-^ot = £;<>e-*
a/»2-«2/««2e^(«,i/.*)e-2iog»Vr|e*,*-iu;o*j 

where r0 it the initial pulse duration at FWHM, and w0 is the initial beam waist with 

an arbitrary spatial phase <j>(x, y, z) which is useful, for example, if the interaction of 

a focussing beam with the medium is supposed to be found by propagating said field 

with Eq. 2.8. 

The third order contribution to the non-linear polarization can have a very large 

number of terms centered around a variety of distinct temporal as well as spatial 

frequencies. The conversion efficiency from the fundamental to the third harmonic 

is very low, however, so any non-linear processes due to the third harmonic field 
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can be neglected. Direct higher harmonic generation is increasingly non-efficient 

due to the increased phase mismatch as well as reabsorption by the medium, and 

is therefore neglected as well. Therefore, all contributions oscillating at frequencies 

other than co0 and u3 will be neglected. Since the frequency dependence of the non­

linear susceptibility tensor is often not known, it is assumed as constant with respect 

to frequency. This implies that the interaction of the field with the medium takes 

place instantaneously, and as a consequence, PNL(?, t) can be written as 

-PjvL(r, t) = €0x
(3)E(x, y, z, t)E(x, y, z, t)E(x, y, z, t) 

With the field defined in terms of the slowly varying envelopes, the non-linear 

induced polarization can be rewritten in terms of a fast oscillating phase and a slowly 

varying envelope accordingly: 

y (3) 
PNL(x,y,z,t) = Co^Y^Aoix^^z^A^x^^^Aoix^^z,^0"-^ 

+ 6A3(x, y, z, t)A*3(x, y, z, t)A0(x, y, z, t)^"*-^ 

+ 3A*0(x, y, z, t)A*0(x, y, z, t)A3(x, y, z, i)e«-*-+*.>*-*** 

+ 3A3(x, y, z, t)Al(x, y, z, t)A3(x, y, z, ty***-*** 

+ 6A0(x, y, z, t)A*(x, y, z, t)A3(x, y, z, t)eik3Z-iM3t 

+ A0(x, y, z, t)A0(x, y, z, t)A0(x, y, z, t)^3^'^, 

where SPM, XPM, THG and back conversion are taken into consideration. Each 

contribution to PNL(x,y,z,t) can be Fourier transformed separately, so that in the 

frequency domain 
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x(3) 

PNL(kx, ky, z,u) = e 0 — (po,sPM{kx, ky, z,co - u0)e
lkoZ 

+ Po,xPM(kx, ky,z,uj- u0)e
lkoZ 

+ Po,Bc{kx, ky,z,u- u0)e^-2ko+k3)z 

+ P3,spM(kx, ky} z,v- u3)e
ik3Z 

+ P3,xPM(kx, ky,z,u>- u>3)e
lk3Z 

+ P3,THa(kx, ky, z,u- u3)e
i3k°z. 

Pij are the corresponding slowly varying envelopes obtained by Fourier transforming 

the corresponding triple product of the slowly varying envelopes in the time domain. 

Finally, the two coupled equations for the slowly varying envelopes in the spectral 

domain can be found by inserting the above into Eq. 2.8: 

dA0(kx,ky,z,u>-u0) i (u2
 2 2 2 \ 

dz = W [~&€r^' ~ko-K-ky\ A0(kx,ky,z,u-OJ0) 

iuP1 

+ -TTrpNL(kXiky}ziu-u0)e-^z (2.13) 
c2e02k0 

—- —er (u>) -kl-kl-kl) A3(kx, ky, z, u - u3) 
dA3(kx,ky,z,co-u3) _ i /a;2 

~d~z ~ 2^V72^7 'V W / '"' '"x '"v 

• 2 

+ -^rPNL{kx,ky,z,oj-u3)e-ik3Z (2.14) 
C €0ZK3 

where PNi(kx, ky, z,co—u>i) with i £ {o, 3} denotes the contribution to the non-linear 

induced polarization centered around the fundamental and third harmonic frequencies 

respectively. The separation of the fundamental and third harmonic envelopes carried 

out above implies also that the spectra are well separated. 

If the split-step approach is taken, four equations have to be solved simultaneously. 

Only taking into account SPM and back conversion for the fundamental and XPM 

19 



and THG for the third harmonic, these equations are given by 

dAo(kx,ky,z,0J — u>0) i (to 
dz = 2k, 

dA0(x,y,z,t) = iu2
X

{3) 

dz 8c2k0 

+ 3A*(x, y, z, t)A*0(x, y, z, t)A3(x, y, z, t)e~iAkx) (2.15) 

dA3(kx,ky,z,co -u3) i fu2 , s. , 2 

f — er(u>) ~k2
0-kl-k2

y\ A0(kx, ky, z,u - u>o) 

(3A0(x, y, z, t)AZ(x, y, z, t)A0(x, y, z, t) 

dz 2k3 \ c2 

dA3(x,y,z,t) iu2x(3) 

( ~#*r(u}) ~ k3 - kl - klj A3(kx, ky, z,u- u3) 

(6A0(x, y, z, t)A*(x, y, z, t)A3(x, y, z, t) 
dz 8c2 ki 

+ A0(x,y,z,t)A0(x,y,z,t)A0(x,y,z,t)eiAkz) (2.16) 

If dispersion, diffraction, and non-linear phase accumulation are neglected, and in 

addition to that, if the conversion efficiency is low, the fundamental field doesn't 

change and the equations describing the evolution of the field simplify to 

dA0(x,y,z,t) = 

dz 
dA3(x,y,z,t) iw|x ( 3 ) , , ^ , / A , , ,N i\kz 

dz = -^-M^y^,t)A0(x,y,z,t)A0(x,y,z,t)elAkz. 

The solution to these equations can be found analytically and is given as a standard 

description of optical frequency conversion in any non-linear optics textbook[33]. 

2.4 Numeric implementation 

The Eq.'s 2.10 are unidirectional z-propagation equations which can be integrated 

directly in order to find the field envelope from the known initial conditions. The fre­

quency domain equation taking into account dispersion and diffraction has a simple 

analytic solution, namely, the field at any point z is given by the initial field multi­

plied by a phase factor. In order to take into account any non-linear contributions 

in the time domain, Eq. 2.10(b) can be solved using a standard ordinary differential 

20 



equation (ODE) solver, for example the Runge-Kutta-Fehlberg algorithm, which has 

been employed here. This split step algorithm has been employed for a wide vari­

ety of pulse propagation problems[21]. Particular attention has to be paid to the 

step size since the assumption that the linear and nonlinear contributions to the in­

duced polarization act independently certainly breaks down for large step sizes. As 

a consequence, this approximation will then introduce a significant error. A slight 

modification of the split step algorithm is to apply dispersion and diffraction from z0 

to z0 + Hz/2, propagate the non-linear contributions also over the same sub-intervall, 

and repeat the same procedure for the second half of Hz. With this, the actual corre­

lation between linear and non-linear propagation is approximated. If the propagation 

effects are strong, the interval can be divided into as many sub-steps as need to ensure 

proper results. 

The algorithms and libraries used in the implementation were John Burkardt's 

implementation of the Runge-Kutta-Fehlberg algorithm using adaptive step size and 

error management. It can be found at 

http://people.scs.fsu.edu/burkardt/cpp_src/rkf45/rkf45.html. Also, the Fast Fourier 

Transform algorithm used was the FFTW version 3.1.2 obtainable from http://www.fftw. 

For a variety of useful functions and algorithms the GNU Scientific Library (GSL) is a 

great resource and can be downloaded as well from http://www.gnu.org/software/gsl/. 

For the Graphic User Interface the Qt libraries have been used, obtainable for Linux, 

Mac OS X, and Windows from http://www.trolltech.com. All libraries employed are 

available for free. The time required to carry out a propagation, of course, strongly 

depends on the chosen parameters, but can be limited to 2 hours or less for a 1 m 

propagation on an AMD X2 3GHz computer running Gentoo Linux with 2GB of 

RAM. Minimum RAM required for the program to run efficiently is about 400 MB. 
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Chapter 3 

Nonlinear polarization for gaseous 

media 

The macroscopic polarization induced by a relatively weak probe pulse may be influ­

enced by any coherent motion of the electrons, the nuclei, or a combination of both[29]. 

In the case of off-resonant interaction, which is the regime employed throughout this 

work, there is no coherent electronic motion since the electrons always remain in 

their ground state and the pulse duration is much longer than re = 2-rr/uie, where 

u)e = AEe/h, and AEe is the energy gap between the electronic ground state and 

first excited state. However, the time scale of nuclear motion is much slower and 

stimulated Raman scattering can result[33]. The instantaneous, as well as the de­

layed Raman response of the nuclei will significantly affect the macroscopic electronic 

response of the medium and is often of interest since it allows the detection of coher­

ent rotational and/or vibrational motion of the nuclei [34, 35]. This coherent state of 

superposition of vibrational or rotational states will persist long after the excitation 

pulse has passed if dephasing, for example due to collisions, is not significant. This 

is particularly true for molecules in a gaseous phase[4]. For liquid phase molecules, 

the de-coherence times are much shorter than in the gas phase, on the order of a 
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few picoseconds at the most as compared to tens of even hundrets of pico-seconds 

in a gas. Therefore, a weak probe pulse which is delayed in time with respect to the 

pump pulse can probe the presence of the nuclear wave packets. The coherent nuclear 

motion will affect the induced electrical polarization of the probe pulse, which, as will 

be shown, may be expressed in terms of an "effective" time-varying susceptibility[29]. 

This principle applies to the linear as well as non-linear propagation of the pulse [18]. 

For example, the effective linear susceptibility results in a temporal phase modulation 

of the probe pulse, i.e., the spectrum of the pulse is reshaped due to the interaction of 

the probe pulse with the wave packet [13]. The detailed effect of the wave packet on 

the probe pulse depends on the relative time scales of the effective susceptibility and 

that of the pulse. Throughout it will be assumed that the probe pulse is weak and 

does not affect the wave packet. The 'effective susceptibility' approach to modeling 

the effect of a nuclear wave packet on the propagation of a delayed weak probe pulse is 

applicable to coherent rotational, vibrational, or ro-vibrational motion of the nuclei. 

In Sec. 3.1 the Born-Oppenheimer Approximation (BOA) [36] is applied to the 

non-linear response of the molecules in order to find an expression for the response 

functions for the coherent motion of the nuclei excited by the strong pump pulse. 

This approach is applicable to rotational as well as vibrational motion so long as 

the pump pulse is not too intense since the approach taken in Sec. 3.1 is limited to 

a perturbative interaction. The motivation for investigating rotational wave pack­

ets is outlined in Sec. 3.2 and an analytic model based on an effective Hamiltonian 

valid for off-resonance interaction is derived which allows for the calculation of the 

effective susceptibilities, both linear and non-linear, in the presence of a rotational 

wave packet. The model is compared to an exact numeric solution of the Schrodinger 

equation and the resulting effective linear and third order susceptibilities are pre­

sented. This model is not perturbative, and is therefore valid for arbitrarily strong 

pump pulses, so long as the molecules are not dissociated. While it is possible to nu-
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merically solve the Schrodinger equation for vibrational motion and obtain the wave 

function for a non-perturbative interaction for vibrations as well, the interaction in 

the experiments is rather weak, and therefore the results from a perturbative model 

should be an accurate description. Explicit expressions for the effective susceptibili­

ties due to coherent rotational and vibrational motion are derived for various orders 

of non-linearity. While it is possible to observe even orders of non-linear interaction 

in the gas phase in general, for example, second harmonic generation with chiral 

molecules[37], these do not contribute on a macroscopic level for randomly oriented, 

non-chiral molecules in gas phase, which will be the only case considered experi­

mentally. Explicit expressions for the effective linear and non-lienar susceptibilities 

will be found in Sec. 3.3, and finally, the resulting effects on a probe pulse during 

propagation in the presence of nuclear wave packets will be outlined in Sec. 3.4. 

3.1 Coherent nuclear motion 

General expressions for the third order, non-linear induced polarization have been 

derived from quantum mechanical principles [29, 38]. However, for the purpose of 

this work, all interactions between the field and the molecules may be considered 

off-resonance which significantly simplifies the theoretical considerations. The Born-

Oppenheimer Approximation (BOA) [36] is almost universally present in molecular 

quantum mechanics. There have been cases identified for which the BOA might 

not be valid, e.g., in photo ionization studies[39], or in situations where energy is 

transfered between electrons and phonons[40]. It does, however, represent a major 

simplification in solving the Schrodinger equation for complicated systems. Since the 

electronic movement is much faster than the motion of the nuclei it can be assumed 

that the nuclei are "clamped down" as far as the electron motion is concerned. As a 

consequence, the effect of the electrons on the motion of the nuclei can be described to 
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zeroth order in the Born-Oppenheimer approximation by an effective potential due to 

the instantaneous position of the electrons. Since the interaction is off-resonance only 

the ground state potential surface of the electrons has to be considered. Hellwarth has 

carried out an extensive analysis of the non-linear response functions given the BOA 

[38]. In the following, this analysis will be reviewed and the results adapted for the 

situation at hand, i.e., results specifically for the resulting non-linear contributions to 

the induced polarization in the presence of rotational and vibrational wave packets 

excited via stimulated Raman scattering, as well as direct third order contributions 

will be shown in detail. 

In general, the macroscopical induced polarization is given by the expectation 

value of the induced dipole moment as[41] 

P(r,t) = NMt 

where (} indicates the expectation value of an operator and N is the number density. 

It is defined as 

(0) = Tr{Op} 

where p is the density matrix operator and Tr{} denotes the trace of the operator. 

The density matrix operator describes the state of a thermal ensemble in general. The 

fact that the interaction we are interested in is off-resonance considerably simplifies 

the treatment and will be taken advantage of in what is to come. For a general 

treatment on the calculation of P(r , i ) for non-linear spectroscopy see Mukamel[29]. 

It is difficult to find the induced dipole moment for the most general case. Off-

resonant interaction is a special case for which it is possible to do just that, however. 

Utilizing an effective Hamiltonian approach[4] in combination with a purely impulsive 

interaction allows for an analytic solution of the temporal evolution of the density 

matrix operator which is not limited to the perturbative regime[17]. However, an 
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expansion in terms of the electric field is often employed. This expansion is valid as 

long as the field strengths are less than that of the atomic field, which is on the order 

of 1010V/m[41]. The density matrix can then be written as 

p(v,t) = pW(F,t) + p^(r,t) + pW(?,t) + p^(v,t) + ... 

which in turn results in an expansion for the induced polarization in terms of the 

electric field, so that 

P(r,*) = P ( 0 )(r,t) + pW(r,t) + P<2>(r,*) + ... 

For centro-symmetric media, including isotropically distributed, achiral molecules, 

there are no even order nonlinear contributions to the macroscopic induced polariza­

tion. And for molecules with no permanent dipole, P(r,t) is given by 

P(r,i) = P ( 1 )(r, t) + pW(r,t) + P^(r,t). 

In calculating the response of the molecules in gas phase it will be assumed that it is 

that of non-interacting particles, which will simplify the formalism that follows and 

is a reasonable assumption for molecules in the gas phase. The spatial dependence of 

the field will be implicitly assumed without always explicitly showing the argument 

in order to simplify the notation. This assumption implies a local response of the gas. 

The ith component of the dipole moment operator is given as 

N 

Pi = / _, 6a^-i,o-

The macroscopic polarization is then given by the expectation value of the dipole 
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moment operator 

where U(t, t0) is the propagator and given by the solution to 

^ ^ - = -^[H0 + HI(t)]U(t,t0), (3.1) 

which can be found formally through an iterative procedure of plugging the equation 

into itself. H0 is the full, unperturbed Hamiltonian of the matter, and Hi(t) = faE^t) 

is the interaction Hamiltonian in the dipole approximation. The formal solution for 

the induced dipole moment using Eq. 3.1 is then given by 

i f°° 
U-l{t,t0)^iU{t,to) = fc(t) + ft ds[fii(t),jj,j(s)}Ej(s) + 

\h) dS du[[fii(t),fxj(s)},jlk(u)]Ej(s)Ek(u) + 

fi\z f°° f°° f°° 
f - J / ds du dv[[\Jk(t),fij(s)],fik('u)],tik('o)] 
X * " / «/—00 J— OO J— OO 

xE^EkiujE^v) +... 

The tilde over an operator indicates the operator is to be transformed to the interac­

tion picture, so 

jS(t) = U-\t)^U0(t), 

and 

U0(t) = e-
iH6t/h. 

The procedure outlined above, and discussed in detail by Hellwarth[38], allows for the 

calculation of the induced polarization whose applicability is limited by the fact that a 

perturbative expansion is utilized, and that the dipole approximation has been made 
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for the interaction potential. In the following the BOA will be reviewed and it will 

be shown that the resulting expressions for the induced polarization in the presence 

of coherent nuclear motion are much simplified. For a more complete discussion, see 

[38]. 

3.1.1 The Born-Oppenheimer Approximation 

The most important assumption which applies to all experimental situations for the 

work described in this thesis is that of an off-resonant interaction. The electric field 

used for the interaction with the atoms and molecules in the experiments is cen­

tered around 780 nm, in the infrared. All electronic transitions for the molecules and 

atoms in question are found in the UV. Hence, the interaction may be considered 

off-resonance and single-photon absorption can be neglected completely. Hence, if 

multi-photon excitation is negligible there will not be significant population transfer 

from the ground electronic state to any upper state. This allows for the introduction 

of the Born-Oppenheimer Approximation (BOA) to zeroth order, i.e., the motion of 

electrons and nuclei are considered completely uncoupled. In this limit, the compar­

atively very slow motion of the nuclei is governed by the potential and kinetic energy 

of the nuclei, in the presence of a potential energy surface due to the electrons in their 

ground state. In yet other words, the electrons follow the field adiabatically, while 

the nuclei don't. 

One starts out by finding the ground state energy of the electrons in the presence 

of the electric field, W0, given by the Hamiltonian of the system H = H0 + Hi{t) for 

a given time t. Assuming the nuclei and electrons are decoupled from each other, the 

interaction Hamiltonian can be separated as 

#,(*) = #,n(*)+#/e(*), 
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In order to take into account the perturbation of the field on the electronic ground 

state energy, a perturbation expansion of the ground state energy W0 in terms of the 

electric field yields 

W0 = Woo-faEiit) + aijEityEjit) + PijkEi(t)Ej(t)Ek(t) + ̂ E^E^E^E^t) + ...) 

(3.2) 

Woo is the ground state electronic energy given by H0 in the absence of the electric 

field. The perturbative correction terms depend on the coordinates of the nuclei. The 

electronic dipole moment /j,el is given by 

ix dE; 

and in the BOA, the total polarization is then given by the sum of fxd and the 

polarization of the nuclei, 

- Y " dWo 

a 

which can be rewritten as 

pi = mi-\- OiijEj + pijkEjEk 4- yijkiEjEkEi + ... 

where m* = /Lfi + J2a
 ea^ia- The macroscopic induced polarization is then found by 

Pt(r,t) = iVTr{p0[C/-1(i)^(i)f/(i)]}) 

where U(t) is now the solution to 

dU(t) i 

dt h 
HBO(t)U(t) 
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and the effective BO Hamiltonian HBO is given by 

-oo 
2 >>0O /-OO 

-OO 

3 

HBO = HoN - {m-iEi + a^EiEj + ...) 

The induced polarization due to the interaction with the electric field is then given 

by 

1 r°° 
U-^piitMt) = Pi(t) + -jrJ ds\pi(t),v(s)] + 

/

oo 

du[\pi(t),v(s)],v(u)] + 
•oo 

— J / ds du dv[[\pi(t),v(s)],v(u)],v(v)] + ... 

All that's left to do now in order to find the macroscopic induced polarization operator 

for any order is to evaluate the trace of the nth term. In the following, it is assumed 

that the frequencies of the applied electric field are far removed from direct nuclear 

dipole resonances, i.e., terms with m* contribute negligibly. For a complete list of 

terms resulting from the expansion see Steffen et al. [42]. 

3.1.1.1 Relevant terms for first, third, and fifth order 

The induced polarization of first order is given by 

in the BOA. However, since the index of refraction is often known for the medium in 

question, the linear response may be taken into account accurately, i.e., the expression 

for the linear polarization obtained from the above expansion may not have to be 

utilized. 

The next higher order terms are of third order since second order terms of the 
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expansion are zero for centro-symmetric media. In addition to assuming that the 

field is off-resonance from any electronic transitions, it will also be assumed that it 

is not resonant with any direct dipole transition either. This is certainly a valid 

assumption when fields in the near IR are considered as is the case here. Then, any 

terms involving the dipole moment m* are negligibly small and can be neglected. 

With these assumptions in mind, there are two terms contributing to the third order 

polarizability: 

/»0O 

i f }(i) = Ni-njkfiEjMEkWEM+N- J ds {[dc^E^t), l/2aH(s)Sfe(s)^(s)]) H(t-s). 

{) indicates the expectation value of the operator, and H(t) is the Heavyside step 

function which is denned as 

. O i f i < 0 
H{t) 

l i f t > 0 

Rewriting the above expression, 

pf\t) = NfruriEjWEkimM+N—EjWJ dad&ijWMsWEkMEMHit-s) 
oo 

= iV(7yW>£?i(t)Efe(t)JSi(t) + N±Ej(t) I ds <(&y(t)ajw(a) - &ki(s)dtij(*))> 

xEk(s)Ei(s)H(t - s) 

The product of aij(t)aki(s) is explicitly given by 

&ij(t)akl(s) = U-\t)aijU(t)U-1(s)aklU(s) 

Expressing the polarizability operator in an orthonormal, complete basis set (e.g., 

the normal vibrational coordinates of a molecule) \q), the trace of the second term of 
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P^(t) is given by 

<(&«(*)&«(*) - &ki(s)aij(t))) = J2 P(q)(q\ei/hHotccije^™°W™°aakie^hH°a\q) - c.c. 
i 

= E F ^)E e i A ^^i a ^i n )< n i e - i / ? i i i f o t e i / ? i / / o S i & )^ i^^) 
q n,k 

xe-i/hEqs _ c c 

= Ep(«)Eei/ftB,(*"*)<«layln><nlei/'l/fo<a"*)l&><&la"l9> 
9 n,fc 

—C.C. 

= 2 P ^ ) ^ e ^ ^ ^ - ^ e ^ ^ ^ - ^ ^ l o y |n)<n|ojuk> - c.c. 
q n 

P(<?) is the statistical weight of |#), usually given by the Boltzmann statistics plus 

the nuclear statistical weights determined by the spin statistics of the molecule, and 

u)qn — (Eq - En)/h. With this result, P^(t) becomes 

fOO \ 

pf\t) = iv{7^o^w^(tm(<)+^^wy_TC^|^p^Ee"9"(i-s) 

x(q\aij\n){n\aki\q) - c.c. > Ek(s)Ei(s)H(t - s) 

q n 

x f ds [e
iw'"<*-*> - c.c.} Ek(s)Ei(s)H(t - s) 

Defining r = t — s, the integral becomes 

p/8>(f) = NfariEjWEkWW) + N^Efi) J^ P(q) 5 > | a « |n><n|a«|«> 
q n 

re® 

Jo 
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And finally, 

P?\t) = NfariEjWEMEtf) - N^Ejit) J2 P(q) 5>l«y l»> (n\<*kt\q) 
q n 

/•oo 

x / dTsm(uqnT)Ek(t-T)Ei(t-r) (3.3) 
Jo 

The coherent nuclear motion excited by the field can be described as an effective 

time varying susceptibility contributing in addition to the direct electronic response 

of the medium. From the above expression, the effective linear susceptibility is given 

by 

Xeff(̂ ) = T > P(q) y,(q\aij\n)(n\aki\q) / dTsin(u)qnT)Ek(t - T)Et(t - r) 
e°n

 q n Jo 

This is equivalent to obtaining the density matrix operator resulting after the inter­

action to first order of perturbation and finding the macroscopic polarization. 

There are many fifth order terms resulting from the expansion, but with the 

assumptions made regarding the off-resonance nature of the interaction, there are 

only three terms of interest contributing to the fifth order polarizability: 

Pf\t) = NiQjk^E^Ek^E^E^Enit) 
i A00 

+ N- I ds ([oiMEjit), l/6%lmn(s)Ek(s)El(s)Em(s)En(s)}) H(t - s) 

+ N- / ds{[%ki{t)Ej{t)Ek{t)El{t)^/2amn{s)Em{s)En{s)])H{t-s). 

An additional term which has been neglected here, although it has been the focus 

of intense research over the past decade, is the term proportional to the two-time 

correlation function 

(\5iij(t), aki(72)], &mn(T4)]). 

This term has been of particular interest in trying to obtain information about the 
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intermolecular potential between molecules in a liquid. This term describes a fifth-

order Raman process. Using novel experimental techniques, the two-dimensional 

fifth order Raman response of CS2, for example, has been measured[43] with the 

ultimate goal of measuring the fifth-order response of water and characterizing its 

intermolecular potential [44]. 

In order to obtain a more explicit form for the fifth order terms of interest, we 

follow steps exactly analogous to the third order term, and find that 

1 f°° 
\q) / dTsm(uqnT) 

q n ° 

Ek(t - r)Ei{t - r)Em(t - r)En(t - r ) 

- N-Ej(t)Ek(t)Ei(t)Y]P(q)^(q\^ijki\n){n\amn\q) / drsm(uqnr) 

Em{t-T)En{t-T) 

In addition to an effective linear susceptibility, it can be seen that the fifth order 

response of a medium can be described by an effective third order susceptibility given 

by 

drs\n{uqnT)Em{t - r)En(t - r) . ,<3> = _JL 
e0h 

The above expressions for the effective susceptibilities are valid for any coher­

ent nuclear motion to first order in perturbation. This is somewhat of a limitation 

when a more accurate description of the interaction between a field and molecule 

is required. For this reason, the effective linear and third order susceptibilities will 

be derived again in the following chapter specifically for coherent rotational motion, 

where the Schrodinger equation will be solved using an effective Hamiltonian in a non-
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perturbative regime. That description is valid even for relatively strong interactions, 

given, of course, that the molecule is not dissociated by the field. 

3.2 Coherent rotational nuclear motion 

In this Section, the focus will lie specifically on coherent rotational motion. For a 

variety of reasons, this has been the focus of intense research[4]. Rotational wave 

packets excited by ultrafast laser pulses in a molecular gas can be observed via an 

effective time-varying linear susceptibility, as has been mentioned briefly in Sec. 3.1, 

and may be probed by a time-delayed probe pulse [45, 13]. In early experiments, 

the rotational coherence was detected through the resulting transient birefringence 

with a linearly-polarized probe pulse, time-delayed and oriented at 45 degrees with 

respect to a linearly-polarized pump pulse [45], More recently, the transient index 

variation has been used to spectrally broaden and temporally compress a probe pulse 

co-propagating with the pump pulse by an order of magnitude [13]. This approach has 

been adapted for UV pulse compression [46]. The spatial distribution of the transient 

index of refraction has also been exploited to measure the modulus of the induced 

transient index of refraction change in the gas [47]. Measurements of the transient 

index of refraction along the two eigen axes of the transient linear susceptibility tensor 

have also been characterized through scanning spectral interferometry [34] for linearly 

polarized pump pulses and for arbitrarily-polarized pump pulses with a single-shot 

chirped spectral interferometry technique [19]. The transient birefringence has also 

been proposed for phase matching Type II third harmonic generation [15]. 

Rotational wave packets in gas-phase molecules excited by short, moderately in­

tense laser pulses play an important role in ultrafast optics and strong-field physics. 

Dynamics of rotational wave packets are important in the interpretation of high har­

monic generation experiments [48, 49], strong-field ionization and dissociation [50, 51], 
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phase modulation of ultrafast pulses [13, 34], and spectroscopy [52, 53, 54, 55, 56]. In 

such experiments, it is often essential to understand the details of the rotational wave 

packet and requisite observables in order to interpret experimental results. While 

many groups have developed numerical simulations for rotational wave packet exci­

tation by linearly and elliptically polarized short laser pulses, analytic models have 

been limited to linearly polarized excitation pulses and rigid linear molecules ([57, 4] 

and references therein). Recently, however, the focus of molecular alignment has 

shifted towards the interaction of more complex, polyatomic molecules with pulses of 

arbitrary polarization [53, 58, 59]. 

In order to characterize rotational wave packets created by elliptically-polarized 

pump pulses in symmetric-top molecules, it is necessary to determine the optical 

properties of the transiently aligned gas in the presence of the probe pulse. For the 

case of off-resonant Raman coherences considered here, the relevant properties can be 

expressed through an effective linear susceptibility of the gas prepared by the pump 

pulse [29]. Calculation of the effective transient linear susceptibility requires calcula­

tion of the density matrix of the molecular ensemble after the impulsive interaction 

with the pump pulse. For that purpose, we have developed an analytic model for 

arbitrarily polarized laser pulses interacting with non-rigid, symmetric-top molecules 

in the sudden-impulse limit. Using this model, we derive a closed form expression for 

the effective susceptibility due to a rotational wave packet excited by an arbitrarily 

polarized pump pulse in an ensemble of symmetric-top molecules. It is found that in 

the proper laboratory frame, with z defining the direction of propagation and when 

x and y correspond to major and minor axes of the pump pulse polarization ellipse, 

the effective linear susceptibility is diagonal. For the general case of an elliptically-

polarized pump pulse, the gas behaves as a transient bi-axial medium and reduces to 

a transient uniaxial medium for linear and circularly polarized pulses. 
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3.2.1 Solution to Schrodinger Equation for an impulsively 

excited rotational wave packet 

The section is organized as follows: In Sec. 3.2.1.1, we present the derivation of 

the analytic model for rotational wave packet excitation in symmetric top molecules 

by elliptically-polarized laser pulses. In Sec. 3.2.1.2 calculations of rotational wave 

packets for various cases are presented, including the effect of centrifugal distortion 

on the revival structure of the wave packet due to the non-rigidity of the molecules. 

In order to estimate the validity of the impulsive approximation, the results from the 

analytic model are compared to a numerical solution of the Schrodinger equation in 

Sec. 3.2.1.3. And lastly, the model is used to provide an analytic expression for the 

effective time-dependent susceptibility tensor arising from a rotational coherence in 

Sec. 3.3.1. 

3.2.1.1 Setting up the model 

In order to develop an analytic model describing the interaction of an arbitrarily-

polarized, ultrafast laser pulse with a symmetric-top molecule, we treat the molecules 

as non-rigid rotors. The molecules are assumed to remain in their electronic and 

vibrational ground state throughout, implying an off-resonant interaction. Moreover, 

alignment pulses with a temporal duration substantially shorter that the rotational 

period of the molecule are considered so that the interaction is impulsive. The state 

of a molecular ensemble is then described as a superposition of eigenstates of the 

non-rigid rotational Hamiltonian, 1.6, j £tS Si rotational wave packet. The analytic 

solution found below for the rotational wave packet is for the limiting case of the laser 

pulse approximated by a delta-function. Vibration-rotation coupling in polyatomic 

molecules is non-negligible [60], while the rigid rotor approximation is sufficient in 

accuracy for small molecules such as O2, N2, or CO2 under most circumstances. 

The full Hamiltonian for this system is given by H = Hmo\ + Hint, where Hmo\ 
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denotes the molecular Hamiltonian given by ifmoi — H0 + HCD [59] and Hiat describes 

the interaction potential due to the alignment laser pulse. H0 is taken to be the 

standard rigid rotor Hamiltonian, 

H0 = AeJa + BeJb -f CeJc. 

The J;'s are the cartesian elements of the total angular momentum vector, and 

the body fixed coordinate system is chosen such that the cross terms in the moment 

of inertia tensor are eliminated, i.e., the body fixed coordinate system is the principal 

reference frame. Ae, Be, and Ce are the rotational constants about the principal axes 

in the electronic ground state of the molecule, and by convention Ae > Be > Ce. For 

prolate symmetric-top molecules it is conventional to choose the body fixed z-axis as 

the a-axis. Hence, Be = Ce and with 

the rigid rotor Hamiltonian H0 is given by 

H0 = BeJ
2 + (Ae-Be)J

2
z 

with eigenvalues 

EJ
0

K = BeJ(J + 1) + (Ae - Be)K
2 

For oblate symmetric tops, the z-axis is chosen along the c-axis, and consequently the 

rigid rotor Hamiltonian reads 

H0 = Be J + (Ce - Be)Jz 
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with eigenvalues 

EJ
0
K = BeJ(J + 1) + (Ce - Be)K

2. 

The additional term in Hmo\, 

HCD — —DjJ — DJKJZJ — DKJZ) 

accounts for the fact that the molecule is not a rigid body. HCD is obtained via the 

contact transformation due to Van-Vleck [61]. It's eigenvalues are 

EJCKD = -Di ((J(J + l))2 - DJK J(J + l)K2 - DKK\ 

The normalized Wigner rotation matrices (</>,#, x | J . O f ) = J^rDj^K{<j>,6,x) are 

the eigenfunctions of î moij where the notation used is that in Zare [61]. 

To find the interaction Hamiltonian Hint, we consider an elliptically polarized 

alignment pulse propagating along z of the laboratory frame, given as 

S(t) - \E{t)ei{uJot-koZ) (ax + iby)+ c.c. (3.4) 

Here, E(t) denotes the complex pulse amplitude, u0 is the center optical frequency , 

and k0 = nw0/c is the wavenumber. The parameters a and b represent the half-axis of 

the ellipse along two mutually orthogonal directions and simultaneously orthogonal to 

the direction of propagation. To compare equivalent pulse energies, these parameters 

must be constrained by a2 + b2 = 1. It is convenient to define a single ellipticity 

parameter A = a2 — b2. Circular polarization, then, corresponds to A — 0 while 

A = ±1 corresponds to linear polarization. With the alignment pulse defined in Eq. 
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3.4 the interaction Hamiltonian for off-resonance interactions is given by 

1 v-^ 

4 

where aPiP> is a cartesian component of the polarizability tensor. Finally, the interac­

tion Hamiltonian takes the form of [4] 

#i„t = - ^ | £ ( * ) | 2 s m 2 0 [ l + Acos2</>] , (3.5) 
o 

where Aa = ay — a± is the difference between the molecular polarizabilities parallel 

and perpendicular to the principal rotational axis of the molecule. 

The solution of the Schrodinger equation for just the material Hamiltonian Hmo\ 

is given by 

IV'moiC*)) = exp (--Hmolt) |^moi(0)). 

Denning the unitary operator Umoi(t,t0) as the solution to 

dUmo\(t,t0) _ % . 

with the initial contition Umo\(t0,t0) = 1 for t0 — 0 it is given by 

Umo\(t,§) = exp \--HmoXrj 

Let \^mo\(t)) be the wave function of the system in the absence of the field, i.e., 

H = Hmo\. It is then given by 

|Vw(*))=^nol(*,0)|VWl(0)>. 
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Defining the state 

mt)) = umol(t,o)\Mt)) 

and substituting into the Schroedinger Equation, 

fcdt/«oi(t,0M(t)) rrTT (. nx, , m x 
*& ^ = ^^mol(* ,0 ) |^ / ( i ) ) 

results in 

ihumol(t,o)d^^ = Hint(t)umol(t,o)\^(t)). 

Multiplying by Ulol(t,0) and defining Vt(t) = Ulol(t,0)Hint(t)Umol(t,0) , 

Assuming that the interaction is purely impulsive, i.e., the pulse is assumed to be 

a delta function, [Vi(t), Vi(t')] — 0 V t ^ t'. Then, the solution for \ipi{t)) is simply 

given by 

\M*)) = exp ( - 1 J Vj(r)dT^ |^(0)). 

Within the impulsive approximation, the laser-molecule interaction may be parametrized 

with a kick strength parameter, P, which is proportional to the pulse fluence[57] and 

is defined as 

f\E(t)\2dt (3.6) P=Aa 

8h 
ti 

Then with the impulsive approximation for the field, 

VJ(T) = -PhUlol(r, 0)6(r) sin2 0(1 + A cos(20))C/mol(r, 0) 

and 

VJ(T) = -Phsin2e(l + Acos(2(f>))Ulol(T,0)S(T)Umol(T,0). 
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The wave function is given by 

hM*)> = e x p ^ P s i n 2 0 [ l + Acos(20)]^ Ulol(T,0)6(r)Umo,(T,0)dr\ |^/(0)). 

Since Umo\(r, 0) is unitary, the wave function in the interaction picture can be written 

as 

|^/>+ = e x p ( i P s i n 2 0 ( l + Acoa(2<f>)))\il>I)_> 

where |V>/)± are the wave functions immediately preceding (—) and following (+) the 

impulsive interaction. The initial state is assumed to be a pure rotational state, given 

by \ipi)- = \JOKQMQ). It follows from the effective interaction Hamiltonian given in 

Eq. 3.5 that only K is conserved. Specific temporal structure, pulse duration, and 

peak pulse intensity do not independently influence the resultant wave packet for 

a given laser fluence in this approximation. The resulting error is detailed in Sec. 

3.2.1.3 for a variety of laser pulse parameters. 

\i>i}+
 m a y D e expanded in terms of the eigenstates of the molecular Hamiltonian, 

where the expansion coefficients are given by 

cJj°^°'Mo = (JKoM\exp{iPsin26[l+A cos(20)]} \J0K0M0). (3.7) 

Our objective is to derive an analytic formula for evaluating the expansion coefficients 

defined in Eq. 3.7. We begin with a Taylor series expansion of the exponential 

cJ0,Ko,Mo = J2 ^f(JK0 M\ sin2" 9{l + A cos(2<f>)Y \J0K0M0}. 

and expand [1 + Acos2<p]u in terms of cosines of multiple angles. First, using a 
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binomial expansion, 

v 
(1 + Acos(2</>))" = J2\ ' \Akcosfc(2<^) 

fc=o \ k 

where ( J is a binomial coefficient. Subsequently, expanding cosk(2(j>) in terms of 

cosines of multiple angles results in 

2TT 

cosk(2(t>) = ^&£cos(2n0) 
n=0 

<= / > 2 T T 

cos(2n»cos f c(20)# = ]T&£ / cos(2nty) cos(2n0)# 
n=0 

With the identities 

^ ) = E E 
• - 1 / * \ 

= o l *' / 

cos[(A - 2(020 + i I * 

for even k, and 

cos* W ~ £ 
2 I k 

cos[(k - 2k')2<j>] 
k'=o \ y 

for odd k, the expansion of cosfc(2</>) can then be written as 

/•a* i fl̂ 1 ( k \ l / k \ r** 
J^ Cos(2nV)2ferrE f \ coS[(k - 2k')24>]d<i> + ^ ^ \ j cos(2nV)# 

V 
k „27T 

J2bn cos(2n'0) cos(2n0)# 

for even k's. Due to the orthogonality of the cosines, k' = ^-^-. Since k is even and 

both k' and n' have to be integers, n' has to be even as well. So for n ^ 0, and k and 
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n both even, 
\ 

0„ = 
= _L_ / k 

2 2 J 

For odd k's, the same procedure follows and the result for the b-coefficients is identical 

to the above for both k and n being odd integers, and n is bounded from above by k. 

For n = 0, 

bk - — 
( k 

V 
k __ n 
2 2 

Hence, for all k's and n's where again the parity of n and k has to be the same, and 

n < k, 

hk = i 
n 2k-1+5"fi 

( 

\ 

k 

fc n 
2 2 

With this, Eq. 3.7 becomes 

v=0 

\ 

) 

Ak J2 bn(JKo M\ sin2l/(0) cos(2n0)| J0K0M0) . 
n=0 

(3.8) 

Expanding the remaining trigonometric terms in terms of spherical harmonics 

yields a fully analytic expression for the wave function coefficients. So, 

1 
sin2" 6 cos(2n</>) = - sin2i/ 9 (exp(z2n0) + exp(—t2n<j>)) 

and 

sm^9e^=f^gZnYe
2n(8A) 

£=2n 

oo 

sin2^e-^=^^nf/n(^0) 
e=2a 

The expansion coefficients gv
tn are the same for both cases and non-zero only for even 
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£, since 2u is always even. Using the first case, 

oo 

C=2n 

fc=2n 

Carrying out the integral over (f>, 

Rewriting the integral in terms of x — cos 9, 

l2e+l(e-2n)\ /•' , U l , , „ 
<<U - W- s -^^y_ i ^W(i -* J ) '«b 

it can be solved analytically [62]: 

9e,n = 27r 

x 

4TT (f + 2n)! 

7r22nI> + 1 + n)T(u +l-n) 
T(u+1 + l/2i + l/2)r(i/ + 1 - l / 2£ ) r ( -n + 1/2* + l)T(-n - l/2f + 1/2) 

Then, sin2|/0cos(2n(/>) can be written as 

1 oo 

sin2^cos(2n0) = - £ <£n (y*(0 , 0) + ??*($, <f>)) 
2 

£=2n 
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Since, YjM(e,cp) = y ^ D ^ ^ x ) , 

( \ 
J0KoM0 

i/=0 fc=0 
E ^ E ^E^E*. 

\ * / 
ra=0 «=2n 

21+1 (JKoM\D&0(0,<l>,x)\JoK0M0) 

111 + 1 
+\l -^-(JK0M\D%a 0(6,</>, x) I Jb^oMo) 

The integral over three rotation matrices is given as 

JD^M3(0A,x)Di,M2(e,(t>,x)Di/iMi(9,4>,x) = STT2 
•A ^2 >̂ 3 

J\ J-i Jz 
x 

Mx M2 M3 J 

where ( ) are the Wigner-3j symbols. So, 

(JKoM\Dto(0,<t>,x)\JoKoMo) = 

x 

'2J+1 2J0 + 1 
8TT2 V 8TT2 

0&*o(*> & x ) ^ n o ( ^ 0, X)DJ^KO(0> <t>, X)dn 

and with the expression for the integral, 

= ( - l ) / r ° + M V ( 2 ^ + l ) ( 2 J o + l) 

/ 

V 

J0 i J 

-K0 0 KQ 

Jo £ J 

-M0 - 2 n M 

For {JKoM\D%n0(9)<l>,x)\JoKoMo) the same applies, and the integral evaluates to 

( - l ) * 0 + M V ( 2 J + l ) ( 2 J o + l) 
' 4 n » 

* 0 Ka J V 
Jo £ J 

-M0 2n M 
) 

With this, we have found a fully analytic solution for the expansion coefficients of the 
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wave packet, which are given by 

JO,KQ,MQ i - ^ (i 4- sM,Mow(2 j + i)(2 J0 + i) £ il£2_ £ 

v=\AM/2\ ' k=\AM/2\ \ k 

J+J° I J I J 0 » x ^ &|AM/2| 21 / 9i,AM/2 
i=Max{\AM\,\J-J0\} 

\ 

K0 0 -K0 

x 
J . * Jo 

M AM - M 0 

(3.9) 

where AM = M0 - M and [62] 

^ = ( 2 ^ + 1 ) ^ / | T S (3-10) 

x 

{i + 2n)\ 

7r22n"lT(u + 1 + n)r(i/ + 1 - n) 

r(z/ + I +1/2* + i/2)r> + I - i/2^)r(-n +1/2^ + i)r(-n -1/2^ +1/2)' 

Examination of the rotational wave packet coefficients in Eq. 3.9 reveals the expected 

Raman selection rules for a symmetric-top molecule excited by an elliptically polarized 

pulse. The parity for M is always conserved, while the parity of J is conserved only 

for KQ = 0. For the special case of a circularly polarized pump pulse where A = 0, 

both K and M are conserved. Finally, we note that the above model can be easily 

adapted for the special case of the interaction between an elliptically polarized pulse 

and a linear molecule by setting K0 = 0. 

While the above model is valid for any polarization state, for the special case 

of a linearly polarized pump pulse, it is computationally more efficient to choose the 

coordinate system such that the direction of polarization defines z, since the resulting 

wave packet is azimuthally symmetric about that axis. For this laboratory frame, the 

interaction Hamiltonian is given by iJ;nt = — l/&/±a\E(t)2\ cos2 6 [4]. The coefficients 
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for the wave packet can be obtained in the same manner as outlined above, giving 

oo / . „ , . j , Uin(J+Jo,2v) 

c J M o = (-1)*0 + M (V(2J + l)(2Jo +1) E [J^r- Y, (2i + V (3-n) 

^2-^-^(1 + 21/) ' T " T * ' T " T ^ 
r ( l + v - \jU)Y{y + 1/2* + 3/2) 

J £ Jo 

y Xo o - x 0 y 

J £ Jo 

Mo 0 -Mo i 

where Pnn = ^ / ^ \E(t)2\dt and ^ is always even, with £miri = \ J — J0\ if J and J0 

have the same parity, and £min = \ J — J0\ + 1 otherwise. 

The resulting wave packet for an initial state | J0K0M0} at any later time t is then 

given as 

ty(t)) = ] T cJf$0'Moe-iEjK°t/h\JK0M}. (3.12) 
J,M 

The vibration-rotation coupling arising from Coriolis and centrifugal forces prevents 

the wave packet from exactly reforming at its revival times. However, rotational 

recurrences can nevertheless be observed over long time scales (see [59] for a more 

detailed discussion). 

Assuming an initially Boltzmann distributed ensemble, the resulting orientational 

probability distribution is found by averaging over all initially populated states, in­

cluding the appropriate nuclear statistical weights, giving 

oo Jo Jo 

G(0,<M) = £ £ W(J0,Ko) £ |<<M,xhK*))|2, (3-13) 
J0=0K0=-JQ M0=~J0 

where W(Jo, K0) is a normalized weighting function. One may separate the spatial 

and temporal dependence of the rotational wave packet with an expansion in terms 

of spherical harmonics 

oo L 

G(9,M = Yl Yl WYTiW)- (3-14) 
L=0 m=-L 
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The resultant &™(£)-coefficients are ensemble averages of expectation values of the 

spherical harmonics. As such, these coefficients measure expectation values of combi­

nations of trigonometric operators. For example, the most commonly used measure 

for molecular alignment with respect to z, ((cos2 0(t))}, is given by ((cos2 #(£)}} — 

4/3v^75 6°(i) + l / 3 . 

3.2.1.2 Results for the orientational probability distribution 

Rotational wave packets for symmetric top and linear molecules were computed by 

evaluating the wave packet coefficients for each initial rotational eigenstate given by 

Eq. 3.9 and the &™(£)-coefficients defined by Eq. 3.14. The case of linear CO2 

molecules at a temperature of 50 K is given in Fig. 3.1. Pump pulses with circular 

[A = 0, Fig. 3.1(a)], elliptic [A = 0.5, Fig. 3.1(b)], and linear [A = 1, Fig. 3.1(c)] 

polarization, a 20-fs pulse duration, and a peak intensity of 3 • 1014 W/cm2 with a 

corresponding kick strength of P = 6.7 are considered. To the right of each panel, 

the orientational probability density constructed from the computed b-coefficients is 

shown at r = 10.6 ps, indicated by a circle for each case. The contribution of HCD> 

i.e. vibration-rotation coupling, is about six orders of magnitude lower than i?0[63]. 

Hence, for the parameters chosen in this calculation, it is negligible. Note that the 

usual quarter, half, three-quarter, and full revivals are observed in #>(£) (blue curve) 

while 64(t) (red) and b%(t) (black) exhibit higher-order fractional revivals. 

The orientational probability densities in Fig. 3.1 clearly show that in the chosen 

laboratory frame where z is coincident with the direction of propagation, the wave 

packet is only azimuthally symmetric for a circularly polarized pump pulse, indicating 

the expected alignment along the direction of propagation for circular polarization[4]. 

For any other polarization state, azimuthal symmetry is lost, i.e. the M-quantum 

number is no longer conserved. However, as noted above, for a linearly polarized laser 

pulse, an appropriate choice of coordinate frame for the interaction will eliminate M-
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Figure 3.1: ^-coefficients for L=2 (blue), L=4 (red), and L=6 (black) for circularly 
(a), elliptically (b), and linearly (c) polarized pump pulses with a peak intensity of 
3 • 1014 W/cm2, a pulse duration of 20 fs, and a gas temperature of 50 K. The pump 
pulse propagates along z. The orientational probability distribution corresponding 
to the respective pump pulse polarization is shown to the right of each panel at the 
peak of the quarter revival at r = 10.6 ps. 
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level couplings since the rotational wave packet is azimuthally symmetric about the 

direction of the pulse polarization. The strength of the coupling between different 

M-levels is directly proportional to the ellipticity A of the pump pulse, as can be seen 

from Eq. 3.9. 

More recently, the attention for aligning and orienting molecules has shifted to­

wards more complicated symmetric as well as asymmetric top molecules. Rotational 

Coherence Spectroscopy (RCS) as well as techniques derived from RCS have been 

used for the purpose of gaining information regarding the structure of the molecules, 

and even molecular clusters [53, 12]. We chose methyl iodide (CH3I) to perform 

a calculation of rotational wave packet excitation in a symmetric-top molecule since 

field-free rotational revivals of CH3I have recently been measured experimentally [59]. 

For our calculation, the polarizability anisotropy is taken to be 13.4 (a.u.)[64] and 

the rotational constants are A0 — 5.1734cm_1 and B0 = 0.2502156cm-1 [65]. The 

centrifugal distortion constants are Dj — 6.307543 kHz, DJK = 98.7688 kHz, and 

DK = 2689.14kHz[66]. The nuclear statistical weights have been taken from Wilson 

etal . [67]. 

The results of a calculation of the rotational wave packet induced in CH3I held at 

10 K by a linearly polarized pump pulse with a kick strength of Pnn = 10.26 (peak 

intensity of 2 • 1014 W/cm2 and a pulse duration of 20 fs) are shown in Fig. 3.2 (a). 

The frame is chosen such that the polarization direction defines z. Due to the spin 

statistics of the molecule, the quarter revival, which is the first prominent rotational 

revival feature in a rotational wave packet in CO2, is absent in CH3I. The effect of 

centrifugal distortion due to the non-rigidity of CH3I molecules is illustrated in Fig. 

3.2 (b) with a comparison between the first (dashed, red) and the 30th (solid, blue) 

full revival. Our calculation is consistent with previous observations[59] . 
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Figure 3.2: (a) Alignment of CH3I at T=10 K for a linearly polarized pulse resulting 
in Piin = 10.26. (b) Effect due to centrifugal distortion on the full revival of the 
rotational wave packet comparing the first (dashed, red) to the 30th (blue, solid) full 
revival. 

3.2.1.3 Accuracy of impulsive approximation 

Of central importance with any theoretical model is the range of parameters over 

which the model produces a reliable result. Since this model assumes excitation 

of the wave packet due to a field approximated by a delta-function, describing the 

resulting wave packet for any finite pulse duration will necessarily result in an error. 

In order to determine the range of parameters over which the model we present is 

valid, we have developed a detailed comparison of the analytic model with a numeric 

solution of the Schrodinger equation. We restrict our discussion to the case of a 

linearly polarized Gaussian alignment pulse with the z direction in the laboratory 

frame coinciding with the polarization direction. 

Numeric solution of Schrodinger Equation Starting with the Schrodinger equa­

tion: 

with H — H0+Hint, where centrifugal distortion has been neglected since it is expected 

to contribute negligibly to the error for short time intervals after t = 0. Again, 
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defining \ip(t)) = U0\ipi(t)), where U0 is the time evolution operator for the system 

in the absence of an electromagnetic field and substituting this into the Schrodinger 

equation, 

ihdU0\Mt)) = ( ^ + H.nt)UolMt)) ( 3 1 5 ) 

Carrying out the derivative on the left hand side, 

th(-^)HoUo\Mi)) + ^ o ^ 0 ^ = (Ho + HM)U0\Mt)) 

ihu0^^- = Hintu0\Mt)) 

and using WU=1 results i 

^^TuT = UoH^Uo\Mt))- (3-16) 

Next, we express \ipi(t)) as a superposition of the normalized, symmetric top eigen-

states of the Hamiltonian, \JKM), 

\M*)) - E cJfK
K{f°(t)\JKM), 

JKM 

and insert this into Eq.3.16, which results in 

lh £ OCJKM W\JKM) = £ cJfK
KMM°UlHintU0\JKM). (3.17) 

dt 
JKM JKM 

Using the orthonormality of the \JKMYs, 

arJ0K0M0 

in
acJ>K>M> = ^ cfg^WiJ'K'M'lei^Hinte-i^lJKM) (3.18) 

JKM 
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and rewriting the right hand side results in 

ftrJoK0M0 

& 3'EM' = Yl cJf^0{t)e^E^'te-^E3Kt{J,K'M'\HixA\JKM) 
dt 

JKM 

For a field which is linearly polarized along z, Hint is given by 

Hint = -±Aa\E(t)\2cos20, 

where Act is the polarizability anisotropy of the molecule and E(t) is the complex, 

slowly varying envelope of the pulse. Then, 

toj'K'M' _ %^a\E{t)\2 Y, <i$d^(t)eHE*«-EjK*(J,K'M\<xx*e\JKM). 
dt 4h 

JKM 

With 

cos20=^Do
2

o(</>,0,x) + i 

the equation for the wave packet coefficients can be expressed as 

m i h
 JKM 3 3 

01 m JKM \ 6 

+hj'K'M'\JKM)] . 

The normalized symmetric top eigenfunctions are given by 

2 / 4 - 1 
{<j>,0,x\JKM} = \l-JL-D£M(<l>,e,x)-

The integral over the three Wigner rotation matrices is non-zero only for J = J' ± 1 

and J = J' ± 2. Jf and M are both conserved. With the result for the integral given 
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in terms of Wigner-3j symbols, 

a„J0K0M0 
acJ'K'M' 

dt 
zAa 

4h m)\ <4$?&(t)(\ + l{2J + i)(-i)K'+M' 

x 
J' 2 J' 

K' 0 -K' 

+ \cJ
J°lll^rMle

tlTl{E'IK'-El'^K')t^{2J' + 1)(2(J' ± 1) + 1)(-1)K'+M' 

J' 2 J'±l 

M' 0 -M' 

+ ? cJ '±2^Ve ^ / ' i ( £ J /^" i ^ J '± 2 / f ' )V(2J , + 1)(2(J' ± 2) + l ) ( - l ) * w 

J ' 2 J ' ± 2 

M' 0 -M' 

Defining 

A = l + 2 ( 2 J + i ) ( _ i ) i f , + M v / J ' 2 J ' 

3 3 K' 0 - X ' 

J ' 2 J' 

M' 0 - M ' 

Bd *x/KEj,K,-EJI±lK,)t^(27' + i)(2(J' ± 1) + 1)(-1)*'+M ' 
o 

J' 2 J ' ± l 

M' 0 - M ' 

C± = - »A(BJ^,-£;J /±2Koy(2j/ + i ) ( 2 (J ' ± 2) + 1)( -1)* ' + M ' 
0 

J' 2 J ' ± 2 

AT 0 - M ' 

we have for the expansion coefficients of the wave function 

UCJ'K'M' 

dt 

zAa \m)\2 [<$s$mA+#&&,,(*)**+jg$?M, ®c*\ 
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This set of coupled equations is solved numerically using the Runge-Kutta-Fehlberg 

algorithm of fourth order with error estimation implemented in MATLAB (ode45). 

Comparison of analytic to numeric solution For purposes of comparison, we 

consider ({cos2 0(r))), the most commonly measured observable in field-free rotational 

wave packet experiments. The relative error between the cosine squared expecta­

tion value computed with the numerical, {(cos2#(r)))m and analytic, ((cos20(r)))a, 

models defined as e((cos2e{T))) = {((cos2 0(r)))„ - ((cos2 0(r)))o} /((cos2 0(r)))a is com­

puted in order to assess the accuracy of the analytic model. 

Examination of the higher order terms neglected in making the impulsive approx­

imation shows that the error in the wave packet coefficients given in Eq. 3.9 and its 

contribution to e^cos20(r))) depends on the initial state \JQKOM0), as well as the peak 

intensity of the pulse and the pulse duration [29]. We have found that for a fixed kick 

strength, the error in {(cos2 d(r))) increases with pulse duration — approximately 

doubling the error when the pulse duration is doubled and peak pulse intensity is 

correspondingly halved to keep the kick strength constant. This behavior is shown in 

Fig. 3.3(a) where we examine the relative error for a fixed kick strength of P = 5.13. 

Here a linearly polarized alignment pulse with pulse durations ranging from 10 fs to 

80 fs and corresponding peak intensities of 4- 10uW/cm2 to 2.5 • 1013W/cm2 for CH3I 

at a rotational temperature of 5 K is considered. Each Case shown corresponds to a 

kick strength of Pjin = 5.13. The maximum relative error occurs for a pulse duration 

of about 80 fs, and is below 0.5%. 

Fig. 3.3(b) compares how the error in ((cos20(r))} increases when the kick 

strength is doubled either by doubling the pulse intensity, while leaving the pulse 

duration constant (Case I), and vice versa (Case II). The relative error in ({cos2 0(r))) 

for Pan = 2.56, with I0 = 2 • 1014W/cm2 and r = 5fs (blue), is compared to that for 

•Pim = 5.13. The pulse parameters for Case I are I0 = 4- 1014W/cm2, r = 5fs (black), 
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Figure 3.3: (a) Comparison of relative error in ((cos20(r))} for three different combi­
nations of pulse intensity and duration, each resulting in a kick strength of P\in = 5.13: 
I0 = 2.5 • 10X3W/cm2 and r = 80fs (blue), I0 = 5 • 1013W/cm2 and r = 40fs 
(red), I0 = 2 • 1014W/cm2 and r = 10fs (green). Clearly, the relative error in­
creases with pulse duration for a fixed kick strength, (b) The relative error for 
Fii„ = 2.56 (J0 = 2 • 1014W/cm2, r = 5fs, blue) compared to PUn = 5.13. Case 
I: I0 = 4 • 1014W/cm2, r = 5fs (black); Case II: I0 = 2 • 1014W/cm2, r = 10fs (red). 
The loss in accuracy is higher for longer pulse durations, rather than higher pulse 
intensities. 

and I0 = 2 • 1014W/cm2, r = 10 fs (red) for Case II. While the error increases in both 

cases, the increase for Case II is larger by a factor of two as compared to the increase 

for Case I. The model is, therefore, more error prone for longer pulses, rather than 

more intense ones. However, both higher intensity and pulse duration will result in 

loss of accuracy. 

In calculating €((COB* e(r))) f° r a kickstrength of P — 24, which corresponds to a 

peak intensity of Io — 3.1 • 1014W/cm2 and a pump pulse duration of r = 30 fs, we 

found that the maximum deviation from the numeric solution is about 6%. While this 

error might still be tolerable, pulses of this strength will tend to ionize and possibly 

dissociate many molecules. The model does not take these effects into account. In 

experimental investigations of rotational wave packets the pulse exciting the wave 

packet is typically limited in energy as to leave the molecules under investigation 

largely intact [4]. 
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3.3 Effective susceptibilities due to coherent nu­

clear motion 

For pulse propagation in the presence of a nuclear wave packet, may that be coherent 

rotational, vibrational, or ro-vibrational motion, Eq. 2.10 can be used to find the 

resulting field after propagation. The effects of the wave packet on the pulse propa­

gation may be taken into account via additional terms in the non-linear contribution 

to the induced dipole moment density, Pjvi,(r, t). The nature of that wave packet 

contribution is that of a delayed Raman response of the medium. The nuclear motion 

due to a rotational wave packet has been calculated in Sec. 3.2 and expressions for 

the resulting effective linear and third order susceptibilities are derived in Sec. 3.3.1. 

The additional term for P(r,£) is given by 

PDR(r,t) = eox2?(*)£(?,*) + eoX
(2(t) : E(r,£)E(r,*)E(r,i) 

Of note here is the fact that the non-linear Raman response xeff(
T) m a y ke 

interpreted as off-resonant non-linear Raman scattering, or hyper Raman scattering. 

More precisely, in this case the scattering cross section is proportional to the second 

hyper-polarizabilities of the gas, and hence, that term is referred to as second hyper-

Raman scattering. There is no term proportional to the hyper-polarizability of the 

gas for two reasons: The excitation of the rotational wave packet is due to impulsive 

stimulated Raman scattering, hence, proportional to the polarizability. Due to the 

selection rules governing the Raman and non-linear Raman modes, any Raman active 

mode will be second hyper-Raman active. However, there is no coupling between 

Raman and hyper-Raman modes, which is the reason for the nil contribution to 

the non-linear optical response in centro-symmetric media. The effect of second-

hyper Raman scattering is a modulation of the conversion efficiency to the third 

harmonic. This is true for rotational as well as vibrational wave packets which has 
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a 

been shown experimentally. Expressions for the effective susceptibilities have already-

been derived in the weak pump approximation with in the framework of the BOA. 

The model presented for the analytic solution of the Schrodinger equation allows us to 

find analytic expressions for the effective susceptibilities in the presence of a rotational 

wave packet for strong pump pulses with the limitation of little to no dissociation of 

the molecules, of course. This will be shown in the next section. 

3.3.1 Effective linear susceptibility tensor for rotations using 

the analytic model 

The polarizability tensor of a symmetric-top molecule in its principle frame can be 

written as 

' a± 0 0 ^ 

0 a i 0 

\ ° ° <*\\ J 
The polarizability tensor in the lab frame is found via an Euler transformation 

xg} = (xf]'aV9) = ~ f f ^G^e^cM, (3.19) 

where a(<f>, 6, ip)ij is the molecular polarizability tensor component along the ij direc­

tion with the molecular frame coordinates given as IJ and the lab coordinate given 

as ij. 

The direction cosines can be obtained directly from the matrix that transforms the 

molecule from the laboratory frame to an arbitrary orientation specified in coordinates 

<j>, 9, ip. To illustrate, normally, the Euler matrix is constructed as a transformation 

from a laboratory coordinate system x, y, z to a specific orientation labelled by primed 

coordinates x'", y'", z'" The ordering of the transformations matters. Usually, the first 
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rotation is about the z axis in the lab frame by a positive angle <f> with a rotation 

matrix defined by 

' cos(</>) sin(</>) 0 * 

Rj. 

\ 

sin(<?!>) cos(< )̂ 0 

0 0 1 

(3.20) 

and arrive at the primed coordinates. Next, we rotate about the x'-axis through the 

polar angle 9 with the transformation 

Ra — 

( 

\ 

1 0 0 

0 cos(0) sin(0) 

0 -sin(0) cos(0) 

\ 

/ 

(3.21) 

and arrive at the double primed coordinates. Finally, we rotate about z" axis through 

the angle ip with the transformation 

cos(^) sin(^) 0 

R,i 

\ 

— sin(^) cos(^) 0 

0 0 1 

(3.22) 

/ 

arriving at the arbitrarily oriented molecular frame. The overall matrix that projects 

a molecular from the lab frame onto the molecular frame is given by R = R^R^R^. 

The matrix for transformation from the lab to the molecular frame is given by 

( cos(i£) cos(<f>) — sin(^>) 3 i n ( ^ ) cos(#) cos(i/>) sin(<£) -f sin(V0 cos(<£) cos(0) ain(/4')sin(0) \ 

— cos(<£)sin(i/0 — sin(<j>) cos(V») cos(#) — sin(4>)sin(i/>) + cos(<£) cos(i/>) cos(0) cos (VO s * n (0 ) J ? {O.Zoj 
sin(<£) s in (0 ) — cos(<£>) sin((?) cos(0) J 

whereas the matrix for transformation from the molecule to the lab frame is given by 

BTl 
cos(V>) cos(«£) — sin(<5(>)sin(V') cos(0) — cos(^>) sin(-0) — sin(<£) cos(V0 cos(#) sin(^>) s in (0 ) 

cos(i/>) s i n ( ^ ) -J- sin(V') cos(<£) cos(#) — sin(^>)sin(i/>) -f- cos(^>) cos(V0 cos(#) — cos(<f>)sin(0) 

sin(V') s in (d ) cos(i/0 s in(#) cos(0) 

(3.24) 
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The projection of the polarizability tensor from the molecular frame to the the lab 

frame is thus given by 

5iab = R~XQ.R 

or equivalently 

u 

where rQ/j are the direction cosines obtained from the matrix R (e.g., for z, z we have 

r33, or for x, Y, we have ri2, etc.), i,j are the lab coordinates and / , J are the molec­

ular frame coordinates. 

As a first step we will determine the transformation matrix for a single linear molecule, 

then perform the orientational averaging based on the orientational probability dis­

tribution. First, we note that for linear molecules, the angle tjj is irrelevant. We can 

look at all of the products of direction cosines involved in the orientational averaging 

that forms the averaged linear tensor by specifically evaluating the matrix product 

R~l6iR, which is given by 

( «X + f1 - c o i j 2 (*)] A<* - cos2 O ) [l ~ cos2 («)] i n i sin(2<A) sin2 ( « ) 4 a £ sin(^) sin(20)Aa 

^sin(2^.)sin2(e)Aa 

•Jsin<»sin(20)Aa £ cos |»s in (20)Aa <*JL + Aacos 2 (0) 

(3.25) 

The polarization density induced by a weak, off-resonant time-delayed probe pulse 

Epr(t) may be written as ?(f) = Epr(t)NTr[ap(t)][29], where a is an element of 

the polarizability tensor. Here pit) is the density matrix operator of the molecular 

ensemble after the impulsive interaction with the pump pulse which can be found 

using the analytic model and N is the number of molecules in the gas. The Cartesian 

indices have been suppressed for clarity. From this definition, one readily obtains the 

effective linear, time-dependent susceptibility as Xe«C0 = j;Tr[ap{t)\. 

Using the analytical model for the rotational wave packet, the effective linear 
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susceptibility can be rewritten as 

xen(t) = - f[<*(<i>,o) Y, w(j0,K0)Y<Uo(<t>>e>x,WJK0
0M0(<P,e,x,t)dn 

€° J J JoKo Mo 

(3.26) 

where a(<f>, 6) represents the molecular polarizability at an arbitrary Euler angle in 

the laboratory frame. Noting the orientational probability distribution given in Eq. 

3.13 appears in the integral and applying the expansion given in Eq. 3.14, we obtain 

the expression 

TV °° L P f 

**(*) = - E E ^ ) a ^ ' W ^ ' 0) <*«• (3-27) 
L—0 m=—L 

Clearly, the effective linear susceptibility is interpreted as an orientational average 

weighted by the rotational wave packet prepared by the pump pulse. 

The expansion of the orientational probability distribution in terms of spherical 

harmonics permits an evaluation of the transient susceptibility tensor structure inde­

pendently of any specific rotational wave packet. Evaluating the spatial integral in 

Eq. 3.27, the various tensor elements of the effective susceptibility given an elliptically 

polarized pump pulse exciting a purely rotational coherence is readily obtained. Due 

to the selection rules of the Raman interaction of the pump pulse and the molecules, 

and the fact that the density operator is hermitian, all off-diagonal elements of the 

polarizability tensor are zero in the laboratory frame defined by the pulse in Eq. 3.4. 

The diagonal tensor elements are given as 

x**(t) = f {« - l\flAa [*§(*) - v^(*)]} , 

Xyy(t) = ~ {* " f y f *« [m + V6bl(t)] I , 
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and 

*»w = f { 5 + 5\/!AaH' 
where a = ^a\\ + §aa is the isotropic average of the molecular polarizability tensor. 

An analytic expression for the b-coefficients, and hence, for the effective susceptibility, 

can be readily found using Eq. 3.9 in combination with Eq. 3.13 and Eq. 3.14. 

When no pump pulse is present, all b-coefficients are identically zero and effec­

tive linear susceptibility tensor reduces to the expected isotropic value \ = N/e0a. 

The result above demonstrates that the transient susceptibility tensor is bi-axial for 

an elliptically-polarized pump pulse and uniaxial for a circularly or linearly polarized 

pump pulse. Furthermore, the sign of the b-coefficients dictates whether the suscepti­

bility tensor behaves as positive or negative uniaxial for linear and circularly polarized 

pump pulses. As can be seen in Fig. 3.1, the tensor switches between positive and 

negative uniaxial during each rotational revival. This explains why two types of Type 

II phase matching are possible for third harmonic generation in symmetric top (and 

therefore also linear) molecules aligned by linearly polarized laser pulses [15]. 

3.3.2 The transient non linear susceptibility for rotations us­

ing the analytic model 

Excitation of a rotational wave packet in a gas of anisotropic molecules by means of 

an ultrashort laser pulse not only results in a time dependent effective linear optical 

response, but also a time dependent non-linear response of the gas. In the following, 

the third order non-linear response, i.e., the second-hyper polarizability tensor, is 

analyzed in detail. For higher order non-linearities the result follows analogously. 

The hyper polarizability tensor of a symmetric-top molecule like CH3I, or that of 

a linear molecule like CO2 has 21 non-zero elements, where only three elements are 

independent: ^xxxx , Ixxzz, Jzzzz- The tensor in the lab frame is again obtained 
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from the principal molecular frame via an Euler transformation, analogous to the 

polarizability tensor, and is given by 

{{lUki)) = IIJKL riIrjjrkKriLG(0,4>,t)dQ 

{(lijki)) = (7ijki)G(6,<t>,t)dn 

where G(6, <j>, i) is the orientational probability distribution of the molecules, time 

dependent due to the excitation of the rotational wave packet. The elements of the 

hyper polarizability tensor, in the lab frame, are given by: 

I 

Ixxxx = T \&{lxxxx ~ §lxxzz + Izzzz) cos4(6>) 

+ ^{ixxxx + §lxxzz - Zlzzzz) cos2(0) + Z^xxxx + ^Ixxzz + Izzzz)] 

Izzzz = (jxxxx - Syxxzz + Izzzz) cos4(0) - 2(^Xxxx - Zlxxzz) cos2'(d) + ixxxx 
Ixxzz = -ji-lXXXX + §lXXZZ - IZZZZ) COS4(0) 

1 1 
+ T;(2IXXXX + 3{lzzzz - bjxxzz)) cos2(0) + -(jxxxx + Sjxxzz) 

The third order susceptibility tensor for a dilute gas, i.e., the molecules are assumed 

non-interacting, is then given as 

Xijkl ~ —{(lijkl)), 

where the double brackets indicate thermal averaging assuming an initial population 

according to the Boltzmann distribution. With 

<?(*,*,*) = £6T(*)y(M)> 
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the third order susceptibility tensor elements can be written as 

to r J 

= j- E w) Ad+Ccos2 6+$Lcos4 ww wn 

= £ E W) ($« / WW* #*n + sm /cos2 W > 0<« + C /cos4 ' W . *)*> 
L,m 

The integrals have analytic solutions: 

With b°0(t) = 1/V^1, 

*& - ^{C+C(5+«w!i/f)+C(5+'Swfyf+«w^)} 

= £(x2+. 

The various ^-coefficients are given by: 
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xxxx: 

xxzz: 

"xxxx — o l^Txxxx + "O'xxzz + 'J'Tzzzz/ 

"xxxx ~ TT V^Txxxx ~r J-^O'xxzz "Tzzzz j 

"xxxx = "o W'Txxxx ~~ •'•O'Txxzz i "^Tzzzzj 

"xaizz = 7T (Txxxx + >J7XXZZJ 

®xxzz ~a V.^Txxxx -•-OTxxzz ~r "Tzzzz/ 

"xxzz = = ^ (,—"J'Yxxxx ~r J -0 / y x x z z — o 'Yzz^j 

zzzz: 

0->-^* — "Tx J2Z2« ~~ /XXXX 

"Z2X2 — "7XXZZ 2 7 x x x x 

"ZZZZ TxXXX O'T'xxzz T" 'Yz 

So, the time dependent third order susceptibility depends on the expectations 

values of cos2 0 and cos4 0. For higher-order interactions this means that the higher 

order non-linear response of the gas will depend on higher-order moments of the 

wave packet. This fact has been shown, for example, in the high harmonic signal 

obtained from an aligned ensemble of molecules. Fractional revivals of higher order, 

i.e., eight- and sixteenth revivals, have been observed from a variety of gases this way. 

More information can therefore be obtained about the quantum wave packet from 

higher-order non-linear interactions between a probe field and the aligned ensemble. 
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3.4 Laser Pulse Propagation in the presence of co­

herent nuclear motion 

A very typical method of detecting coherent nuclear motion (CNM) is to observe its 

effect on a weak probe pulse after the pump pulse. The probe pulse is usually weak so 

it can be assumed that its non-linear interaction with the molecules is negligible, i.e., 

it doesn't appreciably affect the CNM excited by the strong pump pulse, nor does it 

excite CNM to any measurable degree. The probe field resulting after propagation 

may be modeled utilizing the above expressions for the effective susceptibilities. The 

probe field after propagation will differ in a variety of ways from a field propagated 

through a gas in thermal equillibrium. For example, as has been shown in Sec. 3.3.1, a 

gas is birefringent during the revival times of a rotational wave packet. This birefrin­

gence, of course, affects the propagation of a probe pulse which is linearly polarized 

at some angle with respect to the pump pulse. The change in the polarization state 

of the probe pulse may then be observed in a polarization gating method, which is 

exactly the way rotational wave packets were observed for the first time [45]. There are 

a variety of additional propagation effects which follow simply from considering the 

impact of a time-varying induced polarization density in the propagation equation. 

To derive a propagation equation suitable for this purpose, we will start with Eq. 

2.8, which is given as 

d2 - ui2 

(~kl-kl + —)E(kx,ky,z,oj) + —er(uj):E(kx,ky,z,uj) = 
2 

- -Y-J(kx,ky,z,u)--T-PNL{kx,ky,z,u>). 
C €g C C0 

In order to simplify the derivation, we will assume plane wave propagation, as is 

given over the interaction length for example in a capillary, or for weakly focussed 

pulses where one can assume quasi-plane wave propagation over a short distance at 
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the focus. This results in an easier to follow derivation, while the nature of the 

propagation effects due to the CNM is not affected by this assumption at all. We will 

also assume that there is no ionization present, i.e., J(r, t) = 0. While the pump pulse 

will certainly ionize the molecules at its focus, the impact of the phase shift due to 

the space charge present at the focus is independent of pump-probe delay due to the 

comparatively long recombination time of the plasma. For the case of propagation 

in a capillary most of the propagation distance of the probe pulse in the presence of 

CNM will be in the absence of any plasma. This will simplify Eq. 2.8 to 

d2E(z,uj) u>2
= , . - , N to2 - , , 

dz2 + ^ M : E(*>w) = ~^-PNL(Z,U), 

which shall be the starting point of this derivation. We define 

c< 

and the field in terms of a rapidly oscillating phase and a slowly varying, complex 

envelope, 

E(z,t) = ^ (A(z,t)e~™°t+ik°z + c.c.^j , 

where u0 and k0 are the central frequency and wave vector of the pulse, respectively. 

In the frequency domain the spectrum is then given by 

E(z,u) = - (&(z,u- u0)e
ikoZ + c.c)j . 

The propagation equation can be written in terms of an envelope equation as 

d2 = co2 

—rA(z,co-u0)e
ik°z + k2{u) : A(z,co -to0)e

ik°z = —— PNL(z,u), 
oz2 c2e0 

The same equation holds for the complex conjugate part of the field. It is under-
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stood that the real part of the solution to the propagation equation should be taken. 

Carrying out the derivative with respect to z, 

(d2A(z,to-u)0) dA(z,u-aj>0) 

dz2 + i2ko
aA{Z>£z

 Uo) eik°z + (P{u) - kl) : A(z,u - co0)e
ik°z 

c2ea 

Making the slowly varying envelope approximation, the propagation equation used 

to analyze the effects of a time-varying susceptibility on the propagation of a weak 

probe pulse is finally given by 

dA(z,u-u>0) [=0/ , , ,1 r , s w ^. 
i2ko~^^Fz— + P(o>) - kl : A(z,u - u>0) = -^-PNL(z,co)e-ik°z (3.28) 

c2e0 

The next step is to transform the resulting equation back into the time domain, since 

the time dependence of the effective susceptibilities is the origin of these additional 

propagation effects not present in a gas at thermal equilibrium. Therefore, the time 

domain lends itself to a more intuitive interpretation of the additional terms in the 

induced polarization density. However, the dispersion of the gas is more naturally 

taken into account in the frequency domain. For that reason a split step algorithm [21] 

will be employed for the implementation of this model which takes dispersion into 

account in the frequency domain, but the non-linear terms due to the effective time-

varying susceptibility in the time domain. We will also move into the group frame 

of the probe pulse, and in order to arrive at an equation which lends itself to this 

procedure, we first expand the magnitude of the wave vector in terms of a power 

series centered at ui — a;0[33]: 

k{uS) = k{ui0) + k\(<jO - u0) + D, 

where D = X^=2 h.^niw — w0)n and kn = aJ^' \Wo. The first derivative of k(ui) is 
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singled out due to its physical interpretation of the inverse group velocity of the pulse. 

With this, 

P(co) = P(oj0) + 2k(co0)ki(co - 0Jo) + 2p(to0)D + 2ktD + k\(u - oo0f + D2, 

where k0 = k{u>0). When transforming back into the time domain, the dispersion will 

be left in the frequency domain, due to the split step approach chosen for solving 

the equation, except for the term including the inverse group velocity, 2k0ki(co — cu0). 

Now, Eq. 3.28 reads in the time domain, with k 1 
_ 1 

i2ko^Ae-^ + alM-^ = 1 2%Me-«~ (3.29) 

dz vg at c2e0 at2 

and finally 

dA{z,t) 1 dA(z,t) = i d2PNL(z,t) ikoZ+iWot . . 

dz vg at 2c2k0t0 at2 { ' ; 

Converting to the group frame of the probe pulse, we need to switch to a coordinate 

frame such that 

and 
1 

T — t Z 
% 

which results in 

dA(C,r)_ i d2PNL(C,r)^ikoC+ UJJOT 

d( ~ 2c2k0e0 dr2 e -•—• — (3 .31 ) 

Since we are making the assumption of an off-resonance interaction, and using the 

effective susceptibility to express the effect of the CNM on the induced polarization 
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density, the non-linear induced polarization density can be written as 

PNL(z,t) = e0x
(1)(t) : E(z,t) +toX{3)(t) : E{z,t)E{z,t)E(z,t). (3.32) 

This expression is valid for both coherent vibrational and rotational motion. The 

propagation effects due to any CNM can now be identified by transforming Eq. 3.32 

into the group frame of the probe pulse and inserting the result into Eq. 3.31. In 

the following we will analyze the resulting effects of CNM on a weak probe pulse and 

treat the impact of the effective linear separately first. Then, the combined effects 

due to the effective linear and non-linear susceptibility will be analyzed. 

3.4.1 Propagation effects due to j ^ ( £ ) 

If the probe pulse is weak, there will be no non-linear propagation effects due to the 

probe pulse, i.e., the contributions due to the effective third order susceptibility may 

be neglected. Then, 

PNL(z,t) = e0x
(1)(t):E(z,t), 

which reads in the rest frame of the probe pulse 

PNL(C,T) = e02
(1)(r -rPD) :E(C,T), 

assuming that the rest frames of the pump and probe pulses are identical, i.e., both 

pump and probe pulses are centered at the same frequency, TPD is the delay of the 

probe pulse with respect to the pump pulse. 

The vector notation for the field, as well as the tensor notation for the effective lin­

ear susceptibility, is carried on with the fact in mind that the gas is birefringent during 

rotational revivals, and may also show anisotropy for certain vibrational modes. This 

way it is possible to treat the propagation effects due to the CNM more generally, 
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with a probe field that can be of arbitrarily polarization propagating in an anisotropic 

medium. To simplify the notation somewhat, we will, however, write out the product 

of the effective linear susceptibility and the field in terms of its components, which is 

given by 

X(1)(r - rPD) : A(C,r) = X$\T - TPD)MC,T). 

Then, by explicitly writing out the terms obtained from taking the partial derivative 

with respect to time of the induced polarization density we obtain the following: 

-«**g>(T - rPD)
a-M^l - ^ ^ TPD)

MC r) 

+
d^)(;~TPD)MCT) - u & g V - rPD)Ai((,r^ 

Plugging this back into the propagation equation, we find that each component of 

the field is now given by 

dMCr) _ i (1) g%(C,r) i dX^(T-TpD)dAj(Cr) 
dC 2c2k0

Xii { PD> dr2 "*" c2k0 dr dr 

, "o v(i), „. .dAjJCr) UJ0 dXV(T-TpD) 
+ ?£*« (T - TpD)—dT- + Jk0 at Mc>T) 

l ^ X y V - T p o ) iu% (i) 
+ 2&K fr* ^(C,r)-^2^xy(r-rPD)^(C,r) (3.33) 

Among the six driving terms on the right hand side there are three terms which have 

an immediate intuitive physical interpretation. These three terms and their physical 
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interpretations are: 

IU), 
2 

M) oT~Xij (T ~ TPD)^J{C,IT) '• Temporal phase modulation 

— x \ f (T - TPD)dAj}f>T) : Group Velocity Modification 
<?k0"-t3 v ' dr 

'o dX{$(T~TPD) . , , . , „ 
—Aj ((,, T) : bnergy conservation c2k0 dr 

Temporal phase modulation will modify the spectrum of the pulse and leave the 

temporal envelope unchanged. If the phase modulation is weak, as would be the 

case for example for very short propagation lengths or very low gas pressures, the 

phase shift due to CNM can be measured using standard interferometry techniques 

and may be interpreted as an additional, time varying contribution to the index of 

refraction[34], The different regimes in terms of the strength of the phase modulation 

and its effects on the pulse will be discussed in detail in Sec.5.4. A variety of techniques 

have been developed over time in order to measure the transient index of refraction due 

to coherent rotational motion, originally referred to as 'susceptibility echoes'[2, 68, 69, 

70]. A single-shot technique which allows the measurement of the time dependence of 

the index of refraction for a rotational wave packet excited by an arbitrarily polarized 

pump pulse will be detailed in Sec. 5.2. A comprehensive review on the subject of 

rotational wave packets is [4], 

Group Velocity Modification due to CNM has not been exploited up till now. It 

has been shown in this work that there is a change in the propagation time of a weak 

probe pulse due to a rotational wave packet of up to 20 fs, which is about half the 

duration of the pulse at FWHM. 
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3.4.2 Propagation effects due to x(3^(t) 

Similarly, the effects on the propagation of a probe pulse may be analyzed for the 

non-linear effective susceptibilities. In this section, only the third order effective 

susceptibility is developed. The analysis follows analogously to that in Sec. 3.4.1. 

However, since the contribution is of third order in the field, many more terms appear 

in the induced polarization density. The only contribution by X^(t)> however, which 

will be analyzed in detail is that which gives rise to a modulation of the third order 

susceptibility of the medium. It is expected that this term can be directly observed 

as a modulation of conversion efficiency to the third harmonic of the probe field. The 

non-linear induced polarization density will now include the effective linear, as well 

as third order, susceptibility, keeping in mind that the effective linear susceptibility 

describes scattering processes of third order in the field, and the effective third order 

susceptibility describes scattering processes of fifth order in the field. The field is now 

separated into two distinct spectral envelopes, one centered around the fundamental 

frequency, and the other centered around the third harmonic, so that 

E(z,t) = i (A1(z,t)e~iWot+ikoZ + A3(z,t)e-™ot+ik3Z + cc.) . 

With the polarization density given by 

PNL(z,t) = e0x
(l)(t) : E(z,t) + e0^

3\t) : E(z,t)E(z,t)E(z,t) 

it is obvious that a large number of terms contributing to P^i(z,t) results. We will 

take only terms into account which oscillate at the fundamental and third harmonic 

frequencies, since terms oscillating at higher harmonics, originating for example from 

cascaded third order effects between the fundamental field and the third harmonic 

field, will contribute negligibly. Then, at the fundamental frequency we have self phase 
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modulation (SPM), cross phase modulation (XPM), and back conversion, while at 

the third harmonic the resulting terms describe SPM, XPM and THG. Explicitly, the 

ith component of PNL(z,t) is given by 

Pi,NL(z,t) = €0xf>{t)Ej{z,t) + eoX^MEjiz^Ekiz^E^t). 

Expressing the field in terms of the complex envelopes and separating out the fast 

oscillating phase terms, 

+ "-^f^- (AiMz, t)e-^t+ik^ + A3,jkl(z, i ) e - ^ + 

where 

Aidki(z,t) = 3A1j(z,t)Alk(z,t)Al4z,t)+6A3j(z,t)Alk(z,t)Alil(z,t)+ZAlJ(z,t)Al^ -iAkz 

A3jki (z, t) = 3A3>j (z, t)A%tk{z, t)A3fl (z, t)+6Aij (z, t)A^k(z, t)A3<i (z, t)+Aij (z, t)Ahk(z, t)Au (z, t)e 

with the phase mismatch defined as Ak = 3k0 — k3. Carrying out the same steps as 
in Sec. 3.4.1 in order to identify explicitly the effects due to the time varying effective 
third order susceptibility, we can separate the propagation equation into two coupled 
equations for the fundamental and third harmonic, respectively. For the fundamental, 

dAlti(C,T) _%_ (1) _ tfMu(C,T) i dx(j?(T-TPD)dA1j(<;,T) 
5< 2c2fc0

Xi> (T TPD> dr2 c2k0 dr dr 

+ c*k0
Xii{T TpD)^Tr + c 2 k 0 a t A^>T> 

i d2xV{r-TPD) yJl (1) 

, i (3) , _ ,d2Aijkl(C,r) i dXi%i(r-rPD)dA1Jkl(C,r) 
+ 8c2fcoX^'fc^r TPD> dr2 + 4c2k0 dr dr 

"o (3) , _ ,dA1Jklti,T) , w0 9X%(r-TPD) 
+ 4 ^ x « « ( r _ r p D ) Tr + i ^ ~ at ^ M « « . T ) 

i ^X%(r-rPD) iJ* (3) 
+ WkQ ~dr2 • * . * " « . r ) - ^2ToXlMT - -PD)M,M^r) 

iAkz 
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and for the third harmonic the propagation equation is 

9A3,i(Cr) 9A3,i(z,t) = i ^ _ d^Ajji^r) i dx<£ (r - rPD) dA3J(C, r) 

ac Vg 8T 2c2k3
 Xii (T TPD dr* c*k3 9r dr 

w3 ( i ) . dAaji^r) w3 dxVjHr-Tpp) 

i ^ - ^ ^ ( C , r ) - ^ x g > ( r - rPD)A3AC,r) 
i 

t <z\ . .d2A3Jkt(<;,r) , i 9Xi%i(T-TpD)dA3,iklte,T) 

(3) 

. » (3) , ^ " •~3,jfcUS> ' ) 
+ ^T3

Xi^{T~TPD) dr~2 +J^T3 dr dr~ 

, u>3 (3) , ^dA3Jki((,r) u>3 dxfjlijr - rPD) 

_, » g 2 X a % ( r - r P P ) , ... , i*4 (3) , >. ,A , 
+ i ^ Q—2 A3Jki(C,T) - ^Jj-x\.'kl(T -rPD)A3,ikl(t,T) 

where the group velocity mismatch between the fundamental and third harmonic 

pulses is taken into account through the walk-off Avg = -^— —• between the pulses. 

Since dispersion is not very strong in a gas, and the interaction lengths are on the 

order of millimeters, this walk-off will only become significant for very short pulses. 

3.4.2.1 Modulation of THG due to CNM 

Due to the number of terms contributing to the non-linear induced polarization den­

sity it is difficult to determine the effect of every single terms. There is, however, 

one effect which can be experimentally verified. Due to the time dependence of the 

effective third order susceptibility the conversion efficiency to the third harmonic is ex­

pected to vary in time. This can be seen easily when all the other terms are neglected 

for clarity and only the SPM, XPM and THG terms are kept in the propagation 

equation of the third harmonic: 

dA3,i(C,T) , A dA3ti(z,t) iujj (3) , . . 
^ — ~ + Ava ^ — ~ = ~g^£Xl jUr - TPD)Aajki(<:, r) 

Prom this, one would expect the energy in the third harmonic to vary with pump-

probe, and more precisely, to vary as Xijiii7" ~ TPD)- For a linearly polarized probe 
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pulse with its polarization direction parallel or orthogonal to the pump pulse, this 

is indeed what is observed[71]. However, for any other angle between the pump and 

probe polarizations there is an interplay between the time dependence of the effective 

linear susceptibility, which affects the polarization state of the probe field, as well as 

potentially the phase mismatch. The effect of any birefringence which may be present 

due to CNM is that in addition to Type I processes allowed in an isotropic medium, 

there are also Type II processes possible. This situation is analyzed in detail in Sec. 

6.1. 

77 



Chapter 4 

Dynamically structured 

nonlinearity for Quasi Phase 

Matching 

The time varying effective third order susceptibility has been shown to result in a 

modulated conversion efficiency to the third harmonic. That modulation is a func­

tion of pump-probe delay. In this chapter, a potential application of this modulation is 

presented. It will be shown how the modulation may be utilized to enhance the overall 

conversion efficiency after propagation in a capillary filled with a gas of anisotropic 

molecules. There are several motivations, which in part have been outlined in the 

introduction already, for improving the conversion efficiency of optical frequency con­

version processes in a gaseous medium. In principle, the dispersion of nonlinear 

optical media limits the conversion of an intense optical field from a fundamental to a 

harmonic frequency as a result of a phase velocity difference between the fundamental 

and harmonic fields. Phase matching techniques that equalize the fundamental and 

harmonic phase velocities are routinely employed to obtain efficient nonlinear opti­

cal frequency conversion. Armstrong and coworkers suggested an approach dubbed 
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quasi phase matching (QPM) that permits efficient nonlinear frequency conversion 

in the presence of a phase mismatch. The most common QPM technique modulates 

the nonlinear susceptibility along the direction of propagation of the fields, i.e. a 

nonlinear grating is created [72, 73]. 

Most QPM techniques that have been implemented are based on a periodic rever­

sal of the nonlinear susceptibility for second-order processes. QPM in second-order 

nonlinear interactions has been demonstrated with stacks of oriented plates[74, 75, 

76], rotationally twinned crystals[77], periodically polled crystal[78, 79], and polled 

polymers[80]. Alternating layers of 800-nm spin-coated polymer and 300 micron thick 

glass substrates have also been implemented to form a rectangular third-order non­

linear grating to quasi phase match third harmonic generational]. Each of these 

methods of QPM depend on the formation of a permanent spatial modulation of 

the nonlinear response of a medium. Such a permanent spatial structure of material 

properties is generally only possible in the solid material phase. 

Nonlinear optical interactions occurring in the gas (and liquid) phase present 

problems for standard phase matching techniques. Unlike in the solid phase, the 

optical properties of a gas can not be permanently structured. Normally, gases exhibit 

an isotropic macroscopic optical response, precluding their use for birefringent or 

quasi phase matching. Despite this fact, interest in employing gases for nonlinear 

optical processes persists because they can be subjected to much higher intensities 

and exhibit both a broader transparency range and lower dispersion than solids. 

Conventional phase matching techniques for the gas phase rely on either focusing[82], 

resonances [83], or waveguide dispersion[84, 85, 86] and have limited applicability. 

Application of QPM to gas-phase nonlinear optical interactions has been inhibited 

by the lack of a method to spatially structure the nonlinear response of a gas. A set 

of innovative experiments demonstrated that efficient quasi phase matched frequency 

conversion was possible in both liquids and gases without imposing a spatial modu-
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lation on the fields involved in the nonlinear interaction. Levine demonstrated that 

periodically-patterned metal electrodes along a liquid filled waveguide could produce 

efficient electric field induced second harmonic generation through QPM[87]. Quasi 

phase matching of high harmonic generation in gases was demonstrated by modulat­

ing the inner diameter of a hollow core fiber, which modulates the intense driving 

laser pulse with a periodicity of twice the coherence length[88]. 

Here, we propose a new, fundamentally different approach for quasi phase match­

ing of nonlinear optical processes based on the fact that an effective third order 

response due to CNM will result in a time dependent modulation of the conversion 

efficiency to the third harmonic. Specifically, we will consider dynamically structured 

nonlinear optical response of a molecular gas[l, 6, 13, 5] due to a rotational wave 

packet. The macroscopic nonlinear optical response of a molecular gas is given by the 

average of each molecule in the ensemble weighted by the relative molecule alignment 

probability. Because the nonlinear optical susceptibility for an anisotropic molecule is 

a non-uniform tensor, the ensemble-averaged macroscopic susceptibility of a collection 

of gas molecules strongly depends on the relative alignment of all of the molecules. 

Under conditions of thermal equilibrium, the relative alignment of molecules in a gas 

is random and exhibits an isotropic relative molecular alignment. We show that by 

controlling the molecular alignment, we can sculpt the nonlinear optical response of 

the gas. 

In this approach to quasi phase matched nonlinear frequency conversion in the gas 

phase, we exploit the transient molecular alignment induced by an ultrafast alignment 

pulse to form a nonlinear susceptibility grating that evolves in time. Controlling the 

amplitude and pulse front tilt of the alignment pulse along the propagation direction of 

the fundamental pulse allows for control over the nonlinear susceptibility experienced 

by the fundamental pulse as it propagates through the coherence. With this spatio-

temporal alignment control, we show that it is possible to create a nonlinear grating 
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in the reference frame of the fundamental pulse propagating along the axis of the 

grating. Simulations of third harmonic generation (THG) show that efficient nonlinear 

frequency conversion is possible with dynamic QPM. Although we specifically discuss 

THG, dynamic QPM is applicable to many nonlinear optical processes in a molecular 

gas, including four-wave mixing and high harmonic generation. 

4.1 Dynamically Structured Nonlinearities with CNM 

As a reminder, we will briefly outline the rotational tensor averaging process which 

is applied to find the macroscopic response of the gas in the presence of a rotational 

wave packet. The induced polarization density averaged over the molecular ensemble 

can be written as 

P = N(M) = £ : E, (4.1) 

where x defines the macroscopic susceptibility tensor of the gas, N is the molecular 

density of the gas, and 

M = auEj + PUKEJEK + 1IJKLEJEKEL + ..., (4.2) 

is the dipole moment induced in each molecule in the gas where EA is a component of 

the applied electric field, ctu is the linear polarizability, /3UK is the hyperpolarizability 

which contributes to the second-order optical response of the gas, and IUKL is the 

second hyperpolarizability which contributes to the third-order optical response of 

the gas. The indices (I,J,K,...) indicate the principle coordinates in the molecular 

frame, and summation over repeated indices is implied. 

For molecules that posses a center of inversion, 0JJK identically vanishes. More­

over, even if a molecule is not centrosymmetric, there will be no coherent macroscopic 

second-order nonlinear response unless the hyperpolarizability tensor contains rota-
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tionally invariant components (i.e. is chiral) or if the molecules are directionally 

ordered. Molecular orientation, which would constitute directional ordering of the 

molecules, is only possible if the pump pulse is a half-cycle pulse. This case will 

be neglected in this analysis. Under these conditions, the lowest order macroscopic 

coherent nonlinear response in the molecular gas is third-order. 

The induced polarization density given in Eq. (4.1) defines the macroscopic third 

order susceptibility tensor that is attributable to the orientational average of the 

second hyperpolarizability and is given by 

X%-N((llJKL))ijkh (4.3) 

where the orientational average is denned by 

{{VJKL))ijki = yuKL / auajjakKaiLG(<l>,6)dVL, (4.4) 
J JA-K 

aqQ are the direction cosines between the molecular and lab frames, and G((f>, 6) is 

the orientational probability density of the ensemble of molecules in the gas [33], 

The orientational probability density of the molecular ensemble can be computed 

with the expression 

Jo 

G(0,<M) = ] T P ( J O ) Y, ltf(0><M)l2> (4.5) 
Jo M0=—r0 

where the orientational probability density is normalized such that the integral is 

unity and the ensemble of molecules is described as a mixed quantum mechanical 

state with the wave function of each independent rotational eigenstate given by 

*(0,<M) = E E c^MYf(0A)e^t/h. (4.6) 
J M=-J 
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In order to find the coefficients of the wave function, c ^ / M , Schrodinger's Equation 

was solved numerically. The Hamiltonian describing the interaction was simplified 

by making the rigid rotor approximation for the molecule, and the dipole approxi­

mation for the interaction of the field and the molecule. The contribution of each 

rotational state to the orientational probability density is weighted according to the 

Boltzman occupational probability, PJo = Q - 1exp [—Ej0/kT], of each state, where 

the rotational energies are given by Ej0 — BJ0(JQ + 1) and the partition function is 

given by Q = £ J o(2J0 + 1) exp [-EjJkT]. 

From Eq. (4.4) and Eq. (4.5) it is clear that both the molecular structure and the 

orientational probability density influence the macroscopic third-order susceptibility 

of the molecular gas. Hence, for a specific molecular gas, control over the optical 

susceptibility requires that one controls the orientational probability density. 

We apply the control of the third order susceptibility to the process of third 

harmonic generation using an ensemble of linear, non-polar molecules. Using the 

symmetry of the molecules, as well as the degeneracy of the involved frequencies 

allows for significant simplification of the general tensor. The nonzero elements of 

the orientationally averaged susceptibility of the aligned ensemble of non-polar linear 

molecules are given by 

(3),THG 
Xzzzz 

(3),THG _ (3),THG _ ~ (3),THG 
Xxxxx — XvyyV ~ oXxxyy 

(3),THG __ (3),THG _ (3),THG _ (3),THG _ (3),THG _ (3),THG 
Xxxyy — Xxyxy — Xxyyx — Xmxx — Xyxyx — Xy^xy 

(3),THG _ (3),THG _ (3),THG _ (3),THG _ (3),THG _ {Z),THG 
X%zzx — Xxxzz — Xyyzz — Xyzzy — Xxzxz — Xyzyz 

(3),THG _ (3),THG _ (3),THG __ (3),THG __ (3),THG _ (3),THG 
Xzxxz — Xzyyz — Xzzxx — Xzzyy — Xzxzx — Xzyzy 

The general form of the four independent tensor elements is written as xl/ki = 

N 
8eo ̂ jki^ijki+^ijkid0082^)) +dijki({cos4Q)))- T n e coefficients for the nonzero tensor el­

ements are given by S°zzzz = 1,5l
zzzz = 3^xxyy, 62

zzzz = 3(-2^xxyy+^xzzx +yzxxz), 83
zzzz = 
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o^xxyy — ojxzzx ~ ojzxxz + Jzzzz for Xzzzz ', by Oxxxx = g, 6XXXX = 6%xyy + Jxzzx + 

Izxxz + Izzzz, 0Xxxx = ^warcj/J/ + 7x22x + Izxxz — lzzzz)i°xxxx = °zzzz * 0 r Xxxxx ; by 

"zxi2 = 2> 2ai:r2 = ^XXVV * 7r22X) "^a;a:2 = ^Ixxyy ~~ ^Hxzzx ~ Izxxz + ^zzzzi 0Zxxz = = — " 2 2 2 2 

IOr XOTXZ J a n d b y O.^ , , , = ^ , O ^ ^ = 7 a ; ; t O T + 72XX2> ":E22X = ^Jxxyy — Ixzzx — ^Jzxxz + 

Izzzz^lzzx = -<**«* f o r XxzlxHG. For QPM THG processes, only the x « » H C and 

Xxiix terms are relevant. The non-zero terms \xJzx and ^Lx* show that Type 

II birefringent phase matching is possible with transient molecular alignment [15]. 

In the expression for the. THG third-order susceptibility tensor components, the 

expressions 
Jo 

{(cos2e(t))) = J2pJo E (i>Jo,M\cos26\i>JotM) (4.7) 
J0 M=-Jo 

and 
Jo 

((cos4$(t))) = YlPJo E ^Jo,M\cos4d\^j0,M) (4.8) 
Jo M=—Jo 

arise. The quantity {(cos20(t))} is a measure of the molecular alignment [1] and 

{{cos4$(t))) can be simply viewed as a higher-order alignment metric. For a uniform 

orientational probability density, i.e. G(6,<p) = 1, the alignment metrics evaluate 

to ((cos20(t)}) = I and {(cos4d(t))) = -. Substitution of these values into the ex­

pressions for the aligned tensor components recovers the THG tensor for isotropic 

media. The quantity ({cos29{t))) lends itself to a simple physical interpretation: 

{{cos20(t))) — 1 means that the long axis of each molecule in the ensemble points 

along the direction of the alignment pulse polarization (full alignment), whereas 

({cos20(t))) = 0 indicates that the molecules are aligned perpendicular to the align­

ment polarization (full anti alignment). The transient molecular alignment for a 

typical linear molecule (e.g., CO2) is shown in Fig. 4.1, where alignment, 77, anti-

alignment, TJI, and non-alignment, TJJJ, are marked. 

Because the duration and energy of the ultrafast alignment pulse control the 

strength of the molecular alignment induced in the gas, we can adjust the properties 
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Figure 4.1: Typical molecular alignment vs. time induced in a linear molecule (shown 
here is the time-scale for CO^)- The figure shows that the alignment of the molecular 
ensemble is significantly modified only near revival events. The labels 77, TJJ, and 
Tin refer to times of molecular alignment, anti-alignment, and non-alignment during 
the transient molecular alignment. 

of the alignment pulse to control the nonlinear optical response of the medium. In 

the next section, we describe an approach to create transiently structured nonlinear 

gratings with the spatially controlled molecular alignment. 

4.2 Proposed experimental setup 

The control over the strength of the nonlinear optical response in a molecular gas dis­

cussed in the proceeding section can be adapted to permit efficient nonlinear frequency 

conversion through quasi phase matching. By spatially modulating the molecular 

alignment, a grating in the strength of the nonlinear susceptibility can be formed. 

Efficient nonlinear optical frequency conversion occurs when the periodicity of the 

nonlinear grating is set to twice the coherence length of the nonlinear mixing pro­

cess. Owing to the transient nature of the molecular alignment, any nonlinear grating 

formed by this method will evolve with time. Below, we show that with proper spatio-

temporal control of the alignment pulse, a time-varying nonlinear grating formed can 

be used for efficient nonlinear frequency conversion. 

A schematic of the transiently aligned molecule QPM concept is shown in Fig. 4.2. 
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Figure 4.2: In the dynamic QPM concept, a spatio-temporally controlled ultrafast 
alignment pulse propagating in the ^-direction creates a spatially modulated molec­
ular alignment that evolves in time. A properly shaped alignment pulse creates a 
grating in the macroscopic nonlinear optical susceptibility of the molecular gas that 
is stationary in the group frame of the fundamental pulse. Setting the periodicity of 
the nonlinear grating to a periodicity of twice the coherence length for third harmonic 
generation leads to efficient conversion from the fundamental to the third harmonic. 

An alignment pulse propagating along the x-direction is focused to a line along the 

direction of propagation of the fundamental pulse, i.e. the y-direction, and spatially 

modulated to control the molecular alignment along y. Since the molecular alignment 

is transient, the specific molecular alignment encountered by the fundamental pulse 

for a spatial location along y depends on the spatio-temporal profile of the alignment 

pulse and the relative delay between the alignment and fundamental pulses, ra^f{y). 

The spatio-temporal evolution of the molecular alignment is illustrated in Fig. 

4.3. If the alignment pulse propagating along the x-direction contains zero pulse 

front tilt along the ^/-direction, then the transient molecular alignment is initiated 

simultaneously along the entire line focus. The group delay accumulated by the 

fundamental pulse leads to a linear increase in the delay between the alignment and 

fundamental pulses given by ra-f{y) — r0 + v'1 y, where vg is the group velocity of 

the fundamental pulse and TQ is the alignment-fundamental delay at the entrance of 

the gas (i.e. y = 0) as shown in Fig. 4.3(b). The increasing ra-f leads to a variation 

of alignment sampled by the fundamental pulse as it propagates and is illustrated in 

fig. 4.3(c). 
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Figure 4.3: The spatio-temporal evolution of the molecular alignment in the group 
frame of the fundamental pulse is shown here. For an alignment pulse with no pulse-
front tilt (a), the transient alignment begins at each y location simultaneously. With 
propagation, the delay between the alignment and fundamental pulses, Ta-f(y), in­
creases at the rate of the fundamental pulse group velocity (b). The variation in 
Ta-f(y) results in an evolution of the molecular alignment experienced by the funda­
mental pulse with propagation (c). By matching the group-delay of the fundamental 
pulse and pulse-front tilt of the alignment pulse [i.e. TWE criterion] (d), a stationary 
alignment-fundamental pulse delay [i.e., ra-f(y) = const] (e) and thereby a constant 
alignment with propagation [i.e., ((cos2 9{y))) = const] (f) can be selected. 

The variation of the molecular alignment with propagation of the fundamental 

pulse prevents control over the nonlinear susceptibility in the reference frame of the 

fundamental pulse. Moreover, the large changes in the nonlinear susceptibility which 

are necessary to form an efficient QPM nonlinear grating only occur near revival 

events. Between the revivals the orientational probability density is nearly uniform. 

To attain strong control of the nonlinear susceptibility, we must maintain the arrival 

time of the fundamental pulse relative to the alignment pulse for any propagation 

distance y within a ~ 100-fs temporal window. If the alignment pulse has no pulse-
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front tilt (Fig. 4.3(a)), then with propagation, the accumulated relative delay between 

the alignment and fundamental pulses will exceed 100-fs after propagating only 30-

fj,m, which is a small fraction of the coherence length of the process. Clearly, the 

transient nature of the alignment requires both spatial and temporal control over the 

molecular dynamics along the y-direction. 

The introduction of a pulse-front tilt along the ^/-direction of the alignment pulse 

as shown in Fig. 4.3 (d) allows control over the pulse delay between the alignment and 

fundamental pulses, r0_/. The alignment fundamental pulse delay slip that occurs 

with a simple line focus can be eliminated by setting the pulse-front tilt along the 

^-direction to be the group velocity of the fundamental pulse, meeting the travelling 

wave excitation (TWE) criterion. This may be accomplished by inserting an optical 

element causing angular dispersion, such as a prism, into the alignment beam path. 

The angular dispersion causes a pulse front tilt, which allows meeting the TWE 

criterion, as is shown for example in Ref. [89]. It follows that when the alignment 

fundamental pulse delay is invariant with propagation, a constant molecular alignment 

as shown in Fig. 4.3(e) is maintained in the reference frame of the fundamental 

pulse along its propagation direction. Fig. 4.3(f) illustrates how an adjustment 

of the alignment fundamental pulse delay allows the constant molecular alignment 

experienced by the fundamental pulse to be chosen. 

However, to make use of the controlled molecular alignment for quasi phase match­

ing, the fundamental pulse must experience a variation in the nonlinear susceptibility 

with propagation along the y-direction. There are many ways that a periodic mod­

ulation of the molecular alignment and thus a periodic modulation of the nonlinear 

susceptibility can be realized. Fig. 4.4 shows two examples. In Fig. 4.4 (a), the 

intensity of the alignment pulse is modulated periodically along the ^-direction. Be­

cause we have met the TWE criterion, the local intensity modulation of the pump 

pulse at a specific spatial location y translates into a modulation of the molecular 
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Figure 4.4: A nonlinear susceptibility grating in the frame of the propagating funda­
mental pulse can be formed by (a) spatially modulating the alignment pulse intensity 
and meeting the TWE criterion or by (b) modulating the pulse front delay of the 
alignment pulse to modulate the alignment strength experienced by the fundamental 
pulse. 

alignment experienced by the fundamental pulse. The periodic molecular alignment 

translates directly into a periodic modulation of the nonlinear susceptibility, forming 

a nonlinear grating in the group frame of the fundamental pulse. Another route to 

the formation of a nonlinear grating is through a modulation the pulse-front tilt of 

the alignment pulse as shown in Fig. 4.4(b). In this method, a sinusoidal modulation 

on the pulse front tilt is added to the linear pulse front tilt that meets the TWE crite­

rion. The magnitude of the pulse front tilt modulation is such that the alignment in 

the reference frame of the fundamental pulse oscillates between maximum (Fig. 4.1, 

TI) and minimum (Fig. 4.1, m) alignment after a coherence length. The pulse-front 

modulation approach provides the largest depth of modulation on the nonlinear grat­

ing, and thus is capable of the highest conversion efficiency in the nonlinear mixing 

process. Experimentally, this may be realized by inserting a phase grating, consisting, 

for example, of fused silica. 

With the spatial modulation of the alignment pulse, a dynamic nonlinear grating 

in the nonlinear susceptibility can be formed in a molecular gas that appears as 

a spatially varying nonlinear grating in the group frame of the fundamental pulse. 

This grating formation and the relevant dynamic quasi phase matching that the 

dynamic grating formation enables are unique to gas and liquid phases. For efficient 
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nonlinear frequency conversion with the dynamic QPM grating, the alignment pulse 

must then be spatially modulated with a periodicity of twice the coherence length of 

the nonlinear conversion process. In the next section, we numerically simulate the 

dynamic QPM process in a molecular gas. 

4.3 Estimation of achievable enhancement 

In the previous section, we described a method for sculpting the spatio-temporal 

evolution of the transient alignment of molecules in a gas to form a nonlinear grat­

ing for QPM. Although, this approach will work for many nonlinear optical pro­

cesses, we demonstrate its efficacy by simulating the dynamic QPM process for third 

harmonic generation (THG). The phase mismatch of the THG process in molec­

ular gases at atmospheric pressure requires a ~mm-scale grating period, which is 

an experimentally accessible region for both intensity and pulse front modulation. 

In the specific geometry considered in Fig. 4.4 (b), we sinusoidally modulate the 

alignment pulse along the propagation direction of the fundamental (y-direction). 

This forms a grating in the third-order nonlinear susceptibility along the y-direction 

of the form \Xjjjj(y)/ = X^ + ^X^C0S(^Gy), where the average susceptibil­

ity of the nonlinear grating, \^ = \Xiin) > a n d the grating depth of modula-
\ JJJJI avg 

tion, A;^3) = \Xjjjj) ~ (Xjjjj) > a r e determined by the molecular alignment. 

The periodicity of the non linear grating is set to be twice the coherence length 

of the THG process, where the coherence length is defined as Lcoh = n/Ak and 

AA; = 3k(ux) — k(ui3) is the phase mismatch of the THG interaction. The wave vector 

of the grating is KG — 2n/Ao, where A^ = 2LCOh is the grating period. For example, 

the coherence length of THG at 1000 Torr for is - 0.4 mm for C2H2[90}. 

Because the conversion efficiency is proportional to (Ax^) 2 , we consider the 

limiting case of the depth of modulation where the maximum susceptibility occurs 
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for nearly full alignment ({cos20) ~ 1) and the minimum of the susceptibility at 

nearly minimal alignment ((cos26) ~ 0). We calculate the expectation values of 

{cos26(rd)) = {tl>(Td)\cos29\ib{Td)) and (cos46(rd)), using the rotational wave func­

tion, \ip(Td)), for low-temperature molecular alignment in the impulsive limit[91], 

where T<I is the time after the alignment pulse. The ensemble-averaged susceptibil­

ity is evaluated at r^ = rmax and r^ = Tmin, where TmaX and Tmin are the times of 

strong alignment and anti-alignment of the molecules, respectively. The numerical 

values are (cos20(Tmin)) = 0.154, {cos49(Tmin)} — 0.055, {cos29{rmax)) = 0.845 and 

(cos4$(Tmax)) — 0.780. Applying these alignment factors to the averaged suscepti­

bility yields x(3) = 1.5 • l O " 2 4 ™ 2 ^ and AX
(3) = 4.7 • l O - ^ m V " 2 for 1000 Torr of 

acetylene [90] for j—z. 

Due to the transient nature of the molecular alignment, the fundamental pulse 

must be shorter than the duration of a rotational revival. For the required ultrashort 

laser pulses, the group velocity walk-off becomes important and must be considered 

in the calculation. As a result, we must numerically solve the propagation equations 

describing the nonlinear interaction. The equations describing the evolution of the 

complex, slowly-varying envelope of the fundamental and third harmonic plane-wave 

pulses, where Em(y,t) = \{Am(y,t)exp[i(kmy — umt)} + c.c.}, can be written as: 

?^p^ + ±?^M.-iD1A1(yit) = --ytfAMir + GAiM' + ZAtAMe-"*] 
dy vgi ot 

(4.9) 

dApV+±dA^_.3:iMyt)^ 3[3J43|A3|2 + 6A3 |A 1 | 2 +A?e^] , (4.10) 
ay vgz ot 

where vgm = {dk(u>)/dio\Wm)~x is the group velocity at frequency u>m, -ym = (xfjjjiy)) ^m/(^cnm) 

is the non linear coupling coefficient, nm is the refractive index at frequency um, c is 

the speed of light in vacuum, and Dm = ]Cfc2 l/ttkm,i(id/dt)1 describes higher order 
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dispersion. The expansion coefficients km,i axe given by km>i — &,k{(jo)/du)l\Wm. 

Equations (4.9) and (4.10) were solved numerically using the symmetric split-step 

method[21], including dispersion up to forth order. The numeric solutions demon­

strate that the group velocity mismatch (GVM), self phase modulation (SPM) and 

cross phase modulation (XPM) limit the conversion efficiency. GVM, defined as 

Av"1 = vg{ui\)~l — Vg^)"1, causes a temporal walk-off between the fundamental 

and third harmonic pulses, reducing the conversion efficiency. The characteristic 

length of this walk-off, Lw = r\Avg\, scales with the pulse duration. 

In these calculations, we propagate 50-fs Gaussian laser pulses with a peak inten­

sity of 1012 Wcm~2 centered at 800-nm in 1000-Torr of acetylene gas. We compare 

the conversion efficiencies of dynamic-QPM for the cases of substantial group veloc­

ity mismatch and nearly compensated GVM. For GVM compensation, we consider 

propagation in a 21.7 \im diameter hollow-core fiber, yielding a walk-off rate of 0.053 

fscm"1 in 1000-Torr of C^H-z- With this fiber diameter, the fiber dispersion nearly 

matches the group velocity of the fundamental and harmonic pulses and requires a 

propagation length of 9.4-m for two 50-fs laser pulses to become temporally separated. 

The limiting effect of GVM is demonstrated by comparing the GVM-compensated 

case to propagation in a 60 fxm diameter hollow-core fiber. In this wider fiber, the 

walk-off rate between the fundamental and third harmonic laser pulses is 10.2 fscm-1, 

resulting in a 4.9-cm walk-off length for 50-fs pulses. 

Figure 4.5 shows the calculated conversion efficiency rj(y) — J dt\A3(y,t)\2/\Ai(y — 

0,t)\2 of dynamic-QPM for the two cases considered. The parameters used in the 

calculations were: 71 = 1.48 • 10 -18 m/V2, 73 = 4.45 • 10~18 m/V2 using x3 a n d 

73|Ai|2L = 0.465; the dispersion was applied in the frequency domain. The values for 

the dispersion parameters in the rest frame of the fundamental pulse for the case of 

GVM compensation were: klfi = 7.856-106 1/m, kXA = 0, k1>2 = -1.0375-103 fs2/m, 

fei,3 = 1.4818 • 103 fs3/m, kXA = -2.4337 • 103 fs4/m for the fundamental pulse, 
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Figure 4.5: Conversion efficiency for a 50-fs fundamental pulse propagating in a 60 /dm 
(dashed) and 21.7 /j,m [GVM-compensated] (solid) diameter hollow-core fiber filled 
with C2H2. The insets show the third harmonic pulse shapes after 2(a), 4(b), and 
6(c) cm of propagation. 

and fe.o = 2.358 • 107 1/m, Jfe3,i = -5.2994 fs/m, k3,2 = 4.4406 • 102 fs2/m, 

k3>3 = 1.6064 • 102 fsz/m, and £3,4 = 23.2036 fs4/m for the third harmonic pulse. 

The solid line represents the conversion efficiency for GVM compensated propaga­

tion of the fundamental and third harmonic pulses, the dashed fine represents the 

conversion efficiency for no GVM compensation. The insets show the third harmonic 

pulses after propagating 2, 4 and 6 cm respectively for GVM compensation (solid) 

and no GVM compensation (dashed). Since the maximum conversion efficiency is fa 

0.1 %, the change in the intensity of the fundamental pulse is minimal and not shown. 

Initially, the larger diameter fiber proves more efficient due to the longer coherence 

length (determined by overall dispersion). However, after propagation through a 

walk-off distance, the conversion efficiency in the 60 yum diameter fiber ceases to 

increase substantially with further propagation. The GVM-compensated conversion 

efficiency, however, continues to increase rapidly as shown in Fig. 4.5. The reduction 

in conversion efficiency due to pulse walk-off can be seen in Fig. 4.6 as a stretching of 
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the pulse THG pulse in time, distdrting the temporal shape and reducing the phase-

matched bandwidth. A red-shifting of the pulse that has walked off is evident due to 

cross-phase modulation from the fundamental laser pulse. 

-300 -150 0 150 300-300 -150 0 150 300 

Frequency: co-coo (rad/THz) 

Figure 4.6: Normalized spectra of fundamental (dotted line) and third harmonic 
pulses (solid line) after 6-cm of propagation in a nonlinear grating formed through 
molecular alignment for 60 \xm (a) and 21.7 ixm [GVM-compensated] (b) diameter 
hollow-core fibers. 
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Part II 

Experimental Observations 
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In this part we will present experimental observations of the propagation effects due 

to coherent nuclear motion (CNM). In Chap. 5 the propagation effects due to the 

effective linear susceptibility will be presented. We start off by showing that spectral 

interferometry can be used to detect molecular alignment via the change in the index 

of refraction of the medium during rotational wave packet revivals. In Sec. 5.2 we de­

scribe a modified version of spectral interferometry which allows the detection of CNM 

in a single shot over the duration of 1-2 ps. Contrary to standard polarization gating 

techniques this single-shot technique allows the detection of a rotational wave packet 

from an arbitrarily polarized pump pulse. One of the traditional ways of detecting 

rotational revivals is to utilize the alignment-induced birefringence. However, for a 

circularly polarized pump pulse the gas is not birefringent in the polarization plane 

of the pump pulse since the orientational probability distribution of the molecules is 

azimuthally symmetric about the direction of propagation in this case. The last ef­

fect of the time-dependent "linear" susceptibility arising due to CNM described here 

is a modification of the group velocity of the probe pulse. The modulation on the 

pump-probe delay is expected to vary as x(t) based on the theory developed. What 

has been observed, on the other hand, is a modulation of the group velocity which 

appears proportional to either the derivative or the integral of x^(t) w ^ n respect 

to the pump-probe delay. This discrepancy has not been resolved at the time of this 

writing. In Sec. 5.4 we show that the effect of temporal phase modulation due to 

CNM ranges from essentially a pure phase modulation with negligible spectral dis­

tortions to extreme spectral modulation. Specifically, if a weak linearly polarized 

probe pulse propagates during a revival of a rotational wave packet the action of the 

effective linear susceptibility will range from changing the polarization state of the 

pulse due to the birefringence present in the medium to splitting the probe pulse into 

two pulses which are distinct in their polarization state as well as in their spectral 

content. 
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In addition to the propagation effects due to the effective linear susceptibility, 

the effects originating from the dependence of the non-linear induced polarization 

density on CNM have been investigated as well and are detailed in Chap. 6. In 

particular, we have focused on the dependence of x^3\t) o n coherent rotational as 

well as vibrational motion of the nuclei. That dependence is expected to manifest 

itself in a variation of the conversion efficiency to the third harmonic as a function 

of pump-probe delay. First, we discuss THG during molecular alignment. The gas 

no longer acts as an isotropic medium with only Type I conversion processes allowed, 

but as a birefringent medium which allows Type I as well as Type II processes. We 

have identified the presence of both in our experiments and discuss the possibility for 

phase matching Type II processes for strong molecular alignment such as could be 

achieved when the gas is rotationally cool. A modulation of the conversion efficiency 

for vibrational motion has been observed as well. We have used SF6 for this purpose 

since it possesses a relatively low-frequency, fully-symmetric breathing mode with a 

large Raman cross-section which can be impulsively excited with « 40-fs pulses. 

Finally, in Sec. 6.2 a strongly enhanced conversion to the third harmonic is dis­

cussed. This effect is independent from CNM. Ithas been measured in molecular as 

well as atomic gases and is attributed to the presence of a laser induced plasma in 

the focal region of the probe pulse. The level of enhancement depends in detail on 

a variety of experimental parameters, e.g., gas pressure, pump- and probe pulse en­

ergies, the focal length, and the ionization potential of the molecule or atom, just to 

name a few. We are developing a theoretical model to shed light on the underlying 

physics responsible for the effect. With guidance from a good model, it is anticipated 

that the enhancement can be further optimized and this technique might serve as the 

starting point for the development of a broadband UV source. 
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Chapter 5 

Propagation effects due to "linear" 

susceptibility modulation 

5.1 Spectral Interferometry as a way to detect molec­

ular alignment 

The index of refraction of an ensemble of gas molecules is modulated by transient 

molecular alignment. This has been shown in Sec. 3.3, where an expression for an 

effective linear susceptibility due to coherent nuclear motion was derived, and has 

been the basis of the earliest detection methods via the birefringence induced in 

the medium by the alignment. The relative phase accumulated by a weak, linearly 

polarized probe pulse will therefore vary as a function of pump-probe delay during 

wave packet revivals. If a reference pulse, co-propagating with the probe pulse, but 

adequately delayed such that the reference pulse propagates in-between revivals, is 

made to interfere with the probe pulse in a spectrometer, the relative phase difference 

as a function of pump-probe delay can be extracted from the interferogram. This 

technique allows for the direct detection of ((cos2 #(£))), whereas other techniques 

merely detect its modulus. 
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To demonstrate the feasibility of using spectral interferometry for the detection 

of molecular alignment we use it to map the quarter revival of a rotational wave 

packet in C02. A half-wave plate and polarizing beam splitter were used to separate 

1.3-mJ, « 50-fs pump pulses from a Ti:sapphire amplifier into pump and probe arms 

where 90% of the pulse energy remained in the pump arm. The probe arm contained 

a 12-mm thick KDP crystal cut at 44.9 and a retro reflecting mirror mounted on 

a motorized translation stage to vary the pumpprobe delay. The crystal angle was 

set to produce two pulses separated by 2.2 ps after double-passing the KDP crystal, 

forming a probe pulse-pair that was orthogonally polarized to the pump pulse[92]. 

All pulses were then focused into a gas cell containing C02 at a pressure of 810 Torr. 

The relative delay between the probe pulses and the pump pulse was set to r0 « 10.6 

ps, so that the probe pulses coincided with the quarter revival of the wave packet. 

The pumpprobe delay was then scanned about r0 and the interferogram between the 

probe pulse pair was recorded with an Ocean Optics USB2000 spectrometer. 
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Figure 5.1: (a) Measured interferogram at a gas pressure of 810 Torr. (b) Relative 
phase between probe and reference pulses. The noise is extremely low since we were 
using a birefringent crystal to split the probe pulse into a probe-reference pulse pair. 
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The measured interferogram is shown in Fig. 5.1(a) for a scan interval of ±3 ps, 

while (b) shows the extracted phase. Using a birefringent crystal in order to split up 

the probe pulse into a probe-reference pulse pair results in an extremely low-noise 

interferogram since the probe and reference pulses travel on a common path. The 

phase difference accumulated between probe and reference is clearly visible, and is 

directly proportional to the molecular alignment. 

5.2 Single Shot Measurement of Temporal Phase 

Modulation 

As outlined in Sec. 3.3, the linear propagation effect of a rotational wave packet on a 

weak probe pulse can be expressed in terms of an effective, time-varying linear suscep­

tibility. The polarization state of the pump pulse determines whether the resulting 

effective linear susceptibility tensor is uniaxial or biaxial. Direct measurements of the 

transient susceptibility provide detailed information regarding the rotational wave 

packet. In particular, it is useful to be able to resolve the time-varying susceptibil­

ity along the eigenpolarization directions of the tensor. Earlier methods of probing 

the rotational wave packet dynamics using the transient birefringence [45, 68] do not 

resolve the time-varying susceptibility along the eigenpolarization directions of the 

tensor. Also, since the birefringence of the medium lies in a plane orthogonal to the 

polarization plane of the pump pulse, and for co-propagating pulses, consequently 

also the probe pulse, these methods will not result in a signal due to the molecular 

alignment at all. 
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5.2.1 Phase accumulation and birefringence due to a rota­

tional wave packet 

Briefly, we will illustrate the resulting molecular alignment symmetry for various 

cases of pump pulse polarization. For a linearly polarized pump pulse, the coordinate 

system is defined by the direction of polarization (£) and the direction of propagation 

(y). The molecules align along the polarization direction of the pump pulse and 

anti-align in the xy-plane. With the interaction Hamiltonian given by 

A/-v 
HM = -~E2(t) COS2 9, 

it can be seen that the interaction is independent of <j>, i.e., the orientational prob­

ability distribution will be symmetric about the 2-axis. A linearly polarized probe 

pulse co-propagating with the pump pulse, i.e., the polarization of the probe pulse 

lies in the H-plane, will therefore accumulate a phase difference between its z and x 

components. The gas acts as a uniaxial crystal with nz{u>) ^ nx(io). This is precisely 

the effect which has been used by ear her methods to detect molecular alignment. 

For a circularly polarized pump pulse, on the other hand, the interaction Hamil­

tonian is given by 

Hckc = —g-£ 2 ( * ) (cos2 9 + cos2 <j>). 

The direction of propagation is again y, with the plane of polarization defined by x 

and z. The interaction is no longer azimuthally symmetric in this frame. If, however, 

we define z to be given by the direction of propagation so that x and y define the 

polarization plane of the circularly polarized pulse, the Hamiltonian can be written 

as 

#circ = - ^ £ 2 ( i ) c O S 2 0 . 
o 

From this, one can see that in this new frame the interaction is again independent of 
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(j>, i.e., the orientational probability distribution is azimuthally symmetric about the 

direction of propagation. The molecules align along the direction of propagation and 

anti-align in the plane of polarization. So, there is no birefringence in the xy-plane 

but nz(r) =fi nx(r). Therefore, the gas acts like a uniaxial crystal during the alignment 

periods for both linearly and circularly polarized pump pulses. 

5.2.2 Chirped Spectral Interferometry 

We have introduced a method to directly measure the phase modulation due to tran­

siently aligned molecules for arbitrarily polarized pump pulses. This method no longer 

relies on a polarization state modification due to the aligned molecules, but directly 

measures the phase accumulated by the pulse with propagation. In addition to that, 

the method we are using here allows for the mapping of the temporal phase dynamics 

during a revival of the wave packet in a single-shot. Our single-shot measurement 

technique is based on the idea originally suggested by Valdmanis [93]. In his proposal, 

he suggests to use a strongly linearly-chirped ultrafast probe pulse to map the tem­

poral dynamics due to the wave packet onto the probe pulse spectrum. The resulting 

phase accumulated by the spectral components of the pulse can then be mapped to 

the time axis via the linear chirp. This time-spectrum mapping has been applied to 

many physical systems [?, 94, 95]. A chirped spectral interferometry (CSI) adapta­

tion of Valdmanis' technique has also been applied for the single-shot measurement 

of systems with a transient phase [96, 97, 98, 99], 

The single-shot measurement of molecular phase modulation uses spectral inter­

ferometry between two identically chirped broad bandwidth laser pulses. This probe-

reference pulse pair is sent into a molecular gas in which a pump pulse has excited 

a rotational wave packet, leading to a transient optical susceptibility. To measure 

the time-varying phase modulation imposed on a probe pulse by the transient optical 

susceptibility, the probe pulse is time delayed with respect to the pump pulse as to 
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Figure 5.2: Algorithm for the phase retrieval of a single-shot measurement 

coincide with a revival of the rotational wave packet, which is indicated schematically 

in Fig. 5.4(a). It thus accumulates phase as a function of time. The reference pulse 

delay is set so that it overlaps with a time-invariant region of the transient molecu­

lar response. Hence, the transient phase modulation can be extracted directly from 

the interferogram of the probe and reference pulses. It is therefore possible to fully 

resolve the time dependence of the linear susceptibility tensor components. By con­

trast, polarization gating techniques [45, 68] measure the modulus of a time-varying 

birefringence, i.e, the magnitude of the difference between two components of the 

linear transient susceptibility tensor. 

5.2.3 Xeff• W *n * n e presence of a rotational wave packet 

The procedure for obtaining the effective linear susceptibility in the presence of a rota­

tional wave packet has been outlined already. Hence, only a brief summary of previous 

results is given here. Formally, the macroscopic linear optical susceptibility tensor for 
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transiently-aligned molecules in a dilute, non-absorbing gas is found by computing 

the orientational average Xij(t) ~ 7~a J rikockirijG(9) (j),t)dQ, where repeated indices 

are summed over. Here, G(6, </>, t) is the orientational probability distribution in the 

presence of the rotational wave packet, and r^ are direction cosines which transform 

between the laboratory (x,y,z) and molecular coordinates (X,Y,Z). Considering 

the properties of G(6, <p, t) and the pump-pulse-molecule interaction, one finds that 

for a single pump pulse, the linear susceptibility tensor is diagonal in the coordinate 

system defined by the propagation direction and the polarization plane of the pulse. 

For an elliptically-polarized pump pulse, the tensor is biaxial, and reduces to a uni­

axial tensor for a linearly or circularly polarized pump pulse. When the probe and 

reference pulses propagate collinearly with the pump pulse, the propagation direction 

is along one principle axis of the linear susceptibility tensor. The eigen-polarization 

directions of the transient susceptibility tensor are along the other two principle axes. 

It is interesting to note that for the special case of a circularly polarized pump pulse, 

the propagation direction is commensurate with the optical axis of the transient sus­

ceptibility tensor, implying an absence of birefringence in the polarization plane of 

the probe pulse. 

5.2.4 Experimental setup 

In the experiments, pulses of up to ~ 1.6 mJ in energy with a duration of fa 40-fs and 

centered at 780-nm are produced by a multipass Ti:sapphire amplifier (KMLabs). 

The experimental setup is schematically depicted in Fig. 5.3. Approximately 10% of 

the pulse energy is split off and frequency doubled in a 150-//m thick BBO crystal 

and subsequently chirped with a 9-cm long BK7 glass rod to a duration of « 1.3 ps. 

The probe and reference pulses are formed from the chirped frequency-doubled pulse 

with a Michelson interferometer. The remaining energy comprises the pump pulse. A 

half wave plate is used to rotate the polarization of the pump pulse prior to passing 
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through a quarter wave plate. The combination of the half and quarter wave plates 

allows control of the pump pulse polarization, while keeping the eigen-directions of 

the excited transient susceptibility tensor fixed. Thus, the slow and fast axes of 

the quarter-wave plate define z and x, respectively. The delay between the probe-

reference pulse pair and the pump pulse is set to « 10.65 ps so that it coincides with 

the quarter revival of the wave packet. The reference pulse is delayed with respect 

to the probe pulse by ?s 2.8 ps, ensuring that it propagates in between wave packet 

revivals without accumulating any transient phase. In the cases of linear and circular 

pump pulse polarization, the pulses are coupled into a 15-cm long, 150-/j,m diameter 

hollow core fiber filled with ~ 20 to ~ 40 Torr of C0 2 gas. The gas pressure is kept 

low in order to prevent substantial modification of the spectrum due to the temporal 

phase modulation[34]. At the exit of the fiber, a dichroic beam splitter directs the 

probe and reference pulses into a spectrometer (Ocean Optics HR4000) where an 

interference pattern is recorded. 

105 



5.2.5 Analysis of experimental results 

The measured interferogram can be written as 

S(Q) = \EIei(Q)\2 + \EPr(m2 + E:ei(Q)e-iTdaEpT(Q) + Eief(nyT<>nE;M, 

where EpT(Q) and Erei(Q,) are the Fourier representations of the probe and refer­

ence pulses, respectively. The chirped probe and reference pulses are approximately 

given by Sc(t) = ^ e x p [- (ac - ib)t2}eiwot where ac — 21n2rc
-2 and 2b is the chirp 

rate. After propagation with the rotational wave packet, the probe pulse acquires a 

phase modulation due to the transient susceptibility, (/)moi(t), which varies across the 

duration of the pulse. This transient phase maps directly onto the spectral phase 

of the probe pulse with in = Vt/2b with Q = u> — uo. Note that the temporal phase 

modulation is weak, and therefore, that distortion of the probe spectrum is negligible. 

Thus, the probe spectrum is approximately Epi(tt) « Ere{(0,)el<l>mo^tft\ With that, the 

mixing terms in the interferogram take the form, Epr(Q)E*ei(Q,) = \ETef(Q)\2ei<l>mo^tQ\ 

The spectral phase extracted with standard Fourier processing techniques contains 

the desired temporal phase modulation acquired by the probe pulse. Using the chirp 

rate of the probe pulse, the spectral phase difference can be mapped to the time 

domain and the transient modulation of the index of refraction can be obtained from 

that. It is directly proportional to the molecular alignment. 

Accuracy of the single-shot phase measurement is validated by comparing to a 

scanning spectral interferometry (SSI) measurement of the phase due to the rotational 

wave packet. In the SSI experiment, a probe-reference pair with a short temporal 

duration is scanned through the quarter rotational revival as indicated in Fig.5.4(b). 

The phase modulation is retrieved from the SSI interferogram in a similar manner 

to CSI for each specific pump-probe delay. Fig. 5.4(c) shows a comparison of the 

transient phase response measured by both SSI and CSI due to the quarter revival 
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Figure 5,4: Relative timing of pump, reference, and probe pulses with respect to the 
transient index of refraction for scanning (a) and chirped single-shot measurements. 
(c) Comparison between the phase extracted from scanning (solid line) and single-shot 
(dashed line) interferograms. 

of a rotational wave packet in 30 Torr of CO2. As indicated by the insets, the 

pump and probe pulses were co-polarized (i.e., along z) for these measurements. The 

excellent agreement between the scanning (solid line) and single-shot (dashed line) 

measurements validates the accuracy of the single-shot technique which is based on the 

reliability of the simple linear spectral-to-temporal mapping and sufficient temporal 

resolution (estimated at s=s 140/s) of the retrieval algorithm applied to the single-shot 

interferogram. We note improved temporal resolution can be obtained with careful 

characterization of the reference pulse and processing the interferogram as a hologram 

[99]. 

Single-shot measurements of the transient phase modulation at the quarter-revival 

of C0 2 excited by a circularly polarized pump are shown in Fig. 5.5 for a linearly-

polarized probe-reference pair oriented along x (dashed line), z (dotted line), and 

along 45° relative to z (solid line), as indicated by the insets. The measured phase 

along those three directions is essentially identical, confirming an absence of birefrin­

gence as expected. We have experimentally verified that polarization gating (both 
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scanning and single-shot) indeed yields a null result as expected. 
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Figure 5.5: Measured single-shot phase accumulated by the probe pulse along 
x(dashed, blue), ^(dotted, red) and 45° relative to i(solid, green) for a wave packet 
excited by a circularly polarized pump pulse. 

When moving to single-shot measurements with elliptically-polarized pump pulses, 

we replaced the hollow-core fiber with a simple gas cell, reducing the interaction to 

7-mm. The reduction in interaction length allowed for a better assessment of the 

sensitivity limits of this measurement. By adjusting the gas pressure, we estimate 

the phase sensitivity of the single-shot measurements to be < 7r/20. Fig. 5.6 shows 

the single-shot measurements of phase modulation of the probe pulse for a rotational 

wave packet excited by an elliptically polarized pump pulse, resolved along x (dotted) 

and z (dashed). The pump pulse ellipticity is set by rotating the half wave plate in 

the pump arm to set the relative field strengths along z and x to a and b, respectively. 

In this measurement, the A/2-plate was rotated to an angle of « 20° ± 4° from an 

eigen-axis from which we estimate a = 0.940 ± 0.02 and b — 0.34 ± 0.06. 
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Figure 5.6: Measured phase modulation of the probe pulse along x (dotted) and along 
z (dashed) due to a wave packet excited by an elliptically polarized pump pulse. 
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5.2.6 Summary 

We have developed a new technique that directly measures the time dependence of 

the linear susceptibility tensor components due to field-free rotational revivals excited 

by pump pulses of any polarization with high sensitivity. Unlike polarization gating 

which has been used in the past, our CSI method directly measures transient phase 

as opposed to the modulus of the birefringence. Moreover, we have demonstrated 

transient susceptibility measurements for circularly polarized pump pulses, as well 

as the experimental determination of the phase modulation along eigen-polarization 

directions of the transient susceptibility tensor. Beyond the application of transient 

susceptibilities for molecular phase modulation of ultrafast optical pulses, there are 

many other applications, which have been extensively discussed by Seideman et al[4]. 

5.3 Modification of Group Velocity due to molec­

ular alignment 

In addition to a time dependent phase accumulation by a weak probe pulse, a rota­

tional wave packet and the molecular alignment occurring during the revivals of the 

wave packet affect the group velocity of the probe pulse. This effect is expected based 

on the time dependence of the effective linear susceptibility identified in Sec. 3.4. Us­

ing the propagation equation for the envelope found there and neglecting dispersion 

as well as any other term not of interest at the moment we can write the simplified 

equation as 

~W~ = ~d%,Xij{T~TPD)~¥r 2AX-(T-TpD)Aj^T) 
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where we can see that the term 

^ x S V - ^ ) - ^ 

can be interpreted as a modification of the group velocity of the pulse where the 

modification is proportional to x^\T)- This relationship between the group velocity 

modification and the molecular alignment has not been confirmed experimentally. 

While the experiment does show a modified group velocity, its dependence on the 

alignment is not proportional to x ^ ( r ) . In Sec. 5.3.2 we describe the model used to 

theoretically investigate this effect. We have solved Eq. 3.33 in order to find the field 

of the probe pulse after propagating in the presence of a rotational coherence, and we 

have carried out pump-probe experiments to verify the group velocity modification 

due to molecular alignment. The details of the experiment and the results are shown 

in Sec. 5.3.1. 

5.3.1 Experimental investigations 

For these experiments, the amplifier configuration differs from the other experiments 

described. Specifically, the difference lies in the pump laser used. Instead of the 

Coherent Evolution 30, a Quantronix Eagle was used delivering « 90 W average 

power at 8 kHz repetition rate. With the increase in repetition rate the average 

output power is about 8 W resulting in pulses of about 0.8 mJ in energy. The pulse 

duration and the center wavelength remain at around 40 fs and 780 nm respectively. 

The experimental setup is shown in Fig. 5.7(a) and is mostly identical to that used 

for the CSI and TWP experiments. Using a surface reflection, approximately 10% of 

the pulse energy is split off and frequency doubled in a 150-yum thick BBO crystal, 

while the remaining energy constitutes the pump. 

We use a dispersion compensated Michelson interferometer to obtain a probe-
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Figure 5.7: (a) Schematic of experimental setup used for detecting the group velocity 
modification of a weak probe pulse due to the transient molecular alignment, (b) 
Centroid of the sideband as a function of pump-probe delay at a gas pressure of 3 
Torr. (c) Relative phase accumulated by the probe pulse during the half revival at a 
gas pressure of 3 Torr. 

reference pulse pair in the probe arm. The delay between the probe-reference pulse 

pair and the pump pulse is set to « 21.4 ps so that the probe pulse coincides with 

the half revival of the wave packet. All pulses are linearly polarized along z. The 

reference pulse is delayed with respect to the probe pulse by « 2.6ps, ensuring that 

it propagates in between wave packet revivals without accumulating any transient 

phase or having its group velocity modified by the molecular alignment. The pulses 

are coupled into a 15-cm long, lbO-fxm diameter hollow core fiber filled with ~ 3 to 

~ 240 Torr of CO2 gas. As with the single-shot experiment, the gas pressure is again 

kept low to prevent substantial spectral modification [34]. A dichroic beam splitter 

directs the probe and reference pulses into a spectrometer (Ocean Optics HR4000) 

where an interference pattern is recorded. 

5.3.1.1 Experimental Results 

The relative phase accumulated by the probe pulse as well as its group velocity 

modification while propagating during a revival of a rotational wave packet can be 

extracted from the recorded interferograms. The interferograms have been recorded 

as a function of pump-probe delay centered around the half revival of the wave packet, 

which for CO2 corresponds to a pump-probe delay of 21.4 ps. For each pump-probe 
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delay, the interferogram is inverse-Fourier transformed and the sideband is isolated. 

Any change in the group velocity of the probe pulse will of course result in a different 

spacing in time of the probe and reference pulses. This is detected in a variation of 

the fringe periodicity of the spectral interferogram, and consequently, in a modulation 

of the sideband's centroid. This centroid is shown in Fig. 5.7(b) for the case of an 

evacuated fiber. The probe-reference spacing should not change at all in that case, 

of course. The maximum change recorded however is about 0.5 fs, which represents 

the detection limit. Similarly, the relative phase accumulated by the probe pulse 

is extracted by Fourier transforming the sideband, and is shown in Fig. 5.7(c) for 

the case of an evacuated fiber. The relative phase between the probe and reference 

pulses exhibits a small drift of about 0.2 radians over the recorded pump-probe delay 

intervall. The initial temporal spacing between the probe and reference pulses is 2.68 

ps. Fig. 5.8(a) shows the recorded spectral interferograms, (b) the isolated sideband, 

(c) the extracted relative phase accumulated by the probe pulse, and finally, (d) the 

centroid of the sideband for a gas pressure of 80 Torr, and Fig. 5.9 shows the same 

data for a gas pressure of 240 Torr. 

The accumulated relative phase as well as the changes in the probe-reference pulse 

spacing are well above the detection limits for both cases. The interferogram for a 

CO2 pressure of 80 Torr shows that the probe spectrum is very slightly distorted, 

but quite negligibly so. This means that the maximum change in the probe-reference 

spacing of 8 fs is most likely not due to changes in dispersion. If the group velocity 

modification were due to a change in dispersion, a doubling of the center frequency 

of the probe pulse spectrum would result in a change in propagation time of less 

than 10 fs. As is obvious from the interferogram, the distortion of the spectra due 

to the temporal phase modulation of the transient molecular alignment is not nearly 

that strong for either case. The accumulated phase as well as the group velocity 

modification are about three times larger for 240 Torr than for 80 Torr which would 
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Figure 5.8: (a) The measured interferogram between the probe and reference pulses 
after propagation through the fiber which was filled with C0 2 at 80 Torr. (b) shows 
the sideband found by inverse-Fourier transforming the interferogram. (c) and (d) 
show the phase extracted from the sideband and its centroid, respectively. 

be expected for a dilute gas. The maximum change in probe-reference pulse spacing 

is about 20 fs at 240 Torr of C02 . 

Fig. 5.8(c) as well as Fig. 5.9(c) show clearly that the relative phase accumulated 

by the probe pulse due to the wave packet is directly proportional to the effective 

linear susceptibility, and hence, the molecular alignment. This is expected based on 

the terms found for the induced polarization density in the presence of a rotational 

wave packet. The change in group velocity due to the wave packet on the other hand 

is not proportional to the effective susceptibility, rather, it is proportional to either 

its derivative or integral. 
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Figure 5.9: (a) shows the spectra, (b) the sideband, (c) the extracted phase, and (d) 
the centroid of the sideband. 

5.3.2 Modelling Group Velocity Modification due to x^KT) 

The pulse propagation equation was solved again using a split-step approach, with 

diffraction neglected and dispersion taken into account in the frequency domain and 

the effect of the molecular alignment in the time domain in the form of an effective 

linear susceptibility. The two equations are given by 

dA(kx,ky,C,w -u)0) 
dz 

dC 

i fur*. 
2k0 V c2 e(a;) - kj A(kx, ky,(,u~ u/0) 

, ( i ) / 
* x-ft>(r TriJf

Ai{^T) [ * Hjir-rp^dMCr) 
2c2k0*

lJ 3 T 2 c2k0 dr dr 
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+ 

dAjJCr) u0 dxl/(r-TPD) 
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We take into account the fact that the central frequency of the probe is twice that 

of the pump pulse, which means that there will be a change in the pump-probe delay 

with propagation of the probe due to the gas dispersion. While gas dispersion is very 

weak, the probe pulse nevertheless will not sample the same molecular alignment 

throughout, but there will be a small walk-off. Over about 20 cm of fiber length 

this walk-off due to dispersion amounts to roughly 15 fs. This is very little walk-off 

considering that the effective linear susceptibility varies very slowly compared to the 

pulse duration, so that the changes in the effective susceptibility, and in turn the 

polarization density induced by the probe pulse, are very small. While the solution 

of this propagation equation using a split-step propagator is only an approximation, 

it should be accurate enough to model the pulse propagation for a weak probe pulse 

and a relatively weak coherence where the non-linear polarization density can be 

assumed small compared to the linear propagation density. Below, we show the results 

obtained from this model. We have assumed plane wave propagation in a capillary 

with a diameter of 150 //m, a length of 12 cm and gas pressures ranging from 50 to 300 

Torr. The results of simulation for a pump-probe delay of 21.4 ± lps is shown in Fig. 

5.10, i.e., the modulation seen is due to the half revival of the rotational wave packet. 

The results shown are the spectral interferogram (panel (a)), the sideband obtained 

by inverse Fourier-transforming the spectra (panel (b)), the phase obtained form 

Fourier-transforming the sideband (panel (c)), as well as the centroid of the sideband 

(panel (d)). The probe-reference delay is 2 ps, and the gas pressure in this case is 

300 Torr. The phase difference accumulated is proportional to X^(T)> as expected 

and observed in the experiment. The change in the group velocity seen from the 

simulation is also proportional to the effective linear susceptibility. While the model 

captures the nature of the interaction, there is no qualitative agreement with the 

experiment regarding the functional dependence on the effective linear susceptibility. 

This discrepancy between theory and experiment has so far not been resolved and 
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comes as a bit of a surprise, since the other propagation effects attributed to X ^ ( r ) 

have been readily observed. 
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Figure 5.10: (a) shows the calculated interferogram, (b) the extracted sideband, (c) 
the phase extracted from the sideband, and finally (d) shows the centroid of the 
sideband 

5.4 Transient Birefringence in a gas - A Transient 

Waveplate 

The transient birefringence present in a gas during the revivals of a rotational wave 

packets can be utilized as a wave plate, like any other birefringent medium. While 

propagation of polarized pulses through regular birefringent media, e.g. a crystal, 

is well understood, there are additional "features" which arise from the time depen­

dence of the phase modulations and which make the Transient Wave Plate (TWP) an 

interesting application of molecular alignment. Previously, when people were using 
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this effect in order to observe the revivals of the wave packet they were doing so 

using a linearly polarized probe pulse and a crossed analyzer [45] and were limited to 

the regime of weak temporal phase modulation where the accumulated phase change 

A<j> <C 2n across the duration of the pulse. The effects on ultrashort laser pulses 

due to the propagation through a transient wave plate in a strong phase modula­

tion regime (A</> ̂ > 2n) deviate substantially from those in a birefringent crystal. A 

detailed understanding of the spectral and polarization evolution of a probe pulse 

modulated by weak, medium, and strong phase accumulation is detailed below, and 

is important for probing strong quantum beating phenomena [100] and pulse shaping 

through molecular modulation[13, 101]. Further developments in pulse shaping with 

propagation in non-time-stationary optical media may find application in quantum 

coherent control [102, 103, 104]. 

Probe pulses with a linear polarization at an arbitrary angle relative to the eigen-

polarization directions of the TWP are considered. In this regime, a single input 

probe pulse splits into two nearly distinct, orthogonally polarized output laser pulses 

due to substantial spectral changes accumulated during propagation. The two output 

pulses adopt the eigenpolarization directions of the TWP, suggesting that polariza­

tion splitting can be used to determine eigenpolarization directions. Eigenpolarization 

measurements for a given propagation direction are related to the principal transient 

susceptibility frame through a rotational transformation for most gases. Thus, these 

measurements will be useful for studying transient susceptibility tensors created by 

complex pump pulses. In contrast, previous weak phase modulation experiments 

observe a modification of the polarization state of a single pulse. 

5.4.1 Experimental Setup 

The experiment, shown in Fig. 5.11, used ~0.8-mJ, 40-fs, linearly polarized pulses 

centered at 780 nm which are produced by a single-stage, multi-pass Ti:sapphire 
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Figure 5.11: Pump - probe setup for observation of polarization splitting. 

amplifier system[105]. Approximately 10% of the incident pulse energy is split off 

and frequency doubled with a 150-yum thick BBO crystal to form the weak probe 

pulse centered at 390 nm with a FWHM spectral width of AA « 7 nm. The probe 

pulse is delayed with respect to the pump pulse by r0. The remaining pulse energy 

constitutes the pump pulse. Both pulses are focused into a 15-cm long, 150 //m 

diameter hollow-core fiber filled with up to 620 Torr of CO2 gas. The pump pulse 

creates a rotational wave packet at time-zero (i.e., r0 = 0) which exhibits full revivals 

with a ~42 ps period. Transient wave plates at the quarter (r0 = ri/4 = 10.7 ps) 

and half (r0 = T1/2 = 21.4 ps) revivals were studied. At the fiber output, the probe 

pulse is separated from the pump pulse with a dichroic beam splitter. After passing 

through an analyzing polarizer set at an angle 77 relative to z, the probe spectrum is 

measured with a spectrometer. 

5.4.2 Theory 

The probe and pump pulses propagate through the transient wave plate along —x, 

which is a principal direction of the TWP. Thus, the remaining eigenpolarization 

directions are along y and z. The linear polarization of the probe pulse is adjusted to 

be at an angle 9 with respect to the pump pulse polarization direction, z. The probe 
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pulse can be written as 

4 ( r - T0) = E0(T - r0)e^T~r^{ysine + zcos0}, 

where E0{r — r0) is the slowly varying temporal envelope of the probe pulse in 

the rest frame of the pump pulse, delayed by r0, and u0 is the central frequency. The 

TWP can then be treated as 

£out(r - T0) = W(r)^ i n ( r - r0), 

where W(r ) is a diagonal matrix with the phase accumulated through propagation 

along each eigenpolarization direction. 

The index of refraction for each principal direction is then given by 

nn(T)^l-Xu(r)/(2e0), 

where i G {x,y,z} indicates a principal direction unit vector, Xu(T) is an element of 

the transient susceptibility tensor[106], and we have assumed a dilute, non-absorbing 

gas. A probe pulse with vacuum wavenumber k0 = u0/c propagating in a TWP of 

length L accumulates a temporal phase given by 

$ii(r) = k0m(T)L. 

In these experiments, the spectral envelope of the probe pulse is not significantly 

distorted which implies that the probe pulse duration is short enough that we may 

approximate the transient phase modulation to be linear during the probe pulse. 

Thus, we expand $ii(r) about the probe pulse delay r0 to first order, giving 

$ii(r) w $u(r0) + &n(T0)T, 
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where $U(T0) is the slope of the transient phase modulation at the pump-probe delay 

T0, and A(/> = ^(^Tp is the phase accumulated across the pulse. In this approxima­

tion, the spectra are sheared by 3>ii(r0) and can be written as 

£ u t (n ) = y ( s i n f c T * * " ^ [n + *^(r 0 ) ] ) + z (coa Oe^*"™E0 [Q + &ZZ(T0)}) , 

where E0(Q) is the input probe pulse spectrum with fl = u — u>0. 

The measured probe spectrum after a polarization analyzer at angle rj is then 

given by 

S(Q) = sin2 6sin2 r)Sy (ty+cos2 6cos2 r)Sz(Q)+^ sin20sin 2rf^Sy(n)Sz(Q) cos [A$22/(r0)], 

with the y-polarized and z-polarized spectra written as 

sy(ty = \E0[n + %y(To)]\2 

and 

Sz(Q) = \E0[a + ^zz(T0)}\2, 

respectively. The birefringence of the TWP at time-delay r0 is given by A<J>zy(r0) = 

The three different regimes of phase accumulation are illustrated in Fig. 5.12. 

When the phase modulation is weak, there is very little spectral shifting for the y 

and ^-components of the field, and the resulting output spectrum is almost identical 

to the input spectrum. In this case, illustrated in Fig. 5.12(a), the polarization state 

of the pulse evolves just like it would during propagation in a birefringent medium. 

I.e., in this regime the gas acts precisely like a wave plate. Since the alignment is 

time dependent, the phase difference accumulated between the y- and z- components 
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Figure 5.12: (a) Weak phase modulation, (b) moderate phase modulation (c) strong 
phase modulation 

is a function of pump-probe delay. Hence, the action of the gas on a pulse can be 

described as that of a Transient Wave Plate. 

For moderate phase modulation the spectral components along y and z are par­

tially separated due to the spectral shift. The remaining overlapping part of the 

spectra continues to evolve in its polarization state, determined by the accumulated 

phase difference. The non-overlapping spectral components, however, are no longer 

affected by the phase difference between x and z since these components are no longer 

present along both x and z. In other words, the non-overlapping components of the 

spectra are linearly polarized along the eigenpolarization directions. 

When the phase modulation is strong enough, the spectral components can be 

separated completely. In this case, the pulse has been split into two pulses with 

distinct spectral content which are orthogonally polarized along the eigenpolarization 

directions. The eigenpolarization directions are given in a straightforward manner in 

case of a single linearly polarized pump pulse. For a more complex excitation scheme, 

e.g., several arbitrarily polarized pump pulses, this may not be the case. The structure 

of the effective linear susceptibility tensor may not be immediately obvious. In that 

case, the observed pulse splitting along the eigenpolarization directions will prove 

useful for the determination of the eigenpolarization directions, and hence, provide 

some insight into the symmetry and structure of the tensor. 
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5.4.3 Weak phase modulation 

As explained above, in the weak phase limit there is only negligible frequency shifting 

along the eigenpolarization directions. Therefore, the spectra of the pulses propa­

gating along y and z may be considered identical, and the polarization state of the 

output pulse spectrum will evolve with A$zy(r0). The phase accumulated along z 

due to the wave packet is twice as much as that accumulated along y and of opposite 

sign. This can be seen from the susceptibility tensor elements XXX(T) and XZZ(T), 

which are given by 

Xxx(r) = N\ax + ^AaJ - ^NAa((cos2 0(r)» 

and 

XZ*(T) = Na± + iVAa<(cos20(r)» 

for a single, linearly polarized pump pulse. 

The phase accumulated due to the rotational wave packet along y and z has been 

measured, respectively, using spectral interferometry, as indicated in the experimental 

setup. The pump-probe delay is centered around ri/4 = 10.6 ps, which delays the 

probe and reference pulse-pair to coincide with the quarter revival of the rotational 

wave packet in CO2. The resulting phase, extracted from the interferogram, as a 

function of pump-probe delay is shown in Fig. 5.13(a). The dashed blue curve shows 

the relative phase accumulated along z, while the solid green curve shows that along 

y. The interaction length of the probe pulse with wave packet is L = 15 cm at a gas 

pressure of 57 Torr. The opposite sign and magnitudes of the phase accumulated due 

to the wave packet is clearly visible and also shows that the spectral shifting occurring 

due to $'yy(r) and $'zz{r) will be in opposite directions, as illustrated in Fig. 5.12. 

Also indicated in Fig. 5.13(a) is A$ at the center of the quarter revival, which is 

approximately equal to n. Therefore, the gas acts as a half wave plate at that delay. 
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A<t>« n 

Figure 5.13: (a) Measured temporal phase modulation along y (solid) and z (dashed) 
of the TWP for a propagation direction of -x at the quarter revival of the wave packet 
at a pressure of 57 Torr. (b) Probe spectra recorded after a crossed analyzer, (c) 
Probe energy transmitted through the analyzer. 

This effect has been confirmed by carrying out a pump-probe experiment with 

a single probe pulse at the same pressure and for the same interaction length. The 

probe pulse spectrum has been observed after a crossed analyzer. The result of 

this measurement is shown in Fig. 5.13(c), with the accumulated phase along y and z 

plotted in panel (a) in order to facilitate comparison. The transmitted energy through 

the analyzer is almost zero away from the revival. The phase difference accumulated 

during the revival leads to a change in the polarization state of the probe pulse, which 

consequently leads to some energy leaking through the polarizer. At the center of the 

revival, the energy leaking through the polarizer, plotted in Fig. 5.13(d) vs. pump-

probe delay, is at a maximum. The TWP rotates the linear polarization of the probe 

pulse by « 90°, acting as a half-wave plate. 

5.4.4 Moderate phase accumulation 

Increasing the gas pressure to 570 Torr moves the TWP into a regime of moderate 

temporal phase modulation, i.e., the spectral shear $a(T0) along y and z respectively 

is significant, however, not large enough to completely separate the spectra. Probe 
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Figure 5.14: Probe spectra measured after an analyzing polarizer near the quarter 
revival at 570 Torr. The spectral shear along the eigenpolarization directions is shown 
in (a) for z and in (b) for y, respectively, (c) shows the modulation of the overlap 
spectra due to the birefringence for r? = 45°. 

spectra recorded for 0 = 45° and various analyzer angles rj with pump-probe delays 

ranging over T1/4 ± 1 ps are shown in Fig. 5.14. The probe pulse spectra resolved along 

the eigenpolarization directions with the polarizer oriented at rj = 0°; (z) and 77 = 

90°; (y) are shown in Fig. 5.14(a) and Fig. 5.14(b), respectively. The spectra recorded 

for r\ = 45° can be seen in Fig. 5.14(c). In these data, we observe a modulation in the 

energy of the transmitted spectrum for those regions with residual spectral overlap 

between Sy and Sz. This is attributed to the change in their polarization state as 

a result of A$zy(r0). However, those spectral components, which are not present 

along both eigenpolarization directions, emerge linearly polarized along the respective 

eigenpolarization direction. Hence, the transmission of those non-overlapping spectral 

components is determined solely by the projection onto the analyzer, as shown in Fig. 

5.14(c). 
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5.4.5 Strong Phase Modulation 

When the spectral shear is large enough so that the spectra of the pulses along each 

eigenpolarization direction have no overlap, the transient wave plate splits the probe 

pulse into two orthogonally polarized pulses. Measurements of this phenomenon of 

polarization pulse splitting at a half revival of CO2 for a gas pressure of 620 Torr 

are shown in Fig. 5.15. The initial probe pulse spectrum is shown as (a) in the 

upper line of Fig. 5.15. The spectra of the pulses exiting the fiber are shown in 

the bottom line of Fig. 5.15, and are measured with the analyzer oriented parallel 

(b) and perpendicular (c) to the pump polarization. The output spectra are found 

to be linearly polarized and orthogonal — having adopted the eigenpolarization di­

rections of the TWP. The output spectra have a mutual overlap of / < 0.11. The 

mutual overlap specifies the fraction of residual spectral overlap and is defined as 

/ = / Sy(Q)Sz(n)dQ/Jj S$(Q)dn J S*(Q)dQ. These data demonstrate nearly com­

plete splitting of the probe pulse into two orthogonally polarized pulses with negligible 

spectral overlap. 

P. 
00 

2 

1.8 

1.6 

1.4 

1.2 

1 
1 

0.8 

0.6 

0.4 

0.2 

0 

Pump 

• 4 . W P r o b c 

, V 

lb)7\ 
, rj = Q° J \ 

360 370 380 390 

(a) 

A(c) 
/ \ V 

400 

Wavelength [nm] 

= 90° 

410 

Figure 5.15: Measurement of pulse polarization splitting, (a) The reference spectrum 
is the probe spectrum incident on the TWP. The i-pulse (b) and y-pulse (c) out­
put spectra are measured with an analyzer parallel and perpendicular to the pump 
polarization direction, respectively. 
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5.4.6 Summary 

We have demonstrated a new pulse splitting effect that occurs when an ultrafast 

laser pulse propagates through a transient wave plate. When the pulse enters the 

wave plate with a polarization that is not coincident with an eigenpolarization di­

rection of the medium, the probe pulse will be split into two distinct, orthogonally 

polarized laser pulses at the exit of the wave plate in the strong phase modulation 

limit. The directions of polarization of those two pulses are along the eigenpolar­

ization directions of the transient medium for most molecular gases. The principal 

frames for the linear susceptibility tensor and alignment are commensurate [106], thus 

this technique is useful for measuring the principal frame of reference regarding the 

alignment of anisotropic molecules. Techniques for probing transient birefringent dy­

namics are important for studying molecular modulators and wave packet dynamics 

in systems where a large phase modulation is imparted on a probe pulse. Reso­

lution of the eigenpolarization directions is critical for the study of transient wave 

plates excited by complex excitation schemes, where the direction of the eigenpolar-

izations of the resulting birefringent medium is not obvious. Moreover, this approach 

may be generalized to measure the nonlinear contributions of the wave packet to the 

time-varying susceptibility tensor with either transient birefringent [15] or quasi phase 

matching [18]. 
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Chapter 6 

Non-linear optical frequency 

conversion 

Efficient, broad bandwidth nonlinear optical frequency conversion is of strong interest 

for producing ultrafast light sources, particularly at short wavelengths. Recently, 

interest has been rapidly growing in the area of nonlinear frequency conversion in 

the presence of coherent nuclear state dynamics. An adiabatically excited vibrational 

transition has been used for the generation of a frequency comb ranging from the 

mid IR to the UV[107], while impulsively excited rotational wave packets have been 

shown to modulate a highly non-linear frequency conversion process, namely high-

order harmonic generation (HHG)[108, 109]. These HHG studies show a dependence 

between the re-collision dynamics of the electrons and the nuclear coherence excited 

by a pump pulse [14]. Coherent nonlinear frequency conversion in the presence of 

transient alignment produced by a rotational wave packet shows promise as a powerful 

spectroscopic tool. 

Improving the efficiency of coherent non-linear frequency conversion is an im­

portant aspect of non-linear optics. Common phase matching configurations exploit 

crystal birefringence [72, 73], dispersion of resonances [110, 111], and waveguide dis-
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persion [35, 84]. Efficient frequency conversion of intense, broad bandwidth ultrafast 

laser pulses presents a challenge for conventional phase matching techniques. The dis­

persion, transparency range, and damage threshold of bulk materials prevents efficient 

conversion to the UV for energetic ultrafast laser pulses. Difference frequency mix­

ing in hollow waveguides demonstrated efficient conversion from frequency doubled 

800-nm pulses, mixed with a weak IR pulse to generate short UV pulses [112]. Tech­

niques for exploiting transiently induced birefringence in a molecular gas[15, 18] for 

efficient third harmonic generation (THG) have been presented. Recently, efficient 

third and fifth harmonic radiation generated by IR and UV fundamental ultrafast 

pulses propagating in filaments has been reported[113, 114]. 

In Sec. 6.1 we present third harmonic generation in the presence of coherent 

rotational as well as vibrational motion which manifests itself as a modulation in the 

conversion efficiency from the fundamental to the third harmonic. Rotational motion 

is detected with this technique in CO2 and N2O, while SF6 is used to observe the 

effect of vibrational motion. Sec. 6.2 focusses on the observation of an enhanced 

conversion efficiency due to a laser-induced plasma at the focus of a relatively weak 

probe pulse. The enhancement is observed in a variety of molecular as well as atomic 

gases. 

6.1 Third Harmonic Generation in the presence of 

a rotational wave packet 

In this section, we study changes in coherent third harmonic generation (THG) in­

duced by a rotational wave packet in a molecular gas. We observe a modulated third 

harmonic conversion efficiency and study its dependence on the molecular alignment, 

which produces perturbations to both the effective linear and third order susceptibil­

ity. We performed pump-probe experiments with an energetic pump pulse that excites 
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a broad rotational wave packet in a room-temperature molecular gas. The third har­

monic radiation generated by a time-delayed probe pulse with a fraction of the pump 

energy is seen to be modulated as a function of pump-probe delay, r, during revivals 

of the rotational wave packet. For off-resonance interactions, the macroscopic optical 

response in the presence of a rotational wave packet, linear as well as non-linear, 

can be described by means of an effective susceptibility [29]. The dependence of both 

the effective linear as well as third order susceptibility on the molecular alignment 

impacts the THG conversion efficiency. To understand the strength of the relevant 

contributions to the measured data, we developed a model of the nonlinear interaction 

and made detailed comparisons to our experimental data. 

6.1.1 Theory of Third Harmonic Generation in the presence 

of a rotational wave packet 

It has been shown that the third order non-linear response of an ensemble of molecules 

can be described as effectively time-varying and that there are only three independent 

non-zero elements of the second hyper-polarizability tensor for molecules of symmetry 

Doo, e.g., linear molecules. In general, the non-linear interaction between a linearly 

polarized field and a molecule may result in the scatter of photons into different 

polarization states. The different possibilities are classified as Type I and Type II 

processes. 

In thermal equilibrium, the optical response of a gas is of course isotropic so 

that only one Type I THG process exists. However, the alignment induced by a 

linearly polarized pump pulse breaks this symmetry. The resulting effective linear 

susceptibility tensor is diagonal in the laboratory frame, which is defined by the 

pump pulse polarization (z) and its propagation direction (y)[17]. Assuming that the 

probe pulse propagates collinearly with the pump, the polarization of the probe and 

third harmonic pulses thus lie in the x — z plane. For linear molecules aligned by a 
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Table I: Type I and Type II processes allowed for third order interaction between a 

linearly polarized field with polarization direction in the xi-plane 

Process 

Type la, 

Type lz 
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Type I k 
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Type I!,, 

3a; 

X 

z 

z 

z 

z 

X 

X 

X 

CO 

X 

z 

z 

X 

X 

X 

z 

z 

CO 

X 

z 

X 

X 

z 

z 

z 

X 

CO 

X 

z 

X 

z 

X 

z 

X 

z 

linearly-polarized laser field, four THG processes are allowed: Type lz and Type lx, 

where both the fundamental probe (hereafter fundamental) and third harmonic fields 

are polarized along z and x, respectively, and two Type II (a, (5) processes with a mix 

of z and x polarizations [15]. The detailed interactions are outlined in Table I. 

Changes in the index of refraction with respect to the isotropic index n due to the 

wave packet are written as Snz = NA.a(ui)Q/2€0 and Snx = 6ny = —NAa(u)Q/4:€0, 

where Q = ((cos2
 0(T)}) — | is the change in alignment relative to the isotropic 

distribution, Aa(u>) = a\\(u>) ~a±(uj), and n? — 1 = Na/e0 and 3a = a^u) + 2a±(u>). 

As has been detailed previously, the change in the index of refraction along the 

principal axes differs by a sign and a factor of two in magnitude, hence, Snz ^ Snx, 

i.e., the gas is birefringent in the x — z plane. 

The non-zero transient effective third order susceptibilities are Xzzzz(r)> XXXXX(T), 

and xi!bb(r)> w ^ t n permutations of the pairs a,b £ {x, z} being equal. We may write 

the phase mismatch as Akz = Zk^-k^ and Akx = Zk%—kz/ for the Type I processes. 
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Along these eigenpolarization directions the phase mismatch is given by 

Akx — — (^0^0 + Snx(u)) (n(3u) + Snx(Zuj)) 

which can be written in term of an isotropic phase mismatch Ak as 

Akx = Ak H (Snx(u>) — Snx(3u>)) 
c 

with Snx(co) denned above. From this it can be seen that the phase mismatch for 

Type I interactions is unaffected by the molecular alignment for negligible dispersion 

in Aa(u>) and is then simply the isotropic phase mismatch Ak = Akx — Akz. Phase 

matching Type I interactions is therefore not possible with molecular alignment. The 

modulation of the third harmonic generated by the probe pulse polarized along x or 

z as a function of pump-probe delay is therefore dominated by X^K7)- The phase 

mismatch for Type IIQ is given by AkIIa = 2k% + k%- k3
z", and for Type Up, Aknp = 

2k^ + kx—kx^. Hence, Type II processes are modulated by molecular alignment both 

via X^(T) as w e n ^ X^( r ) -

It follows from the above analysis that the THG power conversion for Type I 

processes is proportional to the square of the effective third harmonic susceptibility 

given by P^(r) a |xzzL(r)|2 and P^(r) oc |x£L(r ) | 2 for r, = 0° and 90°, respec­

tively, where r\ is the angle between the pump and probe pulse polarizations. When 

the probe pulse is incident with rj = 45°, both Type I and Type II processes occur, 

and the modulation of the THG power is due to a combination of both Ak(r) and 

X^(r ) . The strong modulation observed after a polarizer in this case is largely due 

to the presence of the birefringence, which changes the polarization state of the third 

harmonic radiation [34]. 
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6.1.2 Experimental Setup 

The experimental setup is depicted schematically in Fig. 6.1(c). The pump and 

probe pulses for the experiment are derived from a Ti:sapphire amplifier (KMLabs) 

which delivers 1.2-mJ pulses of 35 fs in duration, centered at 785 nm. A beam 

splitter separates the output into linearly polarized pump (« 80%) and probe (« 

20%) pulses. The relative polarization angle is adjusted with a half waveplate in the 

pump arm. The pulses are focused with 50-cm focal length mirror into a gas cell filled 

with CO2 gas at pressures from 200 - 700 Torr. Profiling the focusing beams with 

a knife-edge scan gives a crossing angle of 2° and an interaction length of 1-1.2 cm. 

The fundamental and third harmonic probe fields are separated with two dielectric 

mirrors coated for 266-nm (CVI). A calcite polarizer (Thorlabs) with a « 105 : 1 

extinction ratio is adjusted to select the THG polarization direction to be recorded 

by the spectrometer (Ocean Optics USB4000). 
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Figure 6.1: (a) Third harmonic spectra recorded for 77 = 0° with the polarizer oriented 
along the probe pulse polarization at the quarter revival of CO2 at 600 Torr. (b) 
Modulation in energy vs. pump-probe delay for both rj = 0° (blue) as well as 77 = 90° 
(green). 
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6.1.3 Results for the modulation of THG due to molecular 

alignment 

To separate the modulation of the conversion efficiency due to variations in the non­

linear susceptibility, x ( 3 )( r) fr°m those in x(1)(r)> w e adjusted the fundamental po­

larization to be either along z or x to select the two Type I processes. Fig. 6.1(a) 

shows spectra of the third harmonic generated by the probe pulse as a function of 

pump probe delay at the quarter revival (r0 & 10.6 ps) of CO2. The gas pressure was 

600 Torr and rj — 0°. The modulation of energy conversion to the third harmonic 

is clearly visible, and as can be seen in Fig. 6.1(b) (blue, solid), it is proportional 

to ((cos20(r))). While x(3)0") depends on both «cos20(r))} and ((cos40(r)}), the 

dependence on ((cos4 0(r))} is about one order of magnitude weaker compared to that 

of ((cos2
 6(T))). Hence, the modulation for the third harmonic signal at a revival for 

Type I processes is expected to be dominated by ((cos2
 0(T)}) for these experimental 

conditions. These data therefore directly show the dependence of Type I THG pro­

cesses on molecular alignment. This has also been verified for the case of rj = 90°, 

for which only the modulation in third harmonic energy as a function of pump-probe 

delay is shown in Fig. 6.1(b) (red, dashed). 

More complicated modulation is observed for arbitrary angle between the pump 

and probe pulses. The case of t] = 45° has been chosen and is illustrated in Fig. 6.2 

for a variety of cases at a gas pressure of 600 Torr. The third harmonic spectra trans­

mitted through the polarizer when it is oriented along the probe pulse polarization 

are shown in Fig. 6.2(a) at the quarter revival of C02 . The modulation observed in 

this case, as in the ones that follow, is due to the dependence of the linear, as well 

as the non-linear, susceptibilities of the gas. I.e., both Type I and Type II processes 

are present. Fig. 6.2 (b) shows the THG energy as a function of pump-probe delay 

when the polarizer is oriented along (blue, solid) and perpendicular (red, dashed) to 

the probe pulse polarization in arbitrary units. The same data are shown at the half-
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revival of C0 2 in (c) and (d), as well as the half-revival of N 2 0 in (e) and (f). The 

energy transmitted through the polarizer as a function of pump-probe delay clearly 

differs from that observed at the quarter revival, which may be expected since the 

modulation of x^(T) ^ w e u ^ X^(T) due to the molecular alignment is different. 

A significant difference between the modulation in C0 2 and that in N 2 0 is that the 

spectral components transmitted through the polarized are much more heavily mod­

ulated with pump-probe delay. Regarding the detection of the spectra it should be 

noted that since the grating efficiency of the spectrometer used is not independent of 

the polarization direction, the signal recorded when the polarizer is oriented orthog­

onally to the probe pulse polarization is lower than when the polarizer is oriented 

parallel. 
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Figure 6.2: Third harmonic spectra recorded for r) = 45° with the polarizer oriented 
along the probe pulse polarization at the quarter revival of C0 2 (a), the half revival of 
C0 2 (c), and the half revival of N2 (d), all at 600 Torr. (b), (d), and (f) Modulation 
in energy vs. pump-probe delay for the polarizer oriented along (blue, solid) and 
orthogonally (red, dashed) to the probe pulse polarization for each case, respectively. 

In order to illustrate the different strength of the modulation of the optical re-
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sponse of C0 2 and N 20, Fig. 6.3 compares the modulation observed in CO2 at the 

half revival at a gas pressure of 600 Torr to that observed in N 2 0 at 300 Torr, which 

are essentially identical. I.e., while the modulation as a function of pump-probe delay 

at the half-revival is the same for both gases, it is much stronger in N2O. 

This observation may be explained by that fact that the wave packet excitation in 

N 20 is much more efficient than in CO2. As a reminder, the interaction Hamiltonian 

for the excitation of a rotational wave packet by a linearly polarized pulse is given as 

HM(T) = ~€3(T) cos2 9, 

i.e., it is directly proportional to the polarizability anisotropy Aa. Experimental 

determination of Aa is difficult, and the results vary widely. Here we quote numbers 

from well-cited sources, which have also been used in the modeling of this experiment. 

The polarizability anisotropy of N 20 is taken to be [115] 

Aajv2o = 19.6 

for N 20, and [116] 

AaCo2 = 14.3 

for CO2. From these numbers it is immediately obvious that the off-resonance Raman 

interaction of the pulse with N 20 is roughly one and a half times stronger than 

with CO2. The experimental data seems to indicate that the difference in the wave 

packet strength is about a factor of two between the gases. Given the wide range 

of numbers available for either polarizability anisotropy, the agreement simply based 

on the proportionality of the interaction strength between the strength of the phase 

modulation and the difference in the anisotropies is very good. 
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T - x„ m ps 

Figure 6.3: (a) Third harmonic spectra recorded for r] = 45° with the polarizer 
oriented along the probe pulse polarization at the half revival of N2O at 300 Torr 
and (c) TH spectra at the half revival of CO2 at 600 Torr. (b) and (d) Modulation 
in energy vs. pump-probe delay for the polarizer oriented along (blue, solid) and 
orthogonally (red, dashed) to the probe pulse polarization for each case, respectively. 

6.1.4 Modeling of the experiment 

The experiment has been modeled using a set of coupled equations for the funda­

mental probe and the third harmonic generated by the probe pulse. In general, the 

complete field is comprised of the fundamental and third harmonic fields with com­

ponents along z and x, given by 

E(r,t) = A0(y,t)ei(feo2/-u'ot) + A3(y,t)ei{k3y^3t\ 

where Aj(y,£) is the complex, slowly varying envelope, ki is the y-component of the 

wave vector, and u>i is the central frequency for the fundamental and third harmonic, 

respectively. The slowly varying envelope for both the fundamental and third har­

monic after propagation in a transiently aligned medium can be found by solving a 
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set of four coupled equations, one for each component of each field. In the slowly 

varying envelope approximation, the propagation equation for each field component 

is given by 

where Pi(y, t) is the induced dipole moment density at either the fundamental or third 

harmonic frequency, including various terms describing SPM, XPM, THG, as well as 

backconversion from the third harmonic to the fundamental. D is the dispersion 

operator in the time domain[33]. The propagation equation in the plane-wave limit 

was solved with a Runge-Kutta-Fehlberg algorithm using a split step approach, where 

the dispersion was applied in the frequency domain, while the non-linear terms were 

taken into account for in the time domain. 

For the model, the spatial intensity variation along the propagation direction was 

found assuming a focusing Gaussian beam for both the pump and probe fields with 

a beam waist of 80 fj,m at the focus. The peak intensity of the pump pulse at the 

focal spot was 6 x 1013W/cm2, that of the probe pulse was 3 x 1013W/cm2. The 

duration for both pulses was 35 fs with an interaction length for the probe pulse 

with the wave packet of 1.2 cm. The CO2 pressure was 600 Torr and the rotational 

temperature was 300 K. The rotational wave packet was calculated using an analytic 

model for the solution of the Schrodinger equation [17] at several locations throughout 

the interaction length in order to model the varying strength of the wave packet in 

the focal volume. The result of the calculation for rj — 45° is shown in Fig. 6.4, 

where (a) shows the calculated third harmonic spectra and (b) shows the energy in 

the third harmonic vs. pump-probe delay after a polarizer oriented parallel (solid) 

and orthogonally (dashed) to the probe pulse polarization. Based on the model, the 

dependence of Ak(r) on the molecular alignment dominates the modulation of the 

conversion efficiency over x^(T) f° r the Type II processes. The dependence of the 

conversion efficiency vs. pump-probe delay on the dispersion of Aa, taken from Ref. 
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Figure 6.4: (color online) (a) Third harmonic spectra calculated for r] = 45° at the 
quarter revival of CO2 at 600 Torr with a polarizer oriented along the probe pulse po­
larization, (b) Modulation of the energy vs. pump-probe delay for a polarizer oriented 
along (blue, solid) and orthogonally (red, dashed) to the probe pulse polarization. 

[117], is very weak, and can be neglected for the given experimental accuracy. 

6.1.5 Modulation of THG due to coherent vibrational motion 

A modulation of the conversion efficiency of THG can also be observed for coherent 

vibrational motion. The analysis follows that described in the previous section. The 

dependence of x ^ ( r ) a n d X^HT) is> °f course, no longer determined by ((cos2 0(r)}). 

Instead, the vibrational wave packet resulting from off-resonant impulsive, stimu­

lated Raman scattering determines the time dependence of the polarizability. The 

induced dipole moment density relevant to the modulation of THG, to first order in 

perturbation due to the electric field, can be expressed as 

1 r°° 
f\t) = -^Eji^Ek^Eiit^Piq^iq^ijkiln^nlarnnlq) / dTsm(uqnr) 

q n " 

Em{t - r)En(t - T) 

This shows that the interaction under investigation may be viewed as a scattering 
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process effectively of fifth order in the field, however it is not a direct fifth order pro­

cess. The interaction may be viewed as a stimulated Raman scattering event followed 

by second hyper-Raman scattering, where the two processes are well separated in 

time. This point of view is equivalent to the approach taken earlier when describing 

the modulation of THG due to a rotational wave packet, i.e., utilizing an effective 

third order susceptibility which is time dependent due to the wave packet present. 

This effective third order susceptibility for a vibrational coherence is then given by 

Xm(t) = r Yl Pfa) X ^ l 7 y w M {n\amn\q} / dr sin(ujqnr)Em(t - r)En(t - r) 

so that the induced dipole moment density can be formally written as 

in the Born-Oppenheimer approximation. With that, the modulation of THG due to 

coherent nuclear motion is equivalent for vibrational and rotational motion. 

6.1.5.1 Modulation of THG in SF6 

In order to confirm this experimentally, the experiment described above has been 

repeated using SF6. SF6 has a fully symmetric vibrational mode at about v = 23.56 

THz, which corresponds to a vibrational period of TU « 42 fs. With 40 fs the 

pulse duration of the pump pulse is close to this period, however, the interaction is 

strong enough to result in a coherent excitation of this transition and an observable 

modulation of the THG. With the experimental parameters being very similar to 

those described in the previous section, the third harmonic spectra have been recorded 

with a spectrometer and are shown in Fig. 6.5(a). A sinusoidal modulation of the 

energy in the third harmonic is clearly observable, and is shown in Fig. 6.5(b). A 

Fourier transform of the energy modulation is shown in panel (c), and clearly shows 
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a sideband located at around 23 THz, which indicates that the modulation observed 

is indeed due to the fully-symmetric Raman mode of SF6. 
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Figure 6.5: SF6 at 600 Torr, pump power 780 mW, probe power 180 mW 

6.1.6 Concurrent detection of effective linear and nonlinear 

susceptibility contribution 

Using the co-linear setup used in Sec. 5.4 with some slight variations allows us to mea­

sure both the relative phase accumulated by the probe pulse due to the effective linear 

susceptibility, as well as the modulation of the third harmonic conversion efficiency. 

First, we replace the capillary with a gas cell filled with CO2 at 150 Torr. Secondly, we 

insert a 10% beam splitter at normal incidence in the probe arm. The beam splitter 

is placed closely to the highly reflective mirror, so that the path difference between 

the surface facing the polarizing beam cube and the mirror amounts to a delay of 

about 1.8 ps. This will generate a train of weak pulses due to the reflections off of the 

beam splitter, the first pulse of the train spaced by 1.8 ps from the probe pulse. The 

weak pulse train is not strong enough to generate any third harmonic. It is, however, 

possible to detect interference between the weak pulses immediately preceding and 

following the probe pulse and the probe pulse itself. The third harmonic generated 

by the probe pulse is separated from the fundamental by a mirror which is highly 
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reflective around 266 nm and detected using an Ocean Optics USB4000 spectrometer, 

while the fundamental is detected using an Ocean Optics USB2000 spectrometer at 

the same time. The intensity variation in the third harmonic is clearly visible, and 

the relative phase between the probe and reference pulses can be extracted from the 

interferograms recorded as a function of pump-probe delay. 
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Figure 6.6: (a) Interferogram between strong probe and weak adjacent pulse, (b) 
Third harmonic spectra due to strong probe pulse, centered around the quarter re­
vival, (c) Extracted relative phase between strong probe pulse and following weak 
pulse, (d) Modulation of third harmonic energy during the quarter revival. 

The resulting interferogram between the weak pulse train and the probe pulse is 

shown in Fig. 6.6(a). Due to the significant difference in intensity, the fringe depth is 

not very high. It is, however, good enough to allow for the extraction of the relative 

phase between the probe pulse and the weak adjacent pulse. The resulting phase 

is shown in Fig. 6.6(c). It shows the alignment dynamic during the quarter revival 
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of the wave packet. At the same time, the third harmonic spectra were measured. 

These are shown in Fig. 6.6(b), and the energy in the third harmonic as a function 

of pump-probe delay in (d). The modulation in the third harmonic energy is clearly 

visible. 

6.1.7 Summary 

We have shown that the non-linear optical response of a medium is modulated at the 

revivals of a rotational wave packet. We can distinguish between Type I and Type II 

processes, where the modulation of the third harmonic generated via a Type I process 

is solely due to the dependence of the third non-linear susceptibility on the molecular 

alignment. An increase in conversion efficiency by 20% has been observed. Type II 

processes are influenced by both x^(T) as w e ^ as ^n e change of the phase mismatch 

with r, Ak(r). Based on the model, the modulation of the conversion efficiency for 

Type II processes is dominated by the change in Ak(r) with the molecular alignment, 

while the contribution of x^ (T) was seen to be weaker. A parameter study with the 

model indicates with stronger alignment at lower temperature, it might be possible 

to phase mach the Type II process, and with a longer interaction length, significant 

enhancements in THG conversion efficiency is predicted. This is particularly usefull 

for third and higher harmonic conversion, since many crystals are absorbing in those 

regions and typically have a lower damage threshold than gases. Finally, we show 

briefly how a slight modification to a traditional Michelson interferometer allows for 

the concurrent detection of the wave packet contributions to the effective linear and 

nonlinear susceptibilities. 

142 



6.2 Enhanced efficiency for Third Harmonic Gen­

eration in the gas phase 

In this section, we discuss a strongly enhanced conversion efficiency to the third-

harmonic from a relatively weak IR probe pulse. The enhancement is attributed to 

a plasma near the focal region of the probe pulse which is induced by a strong pump 

pulse preceding the probe. Increasing the conversion efficiency for optical frequency 

conversion in the gas phase is beneficial for a variety of reasons. Most importantly, 

the dispersion of a gas is typically much lower than that of a crystal, and the trans­

parency window is wider, as implied by the Kramers-Kronig relationship between 

the dispersive and absorptive contributions to the linear response of a medium[24]. 

Hence, broad-band frequency conversion is attainable, which might allow for the de­

velopment of a source in the UV/EUV yielding short, and possibly even single-cycle 

pulses utilizing filamentation effects[118]. In addition to that, the damage threshold 

of gases is much higher than that of crystals, allowing for more intense and energetic 

fundamental pulses for an increased conversion efficiency. Here, however, we focus on 

an enhanced conversion efficiency for a relatively weak probe pulse, which is delayed 

and propagates non-collinearly with respect to a more energetic pump pulse. Since 

the probe pulse is weak, a rough estimate of the absolute conversion efficiency shows 

it is on the order of 10 - 6 —10~7 in the absence of any plasma. This is very low conver­

sion, considering conversion efficiencies of up to 0.02 % for third and 0.01% for fifth 

harmonic generation have been reported[114]. However, the enhancement for THG 

with a plasma present is up to about two orders of magnitude and will hopefully be 

extended to more energetic probe pulses, yielding a much improved absolute conver­

sion efficiency. Since both pump and probe are off-resonant, ionization only occurs 

through multi-photon and tunnel ionization, and is therefore considered negligible for 

the weak probe. The propagation of the probe pulse is perturbed by the plasma in 
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the focal region due to both changes in the phase mismatch between the fundamental 

and third harmonic probe fields as well as plasma de-focussing. The spatial mode of 

the THG radiation generated by the probe beam is substantially improved when the 

pump pulse-induced plasma is present. This "beam clean-up" effect, also observed in 

filamentation, under vastly different propagation conditions, however, is preliminar­

ily attributed to the transverse dependence of the plasma density and the resulting 

spatial filtering of the probe team. 

Under these conditions, we observe an increase in THG energy by more than two 

orders of magnitude over the THG energy without the pump-pulse induced ionization. 

We have investigated the laser-induced plasma enhancement in THG energy conver­

sion for a variety of gases, both atomic and molecular, for different pump and probe 

energies, focal lengths, and gas pressures. In order to obtain a better understanding 

of the underlying mechanisms contributing to the enhancement, the propagation of 

the probe pulse has been modeled using Equ's. 2.15 and 2.16. 

6.2.1 Experimental setup 

The experimental setup used for the following experiments is identical to that utilized 

to measure the modulation of THG in the presence of a rotational wave packet, except 

in addition to recording the THG spectra, a photo diode was used to measure the 

power of the third harmonic. Briefly, the experimental parameters and the setup is 

listed here for completeness: In the experiments, ~ 1-mJ pules, 35-fs pulses centered 

at 785 nm from a Ti:sapphire amplifier (KMLabs Dragon, Boulder, CO) are split into 

pump and probe pulses with adjustable relative power with a half wave plate and a 

thin film polarizer. An additional half wave plate and polarizer placed in the probe 

arm are used to adjust the probe energy. Pulse energies used are ~ 800 /uJ in the 

pump arm, and 85 to 140 //J in the orthogonally-polarized probe. The pump and 

probe beams are collinearly focused into a gas cell with a spherical mirror (focal length 
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/ = 30 and 50 cm) filled with Neon, Argon, SF6, CO2, and N 2 0 gases at pressures 

ranging from 20 to 800 Torr. We profile the spatial mode of the pump and probe 

pulses through the focal region using knife-edge scans. These measurements indicate 

that the crossing angle between the pulses is between 2 and 4 degrees, depending 

on the focal length, and the interaction length ranges between 0.6 and 1.2 cm. The 

third harmonic field is separated from the fundamental probe field with three dichroic 

mirrors centered at 266 nm. The third harmonic spectra are recorded with an Ocean 

Optics USB4000 spectrometer. The relative THG pulse energy is recorded by inte­

grating the signal from a GaP photodiode (Thor Labs) with a boxcar integrator set 

to average over 1000 samples and gain adjusted based on the signal level. 

6.2.2 Observations of enhanced THG 

4,2 0 %%. o,# m :m 

$3, 0 '0,2.. M m 0.8 

Figure 6.7: Recorded third harmonic spectra across the pump-probe time zero in (a) 
Argon and (b) C02 , both at 600 Torr. 

The enhancement of the THG energy generated by the probe pulse is illustrated 

in Fig. 6.7. Figure 6.7(a) shows third harmonic spectra recorded through a scan of 

the pump-probe delay for a 85 //J probe pulse through time zero. A drastic change in 

conversion efficiency that persists after the pump pulse induced ionization is evident 
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in the THG spectra recorded for Argon gas at 600 Torr. The dynamic range of the 

spectrometer is not sufficient to simultaneously detect the signal before time zero 

within the same scan. Similar enhancements are observed in molecular gases, an 

example of which is shown in Fig 6.7(b) where an increase in THG energy is observed 

after time zero for CO2 at 600 Torr with an 85 //J probe pulse. Note that near 

time-zero, the CO2 data exhibit time-dependent modulation of THG conversion due 

to alignment arising from a rotational wave packet excited by the pump pulse[?]. A 

few hundred femtoseconds after time-zero, the THG spectra in Fig 6.7(b) no longer 

vary with time since the initial rotational wave packet has dephased. To separate the 

effects of the rotational molecular response from the enhancement attributed to the 

plasma, the THG data that follow are gathered at a pump-probe delay of 2-ps. 

In addition to a large increase in conversion efficiency, a clear improvement in the 

third harmonic beam quality of the probe pulse is observed in the presence of the 

pump-pulse induced plasma. This enhanced beam quality is analogous to behavior 

observed in filament propagation[31]. The beam improvement observed in our exper­

iments suggests that propagation effects in the pump pulse induced plasma similar to 

filamentation behavior may play a role in the THG enhancement. Recently, efficient 

THG by a pulse propagating in a filament has been observed with low fluctuation in 

the signal strength and very good spatial beam properties for the third harmonic [113]. 

Moreover, since the THG mode changes may affect coupling into the spectrometer, 

the changes in the THG energy were recorded by focusing the THG beam onto a GaP 

photodiode so that the spot size was smaller than the active area of the photodiode. 

With these precautions, changes in the spatial mode of the THG beam will not lead 

to erroneous measurements of the relative THG pulse energy. 

While the enhancements for THG conversion efficiency across time-zero based on 

the pump-pulse induced plasma shown in Fig 6.7 are readily observable, the precise 

enhancement will depend on the parameters of the experiment. Clearly, the third 
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harmonic generation conversion efficiency will be strongly influenced by the changes 

in dispersion due to the plasma, i.e., changes in phase mismatch. However, the impact 

of the phase mismatch change depends on the focusing conditions of both pulses and 

the pressure of the gas. In addition, the interaction length of the probe pulse with the 

plasma as well as the probe pulse energy will strongly influence the resulting energy 

in the third harmonic. 

| 0 100 200 300 400 500 600 
°- Pressure in Torr 

0 100 200 300 400 500 600 
Pressure in Torr 

Figure 6.8: Photodiode signal measuring relative THG average power in Ar (red), SF6 

(black), CO2 (blue, dot-dash), and N 20 (red, dashed) with a focal length of 30 cm 
and and probe and pump pulse energy of 140 and 790 /j,J, respectively. The relative 
THG over a range of pressure is shown both without (a) and with (b) the pump pulse. 

In order to systematically study the observed THG enhancement on these pa­

rameters, we have investigated changes in THG conversion energy for a range of 

parameters. For each focal length and set of pump and probe energies, the relative 

THG energy is recorded with and without the pump pulse present over a range of gas 

pressure. Relative THG energy data as a function of pressure for a set of gases for 

probe and pump pulse energies of 140 and 790 //J, respectively, for a focal length of 

30 cm are shown in Fig. 6.8(a) with the pump pulse blocked and in Fig. 6.8(b) with 

the pump pulse present. Note that the scale on Fig. 6.8(b) is an order of magnitude 

larger than for Fig. 6.8(a). With the non-collinear geometry, we carefully verified that 

no THG generated by the pump pulse leaked into our photodiode signal. The THG 

147 



energy generated with Ne is an order of magnitude weaker and has consequently been 

omitted from this figure. Clearly, the THG conversion efficiency is much stronger 

when the pump pulse induced plasma is present. Without the pump pulse present, 

the THG energy exhibits modulations with increasing pressure due to the a decrease 

in coherence length as the pressure rises. With the presence of the pump pulse in­

duced ionization, the ripples are substantially reduced, due in part to a change in the 

dispersion from the plasma. 

The enhancement ratio obtained from the pressure scans from those gases for 

the experimental conditions of Fig. 6.8 is shown in Fig. 6.9(a). Here, we see peak 

enhancements in the conversion efficiency ranging from 8 to 45. Experimental data 

were collected for a 50-cm focal length in addition to the 30-cm data. With an 

increased interaction length, the peak intensity is reduced so that the absolute THG 

conversion efficiency by the probe pulse as well as ionization by the pump pulse are 

reduced. In this case, we observed enhancements in THG conversion efficiency by 

more than two orders of magnitude. The enhancement data collected for this focal 

length with Ar gas is shown in Fig. 6.9(b). Note that near 150 Torr, when the noise 

spike is discounted, an enhancement in THG conversion efficiency of 300 is observed. 

The observed enhancements for the range of gases are presented in Table II. In the 

first column of this table, we list the gas species studied in these experiments, while 

in the second column we list the ionization potentials of these gas species obtained 

from Ref. [119]. The remaining columns report the maximum enhancement of THG 

conversion efficiency for each gas species. Since the only dominant change in an 

atomic gas induced by the pump pulse that persists at a 2-ps delay is the presence 

of the pump-induced plasma, one might expect the enhancement to increase with 

decreasing ionization potential. Surprisingly, inspection of Table II indicates that 

for these experimental conditions, the enhancement is strongest for the gas species 

hardest to ionize. For the 30-cm focal length, this is Ne with an enhancement of 45 
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Figure 6.9: (a) THG conversion enhancement for Ne (blue), Ar (red), SF6 (black), 
CO2 (blue, dot-dash), and N2O (red, dashed) with 30 cm focal mirror and probe 
and pump pulse energy of 140 and 790 //J, respectively, (b) Maximum enhancement 
observed for Argon with a focal length of 50 cm and the pulse energies given for (a). 

and for the 50-cm focal length Ar yields the strongest enhancement since the effect 

was not observed in under these conditions in Ne due to low signal intensities. 

The enhancements and conversion efficiencies were studied as a function of probe 

pulse intensity for a fixed pump pulse energy of 820 yuJ and a focal length of 30-cm. 

The pressure scans for pulse energies of 160 and 120 /uJ giving a probe intensity ratio 

of 4:3 were recorded in a number of gases. All of the gases exhibited an increase in 

total THG energy for the higher probe pulse energy. The maximum THG signal with 

the plasma present increases by 20%, 42%, and 29% when the probe pulse energy is 

increased from 120 to 160 //J for Ar, SF6, and CO2, respectively. 

6.2.3 Summary 

In summary, we have shown that the third harmonic generated by a relatively weak 

probe pulse can be enhanced by more than two orders of magnitude when the probe 

pulse propagates through a plasma generated by a moderately intense pump pulse at 

its focus. This effect has been observed for atomic as well as molecular gases. The 
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Table II: Gases used in the experiment with their respective ionization potential in 

eV. The enhancement quoted is the peak enhancement found in the pressure scans 

with a 30 cm and 50 cm focal length mirror and 140 mW probe power. 

Gas 

Neon 

Argon 

SF6 

C0 2 

N 2 0 

Ip in eV 

21.56 

15.76 

15.32 

13.77 

12.89 

30 cm 

45 

25 

14 

9 

8 

50 cm 

N/A 

300 

175 

45 

10 

spatial mode of the third harmonic is vastly improved for all cases in the presence 

of the pump. The results of this experiment indicate complex dynamics due to a 

laser-induced plasma with effects on dispersion, nonlinear frequency conversion, and 

propagation for THG conversion. Enhancements in conversion efficiency to the third 

harmonic as high as 300 for a weak probe pulse have been observed. This experimental 

arrangement should prove useful for strong-field experiments that require energetic 

and broad bandwidth UV pulses. We are currently investigating this effect using 

an analytic as well as numeric model. While the analytic model seems to result in 

an overly simplified approach, the numeric model, while still preliminary, appears to 

predict enhancements for THG that are in quantitative agreement with what has been 

observed experimentally. Further experimental studies in conjunction with theoretical 

developments will enable a better understanding of the underlying physics. 
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Chapter 7 

Conclusions 

In conclusion, we have shown in detail, theoretically as well as experimentally, the 

propagation effects on a relatively weak, ultrashort laser pulse due to coherent nu­

clear motion. Both rotational and vibrational motion have been discussed, although 

a heavier focus lies on coherent rotational motion. The effect of CNM, excited via 

impulsive stimulated Raman scattering, is expressed in terms of an effective suscep­

tibility, where we separate effects due to an effective linear susceptibility from that of 

an effective third-order susceptibility. We derive the NLSE with some modifications 

to describe pulse propagation in conjunction with the effective susceptibilities mod­

eling the CNM where we extend the traditional NLSE to include current densities 

induced by the weak probe pulse due to the presence of a laser-induced plasma. The 

delayed Raman response of the medium can be modeled in a variety of manners. We 

have outlined the traditional approach utilizing the Born-Oppenheimer approxima­

tion. In addition to that, for the rotational response of an ensemble of molecules we 

have described an analytic model which is not limited to a perturbative interaction 

between a strong ultrashort pulse and a molecule and compared its accuracy to a 

full numerical solution of the Schrodinger equation to confirm its validity for high 

pulse intensities. This model may be extended to describe the excitation of a wave 
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packet by two or more pump pulses, each arbitrarily polarized. This may allow for 

further insights into the formation of rotational wave packets, as well as for further 

optimization of the excitation process. This might help with the realization of new 

applications to rotational wave packets. The resulting time dependence of the ef­

fective third-order susceptibility has been shown to potentially yield a new method 

of quasi-phase matching, and thus, enhance the conversion efficiency for non-linear 

optical frequency conversion in the gas phase. 

The temporal phase modulation due to coherent rotational motion has been mea­

sured using standard scanning interferometry, where we show that transiently aligned 

molecules in a gas phase can act like a wave plate, with the additional feature of sepa­

rating a single, linearly polarized probe pulse into two distinct pulses under conditions 

of strong phase modulation and significant spectral modification. The adaptation of 

chirped spectral interferometry to provide a way of measuring the phase modulation 

during a wave packet revival in a single shot for an arbitrarily polarized pump pulse 

extends standard polarization gating measurements since the direct measurement of 

the phase modulation does not require the medium to be birefringent in the polariza­

tion plane of the pump pulse. The last propagation effect due to the effective linear 

susceptibility investigated is the modification of the pulse's group velocity due to the 

molecular alignment. This effect is predicted by theory and confirmed experimentally, 

however, the functional dependence of the group velocity modification in the experi­

ment is different from what is expected based on the theory. This discrepancy has not 

been resolved thus far. Finally, we investigate the effective non-linear susceptibility 

and its ramifications for pulse propagation and frequency conversion. Most notably, 

the conversion efficiency to the third harmonic becomes a function of pump-probe 

delay during CNM. This dependence, utilized in the novel approach to quasi-phase 

matching, has been observed experimentally in CO2 and N 2 0 for coherent rotational 

motion, as well as SF6 for vibrations. The modulation in the conversion efficiency 
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is significant and allows for very sensitive detection of CNM. Furthermore, the mod­

ulation of the conversion efficiency to the third harmonic may also be viewed as a 

higher-order Raman process, i.e., second-hyper Raman scattering. It has been theo­

rized that there are modes which are not accessible through Raman scattering, but 

require a higher-order Raman process. Further investigation of second-hyper Raman 

scattering may therefore yield new insights into intramolecular dynamics, especially 

if a direct excitation and subsequent detection of a second-hyper Raman mode can 

be achieved. 

Separately from CNM, we investigated a more than 300 fold enhancement of THG 

in the presence of a laser-induced plasma at the focus of a relatively weak probe pulse. 

The enhancement has been observed in a variety of gases, both molecular as well as 

atomic, and is thus clearly separate from CNM. In all cases, the spatial mode of the 

third harmonic is vastly improved compared to the mode resulting in the absence of a 

plasma. The exact nature of the physics involved in the enhancement is at this point 

not entirely clear. However, filament-like propagation, as well as the dispersive effect 

of the plasma likely play a role. We are currently working on extensive simulations 

aimed at shedding light on this process. In conjunction with that, we are hoping 

to achieve this level of enhancement with highly energetic pulses, thus obtaining an 

efficient UV source with broad bandwidth. 
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