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ABSTRACT 

 

GROUND STONE LITHIC TECHNOLOGY OF THE INDIAN PEAKS, COLORADO, USA 

 

Ground stone tools are a long-noted aspect of pre-contact archaeological assemblages 

from the high elevations (2975-3666 meters asl) of the Colorado Front Range (CFR). The tools are 

present in small frequencies at around 40% of the sites thus far recorded, and are typically 

present as heavily fragmented grinding slab fragments procured many kilometers east and 

meters of relief lower than the study area and a combination of local and non-local handstones 

in a wide array of morphological configurations. Compared to their chipped stone counterparts, 

ground stone tools typically comprise a small percentage of archaeological assemblages, and 

have thus been reported in a largely cursory fashion. Though the ground stone assemblage from 

a single site is too small and perhaps too homogenous to inform large-scale questions, they take 

on increased interpretive potential when synthesized in aggregate and on a regional scale. 

Drawing from a distributional approach to archaeology and a technological approach to artifact 

analysis, the present study addresses the behavioral implications of ground stone tool presence 

in the high altitudes of the CFR by employing a three-tiered morphological, temporal, and spatial 

analysis.  

A technological analysis of ground stone tools (chapter 4) is centered upon answering two 

primary research questions catered towards understanding the function and technological 

organization of the high altitude ground stone toolkit. Firstly, the idea that handstones were 

technologically flexible in function is tested through comparison of the size of and diversity of 
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modifications present on local and non-local handstones. It is determined that non-local 

handstones are significantly smaller in mass than local handstones, and were thereby chosen for 

inclusion into mobile toolkits on this basis. However, contrary to expectations of a flexible tool, 

non-local handstones contain less diversity of modifications than local handstones, suggesting 

that they were transported for some specialized purpose that local handstones could not fulfill.  

For netherstones, the idea that some were used as cooking stones is tested, given the assumption 

that thinner stones would function better for this task and would subsequently exhibit thermal 

alteration on a more frequent basis. This hypothesis is not proven, suggesting that thermal 

alteration of grinding slabs is not related to use as cooking stones, or that thickness is not related 

to grinding slabs’ function as cooking stones.  

A temporal analysis (chapter 5) is conducted to test a prior model of high altitude land 

use that anticipates a greater diversity of ground stone tool forms will be present in assemblages 

of early Archaic age, during which residential use of the study area is proposed to have increased 

in response to climate change. It is determined that, though this period contains the greatest 

diversity of ground stone tool forms both in terms of handstone morphology and grinding slab 

thickness, that diversity is almost entirely a function of sample size. The implications of these 

results are discussed and several needs for future diachronic studies in the region are called for.  

Finally, a distributional analysis (chapter 6) of ground stone tool presence is undertaken 

in order to test current models of land use for the Colorado Front Range; the ‘rotary’ model 

expects a largely random distribution of ground stone tools and the ‘up-down’ model expects a 

largely patterned distribution. It is determined that there are significant differences in the 
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presence of ground stone tools between major ecological zones, and that each zone is 

provisioned with different ground stone tools types in roughly the same manner. Further, this 

significant difference is directional, and patterned in terms of the diversity of edible plants 

located within each ecological zone. These results are interpreted to be most supportive of an 

‘up-down’ model of prehistoric land use.  
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CHAPTER 1 

INTRODUCTION 

 

Perhaps nowhere else do the Rocky Mountains stand in such stark relief from the 

grassland sea of the Great Plains than the Indian Peaks of the Colorado Front Range (CFR). Over 

a distance of only 20-30 km, the landscape rises from the rolling short-grass steppe at elevations 

of around 1,500 m above sea level (asl) to peaks exceeding 4,000 m asl, along the way 

transitioning through several biotic communities, and creating one of the most ecologically 

diverse regions in North America (Benedict 1992; Marr 1961). The ease of escape to some of the 

highest elevations on the continent is a draw to the region today, much as it has been for 

millennia.  

The Indian Peaks Wilderness, as a political region, consists of 76,586 acres of montane 

and subalpine forest and alpine tundra set aside for the preservation of its natural beauty and 

ecological integrity. The current study employs the term “Indian Peaks” only in a regional sense, 

and includes around 174,000 acres (31,803 hectares) encompassing the peaks and their 

surrounding environs. A map depicting these extents is provided in Figure 1.1.  

The Indian Peaks region has an annual temperature of just below 0 degrees Celsius, and 

temperature is below freezing for eight months out of the year (Benedict 1992, 1999), suggesting 

that winter occupation has never been an option, except for the most determined of modern 

industrialists (Bollinger and Bauer 1962). The majority of precipitation falls as snow during the 

winter and spring, and averages around 960 mm annually. Late snows or especially heavy snow 

years contribute to late-lying snow banks that inhibit plant productivity (Benedict 2007a, 2007b) 
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and subsequent use of the high country by grazing ungulates (Benedict 1999). The Indian Peaks, 

like most mountainous regions, are a finicky, unpredictable place, subject to dramatic weather 

shifts even in the warmest months, and human use of them prehistorically was likely contingent 

upon year to year fluctuations to any or all of these variables.  

Geology 

The Indian Peaks are centered roughly upon the 40th parallel north latitude and are 

bisected by the Continental Divide, the headwaters of the Colorado River originating to its west 

and the South Platte River to its east. The Quaternary geology of the region has fundamentally 

contributed to its human use, and is largely defined by mountain glaciation, which has created 

paternoster lake systems around which humans have settled, U-shaped valleys that have carved 

an uplifted Tertiary surface into large summer grazing pastures employed as game hunting traps 

(Benedict 1992; Boos and Boos 1957), moraines and rock glaciers of a diversity of types and ages 

that have provided cobbles for tool stone and dry surfaces on which to camp, and the remnant 

ridges, arêtes, and cols leading to passes that traverse the Divide which have enabled prehistoric 

and modern mobility through the region.   

For the purposes of archaeological inquiry, the lithology of the CFR can be characterized 

by two major regions, the interior montane to alpine zone and the eastern foothills. Because of 

their distinct lithological characteristics, each region presents distinct tool stone procurement 

opportunities, which have in turn conditioned the nature of archaeological remains from the 

study area.  
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The mountain interior is comprised of a diversity of granitic and metamorphic formations 

of Precambrian age (Boos and Boos 1957). Granitic formations are intrusive into the 

metamorphic formations as dykes and are therefore younger in age. No sources of chipped tool 

stone have been identified from the mountain interior of the eastern CFR, though a quartzite 

formation within the Idaho Springs series is widespread throughout the region (Boos and Boos 

1957:2609). Though some ground stone artifacts are manufactured from these locally-

outcropping sources of tool stone, such Idaho Springs series gneiss (e.g., Benedict 1978a), they 

comprise a minority of identified tools from the region. Therefore, though the mountain interior 

of the eastern CFR is potentially a source of tool stone, it is poor in quality and thereby rarely 

utilized for ground stone tools and as yet unidentified as utilized for the manufacture of chipped 

stone tools.  

The eastern foothills are comprised of four predominant sedimentary units that dip 

towards the east and reach a maximum thickness of nearly three miles (Boos and Boos 1957; 

Tieje 1923). In contrast to the metamorphic and granitic lithology of the mountain interior, the 

sedimentary foothills of the CFR provided a wealth of raw material to prehistoric foragers in the 

form of tabular sandstone employed for use as ground stone tools (Benedict 1978a, 1990, 1992, 

1996, 2012; Shropshire 2003, Thompson 1949) and localized outcrops of cryptocrystalline raw 

materials used for the manufacture of chipped stone tools (Butter 1913; Coffin 1929; MacKenzie 

1963; Maughan and Wilson 1963; Pelton et al. 2013). Outcrops of this nature occur from well 

north of the Colorado border in Wyoming and continue south with little interruption into New 

Mexico (Tieje 1923). Because of the discrete nature of these formations, which occur in relatively 
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thin, north to south trending bands throughout their distribution, the CFR is an excellent region 

in which to study raw material transport.  

The most commonly-cited sandstone used as tool stone in the CFR is procured from the 

Late Permian-aged Lyons Formation (Benedict 1978a, 1990, 1992, 1996, 2012; Thompson 1949). 

The Lyons formation is a littoral deposit comprised of a quartzose sandstone formed by a 

combination of shore and eolian processes, indicative of deposition on the shores of an ancient 

ocean (Thompson 1949). It lies conformably on the earlier Fountain formation in the south 

portion of its distribution, but is separated from the Fountain formation towards the north by 

the Ingleside formation (Moos and Moos 1957; Thompson 1949). The Lyons formation is located 

near the base of the second oldest lithological unit comprising the eastern foothills of the CFR, a 

portion of which has been referred to as the “red beds” of Colorado due to the notably red hue 

of rock from this portion of the unit (Boos and Boos 1957; Maher 1954; Thompson 1949; Tieje 

1923). However, rock from the Lyons formation changes hue away from its type locality near 

Lyons, CO to a “creamy” color east of the Denver basin or with light pink hues in the vicinity of 

the “Garden of the Gods” near Colorado Springs (Boos and Boos 1957; Thompson 1949). The 

characteristics most influential of the formation’s use as tool stone are its consistent texture due 

to a well-sorted matrix (Boos and Boos 1957), it’s tabular shape due to fissility along parallel 

bedding planes (Van Hise 1896), and its resilience due to the presence of diagenetic quartz 

overgrowths (Shropshire 2003; Thompson 1949). Detailed sourcing of the sandstone tools from 

the study area is beyond the scope of this project, and it is therefore not a given that every ground 

stone implement is produced from the Lyons formation. However, based upon repeated mention 
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of the formation in previous studies of the region and a general resemblance to descriptions of 

the formation, it is likely that most of the tools are of Lyons origin.  

Ecology 

The study area may be broadly stated as located within the subalpine forest and alpine of 

tundra of the Colorado Front Range, which also incorporates the transitional ecotone between 

the two ecological zones. Homogenization of the Front Range ecology in this manner is done with 

the recognition that a great deal of modern diversity exists within each zone, each comprised of 

stands of distinct coniferous and deciduous trees and patches of herbaceous grasslands (Marr 

1961). However, the modern distribution of this diversity cannot be assumed to have remained 

constant since prehistoric times, and reconstruction of past vegetation distribution must be 

conducted on a highly localized scale (e.g., Benedict et al. 2008). For this reason, broad ecological 

units, as opposed to elevational clines (e.g., Lomolino 2001; Peet 1981) or discretely defined 

ecological patches must be relied upon when providing an ecological context for the study area.  

The subalpine forest is primarily comprised of stands of spruce-fir, lodgepole, limber pine, 

aspen, and willow-birch trees with interspersed wet and dry meadows (Marr 1961). For the 

purpose of this study, the subalpine forest is defined as existing between elevations of 2,850 and 

3,350 m asl (Benedict 2007a). Forest fires are primary determinants of stand composition today, 

and are assumed to have been as well in prehistory, leaving scars or stands of successional 

species such as aspen and lodgepole pine in their wake (Marr 1961; Shankman 1984; Shankman 

and Daly 1988).  
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The alpine tundra is comprised of “stands” of different meadow types, each of which 

distinct in the types of grasses, sedges, herbs, and shrubs they support (Marr 1961). A detailed 

treatment of each stand type will not be presented. For the purposes of this study, it is sufficient 

to note that each stand type is largely contingent upon the influence of wind, topography, and 

the ways in which they interact to differentially direct the locations of late-lying snow drifts. Some 

stands, such as the Kobresia stand type, thrive under conditions in which wind keeps an area 

snow-free for the majority of the year, while others, such as the Snowbank complex, emerge 

from areas covered by snow banks for longer periods. The alpine tundra is defined as all land 

above 3,500 m asl (Benedict 2007a).  

Between the predominant ecological zones lies the subalpine forest-alpine tundra 

ecotone, at elevations between 3,350 and 3,500 m asl (Benedict 2007a). Ecotones in general 

possess a combination of their abutting stand types’ biological diversity, and for this reason have 

been identified as a focal point of vegetation diversity (Lomolino 2001) and ultimately human 

subsistence (Benedict 1992; Davy 1980; Travis 1988), though objections to this generalization 

have been raised (Rhoades 1974, 1978) . The ecotone is also the location of the subalpine tree 

limit, above which trees can no longer be established. Variation in this limit has implications for 

human use of this transitional zone and subsequently, the results of one portion of this analysis 

(chapter 6). For this reason, the potential controls impacting the elevation of tree limit are further 

discussed.   

The elevation of tree limit is contingent upon highly localized topographic variables 

(Danby and Hik 2007; Shankman and Daly 1988; Stueve et al. 2009) and has shifted in elevation 

through time (Benedict 2011; Benedict et al. 2008; Marr 1977; Rochefort et al. 1994). For 
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instance, the influence of slope and aspect on seedling establishment has been recognized for 

multiple regions (Danby and Hik 2007; Stueve et al. 2009), and causes differential tree limit 

elevations on a highly local scale. Therefore characterization of tree limit for large regions based 

solely upon a single elevation contour obscures variation in its actual extent. In certain studies, 

this difference has amounted to 65-85 meters of elevation (Danby and Hik 2007).  

Perhaps more problematic is the fluctuation of tree limit elevation through time. Studies 

of tree limit fluctuation during the last century have suggested a positive correlation between 

increasing temperature and tree limit elevation (Benedict 2011; Benedict et al. 2008; Danby and 

Hik 2007; Rochefort et al. 1994), though each has recognized that local topographic factors also 

influence such changes. For a local example, Benedict (2011) reports a spruce forest tree limit 

recession of perhaps 150 meters since the mid-Holocene, around 4500 years BP. Increased tree 

limit elevation during the mid-Holocene (between 9,000 and 4,000 BP) characterizes most areas 

of the western US (Rochefort et al. 1994). Additionally, warming temperatures during the last 

century due to global climate change have drastically increased the rate of sapling establishment 

at tree limit, thereby contributing to rising tree limits (Danby and Hik 2007). However, as 

previously mentioned, certain topographic factors such as aspect and slope, control tree limit in 

ways that keep its elevations relatively constant (Stueve et al. 2009). It is tempting to suggest 

that, on a regional scale, these discrepancies would counter each other to yield a constant 

average tree limit elevation, but this has not yet been proven. New methods for tree limit 

reconstruction have proven effective on a local scale (Benedict 2005, 2011), but have not yet 

been widely applied towards a reconstruction of regional tree limit fluctuations. Consequently, 
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the modern tree limit elevation of 3,500 m asl is employed as a unit of analysis with the caveat 

that future research may refine this elevation for different periods of prehistory. 

 

Figure 1.1: Map of the Indian Peaks region depicting the extents of political boundaries and the 

study area of interest. 
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History of research 

The Colorado Front Range has produced one of the richest records of alpine archaeology 

in the world, the result of over 40 years of research by the late Jim Benedict and those with whom 

he worked throughout his career (LaBelle and Cassells 2012). Though diverse in topic and scope, 

Benedict’s research was broadly focused on the various ways in which human use of the Front 

Range alpine tundra was influenced by climatic regimes, from decadal (Benedict 1999) to 

centuries-long time scales (Benedict 1978b, 1979a). Towards this end, Benedict surveyed and 

excavated prehistoric archaeological sites from Rocky Mountain National Park to the north to 

Rollins Pass in the south. Along the way, Benedict devised a variety of creative chronometric and 

paleoenvironmental techniques, including the use of lichenometry (Benedict 2009) and granitic 

weathering (Benedict 1996) to date archaeological features and of sclerotia for use in 

reconstructing prehistoric tree limit (Benedict 2011), each of which proving invaluable methods 

in understanding the timing of large-scale climatic shifts and corresponding changes to the 

prehistoric archaeological record.  

Benedict established use of the alpine tundra since Late Paleoindian times (Benedict 

1985, 2000, 2005), a use that continued sporadically until Native removal in the mid to late 1870’s 

(Black 1969; LaBelle and Pelton 2013). Though much of the evidence for use is ephemeral, and 

most indicative of short-term logistical use (e.g., Benedict 1996, 2002), some sites suggest that 

this was not always the case, and that, at times in the past, the alpine zone of the CFR was a 

residential hub in which an endemic population subsisted for large portions of the year, driven 

to the hills by climatic shifts towards xerification (Benedict 1978b, 1979). At other times it 
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appears use was far different, and constrained significantly by late-lying snow banks that 

obstructed the mountains and hindered the productivity of the often lush alpine meadows 

(Benedict 1999).  

Perhaps the most impressive, or at least obtrusive, example of Front Range archaeology 

are the many game drives employed for use in communal hunting above tree limit (e.g., Benedict 

1975a, 1996; Cassells 1995; LaBelle and Pelton 2013). The features are big, some of which 

reaching over 2 km in size, and have captivated interlopers to the alpine tundra since the earliest 

days of Euro-American settlement (Ives 1942; Rollins 1873). Consequently, Front Range game 

drives comprise a large portion of archaeological research from the region, their allure 

captivating weekend artifact collectors and archaeologists alike. As a result of this inquiry, the 

communal hunting of large game in the alpine tundra is known to have occurred since Late 

Paleoindian times (Benedict 2000), to have continued through the Early Archaic (Benedict 

1978a), and perhaps peaks in intensity during the Early Ceramic (Benedict 1999; Cassells 1995; 

LaBelle and Pelton 2013). The features continued to be employed through historic times (LaBelle 

and Pelton 2013), but perhaps not with the intensity or regularity of earlier times (Benedict 

1992). Game drives paint a vivid picture of prehistoric subsistence above tree limit, of large bands 

collaborating in a nuanced hunt, hand signaling and obscuring themselves from oncoming prey, 

preparing for the imminent ambush. Perhaps this is the reason that so much of the scholarship 

from the Indian Peaks focuses on the features, arguably to the extent that many other promising 

lines of inquiry have been left for current or future researchers to address.  
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Statement of problem 

The presence of ground stone tools in some of the highest elevation archaeological sites 

in the country is one such line of inquiry. The tools are quite unremarkable in morphology and 

quantity; tools are typically not shaped and comprise a relatively small proportion of 

assemblages. However, they are energetically costly to transport compared to their chipped 

stone counterparts, and to places that are sparse of floral resources. It is this seeming 

discrepancy, between their cost of transport and the low productivity of the landscape to which 

they have been transported, that first drew the author to this topic and is the impetus for the 

present study. 

To date, ground stone presence in archaeological sites from the study area has been 

recognized (e.g. Benedict 1975b, 1978a, 1996; LaBelle and Pelton 2013), but has generally only 

been described in passing, and the full significance of the tools’ presence left to conjecture. 

Benedict (2007a, 2007b) provides a valuable, quantitatively-informed framework within which 

the productivity of plant resources within the study area may be conceptualized, but makes no 

attempt to link the study to the ground stone record. Traditionally, typology has focused upon 

the richer yield of chipped stone artifacts recovered from these sites, resulting in a robust 

understanding of that aspect of the forager’s high altitude toolkit, but perhaps to the detriment 

of their ground stone counterparts. For instance, grinding slab fragments from the Hungry 

Whistler and 5BL70 sites are reported as bulk weights, size and thickness ranges, and as 

frequency data, yielding a total of 1-2 pages of these reports, combined (Benedict 1978a; Olson 

1978). Granted, grinding slabs are simple tools and thick description of them approaches overkill, 
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but as demonstrated in the following study, such means of reporting the artifacts obscures a 

large amount of diversity that could potentially be relevant to reconstructing the types of 

activities performed at a site or perhaps even the energetic considerations made by prehistoric 

foragers with regards to the quarrying of the tools. Likewise, handstones from these sites are 

only minimally described and quantified in terms of the simplest of metric attributes.  

An attempt to mitigate this pattern by LaBelle and Pelton (2013) through the use of 

pollen, phytolith, and protein residue analyses yielded satisfactory results from ground stone 

tools from the Olson game drive (5BL147), but in the end created many more questions than it 

answered. The single bean and corn phytoliths from this study are the type of anecdotal tidbits 

that send an archaeologist’s mind wandering. Were they present on the tools when transported 

from the foothills? Or were the plants themselves transported and processed on the tools, which 

were already on-site? Are the tools and the phytoliths even part of the same temporal tradition, 

or were Archaic artifacts employed in the processing of later cultigens? Ultimately, the 

commissioning of these analyses was a valuable lesson in what can and cannot be gleaned from 

residue analyses. Anecdotes, though inspiring of new ideas, are not evidence of cultural process, 

and must be handled accordingly. Systematic analyses of multiple ground stone implements from 

different areas of the project area must be conducted before statements regarding large-scale 

subsistence patterning can be made. 

What are NOT ambiguous are the morphological attributes and simple presence or 

absence of ground stone tools in archaeological sites, and these are the data employed in this 

thesis project. Such approaches to the study of lithic technology are not novel, and have been 
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conducted for the chipped stone record for some time. Most archaeological site reports contain 

a table of morphologically-derived chipped stone tool types, just as regional syntheses distinguish 

temporal periods and site types on the basis of the presence or absence of certain tool or 

projectile point types. However, I would suggest that such approaches are still novel for the 

hunter/gatherer ground stone record. Though reporting of ground stone tools has become 

increasingly nuanced since their early reporting as simply frequency counts of ”manos” and 

“metates”, many of the approaches employed by chipped stone lithic analysts to understand 

large-scale patterning related to temporal or landscape-level archaeological phenomena have 

yet to be comparably applied to the ground stone record. Such approaches are demanding not 

only of new ways of conceptualizing the procurement, use and discard of ground stone tools, but 

of new methodological means enabling of large-scale interpretations of them. The analyses 

presented here were conducted in order to fulfill these needs.  

Organization of thesis 

The present document is organized as a three-part suite of analyses, each of which 

contributing to larger methodological and theoretical issues surrounding the study of ground 

stone implements. Following a literature review of previous methodological and theoretical 

contributions to ground stone studies (Chapter 2) and a description of methodologies employed 

during the present study (Chapter 3), the analysis portion of this document is divided into three 

chapters.  

The first portion of the analysis (Chapter 4) is a depiction of ground stone morphology 

from the project area centered upon two central questions framed to test the technological 
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diversity of tools from the study area, one regarding netherstone grinding slabs and the other 

regarding handstones. Prior to addressing each question, major features of each artifact type are 

briefly summarized. Firstly, the notion that certain netherstone implements (or “grinding slabs”) 

were used as griddles or “comales” is tested according to the hypothesis that burned grinding 

slab fragment should be, on average, thinner than non-burned fragments. This hypothesis 

assumes that thinner grinding slabs would be more suitable for use as heating or cooking stones 

than they would be the intensive task of processing floral resources, and would therefore more 

be more likely to have been exposed to fire. Secondly, the idea that handstones were employed 

in a flexible manner is tested by comparison of morphological diversity between local and non-

local tools. This hypothesis assumes that, as a handstone is transported further from its place of 

procurement, it should accumulate a greater diversity of modifications as a result of being called 

into use for more and more tasks.  

The second portion of the analysis (Chapter 5) addresses time. A deficiency of the 

archaeological record of the study area is the complete absence of clearly stratified sites through 

which to make diachronically-relevant statements regarding prehistoric cultural process. Field 

methods have been devised to partially account for this deficiency, namely lichenometric and 

granitic weathering dating, which both possess the potential to discern diachronic behavioral 

episodes (Benedict 1996, 2009; Cassells 2012). However, these methods are only relevant to the 

diachronic study of rock features, leaving the myriad multi-component campsites to remain as 

jumbles of multiple occupations mixed annually through the significant impacts of freeze-thaw 

periglacial processes (Benedict 1978a; Olson 1978). Therefore, out of necessity, much of our 
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current understanding of diachronic patterns of prehistory in the high country has been derived 

from comparisons between the results from excavating single component archaeological sites. 

Insights gleaned from such efforts led to the hypothesis that the early Archaic period 

should contain a greater diversity of ground stone tool types due to residential occupation of the 

study area having occurred during this time (e.g., Benedict 1978a, 2012; Olson 1978). Each site 

containing ground stone is assigned one of six temporal categories, Mount Albion, generic 

Archaic, Late Archaic, Early Ceramic, multi-component, and non-diagnostic sites. These temporal 

interval are summarized for their major technological attributes. Next, the degree to which 

sample size has impacted assemblage diversity is evaluated and its implications for discerning 

diachronic shifts are discussed.  

 The final portion of the analysis (Chapter 6) addresses space towards the goal of 

discerning which, if any, ecological variables are conditioning the presence of ground stone tools 

in the region. Mountain ranges such as the Colorado Front Range are especially fruitful regions 

in which to conduct such studies due to the compression of several ecological zones within a 

short areal space, the result of dramatic altitudinal relief (Marr 1961). This portion of the analysis 

is catered specifically towards testing the efficacy of existing land use models by deriving general 

expectations of ground stone tool distribution from their parameters. Benedict’s (1992) rotary 

model implies that ground stone tools were of little utility to those crossing the Continental 

Divide from the west late in the year. Therefore, ground stone distribution should largely be 

random, and a function of having been discarded when no longer needed at the end of an 

extended, year-long transhumance. Others models (Benedict 1999) imply a more endemic use of 
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the eastern slopes of the Front Range, during which plant resources, and therefore ground stone 

tools, would be an integral part of the cultural system. Therefore, ground stone tools should be 

distributed in relation to certain ecological variables, the result of provisioning the landscape with 

the necessary tools for processing plants with the expectation of return during subsequent 

seasons. In order to test these expectations, the presence of ground stone tools is statistically 

analyzed in relation to major ecological zones.   

Conclusion 

 The Indian Peaks are an unpredictable region in terms of climate and plant productivity. 

Little lithic raw material exists in the mountainous interior of the Front Range, and that that does 

is poor in quality. Despite the unpredictability of plant resources and to compensate for the lack 

of raw material, ground stone tools were transported from the foothills of the Front Range to 

some of the highest elevations in the country. Over forty years of research has established a 

regional-scale dataset to which modern researchers may refer in explaining this phenomenon.  

 The following thesis addresses ground stone lithic technology through a combination of 

technological, temporal, and distributional analyses. Each chapter is organized around 

hypothetico-deductive research questions that are informative, but by no means exhaustive 

treatments of each topic. Ultimately, the following analyses provide a framework within which 

the study of ground stone tools may find a stronger methodological and theoretical foothold in 

hunter/gatherer studies.  

  

 



17 
 

CHAPTER 2 

METHOD AND THEORY IN THE STUDY OF GROUND STONE TOOLS 

 

Compared to their chipped stone counterpart, there exists a relative paucity of literature 

concerning the methodological and theoretical issues attending the study of ground stone tools. 

The reasons for this apparent discrepancy will not be addressed in detail, but may be obvious to 

any who have practiced North American hunter/gatherer archaeology; ground stone is often 

technologically rudimentary and uniform in morphology, especially among forager groups, it 

exhibits few or no temporally diagnostic attributes (but see Hard et al. 1996; Jones 1996), it is 

absent from much of the early North American prehistoric record (LaBelle 2005), it is 

cumbersome to collect and curate for study, and, it must be admitted, is far less aesthetically 

pleasing than chipped stone. This is why one rarely sees fragments of flat grinding slabs framed 

and placed above a living room mantle. There are, of course, exceptions to the neglect of method 

and theory in ground stone studies, which are the foci of this chapter.  

Broadly, the study of ground stone tools may be categorized as addressing one of five 

methodological and theoretical concerns. Firstly, the method of classifying ground stone objects 

has undergone significant changes throughout the course of the last century, and continues to 

do so today (summarized in Adams 2002). The first section of this chapter summarizes these 

changes and frames the methodologies of this thesis within existing methodological frameworks. 

A second form of ground stone analysis addresses shifts in subsistence or intensification of 

resource use (Frison and Grey 1980; Hard et al. 1996; Jones 1996; Kraybill 1977; LaBelle 2005; 

Mauldin 1993; Rosenburg 2008; Wright 1994). Such studies view ground stone presence or 
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morphology as proxy for fundamental shifts in societal organization. A third form of analysis 

addresses the quarrying and manufacture of ground stone implements and suggests 

relationships between these activities and exchange or economics (Bostwick and Burton 1993; 

Crawford and Roder 1955; Fratt and Biancaniello 1993; Hayden 1987; Huckell 1986; Kvamme 

1977; Schneider 1995, 1996). These studies are synthesized to suggest some large-scale patterns 

dictating the way in which ground stone implements are procured or quarried among 

hunter/gatherer and complex societies. A fourth type of study attempts to make the link between 

ground stone form and function through the use of microscopic use wear and/or experimental 

means (Adams 1988, 1989; Dubrueil 2004; Dubrueil and Grosman 2009; Owens 2006). This is an 

ongoing avenue through which to study ground stone tools, and the major findings of these 

studies will be summarized and presented. Lastly, several studies have employed ground stone 

tool presence and/or morphology as a proxy for prehistoric land use patterns (Nelson and 

Lippmeier 1993; Peterson 1999). At present, this is an underexplored aspect of ground stone 

studies, but one that is central to the present thesis (chapter 6). Such studies are essentially 

distributional in nature (Ebert 1992), and are also described as “non-site” (Butler 2009; Dunnell 

and Dancey 1983), or “regional” approaches (Kantner 2008). The body of literature concerning 

such approaches is synthesized and its relevance to the present thesis is described. 

Classification 

Typological classification is by far the most abundant type of ground stone tool study in 

archaeological literature, and is almost always its own chapter or sub-chapter within the standard 

cultural resource report of any site yielding the tools. Though studies of this type are comparable 
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on the basis of their reliance on descriptive typology, there exists a diverse array of how that 

description is undertaken. Early ground stone typologies noted only a distinction between 

stationary and handheld tools, while later classification schemes became increasingly nuanced in 

discerning variation within each of the broad tool types (Woodbury 1954), sometimes “splitting” 

to the extent of obscuring large-scale patterning (e.g., Irwin-Williams and Irwin 1961). What has 

remained constant is the assigning of frequency data to discrete artifacts, reflective of 

morphological attributes on an aggregate, artifact-level scale of inquiry.  

In recognition of the multiple functions fulfilled by any one implement, modern ground 

stone analyses have usurped typological classification for technologically-based means of coding 

for the multitude of morphological attributes often present on ground stone tools (Adams 2002). 

Whereas typological classification schemes are subject to regional specialization or are catered 

towards description of the specialist tool kits of complex societies, technological classification 

allows for the application of a wide range of analytical and behavioral frameworks through which 

data may be variously applied in a universal manner. The present analysis is conducted in 

accordance with the principles laid forth in Adams’ defining (2002) work.   

 A final aspect of typological classification worth noting is the change in ground stone 

morphology throughout the course of its use-life, or what chipped stone analysts would refer to 

as the “Frison effect” (Adams 1999; Frison 1968; Shepherd 1992). The Frison effect, as applied to 

ground stone tools, recognizes that attrition of ground stone tool surfaces due to use changes its 

morphology. Therefore, the morphological attributes observed by the analyst are only the final 

incarnations of the tool’s form, those prior having been obliterated through use. For instance, 
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the use of manos is sometimes altered throughout the course of its use life in order to manage 

attrition of its use surface (Adams 1993), resulting in a change in the frequency and size of face 

facets. Taking this concept to the extremes of a tool’s use life, Lovick (1983) recognizes the use 

of ground stone implements recycled as hearth stones, all but the faintest traces of their original 

morphology having been obliterated through heat alteration. Theoretically, the progressive 

attrition of ground stone implements may be quantified in many of the same ways as chipped 

stone tools, their degree of attrition serving as proxy for use intensity or placed in relation to 

procurement source. However, predictable rates of attrition may only exist among specialized 

implements commissioned for repetitive processing tasks such as trough metates (Adams 2002), 

and may thereby be difficult to operationalize for more flexibly employed ground stone tool kits, 

such as those associated with forager artifact assemblages.   

Subsistence shifts and resource intensification 

Several ground stone studies employ the presence and/or morphological attributes of the 

tools as proxy for large-scale subsistence shifts (Frison and Grey 1980; Hard et al. 1996; Jones 

1996; Kraybill 1977; LaBelle 2005; Mauldin 1993; Rosenburg 2008; Wright 1994). Such studies 

rely upon the assumption that major shifts in subsistence occur in tandem with technological 

adaptations devised to cope with them, and that this phenomenon may be observed 

archaeologically through abrupt temporal shifts in tool presence, form, or size. Though often not 

explicitly recognized, the studies are also couched in essentially evolutionary terms, as dietary 

shifts and corresponding technological changes are framed within a larger cultural evolutionary 

framework.    
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An early example of this type of study is Kraybill’s (1977) review of ground stone tool 

presence in Old World, Pleistocene-aged sites, the assumption being that increased reliance on 

vegetal foods requiring processing (e.g., grasses or acorns) should correspond with an increased 

frequency of ground stone tools in archaeological contexts. The timing of increased ground stone 

tool use has implications for the origin of agriculture. The paper is brief, but one can see in it the 

potential for studies of ground stone tools to contribute to the most fundamental and enduring 

problems in anthropology.  The origins of intensive floral processing are addressed more explicitly 

by Wright (1994) and Rosenburg (2008) with regards to the introduction of acorn processing at 

Early Natufian sites in the Levant of southwest Asia, as evidenced by the widespread emergence 

of the mortar and pestle at sites dating to this period. Comparable studies have been undertaken 

to understand not just the origin of floral processing, but large-scale shifts from one type of 

resource to another or towards greater intensification of a single resource (Hard et al. 1996; 

Jones 1996; Mauldin 1993). The two basic assumptions attached to such studies are that a) 

different floral resources are demanding of distinct processing strategies that require distinct 

forms of ground stone tools and b) that to efficiently intensify one’s processing demands, a 

concomitant shift in grinding technology must occur in order to ameliorate the increased time-

stress attending intensification. Consequently, such shifts are assumed to occur in tandem with 

changes in ground stone tool morphology.  

For example, Jones (1996) provides a compelling case for the shift from milling slabs to 

mortars and pestles among prehistoric Californians to have coincided with concomitant shifts in 

shellfish harvesting strategies, settlement patterns, and perhaps even the allocation of labor 

between genders. Whereas milling slabs were sufficient for the processing of limited amounts of 
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small seeds requiring light grinding, they fell short in meeting the processing demands of an 

acorn-based economy. With their thick shells and when processed on a mass scale, acorns 

required a technology that was not only robust in morphology, but had the capacity to contain 

large amounts of meal. Mortars and pestles met these criteria in prehistoric California, and are 

therefore employed as proxy for a suite of cultural shifts attending this dietary change.  

Mauldin (1993) presents a comparable argument for mid-central New Mexico with 

respect to fluctuations in agricultural intensification among Puebloan societies between AD 400 

and 1300, which was later refined by Hard et al. (1996). It is argued that the faces of manos 

increase in size in concert with agricultural intensification as a response to the time-stress 

imposed by increasing processing demands. Furthermore, manos should exhibit, on average, 

more ground faces and metates should change slightly in form. In accordance with ethnographic 

and experimentally-derived data, mano face size does indeed seem to be correlated with maize 

intensification, while the other two variables are correlated as well, if more weakly so. These 

findings are later corroborated by Hard et al. (1996) through macrobotanical and, to a lesser 

extent, stable isotope values from human remains.  

An interesting, if at this point underexplored, technological pattern emerges from this 

body of literature. While fundamental shifts in the type of floral resources targeted may 

necessitate entirely new types of tools (whether it be the introduction of ground stone tools or 

the shift from one type of tool to another), intensified exploitation of a single floral resource 

requires only that one’s existing tools be made larger or more efficiently-designed and utilized 

more exhaustively. Firstly, and quite simply, ground stone tools show up in assemblages along 
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with the introduction of intensive floral processing, where they were before absent or a minor 

constituent. As a local example, ground stone tools are a minor constituent of Paleoindian 

assemblages on the North American Great Plains, even from the largest sites (e.g., Wilmsen and 

Roberts 1978), while they become increasingly frequent beginning in Late Paleoindian-aged sites 

(Frison and Grey 1980; LaBelle 2005), suggesting the origins of a fundamental shift in subsistence. 

Subsequent shifts in intensity further alter ground stone assemblages in frequency and 

morphology. For example, while the transition to an acorn-based diet in prehistoric California 

was attended by the introduction of mortar and pestles (Jones 1996), intensification of maize 

consumption in western New Mexico required only that manos and metates become larger and 

utilized more exhaustively (Hard et al. 1996; Mauldin 1993; Morris 1990).  

Quarrying, manufacture, and exchange/economics 

There is a robust body of literature that describes the quarrying and manufacture of 

ground stone tools in the archaeological and ethnographic records, and through experimentation 

(Crawford and Roder 1955; Huckell 1986; Kvamme 1977; Schneider 1996). Commonly, studies 

also describe or quantify the attributes of a raw material that contribute to its effectiveness for 

use in the manufacture of ground stone tools through a variety of geologic descriptions and 

methods (Bostwick and Burton 1993; Schneider 1995). Some studies of quarrying and 

manufacture include mention or wholly couch the process in terms of exchange and economics 

(Bostwick and Burton 1993; Crawford and Roder 1955; Hayden 1987; Peacock 1980). Such studies 

may not explicitly center upon quarrying and manufacture, but it is assumed that the ways in 

which ground stone implements are incorporated into prehistoric economies are ultimately 
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dependent upon the process of quarrying and the properties of a given raw material that make 

it an economic asset, so these studies were included in this section.  

Studies of the quarrying and manufacture of ground stone tools are undertaken in a 

variety of ways, but most often amount to detailed site reports, providing thick description of the 

quarry itself (Huckell 1986; Kvamme 1977), quantification of quarry size (Schneider 1996), 

petrographic analysis of a raw material source’s geologic attributes through the use of 

comparative thin-sectioning (Bostwick and Burton 1993; Schneider 1995), or depictions of 

reduction sequences (Huckell 1986; Kvamme 1977; Schneider 1995, 1996). Studies that 

incorporate an element of exchange or economics describe the quarry in many of the same ways, 

but contextualize it within a larger regional exchange network, often highlighting the geologic 

attributes of the quarry that lent economic value for this purpose, such as natural fracture 

patterns or abrasiveness (Bostwick and Burton 1993; Crawford and Roder 1955; Hayden 1987; 

Peacock 1980).   

Upon evaluation of the literature, it becomes apparent that two primary variables 

condition the way in which ground stone quarries were chosen and utilized, and those are the 

natural form and abrasiveness of the quarried raw material. Both have qualities of benefit and 

detriment to the quarrying process and their effectiveness as ground stone tools. Prehistoric tool 

manufacturers would have had to weigh those qualities against each other and in tandem with 

subsistence needs during the quarrying process.   

When available and sufficient for processing needs, raw material that naturally outcrops 

in forms that reduce the cost of ground stone tool production was preferentially utilized (Fratt 
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and Biancaniello 1993; Huckell 1986; Kvamme 1977; Schneider 1995). Selectivity of form reduces 

the costs of tool production, and over time increases the yield one garners while obtaining and 

processing floral resources.  

The most obvious example is a preference for rounded cobbles for use as handstones 

employed for a variety of tasks, world-wide and throughout prehistory. This preference is so 

obvious that little to no literature has addressed the subject in detail. In many regions, rounded 

cobbles the size of one’s hand are easy to come by, and located in cobble beds of major 

waterways or moraines of previously glaciated landscapes. The process of picking a cobble for 

use as a handstone is more appropriately referred to as “procurement”, rather than quarrying, 

but the process is considered part of the same general activity. There are nuances inherent to 

the ways in which cobbles were selected related to the demands of a given tool, but these 

nuances have been minimally explored (but see Owens 2006). 

The natural form of raw material employed in netherstone production is a more complex 

matter. Natural raw material forms conducive for use as netherstones are relatively rare on the 

landscape, and prehistoric tool manufacturers would have had to have been mapped onto their 

outcrops in a far different way than they would have cobble beds. A primary requirement of 

netherstones used by hunter/gatherers is that they be thin and flat enough to facilitate transport 

and efficient floral processing. Only under specific conditions does stone outcrop in a way 

conducive to these requirements. Natural forms conducive for use as netherstones occur in two 

primary ways; as sedimentary outcrops fractured along planar beds that create “flagstone”, and 

igneous outcrops fractured along planar or columnar joints (Crawford and Roder 1955; Fratt and 
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Biancaniello; Kvamme 1977; Schneider 1995, 1996). The ways and places in which this occurs can 

be variable even within the same geologic formation (Boos and Boos 1957; Thompson 1949), so 

specific places on the landscape must have been sought after for quarrying.  

More massively bedded forms are also quarried, both for use as netherstones and 

handstones, but this seems to occur most often in association with horticulturist societies in 

which specialists have the time and resources to quarry and shape the raw material into tools, or 

for use in exchange (Crawford and Roder 1955; Hayden 1987; Huckell 1986; Schneider 1996). 

Quarrying and shaping a tool such as a trough metate is a costly process (Hayden 1987) and those 

costs were likely rarely ameliorated by the yield from floral resources exploited by foraging 

societies. Interestingly, even mixed-subsistence societies such as the Hohokam, who typically 

depended upon shaped metates to process cultigens, still employed thinner, more tabular 

grinding slabs when processing wild plants food (Greenwald 1990). This is perhaps due to its 

abrasiveness.  

The natural abrasiveness of a given raw material is a second factor commonly cited as 

influential to the selection of a ground stone quarry. A raw material’s abrasiveness is a somewhat 

subjective classification and can be influenced by a number of geologic factors. For instance, the 

abrasiveness of a volcanic raw material is commonly related to its degree of vesiculation (the size 

and density of air pockets within a formation), but can also be influenced by the size of 

phenocrysts or xenocrysts within its matrix (Bostwick and Burton 1993). These geologic attributes 

often create a more abrasive texture relative to other types of raw materials. For this reason, 

volcanic raw materials are often chosen for use in grinding larger, more difficult to process seeds. 
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Most commonly, seeds of this nature are of agricultural origin, but they may also be wild floral 

resources, such as pine nuts (Adams 2010; Hayden 1987; Peacock 1980). In sedimentary deposits, 

abrasiveness is more often associated with its induration, or the degree to which its individual 

particles are cemented within its matrix (Fratt and Biancaniello 1993). In general, sedimentary 

formations are far less abrasive than igneous, and employed for processing smaller seeds for 

which highly abrasive raw material is not needed or that would become entrapped by igneous 

vesicules.  

Consequently, the abrasiveness of a raw material source does not exist on a continuum 

between “best to worst” or “roughest to smoothest”, but seems to be chosen on the basis of 

processing needs. Often those processing needs outweigh the expense of increased quarrying 

costs and more effort will be expended in acquiring raw material of certain abrasiveness, for 

instance, in the labor intensive quarrying of massively-bedded stone.  

Crawford and Roder (1955) present a compelling example of the interplay between form 

and abrasiveness from the German Eifel basalt quarries, which have been utilized since the Early 

Neolithic (perhaps 1200 BC). Prior to utilization of the quarry, ground stone implements from the 

regional archaeological record are typically sandstone. According to the pattern laid out above, 

it is assumed that this sandstone is relatively less abrasive, outcrops in a naturally tabular form, 

and was employed primarily in the processing of wild plant foods, though this is not explicitly 

addressed in the study. Upon implementation of its use, querns from the Eifel quarry were 

produced from tabular forms that were naturally fractured from the otherwise massively-bedded 

basalt formation and scavenged from the surface. As is posited, when available and sufficient for 
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need, the effort expended in acquiring raw material for ground stone tool production is 

minimized through selectivity of natural form. This pattern more or less holds true until 

widespread exchange networks emerge, at which point querns begin to be intensively quarried 

from the massively bedded basalt flow through the use of dense stone picks and later, iron tools. 

This near industrial exploitation of the quarry only increased throughout the Roman and 

Medieval periods with the quarrying of large, rotary millstones and still holds true until today, as 

the stone is still quarried for its exceptional properties. Temporal shifts in the way in which a 

single quarry was exploited for the production of ground stone tools illuminate the interplay 

between raw material form and abrasiveness, and the tradeoffs a tool manufacturer has to make 

in accommodating shifts from foraging, to horticulturalist, and more complex economies.  

Experimental form and function 

 A third form of ground stone tool study employs experimentation to address functional 

ambiguity of tool form, often in concert with microscopic use wear studies and various types of 

residue analyses. 

 The most straightforward form of experimental analysis is the simple replication of an 

activity involving ground stone tool use in order to gain qualitative insights regarding the various 

processes involved with their quarrying (Crawford and Roder 1955) or use (Cosner 1955; Crabtree 

and Swanson 1968). These studies contextualize the archaeological record through a relatable 

format and produce anecdotal accounts that create testable research questions. For example, 

Cosner’s (1955) study finding willow to be the only raw material requiring the use of an arrow 

shaft straightener or Crabtree and Swanson’s (1968) assertion that edge-ground cobbles make 
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great hammerstones with which to remove blades may both be qualitative conclusions, but the 

hint of such patterns can inspire a multitude of other, quantitatively testable research questions. 

Perhaps because the grinding of stones is a far less engaging hobby than the knapping of them, 

such experiments have more rarely been undertaken for ground stone tools relative to their 

chipped stone counterparts, despite the ways in which they could illuminate their use.   

 More recently (and commonly), experiments are conducted in order to understand the 

ways in which various tasks performed by ground stone tools impact microscopic use-wear 

patterns on their utilized surfaces, thereby providing a direct link between tool form and function 

(Adams 1988, 1989; Dubrueil 2004; Dubrueil and Grosman 2008; Owens 2006). These studies are 

often conducted in concert with a variety of residue analyses to detect proteins, starches, 

phytoliths, or other types of microscopic evidence for tool use remaining on the utilized surfaces 

of artifacts (Buonsera 2007; LaBelle and Pelton 2013; Piperno and Holst 1998; Yohe et al. 1991). 

 Adams (1988, 1989, 2013) has repeatedly called upon principles developed in the field of 

tribology, or the study of friction, wear, and lubrication, in describing the types of microscopic 

use wear incurred as a result of grinding and presents a synthesis of findings in a recent (2013) 

review of the topic. Though an exhaustive review of the topic is not necessary forth goals of the 

present study, two types of wear are thought pertinent, those produced during hide processing 

and stone on stone grinding. Hide processing causes rounding of individual grains, and under 

magnification ground stone implements employed to process hides exhibit exaggerated relief as 

a result (Adams 1988). On the other hand, stone on stone grinding levels the tops of grains, 
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causing a flat, topographically uniform appearance under magnification (Adams 1989). This basic 

distinction may be of use in future studies of the tools from the CFR.   

 A novel approach involving the study of locomotion of the human radius and ulna to 

explain a temporally-distinctive type of mano wear was proposed by Morris (1990). It is 

suggested that the pronation of the forearm during one-handed grinding (in which the radius 

crosses the ulna at a diagonal angle) would have placed asymmetrical stress on the mano, 

thereby creating a differentially-worn surface. The bioanthropological implications of this study 

are obvious; different types of ground stone tool technologies would create different types of 

skeletal pathologies in those who spent their lives repetitively using them. Though not exactly 

experimental, modern studies of skeletal positioning such as Morris’s create expectations of 

pathologies for testing on the archaeological record, and opening the door for direct correlation 

between ground stone tool form with skeletal pathology. 

Land use and distributional archaeology 

The study of prehistoric land use across regional scales has taken many forms, but may 

variously be referred to as the “off-site”, “non-site”, “landscape”, or “distributional” approach to 

archaeology (Dunnell and Dancey 1983; Ebert 1992; Foley 1981; Kantner 2008; Stafford 1995; 

Thomas 1975, 1983; Wandsnider 1992). Such approaches view the archaeological record as a 

continuous distribution of phenomena across space and approach their study through the 

creation of large-scale analytical units, often based upon ecological (Butler 2009; Thomas 1973; 

Troyer 2012) or geomorphic (Camilli and Ebert 1992; Stafford and Hajic 1992; Stafford 1995) 

parameters, but sometimes according only to arbitrary units of inquiry (Foley 1981). Practitioners 
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of these approaches often view the concept of the discrete “site” as limiting of interpretive 

potential (Dunnell and Dancey 1983), but do not disregard their utility altogether (Wandsnider 

1992). Since the present study is concerned with properties of sites and their distribution, the 

term “distributional” archaeology is heretofore employed. 

 Distributional approaches may be operationalized across a wide range of scales, from that 

of a foraging radius to that of an entire continent (Stafford and Hajic 1992; Kantner 2008). Smaller 

scale distributional studies may be concerned with the dispersal of artifacts as it relates to 

foraging activities, thereby providing a depiction of a portion of the cultural system, perhaps 

seasonally related. Larger-scale distributional studies may incorporate the entirety of a society’s 

territory, thereby reconstructing the totality of the cultural system (Binford 1980; Thomas 1983; 

White and Peterson 1969). At its largest scale, distributional studies may incorporate regional-

scale exchange networks or widespread cultural horizons (Anderson and Gillam 2000; Kantner 

2008; Stafford and Hajic 1992). The present study operates at the smallest scale of distributional 

inquiry, and likely represents the foraging activities of only a seasonally-specific portion of the 

prehistoric cultural system of the Colorado Front Range.  

As well, studies differ in their use of archaeological phenomena, but may be broadly 

categorized as those related to presence or absence of artifacts or artifact types (e.g., Anderson 

and Gillam 2000; Butler 2009; Rogers 1986) and those concerned with one or more technological 

attributes of artifacts (e.g., Kelly 1988; Nelson and Lippmeier 1993; Peterson 1999; Thomas 

1973). The simple presence or absence of artifacts may be employed to depict archaeological 

density or patterning across large areas (Anderson and Gillam 2000; Foley 1981; LaBelle 2005), 



32 
 

and refined to inform land use patterns by incorporating artifact types (Butler 2009; Rogers 

1986). These approaches assume that artifact types with specific functions may be assigned with 

some certainty. However, broad artifact typologies may obscure technological diversity 

illuminating of distributional studies. To account for this, technological attributes of artifacts such 

as debitage morphology (Kelly 1988), tool edge angle (Thomas 1973), or ground stone 

morphology (Nelson and Lippmeier 1993; Peterson 1999) are instead employed as units of 

discovery. Though the technological aspects of ground stone tools may be a fruitful line of future 

inquiry, it is beyond the present scope. For this reason, only the presence or absence of artifact 

types is employed.   

To date, no distributional study has been conducted for ground stone tools explicitly, 

though two have addressed the ways in which landscape conditions the presence and/or 

morphology of ground stone implements. Nelson and Lippmeier (1993) find Puebloan site 

location on the landscape to have impacted the morphology of ground stone implements, those 

located central to major residential hubs having been more formally shaped and intensively 

utilized, while those located on the periphery having been expediently produced and utilized 

minimally. Such an approach relies upon framing archaeological phenomena in terms of the built 

environment in which it is situated, as opposed to environmental parameters. Peterson’s (1999) 

study of Paleolithic transhumance patterns in the southern Levant cites differences in ground 

stone tool morphology and presence between lowland and upland regions to make the case for 

residential use of lowland areas and ephemeral or seasonal use of upland regions.    
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Though this study is, in essence, distributional in nature, it deviates from classic 

distributional studies in a couple of notable ways. Firstly, this dataset was collected without 

regard for a distributional approach, and is thereby comprised of “sites” and isolates and reliant 

upon these constructs as its basic unit of discovery. This is necessary due to many having been 

recorded in different ways. For instance, some have been extensively excavated (e.g., Benedict 

1978a; Olson 1978), while for others, only the presence or absence of ground stone tools is 

known. Therefore, artifact frequency is relatively overrepresented in some sites and unknown in 

others. For this reason, the presence or absence of artifact types within a site or isolate is the 

smallest unit of discovery afforded for this dataset. Though the use of discrete sites may seem 

contrary to a distributional approach, it is not necessarily incompatible with its goals (Wandsnider 

1992) 

Secondly, many distributional approaches employ frequency data to derive measures of 

artifact density for large geographic regions or sample areas (Foley 1981; LaBelle 2005). However, 

density measures of this sort are thought to be problematic due to the potential for survey biases 

to have inflated the frequency of sites in areas that have been a focal point of inquiry or that 

have minimal ground cover (Camilli and Ebert 1992; Lepper 1983). For instance, survey of the 

study area is assumed to have been largely non-systematic and focused on areas with the 

greatest potential for site discovery, such as along existing trail or road systems or next to major 

bodies of water. In terms of ground visibility, the sparsely vegetated alpine-subalpine forest 

ecotone and alpine tundra are great places to find archaeological sites (e.g., Benedict 1992; 

Butler 2009), at least more so than the duff-laden subalpine and montane forests much lower. 

Without systematic subsurface survey against which to compare these results, it must be 
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assumed that survey biases have, at least in part, impacted the frequency distribution of sites 

and any density measures derived from that distribution. To control for these biases, the present 

study must primarily be concerned with percentages, as opposed to frequencies, of 

archaeological phenomena or statistics testing the significance of the relationship between them. 

In this way, areas with large discrepancies in site frequency may be compared.  

As well, there are undoubtedly differences in the total amount of habitable land within 

each elevation range, which would impact the number of possible sites within each range. To 

create an example, 2 sites within an elevation range of between 3800 and 3850 m asl may not 

seem like many compared to 34 sites between 3450 and 3500 m asl. However, if the former 

elevation range is only represented by 30 acres of land while the latter is represented by 1,000 

acres, it would equate to a site density of .07/acre for elevations between 3800 and 3850 m asl 

and .03/acre for elevations between 3450 and 3500 m asl (these numbers are arbitrary). As just 

demonstrated, this bias may be controlled for. However, considering a preexisting bias due to 

non-systematic survey coverage, this exercise would do little to ameliorate the use of frequency 

data in this study.  

Conclusion 

Though description and classification of ground stone tools is a routine aspect of many 

archaeological reports, there is a small body of method and theory framing such studies relative 

to their chipped stone counterparts. This is despite their potential for informing some of the most 

fundamental archaeological problems, such as the introduction and intensification of resource 

exploitation, the rise of complex societies and exchange networks, and regional-scale 
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settlements patterns and land use. Furthermore, ground stone tools are increasingly being 

recognized to fulfill a larger suite of functional roles than they had previously been given credit 

due to advances in residue analyses and microscopic use wear. The preceding review is by no 

means exhaustive, but is a fair representation of the diversity of ways ground stone tools have 

been studied. Ultimately, ground stone tools are far more informative of the prehistoric record 

than simple indications of “plants were processed here”. With this recognition, it is hoped that 

they will become an increasingly integral aspect of archaeological inquiry.   
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CHAPTER 3 

DESCRIPTION OF LABORATORY METHODS 

 

The following is a description of the study area sample and the methods employed for 

use in defining its morphological, nominal/ordinal, and metric attributes. Since the study area 

sample is not the result of a singular field research project, but has been compiled from many 

decades of research in the region, an examination of how these data were compiled is prudent. 

Additionally, several methodological aspects of the tool analysis are, as far as the author knows, 

unique to this project, having been devised to cater toward the assemblage. Therefore, a 

description of these methods and discussion of their relevance to the present study is necessary. 

Subsequent chapters employ additional methods, and these will be discussed as the need arises. 

The present chapter is concerned only with the tools themselves.  

Description of Sample 

The sample employed for this analysis broadly consists of two tool types, netherstones 

and handstones. Following Adams (2002), netherstones are defined as the passive, stationary 

tool against which resources are processed while handstones are defined as the active, movable 

tool that is held in one or two hands to process resources. These types are adopted for their more 

general technological implications. For instance, the commonly used terms “metate” and “mano” 

may be construed as having specific functions, and may be assumed to be paired, technologically-

interdependent tool types. Conversely, the term “handstone” implies no functionality, and is not 

necessarily paired with a netherstone. As well, the term netherstone encompasses a wide range 

of functions beyond the grinding of seeds, such as use as a cooking stone.  
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The present sample is the result of over 40 years of research in the study area. It is 

comprised of a diversity of artifacts recovered from excavated and surficial contexts, and includes 

some tools for which only their presence is noted in a surface context. Therefore, each artifact 

has a somewhat unique history of curation, dependent upon its initial means of recovery, the 

timing and location of that recovery, and potentially other factors such as the decisions of land 

management agencies regarding their curation. Although the exact curation history of each 

artifact is not known, several factors of the assemblage’s history may be discussed.  

 Excavated artifacts comprise a relatively large portion of the netherstone sample (n=90; 

66%), but a much smaller portion of the handstone assemblage (n=14; 24%). However, both 

samples come from a small number of excavated sites (n=4), which is 20% of the sites used for 

the netherstone assemblage and 12.5% of the sites used for the handstone assemblage. As far as 

can be discerned from published reports, all excavated artifacts were collected upon discovery. 

However, not all excavated sites from the study area were available for study, including artifacts 

from the Ptarmigan site (5BL170), the Coney Creek Valley site (5BL94), and the Caribou Lake site 

(5GA22). 5BL69, 5BL67 and 5BL70 were curated in the facility at Rocky Mountain National Park 

until obtained for use in this analysis. These are now curated at the CMPA. Through the course 

of analysis, it was determined through comparison with published data that surface collections 

of ground stone from these sites were not curated with their excavated assemblage. The 

whereabouts of these artifacts are not known. The excavated artifacts from the Spotted Pony 

site (5BL82) were obtained from Michael J. Landem. Though results from geoarchaeological 

investigation of this site have been published (Benedict 2012), its contents have not. This 

assemblage is presently curated at the CMPA.  
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 Surface collections represent the majority of sites in the sample, but are often only 

comprised of 1 to 5 artifacts per site. As far as can discerned from published reports and site 

cards, all handstones were collected upon discovery. Conversely, netherstones seem to have 

been collected only sporadically. The criteria employed for netherstone collection is not known, 

but it is assumed to be related to their relative abundance relative to handstones and the 

constraints of transport from remote regions of the study area. This has drastically impacted the 

sample of netherstones available for study. Only 11.4% of the surface sites in which netherstones 

are known to be present was collected. All surface assemblages are assumed to have been 

curated by Jim Benedict at the Center for Mountain Archaeology since their collection.     

Morphology 

Due to the diversity of morphological attributes between netherstones and handstones, 

each is classified differently. Noted for each netherstone are the number of ground faces (0, 1 or 

2), the type of ground face (basin or flat), the severity of grinding and noted use-wear patterns 

(lightly smoothed, smoothed, very smoothed, polished; parallel striations), and the presence or 

absence of shaping, as evidence by marginal flake removals.  

Handstones exhibit a more diverse range of morphological characteristics and are 

subsequently classified in a different way. The primary morphological variable associated with a 

handstone is its natural shape. A cobble’s natural shape undoubtedly impacted how it was chosen 

to perform a specific task, but nuances of this sort have rarely been recognized archaeologically. 

In order to provide a more refined depiction of cobble selection, shape is classified according to 

two profiles, its areal profile (circular, oblong, some variation of oblong, asymmetrical, or 

indeterminate) and it cross-section profile (oblong, circular, rectilinear, tear-drop shaped, 
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indeterminate, or some combination of these). Due to the diversity of shapes present, cobble 

shape is largely descriptive rather than typological.  

The second suite of morphological traits associated with a handstone is those that can be 

attributed to human modification. An idealized handstone contains six potential working 

surfaces, two faces, two edges, and two ends.  Often, handstones exhibit multiple worked faces, 

edges, and ends, each of which potentially corresponding to different tasks. Like many of their 

chipped stone counterparts, they are “multi-tools”.  In order to express the technological 

diversity subsumed by single artifacts, each worked surface of a tool is assigned as its own 

analytical unit, or what is referred to as an “employable unit” (e.u.) (Knudson 1979, 1983). This 

means of classification is similar to that employed by Shepherd (1992) for ground stone from the 

Helen Lookingbill site. The total number of e.u.’s and their corresponding morphology (flat, 

convex, faceted, battered, irregular, other, or grooved) is noted for each specimen. Depictions of 

e.u. morphology for faces and edges are presented in Figures 3.1 and 3.2. Furthermore, specific 

attributes of each edge unit including metric dimensions, cross-section shape, use wear 

patterning, and inferred stroke type (i.e. flat, rocking, push and pull, or circular) are noted. For 

example, a handstone exhibiting two ground faces, a ground edge, and a battered end contains 

four edge units and therefore represents four separate units of analyses, in addition to an entry 

describing the overall tool form.   
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Figure 3.1: Depiction of major morphological types defined for handstone faces. 

 

 
Figure 3.2: Depiction of major morphological attributes defined for handstone edges. 
 

 

Nominal/Ordinal attributes 

Raw material Raw material of each specimen is derived from macroscopic evaluation of its 

surface. Key attributes employed in discerning raw material are grain size, texture, presence of 

bedding, and banding of minerals. Raw material identification is broadly defined into widely-

encompassing taxonomic groups, as the details required to discern fine-grained classification 
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were beyond the scope of the current project. Of primary interest to raw material identification 

is the discernment between local and non-local raw materials, which, for the project area, 

amounts to raw material procured in the sedimentary-rich foothills or those procured in the 

igneous and metamorphic montane and alpine zones.  

Sedimentary stone was identified primarily on the basis of its fine-grained matrix in which 

individual sand grains were still identifiable and the presence of planar bedding throughout the 

thickness of an artifact. Also subsumed within the sedimentary category are sandstones that 

grade into quartzitic texture, defined by the specimens having been metamorphosed to the 

extent that their sedimentary structure has been nearly obliterated. The primary sandstone raw 

material source cited for the study area is the Lyons formation, which outcrops widely along the 

eastern foothills of the Front Range, but is most classically represented around the vicinity of 

Lyons, CO (Thompson 1949). For a more detailed discussion of this raw material, refer to chapter 

1 of this document.  

 Both intrusive and extrusive forms of igneous raw material are identified in the project 

area, and are broadly subsumed under granitic and basaltic raw materials. Granitic raw material 

is identified on the basis of its crystalline structure generally consisting of multiple minerals. 

Basaltic raw material is identified on the basis of its vesicular texture, though it is recognized that 

many forms of extrusive igneous rock do not exhibit this attribute. Intrusive granitic raw material 

of pre-Cambrian age is present throughout the study area, though basalt is considered non-local, 

as the nearest formations of extrusive volcanics are located in Middle Park, over 20 km west of 

the study area (Izett 1966). For a more detailed discussion of this raw material type, refer to the 

geology section of chapter 1 of this document. 
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Metamorphic raw material is identified on the basis of an artifact having been deformed 

through metamorphic processes, which usually manifest as banding of minerals. Additionally, 

one raw material (Idaho Springs gneiss) is identified in the extant literature as metamorphic and 

this classification was employed in the present analysis (Benedict 1978a). Metamorphic rocks of 

pre-Cambrian age outcrop throughout the study area, underlying the younger granitic formations 

present. A more detailed discussion of this raw material type is located in chapter 1 of this 

document.  

Color Most rocks exhibit a diversity of colors corresponding to the multitude of minerals included 

in a given geologic formation. Therefore, a rock that may appear red from a distance actually 

contains multiple mineral grains of varying colors which combine to form the appearance of a 

purely colored rock. For this reason, many of the ground stone tools included in this analysis are 

classified according to multiple Munsell colors. Color was derived from the 2009 Geological Rock-

Color Chart produced by Munsell Color. 

Additionally, the tabular sandstone included in this analysis has fractured along bedding 

joints, but is furthermore thinly bedded between joints, resulting in frequently alternating colors 

that complicate basic Munsell classification. In order to reflect this diversity, multiple Munsell 

color classifications are sometimes provided. A final consideration was the presence of sediment 

staining, heat alteration, or charring of an artifact, which changes its color greatly. Care was taken 

to base color determinations off of clean surfaces.   

Hardness As Benedict (2012) notes, the tabular sandstone commonly employed as ground stone 

tools in the CFR contains a markedly hard surface due to diagenetic quartz overgrowths. In order 
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to discern any variation in hardness present between geologic formations or outcrops of the 

same formation, the hardness of each handstone specimen and a sample of netherstone 

specimens was collected according the Mohs hardness test administered with the Deluxe 

Hardness Pick Set and Mineral Identification Kit produced by Mineralab, LLC. Ground surfaces on 

which individual grains have been obliterated seem to exhibit different hardness values than 

unground surfaces, which more readily scar as a result of hardness testing. Sediment presence, 

charring, and lichen growth can also confound the hardness test by providing a more readily 

scarred surface. Therefore, when possible, an unground, clean surface was chosen for 

administration of the hardness test.  

Metric measurements 

Netherstones The flat grinding slabs that constitute the majority of netherstones from the Indian 

Peaks are most often highly fragmented in a diversity of shapes and sizes. Therefore, if accurate 

measures of surface area are to be derived from basic metric dimensions, a means of 

standardizing their measurement was necessary. The most accurate means of addressing this 

problem is through digitization of each fragment, through which exact surface area may be 

derived. However, this method is time-intensive in laboratory settings and not possible in field 

settings in which artifacts are not collected. For this reason, it was deemed necessary to devise a 

surface area proxy measure that may be manually applied to grinding slab fragments in a 

pragmatic manner. Towards this end, a small experiment was undertaken.  

Ten netherstone artifacts were randomly chosen from the Indian Peaks assemblage and 

traced onto graph paper with their longest broken edge vertically aligned to the left side of the 

graph paper. The actual surface area of each artifact was determined by quantifying the 
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frequency of graph paper squares subsumed by the artifact’s outline. Four measurements were 

then taken: maximum length of the vertical axis (MaxV), maximum length of the horizontal axis 

(MaxH), vertical axis midline length (MidV), and horizontal axis midline length (MidH). These 

measurements were then used to calculate a derived surface area of each artifact according to 

four equations: MaxV*MaxH, MaxV*MidH, MaxH*MidV, and MidV*MidH. The predictive value 

of each equation was then evaluated by subtracting the actual surface area from the derived 

surface area and expressing the difference as an inverse relative frequency of the actual surface 

area. Thus, a derived surface area value that underrepresents the actual surface area by 8% is 

said to depict 92% of the tool and a derived value that over represents area by 10% depicts 110% 

of the tool’s actual surface.   

Of those tested, the equation MidV*MidH is the most accurate for depicting the actual 

surface area of a grinding slab fragments. The equation depicts 92% to 120% of an artifact’s actual 

surface area with an average accuracy of 105.9%. Use of midline length is the only set of metric 

attributes that can underrepresent the surface area of an artifact, which serves to increase the 

accuracy of the equation at the assemblage level by averaging negative surface area values with 

positive ones. Three of the ten artifacts exhibited negative values. The use of maximum length 

overrepresents the surface area of each artifact by an average of 127.54%, but can be as 

inaccurate as nearly 160%. Combining maximum with midline lengths values results in an over 

representation of surface area of between 115 and 117%.   

This short experiment yielded two valuable insights. Firstly, the use of the midline length 

of two perpendicular axes is the most accurate, time-effective means of providing a proxy for 
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grinding slab fragment surface area, and, when digitization is not available, should be the 

standard means of doing so. On average, this measurement is within 5-6% of the actual surface 

area value, but can exceed 20%. If this means of measuring slab fragments is employed in future 

studies, these figures may be cited as a caveat of the lab methods. 

Secondly, the use of maximum length values of two perpendicular axes over represents 

actual surface area by an average of 27-28% and may be as high as nearly 60%. Past studies 

employing this means of measuring slab fragments may need to be calibrated for comparative 

purposes, and the values determined during this experiment could be used towards that end. For 

example, if the total surface area calculated for an assemblage equaled 127cm2, it would be 

calibrated to equal 100cm2, as the use of maximum lengths over represents surface area by an 

average of 27-28%.  

Taking the result of this experiment into consideration, four metric attributes are included 

in this analysis; the length in millimeters of the midlines of two perpendicular axes aligned with 

the longest edge, maximum thickness, and weight in grams. An additional value derived from 

combinations of these measurement is a surface area proxy (MidV*MidH). Thickness within a 

single artifact most often varies due to differential weathering of one or both surfaces, but is 

sometimes due to attrition through use, the most heavily ground portions of the tool also being 

the location of minimum thickness. Some fragments have been glued together and these are 

treated as individual artifacts, though the number of fragments is noted. For nearly complete 

grinding slabs, minimum and maximum dimensions of the complete ground stone tool are 

provided.  
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Handstones Metric dimensions for handstones were derived for the entire tool or tool fragment 

and for the individual employable units defined for each tool. The length in millimeters of two 

axes, maximum thickness, and mass in grams were determined for all handstone or handstone 

fragments. When it could be determined, length A was established as the longest axis of the 

complete tool. For highly fragmentary specimens, this was sometimes the shorter measurement, 

as length A represents only a portion of the once complete tool’s longest axis. For tools on which 

axes could not be determined, length A was established as the maximum length of the artifact 

and length B the longest axis perpendicular to that measurement.  

Employable units were measured according to two perpendicular measurements of 

maximum dimensions. When appropriate, these measurements correspond to the axes 

established for measurement of the entire tool, such as the case with e.u.’s located on the face 

of an artifact, or the length A measurement for e.u.’s located on edges. For e.u.’s located on ends, 

length A is its longest axis and length B the axis perpendicular to length A. These most often 

correspond to the short axis and depth axis of whole artifacts, respectively.   

Conclusion 

The study assemblage has been compiled from both excavated and surficial contexts, and 

has been differentially collected according to artifact type (netherstones are underrepresented) 

and potentially site location (more remote sites may be underrepresented). Though 

inconsistencies in recovery methods may have impacted the representation of tools from certain 

regions of the study area, subsequent results and analyses are designed to account for this bias. 
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It must simply be recognized that this assemblage is a sample of the total number of tools from 

the study area, not its entire population. 

 Previous reporting of ground stone tools from the region have suffered from a lack of 

methodological standardization and the use of broad typological classification as the basis for 

reporting, which obscures considerable technological diversity between artifacts. Additionally, 

the use of Mohs hardness and Munsell color have not previously been reported for ground stone 

tools. Though these ordinal/nominal attributes are not heavily relied upon throughout the course 

of analysis, they may be employed for future studies involving sourcing of raw material, the 

impacts of heat alteration, or the technological function of artifacts, for examples. 

Methodological standardization of grinding slab fragment measurement has been 

accounted for through experimentation to suggest that the length of two midline axes 

perpendicular and parallel to its longest edge is the most accurate means of reflecting its actual 

dimensions. This pragmatic means of measuring a nearly ubiquitous artifact type in the region 

may come in use for standardization of future lab analyses or field projects in which collection of 

artifacts is not an option. This method is estimated to be around a 105% reflection of actual 

availability of grinding slab surface area in a site.  

 In order to account for technological diversity, handstones are analyzed through the use 

of the employable unit (e.u.), in place of broad typological classification. This form of analysis 

allows for multiple units of inquiry to be assigned to individual artifacts, thereby creating a far 

more robust dataset from which to draw. To the author’s knowledge, this is the first study to 

apply the e.u. method to ground stone tools.   
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CHAPTER 4 

AN EXPLORATION OF GROUND STONE LITHIC TECHNOLOGY 

 

A technological analysis of the ground stone tools from the study area was undertaken. A 

detailed presentation of all aspects of these data is beyond the scope of the present study, and 

would, in general, lack focus. However, data tables containing all attributes recorded during this 

analysis are included in Appendices I-VI to enable use in future analyses. Instead, portions of this 

analysis are employed to inform two specific aspects of regional ground stone technology, one 

relating to netherstones and one to handstones. Firstly, the idea that some netherstone grinding 

slabs from the study area were used as cooking stones is tested. This is accomplished through a 

metric comparison of burned to non-burned netherstone fragments. Secondly, the idea that 

handstones from the project area are technologically flexible (employed for a diversity of 

purposes throughout their use-lives) is tested. This may be tested through a comparison of 

morphological diversity and mass between locally and non-locally procured handstones. The 

combination of these analyses reflects a technological system far more nuanced than the 

traditionally reported “mano and metate” system of ground stone technology.  

Handstone overview 

The handstones from the study area exhibit a diversity of face, edge, and end 

modifications, often occurring on the same specimen. Face modifications are potentially 

associated with both floral processing and hide processing (Adams 1988, 2002; Hard et al. 1996), 

while edge modification has been suggested to occur on cobbles used to process hides (Kornfeld 

et al. 2010; Owens 2006) and end modification may be associated with the battering of floral or 
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faunal resources (Jones 1996; Ritterbush and Logan 2009; Yohe et al. 1991). Given this diversity 

of modification, the tools appear to be technologically flexible in function, having been modified 

multiple times throughout their use-lives in order to accommodate tasks as they arise (Nelson 

1991). This is the central argument presented in this portion of the chapter.  

 
Figure 4.1: Representative face modification on a handstone from the study area. 

  

Given technological flexibility, two expectations of handstone morphology may be 

assumed. Firstly, handstones should accumulate additional edge modifications throughout their 

use-lives as they are called into use to accommodate processing needs. Therefore, non-local 

handstones should exhibit, on average, a greater diversity of edge modification than handstones 

procured locally. Secondly, handstones procured to be included in a mobile toolkit should be 

selected for as small a size as possible in order to maximize the efficiency of their transport. Both 
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local and non-local handstones are present within the study assemblage, sometimes within the 

same site, and are easily discriminated. Therefore, the tools from the study area provide an 

effective means of testing these hypotheses. 

Conversely, if non-local handstones DO NOT contain a greater diversity of modifications, 

it implies that the tools are either not technologically flexible or that they are specialized in 

function. Therefore, non-local handstones were transported to the study area randomly or to 

fulfill specialized functional needs. Likewise, if non-local handstones are not smaller than those 

procured locally, it implies that handstone size was not of importance to foragers provisioning 

their mobile toolkits. Therefore, handstone size was chosen on the basis of specific functional 

requirements or without regard for incorporation into a mobile toolkit. 

This chapter addresses the issue of handstone technological flexibility in the following 

way. Firstly, the assemblage is summarized in terms of its major morphological characteristics 

based upon a technological analysis of each tool. Borrowing the concept of the e.u. from chipped 

stone analysis, each face, edge, and end of a handstone is assigned its own morphological 

attributes, thereby reflecting the diversity of modifications present on each tool. Secondly, these 

attributes are analyzed in relation to each tool’s raw material to determine if non-local 

handstones are smaller and exhibit a greater diversity of modifications than locally procured 

ones. Finally, these results are discussed in terms of their implication for technological flexibility 

or specialization of handstones.  

Handstone results 
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Fifty-nine handstones and handstone fragments from 32 archaeological sites were 

analyzed, equaling a total mass of 25.19 kg. Handstones are typically a very small portion of a 

site’s assemblage, and when present at all, are represented by a single artifact or fragment of an 

artifact. The handstone frequency range for all sites containing ground stone is zero to six, the 

highest frequencies of five and six specimens having come from two excavated Mount Albion 

sites detailed in Benedict (1978a) and Olson (1978).  

Of the 59 artifacts analyzed, 32 are mostly complete or complete, but many are 

fragmented to various degrees. The degree of fragmentation was assigned ordinal values of <1/3, 

between 1/3 and 2/3, >2/3 complete, nearly complete (assigned if three complete axes present, 

but slightly fractured), and complete. The result is presented in Figure. 4.2. Fragmentation is 

roughly bimodally distributed, handstones tending to be either heavily fragmented or not at all. 

The 32 complete and nearly complete handstones give an impression of the assemblage’s size 

and shape prior to fragmentation, and are summarized by shape in Table 4.1. 

A diversity of raw materials is present within the handstone assemblage, including granitic 

and gneissic cobbles, one basaltic cobble, and a wide range of sandstone cobbles ranging from 

coarsely-grained to nearly quartzitic varieties. At 80.33% of the total, non-local sandstone is, by 

far, the most dominant raw material type. Some sandstone handstones are high enough in 

silicate content that they grade towards quartzite (n=4 from four sites). 
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Figure 4.2: Bar chart depicting the degree of handstone fragmentation. 

 
 

Table 4.1: Summary attributes of complete and nearly complete handstones. 

Shape 

Metric attributes Cross-section shape 

Axis A 
range 
(mm) 

Axis B 
range 
(mm) 

Average 
dimensions 

(mm) 

Mass 
range 

(g) 

Average 
Mass (g) 

Oblong/ 
lenticula

r 

Tear
-

drop 

Diamon
d 

Asymmetrica
l/irregular 

Total 

Circular 42.3-103.9 - 89.1 51-1031 501.2 6 0 0 1 7 

Oblong 86.5-146.7 66.1-99.4 110.3 x 79.4 305-865 545.32 13 6 1 1 22 

Irregular 99.1-126.1 76.8-122.1 109.8 x 91.5 381-521 592.3 2 1 0 1 4 

Total       22 7 1 3 32 

 
 

The single basaltic handstone is also assumed to be non-local, as the nearest sources of 

that material are located in Middle Park within Tertiary volcanic deposits (Izett 1966). Other raw 

materials identified (n=11; 18.6%) are assumed to be derived from locally-available cobbles, 

though it is recognized that granitic and gneissic cobbles may have been transported as well, only 

that transport was likely rare, given the widespread availability of such cobbles locally. Exact 

sourcing of such artifacts is beyond the scope of the present analysis, but would be a promising 

avenue of continuing research.  
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The dominance of sandstone within the handstone assemblage is, perhaps, due to their 

greater archaeological visibility, their distinctive colors and textures standing out against a 

backdrop of geologically present igneous and metamorphic cobbles. Therefore, many 

handstones derived from locally-procured cobbles may have gone undetected archaeologically 

due to their having been minimally utilized or their unexceptional appearance compared to the 

local geologic background.  

In total, 125 employable units (e.u.’s) were identified from the assemblage, which equals 

an average of 2.1 e.u.’s per tool. Only 123 could be identified down to the location and type due 

to fragmentation and erosion of the ground surface, so figures or tables that include these 

variables are comprised of a different number of e.u.’s than those that include all observed 

ground surfaces. Complete and nearly complete handstones exhibit an average of 2.0 e.u.’s and 

all other fragments exhibit an average of 2.1 e.u.’s. Circular handstones exhibit an average of 1.6 

e.u.’s and oblong handstones 2.1. Employable unit classification was modified during the process 

of analysis to account for unanticipated variation and to better represent morphology. Therefore, 

convex morphology was further subdivided into weakly convex, convex, and greatly convex, and 

faceted morphology was augmented with a weakly faceted type, as no e.u. contained an abrupt 

faceted face, but some did contain weak, rounded faceting (Figure 3.1). The most frequent 

employable unit is convex faces (n=59), followed by weakly faceted faces (n=13), flat edges 

(n=12), flat faces (n=9), convex edges and ends (n=8 for both), faceted edges (n=5), flat and 

faceted ends (n=1 for both), 1 “other” e.u. for each cobble location, and the single grooved face. 

Due to it being distinct, the grooved face is not included in much of the e.u. analysis, but is 



54 
 

included here. The most commonly employed portion of each artifact is the face (n=83), followed 

by the edge (n=26), and ends (n=11). Figure 4.3 provides a summary of these data.  

 
Figure 4.3: Summary of employable unit morphology. 

Handstone analysis 

In order to test the hypothesis that the handstones from the study area are flexible in 

function, the way in which e.u.’s are distributed between local and non-local handstones was 

determined. It was expected that complete or nearly complete non-locally procured handstones 

would exhibit, on average, a greater frequency of e.u.’s than locally-procured cobbles, a 

reflection of their having been transported over a greater distance through which the tools were 

called into a greater frequency and diversity of tasks. This expectation assumed that all 

handstones are purely flexible in function (Nelson 1991), and called into a diversity of tasks as 

need arose. Thus, for example, the same transported handstone may have been employed to 
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grind small, early season seeds in the foothills, to batter and grind pine nuts in the montane 

forest, and to process mountain sheep hides in the alpine krummholtz, and to finally be discarded 

in a site many miles from its procurement source, whereas, to continue the example, a locally-

procured cobble may have been employed only to batter the long bones of an elk in the montane 

forest prior to being discarded very near it place of procurement. This hypothesis is tested in two 

ways, once for all handstones in the assemblage and once for all complete or nearly complete 

handstones.  

The descriptive statistics used to derive a two-tailed student’s t-test for both samples are 

presented in Tables 4.2 and 4.3. Though directionality of difference is hypothesized in that non-

local handstones are posited to exhibit more e.u.’s on average than non-local handstones, a two-

tailed t-test was used out of conservatism to simply test if there is a significant difference 

between the two samples.     

Table 4.2: Descriptive statistics used to conduct a student’s t-test comparing the difference in 
the frequency of e.u.’s between all complete and nearly complete local and non-local 
handstones. df=30, t-value=1.3779, p=.1784 
 

Source 
Frequency, 
handstones 

Frequency, 
e.u.'s 

Average 
frequency,  e.u.'s 

Standard 
deviation 

Local 8 20 2.5 0.93 

Non-local 24 46 1.92 1.06 
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Table 4.3: Descriptive statistics used to calculate a student’s t-test comparing the difference in 
the frequency of e.u.’s between all local and non-local handstones. df=57, t-value=1.4796, 
p=.1444 

 

Source 
Frequency, 
handstones 

Frequency, 
e.u.'s 

Average 
frequency,  e.u.'s 

Standard 
deviation 

Local 11 28 2.55 1.21 

Non-local 48 96 2 1.09 

 
 

For both samples (complete and nearly complete handstones vs. all handstones), there is 

no significant difference between the frequency of e.u.’s on local and non-local handstone at a 

95% confidence level. Furthermore, the difference observed between the means is in the 

opposite way anticipated by flexibility, local handstones exhibiting a greater average number of 

e.u.’s per tool.  

Though they are not statistically significant, the results of this analysis suggest a couple of 

things regarding handstone technology from the study area. Firstly, the assumption that 

handstones are technologically flexible is not true, at least not for the tools from the study area. 

Contrary to expectations, non-locally procured handstones were employed in a less diverse 

manner than locally-procured handstones. This finding, however, potentially has other 

implications regarding tool specialization and expediency. Perhaps sandstone handstones 

possessed some specialized quality that encouraged transport from the foothills to a relatively 

rich area for handstone raw material and subsequent conservatism of use, such as texture or the 

effectiveness of shaped or well-worn e.u.’s. Conversely, when local cobbles would suffice in 

performing a suite of tasks, they were perhaps employed expediently in a greater diversity of 

ways and then discarded. While statistical comparisons do not significantly support these claims, 

they are intriguing avenues for future research.  
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A second hypothesis is that non-local handstones should be, on average, smaller in mass 

than those procured locally, since they would have had to have been incorporated into a mobile 

toolkit. Given this prediction, non-local handstones should weigh significantly less than local 

handstones. Because this prediction is based on the size of complete artifacts, only the 32 

complete or nearly complete handstones from the assemblage are included. The descriptive 

statistics used to derive a two-tailed student’s t-test for this hypothesis is presented in Table 4.4. 

Table 4.4: Descriptive statistics used to calculate a student’s t-test comparing the mass between 
all complete and nearly complete local and non-local handstones. df=30, t-value=2.248, p=.032 
 

Source 
Frequency, 
handstones 

Mean 
mass (g) 

Standard 
deviation 

Local 8 694.3 228.1 

Non-local 24 497.5 210.1 

 
 

 There is a significant difference in mass between local and non-local handstones. Non-

local handstones weigh less than local handstones by an average of about 200 grams, suggesting 

that they were selected for inclusion into a mobile toolkit at least partially for their relatively 

small mass. Conversely, this implies that, when presented with local procurement opportunities, 

handstones were either indiscriminately chosen or chosen for their greater mass.  

Netherstone overview 

Compared to the formally shaped metates commonly found in horticultural sites (e.g., 

Hayden 1987), the netherstone grinding slabs from the study area are technologically quite 

rudimentary. Consequently, there are few attributes present on the tools informative of their 

function. Of the attributes evaluated for this study, thickness is perhaps most influential of 

technological performance. This attribute is largely conditioned by the thickness of the bedding 
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planes from which a given slab was quarried (Fratt and Biancaniello 1993; Thompson 1949), as 

opposed to a process of manufacture. However, assuming that a wide array of tabular sandstone 

thicknesses was available for procurement, the decision to quarry a grinding slab of a given 

thickness should ultimately reflect the technological performance desired from the tool (Fratt 

and Biancaniello 1993).  

Though grinding slabs were, with little question, used to process floral resources, this 

does not preclude their use for other functions. One potential function realized throughout the 

course of this study was that of a cooking stone, otherwise called a griddle or “comale” (Adams 

2002; Beck 2001). This interpretation was derived from the observation that many slab fragments 

seem too thin to support intensive plant processing and many exhibit heat alteration, as if to 

suggest intentional exposure to fire. Thinness is assumed desirable of stone slabs employed for 

the purpose of a cooking stone.  

Such an artifact would be placed directly on coals or propped above a flame on supporting 

stones in order to provide an indirect cooking surface. Tools of this sort are produced from thin 

slabs of both ceramic and stone and have identified from throughout the U.S. Southwest (Beck 

2001). They are most commonly associated with the preparation of tortillas. Cooking stone 

thickness is not commonly reported, but a comale from a Maricopa site was reported as “less 

than a half inch thick” or less than around 13 mm (Beck 2001; Spier 1978). Though the tools are 

most commonly associated with corn preparation, there is, at present, no reason to preclude 

similar food preparation techniques among hunter/gatherers, as the recipe for tortilla 

preparation requires only that one possesses flour and a mixture of ash and water (Beck 2001). 
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Figure 4.4: Representative netherstone form the study area.  

 

Further, a cooking stone may have been employed for use in preparing a wide array of 

foods besides tortillas. The following analysis tests the hypothesis that thin grinding slabs were 

used as cooking stones through statistical comparison of the thicknesses of burned to non-

burned grinding slab fragments.  

Netherstone results 

The assemblage of netherstone fragments used for this analysis is comprised of 137 

netherstone fragments from 20 archaeological sites. In total, 38.53 kg of netherstone artifacts 

equaling approximately 8,199.5 cm2 of surface area are represented by the recorded assemblage. 

Surface modification ranges from highly polished to minimally utilized or weathered to the extent 

that little ground surface remains.  
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Grinding slab fragments vary greatly in maximum thickness, averaging 16.41 mm, but 

ranging from between 4.93 and 60.5 mm. Grinding slab thickness is expressed as a frequency 

distribution in Figure 4.5. The most frequent grinding slab thickness is centered upon a range of 

between 10 and 11 mm and frequency decreases rapidly as thickness increases, with zero 

fragments between 36 and 52 mm and only 1 fragment of ground stone in both the 52-53 mm 

and 60-61 mm ranges.  

Taken at face value, it would appear as though the thinnest of grinding slabs were 

transported most frequently into the study area. This is, however, a misinterpretation of these 

data. Due to the thinnest fragments’ tendency to fracture on a more frequent basis, thickness is 

fundamentally conditioning this frequency distribution. A more accurate depiction of thickness 

distribution is expressed by the sum of all surface area proxy measures for each range. Figure 4.6 

depicts this distribution.  

Instead of rapidly declining frequencies with increasing thickness ranges, the distribution 

contains five or perhaps six modes. The most well-represented thickness range is between 26 

and 28 mm, while grinding slabs less than 10 mm thick are virtually not present when compared 

with other modes. Other modes occur between 10 and 12 mm, 17 and 18 mm, 34 and 36 mm, 

and two outlying modes at 52 and 53 mm and 60 and 61 mm represented by one artifact each 
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Figure 4.5: Distribution of netherstone fragment frequency by thickness. 

  

 
Figure 4.6: Distribution of grinding slab surface area by thickness. 

 .  
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Netherstone analysis 

Given the hypothesis that thin grinding slabs were use as cooking stones as opposed to 

grinding implements, and that this use would result in macroscopic alteration due to exposure 

to fire, there should be a significant difference in thickness between thermally altered and non-

thermally altered grinding slab fragments. The descriptive statistics used to derive a two-tailed 

student’s t-test is presented in Table 4.5. 

 
Table 4.5: Descriptive statistics used to derive student’s t-test comparing thicknesses of burned 
and non-burned grinding slab fragments. df=135, t-value=-.184, p=.8542. 
 
 

  
Frequency Mean thickness 

Standard deviation, 
thickness 

Burned 56 16.17 7.59 

Non-burned 81 16.44 8.98 

Total 137   

 
 

 The thicknesses of thermally altered and non-thermally altered grinding slab fragments 

are not statistically different (p=.8542). Therefore, the hypothesis that thermally altered grinding 

slab fragments should be thinner due to use as cooking stones is not supported by these data. 

These results are due to one or more of the following scenarios.  

 Firstly, it is possible that grinding slabs were not employed for use as cooking stones, and 

that any evidence of heat alteration is due to recycling of ground stone in hearth features or 

naturally occurring wildfires. Such processes should indiscriminately thermally alter the artifacts, 

leading to the pattern observed in the Indian Peaks assemblage. Secondly, it is possible that 

thickness does not impact a grinding slab’s effectiveness as a cooking stone, at least not enough 

to observe archaeologically. In this scenario, grinding slabs of varying thicknesses would all be 
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equally suitable for use as cooking stones. Therefore, thermal alteration should remain constant 

between all thickness ranges.  

Conclusion 

 A technological analysis has enabled hypothesis-driven questions to be asked of the 

ground stone tools from the study area assemblage. Though a myriad of questions may be asked 

of these data, the present study focused on those related to the technological organization of 

the prehistoric ground stone toolkit. Namely, the two guiding questions in this chapter were: 

“Are handstones used in a flexible manner?” and “Are netherstones used for functions other than 

the grinding of floral resources?”   

Though an abundance of cobbles suitable for use as handstones were available to 

foragers in the Front Range high country, the majority of handstones recorded from the region 

were transported many kilometers from the foothills to be deposited in archaeological sites. In 

order to determine why this might be the case, several functional and technological attributes 

were tested and have provided insights regarding the decision-making process attending 

transport of the tools. Firstly, non-locally procured cobbles were employed in a more 

conservative manner than locally-procured handstones, and therefore exhibit, on average, less 

employable units. This implies specialization of function, though which properties of non-local 

handstones lent themselves to this function have not been determined. Secondly, non-local 

handstones were selected for their diminutive size relative to locally-procured handstone, which 

maximized the efficiency of their transport from the foothills. This implies that handstones 
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procured in the foothills were chosen with the intention of being incorporated into a mobile 

tookit.  

All grinding slabs from the project area are non-local, having been transported from the 

sandstone foothills are least 20 km east of the project area. They are largely uniform in shape, 

but vary greatly in thickness, an attribute posited to have influenced their functionality. Having 

observed burning on many items, it was proposed that some of the thinnest slabs may have been 

used as cooking stones, but this hypothesis if not statistically supported. Burning is instead 

perhaps related to natural wildfires or the recycling of netherstone fragments into hearths. Also, 

perhaps netherstone thickness was not significant to determining their function as cooking 

stones, so all artifacts were thermally altered without regard for thickness.  

These analyses have only scratched the surface of what is ultimately a far more complex 

record than previous analyses have suggested. The attributes employed for this analysis are 

included in Appendices I-VI as well as many others not included in these analyses such as Mohs 

hardness values, color, and more detailed aspects of handstone e.u.’s. There are no doubt other 

patterns to be drawn from these data, and the reader is encouraged to do so.  
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CHAPTER 5 

A TEMPORAL ANALYSIS OF GROUND STONE TOOL TECHNOLOGY 

 

The high elevations of the Colorado Front Range have been utilized since Late Paleoindian 

times (Benedict 2000), and ground stone tools have been a part of this utilization for at least the 

last 6,000 years (Benedict 1978a; Olson 1978). Despite theoretically-derived assertions to the 

contrary (Bender and Wright 1988), patterns of mobility and land use undoubtedly underwent 

drastic shifts over temporal periods this broad, the mountains at times abandoned or sparsely 

occupied and at others intensively utilized by large, residential groups of foragers (Benedict 1992, 

1999). These shifts were attended by a diversity of changes to the material record of occupation, 

which shifted not only in the density of remains left behind, but in the raw material sources 

utilized (e.g., Benedict 1992, 2012), the types and styles of weaponry employed (Benedict 1978a, 

LaBelle and Pelton 2013), and the use of ceramics (Benedict 1989; Kindig 2000).  

Very likely, these shifts are also reflected in ground stone tools, differences in the quantity 

of ground stone remains at a site, the source of their procurement, and their predominant 

morphological attributes corresponding with widely-recognized temporal intervals. Specifically, 

it is expected that ground stone tools will become more frequent and exhibit a greater diversity 

of morphological forms during the Early Archaic period, which is locally represented by the 

Mount Albion complex (Benedict 1978a, 1996, 2012; Olson 1978). During this time, it is suggested 

that drought on the Plains forced local populations to seek areas of ‘refugia’ in which subsistence 

became concentrated (Benedict 1978b, 1979a). This idea is corroborated by an increase in 

radiocarbon frequencies during this interval and the presence of multiple, dense residential 
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occupation sites, several of which have been excavated. Therefore, ground stone tools should 

not only be more frequent in Early Archaic contexts, they should exhibit a greater diversity of 

morphological forms associated with their presence in residential base camps in which a wide 

array of subsistence activities occurred (Schiffer 1987).  

However, deriving temporal patterns from a largely surficial record is problematic due to 

a wide array of cultural transforms including artifact recycling (Camilli and Ebert 1992), site 

reoccupation (Camilli 1983), and the generally coarse resolution inherent to reliance upon 

diagnostic projectile points as a temporal indicator (e.g., Smith et al. 2013; Thomas 1981a). 

Therefore, even if ground stone tools are found in the same archaeological site with diagnostic 

projectile points, the association between the two can only be considered tentative. Ground 

stone tools have been recovered in context with dated features from buried contexts at multiple 

sites (Benedict 1978a, 1990; Olson 1978), but these tools constitute a relatively small percentage 

of the assemblage.  

An additional issue in diachronic studies is that of the relationship between diversity and 

sample size (Schiffer 1987; Shott 1989; Thomas 1983). Simply, as the frequency of artifacts within 

a categorical set increases, the diversity of forms within that set does as well. Therefore, temporal 

intervals from which more ground stone tools have been recovered will tend to exhibit a greater 

diversity of tools. This is potentially an issue with the present dataset, and largely influenced by 

the more thorough representation of certain temporal intervals due to excavation of large single-

component sites (Benedict 1978a; Olson 1978). 
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This chapter addresses these issues in the following way. Firstly, temporal intervals 

employed for this analysis are defined and associated with specific sites. Secondly, the results of 

this association are presented in terms of the frequency of artifacts for each temporal range, the 

diversity of grinding slab thickness for each temporal range, and the diversity of handstone e.u.’s 

for each temporal range. Then, it is determined how much sample size may be impacting 

interpretations regarding the diversity of ground stone tool morphology.. If this can be controlled 

for, interpretations regarding diachronic shifts in ground stone use may then be proposed.  

Defining of Temporal Intervals 

The Mount Albion complex is the most well-defined in the Front Range high country, 

having been thoroughly described in a highly consistent fashion between four sites in the region 

(Benedict 1978a, Benedict 1996, Benedict 2012; Olson 1978). Mount Albion sites date from 

between 5,300 to 6,000 rcybp from three sites (Benedict 1978a, 2012, Olson 1978). The complex 

is defined from the Hungry Whistler site, and that publication provides a detailed discussion of 

the complex’s attributes (Benedict 1978a). The most consistently diagnostic artifact within the 

complex is the crude, shallowly side to corner-notched projectile point of a wide range of sizes, 

and almost always manufactured from local or semi-local raw material and ground on its base 

and within its notches. There are six sites attributed to the Mount Albion complex within the 

sample of sites containing ground stone tools.  

Generic Archaic sites differ from Mount Albion in the absence of projectile points that 

may be definitively attributed to the Mount Albion complex, but that contain notched projectile 

points large enough to have been hafted at the end of a dart. Though Thomas (1978) and Shott 
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(1997) argue that darts may be discerned from arrows on the basis of several simple metric 

equations, this was beyond the scope of this study, and an arbitrary cutoff of between a 10 and 

11 mm neck width was employed to discern between arrow and dart points. There are three sites 

attributed generically to the Archaic period within the sample.  

Late Archaic site were further discerned by the presence of distinctively large, corner-

notched projectile points, which have been found in context with dates of around 3,000 years 

rcybp at several sites in the region (Benedict 1979b; Benedict and Cassells 2012; LaBelle and 

Pelton 2013; Porcupine Peak site, CSU unpublished data). Though Late Archaic dart points are 

morphometrically quite similar to later arrow points, they are larger, with neck width commonly 

exceeding 12 mm. There is one site attributed to the Late Archaic period within the sample.  

Early Ceramic sites are defined by the distinctive hogback complex projectile point, which 

are small, corner-notched arrow points, often exhibiting serration (Benedict 1975a; 1975b; 

Nelson 1971). Early Ceramic dates from the mountains typically range from between 1500 and 

800 rcybp (Benedict 1975a, 1975b, 1990, 1993). There are two sites attributed to the Early 

Ceramic period within the sample.  

Multi-component sites are those that contain a diversity of the aforementioned projectile 

point styles and non-diagnostic sites are those containing no diagnostic projectile points or those 

represented by ground stone artifact isolates. Multi-component sites may consist of unpublished, 

large surface scatters of lithic debitage and tools, but are also represented by game drive systems 

that have been re-used through time (LaBelle and Pelton 2013). There are 12 multi-component 



69 
 

sites and six non-diagnostic sites within the sample. Data for all temporal intervals is summarized 

in Appendices II and IV.  

Summary of results 

 With 89 netherstone fragments and 20 handstones, the Mount Albion complex is, by far, 

the most frequently represented temporal interval included in this analysis. Multi-component 

assemblages are the second most well-represented (n=34 artifacts), followed by non-diagnostic 

(n=28), generic Archaic (n=16), Late Archaic (n=7), and Early Ceramic assemblages (n=5). The 

frequency of artifacts per temporal interval is presented in Figure 5.1. 

 
Figure 5.1: Frequency of ground stone artifacts per temporal interval. 
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As noted in chapter 4, netherstones are often overrepresented through frequency data 

due to fragmentation, and this is certainly true of the temporal analysis. Figure 5.2 depicts the 

same netherstone artifacts displayed as a function of the total surface area they represent for 

each temporal interval. Though they contain the lowest frequency of total artifacts, Early Ceramic 

sites contain the greatest amount of netherstone surface area, a function of these sites being 

represented by a small number of very large netherstone artifacts. In decreasing amounts of 

surface area, Early Ceramic sites are followed by non-diagnostic, Mount Albion, multi-

component, generic Archaic, and Late Archaic sites. It should be noted that the surface collection 

of netherstone artifacts recovered from the Mount Albion-associated Hungry Whistler and 5BL70 

sites was not included in the analysis due to it not being present within the collection housed at 

the CMPA, so the actual amount of ground stone surface area represented at these sites is 

underrepresented to an unknown degree.  

Summary of handstone results 

 Though it is recognized that morphology and subsistence activity may not always 

represent a 1:1 relationship with one another (Adams 1999), employable unit morphology is 

perhaps the variable most directly related to prehistoric subsistence activities of all quantified 

for this analysis. Different resources require different demands of the person responsible for its 

processing, and those demands should be reflected in the way in which a ground stone tool is 

used and the subsequent morphological attributes that form as a result of that use. For example, 

small cheno-am seeds are easily contained beneath the confines of a handstone during 

processing and result in slight to moderate convexity of a ground surface (Lancaster 1984). On 
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the other hand, larger resources such as corn or pine nuts must be continually kept confined 

beneath a handstone, which is often done by dragging coarsely ground flour across the surface 

 
Figure 5.2: Surface area of netherstones and frequency of handstones per temporal interval. 

 
 

of a netherstone with a faceted handstone face in a push and pull motion (Adams 1999; Hard  et 

al. 1996). A comparable suite of correlates may be drawn between morphology and various steps 

in hide preparation, which result in both edge-ground (Owens 2006) and face-ground (Adams 

1988) employable units, though standardization of use motion for morphologies related to hide 

processing are currently more ambiguous than those for face-ground morphologies.   

 If we are to assume that at least a partial correlation between morphology and 

subsistence activity exists, the identification of variation in employable unit morphology between 

temporal intervals may illuminate differences in the way in which the high country was exploited 
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by prehistoric foragers through time. To this end, all employable units were assigned to one of 

the six identified temporal intervals. The results are presented as frequency data in Table 5.1. 

Table 5.1: Employable unit frequency by temporal period. 

Temporal 
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Total 
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Mount Albion 8 9 1 7 3 0 1 1 4 0 1 1 1 1 38 

Generic 
Archaic 

4 5 0 0 1 0 1 2 1 1 2 0 0 0 17 

Late Archaic 2 1 0 1 0 0 0 0 1 0 0 0 0 0 5 

Early Ceramic 1 3 0 1 0 0 0 0 0 0 0 0 0 0 5 

Multi-
component 

5 13 3 2 3 1 4 1 5 0 4 0 0 0 41 

Non-
diagnostic 

3 3 0 2 3 0 1 1 2 0 2 0 0 0 17 

Total 23 34 4 13 10 1 7 5 13 1 9 1 1 1 123 

 

As noted in Chapter 4, 14 types of e.u.’s were identified from the handstone assemblage: 

six morphological types for faces, four for edges, and four for ends, for a total of 123 identifiable 

employable units, all indeterminate e.u. locations having been omitted. The following briefly 

describes notable aspects of the employable unit assemblages from each of the six defined 

temporal intervals.  

 Mount Albion handstones contain the second most employable units (n=38) and the 

greatest diversity of e.u. types (n=12). Mount Albion handstones are the only ones that exhibit 

flat and faceted ends, as well as the single irregular end that has been altered from flaking 

extending from the cobble end into its faces and edges. By use location, 73.7% of Mount Albion 
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employable units are located on cobble faces, 15.8% on edges, and 10.5% on ends. Generic 

Archaic sites contain 12 e.u.’s and the greatest diversity of edge ground employable units, having 

the only irregular edge, which has been altered through battering. By use location, 58.8% of 

generic Archaic employable units are located on faces, 29.4% on edges, and 11.8% on ends. Late 

Archaic sites contain five e.u.’s, none of which located on cobble ends, and only one on a cobble 

edge (20% of e.u.’s). By far, the majority of e.u.’s are located on faces (80%), which is comparable 

to Early Ceramic e.u.’s, all five of which are located on faces (100%). Multi-component sites 

contain the most e.u.’s (n=41) and the second greatest diversity of e.u. types (n=9). They contain 

the highest frequency and percentage of the distinctive greatly convex faces in the assemblage. 

By use locations, 65.9% of multi-component e.u.’s are located on faces, 24.4% on edges, and 9.8% 

on ends. These percentages are comparable to those from non-diagnostic sites (64.7%, 23.5%, 

and 11.8%, respectively). However, non-diagnostic e.u.’s contain a greater percentage of weakly 

faceted and flat faces, while they contain a far lower percentage of convex faces, and a complete 

absence of greatly convex faces.   

Summary of netherstone results 

Figures 5.3 through 5.8 depict the distribution of grinding slab surface area by thickness 

range for each temporal period defined for the study sample. Comprising 22 thickness ranges, 

Mount Albion grinding slabs comprise the greatest diversity of thicknesses of all periods. As the 

oldest period within the sample, this is perhaps due to the grinding slabs having undergone a 

greater degree of fragmentation than other periods, their original thicknesses have been 

truncated due to fragmentation across natural bedding planes. Thickness of Mount Albion 

grinding slabs ranges between 5.14 and 30.77 mm and averages 15.72 mm. Grinding slab 
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thicknesses are diverse, and distributed across approximately eight discernible modes; between 

five and six mm, 10 and 12 mm, 14 and 15 mm, 19 and 20 mm, 21 and 23 mm, 26 and 27 mm, 30 

and 31 mm, and 34 and 35 mm. 

 
Figure 5.3: Surface area distribution as a function of thickness for all Mount Albion netherstone 

fragments. 
 
 

 
Figure 5.4: Surface area distribution as a function of thickness for all generic Archaic 

netherstone fragments. 
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Figure 5.5: Surface area distribution as a function of thickness for all Late Archaic netherstone 

fragments. 
 
 

 
Figure 5.6: Surface area distribution as a function of thickness for all Early Ceramic netherstone 

fragments. 
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Figure 5.7: Surface area distribution as a function of thickness for all multi-component 

netherstone fragments. 
 
 

 
Figure 5.8: Surface area distribution as a function of thickness for all non-diagnostic 

netherstone fragments. 
 

Generic Archaic grinding slabs comprise five thickness ranges between 8.34 and 13.58 

mm and average 11.14 mm in thickness. Grinding slabs form one mode between 11 and 12 mm 
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in thickness. Having all come from one site (5BL158), this is likely due to the fragments having all 

been derived from the same grinding slab.  

 Late Archaic grinding slabs comprise three thickness ranges between 10.13 and 20.43 mm 

and average 15.19 mm in thickness. Modes are present between 10 and 14 mm and 20 and 21 

mm. The mode between 10 and 14 mm is split between two sites and therefore represents two 

grinding slabs, one between 10 and 11 mm in thickness (at 5BL220) and the other between 13 

and 14 mm in thickness (at 5BL222). 5BL222 also contains the larger, 20 to 21 mm thick grinding 

slab.  

 Only two individual grinding slabs from two Early Ceramic sites are present within the 

sample, one large, refit slab at 27.72 mm thick (5BL69) and one 16.12 mm thick fragment from 

5BL209, for an average of thickness of 18.26 mm. Thickness are therefore represented by two 

modes between 16 and 17 mm and 27 and 28 mm.  

 Ground stone assemblages from multi-component sites contain a diverse, yet modally-

discrete distribution of grinding slab thicknesses. The term modally-discrete implies that 

thickness modes are most often represented by only one thickness range. This is opposed to, for 

instance, the Mount Albion distribution, in which modes are dispersed across several thickness 

ranges, often making them difficult to discern. This is likely a function of each multi-component 

mode being represented by only one to three fragments of grinding slab. Multi-component 

grinding slab thicknesses comprise 11 thickness ranges between 12.2 to 60.5 mm and average 

24.17 mm in thickness. The sample of multi-component grinding slab represents eight modes 

between 11 and 13 mm, 14 and 15 mm, 17 and 19 mm, 21 and 22 mm, 24 and 25 mm, 28 and 29 
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mm, 52 and 53 mm, and 60 and 61 mm. It should be noted that the 60 to 61 mm thickness range 

represents the single basin netherstone from the sample, and is not a grinding slab in the 

technological sense, even if it has been shaped from a thick piece of tabular sandstone.  

 Grinding slabs from non-diagnostic sites are distributed across eight thickness ranges 

between 13.40 and 26.37 mm and average 16.43 mm in thickness. Though the assemblage is 

represented by 18 specimens from seven sites, only two modes are discernible; one dispersed 

mode between 13 and 22 mm and one discrete mode between 26 and 27 mm. The two thickness 

ranges with the most surface area are represented by two large grinding slab isolates, and may 

be impacting the strength of this smaller mode. The possibility should be considered that grinding 

slabs of these thicknesses, especially those between 16 and 20 mm, are more likely to have been 

deposited in contexts in which diagnostic artifacts are less likely to be present, such as special-

purpose task sites in which diagnostic hunting implements are not present. Indeed, of the non-

diagnostic sites, two are classified as game drives, three as task sites, and two as isolated finds.  

Sample bias 

 The preceding analyses seem to indicate several diachronic patterns present in the Indian 

Peaks ground stone assemblage. Namely, there seems to be a greater degree of diversity in 

ground stone tools present within Mount Albion assemblages than for any other temporal 

interval, both in grinding slab thickness and handstone employable unit diversity. Taken at face 

value, this diversity seems to suggest that Mount Albion foragers occupied sites more intensely 

than foragers living during subsequent periods, that increased occupational intensity resulting a 

greater diversity of artifact discarded (Schiffer 1987). In light of previous research (Benedict 



79 
 

1978a, 1979a), it is tempting to accept these patterns as bolstering of existing interpretations of 

early Archaic land use during which extended residential occupation occurred. 

 However, the impact of sample size must not be brushed aside as a minimally-

contributing factor conditioning these patterns (Thomas 1983). In fact, accounting for sample 

size is foundational to making interpretations of assemblage diversity (Shott 1989), whether it be 

for faunal remains (Grayson 1984), ceramic sherds (Kintigh 1984), or lithic assemblages (Thomas 

1983). Only after accounting for assemblage size may the analyst begin to parse apart the human 

behaviors conditioning assemblage diversity.  

 Such studies may be collectively referred to as “accumulations research” and an extensive 

review of its history and application is presented in Varien and Mills (1997). Modeling of 

archaeological accumulations can be quite complex and a full application to the Indian Peaks 

ground stone assemblage is well beyond the scope of the present analysis. Besides, elucidating 

the deleterious impacts of sample size on the preceding analyses is really quite simple; diversity 

is quantified as the frequency of classes present within a sample, otherwise termed “richness” 

(Macarthur 1972; Peet 1974), and is plotted against the total frequency of artifacts within that 

sample. In a stratified archaeological deposit, each sample would refer to a defined stratigraphic 

level (Thomas 1983), in a landscape study to a discrete archaeological site (Shott 1989), and for 

the purposes of this analysis to each defined temporal interval.  

For netherstones, diversity is expressed as the frequency of thickness ranges subsumed 

under each temporal interval, regardless of the frequency of artifacts within each thickness range 

or the total surface area of grinding slab present within each thickness range. For handstones, 
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diversity is expressed as the frequency of employable unit classes and is plotted against the total 

frequency of employable units identified for each temporal period also without regard for the 

frequency of artifacts within each e.u. class. Therefore, evenness, or equitability (Shott 1989), is 

not accounted for. These diversity measures are plotted against the total frequency of grinding 

slab fragments and e.u.’s for each temporal interval and are presented in Figures 5.9 and 5.10, 

respectively. 

 

 
Figure 5.9: Demonstration of sample bias impacting netherstone thickness diversity. 

 
  

As expected of an assemblage whose diversity is being impacted by sample size, over 90% 

of the variation observed in grinding slab thickness diversity and 81% of the variation in e.u. 

diversity can be accounted for by sample size, in a pattern Shott (1989) refers to as positive linear. 
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Mount Albion sites are simply more extensively excavated than other components and therefore 

contain a greater diversity of grinding slab thickness, whether that diversity be a function of 

systemic or post-depositional processes (Schiffer 1987). 

 

 
Figure 5.10: Demonstration of sample bias as expressed by the frequency of employable units. 

 
  

 Perhaps a comparable diversity of thicknesses would be present during all temporal 

intervals had sites from each been excavated as thoroughly as those for the Mount Albion 

complex. On the other hand, perhaps sites of this nature do not exist for other temporal intervals, 

at least not within the highest elevations of the CFR, and are therefore underrepresented for a 

reason. For instance, the single excavated Early Ceramic campsite (5BL69) yielded only a single 

fragmented grinding slab, which is included in this analysis as a single, refit artifact and 
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comprising a single thickness range, whereas all excavated Mount Albion sites contain multiple 

slabs of a variety of thicknesses.   

For both netherstones and handstones, multi-component sites deviate from expected, 

sample-size contingent diversity trends. Such deviations from expected values are precisely the 

type of phenomena one hopes to isolate when controlling for sample bias (Shott 1989; Thomas 

1983), as they potentially represent real differences in diversity between samples. Multi-

component sites contain greater diversity of netherstone thicknesses than expected and less 

diversity of handstone e.u. types than expected given the sample sizes for these two artifact 

types. A specific explanation for this pattern is not suggested, other than to point out that, having 

been utilized for many centuries or perhaps millennia, multi-component sites were likely 

incorporated into a multiple cultural systems, each of which utilizing a given site in a slightly 

different manner (Wandsnider 1992). This utilization may have remained roughly constant 

through time with regard to handstone form, thereby contributing to less than expected diversity 

among handstone e.u.’s, Conversely, the repeated transport of netherstones to multi-

component sites during multiple occupations may have led to greater than expected diversity of 

thicknesses, whether that diversity be a function of differing quarrying locales, function, or simply 

random.   

Summary and Conclusion 

 Though ground stone tools rarely exhibit attributes that may be attributed to exact 

temporal periods, large-scale shifts in their presence or morphology may serve as proxy for 

fundamental shifts in subsistence, and therefore societal organization (chapter 2). Ideally, such 
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shifts should be studied in a single, stratified site in which independent variables such as access 

to raw materials or subsistence resources may be controlled for, and in which discrete temporal 

components may be sealed in a stratified context. However, such a site does not exist in the study 

area. Consequently, temporal patterns must be derived from the contents of excavated, single-

component sites and from surface collections that may or may not be mixed between multiple 

temporal periods.  

 Despite these issues, a temporal analysis was conducted to a) discern potential diversity 

between defined temporal periods and b) assess the needs of future diachronic research. 

Towards this end, it was determined that, in accordance with existing models of prehistoric land 

use, Mount Albion sites do indeed contain the greatest diversity of ground stone tools, both in 

the diversity of grinding slab thicknesses and handstone e.u.’s. However, it was also determined 

that this diversity if a function of sample size. Multi-component sites are an outlier in terms of 

their diversity, but the implications of this trend are not yet known.  

 Future diachronic studies in the study area should rectify two primary deficiencies of the 

present study. Firstly, greater temporal control should be enacted through the use of artifacts 

only from buried archaeological contexts. The use of diagnostic projectile points from surface 

assemblages was a good start, but it is a coarse-grained means of assigning temporal association 

and is subject to serious error due to the mixing of assemblages from multiple occupations. Many 

excavated archaeological sites from the study area were not available at the time of this analysis, 

but may become so in the future. Though this may reduce the sample size available for study, 

the artifacts that are included will have greater temporal control. Secondly, the impacts of sample 
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size need to be accounted for in future diachronic studies. Though the use of excavated sites will 

partly account for this discrepancy, it may be the case that we simply need more excavation to 

be conducted for sites of certain ages. The diversity problem is not unique to lithic analyses, 

diachronic studies, or even archaeology itself, but a pervasive and ever-present issue in all 

quantitative studies. However, once sample bias is accounted for, one may discern real diversity 

between assemblages, and devise any number of ways to understand the variables conditioning 

that diversity. The use of residuals is a promising means of quantifying this diversity (Thomas 

1983), and may prove to be a valuable tool in making interpretations of landscape-level 

archaeological phenomena for the extensive Indian Peaks dataset. 

 .  

 

 

 

 

 

 

 

 

 



85 
 

CHAPTER 6 

A DISTRIBUTIONAL ANALYSIS OF GROUND STONE TOOLS 

 

The following is a distributional analysis of ground stone tools from the high elevations (> 

2850 meters above sea level) of the Colorado Front Range. The region is comprised of some of 

the highest elevations in North America, and is consequently sparsely productive of floral 

resources (Benedict 2007b, 2009). Nevertheless, cumbersome, non-local ground stone tools 

assumed to have been used for plant processing are relatively common, begging the question of 

why prehistoric foragers may have bothered with such a seemingly costly and ill-productive 

endeavor. This study employs the presence or absence of ground stone tools within a sample of 

253 archaeological sites towards an explanation of this phenomenon. This unit of analysis may 

seem simplistic, but, as is argued, it takes on greater significance when studied in aggregate and 

in relation to regional-scale ecological variables. On a regional scale, and especially with respect 

to forager sites in which ground stone tools are not a ubiquitous presence, the distribution of 

their presence or absence is sufficient in making some fundamental statements regarding 

prehistoric land use.   

Previous models of regional prehistoric land use suggest two broad expectations 

regarding ground stone tool distribution. Benedict’s (1992) ‘grand circuit’ model expects that the 

distribution of ground stone tools will be random, the tools having little utility to those crossing 

the Continental Divide from the west in the early fall after a year-long transhumance through the 

High Plains and mountain interior of northern Colorado and southern Wyoming. This expectation 

is grounded on the notion that their discard occurred as a means of lightening a transported 
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toolkit in anticipation of retooling soon thereafter in the sandstone foothills of the Front Range. 

Given random discard, we would expect to find little or no relationship between ecological 

variables and ground stone tool presence in an archaeological site.  

Another model views prehistoric land use as more restricted in space, and occurring in an 

“up-down” or “piston” fashion between the foothills and high elevations of the eastern slope of 

the Front Range (Benedict 1999). Such a model implies a more prolonged use of the project area 

over a larger portion of the year and, importantly, use of the eastern side of the CFR during a 

time in which plant productivity made floral resource extraction an option. Given this scenario, 

it is expected that ground stone tool distribution will be patterned, and related to the 

provisioning of certain ecological communities with the tools needed for their exploitation (Kuhn 

1995). Therefore, there should be more ground stone at elevations or within ecological 

communities in which plant productivity is greatest and fewer where plant productivity declines 

or the record becomes dominated by other types of subsistence activities.  

Of further interest is the distribution of different ground stone tool types between 

elevations ranges (i.e., netherstones vs. handstones) for each site. Ground stone tools are 

discarded in a wholly different manner than chipped stone, and several issues specific to the 

region should be addressed that perhaps conditioned tool discard patterns. Firstly, the tools, and 

especially netherstones, are cumbersome to transport, weighing many kilograms and 

monopolizing valuable space amongst one’s personal gear. However, suitable raw material for 

use as netherstones is not ubiquitous across space, so their transport from the foothills was 

necessary. This would have undoubtedly decreased the efficiency of one’s mobility and may have 
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been a factor conditioning their place of discard. However, discard for the reason of increasing 

one’s mobile capacity does not imply that one was abandoning the tool completely. Tools may 

have been left at a preferred base camp with the expectation of use during subsequent years, or 

at logistical task sites at which a predictable resource is located. This is, essentially, furnishing 

one’s landscape with site furniture (Binford 1978) or provisioning it with the necessary tools 

(Kuhn 1995) so that the cost of pursuing a given resource diminishes during subsequent years.  

Secondly, unlike netherstones, handstone raw tool forms are nearly ubiquitous in the 

region, rounded cobbles occurring along waterways and in glacial deposits. Nevertheless, as the 

previous analyses have shown (chapter 4), the most frequently recovered handstones from the 

region were imported from non-local sources, suggesting that sandstone handstones were, as 

well, preferred to local raw materials for use as handstone tools. Therefore, the discard of 

handstones may have occurred in a different manner than other tool forms, both as a means of 

provisioning a site with high quality handstones (in the case of non-local specimens) and at the 

end of their use lives. Elucidating similarities and/or differences in discard patterns between 

netherstones and handstones is key to understanding the organization of ground stone 

technology for the region.  

With these notions in mind, the following analyses are conducted to discern which 

patterns, if any, can be detected in the distribution of ground stone tools. Firstly, I review the 

methods employed in this study, including the way in which data was collected and how it was 

organized, a discussion of the units of inquiry employed, and the statistical methods employed 

to discern patterns in the data. Secondly, I present the results of the analysis. I start with 
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presentation of the raw data collected for the study and continue with a presentation of the 

results of statistical tests designed to detect similarities and/or difference in ground stone tool 

distribution between ecological zones. Lastly, I discuss the implication of the findings in terms of 

existing models of land use and the technological organization of ground stone tools in the study 

area.   

Methods 

The first goal was to determine which sites within the study area contain ground stone 

tools and which do not. For several sites, the presence/absence of ground stone tools could be 

determined from published reports, but this constituted a relatively small amount of the total 

sites. Towards resolving this goal, the following steps were undertaken. Firstly, I scanned and 

digitized five quadrangles on which Jim Benedict had drawn the locations of all the sites recorded 

by the Center for Mountain Archaeology, including the East Portal, Ward, Isolation Peak, 

Monarch Lake, and Allens Park 1:24,000 USGS quads. These included many sites reported to the 

state office, but some for which site forms had never been completed. Additionally, I digitized a 

map of the Rollins Pass area showing the locations of all recorded sites from that region of the 

study area, as they were not included on the larger quadrangles. As a last step, I requested a 

shapefile from the Colorado State Historic Office of all prehistoric sites located within the same 

five quadrangles obtained from Jim Benedict. These data were combined in a GIS in order to 

provide a baseline dataset for the study area. I then employed published reports, site forms, and 

the collection of artifacts housed in the Benedict Alpine Laboratory at the Center for Mountain 

and Plans Archaeology at Colorado State University to assign the presence/absence of ground 
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stone tools for each site, and coded for this attribute in the GIS dataset. Lastly, an elevation-

based frequency distribution of all sites per every 50 m interval of elevation in the study area was 

compiled. The distribution includes sites that contain and do not contain ground stone tools, so 

that both frequency and percentages of sites with ground stone tools may be presented by 

elevation range. Each site elevation was derived from a 10 m accuracy digital elevation model 

(DEM) of the project area. In total, 253 sites are included in the analysis, 98 of which contain 

ground stone tools 

A second goal of the project was to discern which specific ground stone tool types (i.e., 

netherstone and/or handstones) were present in each site. These data were derived from 

research reports, published articles, site cards, and the Center for Mountain and Plains 

Archaeology (CMPA) collection of ground stone tools from the study area. Five sites were omitted 

from the tool type distribution due to only the generic presence of ground stone having been 

noted. It is assumed, but not known, that this presence refers to netherstone slabs only, and that 

these artifacts were left in the field due to their cumbersome transport and that their specific 

morphology was simply left off of the site card by accident due to the routine presence of this 

artifact type in this portion of the study area. Omission of these sites leaves a total of 93 sites 

included in this distribution. An elevation-based frequency distribution of sites by ground stone 

tool type was then created from these data, similar to that created for the presence/absence of 

ground stone tools.  

The next step was creating ecologically-based units of analysis for the study. As noted in 

chapter 1, the distribution of ecological communities in the region is largely contingent upon 
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elevation, but a direct correlation between elevation and ecological zone is complicated in 

primarily two ways. This is detailed more fully in chapter, but addressed briefly here. Firstly, the 

exact transition between ecological zones is fuzzy, and contingent upon highly localized factors 

of slope, aspect, and ground cover (Danby and Hik 2007; Rochefort et al. 1994). Consequently, 

elevation-based assignment of ecological boundaries are considered averages of the study area. 

Secondly, I recognize that these ecological divisions may have shifted since the project area’s 

prehistoric occupation, or even throughout the course of its occupation. This is due primarily to 

dramatic climate shifts, which, broadly, have caused a depression of tree limit since the mid-

Holocene (Benedict 2011; Benedict et al. 2008; Rochefort et al. 1994). Correcting for these 

discrepancies is beyond the scope of this analysis, but promising avenues for future research in 

the region. These caveats aside, each site included in this analysis was assigned one of three 

elevation-based ecological communities; the subalpine forest (2,850-3,350 m asl), the subalpine 

forest-alpine tundra ecotone (3,350-3,500 m asl), or the alpine tundra (>3,500 m asl).  

 The next goal was to provide statistically-supported statements regarding the 

distribution of these data according to their ecological association. Towards this end, a chi-

squared test was applied to both the total presence/absence and tool type datasets. In the case 

of statistical significance, standardized adjusted residuals were calculated to determine the 

contribution of each category (ecological zone) to that significance.  

Lastly, in order to contextualize these results against a tangible record of subsistence, a 

list of edible plants (excluding greens) was compiled for each ecological zone. Though 

ethnographic data pertaining to Native use of plants is sparse for the region, several (Benedict 
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2007a; Herrington 1967; Kershaw 2000) have made attempts at compiling comprehensive lists 

of edible and medicinal plants that may have utilized by prehistoric inhabitants. Of note is 

Benedict’s (2007a) work in which all edible plants from the study area are compiled, their 

ecological extents noted, and a synthesis of all ethnographic uses and means of processing 

described. As with ethnographically recorded groups whom subsisted upon alpine and subalpine 

environments for at least part of the year, reliance upon floral resources by prehistoric foragers 

of the Colorado Front Range was likely minimal (Benedict 2007b; Binford 2001) when compared 

to faunal resources. However, withstanding the notion that ground stone tools were transported 

to the high country without having been utilized, floral resources were processed in the region. 

Taking this as a given, it then becomes a matter of narrowing down the list of potential resources. 

To this end, I compiled all plant species identified in Benedict (2007a) as potential floral resources 

and noted and their ecological extents. Greens were omitted from this portion of the analysis 

due to the notion that practically any leafy plant may be consumed, and that these type of plants 

are relatively ubiquitous throughout the study area. The results of this compilation are presented 

in Table 6.1. 
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Table 6.1: All edible plants listed in Benedict 2007a and their distribution by ecological zone 
(excluding greens). 

Common name Latin name Type 
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Parry Alpine Spring Beauty Claytonia megarhiza root x     

Alp Lily Lloydia serotina root x     

Tufted Hairgrass Deschampsia cespitosa seed x x x   

Geyer’s Onion Allium geyeri root x x x x x 

American Bistort Bistorta bistortoides root x x x x x 

Alpine Bistort Bistorta vivipara root x x x x x 

Wild Raspberry Rubus idaeus berry x x x x x 

Alpine Bitterroot Oreobroma pygmaea root  x    

Mountain Potato Claytonia lanceolata root  x x   

Cottongrass Eriophorum augustifolium root  x x   

Yellow Avalanche Lily Erythronium grandiflorum root  x x   

Aspen Sunflower Helianthella quinquenervis seed  x x   

Limber Pine Pinus flexilis seed  x x   

Alpine Wintergreen Gaultheria humifusa berry  x x   

Limber Pine Pinus flexilis seed  x x   

Blueberry Vaccinium spp. berry  x x x  

Currant Ribes spp. berry  x x x x 

Soapberry Sheperdia canadensis berry   x   

Nodding Onion Allium cernuum root   x x x 

Fairy Slipper Orchid Calypso bulbosa root   x x x 

Horsetail Equisetum arvense root   x x x 

Sego Lily Calochortus gunnisoni  root   x x x 

Small-flowered Woodrush Luzula parviflora seed   x x x 

Strawberry Fragaria spp. berry   x x x 

Chokecherry Padus virginiana berry    x x 

Marshall Wild Plum Prunua americana berry    x x 

Parry Spring Beauty Claytonia rosea root     x 
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Results 

A map depicting the locations of all sites as well as the extents of the three ecological 

zones defined for this analysis is presented in Figure 6.1. The total range of site altitudes within 

the project area is 2854-3835 m asl with an average elevation of 3378 m asl and a standard 

deviation of 212 m. The total range of altitudes containing ground stone tools is 2975-3666 

meters above sea level (asl) with an average elevation of 3349 meters asl and a standard 

deviation of 167 m. Sites roughly increase in frequency with increasing elevation until reaching a 

peak in the alpine-subalpine ecotone between 3400 and 3500 meters asl, at which point site 

frequency declines into the alpine region. A frequency distribution for all sites for every 50 m of 

elevation range within the study area is presented in Figure 6.2. 

Borrowing from the nomenclature of Binford (1979), sites containing ground stone tools 

were classified according to three types and with regard to their degree of site furnishing; those 

containing only handstones are considered poorly furnished, as sandstone slabs are the most 

taxing item to procure, those containing only netherstones are considered adequately furnished, 

as a handstone may be easily procured, and those containing both handstones and netherstones 

are considered fully furnished, as the site is fully equipped for the exploitation of resources 

requiring the use of ground stone tools. Sites in which only the presence of generic ground stone 

was noted were omitted, leaving a sample of 93 sites. The results are presented in Figure 6.3. 
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Figure 6.1: A map depicting the locations of all sites compiled for this analysis. All sites located 
below the extent of the subalpine forest were omitted, leaving a total of 253 sites.  
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Figure 6.2: Frequency distribution of data per 50 m of elevation for all sites included in the 
analysis.  
 
 

Reflecting the total tool frequency distribution, poorly, adequately, and fully furnished 

sites all peak in frequency within the alpine-subalpine ecotone, between 3400 and 3500 m asl. 

Of note is that the entirety of the study area between elevations of 2950 and 3600 meters asl is 

adequately furnished with ground stone tools, netherstones having been deposited within each 

elevation range. Subsequently, the Colorado Front Range was a region to which one could return 
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empty-handed and be confident in procuring the tools needed to exploit the region’s floral 

resources based on prior furnishing and easily acquired handstones.  

 

Figure 6.3: A depiction of the frequency of sites with varying degrees of furnishing for every 50 
m of elevation in the range in which ground stone tools are located. Sites that contain only 
netherstone are considered adequately furnished, site with only handstones partially furnished, 
and sites with both fully furnished.  

 

These frequency data take on greater interpretive potential when studied in relation to 
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between them. Table 6.2 lists frequency data by ecological zone for all sites compiled for the 

study, the results of a chi-squared test, and the values of standardized adjusted residuals 

calculated for each ecological zone to depict the degree to which sites containing/not containing 

ground stone are contributing to the significance level of the chi-squared test.  

Table 6.2: Chi-squared test of the presence/absence of ground stone tools in archaeological sites 
per ecological zone. There is a significant difference in the presence of ground stone tools 
between ecological zones. The contribution of each ecological zone to that difference is 
calculated with standardized adjusted residuals.  
 

  Frequency Data Standardized Adjusted Residuals 

  

Sites not 
containing 

ground stone 

Sites containing 
ground stone 

Total 
Sites not 

containing 
ground stone 

Sites containing 
ground stone 

Alpine tundra 51 18 69 2.528989265 -2.528989265 

Ecotone 56 38 94 -0.424370257 0.424370257 
Subalpine 

forest 48 42 90 -1.924349993 1.924349993 

Total 155 98 253   

       

  

Chi-Squared 
Value 7.150   

  P-value 0.0280   

  

The presence of ground stone tools in archaeological sites is significantly different 

between ecological zones, the most so for the alpine tundra, which has fewer than expected sites 

that contain ground stone tools. The subalpine forest contains more sites with ground stone than 

expected and the ecotone contains about as many as expected. In other words, the chance for a 

site to contain ground stone decreases within ecological zones at increasing elevations.  
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 In order to test if ecological zones differ in their degrees of site furnishing, I conducted a 

chi-squared test to discern differences or similarities between sites that contain only 

netherstone, only handstones, and both. The results are presented in Table 6.3.  

Table 6.3: Chi-squared test of ground stone tool furnishing per ecological zone. There is no 
significant difference in ground stone tool provisioning between ecological zones. 

  Frequency Data  

  
Sites containing only 

netherstones 
Sites containing 
only handstones 

Sites containing 
both netherstone 
and handstones 

Total 

Alpine tundra 11 4 3 18 

Ecotone 20 7 11 38 

Subalpine forest 27 5 5 37 

Total 58 16 19 93 

      

   Chi-squared value 4.179 

   P-value 0.382 

  

There is no significant difference between ecological zones in terms of their furnishing 

with ground stone tools. In other words, netherstones are discarded in roughly the same way as 

handstones between elevations zones. The implications of this finding are discussed more fully 

in the next section. 

Though we know that there exists a significant difference in the presence of ground stone 

tools between ecological zones, and that this difference is patterned according to ecological 

zones of increasing elevation, we have yet to express why that may be. Though there may be any 

number of functionally-related variables that could express this relationship, such as average 

elevation, average temperature, or overall plant productivity, the most direct expression is 

related to the potential resources that were processed themselves.  In order to contextualize 
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these data, they are presented in relation to the diversity of edible plants per ecological zone in 

Figure 6.4.  

 

Figure 6.4: A depiction of each ecological zone as expressed by the standardized adjusted 
residuals calculated for the presence of ground stone tools in each ecological zone and the 
diversity of edible plants (excluding greens) for each ecological zone.  
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 There is a positive correlation between the diversity of edible plants and representation 

of sites containing ground stone tools for each ecological zone. Though the sample size of three 

is too small to establish significance, Figure 6.4 serves, at the least, as a useful heuristic in 

conceptualizing this relationship.  

Discussion and Conclusion 

These results have yielded a number of insights regarding ground stone tool distribution 

in the study area. Firstly, frequency distributions of site locations suggest a reliance upon the 

subalpine forest-alpine tundra ecotone. However, as mentioned in chapter 2, reliance on 

frequency distributions for distributional studies can misrepresent land use by skewing data 

towards site discovery in areas of high ground visibility and/or intensive research. Despite these 

problems, frequency data has contributed to models of prehistoric land use in the region that 

suggest intensive residential use of the subalpine forest-alpine ecotone in order to exploit the 

relative diversity of resources afforded to prehistoric foragers in this transitional ecological zone 

(Benedict 1992). It must be assumed that this interpretation is a least partially a function of site 

discovery bias and cannot be extrapolated to the ground stone record. Statistical tests of ground 

stone distribution support this.  

A chi-squared test of ground stone tool distribution by ecological zone found significant 

difference between ecological communities between sites that did and did not contain ground 

stone tools. Furthermore, this difference is directional; those ecological zones at lower elevations 

contain progressively more sites with ground stone. The greater diversity of edible plants within 

lower ecological zones likely contributed to this pattern. Site furnishing is not significantly 
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different between ecological zones, suggesting that netherstones and handstones were 

discarded in comparable ways, even though the availability of raw material used for each differs 

greatly. Altogether, I take these line of evidence as supportive of the idea that ecological zones 

were provisioned according to the diversity of edible plants available in each, not the random 

discard of artifacts at the end of their use lives.   

In terms of existing models of land use for the region, the results of these analyses are 

more supportive of an ‘up-down’ or ‘piston’ model of land use for the eastern slope of the CFR, 

and less so for a ‘rotary’ or ‘grand circuit’ model. This is for two reasons. Firstly, the implication 

of the ‘rotary’ model is that ground stone tools should be discarded randomly, and this is not the 

case. There are significant differences in the way ground stone has been discarded (or 

provisioned) between ecological zones. Further, the significant difference between ecological 

zones is directional, and in the direction expected of a population exploiting the region for floral 

resources; ecological zones that contain a greater diversity of edible plants contain a greater 

amount of ground stone tools. This interpretation may seem intuitive, but it runs counter to the 

expectations of a ‘rotary’ model, in which transhumance through the eastern slope of the CFR 

would have occurred during a time of year during which plant productivity was low or non-

existent (Benedict 2007b).  

Further, these results suggest a land use pattern distinct from those suggested for 

mountainous occupations in other parts of the West (Adams 2010; Bettinger 1991, 2008; Morgan 

et al. 2012; Shepherd 1992; Thomas 1981b). For instance, floral resource extraction does not 

seem to be focused on intensive use a specific floral crop, such as pine nuts (Adams 2010; 
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Shepherd 1992; Stirn 2013), nor is it focused within large alpine residential base camps from 

which forays were staged, as seems to be the case for other mountainous regions (Bettinger 

1991, 2008; Shepherd 1992; Thomas 1981b). The ground stone record instead seems to suggest 

that populations provisioned ecological zones of increasing elevation with the proper tools 

needed to exploit the sparsely productive array of floral resources available in each. These 

activities were likely staged out of short-term summer camps on their way to hunt the alpine 

tundra, as is evidenced by a multitude of sites catered towards this activity (Benedict 1975a, 

1996; Cassells 1995; LaBelle and Pelton 2013).  

Though operationalized at distinct scales, these findings mesh well with Troyer’s (2012) 

interpretations of hearth morphology in the region. His study suggest an increase in the use of 

rock-filled hearth feature late in prehistory, a phenomenon interpreted to be a reflection of 

increasing diet breadth in response to pressures inflicted from the adjacent lowlands of the Front 

Range. Such a model suggests that increasingly low-yield resources at increasingly higher 

elevations began to be incorporated into prehistoric diets in response to climatic or population 

induced resource depression in the eastern foothills of the Front Range. Though this study does 

not provide the temporal control as Troyer’s (2012) work, the synchronic distribution of ground 

stone tools suggests a similar pattern. An already sparse landscape (in terms of floral resources) 

was more intensively provisioned with the tools necessary for floral extraction because they had 

to be due to decreasing resource abundance elsewhere. However, this provisioning was not 

uniform throughout the study area, but scaled in terms of the diversity of resources available in 

each ecological zone. Simply, sparse ecologies were not provisioned until they had to be. More 

temporal control will further clarify this position.  



103 
 

CHAPTER 7  

DISCUSSION AND CONCLUSION 

 

The preceding study has created a great deal of data concerning the morphology, metric 

attributes, and nominal/ordinal characteristic of ground stone tools from the study area, as well 

as the temporal and spatial affiliations attached to each. Analysis of these data has only scratched 

the surface of the dataset’s potential for providing insights into prehistoric use of the study area. 

However, the analyses conducted touched upon some of the issues most pertinent to modern 

lithic analyses, including technological organization, the relationship between form and function, 

the use of lithic technology for reconstructing past cultural adaptation, and the use of 

distributional studies towards the reconstruction of past cultural systems. In concluding this 

thesis, each of these topics are revisited and the potential for future research is suggested.  

Ground stone technology 

With the exception of a single basin netherstone, netherstones from the study area are 

flat in morphology, and often referred to as grinding slabs. Contrary to formally-shaped ground 

stone tools created to serve very specific purposes, such as trough metates used to process 

cultigens or mortars associated with pulverizing acorns, the grinding slabs from the study area 

are highly generalized tool forms, and may have served a multitude of functions associated with 

the processing of a diversity of floral resources or perhaps even faunal resources (Yohe et al. 

1991). An additional function for which the tools may have been used is that of a cooking stone, 

or what has been referred to as a “comale” in the Southwestern literature (Adams 2001; Beck 

2001). This idea was based on the observation that any of the grinding slab fragments from the 
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study area sample seems too small to support intensive plant processing, and that many are 

heavily heat altered, as if intentionally placed above a fire. Given this scenario, thinner grinding 

slabs should have, on average, exhibited more evidence of burning, but this is not the case. Either 

the thickness of grinding slabs does not condition its use as a cooking stone, or a large amount of 

the observed heat alteration is due to factors other than use as a cooking stone, such as recycling 

into hearths or naturally occurring wildfire.  

It is important to note that each of these proposed functions is conjectural, but not 

exorbitantly so. Large, flat rocks with the hardness and abrasive texture of the sandstone that 

outcrops in the Front Range foothills are surprisingly hard to come by in many regions such as 

the igneous and metamorphic mountain interior of the CFR, and potentially invaluable for every 

aspect of the food preparation process, thereby justifying their transport.  An individual tool may 

have been used for any or all of the proposed functions, and future studies such as microscopic 

use-wear, phytolith, pollen, and starch analyses, or even experimental studies in heat transfer, 

should elucidate further the tools’ specific functions and how those functions are related to slab 

thickness or other functional attributes such as hardness or abrasiveness.  

The totality of the handstone assemblage is suitable for use with one hand and is 

dominated by tools that exhibit multiple forms of face, edge, and end modification, rather than 

a single, uniformly-shaped form. This implies that the tools were designed to be flexible relative 

to their specialized horticulturalist counterparts in order to maximize the range of potential 

resources that each implement could process, rather than to maximize the efficiency of 

processing a single, specific resource such as corn. Such uses include the grinding of plant remains 
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such as small seeds and nuts, the processing of hides with the smooth faces and edges of 

handstones, or the pulverizing of hard nuts or faunal remains with the hammer-like ends of 

handstone cobbles.  

Given a scenario in which technological organization is focused on flexibility, it was 

hypothesized that a) non-local handstones, which had been in one’s transported toolkit for some 

time, would exhibit a greater diversity of edge modifications than local handstones and b) non-

local handstone would weigh less than local ones, having been selected for transport. In order to 

test these hypotheses, the average number of employable units (e.u.’s) per handstone and 

average mass of complete handstones were calculated for both local and non-local tools and 

compared with a student’s t-test. For the average number of e.u.’s, the results are not statistically 

significant. However, an intriguing pattern emerged from the exercise. Contrary to expectations, 

local handstones exhibit, on average, a greater number of e.u.’s, suggesting a conservatism of 

use for handstones transported to the study area. For weight, the results were significant, 

suggesting that non-local, sandstone handstones were chosen at least partially on the basis of 

their smaller mass (g) relative to those procured locally. This implies that these tools were 

procured with the intention of inclusion into a mobile toolkit necessitating efficiency of transport.   

In general, the study has produced new analytical methodologies for use in 

hunter/gatherer ground stone studies that the author hopes will be adopted for application to 

other datasets. Firstly, the use of two midline measurements parallel and perpendicular to the 

longest edge of a grinding slab fragment is  an effective means of expressing its total surface area 

when the use of digitization is either not an option or prohibitively time-consuming. This 
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convention should be employed for use in future studies in which the total grinding slab surface 

area present in a site needs to be depicted, instead of maximum length, mass, or other non-

standardized means of expressing this measure 

Secondly, the use of employable units (e.u.’s) for handstone analysis, as borrowed from 

the study of chipped stone tools, reflects diversity in form that use of gross typological 

classification does not. This approach is essentially that called for in Adams’ (2002) synthesis of 

technological approaches for use in ground stone studies. However, the approach had yet to be 

operationalized on a hunter/gatherer assemblage with the diversity of forms as that from the 

Indian Peaks until this study. Application of the e.u. approach to other assemblages of 

hunter/gatherer ground stone toolkits may lead to an understanding of their technological 

organization which has thus far been obscured through the use of gross typological 

categorization.  

Ground stone diversity and time 

 The primary motivation behind analyzing ground stone tools across a temporal dimension 

was to discern if shifts in their diversity or form had occurred since their introduction to the study 

area. Specifically, it was hypothesized that ground stone tools from early Archaic Mount Albion 

sites would exhibit a greater diversity of forms than later periods due to intensive residential use 

of the project area during this time. Presentation of the results of this analysis suggested that 

Mount Albion sites do indeed contain a greater diversity of ground stone tool forms, both in 

terms netherstone thickness ranges and types of handstone modification. However, this diversity 

was demonstrated to be a direct result of sample bias; those temporal periods that contain more 

artifacts also contain a greater diversity of artifact forms.  
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Multi-component sites are a potential exception to this pattern, which are outliers from 

expected diversity values for both netherstone thicknesses and handstone e.u.’s. Multi-

component sites contain a greater than expected diversity of netherstone thicknesses and a less 

than expected diversity of handstone e.u.’s. It is suggested that this pattern may be due to the 

sites having been utilized during multiple temporal periods spanning many hundreds, if not 

thousands, of years, during which they were incorporated into multiple cultural systems. 

Netherstones were likely transported and discarded at multi-component sites multiple times 

throughout their formation history, and diversity in their thicknesses may be the result of 

different functions, different quarry locales, or perhaps just random variation over this temporal 

span. It is more difficult to suggest why there exists a less than expected diversity of handstone 

e.u.’s in multi-component sites. Perhaps handstones were only transported to these sites during 

specific temporal periods during which their functional requirements remained constant, or 

perhaps the location of multi-component sites constrained the functional requirements of 

handstones in some way throughout prehistory. Until the problem of sample size is controlled 

for, many interpretations regarding diachronic shifts in ground stone tool form are conjectural. 

However, this portion of the study has ultimately illuminated these issues, and serves as a 

foundation on which future studies of this sort may be constructed.  

Ground stone tool distribution 

 An analysis of ground stone tool distribution was conducted in order to test existing 

models of prehistoric land use for the CFR. Simply, if ground stone tool distribution is random, it 

was deemed more supportive of a ‘rotary’ model of transhumance during which ground stone 

tools were discarded as a means of lightening one’s toolkit. If it is not random, the distribution 
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was deemed more supportive of an ‘up-down’ mode of transhumance, during which the eastern 

slope of the CFR was provisioned with the tools necessary for floral resource extraction. Testing 

of these expectations came down to two tests. Firstly, I discerned the relationship between 

ground stone tool presence in archaeological sites and the major ecological zones in which they 

were located. Secondly, I discerned if netherstone and handstones were being discarded in 

comparable ways.   

 A database of 253 sites was compiled and categorized as either containing or not 

containing ground stone tools. Additionally, those sites that contained ground stone tools were 

further categorized as being adequately furnished if they contained only netherstones, partially 

furnished if they contained only handstones, and fully furnished if they contained both. Chi-

squared tests were conducted for both datasets. It was determined that there is a significant 

difference between ecological zones in terms of the presence of ground stone tools in 

archaeological sites and that this difference is directional; ecological zones at lower elevations 

contain more ground stone tools. It was further determined that netherstones and handstones 

were each discarded in roughly the same way between ecological zones, suggesting that each 

was incorporated into the prehistoric ground stone tool kit in roughly the same way. Lastly, it 

was suggested that presence of ground stone tools in a given ecological zone is related to the 

diversity of edible plants within it.  

 These findings are most supportive of endemic use of the eastern slope of the Colorado 

Front Range, in which local populations of foragers provisioned the landscape with the tools 

necessary for the extraction and processing of wild edible plants. Those ecological zones with a 

greater diversity of edible plants were provisioned more thoroughly, with the importance of 
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hunting increasing with closer proximity to the game drive structures located in the alpine tundra. 

This pattern suggests a series of short-term summer camps were occupied briefly, during which 

locally available plant resources were extracted. This pattern of land use contrasts with that 

observed at other high elevation archaeological districts in the west. In areas such as the White 

Mountains of California, Alta Toquima village in Nevada, and the Wind River Range of northern 

Wyoming, semi-permanent alpine villages exist from which subsistence activities were staged, a 

portion of which may have involved the specialized procurement of pine nuts. The findings of this 

study agree more with Troyer’s (2012) interpretation of rock-filled hearth distribution in the CFR, 

which credits the depression of more lowland floral resources with the emergence of intensive 

plant processing in the high country.  Simply, plant processing was pushed to higher and higher 

elevations as need arose.  

The preceding analyses have contributed to a more nuanced understanding of ground 

stone lithic technology in the high country of the Colorado Front Range. However, there is much 

work to be done. Some of this work may be drawn from the results of this thesis, but much relies 

upon the collection of additional field data. This will require the collection of additional 

specimens for use in residue analyses, the use of high-powered microscopes to establish 

function, the excavation of additional sites of certain ages, and ultimately, a new set of eyes to 

bolster or refute the ideas laid forth in this thesis. In the end, I hope that this thesis is a model for 

future hunter/gatherer ground stone research and a contribution to the larger study of method 

and theory in ground stone studies.  
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5BL67 1 
Idaho 
Spring 
gneiss 

complete 
10YR 8/6, 10YR 

6/6, several 
shades of gray 

n 117.8 109.4 49.9 1031.0 circular oblong 3 0 0 4 

5BL67 2 granite 1/3-2/3 
several shades of 

gray 
y 101.3 59.7 38.6 371.0 ind lenticular 1 0 0 4 

5BL67 3 
fine-grained 
sandstone 

<1/3 10R 7/4 y 76.8 42.0 29.2 90.0 ind ind 2 0 0 3 

5BL67 4 
fine-grained 
sandstone 

1/3-2/3 10R 4/6 y 94.4 95.1 28.2 275.0 ind ind 1 0 0 5 

5BL67 5 granite complete 
several shades of 

gray 
n 107.6 79.0 57.4 739.0 oblong oblong 1 0 2 5 

5BL68 S-14 
coarse-
grained 

sandstone 
complete 10YR 7/4 n 112.4 75.4 34.7 366.0 oblong asymmetrical 1 0 0 4 

5BL68 S-19 
fine-grained 
sandstone 

complete 10YR 8/2, 5R 6/6 n 99.1 76.8 38.1 381.0 
asymmetrically 

oblong 
oblong 1 0 0 4 

5BL70 1 granite complete 10YR 8/2, N4 n 146.7 93.4 34.3 753.0 oblong lenticular 2 0 0 3.5 

5BL70 2 
fine-grained 
sandstone 

<1/3 5YR 8/4 n 69.9 50.3 41.6 184.0  ind ind 1 2 0 3 

5BL70 3 granite >2/3 
mostly gray, 

some inclusions 
of 10YR 7/4 

y 133.8 73.2 47.4 714.0 oblong oblong 2 2 1 3 

5BL70 4 granite <1/3 10YR 8/2, N6 n 119.4 49.5 53.0 515.0 ind 
oblong 

rectilinear 
2 0 0 3 

5BL70 5 
fine-grained 
sandstone 

complete 
10YR 8/2, small 
amount of 10R 

4/6 
y 101.2 96.2 40.8 551.0 roughly circular 

oblong 
rectilinear 

1 1 0 4 

5BL70 6 granite complete 
10YR 8/2, wide 
diversity of red 
due to heating 

y 92.9 76.7 39.1 381.0 roughly circular lenticular 1 0 0 4.5 
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5BL71 1 granite complete 
5R 6/6, 

10YR 8/2, 
N4 

n 111.0 85.0 48.7 734.0 
oblong 

rectilinear 
oblong 

rectilinear 
1 2 0 4 

5BL71 2 
fine-

grained 
sandstone 

<1/3 10YR 6/2 n 54.1 51.7 32.9 108.0 irregular semi-circular 1 1 0 3 

5BL79 1 
fine-

grained 
sandstone 

complete 
5YR 5/6, 
10YR 8/2 

y 129.8 85.7 53.8 819.0 oblong oblong 2 0 1 3 

5BL80 670620 
fine-

grained 
sandstone 

complete 
10YR 8/2, 
5YR 5/6 

n 141.8 92.0 49.3 864.0 oblong oblong 2 0 0 5 

5BL82 1 
fine-

grained 
sandstone 

complete 
10YR 8/2, 

gray 
crystals 

n 109.9 66.4 44.4 543.0 
oblong 

rectilinear 
oblong 

rectilinear 
1 0 0 3.5 

5BL82 2 granite 
nearly 

complete 

10YR 8/2, 
gray 

inclusions 
n 79.0 74.2 41.4 338.0 circular oblong 2 0 0 3.5 

5BL82 3 
fine-

grained 
sandstone 

<1/3 5R 6/6 y 70.3 66.6 41.4 198.0 ind ind 2 0 0 4 

5BL89 1 
fine-

grained 
sandstone 

< 1/3 10YR 6/2 n 60.6 37.5 17.8 51.0 irregular irregular 1 0 0 4 

5BL89 2 
fine-

grained 
sandstone 

< 1/3 
5R 6/6, 

10YR 8/2   
n 69.2 84.5 36.4 285.0 

oblong 
(incomplete) 

ind 1 0 0 4 

5BL91 1 granite complete 
10R7/4, 

N7 
n 113.8 87.4 51.2 770.0 oblong oblong 2 1 1 2.5 

5BL96 1 
coarse-
grained 

sandstone 
<1/3 

10R7/4, 
10R4/6 

y 51.6 76.7 37.3 158.0 ind oblong 1 0 1 3 

5BL96 2 
fine-

grained 
sandstone 

complete 
10YR 8/2, 
10R 4/6 

n 33.4 22.3 17.1 15.0 oblong oblong 0 0 0 3 

5BL96 3 granite complete 
10YR 8/2, 

N5 
n 102.4 103.9 47.3 808.0 circular 

oblong 
rectilinear 

1 1 0 4 

5BL96 4 
fine-

grained 
sandstone 

complete 10YR 8/2 n 104.7 84.8 46.3 536.0 egg-shaped 
asymmetrically 

oblong 
2 2 0 3 
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5BL110 1 
fine-grained 
sandstone 

complete 10YR 8/2 y 126.1 122.1 55.6 1020.0 irregular 
semi-

oblong 
1 0 0 3.5 

5BL110 2 
fine-grained 
sandstone 

complete 
10YR 8/2, very 
slight 10R 6/6 

y 99.8 87.1 47.3 447.0 irregular 
tear-drop 

shaped 
1 1 0 3 

5BL111 1 quartzite 1/3-2/3 10YR 8/2 n 59.5 82.3 48.9 325.0 oblong oblong 2 0 0 4.5 

5BL111 2 
fine-grained 
sandstone 

nearly 
complete 

10YR 8/2, 10R 6/6 y 107.6 79.2 45.1 435.0 oblong 
tear-drop 

shaped 
2 0 0 4.5 

5BL112 1 
coarse-
grained 

sandstone 
<1/3 10YR 8/2, 10R 4/6 n 63.2 51.8 43.4 183.0 ind 

oblong 
rectilinear 

2 0 0 2.5 

5BL121 1 
fine-grained 
sandstone 

complete 
10R 8/2 (10R 4/6, 

5R 4/6) 
y 108.1 83.2 44.3 583.0 

oblong 
rectilinear 

tear-drop 
shaped 

1 0 0 4 

5BL121 2 
fine-grained 
sandstone 

<1/3 
10YR 8/2 (red 

splotches) 
y 86.1 29.2 42.9 132.0 ind oblong 1 0 0 4 

5BL121 3 
coarse-
grained 

sandstone 
>2/3 10R 4/6, 10R 7/4 n 91.6 73.7 41.7 474.0 circular lenticular 2 0 0 4 

5BL122 1 
coarse-
grained 

sandstone 
<1/3 10YR 8/2, 10R 6/6 y 50.0 70.3 44.9 230.0 ind oblong 2 1 0 3 

5BL122 2 
coarse-
grained 

sandstone 
complete N9 n 88.0 75.1 38.1 326.0 slightly oblong oblong 2 0 0 5 

5BL131 1 
fine-grained 
sandstone 

1/3-2/3 5YR 8/4, 5R 6/6 n 125.7 66.9 31.8 480.0 rectilinear 
oblong 

rectilinear 
1 0 0 3.5 

5BL132 1 
fine-grained 
sandstone 

1/3-2/3 
10YR 8/2, small 

amount of 5R 6/6 
(ochre?) 

y 61.8 82.1 49.2 300.0 oblong 
tear-drop 

shaped 
2 1 0 3.5 

5BL139 1 
fine-grained 
sandstone 

1/3-2/3 10YR 8/2 n 74.6 91.1 52.1 463.0 oblong oblong 2 0 1 4.5 
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5BL152 1 
fine-grained 
sandstone 

complete 10YR 8/6 n 112.3 82.7 49.3 564.0 oblong 
tear-
drop 

shaped 
1 0 0 3 

5BL158 1 
fine-grained 
sandstone 

>2/3 10R 8/2, 5R 6/6 y 93.5 58.2 28.3 194.0 irregular irregular 0 1 0 3 

5BL158 2 
fine-grained 
sandstone 

>2/3 10R 8/2 y 106.1 84.4 49.8 622.0 
asymmetrically 

oblong 
oblong 2 0 0 4 

5BL164 1 

fine-grained 
sandstone, 

bordering on 
quartzite 

<1/3 10YR 8/2 n 48.0 82.6 49.7 277.0 ind oblong 2 1 1 3.5 

5BL169 1 vesicular basalt complete 

N7-N6, unknown 
mineral within 
vesicules is 10R 

4/6  

n 86.4 78.1 37.0 349.0 
roughly 
circular 

lenticula
r 

2 0 0 3 

50m 
West 

of 
5BL170 

1 
coarse-grained 

sandstone 
<1/3 10YR 8/2 y 42.2 80.7 42.7 142.0 ind oblong 2 1 1 3 

50m 
West 

of 
5BL170 

2 
coarse-grained 

sandstone 
small 

fragment 
10YR 8/2, 5R 6/6  n 38.9 37.6 12.8 20.0 ind  ind 1 0 0 3 

5BL184 1 
fine-grained 
sandstone 

complete 

10YR 7/4 (has 
been heat 

altered to many 
shades of red 
and purple) 

y 95.8 53.4 39.1 305.0 
oblong 

rectilinear 
wedge-
shaped 

1 2 0 3 

5BL207 1 

fine-grained 
sandstone, 

bordering on 
quartzite 

>2/3 
10YR 8/2, 10R 

7/4 
n 103.8 91.2 50.0 599.0 oblong oblong 2 2 1 4 

5BL209 1 

fine-grained 
sandstone, 

bordering on 
quartzite 

1/3-2/3 5YR 8/4 y 91.1 74.8 22.0 174.0 roughly oblong ind 1 0 0 5 

5BL215 1 
fine-grained 
sandstone 

<1/3 10R 7/4, 10R 4/6 y 79.4 45.1 29.5 115.0 ind ind ind ind ind 2.5 

5BL215 2 
fine-grained 
sandstone 

complete 5YR 8/4, 10R 4/6 n 100.9 81.6 36.8 332.0 roughly oblong 
roughly 

diamond
-shaped 

2 0 0 2.5 

5BL215 3 
coarse-grained 

sandstone 
complete 

10R 8/2, 10R 
4/6, and 5R 6/6 

n 42.3 39.6 27.8 51.0 circular irregular 0 0 1 3.5 
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5BL224 1 
fine-grained 
sandstone 

nearly 
complete 

5R 4/6 n 114.3 80.2 52.0 521.0 irregular irregular 2 2 1 3.5 

5BL224 2 
fine-grained 
sandstone 

complete 
10YR 8/2, 
10R 7/4 

n 129.1 82.0 44.9 598.0 
roughly 
oblong 

tear-drop 
shaped 

2 0 0 3 

5BL224 3 
fine-grained 
sandstone 

complete 
10YR 8/2, 

5R 6/6 
n 101.9 77.2 54.4 570.0 

roughly 
oblong 

roughly 
oblong 

1 0 0 4 

5GA32 1 
coarse-grained 

sandstone 
nearly 

complete 
10R 7/4, 5R 

4/6 
y 103.8 73.9 37.3 411.0 oblong oblong 1 0 0 3.5 

5GA42 1 
coarse-grained 

sandstone 
complete 

10YR 8/2, 
10R 4/6 

n 86.5 66.1 28.0 226.0 oblong lenticular 1 2 0 4 

5GA50 1 
fine-grained 
sandstone 

complete 
10YR 8/2, 
10R 7/4 

y 97.7 74.5 48.9 457.0 oblong oblong 2 0 0 4 

5GA51 1 
coarse-grained 

sandstone 
nearly 

complete 
10YR 8/2. 

N6 
y 118.7 93.2 52.0 685.0 oblong 

tear-drop 
shaped 

1 0 0 3 
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5BL67 Mount Albion 2 885.0 0 3 245.3 2 5 2506 10 4.2 

6BL68 
Multi-

component 
2 373.5 2 0 - - 2 747 2 4.0 

5BL70 Mount Albion 3 561.7 1 3 471.0 1 6 3098 15 3.5 

5BL71 
Multi-

component 
1 734.0 0 1 108.0 1 2 842 5 3.5 

5BL79 
Multi-

component 
1 819.0 1 0 - - 1 819 3 3.0 

5BL80 Mount Albion 1 864.0 1 0 - - 1 864 2 5.0 

5BL82 Mount Albion 2 440.5 1 1 198.0 1 3 1079 5 3.7 

5BL89 
Multi-

component 
0 - - 2 168.0 2 2 336 2 4.0 

5BL91 Archaic 1 770.0 0 0 - - 1 770 4 2.5 

5BL96 
Multi-

component 
2 672.0 1 1 158.0 1 3 1502 8 3.3 

5BL110 Mount Albion 2 733.5 2 0 - - 2 1467 3 3.3 

5BL111 Early Ceramic 1 435.0 1 1 325.0 0 2 760 4 4.5 

5BL112 
Multi-

component 
1 183.0 1 0 - - 1 183 2 2.5 

5BL121 
Multi-

component 
1 583.0 1 2 303.0 2 3 1189 4 4.0 

5BL122 Late Archaic 1 326.0 1 1 230.0 1 2 556 5 4.0 

5BL131 Non-diagnostic 0 - - 1 480.0 1 1 480 1 3.5 

5BL132 Non-diagnostic 0 - - 1 300.0 1 1 300 3 3.5 

5BL139 Non-diagnostic 0 - - 1 463.0 1 1 463 3 4.5 

5BL152 
Multi-

component 
1 564.0 1 0 - - 1 564 1 3.0 

5BL158 Archaic 0 - - 2 408.0 2 2 816 3 3.5 

5BL164 
Multi-

component 
0 - - 1 277.0 2 1 277 4 3.5 

5BL169 Archaic 1 349.0 0 0 - - 1 349 2 3.0 

50m W of 
5BL170 

Non-diagnostic 0 - - 2 81.0 2 2 162 5 3.0 

5BL184 
Multi-

component 
1 305.0 1 0 - - 1 305 3 3.0 

5BL207 
Multi-

component 
0 - - 1 599.0 1 1 599 5 4.0 

5BL209 Early Ceramic 0 - - 1 174.0 1 1 174 1 5.0 

5BL215 Mount Albion 2 191.5 2 1 115.0 1 3 498 4 2.8 

5BL224 
Multi-

component 
3 563.0 3 0 - - 3 1689 8 3.5 

5GA32 
Multi-

component 
1 411.0 1 0 - - 1 411 1 3.5 

5GA42 Non-diagnostic 1 226.0 1 0 - - 1 226 3 4.0 

5GA50 Non-diagnostic 1 457.0 1 0 - - 1 457 2 4.0 

5GA51 
Multi-

component 
1 685.0 1 0 - - 1 685 1 3.0 

 Total 33 - 24 26 - 23 59 25173 124 - 

 Average 1.0 527.5 1.0 0.8 283.5 1.3 1.8 786.7 3.9 3.6 
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5BL67 
Mount 
Albion 

31 23 1-291 1432 46.2 13.0 50238.3 1620.6 760.9 4.8-30.4 10.9 9.9 

5BL68 
Multi-

component 
2 0 2405-3342 5747 2873.5 2873.5 85499.3 42749.6 42749.6 28.5-35.1 31.8 31.8 

5BL69 
Early 

Ceramic 
1 0 2178 2178 2178.0 2178.0 52470.0 52470.0 52470.0 27.7 27.7 27.7 

5BL70 
Mount 
Albion 

49 23 7-2106 7729 157.7 77.0 185798.8 3791.8 1982.8 8.6-34.7 18.9 18.9 

5BL82 
Mount 
Albion 

9 1 1-294 621 69.0 33.0 22134.6 2459.4 1354.0 5.7-18.2 13.5 14.1 

5BL121 
Multi-

component 
2 0 3580-4899 8479 4239.5 4239.5 87355.0 43677.5 43677.5 52.6-60.5 56.6 56.6 

5BL145* 
Non-

diagnostic 
18 0 1-98 155 8.6 1.0 - - - 4.9-15 5.9 4.9 

5BL146 
Non-

diagnostic 
1 1 2237 2237 2237 2237 47508.0 47508.0 47508.0 26.4 26.4 26.4 

5BL158 Archaic 8 0 9-206 613 76.6 44.5 28266.4 3533.3 2189.2 8.4-13.6 11.1 11.1 

5BL196 
Non-

diagnostic 
3 0 116-887 1225 408.3 222.0 36291.5 12097.2 7213.2 14.1-16.2 15.1 14.7 

5BL207 
Multi-

component 
5 1 23-371 688 137.6 123.0 18625.1 3725.0 4037.9 12.2-21 16.8 17.3 

5BL209 
Early 

Ceramic 
1 0 264 264 264 264 8224.8 8224.8 8224.8 16.1 16.1 16.1 

5BL216 
Non-

diagnostic 
3 2 23-198 275 91.7 54.0 7653.1 2552.0 1440.8 14.3-21.5 19.0 21.4 

5BL220 Late Archaic 2 1 25-39 64 32.0 32.0 3763.0 1881.5 1881.5 10.1-10.5 10.3 10.3 

5BL221 
Non-

diagnostic 
2 1 69-196 265 132.5 132.5 7082.8 3541.4 3541.4 15.7-24.6 20.2 20.2 

5BL222 Late Archaic 3 0 32-356 345 115.0 57.0 10163.0 3387.7 1901.1 12.4-20.4 15.1 12.6 

5GA32 
Multi-

component 
2 1 14-24 38 19.0 19.0 2396.1 1198.1 1198.1 10.2-13.8 12.0 12.0 

5GA39 
Multi-

component 
3 1 84-1992 2166 722.0 90.0 46580.3 15526.8 4822.4 11.4-24.6 17.9 17.9 

640723-1 
Non-

diagnostic 
1 1 1845 1845 1845 1845 50600.0 50600.0 50600.0 19.1 19.1 19.1 

81-A2 
  

Non-
diagnostic 

6 0 65-1746 2177 362.8 89.0 61947.1 10324.5 2495.9 14.1-17.5 15.1 14.8 
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135 
 

 

Site Specimen 
Employable 

unit 

Metric attributes Morphological attributes 

M
ax

 le
n

gt
h

 

A
 (

m
m

) 

M
ax

 le
n

gt
h

 
B

 (
m

m
) 

Sh
ap

e 
o

f 

gr
o

u
n

d
 f

ac
e

 

Sh
ap

e 
o

f 

gr
o

u
n

d
 e

d
ge

 

Sh
ap

e 
o

f 

al
te

re
d

 e
n

d
 

U
se

-w
ea

r 

p
at

te
rn

 

5BL67 1 A 110.4 87.2 convex   smooth 

5BL67 1 B 51.9 23.7 
weakly 
faceted 

  smooth 

5BL67 1 C 50.9 25.0 
weakly 
faceted 

  Smooth 

5BL67 2 A 95.7 47.1 convex   
very smooth, striations 
parallel with short axis 

5BL67 3 A 48.2 32.5 convex   
lightly smoothed, heavily 

weathered 

5BL67 3 B 57.6 34.2 flat   
smooth, heavily pitted from 

weathering 

5BL67 4 A 81.0 79.7 
slightly 
convex 

  
striations parallel with 

curved axis 

5BL67 5 A 94.0 76.0 very convex   
smooth, parallel striation 

across curved axis 

5BL67 5 B 32.8 27.1   flat 
lightly pitted, end truncated 

through use 

5BL67 5 C 49.8 29.3   convex Smooth 

5BL68 S-14 A 112.4 75.4 ind   Ind 

5BL68 S-19 A 81.2 65.8 
slightly 

convex, short 
axis 

  
striations parallel with 

curved axis 

5BL70 1 A 120.0 87.9 convex   
very smooth, striations 
parallel with short axis 

5BL70 1 B 52.1 29.5 
weakly 
faceted 

  Smooth 

5BL70 2 A 59.3 40.5 flat   Smooth 

5BL70 2 B 59.5 24.3  flat  
smooth, slightly undulating 

surface 

5BL70 2 C 35.5 30.0  flat  
smooth, slightly undulating 

surface 

5BL70 3 A 72.9 64.1 convex   
very smooth, striations 
parallel to curved axis 

5BL70 3 B 101.4 70.0 convex   
very smooth, striations 
parallel to curved axis 

5BL70 3 C 88.5 24.4  flat  
smooth, slightly undulating 

surface 

5BL70 3 D 70.5 22.2  convex  lightly smoothed 

5BL70 3 E 54.3 41.7   irregular 
flakes removed from 

battering 

5BL70 4 A 109.9 44.9 
slightly 
convex 

  
very smooth, striations 

across long axis 

5BL70 4 B 103.9 42.6 
slightly 
convex 

  
very smooth, striation 

across curved axis 

5BL70 5 A 88.2 74.0 
very slightly 

convex 
  

very smooth, striations 
parallel with short axis 

5BL70 5 B 74.1 25.9  faceted  Smooth 

5BL70 6 A 81.5 67.1 
weakly 
faceted 

  
very smooth, striations 
parallel with short axis 
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5BL71 1 A 86.8 78.1 
slightly convex, short 

axis 
  

striations parallel with 
curved axis 

5BL71 1 B 52.3 26.2  flat  ind 

5BL71 1 C 58.6 24.0  flat  ind 

5BL71 2 A 53.2 28.5 convex, short axis   
striations parallel with 

curved axis 

5BL71 2 B 51.2 23.0  
slightly 
convex, 

short axis 
 lightly smoothed 

5BL79 1 A 101.7 77.9 
slightly curved, short 
axis; slight facet, long 

axis 
  smoothed 

5BL79 1 B 44.7 32.6 faceted   ind 

5BL79 1 c 32.7 21.1   
curved, 

long axis 
pecking 

5BL80 670620 A 111.2 75.4 weakly faceted   very smooth 

5BL80 670620 B 121.1 87.7 
slightly convex, both 

axes 
  ind 

5BL82 1 A 102.6 56.8 weakly faceted   
smooth, facet suggests 

use down long axis of tool 

5BL82 2 A 50.3 68.0 convex   
very smooth, faint 

striations across curved 
axis 

5BL82 2 B 32.4 59.4 convex   very smooth 

5BL82 3 A 51.2 54.3 slightly convex   
very well defined parallel 
striations across curved 

axis 

5BL82 3 B 48.6 45.5 flat   very smooth 

5BL89 1 A 60.6 37.5 convex, short axis   
striations parallel with 

curved axis 

5BL89 2 A 53.8 63.8 
slightly convex, short 

axis 
  

striations parallel with 
curved axis 

5BL91 1 A 87.4 84.4 convex, short axis   
slightly arced parallel 

striations across lateral 
axis 

5BL91 1 B 84.8 76.8 
slightly convex, long 

axis 
  none visible 

5BL91 1 C 55.9 17.9   convex irregular 

5BL91 1 D 62.2 19.2  flat  
truncated by grinding 

and/or battering 
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5BL96 1 A 43.3 70.8 convex, short axis   
very smooth, polished 

at margins 

5BL96 1 B 55.2 17.1   convex pecking 

5BL96 3 A 93.8 83.3 
slightly convex, used in 

one direction 
  very smooth 

5BL96 3 B 77.7 28.9  irregular  heavily pitted 

5BL96 4 A 77.0 70.2 asymmetrically convex   
slightly arced parallel 

striations across 
lateral axis 

5BL96 4 B 86.9 65.6 flat   smooth, lightly pitted 

5BL96 4 C 63.8 21.2  
slightly faceted, 

long axis 
 smooth 

5BL96 4 D 30.4 15.1  slightly convex  
very smooth, slightly 

polished 

5BL110 1 A 101.7 86.0 very slightly convex   smooth 

5BL110 2 A 78.8 76.7 convex   
very slightly smooth, 
perhaps weathered 

5BL110 2 B 41.2 31.4  flat  
smooth, slightly 

undulating surface 

5BL111 1 A 43.8 75.2 convex     smooth 

5BL111 1 B 37.4 69.5 convex   
very smooth, slightly 

polished 

5BL111 2 A 82.6 66.1 weakly faceted   
very smooth, 

striations parallel 
with short axis 

5BL111 2 B 77.5 67.7 convex   smooth 

5BL112 1 A 46.3 38.3 convex   very smooth 

5BL112 1 B 47.5 37.3 convex   
very smooth, pitted 

from weathering 

5BL121 1 A 77.1 62.6 flat   
smooth, slightly 

undulating surface 

5BL121 2 A 72.6 26.5 convex   very smooth 

5BL121 3 A 72.2 66.9 convex, both axes   very smooth 

5BL121 3 B 86.5 70.7 convex, both axes   

very smooth and 
polished. Parallel 

striations across one 
axis 

5BL122 1 A 44.7 66.2 weakly faceted   
very lightly smooth, 

pitted from 
weathering 

5BL122 1 B 42.2 55.7 convex   lightly polished 

5BL122 1 C 43.8 22.3  flat  
smooth, slightly 

undulating surface 

5BL122 2 A 74.9 67.5 
slightly convex, used in 

one direction 
  

very smooth, heavily 
weathered around 

margins 

5BL122 2 B 71.6 63.6 slightly convex     
very smooth, but 

mostly heavily 
weathered 
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5BL131 1 A 108.2 59.7 flat   polished 

5BL132 1 A 52.6 79.3 
faceted (one 

facet 
convex) 

  
parallel striations across lateral 

axis 

5BL132 1 B 52.8 75.3 convex   
parallel striations across lateral 

axis 

5BL132 1 C 36.4 28.8  flat  
smooth, slightly undulating 

surface 

5BL139 1 A 49.1 77.5 convex   
very smooth, striations parallel 

with short axis 

5BL139 1 B 47.0 78.1 
weakly 
faceted 

  very smooth 

5BL139 1 C 61.8 33.2   convex 
lightly pitted along midline to 
form slight concavity in places 

5BL152 1 A 91.3 80.6 
flat (with 

weak facet) 
  

very obvious parallel striations 
across lateral axis 

5BL158 1 A 74.1 17.0  faceted  
very smooth, but heavily 

weathered 

5BL158 2 A 76.4 78.5 
slightly 
convex 

  
very smooth, slightly polished 

around margins 

5BL158 2 B 73.8 53.6 
very slightly 

convex 
  very smooth 

5BL164 1 A 43.9 77.5 convex   very smooth, slightly polished 

5BL164 1 B 38.2 80.4 
slightly 
convex 

  very smooth 

5BL164 1 C 24.7 24.7  flat  
smooth, slightly undulating 

surface 

5BL164 1 D 53.0 28.0   convex pitted 

5BL169 1 A 65.2 71.5 
convex, both 

axes 
  

very smooth, not enough to 
obliterate vesicules 

5BL169 1 B 80.1 77.8 
convex, both 

axes 
  smooth 

50m 
West of 
5BL170 

1 A 32.4 72.0 
slightly 
convex 

  very smooth, slightly polished 

50m 
West of 
5BL170 

1 B 27.0 25.6 convex   very smooth 

50m 
West of 
5BL170 

1 C 24.3 25.5  flat  
smooth, slightly undulating 

surface 

50m 
West of 
5BL170 

1 D 49.9 13.2   convex pitted 

50m 
West of 
5BL170 

2 A 29.0 14.4 flat   very smooth 

5BL184 1 A 90.0 49.3 flat   
very smooth, slightly undulating 

surface 

5BL184 1 B 74.2 20.4  flat  
very smooth and slightly 

polished, undulating surface 

5BL184 1 C 85.0 31.6  flat  
smooth, slightly undulating 

surface 
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5BL207 1 A 90.0 82.6 convex   very smooth 

5BL207 1 B 75.7 78.6 convex   
very smooth, a couple of isolated 

striations 

5BL207 1 C 76.0 25.5  convex  smooth, slightly undulating surface 

5BL207 1 D 63.3 20.9   
slightly 
convex 

heavily pitted, unground 

5BL207 1 E 76.7 25.5  
slightly 
convex 

 heavily pitted, unground 

5BL209 1 A 79.9 59.6 
slightly 
convex 

  polished, but heavily weathered 

5BL215 1 A 24.8 12.8    smooth 

5BL215 2 A 82.6 73.2 
weakly 
faceted 

  very smooth, but heavily weathered 

5BL215 2 B 78.2 67.9 
slightly 
convex 

  smooth, but heavily weathered 

5BL215 3 A 25.9 16.9   faceted polished 

5BL224 1 A 96.8 72.8 
very 

convex 
  

very smooth, lightly polished. 
Parallel striations across short axis 

5BL224 1 B 78.8 62.7 
very 

convex 
(long axis) 

  smooth 

5BL224 1 C 78.0 19.2  faceted  smooth, slightly undulating surface 

5BL224 1 D 80.3 12.6  convex  smooth 

5BL224 1 E 42.5 23.5   convex light pitting 

5BL224 2 A 88.4 80.1 
very 

convex 
  

very smooth, parallel striations 
across short axis 

5BL224 2 B 68.8 73.7 convex   smooth 

5BL224 3 A 89.5 71.9 convex   
smooth, parallel striations across 

short axis 

5GA32 1 A 84.9 65.2 convex   very smooth 

5GA42 1 A 79.1 59.0 flat   
smooth, lightly polished. Undulating 

surface. 

5GA42 1 B 33.6 8.1  convex  smooth, heavily weathered 

5GA42 1 C 57.8 17.2  faceted  smooth, slightly undulating surface 

5GA50 1 A 71.7 52.8 
slightly 
convex 

  
very smooth, striations parallel with 

short axis 

5GA50 1 B 74.4 62.3 
slightly 
convex 

  smooth, mostly lichen covered 

5GA51 1 A 108.0 83.7 
weakly 
faceted 

  
very smooth, lightly polished at 

facet margin 
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APPENDIX IV 

HANDSTONE EMPLOYABLE UNIT ATTRIBUTES BY SITE 
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Site 
Temporal 
Affiliation 

Non-local cobble Local cobble 

Total 
employable 

units 
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5BL67 Mount Albion 1 2            3 2     1 1   10 
5BL68 Multi-component   1  1                    2 
5BL70 Mount Albion 1 1   2  1    5 2 1 1     1 15 
5BL71 Multi-component   1     1      1   2        5 
5BL79 Multi-component   1 1    1                 3 
5BL80 Mount Albion   1 1                     2 
5BL82 Mount Albion 1 1 1          2           5 
5BL89 Multi-component   2                      2 
5BL91 Archaic              2   1     1   4 
5BL96 Multi-component 1 2     1 1 1   1     1     8 

5BL110 Mount Albion   2   1                  3 
5BL111 Early Ceramic   1 1          2           4 
5BL112 Multi-component   2                      2 
5BL121 Multi-component 1 3                      4 
5BL122 Late Archaic   3 1  1                  5 
5BL131 Non-diagnostic 1                       1 
5BL132 Non-diagnostic   1 1  1                  3 
5BL139 Non-diagnostic   1 1       1              3 
5BL152 Multi-component 1                       1 
5BL158 Archaic   2      1               3 
5BL164 Multi-component   2   1    1              4 
5BL169 Archaic   2                      2 

50m W of 
5BL170  

Non-diagnostic 
1 2   1    1              5 

5BL184 Multi-component 1    2                  3 
5BL207 Multi-component   2     2   1              5 
5BL209 Early Ceramic   1                      1 
5BL215 Mount Albion   1 1        1            3 
5BL224 Multi-component   5     1 1 1              8 
5GA32 Multi-component   1                      1 
5GA42 Non-diagnostic 1      1 1               3 
5GA50 Non-diagnostic   2                      2 
5GA51 Multi-component    1                      1 

Total 10 45 9 1 9 7 5 6 1 16 4 4 1 1 1 2 1 123 
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NETHERSTONE ATTRIBUTES 
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5BL67 Mount Albion game drive 1 fragment 68.4 53.4 3656.1 13.2 86.0 y ind 1 10YR 8/2 

5BL67 Mount Albion game drive 2 fragment 35.4 28.5 1008.8 11.3 22.0 n ind 1 10YR 8/2 

5BL67 Mount Albion game drive 3 fragment 85.7 52.3 4482.6 13.9 118.0 n ind 2 10YR 8/2, 10R 4/6 

5BL67 Mount Albion game drive 4 fragment 62.8 50.9 3197.1 13.2 81.0 y y 2 10R 7/4, 10R 4/6 

5BL67 Mount Albion game drive 5 fragment 33.0 22.5 742.1 10.6 20.0 y y 1 10YR 8/2, 10R 4/6 

5BL67 Mount Albion game drive 6 fragment 26.2 20.7 542.4 5.1 5.0 y y 1 10YR 8/2, 5R 6/6 

5BL67 Mount Albion game drive 7 fragment 43.3 41.4 1794.3 8.9 25.0 y y 2 10YR 8/2 and black 

5BL67 Mount Albion game drive 8 fragment 29.9 25.3 757.8 8.1 10.0 y ind 1 10YR 8/2 and black 

5BL67 Mount Albion game drive 9 fragment 35.6 23.7 842.3 5.7 8.0 y ind 1 10YR 8/2, 10R 7/4 

5BL67 Mount Albion game drive 10 fragment 21.6 16.8 363.3 9.7 6.0 y ind 1 ind 

5BL67 Mount Albion game drive 11 fragment 28.4 14.1 400.7 4.9 3.0 y ind 1 10YR 8/2 

5BL67 Mount Albion game drive 12 fragment 22.0 18.0 395.3 9.9 7.0 y ind 2 10YR 8/2 

5BL67 Mount Albion game drive 13 fragment 28.3 25.4 719.0 8.8 13.0 y ind 2 ind 

5BL67 Mount Albion game drive 14 fragment 20.8 16.6 344.0 10.8 8.0 n ind 2 10YR 8/2 10R 7/4 

5BL67 Mount Albion game drive 15 fragment 80.6 79.0 6369.8 30.4 291.0 y y 1 10YR 8/2, 5R 6/6 

5BL67 Mount Albion game drive 16 fragment 58.5 51.2 2997.0 17.6 79.0 y y 2 10YR 8/2, 10R 4/6 

5BL67 Mount Albion game drive 17 fragment 79.3 39.9 3164.1 19.3 159.0 y ind 2 10YR 8/2 

5BL67 Mount Albion game drive 18 fragment 43.3 34.9 1509.4 18.7 47.0 y ind 2 gray 

5BL67 Mount Albion game drive 19 fragment 105.3 54.3 5712.0 18.5 179.0 y y 2 10YR 8/2, 10R 7/4 

5BL67 Mount Albion game drive 20 fragment 40.5 41.1 1664.2 14.6 53.0 n y 2 10YR 8/2, 5R 6/6 

5BL67 Mount Albion game drive 21 fragment 32.6 38.6 1255.8 10.4 26.0 y ind 1 10YR 8/2, 10R 7/4 

5BL67 Mount Albion game drive 22 fragment 66.3 51.4 3405.8 11.7 66.0 n y 1 10YR 8/2, 10R 7/4 

5BL67 Mount Albion game drive 23 fragment 57.6 50.8 2928.3 21.7 102.0 y ind 1 gray 

5BL67 Mount Albion game drive 24 fragment 29.9 25.5 760.2 5.3 6.0 n ind 1 10YR 8/2 

5BL67 Mount Albion game drive 25 fragment 17.8 11.7 206.9 5.2 2.0 n ind 2 10YR 8/2, 10R 7/4 

5BL67 Mount Albion game drive 26 fragment 23.0 18.8 432.4 5.2 4.0 y ind 1 10YR 8/2, 5R 6/6 

5BL67 Mount Albion game drive 27 fragment 14.1 13.4 189.3 5.3 2.0 y ind 2 10YR 8/2, gray 

5BL67 Mount Albion game drive 28 fragment 13.8 8.7 120.6 5.5 1.0 n ind 2 10YR 8/2 

5BL67 Mount Albion game drive 29 fragment 11.4 9.8 111.4 4.9 1.0 y ind 1 gray 

5BL67 Mount Albion game drive 30 fragment 12.4 9.6 118.8 4.8 1.0 y ind 1 gray 

5BL67 Mount Albion game drive 31 fragment 6.9 6.7 46.5 4.9 1.0 y ind 1 gray 
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5BL69 Mount Albion campsite 1 
nearly 

complete 
265.0 198.0 52470.0 27.7 2178.0 n y 2 

10YR 8/2, small 
amount of 5R 6/6 

5BL70 Mount Albion campsite 1 fragment 36.3 35.5 1287.9 18.1 31.0 n y 1 10YR 8/2 

5BL70 Mount Albion campsite 2 fragment 102.7 81.7 8386.3 23.6 374.0 y y 1 10R 7/4   

5BL70 Mount Albion campsite 3 fragment 93.8 40.7 3814.3 23.8 185.0 n ind 1 10YR 8/2 

5BL70 Mount Albion campsite 4 fragment 92.3 57.8 5336.4 10.3 108.0 y ind 2 10YR 8/2 

5BL70 Mount Albion campsite 5 fragment 91.6 63.8 5838.8 10.2 135.0 n ind 2 10YR 8/2 

5BL70 Mount Albion campsite 6 fragment 57.1 56.6 3234.7 26.2 173.0 n y 2 ind 

5BL70 Mount Albion campsite 7 fragment 33.9 32.8 1111.9 19.4 44.0 y ind 2 10YR 8/2 

5BL70 Mount Albion campsite 8 fragment 24.4 29.7 723.2 14.0 19.0 y ind 2 10R 7/4 

5BL70 Mount Albion campsite 9 fragment 93.5 71.2 6663.8 18.9 313.0 y ind 2 10YR 8/2, 5R 6/6 

5BL70 Mount Albion campsite 10 fragment 46.1 36.4 1676.9 24.3 59.0 y y 1 10YR 8/2 

5BL70 Mount Albion campsite 11 fragment 34.6 37.1 1282.5 15.3 40.0 n ind 2 10YR 8/2, 10R 6/6 

5BL70 Mount Albion campsite 12 fragment 59.6 48.8 2906.5 15.9 87.0 n ind 2 10YR 8/2 

5BL70 Mount Albion campsite 13 fragment 27.5 32.1 881.4 15.6 21.0 n y 2 10YR 8/2 

5BL70 Mount Albion campsite 14 fragment 79.5 67.7 5385.1 16.5 177.0 n y 2 10YR 8/2 

5BL70 Mount Albion campsite 15 fragment 65.7 73.1 4805.6 24.6 181.0 n ind 2 10YR 8/2 

5BL70 Mount Albion campsite 16 fragment 76.4 62.0 4733.1 16.3 170.0 n ind 2 10YR 8/2 

5BL70 Mount Albion campsite 17 fragment 125.2 79.8 9988.0 17.5 371.0 y y 2 10R 7/4, 10R 4/6 

5BL70 Mount Albion campsite 18 fragment 41.6 47.6 1982.8 26.2 77.0 n ind 2 10YR 8/2 

5BL70 Mount Albion campsite 19 fragment 69.0 70.3 4847.9 25.8 238.0 y ind 2 10YR 8/2 

5BL70 Mount Albion campsite 20 
mostly 

complete 
212.0 164.0 34768.0 34.7 2106.0 n y 2 10YR 8/2 

5BL70 Mount Albion campsite 21 fragment 41.0 28.0 1145.4 13.9 31.0 n ind 2 10R 7/4 

5BL70 Mount Albion campsite 22 fragment 39.4 31.6 1242.6 16.8 39.0 n ind 2 10R 7/4 

5BL70 Mount Albion campsite 23 
large 

fragment 
192.0 83.5 16032.0 21.8 752.0 y y 2 10YR 8/2 

5BL70 Mount Albion campsite 24 fragment 72.8 76.2 5548.2 25.5 258.0 n y 1 10YR 8/2 

5BL70 Mount Albion campsite 25 fragment 86.0 63.0 5419.3 19.2 195.0 n ind 2 10YR 8/2 

5BL70 Mount Albion campsite 26 fragment 91.3 34.5 3153.5 21.8 125.0 n ind 2 10YR 8/2 

5BL70 Mount Albion campsite 27 fragment 49.7 35.4 1761.7 26.9 47.0 y ind 1 10YR 8/2 

5BL70 Mount Albion campsite 28 fragment 44.9 28.8 1290.6 27.2 51.0 y y 2 10YR 8/2 

5BL70 Mount Albion campsite 29 fragment 75.5 57.3 4330.0 29.7 170.0 y y 2 10YR 8/2 
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5BL70 Mount Albion campsite 30 fragment 54.9 33.5 1840.1 26.9 71.0 y ind 2 10YR 8/2 

5BL70 Mount Albion campsite 31 fragment 32.0 25.1 801.3 9.0 13.0 y ind 1 10YR 8/2 

5BL70 Mount Albion campsite 32 fragment 82.7 71.6 5924.5 26.0 234.0 y y 1 10YR 8/2, 10R 4/6 

5BL70 Mount Albion campsite 33 fragment 37.3 35.9 1337.9 9.9 27.0 y ind 2 10YR 8/2, 10R 7/4 

5BL70 Mount Albion campsite 34 fragment 39.6 17.0 674.1 21.0 22.0 y ind 2 10YR 8/2 

5BL70 Mount Albion campsite 35 fragment 52.8 52.6 2781.0 19.2 115.0 y ind 2 10YR 8/2 

5BL70 Mount Albion campsite 36 fragment 22.8 26.8 610.4 9.7 15.0 n ind 2 10YR 8/2 

5BL70 Mount Albion campsite 37 fragment 43.4 32.7 1418.8 10.1 39.0 n ind 2 10YR 8/2 

5BL70 Mount Albion campsite 38 fragment 29.4 24.1 707.5 9.8 19.0 n ind 2 10YR 8/2 

5BL70 Mount Albion campsite 39 fragment 57.0 46.7 2660.7 10.0 54.0 n ind 2 10YR 8/2 

5BL70 Mount Albion campsite 40 fragment 59.0 33.1 1955.1 21.6 77.0 n y 2 10YR 8/2 

5BL70 Mount Albion campsite 41 fragment 77.5 55.5 4300.1 30.8 163.0 n y 1 10YR 8/2 

5BL70 Mount Albion campsite 42 fragment 60.0 59.8 3583.8 10.8 82.0 n y 2 10YR 8/2 

5BL70 Mount Albion campsite 43 fragment 35.7 32.6 1162.5 20.4 37.0 y ind 2 10YR 8/2 

5BL70 Mount Albion campsite 44 fragment 26.8 17.9 481.2 8.8 7.0 y y 1 10YR 8/2 

5BL70 Mount Albion campsite 45 fragment 26.5 17.2 455.7 8.6 8.0 n ind 1 10YR 8/2 

5BL70 Mount Albion campsite 46 fragment 28.5 21.5 612.5 18.8 16.0 n ind 1 10YR 8/2 

5BL70 Mount Albion campsite 47 fragment 35.6 18.2 647.9 14.3 14.0 y ind 1 10YR 8/2 

5BL70 Mount Albion campsite 48 fragment 44.4 23.5 1041.4 15.3 23.0 y ind 1 10YR 8/2 

5BL70 Mount Albion campsite 49 fragment 63.6 50.7 3223.5 27.4 116.0 y ind 2 10YR 8/2 

5BL82 Mount Albion campsite 1 fragment 69.6 48.2 3359.0 13.0 82.0 n y 2 ind 

5BL82 Mount Albion campsite 2 fragment 39.0 34.7 1354.0 13.2 33.0 n ind 2 5R 6/6 

5BL82 Mount Albion campsite 3 fragment 37.0 28.6 1058.6 11.5 20.0 n ind 1 ind 

5BL82 Mount Albion campsite 4 fragment 18.6 11.1 207.2 5.7 1.0 n ind 1 5R 6/6 

5BL82 Mount Albion campsite 5 fragment 38.3 28.7 1096.2 14.3 28.0 n ind 2 ind 

5BL82 Mount Albion campsite 6 fragment 53.8 35.5 1912.4 15.3 65.0 n ind 2 ind 

5BL82 Mount Albion campsite 7 fragment 85.9 106.2 9121.8 18.3 294.0 y ind 2 ind 

5BL82 Mount Albion campsite 8 fragment 64.5 52.5 3381.5 14.1 82.0 n ind 2 ind 

5BL82 Mount Albion campsite 9 fragment 27.5 23.4 644.0 16.1 16.0 n ind 2 10YR 8/2, 10R 7/4 
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5BL121 Multi-component game drive 1 
nearly 

complete 
229.0 135.0 30915.0 52.6 3580.0 n y 2 10YR 8/2 

5BL121 Multi-component game drive 2 complete 332.0 170.0 56440.0 60.5 4899.0 n y 1 10YR 8/2 

5BL145 Non-diagnostic game drive 1 fragment 87.1 56.0 4877.9 15.0 98.0 n ind 1 10YR 8/2 

5BL145 Non-diagnostic game drive 2 fragment 82.7 29.9 2475.1 13.4 46.0 n ind 1 
10YR 8/2, 10R 

7/4 

5BL146 Non-diagnostic game drive 1 
nearly 

complete 
214.0 222.0 47508.0 26.4 2237.0 y y 2 5R 6/6, 10R 7/4 

5BL158 Archaic campsite 6 fragment 37.7 34.1 1284.9 8.4 18.0 n ind 0 5R 6/6, 5YR 8/4 

5BL158 Archaic campsite 3 fragment 31.1 20.2 629.4 10.3 9.0 n ind 1 5R 6/6, 5YR 8/4 

5BL158 Archaic campsite 7 fragment 78.5 83.2 6531.4 10.4 141.0 n ind 2 5R6/6 

5BL158 Archaic campsite 1 fragment 50.4 29.2 1473.1 11.0 31.0 n ind 1 5R 6/6, 5YR 8/4 

5BL158 Archaic campsite 8 fragment 92.9 89.7 8328.5 11.2 206.0 n ind 2 5R 8/2, 5R 6/6 

5BL158 Archaic campsite 2 fragment 38.7 31.1 1206.1 11.4 22.0 n ind 1 5R 6/6, 5YR 8/4 

5BL158 Archaic campsite 5 fragment 81.8 35.5 2905.3 12.9 58.0 n ind 1 5R 6/6, 5YR 8/4 

5BL158 Archaic campsite 4 fragment 83.2 71.0 5907.8 13.6 128.0 n ind 1 10R 6/6, 5YR 5/6 

5BL196 Non-diagnostic task site 2 fragment 60.1 68.1 4088.3 14.1 116.0 n ind 2 10YR 8/2, 5R 6/7 

5BL196 Non-diagnostic task site 3 fragment 102.8 70.1 7213.2 14.7 222.0 n ind 2 10YR 8/2, 5R 6/8 

5BL196 Non-diagnostic task site 1 fragment 245.0 102.0 24990.0 16.4 887.0 n ind 2 10YR 8/2, 5R 6/6 

5BL207 Multi-component campsite 4 fragment 49.4 20.9 1035.1 12.2 27.0 n ind 1 5YR 4/4 

5BL207 Multi-component campsite 3 fragment 66.5 60.7 4037.9 14.6 123.0 n ind 2 10YR 8/2 

5BL207 Multi-component campsite 2 fragment 66.1 64.1 4235.0 17.3 144.0 n ind 1 10YR 8/2 

5BL207 Multi-component campsite 5 fragment 26.1 25.2 656.9 18.8 23.0 n ind 2 10YR 8/2 

5BL207 Multi-component campsite 1 fragment 87.5 99.0 8660.1 21.0 371.0 y ind 2 5R 6/6, 10YR 8/2 

5BL209 Early ceramic campsite 1 fragment 89.4 92.0 8224.8 16.1 264.0 n ind 2 5R 6/6, 10R 7/4 

5BL216 Non-diagnostic task site 2 fragment 34.8 31.4 1091.4 14.3 23.0 n ind 0 10R 4/6 

5BL216 Non-diagnostic task site 3 fragment 42.0 34.3 1440.8 21.4 54.0 y ind 1 5R 6/6 

5BL216 Non-diagnostic task site 1 fragment 76.2 67.2 5121.0 21.5 198.0 y ind 2 5R 6/6 

5BL220 Late Archaic campsite 1 fragment 60.0 31.6 1895.9 10.1 25.0 n ind 2 10YR 8/2 

5BL220 Late Archaic campsite 2 fragment 43.5 43.0 1867.0 10.5 39.0 y ind 2 10YR 8/2, 5R 6/6 

5BL221 Non-diagnostic task site 1 fragment 98.4 56.5 5556.2 15.7 196.0 y ind 2 5R 6/6 

5BL221 Non-diagnostic task site 2 fragment 40.9 37.4 1526.5 24.6 69.0 n ind 1 10R 7/4 
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5BL222 Late Archaic campsite 3 fragment 43.1 32.0 1380.1 12.4 32.0 n ind 2 10YR 8/2 

5BL222 Late Archaic campsite 2 fragment 59.8 31.8 1901.1 12.6 57.0 n ind 2 
10YR 8/2, 5YR 4/4 

(bands) 

5BL222 Late Archaic campsite 1 fragment 86.5 79.6 6881.9 20.4 256.0 n ind 2 10R 7/4 

5BL68 
Multi-

component 
game 
drive 

S-16 fragment 206.5 184.5 38099.3 28.5 2405.0 n ind 2 5YR 8/4, 10R 7/4 

5BL68 
Multi-

component 
game 
drive 

S-15 fragment 200.0 237.0 47400.0 35.1 3342.0 n y 2 10R 7/4 

5GA32 
Multi-

component 
campsite 1 fragment 35.5 24.9 884.8 13.8 14.0 n ind 1 10YR 6/2 

5GA32 
Multi-

component 
campsite 2 fragment 44.5 33.9 1511.3 10.2 24.0 y ind 1 10YR 6/2 

5GA39 
Multi-

component 
campsite 3 fragment 74.7 64.5 4822.4 11.4 90.0 n ind 1 10YR 8/2 

5GA39 
Multi-

component 
campsite 2 fragment 62.6 39.2 2456.3 17.9 84.0 n ind 2 10YR 8/2 

5GA39 
Multi-

component 
campsite 1 

nearly 
complete 

199.5 197.0 39301.5 24.6 1992.0 y y 2 10YR 7/4 

640723-
1 

Non-
diagnostic 

isolate 1 
nearly 

complete 
220.0 230.0 50600.0 19.1 1845.0 y y 2 10YR 7/4, 5R 6/6 

81-A2 
Non-

diagnostic 
isolate 4 fragment 52.3 46.2 2415.1 14.1 66.0 n ind 1 

5R 6/6, 5R 5/4, 
10YR 8/2 

81-A2 
Non-

diagnostic 
isolate 5 fragment 81.4 47.0 3826.4 14.5 122.0 n ind 2 

5R 6/6, 5R 5/4, 
10YR 8/2 

81-A2 
Non-

diagnostic 
isolate 6 fragment 47.0 46.1 2164.9 14.6 65.0 n ind 2 

5R 6/6, 5R 5/4, 
10YR 8/2 

81-A2 
Non-

diagnostic 
isolate 2 fragment 51.4 50.1 2576.7 15.1 104.0 n ind 2 5R 6/6, 10YR 8/2 

81-A2 
Non-

diagnostic 
isolate 3 fragment 68.5 29.4 2011.6 15.1 74.0 n ind 1 5R 6/6, 10YR 8/2 

81-A2 
Non-

diagnostic 
isolate 1 ind 305.0 160.5 48952.5 17.5 1746.0 n ind 2 5R 6/6 
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APPENDIX VI 

NETHERSTONE ATTRIBUTES BY SITE 
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5BL67 
Mount 
Albion 

31 23 1-291 1432 46.2 13.0 50238.3 1620.6 760.9 4.8-30.4 10.9 9.9 

5BL68 
Multi-

component 
2 0 2405-3342 5747 2873.5 2873.5 85499.3 42749.6 42749.6 28.5-35.1 31.8 31.8 

5BL69 
Early 

Ceramic 
1 0 2178 2178 2178.0 2178.0 52470.0 52470.0 52470.0 27.7 27.7 27.7 

5BL70 
Mount 
Albion 

49 23 7-2106 7729 157.7 77.0 185798.8 3791.8 1982.8 8.6-34.7 18.9 18.9 

5BL82 
Mount 
Albion 

9 1 1-294 621 69.0 33.0 22134.6 2459.4 1354.0 5.7-18.2 13.5 14.1 

5BL121 
Multi-

component 
2 0 3580-4899 8479 4239.5 4239.5 87355.0 43677.5 43677.5 52.6-60.5 56.6 56.6 

5BL145* 
Non-

diagnostic 
18 0 1-98 155 8.6 1.0 - - - 4.9-15 5.9 4.9 

5BL146 
Non-

diagnostic 
1 1 2237 2237 2237 2237 47508.0 47508.0 47508.0 26.4 26.4 26.4 

5BL158 Archaic 8 0 9-206 613 76.6 44.5 28266.4 3533.3 2189.2 8.4-13.6 11.1 11.1 

5BL196 
Non-

diagnostic 
3 0 116-887 1225 408.3 222.0 36291.5 12097.2 7213.2 14.1-16.2 15.1 14.7 

5BL207 
Multi-

component 
5 1 23-371 688 137.6 123.0 18625.1 3725.0 4037.9 12.2-21 16.8 17.3 

5BL209 
Early 

Ceramic 
1 0 264 264 264 264 8224.8 8224.8 8224.8 16.1 16.1 16.1 

5BL216 
Non-

diagnostic 
3 2 23-198 275 91.7 54.0 7653.1 2552.0 1440.8 14.3-21.5 19.0 21.4 

5BL220 Late Archaic 2 1 25-39 64 32.0 32.0 3763.0 1881.5 1881.5 10.1-10.5 10.3 10.3 

5BL221 
Non-

diagnostic 
2 1 69-196 265 132.5 132.5 7082.8 3541.4 3541.4 15.7-24.6 20.2 20.2 

5BL222 Late Archaic 3 0 32-356 345 115.0 57.0 10163.0 3387.7 1901.1 12.4-20.4 15.1 12.6 

5GA32 
Multi-

component 
2 1 14-24 38 19.0 19.0 2396.1 1198.1 1198.1 10.2-13.8 12.0 12.0 

5GA39 
Multi-

component 
3 1 84-1992 2166 722.0 90.0 46580.3 15526.8 4822.4 11.4-24.6 17.9 17.9 

640723-1 
Non-

diagnostic 
1 1 1845 1845 1845 1845 50600.0 50600.0 50600.0 19.1 19.1 19.1 

81-A2 
  

Non-
diagnostic 

6 0 65-1746 2177 362.8 89.0 61947.1 10324.5 2495.9 14.1-17.5 15.1 14.8 
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APPENDIX VII 

INVENTORY OF SITES 
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Contains only 
handstones 

Contans only netherstones 
Contains 

both 
Contains unknown type of 

ground stone  

5BL71 5BL69 5BL177 5BL107 5BL121 5BL171  
5BL79 5BL120 5BL183 5BL113 5BL68 5BL172  
5BL80 5BL153 5BL185 5BL116 5BL70 5BL173  
5BL91 5BL196 5BL187 5BL117 5BL89 5BL174  
5BL96 5BL216 5BL191 5BL128 5BL110 5BL95  

5BL122 5BL220 5BL200 5BL129 5BL111   

5BL139 5BL221 5BL201 5BL130 5BL112   

5BL158 5BL222 5GA27 5BL135 5BL132   

5BL169 5GA39 5BL145 5BL137 5BL152   

5BL215 5GA149 5BL146 5BL138 5BL164   

5BL224 5BL84 5BL203 5BL143 5BL170   

5GA42 5BL83 5BL208 5BL151 5BL207   

50m West of 5BL70 5BL86 5BL214 5BL154 5BL209   

5GA50 5BL90 5BL226 5BL155 5BL94   

5GA51 5BL92 A-84-1 5BL157 5GA22   

5BL184 5BL93 5GA45 5BL159 5BL82   

 5BL98 5GA48 5BL162 5BL67   

 5BL99 5GA53 5BL163 5BL131   

 5BL104 85-A-3 5BL166 5GA32   

  5GA21     

       

Does not contain ground stone 

5GL1161 5BL114 5BL225 5GA31 5GA1491 5BL593 5BL103 
5GL1435 5BL734 5BL227 5GA47 5GA1490 5GA34 5BL3440 
5GA1354 5BL188 5BL228 5GA36 5GA1489 5BL133 5BL6904 
5BL1356 5BL3937 5BL213 5GA37 5GA1483 5BL134 5BL102 
5GA1355 5GA41 5BL3102 5GA35 5GA1488 5BL136 5BL101 
5GA731 5BL176 5BL231 5GA54 5GA1484 5BL88 5BL105 
5GA730 5BL175 5BL512 5GA52 5GA1485 5BL87 5GA756 
5GA56 5BL75  5BL219 5GA49 5GA1486 5BL150 5BL108 
5GA59 5BL76 5BL205 5BL36 5GA1487 5BL149 5BL109 
5GA58 5BL63 5BL218 5BL4160 5GA1495 5BL81 5BL106 
5GL5 5BL64 5BL217 5BL4159 5GA1510 5BL85 5BL202 

5GA29 5BL65 5BL206 5BL127 5GA1511 5BL230 5BL3105 
5GA57 5BL66 5BL223 5BL100 5GA1512 5BL229 5BL3103 
5GA23 5BL73  5BL180 5BL4157 5GA33 5BL1984 5GA2162 
5GA24 5BL72 5BL182 5BL4158 5BL8071 5GA55 5BL193 
5GA25 5BL74 5BL7532 5GA754 5BL189 5BL523 5BL141 
5GA28 5BL204 5BL179 5GA753 5BL190 5BL97 5BL194 
5GA30 5BL78 5BL181 5GA752 5BL192 5BL167 5BL142 
5GA26 5BL118 5BL178 5GA2240 5BL165 5BL160 5BL210 

5BL1352 5BL119 5BL8072 5GA20 5BL161 5GA3227 5BL195 
5GL3 5BL147 5BL125 5BL3104 5BL124 5BL370.1 5GA1493 
5GL2 5BL123 5BL126 5BL199 5BL148 5BL198 5GA1492 

       5BL197 

 

 

 

 


