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HYDRAULICS OF STFADY-FLOW WELL SYSTEMS

'Dean(F.bPeterson, Jr,l/gnd Orson W, Israelseng/
SYNOPSIS

A brief suwnmary of the literéture regarding the hydraulics of ategdy~fIQW'ncals
is presented, Several shortcomings éf existing formulas and practices are discﬁssed
and suggestions for imprbvement‘made.

Fdr unconfined ground-water flow into wells the existence of the seepagé
surface at the well and the relationship of the magnitude of such a surface to the
other elements of the wéll system are but little underétood. Hansen (5) developed
in 1949 dimensionless parameters‘whiqh enabled specific test data to be plotted
in general tefﬁs. Hansen's work in this regard has been extended herein by adding
the theoretical solutions made by Yang (1l), also in 1948, using "relaxation"
»‘msthods. These solutions enable the investigator to estimate the magnitude of the
seepage face for a wide range of specific cases of unconfined flew into a well.

| Dupuitts classical solution for unconfined flow into a well presumes that all
of the discharge flows horizontally into the zone of influence from outside the
region under consideration. Fer a drainage well to relieve lands waterlogged by
surface irrigation, flow enters the region of influence by vertical pércolation of
water falling on or applied to the overlying land surface so that the flow toward
the well increases as the well is approached, A theoretical solution is presenfed
herein for this condition.Q/ The geometry of thé region of influence for tlis type

well of radius, ry, is the same as for a well of the Dupuit type having the same

drawdown, but with radius equal to e;/ in which n is the ratio of the discharge
‘ ‘ w .
originating from vertical percolation to the total discharge of the well, With

1. Professor and Head of Department of Civil Engineering, Colorado A & M Colicze,
Formerly Professor of Civil Engineering, Utah State Agricultural College.

2. Research Professor of Irrigation and Drainage, Utah State Agrioulturdd
Experiment Station, ' ‘

3. See symbol: =7 Asfinitions following Synopsisé



2
this transormation, %*he seepage surface for the unconfined, vertically-
recharged well may = found by using the same curves as are used foc the
horlzontallywr kzrz=d well. |

Critical evaiuziion of the comonly-used formulas for confined and un-
confired grmnd-.,.b-‘ flow into wells leads to the conclusion that they are
indet-rminate., Ther are made determinate in practice by introducing the
radius of influencs, re, usually as an arbitrary value, a concept which is -
somewhat vague at '::ést, if not illogical,

The variableb In these fo"rrulas :mclude the soil. permeablllty k, the
drawdown, D o the =zickness of water-bearing matemal ‘T, the radius of the

well, r,, the discrzrge, Q, and the radius of 1nf1uence, r The independent

e*
variables are-Bw, z, T, and ry; Q and r, are dependent and mutually inter-
dependent., An 2432%1 onal independent variable, g, describing the unit ra‘te" at
which the influercs cone is replenished with water from én external source, |
is necessary to cczzlete the analysis. These five indeperdent variables are
sufficient to fullr determine the flow into a well for any particular system.
By intréducing cerzin approximations, functional relationships between Q,

Dy, k, T, ry, and 2 are developed. Dimensional analysis yields the dimension-

less parameter = , which includes the dependent variable and which is a

T -

= Iw
function of the ®=Il in relation to its hydrologic environment. This parame-

ter is therefcre Zzzignated the Well-Hydrologic number or simply the W-H
nuinber.

A number cf ZIZlustrative numer_iéél examples are given, ‘Dimensionless
quantities presszZ=3 herein may be used for any system of units providing the
same system is u=z=I throughout,

Care must == =sed in calculating the "effectivenesé" as defined by

Wenzel (12) for »=21s in unconfined systems or values much too small wil
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result. If the piezometric head is measured at the bottom of the parmeabl:
| stratum instead of at the water table, reasonable results may be exgected¢‘
Normal procedure results in considering the head represented by the heighi
of the seepage face as lost head, so that wells in unconfined systeiss nora:’ !y
appear to te somewhat less effective than similar wells in ccnfined systew: .
Actually, cther things being equivalsasnt, a well ih an unconfined system iz

inherently somewhat more efficient in utilizing available specific energy "taun

a similar well in a confined system.



SYMBOLS AND DEFINITIONS

Dimensions

No. Definition Force-Leizbh=Tiow
1 Gy Babbitt-Caldwell variable coefficient -
2 D, Drawdown resulting from pumping, total

theoretical L
3 Ew.’ *fectiveness of the well -
L e Base of Naperian Logarithms -
5 F An unknown function .-
6 Hy Well-Hydrologic number,*_ug§.3 confined system  --
’ kry
7 H, Well-Hydrologic number, Q , unconfined -
system recharged by kry?
horizontal flow »
8 H, WélléHydroldgic nuﬁber, Qé , unconfined
system recharged by kry -
vertical flow :
9 h Hydraulic head, rp +z L
, ' W
10 he Water surface or piezometric elevation at
maximum radius ' - L
11 hg Water surface or piezometric elevation just
outside the well ' L

12 hy Water-surface elevation in well L

13 i, Natural slope of the free water table -

1k Permeability-of soils to water L/T

15 L Length or distance of ground-water flow L

16 n The ratio of the discharge of water derived

- from vertical percolation to the total --
discharge of the well

17 Pressure (force per unit area) F/'L2

18 Q Total discharge L3/




- No., Symbol Definition ' Dimensigns ]
Force—Lenazh-Tlgf"
19 Qr Quantity of flow per unit time through a
cylindrical surface of radius r L3/T
20 q The generalized rate of replenishment for
' any system : L/T
21 - qy Rate of replenishment for .the vertically-
replenished system, quantity of vertical L/T
flow per unit area : :
22 r Radial distance from axis of well (a variable) L
23 re Radius of the circle of influence L
2l Ty Radius of well L
en/2 ; »
25 ry' Ty' = — , equivalent well radius L
w
26 T General value of thickness of water-bearing
stratum for any system L
27 t Thickness of permeable stratum for confined-
flow system L
28 w Weight per unit volume of water F/'L3

29 2z Elevation above datum L



INTRODUCTION

Darcy's Law

The flow of ground water under conditions of saturation has be s wid..y
discussed ty many authors (1, 2, 3, 5, 6, 7, 8, 9, 11, ard 12), Th-cugh
isotropic soils the velocity of flow is expressed by the equation ¢ Darc;,

which in its simplest and most-used form is:

V= k-—%~ ‘(13)3/
in the vector form:
V=%kpgrad h=kvh (1b)
and in the differential form: ‘ |
v=x2h (10)
28

where h/i, < h, and ‘?h/”ZS each represent the hydraulic gradient and V is
the velocity of flow.

Soils are usually stratified and therefore the permeability varies with
the direction of flow. Further, both sedimentation and pressure of overlying
soil materials cause flat particles to be orientated with their longest
dimeﬁsions horizontal, resulting in a nonisotropic condition with respect to
permeability, even though ordinary stratification is not present. Often,
’however, flow will be parallel to one of the principal directions of
permeability, and in this instance k in equation (1) may be treated as constant
if measured in the direction of flow. In this report only isotropic cases

are treated,

L. Dercy's equation is sometimes written with a minus sign on the right,
V = -k h/L, to denote that the flow is in the direction of decreasing
head. -
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Equation 1 simply states that direction of flow is parallel to the
direction of greatest hydraulic gradient and that the volume of dis<harvrge
through unit aree per unit of time is proportional to the hydraulie siadiors,

Equations of Continuity and lLaplace

If flow is steady and the fluid is incompressible, from the law of cuiwwr-

vation of matter the net flow into and out of any elementary vclume of spaus

is zero. This may be expressed mathematically by the equation of ceatinuiiy:

id's V. 7V
X gy lBm B (20)
22X 7Y vz
or in the vector form:
div V = 0 (2v)

Substituting in equation (2) the velocity, V, from Darcy's formula as

in equation (1) yields, for isotropic soils, Laplace's equaticn,

2 2 2
2h . ?2%h & 2h

X2 2v° 222

=0 (3)

where X, Y, and Z are the cartesian coordinates; or in the vector form:
v%h =0 (L)
For steady flow of ground water toward a well, cylindrical coordinates
are more coﬁvenient to use, and equation (3) may be written:

2h N 1 ?h + 1 ?)2}1 + 7‘.7211_=0 (5)
r2 r Jr 1‘2 '/)92 !’322

3
&
>

o

where r, €, and Z are the cylirndrical coordinates,

Equation (1) in cylindrical coordinates will then be:

_ 2h _ _k 2h 3h
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If a mathematical function or expression satisfying equation (3) and reducing
to the known values of h and V at the boundaries can be found, this functicn

will describe the hydraulic head at every point in the region of fi-wr.

FLOW OF GROUND WATER INTO WETL

———

Confined-Flow Systems

If the highly-permeable water-bearing stratum is bounded above and
beneath by impermcable layers (fig. 1), and if the drawdown in the well is
less than the vertical distance from the static water table to the top of
the permeable stratum, the flow is designated as confined flow.

Simple Case Solution

For a simple case the confined system may be readily solved. Assume
(1) +the thickness of the permeable stratum, %, is uniform; |
(2) the permeable stratum is horizontal;

(3) the well penetrates the entire depth of the permeable stratum; and
() the elevation of the piezometric surface at the uniform maximum

radial distance, r,, has the constant value, h,.

e
Confined flow under these assumptions is horizontal, radial, and
symmetrical, No component of velocity exists in either the directions z or
8, and thus “h/zz and 3h/26 and all higher partial derivatives of h with

respect to z and & are equal to zero. Consequently, equation 5 becomes

d°n 1 dh _

with boundary conditions as follows:
at r = Ty, h=Thy;; and at r = rg, h = he.
Equation (7) is in the form of Euler's equation and can be solvel tw

different methods such as inspection, Laplace transformation, or thz



transormation w = ln z. Any of these solutions gives
h=c¢; Inr + cp (8)

Evaluating 1 and %y by substituting the boundary values yields

h=hw+_.l’.!_6.._-_...}.x_w__ln r (9)
in re/}w Ty

The discharge of the well can be determined from this equation and the equ.:.Sioun

of Darcy, which for a steady flow could be written:

Q=25rt k j: (10a)

Differentiating equation ($) with respect to r, and substituting in equation

(10a) the value for dh/dr thus obtained, gives

Q=2irt k Do = hw (100)
1n re/ry

The above theoretical analysis is the general method for evaluating ground-
water flow, However, equation (10b) could be obtained in a simpler way by
directly integrating equation (1) after rearranging its terms, using as
limits of integration the boundary values stated previously.

Eliminating hg - h_ from equations (9) and (10b) and solving for h - hy

gives

hehy=—-%__1,.0
Y Tomk " T (11)

The total drawdown, Dy, which equals hy - h, as obtained from equation (10b)

is | Q

== 1 re
w = e M, (12)

Theoretical Difficulties

Equation (12) presents some theoreticel difficulties which are of
considerable practical importance. In order to write equation (12) the
investigator must assume that the piezometric surface was level at elevation

he prior to pumping and that its elevation is unaffected at distance in excess
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of rg. Thus, h, becomes also the elevation of the static water level in the
well. These assumptions imply no radial flow toward the well from beyond the
distance ro, a condition which cannot exist if the flow into the well is
steady. The quantities D, k, t, and r, are independent variables, but Q and
re are mutually dependent. Equations (8) and (10a) are, therefore, inde-
terminate except by pumping experiment to determine Q, even though D, kt,
end ry, may be known., They may be used to determine k in the field if
measurements of h are teken at one or more values of r greater than r, By
assuming r, one may estimate Q for a particular value of D, by using equation
(12) if k, ry, and t are known; conversely k may be estimated if Q, r,, and
t are known. Selection of r, determines the shape of the drawdown cone,
These equations ignore a major factor in well hydraulics; that is the rate at
which the region of influence is replenished., It secems that an attemot is
made to overcome this by using the arbitrary value rg as a sort of "fudge
factor."

Unconfined-Flow Systems

If there is no impermeable stratum overlying the permeable water-bearing
aquifer (fig. 2), or if the drawdowvn is greater than the depth from the
static water ievel to the confining stratum, the flow system may be clas-
sified as unconfined or partially confined. The problem of developing a
rational equation to find the drawdown is much more complicated because the
position of the boundary of the region of flow is unknown. In addition to
this difficulty, the top surface of the flow region intersects the well at
an elevation somewhat greater than the elevation of the water in the well,
The necessity for the existence of the resulting "seepage surface," AB,
fig. 2, between the water surface in the well and the free surface of the
flow region, AD, is demonstrated by Muskat (8). This may readily be inferred

from a consideration of Kozeny's solution for a porous dam on impermeable
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foundation reported by Taylor (11) and others which is the corresponding case
in cartesian coordinates and‘in which the seepage face is mathematically
demonsirated., The universal economy of nature invariebly results in dynamic
systems invdlving minimum expenciture of energy. The development of the
free surface at an elevation above the water level in the well is in ac~
cordance with this principle,

For the symmetrical gravity or unconfired system (13) the following

boundary conditions apply (see fig. 2).

!

(1) h=h, along BC (r = ry and C <,z < hy)
(2) h=12z along A3 (r = r, and hy <z € h)
(3) ?Jb/j;z =0 along CD (z =0 and ry, <r < r,)
(L)

h =
(5) h=12, P= 0, #h/>n = 0 at the piezometric surface where
hg <z<heandr  <r<r

he along DE (r = rg and 0 % z < hg)

e

At any point along the seepage surface, AB, the pressure head is zero
(atmospheric) and the piezometric head equals the elevation head, This is
also true along the free surface, AD. The component of velocity normal to
the free surface, AD, must be zero which implies Zh/on = 0 where ‘n’denotes &
direction normal to the surface AD. Flow along AD must become parallel in
direction to the vertical surface of‘seepage et point a, fig. 2 (8).

Dupuit Solution

Dunuit, in 1863, introduced the assumptions that flow through any
concentric cylinder at radius, r, was horizontal and that the hydraulic
gredient at all points on the cylinder surface was equal to the slope of the
free surface at its intersection with the cylinder. Since, for steady flow,
the entire discharge of the well must pass through each concentric cylinder
at any radius, combining the equation of continuity with Darcy's équation

yields:
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‘ in 5/
Q = 2Frhk dh =
dr
which may be integrated todtain
;Sk Inr = h? + C

By introducing the boundary conditions at ry, the constant may be evalua®~

to obtain

‘Q Tow _ v 2. 42 L a

or substituting h = h, when r = re

Q 1p Te o p2 - b (14
£

ra Tw

and the equation for the free surface,

- 2 2
1n reﬂgw Tw

is obtained by eliminating ¢ from equations (13} and (1L).

The Dupuit solution for the position of the free surface gives quite
accurate results at fairly large distancesvfrom the well but is incorrect
in the neighborhood of the well where the assumptions made in developing
equation (13) are less applicable. Perhaps tﬁe most serious objection to
this solution is that the seepage surface, AB, is ignored. Like the solution
for the confined case equations (13), (1L), and (15) are indeterminate except
by experiment. Again the usual procedure is to intioduce the radius of
influence. The same objections are made to this device as for the confined
case,

More Recent Solutions

Yang (1L) and Hansen (5) both report the 1932 experiments of Wyckoff,

Botset, and Muskat (12) using a sand tank and a sector model of a radial-flow

5. Equation (9) cannot be used here for evaluating dh/dr as done before
since it is valid only for confined flow.
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system. These experiments show that equation (15) does not give the correst
location of the free surface, On‘the other hand, the distribution of piesc~
’ metric head on the Sﬁrface of the underlying impermeable stretum, CE; (fig. 2)
was found to be accurately fepresented by the Dupuit equation, Hansen (5}
demonstfates treoretically that this must be true., Neglecting flow throuy:
the capillary zone, Fyckoff, Botset, and huskat found that the Dupuit equetiion -
gave the correct discharge., They noted the existence of the seepage face,
but no expression for the position of the free surface was proposed.

Babbitt and Caldwell (1), 1940, using both electrical and sand models,
reached the same general conclusions as Wyckoff, Botset, and Euskaﬁ regérding
the validity of the Dupuit eQuation. Babbitt and Caldwell plotted the percent
of drawdown of the free surfaée at any distagce, r, to the drawdown of the
free surface at the well against the ratio r/%e and found the shape of the
free-surface curve to be independent of the physical dimensions of the
system, The’following equation was proposed for the position of the fres

surface:

X he %% 0.1 hg (16)

where Cx is the ratio of the drawdown of the free surface at any distance, r,
to the maximum possible drawdown when the well is discharging at the maximum

value. Hansen (5) proposed the empirical equation

r
Te

for values of r/ro greater than 0,05, Substituting equation (17) in equation

(16) gives

G.69Q Te Tr

(he - h) = o log — » log _ (18)

which indicates that the elevation of the free surface is a linear function

of log r for any value of Q. The values of Cx given by Babbitt and Caldwell
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are expressed in terms of the drawdown of the free surface curve extended to
the center of the well. Yang (14) points out that the curve must theoretically
become tangent to the well casing at an elevation of hg above the bottom
of the well and cautions against the use of equation (9) in the region close
to the well.

Hensen (5) conducted additional experiments using sand models and gu- 3
particular attention to correction for the effects of capillarity. He points
out the desirebility of expressing the constant of integration in terms of
the radius of the well instead of the radius of influence which is an
indefinite and hypothetical value at best. Hansen gave particular attention
to the extent of the seepage face and using dimensional analysis developed

the relation

--------—----—-Q2 =F f hs , _hw '. (19)
krf Tw S

The frectional parameters in equation (11) are dimensionless., Using available
experimsntal data the curves shown by fig. 3 were developed.,

Yang (13) appiied a "relaxation" method of numerical calculation pronosed
by Southweil (L4) in 1940 to theoretical solutions of equation (3) for six
particular cases. A great amount of time is required to complete a solution

by this method which involves successive approximations.

TEE SEEPAGE SURFACE FOR UNCONFINED SYSTEMS

By using the results of Yang's work, Hansen's curves may be extended
over a much wider range of values of Q/krwz. Since the Dupuit equation has
been found to be correct for the calculation of discharge, one may write, by

rearrangement of equation (1l),

krwa rw2 in re/rw
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Equation (20) makes possible solution for values of the parameter, Q/krwz,
from the theoretical computations of Yang., Values of hg/ry and he/'r.w found by
Yang may thus be plotted against Q/krwg. These, together with the information
compiled by Hansen, form the basis for the curves of fig. i, Because of the
wide range of wvalues of Q/krwg fig. I} is plotted on semi-logarithmic pape:.
The usc of these resulting curves is illustrated by example 1 qf the seven
examples presented at the end of the reporsi.

The height cf the seepage surface, AB (fig, 2) should te of particular
interest to those designing w@lls in unconfined aquifers, especially if such
wells are for drainage purposes, In the case of example 1 the 30-foot draw-
down at the well results in lowering the water table a maximum distance of
only six feet, However, wells in unconfined strata are more efficient in
utilizing available energy to cause discharge than wells in confined strata.
The maximum effectiveness of the well of example i calculated as proposed by

Venzel (12) cannot exceed 6/30 (100), or 20 percent.

UNCONFINED FLOW REPLENISEED BY VERTICAL PRRCOLATION

Development of Equations

If a valley fill is fully drained by pumped wells little of the weli
discharge results from water moving horizontally into *the region of influence.
Water repleﬁishing the soil pore space within the cone of depression percolates
vertically downward to be intercepted by the influence region of the well,

Let: q, = the average flow vertically dowrward into the zone of

influence per unit of horizontal area, volume per unit
area per unit time;

n = the ratio of the discharge derived from vertical percolation
to the total discharge of the well; and let

Q, r, k, etc., be as before,
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Then the flow; Qr, through any concentric cylinder at radius r, if the Dupuit

assumptions are made, is |
Qr = Q ~vay (r2 - r2) , (21)
As a first approximation, equation (21) may be written

(2]

Qr = Q ’;:; qv rL ) (22)

and from Darcy's law

Qp = Q -7 qyr? = 2lirhk ._g.fi-

1

which may be integrated to give

Q awr? _ g (23)

When r = r, h = hy. Evaluating C gives

Qo tig, (FPond) 1 2o n?) (2l
2% k Tu Lk 2

and at the radius of influence

......Q:-. 1n _fe ‘r 2 _r,2 1 2 2
T P T Wt =L P - nd) ()
by the approximation
reQ - rﬁ‘? = re~2
and use of the approximate relationship
nQ = Qv ree (26)
equation (25) may be written in the forms
Q= Tk (h? - WP (27)

2.303 log ro/r, - (n/2)
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and
nk (he? - hy?)
ree
L
Qy = 128)
T 2.303 log re/ry - (n/2)

From equations (2L,) and (26) the equation for the drawdown curve will be

given by the relationship

7 (1 - 1) (25

= B3 Teg vy - o2 ()R

Substituting the value of Q from equation (27) in equation (29) gives

2.303 lor, r/:*w - n/2 (r/re) + b2 (30)
2.30% log ro/Ty - n/2 v

Near the well the approximation given by equation (22) may not be

justified. Further, it may be recessary to write
m =7 (re? - ) ay (31)
in place of equation (26). Proceeding as before, the more exact equation

Mk (12 - hyP)

i= - e ST )
K z \
2.30 51 + TE. log (r/fry) - n/2 { 2 Xw_ )
303 LT TR - ) } g (r/rw) - n/2 Sy

| may be deduced.

Validity of Equaticus

No experimental data are available for checking the validity of the
equations for the unconfined flow toward a well in a system replenished by
vertical percolation. The seepage surface which exists at the well has been
neglected in the theoretical development. Also the assumption that the flow
is entirely horizontal through a vertical cylinder at distance r has been

introduced as was done in the classical Dupuit analysis. By inference,
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equation (18) cannot be expected to give reliable results for the position
of the free water surface near the well; however, equation (27) should give
reliable values for discharge. Equation {17) may be‘expected to give
reliable results if the measurements of piezometric head are made ot poinis
where the assumption of horizontal radial flow through vertical potential
surfaces applies. This is exactly true alcng the impermeable boundary, G .
(fig. 2) and is closely appreximated at greater distances above CE as the
radius incrcases. The more exact equation (32) results from a rather mincr
refinement and its use is considered unnrecessary or unjustified in most cases,

Determination of Sfeepars Surface
2

Equation (27) may be revwritten

2 2
Q= 2k (he” = hy?) (33)
2,303 log ‘

g

ell/= (rw)
By the transformation, ry = rw'/én/b, equation {33) reduces to the form of
equetion (1l}) and the geometry is the same as for *the Dupuit case for the
same discharge but for a well of radius equal to en/é ry» For the case when
n equals 1, the well system replerished entirely by vertical percolation,
ry' = 1,6LZYW‘ Fig, L may be used for finding the neight of the seepage
surface, hy, by introducing the above transformation for the case of a well
in a system replenished by vertical percolation, Example 2 illustrates the

use of the foregoing analysis for the purpnse cf designing an agricultural

drainage well of this type.

EFFECT OF REPLEVISIMEL

A condition of steady flow implies that the total replenishment of the
influence cone equals the discharge of the well, The shape of the influence

cone and the discharge, Q, for steady flow for a particular system must be,
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in general, & function of the drawdown, Dy, the well radius, ry, the permea-
bility, k, the thickness of the water-bearing stratum, T;é/ end thre rate of
replenishment to the influence cone, q, having the dimensions L/‘I‘e Thece
last five variables are the independent variables and are sufficient to fully
determine the fiow for any particuler system. The weainess of existing
formulas for well discharge is that they do not contain the rate cf repl . .sh~
ment. They are therefore indsterminate viless ea actual test is made or
unless scwe assumption, such as the radius of influence, is intrediced. The
foregoing statement may be ekpressed mathematically by

F (Dw-: ry, X, Ty G, Q) =0 (3‘,-3)

where F designates an urknown function, Equatica (3L) involves cnly the
dimensions L and T. Chocsing r and kx as repeating variadbles one obtains

by dimencional analysis

4
Dy 7T F Q _ o) 5
1 (\-;;' et TET TRA =0 (35)
or
G D T g
- + - F W 3 'y (36)
k!‘w-g- 2 Tw rW k )

as a generalized functisnal veletion for flow into a well,

An examination of squation (36) rev.ais thst the limensionless parameter.
Q/%fwg, depends only on the geometry of the well (ry, Dy) and the hydrology
of the ground-water system (k, T, q); in other words, cnly on the combination
of the well and its hydrolegic environmeuvt, Q,krw? is therefore designated
by H, the Tell-Hydrologic rumber or W-KE nnmber; One should note that con-
sideration of replenishment gives the radius of influence real meaning, for

within the radius of influence the total replenishment equals the discharge;

Q. The following analysis introduces the rate of replenishment and develops

—

6., For confined systems the thickness of the water-bearing stratum is

' represented by t, For unconfined systems the value hg + hw/? is a
measure of the thickness of the water-bearing stratum. Note that
equation 12 reduces to equation 1l by substitution t = hy + hy/2.
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theoretically, using certain approximations, the functional relations ex-
pressed by equation (36) for the three cases of steady flow discussed

previously,

Onconfined System Recharged by Horizcntal Flew

Dénoting the W-H number for the unconfined case by the symbol, H,, aui

substituting Dy = hy - hy, equation (36) may be rewritisn

{ he hy- a N .
Ba= %5 N e e (57)

Equation (20) may be rewritten in the form

2 . 27
7l fhe /b,

T (38)

-——

us k(rw)Q— ln re/'rW

so that all dimensions are expressed in terms of the well radius, ry. The
right side of equation {38) contains only linear dimensions; thus the
numerical value cf H, defines the shape of the influence region.‘ If the
natural slope of the frec water table in the regioa is ih’ and if no water
comes into the cone of influence by vertical percolation, g = in k so that

q/k in equation (2Z7) may be replaced by i_. Under conditions of steady flow

n
Q=2=2r, k he in (39)
and
e _ Q o
rw 2 h(ﬂ k in .\'-W

Substituting re/ry in equation (38) yields

7 ()% (2] o
By = o (o)
InH_ - 1n { -~~)

Equation (LO) contains all of the parameters raquired by equation (37) ard

defines the function F3 for the case at hand. One may observe that Hﬁ
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depends upon the radius of the well, the initial and final depths of water in
the well, and the natural slope of the water table, One may solve equation

By in terms of in

(he/ry)® (he/w)

hw/heaz/ The resulting graphs of the functions are plctted in fig. 5.

(LO) implicitly for - for various ratios of

Large values of Hu indicate deep, narrow drawdown cones of influence
while small values indicate troad, shallew cones., High flows into the zcos
of influence and/%r low permeability cause the cones to become rarrow and
steep, whereas slow replenishment and/or high permezbility cause them to be
broad and shallow in terms of the radius of the well.

Confined Systems

The W-H number for the confined system will be designated by Hc‘ From

equation (10b)

He Q - 2 1T(DW/ Tyr) (t/ Ty)
k rwz 20303 1°g re/‘rw

(L1)

where t is the thickness of the permeable siratum, If i is the natural

n
slope of the piezometric surface the flow into the zone of influence is
approximated by

Q=2rg k t i, | | (1:2)

Solving equation (L2) for r, and substituting in equation (L1) gives

H, = ,2"7 (Dw/rﬁ) (t/74) (L3)

- ‘ H:‘ r
2.303 log {—%-—-
n

Equation (L3) satisfies the functional reletionship of equation (26) and

makes possible computation of values of N for various values of
T
wWitw

7. Algebraic manipulation of equation (LO for the case of zero drewdown
(hy/hg = 1.0) yields Q = 2 iy k hy ry instead of zero. The value of
Q in this instance is the same as for a well with a radius of influence
equal to the radius of the well.
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.
‘ﬁw_gﬁ}? to form the curve of fig. 6.

Unconfined System Tctally Replenished by Vertical Percolation

Let By = Q /krW2 define the W-H number for this system. 'Comb’:‘m:i.ng

equations (26) and (27) for n = 1 yields

AN oy ?|
. = }“ \ ry ‘A"".v;} B . (m)
v 503 log .1 {9 ___ 1/
Ty qVT‘-

Substituting Q = Hy k rw2 in the denominator gives

7 [ | |
Hy = ( ,ﬁ..ﬁ(f’"% (Ls)
2.30% log \i—¥z - 1/2
Qg 1F

which satisfies the relationship required by equation (36). Egquation

(45) may be rewritten in the form

5(1.. L}B’"z?

Hy i R
s S - —
! nej = . log FHy _log av qv/k dog il 1
_— 1.151 j—m2i— = - -
{‘ } 5 ’ heig. (he Fl lh‘,}e o Lh 2
L Tw ) Tw/ \ Ty / ‘\“"W‘)

The ratio he/rw depends entirely on the dimsnsions of the well while

qv/k is the ratio of the unit replenishment to the permeadbility. From

equation {L6) ——- Hy --5— can be computed for values of — awk  por

(he/r)? (he/rw)?
various drawdown ratios, h /hg. Graphs of the results are presented by
fig. 7.
Although the value of g, will no doubt vary at various times during the
year and with the searons, ejuation (Ll) should be valuable in plenaning the

design of a system of drairage wells as well as in developing the ultimate
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ground-water supnly of a closed ground-water basin of the unconfined type.

Significance of the W-H Number

If the value of H is known, the effective redius of influence may be
esteblished by consideratior cf the hvdrologic facvors snd the well radius,

For the three cases discussed herein the following forrmulas may be used,

Ro=2 (I2) (2 (u7)

(t ) in (L18)
< (L9)

h - hy
ry log v/ry,

For the confined case Hcrw/% is linearly proportional to

This relationship is shown by fig. 8. To use fig 8 if Hcrw/% is kaown enter
with the values of Dw/}W to intversect the graph for Hcrw/%. The resulting

abscissa is re. The value of .2 = PW rmy be found by entering with the

. , Tw
value of r and proceeding vertically to intersect the proper curte for
: . . . . k-
Hory/t. The resulting ordirate gives the value of _“-thﬂ;, For crample,
e

suppose Hg = 2,643, t/ry = 30, and Dy/rg = 7h. Then Hyry = 88, Ertering
ith Dy/r, to intersec’ H r,/t = 88 gives ro/ry = 196, At r/fiy = 130

le L Up/ T L0 INLSTBECT LTy v = gEilVes Tg/Ty == SG, T/ = e,

h - hw - ¢6,2, Interpolation for internediate values of Hcrw/% may be

T
w
easily done becsuse the value of th2 ordinute aloug the heavy vertical line

at r/%w== 52l is equal %o the value of Hcrw/% thrsugh thet point. Thus, to
find the line for Hery/< = €&, draw & line through the ordina®e 0 on the
heavy vertical line and the crigin, The relationchips for the other two
systems aras much more complux and further study 13 needed in crder to fully
present them.

Typical problems are presented end solved in examﬁles 3, L, 5, 6, end 7

of the appendix to illustrate the use of the foregoing equations and analyses.
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EFFECTIVENESS OF WELLS IN UNCONFINED SYSTEM

The "effectiveness" of a well is defined by Wenzel (12) as

100 (he - ks)
E, = (e < 1) (50)

where
E, = the "offectivensss" of the well,
hy = the depth of water immediately outside of the casing,and the
‘other terms are as previously defined.

For a well in a confined system equation (50) has the quality of well
efficiency because hg - hy is actually the power per unit of weight discharge
delivered by the well to the fluid outside of the well whereas h, - hy is the
power per unit of weight discharge imparted by the pumps to the water inside
the well., The difference between the two values represents the power loss
per unit of weight discharge through the boundary of the well, "Effectiveness"
of wells is a widely-used term describing the condition of wells from the
point of view of their efficiency as a power-transferring device, The draw-
down in the well, hg - hy, may be quite easily mcasured; however, greater
difficulty is encountered in the measurement of hg - hg. The head loss in the
simple, confined case of radial flow is a linear fuhc%ion of the 1ogarithm
of the radius (ecuation{10b)). The elevation of the piezometric surface
observed at various distances from the well may therefore be plotted against
log r and the resulting straight line exteaded to the casing to determine hg
of fig. 9. |

For the unconfined case considerable care must be exercised in appiying
Wenzel's procedure or misleading results will be obtained, If the piezometers

extend only a short distance into the saturatsd media the elevaticns represent

the elevaiion of the free water surface., Following this procedure for the
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unconfined systemiwill always yieid values of effectiveness less than 100
percent because the head represented by the height of the seepage surface is
counted as lost, The total available enerzy per unit weight of water is
equal to Dy or he - hy. Actualiy the unconfined system is inherently move
efficient in utilizing the available specific energy than is the confinel
system. This conclusion may ve readily deduced, The available specific

energy in a confined system is, from equation (12)

Q1n (re/ry)
he - hW“ 27kt

and in an unconfined system is, from equation 1

i - @ln (re/%w)
e = bPw kT (hg + hy)

For the same value of available specific energy, permcability, ry end r,

he + hy
Qa “’T"‘.g—..v.“
—— a—— !"‘1
: s (51)

where Q, is the discharge fnf the unconfined systom and Q. is the discharge

for the confined system. Since t must be less 4han by, Q, rust always exceed

Q¢ providing both wells ave rqually efficient. Tie following medification

of procedure for determining the effectivensss of wellz in unconilred mecia

is suggested: The piezomeier éipes shouid be umgerfcra%ed with an opén end,

The pipe should be extended to within a sherd distanca of the bettom im-

permeable stratun, Theroretically the squares cf the differences between

the piezcmetric level énd the elevation of the bottom impermeable stratum

should form & straight line when pletted apainst the logarithm ef “the radial

distance from the well. The value of hg mey btz found by extending the ploﬁted

line to the position cf the well casing. Asinnily no experimentsl information

regardiﬁg this pracedurse is available and it neads to be checked in the field.
All of the examples have assumed the well to be 100 percent effective,

If the effectiveness is less than 100 percent, the value of hg should be used
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EXAMPLES

 th——— s o ———

Fxanple 1
Lo 2 ————

Given: A gravity well discharges 2.0 cfs and the permesbility of the ma%zcial
is determined as 107 £:/sec, The crigiral depth of water in the well, ko,
is 50 £t and the drawdown is 30 ft, making hw = 20 ft, What will be the

height of the seepage face (4B, fig. 2) if the well is 24 in. in diamete:r?

Solution:
Q. 2.0 _
b2 (0.000) ()2~ 2,000.
} . | h
D —32- = 20, and from fig, L ——— = LL. Therefore, bg = --l%-- =Ll £t
‘w

Tw

and the height of the seepage face is (Ll - 20) or 2L ft = Ans.

Given: Excess irrigation water of 1 foot depth per year is to be removed
by steady pumping. The diameter of the well is 2& in.,, and the sub-soil
permeability, k, is 1077 ft/sec. The depth of the saturated permeable
overburden, h,, is 50 ft and the casing is perforated for the entire depth.
-What will be the drawdown if an area of radius 2,000 ft is to be drained by
one well? What will be the height of the seepage surface? |
Solution:

From equation (28) with n=1

r

2 i
1 (2000) 2.3 Log 2200 - 1/2!
‘i. IS4

2 =
he” - ™ = T(355y (2l (3600) (0.001)

= 27 [(2303) (3301 - 0.500) ) = g0
hy = 2500 - 902 = 10,9 £t
From equation (26) nQ = gy Tre2

.
¢ ="(365) (2l (3600)

(2000)27"= 0.1, ofs
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= (1) Ve = 1061430

0 » h-'._l — )-LO o 0 -
-y (0.001) (1.613) T 63

and fron fig. L hs/%w = 25.3; therefore,

= (1.843) (25.8) = 2.3 £t and the height of the seepag= surface

- he = 12,3 - 40.9 = 1.L £t = Ans,

Example 3. Yield of Confined-Flow System

Given: A permeable confined aquifer 30 ft thick is at a depth of 100 f%
below the ground surface. The permeability of the gravels is estimated at

2 x 1077 ft/sec, The patural slops of the piezometric surface is 0.01.

The water stands at a depth of 20 ft below the ground surface in a 12-in,
diameter well, Assuming that the water surface may be drawn down to a depth
of 70 £+, what steady production may be expected from the well?

Solution:

Equation (L3) and the graph of fig. 6 apply

in - _0.01_ _ 4,0001
Dy/Tw 50/0.5

and from fig. 6a

He
g = 076

hence, H, = —-l-c-;-w = (0.76L) -%%%92‘“ = Lssl

and

= (458L) (2) (1073) (0.5) (0.5) = 2.29 cfs

Example lj, Permeability of the Confined System

Given: A confined sand layer 10 ft thick yields 0.2 cfs steady discharge

when pumped under a drawdown of 30 ft. The natural slope of the piezometric
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surface is 5 ft/hundred and the diameter of the well is 2l in, Estimate the
permeability of the sand.

Solution:
b odubabadsin

i - 29 _ 0067

Dy/Ty 30/1

and from fig. 6,

He Q
—my- = 1,07; Hg = 321 = ———
Dut/Te 7s Ho=3 kry

from which

0.2 = 6,23 -L f
Gen) (1) () = 6.23 x 10™* ft/sec

Example 5

Drawdown Required to Discharge 1 ofs in Confined Sys*ce_:p_

Given: The permesbility of a 20-ft gravel stratum is estimzved at 1,0 = 1075
ft/sec, The well diemeter is 2l in, and i, is 10 ft/hundred. What draw
down will be required to produce a discharge of 1,0 cfs?

Solution:

e . e s e

This problem may be solved by trial and error using fig. 6.

. 1.0 = 1000
He = 2~ T(103) (1.0)2

in = 0.1

Try D,/ry = 20;

He 1000 | in , . . )
= = 2,5 and —=8___ = 0,01, entering fig. 6 with
D, b/r,2 (20) (20) Dy/T- ’ & 1k
Heg

TR

. i
the corresponding value of -I—)—-%j—- = 0,10.
wiw
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i

Iry DW/ Tw
He in

= 1,0, ——p—— = 0,002 ter fig, 6 th 1.0 gives
W 3 DW/I’W s ente 1ng ig a wi ""7"“'“

50;

in

= 0,00106
Dw/zfw

Therefore, the correct value of Dw/%w is between 10 and 50 and mich nearcr 50,

Try Dw/l‘w = Lj0;

H. 50
b = = 1,25 n__ = 0,0025 repeating the preceeding steps gives
D_w/rw h H - " 7 s
in 0.00385. The correct value of Dy/ry appears to be about L5, aud
Dw/rw

the required drawdown is therefore estimated to be L5 feet.

Example 6a, Yield of Unconfined System

'gizggg A ground-water survey of an unconfined-flow aquifer indicates thet
the average depth of water in the permeable layer is 80 ft, that the
permeability is 5 x 1073 ft/sec, and that the natural slope of water table
is 2,5 ft per thousand, If the economic 1ift enables the water table to be
drawn dowvn 60 feet at the well what will be the estimated theoretical yield

of the 12-in., diameter well? Estimate the desirable well spacing.

Solution:
.0025 hy 80 - 60 _ A - .
- =, OO 6’ = - O-ﬁ 0, f f .
ha/nw o5 000015 T 56 5 rom fig, 5
: guu“u“~4a 0 ’ 2 .
— = 0,331 = (0.33) (160)< = 8,150
(he/fw)e

Q= Hy re? k = (8450) (0.5)% (.005) = 10.6 cofs

Q 10,6

e T2k he 1, (2) (.0015) (80) (0.0025)

= 5300 ft

Wells should be spaced somewhat less than every itwo miles for greatest

economy and full coverage,
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Example 6b
Given: The same data as in example 6a but using the gallon as the unit of

volume and the minute as the unit of time.
Solution:
2oL

In this case k = 2,2 gal/sq ft/min corresponds to 5 x 10°3 £i/sec.

As before F, = 8,150 and Q = (8150) (0.5) (2.2L) = L, 770 gpm

L7

. 470 2

. = e = 00 f%
e (2) (2.2L) (80) (.0025) 2,7

Example 7, Design of Trainage Well

Given: During the summer months, Mey to October, an average excess of cre
ft of irrigation water is applied each month., This is all to be removed by
pumped drairage using 12-in., wells, The depth of the permeable overburdcn
is 65 ft and the water table is to be maintained at a depth of at least 15
ft below the ground surface, The permeability of the materisl is estimatad
at 10"h ft/sec. In order to benefit by special power rates, pumps will b2
operated only during the irrigation season, What discharge may be expected

and what should be the well spacing if the average 1ift (from water surface

in the well to the ground surface) is maintained at 50 ft?

Solution: A 1/.0001 he 50
Dolution ¢ = , . = = 100
v (30) (3600) (L) * “ry 0.5
a/fk 10000 = 3.68 x 1077 and hy/hg = 15/50 = .3

(he/ry)2 (30)(3600) (2L) (100)°
from fig. 7

Hy _ = )
—T£;7;;3§~-* 0.472, Hy = L720

Q = (4720) (0,0001) (0.5)2 = 0.118 ofs

Q. _(0.118) (3600) (2L) (30) _ 315 gy

oY wyw () (1)
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If the spacing of the wells is made 2rg there will be a small undrained
area because of the circular shape of the drained area, To allow a full
coverage of drainage the poinﬁs of tangenoy of the circular areas should be
brought to é cormon point. Thus, for an arrangement of wells whers there are
three tangency points, the spacing should be made rg \'3, and for four
tengency points, r, v 2. In order to find the seepage face on equivaleni 2ll
having a radius of (1.4L3) (0.5) or 0.82) ft must be assumed, The new = iues
of 4 and ry, are 1740 and 18.3 respectively. From fig. L, he/rw = [0.G.
therefore hy = (L0.8) (0.821) = 32.8 ft. The seepage surface is therefore

3298 - 15 =3 1708 ft hl“.g.‘ﬂo
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