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ABSTRACT 

 

 

 

TOPOGRAPHY, DISTURBANCE AND CLIMATE: SUBALPINE FOREST CHANGE 1972-

2013, ROCKY MOUNTAIN NATIONAL PARK, USA 

 

Many forest tree species are expected to migrate in order to track suitable habitat due to changing 

climate (Stohlgren et al. 2000, Holzinger et al. 2007, Bell et al. 2013). Changes in climate will 

likely alter important fine-scale ecological factors such as water balance or microsite conditions 

which are vital for vegetation (Dobrowski 2011). Species distribution models suggest that many 

species should have already begun to migrate to track apposite climate (Rehfeldt et al. 2006, 

Littell et al. 2010, Monahan et al. 2013). While these models are a good starting point, they do 

not incorporate many variables that are critical for understanding forest changes and migration 

such as fine-scale topography and disturbance (Pearson and Dawson 2003). I resampled 68 

subalpine forest plots originally surveyed in 1972-73 in Rocky Mountain National Park (RMNP) 

to investigate changes in species composition and structure and assess species migration during 

the past 40 years. I specifically considered forest change and migration in the context of 

topography, disturbance and climate. Data indicate species composition has remained relatively 

stable, with new species arriving in only 13% of plots. Forest structure has changed, shifting 

toward greater abundance of large-diameter trees with a reduction in small-diameter trees. Total 

stem densities decreased on south-facing slopes, increased on north-facing slopes, and remained 

stable at low elevations and increased at higher elevations. Species migration has been 

predominantly upslope on south-facing slopes while species elevations remained stable across 

north-facing slopes. These findings suggest that climate change has impacted forests of RMNP 

during the past 40 years. Impacts to vegetation have been mediated by topographic position and 
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disturbance, demonstrating the importance of these factors in altering climate change impacts at 

the microsite scale. Northern aspects appear to be more buffered from the impacts of warming 

temperatures than southern aspects and these areas may become potential refugia in the future. 

Further understanding of the interactions among topography, disturbance and climate is vital for 

anticipating how forests could change and this information will lead to better ecosystem 

management and preservation of biodiversity in the future.   
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Introduction   

Twenty-first century projected climate change will force many forest species to migrate 

in order to track suitable climate conditions (Stohlgren et al. 2000, Holzinger et al. 2007, Allen et 

al. 2010, Bell et al. 2013). Warming temperatures and greater variability in precipitation will 

affect important ecological factors such as water balance or site temperature which influence 

species distributions (Dobrowski 2011). Based on recent climate conditions, species distribution 

models suggest that many species should have already begun to migrate to track appropriate 

climate (Rehfeldt et al. 2006, Littell et al. 2010, Monahan et al. 2013). Although these models 

have proven valuable for illuminating recent climate effects on species distributions and for 

projecting future changes, they do not incorporate many variables that are critical in determining 

species distribution and migration (Pearson and Dawson 2003). For example, models do not 

include the influences of fine-scale topography or ecological disturbance (Overpeck et al. 1990, 

Pearson and Dawson 2003), both of which can have significant influences on regeneration, 

migration potential and species distributions (Grubb 1977, Рееt 1981, Veblen et al. 1991a, 

1991b, Veblen 1992, Dobrowski 2011). Recent empirical studies of species distributions, which 

reflect the suite of real world influences on species distributions and migration, do not present a 

clear pattern as to how forest systems are responding to recent climate. Specifically, research has 

documented species are moving upslope as expected (Beckage et al. 2008, Lenoir et al. 2008, 

Bell et al. 2013), downslope against expectations (Crimmins et al. 2011), not changing 

distribution (Zhu et al. 2012), not moving but experiencing shifts in species dominance or 

community assemblages (Kelly and Goulden 2008), shifts in demography (van Mantgem et al. 

2009, Lutz et al. 2009, Dolanc et al. 2013) and possible extinction of species due to habitat loss 

(Pearson and Dawson 2003, Ashcroft 2010).  



2 
 

In mountainous terrain, climate change impacts on vegetation will be highly 

heterogeneous as a consequence of the significant influence that topography plays in creating 

microclimates (Рееt 1981, Stephenson 1990, Dobrowski 2011). This connection between 

topography and climate has often been referred to as topoclimate (Thornwaite 1953) and can be 

critical to species regeneration or persistence at a site (Dobrowski 2011). In the northern 

hemisphere, north-facing slopes are associated with reduced solar radiation, which results in 

cooler temperatures, lower evapotranspiration rates and increased moisture availability. The 

opposite is true for south-facing slopes due to higher solar radiation. Moreover, elevation-

temperature and elevation-solar radiation relationships create steep temperature gradients over 

short distances in mountain areas due to low heat holding capacity of the thin air (Keppel et al. 

2012, Bach and Price 2013). Microclimates are essential to the regeneration and distribution of 

tree species and are controlled by a variety of variables such as aspect, elevation, slope and 

canopy cover. The effect of fine-scale topography on regional climate at the microsite level is not 

well documented. These effects could either attenuate regional climate trends creating potential 

refugia allowing species to persist or exacerbate regional climate trends forcing species to 

migrate (Ashcroft 2010, Dobrowski 2011, Moritz and Agudo 2013). 

Natural ecological disturbances, in combination with climate and topography, play a 

critical role in shaping the composition, structure and regeneration of forest ecosystems (Grubb 

1977, White 1979, Veblen et al. 1991a). Disturbance type, severity and extent creates very 

specific microsite conditions and generate the context for the degree of climate change at a site 

(Peet 1988, Veblen et al. 1991a). For example, stand-replacing fire exposes bare mineral soil and 

increases soil nutrients, creating very specific microsite conditions for regeneration. Removal of 

the canopy further alters microsite conditions by increasing wind and solar radiation. These 
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conditions promote stand regeneration of early successional species such as pines and aspen 

(Peet 1988, Veblen 1992). In contrast to fire, insect outbreaks that generally kill half or more of 

canopy trees create very different microsite conditions for regeneration. In these sites bare 

mineral soil is relatively rare and because insects are generally species-specific, shade from live 

non-host canopy trees is still present (Veblen et al. 1991a, Raffa et al. 2008, Collins et al. 2011). 

These conditions tend to promote regeneration of shade tolerant species and growth releases of 

advanced regeneration (Diskin and Rocca 2011, Collins et al. 2011). Thus, type and severity of 

disturbance create microsite conditions that can favor regeneration of one species over another 

and alter the successional trajectory of a stand (Grubb 1977, White 1979). 

Numerous studies investigating species migration and forest change due to changes in 

climate have been conducted in Europe (Holzinger et al. 2007, Lenoir et al. 2008, Chen et al. 

2011) and along the east and west coasts of the United States (U.S.) (Ibáñez et al. 2008, Beckage 

et al. 2008, Kelly and Goulden 2008, Crimmins et al. 2011). To date, there is a paucity of 

information on recent forest change and migration in the continental U.S. and few, if any, studies 

look at the influence of topography and disturbance as mediating factors of change. This study 

focused on investigating forest change and tree migration over the past 40 years in the context of 

topography, disturbance and climate in Rocky Mountain National Park, Colorado. I hypothesize 

that forest response to climate change is influenced at a local scale by topography and 

disturbance. I explored the variation of this response by measuring forest structure, composition 

and species migration and I address whether species have responded consistently on north versus 

south-facing slopes after 40 years and how this response varies by elevation and species. 
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Methods 

Study Area 

Rocky Mountain National Park (RMNP) straddles the continental divide in north-central 

Colorado (Figure 1). The area has been shaped by long-term geologic processes that have 

resulted in poorly developed soils and highly-dissected, steep topography. This topography 

creates a mosaic of climatic and environmental gradients from sheltered valley bottoms to 

exposed mountain summits, yielding a diverse set of ecosystems (Рееt 1981). Three life zones 

(montane, subalpine, tundra) classified by dominant vegetation communities are located within 

RMNP (Marr 1961, Рееt 1981). This study is focused on the subalpine life zone which is the 

largest forested area within RMNP (45km
2
). Six dominant forest tree species include: Abies 

lasiocarpa (subalpine fir), Picea engelmannii (Engelmann spruce), Pinus contorta (lodgepole 

pine), Pseudotsuga menziesii var. menziesii (Douglas-fir), Populus tremuloides (aspen) and 

Pinus flexilis (limber pine). These tree species generally promote a closed canopy system leading 

to minimal light reaching the forest floor, resulting in an understory composition that can be 

highly variable ranging from little to no understory species to highly diverse understory strata 

(Romme et al. 1986). In general, because of the high elevation and cooler temperatures, growing 

seasons are relatively short. The dominant disturbance types within these forests are infrequent 

stand-replacing fire, insect outbreaks and windthrow (Veblen and Donnegan 2006). Beginning in 

the early 2000s the study area experienced an epidemic mountain pine beetle outbreak 

(Dendroctonus ponderosae, MPB) resulting in extensive mortality of the preferred host trees, 

lodgepole pine and limber pine (Raffa et al. 2008, Coop and Schoettle 2009, Diskin and Rocca 

2011, Edburg et al. 2012). Over the past few decades, spruce beetle (Dendroctonus rufipennis 

Kirby) and Douglas-fir beetle (Dendroctonus pseudotsugae Hopkins) have also caused severe 
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mortality of spruce and Douglas-fir (Veblen and Lorenz 1991, Veblen et al. 1991b, 1994, Veblen 

2003, Veblen and Donnegan 2006). In the 1940s a large spruce beetle outbreak killed most 

canopy Engelmann spruce trees within central and northwestern Colorado (Veblen et al. 1991b). 

During the 1950s, and again in the 1980s, Douglas-fir beetle outbreaks killed vast amounts of 

large-diameter Douglas-fir trees throughout RMNP (Hadley 1994). Infrequent stand-replacing 

fire has also impacted subalpine forest systems of RMNP for the past several centuries. 

Infrequent fires occur on the order of every 200 to 800 years depending on forest cover type, 

creating a patchwork of uneven aged forests across the landscape (Sibold et al. 2006).  

I resampled plots (n = 68) located in the lowest elevation montane/subalpine transition 

zone through the subalpine along the eastern slope of the continental divide in RMNP. Plot 

elevations spanned from 2618 m to 3566 m. Stand ages ranged from <100 years to >400 years 

old ( x = 253 years) and were obtained from previous fire history research (Sibold et al. 2006) 

and tree cores taken during the 1972 sampling (Peet 1975). Climate for the study area was 

acquired from parameter-elevation regression on independent slopes model (PRISM) at 4-km 

resolution between1895-2013 (Figure 1; PRISM Climate Group, Oregon State University). Four 

locations were selected to represent main clusters of sites resampled. No sites are outside of a 10 

km radius from the nearest climate location. Each climate location was located within an 

individual 4 km grid cell and was separated by an average of 12 km in order to represent the 

entire study area. Minimum mean annual temperature has risen considerably over the time period 

(Tmin; β = 0.026, t = 14.38, R
2 

= 0.6386, P = <0.0001; Figure 2). Maximum mean annual 

temperature has also risen though at a slower rate than Tmin (Tmax; β = 0.0142, t = 7.29, R
2 

= 

0.3126, P = <0.0001; Figure 2). Mean annual precipitation has been highly variable and does not 
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indicate a specific trend, although several droughts and wet periods have occurred (β = 0.0047, t 

= 0.18, R
2 

= 0.0003, P = 0.8588; Figure 3).     

Field Methods 1972-1973 

Between 1972 and 1973, Dr. Robert Peet quantified forest conditions in 305 forest plots, 

of which 269 were located within RMNP. Plot locations were selected subjectively and placed 

within homogenous forest stands to ensure representation of a unique forest community (Рееt 

1981). The original goal was to determine drivers of forest community composition and structure 

patterns. Peet (1981) found that forests could be characterized along a moisture gradient which 

was influenced by various topographic features such as elevation, aspect and slope (Peet 1975, 

Рееt 1981; Figure 4). Plots were one-tenth hectare in size (20 m x 50 m; see Whittaker 1960) and 

species abundance data for the herbaceous, shrub and tree strata were collected. Landscape 

characteristics data such as slope, aspect, elevation, slope position, exposure, soil conditions (e.g. 

moisture/type) and rock cover were also collected at each location.  Each plot location was also 

recorded on USGS topographic maps. Species and diameter at breast height (DBH; measured at 

1.37 m height) were recorded for all trees (live and dead) greater than 10cm in height within each 

plot.  Peet divided live tree data into three structure classes: seedlings (stems≤2.54cm), saplings 

(stems between 2.54cm-7.62cm) and trees (stems ≥7.62cm). Tree data and original USGS 

topographic maps with site locations from the 1972 survey were provided by Dr. Peet (personal 

communications). Tree data are also available from VegBank online (www.vegbank.org).  For 

more information on sampling procedures and plot identification, see Рееt (1981). 

 

 

http://www.vegbank.org/
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Field Methods 2013 

I resampled a subset of the original 269 plots within RMNP during the summer of 2013. I 

selected plots across two topographic gradients: aspect and elevation, specifically, north-facing 

or south-facing aspects and high or low-elevation. North-facing aspects fell between 293 degrees 

and 67 degrees and south-facing aspects between 113 degrees and 247 degrees. High-elevation 

was considered above 3048m and low-elevation sites were below 3048m. This classification 

placed all low-elevation sites within the transition areas between montane and subalpine life 

zones.      

Plots were not permanently marked, thus exact relocation was not possible. Using plot 

coordinates (latitude, longitude), the original topographic maps (USGS 7.5 minute quads) with 

plot locations, and landscape characteristic data recorded during the initial survey (Dr. Peet, 

personal communication), I was able to locate the general forest stands. In each location, I 

sampled three one-tenth hectare plots (each 20 m x 50 m) nearest the original location, as exact 

plot resampling was not possible. The two adjacent plots were located no closer than 10m from 

any other plot edge. These methods decreased the influence of composition and structure 

variability across the landscape and between the two sampling events. Each three plot cluster 

was located within a half hectare area of the original forest plot. Due to a variety of landscape 

issues, such as abrupt aspect or slope change, the number of plots sampled in each cluster varied. 

Each plot was surveyed for trees using exact methods as Peet (1975, 1981) described above. To 

allow for relocation and future surveys, I captured accurate GPS coordinates at all 4 corners of 

each 2013 plot along with taking photos in each of the four cardinal directions from the center of 

each plot. For this study I used diameter classes to classify structure instead of Peet’s categories 

(seedlings, saplings, trees) to better reflect size than estimated age of a tree. In general, small-
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diameter trees are younger and large-diameter trees tend to be older. Diameter classes are 

grouped as follows: diameter class 1 (stems≤2.54cm; DC1), 2 (stems between 2.54cm-7.62cm; 

DC2) and 3 (stems ≥7.62cm; DC3). 

Analysis 

Data from the three individual plots collected at each site were averaged to generate a 

2013 dataset (sensu Minnich et al. 1995). Tree abundance data were grouped by diameter class 

(DC1, DC2 and DC3, see above) and total stem density was calculated for the entire plot and 

each species. Tree abundance data were normalized from the plot level (stems/plot) to the 

landscape scale (stems/ha) to match the format of the 1972 dataset. This allowed for direct 

comparison to determine temporal changes in forest structure.   

Comparisons of forest structure changes between 2013 and 1972 datasets were made for 

individual species and plots for all diameter classes and total stem densities. To understand the 

role of topography, comparisons were made among plots and species classified by aspect and 

elevation.  Comparisons based on group characteristics included testing north versus south-

facing sites and high versus low-elevations. Changes in abundance between datasets were tested 

using the Wilcoxon-Signed-Rank non-parametric test (H0: µ=0; α=0.05). A non-parametric test 

was chosen after Shapiro-Wilks tests indicated that assumptions of normality were not met (SAS 

statistical software version 9.3).   

To determine whether species are migrating, I used changes in DC1 median elevation (m) 

between 1972 and 2013 as a proxy. The smallest diameter class was chosen as the best proxy for 

migration because small-trees are climate-sensitive and unable to tolerate climate fluctuations 

(sensu  Zhu et al. 2014). Small-diameter trees also best represent spatial changes in the 
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regeneration niche, opposed to larger trees, as they likely germinated more recently. For 

example, a species that is migrating upslope would show an increase in median elevation of DC1 

between 1972 and 2013. To establish migration direction, abundance of DC1 for each species 

across sampling year and aspect were calculated and weighted according to the associated plots 

elevation. To understand the role of topography in migration, the median elevation of DC1 for 

each species was compared for both north and south-facing slopes.   

I examined the arrival of new species within plots to assess shifts in species composition. 

The arrival of new species to a site would demonstrate a clear compositional shift. Abundances 

of DC1 and DC2 were used as indicators of shifts in species composition to reduce the likelihood 

of including species that were un-sampled in the 1972 survey.  This was important due to the 

inability of measuring exact locations. Species that did not get recorded during the original 

survey that are present in the 2013 survey within DC1 or DC2 were considered new to the site. 

Results 

Resampled Plots 

I identified 83 sites from the original 269 sites that met the criteria of elevation and aspect 

for resampling.  I resampled 68 of 83 sites during the summer of 2013 (Figure 1). Seventy-five 

percent of sites (51/68) had three contemporary plots sampled, 18% (12/68) had two 

contemporary plots sampled and 7% (5/68) had only one contemporary plot sampled.  Upon 

relocation four sites were found within a large stand replacing fire that occurred in 1978 (Ouzel 

Fire) and one site was mechanically thinned in 2010 for fire mitigation near the park boundary. 

These five plots were excluded from all cumulative analyses. Nineteen plots had >10% of total 

stems killed by insects, primarily bark beetles.  
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Structure changes 

Between 1972 and 2013, when all sites and all species are considered, stem densities 

changed in all diameter classes (n = 63). During the 40 year study period, total stem density 

within the landscape remained relatively stable increasing only 2% (P = .1664) with a shift 

towards greater abundance of large-diameter trees (Table 1; Figure 5). Small-diameter stems 

(DC1) decreased 13%, although differences were not significant between sampling events (DC1: 

0-2.54cm; P = 0.1222; Table 1; Figure 5). Density of large-diameter stems (DC2 and DC3) 

increased over the study period, both of which differences were borderline significant (DC2: 

2.54-7.62cm; 14%; P = 0.0661 and DC3: >7.62cm; 6%; P = 0.0554; Table 1; Figure 5).  

Examining structure changes by species clearly shows a species-specific response. Small-

diameter tree abundance decreased, but not significantly, for Engelmann spruce (-20%; P = 

0.2375), lodgepole pine (-38%, P = 0.0817), aspen (-42%; P = 0.1552) and limber pine (-47%; P 

= 0.0576). Small-diameter tree abundance increased for subalpine fir (4.51%; P = 0.9513) and 

Douglas-fir (657%; P = 0.0039).  

There was greater abundance in the number of diameter class 2 stems for all species 

except lodgepole pine. Lodgepole pine had significant decrease in abundance (-57%; P = 

0.0122). Subalpine fir and aspen had significant increases over the 40 year period (72%; P = 

<0.0001 and 89%; P = 0.0125, respectively).   

The abundance in the largest-diameter class (DC3) increased for all species except 

lodgepole pine (-24%; P = 0.0147). Four species differed significantly from their 1972 

abundances: subalpine fir (55%; P = <0.0001), Engelmann spruce (21%; P = 0.0005), Douglas-

fir (122%; P = 0.0023), and aspen (294%; P = 0.0471) (Table 1).   
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Total stem density of three species decreased: lodgepole pine, aspen and limber pine. 

Only lodgepole pine had significant decreases (-31%; P = 0.0008). The abundance of total stems 

of subalpine fir and Douglas-fir increased significantly (28%; P = <0.0001 and 224%; P = 0.0174 

respectively). Pinus ponderosa (Ponderosa pine) was identified in two plots although densities 

were too low for statistical analyses (Table 1).   

Structure changes across aspects 

During the study period, stems densities varied between aspects for nearly all diameter 

classes. Total stem density on south-facing slopes (n = 33) has decreased by 8% (P = .6493, 

Figure 6). South-facing sites had a reduction in DC1 stem abundance which differed significantly 

from the 1972 survey (-36%; P = 0.0081). Abundance of diameter class 2 also declined (-4%; P 

= 0.2298), although differences were minor. Diameter class 3 had a slight increase in stems (3%; 

P = 0.5576).   

In contrast, since 1972, total stem density on north-facing sites (n = 30) had a significant 

increase (8%, P = 0.0344; Figure 6). Diameter class 1 has remained comparatively stable with 

only a slight decrease of abundance (-3%; P = 0.9441). Diameter class 2 and 3 had greater 

abundance of stems (26%; P = 0.049 and 9%; P = 0.0463, respectively).  

Structure change across elevation 

Differences in stem abundance occurred within high and low-elevation sites and between 

sampling events. High-elevation sites (>3048m, n = 24) had increases in total stem density over 

the study period (8%; P = 0.0661; Figure 7). The abundance of DC1 decreased by 14% (P = 

0.0616). Larger-diameter stems showed greater abundance with DC2 increasing 11% (P = 

0.0757) and DC3 significantly increasing 22% (P = 0.0041) within high-elevation sites.  
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Low-elevation sites (<3048m, n = 39) had a 2% decline in total stem density (P = 0.6912; Figure 

7). Diameter class 1 reduced in abundance by 13% (P = 0.540). Diameter class 2 was the only 

class to increase in abundance (16%; P = 0.2915). Diameter class 3 declined 2% (P = .6912) 

since 1972.   

Species migration 

During the past 40 years, changes in median elevations (in meters) of small-diameter 

trees (DC1) for north and south-facing slopes indicates species are migrating within RMNP. This 

migration has been highly dependent on topographic position. On south-facing slopes, species 

elevation changes generally denote movement upslope. Engelmann spruce, lodgepole pine, 

Douglas-fir and limber pine all had greater abundance of DC1 at higher elevation than in 1972    

( x = 86 m, range: 9 m – 280 m) with limber pine having the greatest change (280 m). Subalpine 

fir was the only species to migrate downslope on south-facing slopes, having increased 

abundance occurring at 25m lower than in 1972.  Aspen elevations remained stable over the 

study period (Figure 8). On north-facing slopes, median elevation remained equal for subalpine 

fir, Engelmann spruce, Douglas-fir, aspen and limber pine. Lodgepole pine showed a slight 

decrease in elevation (5m; Figure 8).  

Compositional changes 

Species composition within all sites has remained relatively stable for the 40 year study 

period. Diameter class 1 was used as the indicator of new species arrival to a site. 13% of all 

plots had additional species that were not reported during the 1972 study, of which 75% were 

located on south-facing slopes and 68% were at low-elevations. Using DC2 as the indicator, 13% 
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of all plots had additional species that were not recorded during the 1972 study, of which 63% 

were located on north-facing slopes and 87% were at low-elevations.   

Discussion 

Subalpine forests of RMNP have changed significantly over the past 40 years, with 

evidence of both changes in forest structure and species migration. In general, forest structure 

has shifted towards increased abundance of large-diameter stems (DC2 and DC3) while small-

diameter stems densities (DC1) have declined (Table 1; Figure 5, 6, 7). Special attention needs to 

be given when comparing the results of this study to previous research since similar terms are 

used to describe different size classifications (i.e., large vs small-diameters). The following 

studies refer to trees with 10cm-30.4cm DBH as the smallest size class. In this context, my 

results are similar to the majority of research assessing recent structure changes in the context of 

climate change from other forest systems. These studies found a shift towards greater abundance 

of small-sized trees (10cm-30.4cm) (Minnich et al. 1995, van Mantgem et al. 2009, Lutz et al. 

2009, Dolanc et al. 2013). Results of this study indicate that species are migrating in response to 

recent climate shifts. The primary direction of migration is upslope on south-facing slopes and an 

overall lack of migration is occurring on north-facing slopes (Figure 8). Species migrations due 

to warming temperatures have been documented globally for a variety of species (Parmesan and 

Yohe 2003, Beckage et al. 2008, Kelly and Goulden 2008, Crimmins et al. 2011, Bell et al. 

2013). However, none of this research has specifically studied migration in the context of 

topography or disturbance despite several studies emphasizing the importance of these factors 

(Ashcroft et al. 2007, 2009, Ashcroft 2010, Dobrowski 2011). In the case of RMNP, topography 

and disturbance appear to have played a central role in shaping subalpine forest response to 

recent climate change.  
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Topographic contingencies of forest change 

Recent forest changes are strongly related to topographic position, with decreases in total 

stem densities on southern aspects and increases on northern aspects. These differing results 

likely reflect the influence of topography on microclimate and thus vegetation. The decrease in 

total stem density on south-facing slopes can be explained by the significant decrease in small-

diameter trees that offset slight increases in density of larger stems (Figure 6). The increase in 

large-diameter stems on south-facing slopes was species-specific, with subalpine fir, Engelmann 

spruce, Douglas-fir and aspen increasing in density. The abundance of both pine species (P. 

contorta and P. flexilis) decreased. The decline in Pinus species has been documented elsewhere 

in the western U.S. and is primarily due to recent MPB outbreaks (Minnich et al. 1995, van 

Mantgem et al. 2009, Lutz et al. 2009, Dolanc et al. 2013, Coop et al. 2014). Forests on north-

facing slopes are characterized by increased stem densities. On these slopes, large-diameter 

stems increase for all species, except lodgepole pine (Table 1, Figure 6). The density of small-

diameter trees on north-facing slopes decreased when looking at all species combined. However, 

examining species-specific responses reveals the majority of species are increasing or stable in 

their small-diameter stem densities. Subalpine fir, lodgepole pine, Douglas-fir and aspen all 

increased on either north-facing or high-elevation sites. Coop et al. (2014) found similar patterns, 

documenting an overall reduction in small-live conifer stems (<2.5cm) since 1964 in aspen 

stands near Crested Butte, CO. The increased density of forests on north-facing slopes parallels 

results found in other studies from the western U.S. despite only one looking at the effects of 

aspect specifically. Several authors attributed longer growing seasons and fire suppression as the 

main reason for increased stem densities (Minnich et al. 1995, van Mantgem et al. 2009, Lutz et 

al. 2009, Dolanc et al. 2013). Fire suppression is not likely the main driver of increased stem 
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density found in this study since fire history research indicates that fire return intervals are within 

historic ranges of variability for lodgepole dominated forests (162-216 years) and spruce/fir 

forests (401-713 years) (Sibold et al. 2006). Warming temperatures and stable precipitation 

effects on growing season length could be a good explanation for the increased density of forests.  

The short growing season of the subalpine life zone was likely a limiting factor for vegetation, 

effecting regeneration, establishment and recruitment  (Dolanc et al. 2013). An extension of the 

growing season on north-facing slopes may have allowed small-diameter stems to maintain their 

abundances while the longer growing season made conditions even drier on south-facing slopes.  

Forest change in the context of topographic position (i.e., aspect and elevation) implies a 

connection between topographic complexity and the recent warming trend occurring in the study 

area. Topographic complexity acts as a filter, shaping climate change influences at a microsite 

scale. At this scale, topography influences variables, such as moisture availability, that are 

critical for vegetation survival and regeneration. Southern aspects receive more solar radiation 

throughout the year, amplifying the warming climate at these locations. This results in increased 

evapotranspiration and potentially earlier snowmelt, reducing water availability for vegetation, 

especially later in the growing season (Lutz et al. 2009, Bach and Price 2013). Research has 

shown snowmelt in RMNP  is occurring 2-3 weeks earlier than in the late 1970s (Clow 2010). 

On north-facing slopes, topography may be ameliorating warming effects on vegetation as 

indicated by more stable patterns of regeneration and increased total stem density since the early 

1970s. North-facing slopes receive lower amounts of solar radiation, which buffers against the 

influence of warming on soil moisture availability, either through evapotranspiration or 

snowpack dynamics. Furthermore, more dense vegetation, which is common on north-facing 

slopes, shades the forest floor, which further buffers the impact of warmer regional climate 
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trends (Lenoir et al. 2008). This has allowed for a more gradual warming effect on north-facing 

slopes compared to south-facing slopes. The decline in total stems, especially small-diameter 

stems, suggests south-facing slopes are becoming increasingly hot and dry. Northern aspects 

appear to be attenuating the effect of warming temperatures and reducing negative impacts for 

vegetation, whereas south-facing slopes are exacerbating the warming impacts on vegetation.  

The importance of topography in mediating warming temperatures and forest change is 

also evident in patterns of species migration over the past 40 years. Small-sized trees (DC1) are 

the best indicator of migration because they likely germinated recently and thus reflect the 

suitability of a specific location for regeneration (i.e., regeneration niche, Grubb 1977). 

Furthermore, due to small-sized trees being less tolerant of climate extremes, their presence 

indicates suitable climate regimes (Zhu et al. 2014). On north-facing slopes, the elevational 

distribution of small-diameter trees is similar to the 1972 survey. This demonstrates an overall 

lack of species migration on these cooler/wetter slopes that are relatively buffered from warming 

temperatures. Zhu et al. (2012) found a similar lack of migration when looking at latitudinal 

changes, but did not investigate potential variability in species distributions in relation to 

topography. In contrast to north-facing slopes, current distributions of small-diameter trees on 

south-facing slopes indicate several species have migrated, predominantly upslope. Small-

diameter Engelmann spruce, lodgepole pine, Douglas-fir and limber pine all have median 

elevations higher than in 1972. Several other studies have found an upslope migration of plant 

species (Parmesan and Yohe 2003, Holzinger et al. 2007, Beckage et al. 2008, Lenoir et al. 2008, 

Chen et al. 2011). Upslope migration of limber pine, may be particularly interesting since its 

distribution has already contracted significantly during the Holocene from increased competition, 

MPB mortality and white pine blister rust (Cronartium ribicola; Stohlgren et al. 2000). Further 
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upslope migration may lead to range contraction, which could jeopardize this species’ 

persistence in the future. Whereas the majority of migration has been upslope, subalpine fir and 

lodgepole pine small-diameter distributions were lower than in 1972. Crimmins et al. (2011) 

found a downhill shift in species optimum elevation for various plant taxa of California. The 

authors attributed the downslope movement to increased precipitation during the growing season 

overriding warming temperatures. The stable precipitation patterns occurring across this study 

site (Figure 3) do not support precipitation changes as the driver of the downward shifts. Another 

factor potentially driving the downslope shifts is reduced competitive interaction created by the 

recent insect outbreaks killing large canopy trees (Lenoir et al. 2010). Reduced competition 

could likely be the best explanation for the downslope migration found in this study since 84% of 

sites experiencing insect outbreaks occurred at low-elevations (<3048m) allowing greater 

regeneration. Other authors have discussed the influence of cold air drainages driving downslope 

movement, although more research is needed to fully understand the role this plays (Dobrowski 

2011). It seems evident from this research that understanding the connection between 

topographic position and climate change is critical to identifying locations of species migration 

in the future or whether a lag in migration is occurring. 

Disturbance-mediated forest change 

Disturbance has always been considered an important driver of forest change and 

succession. While the primary focus of this study was to look at forest change in the context of 

topographic position and recent climate change, many sites were disturbed between surveys. 

Several insect outbreaks occurred within RMNP during the 1980s and again in the early 2000s. 

A number of sites (n = 19) had >10% of the total trees killed by insects. Within these sites, 

Douglas-fir and aspen experienced a pulse of regeneration that was not documented in sites 
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without recent beetle activity. This pulse occurred on both south and north-facing slopes. North-

facing slopes also had an increase in subalpine fir regeneration. The increase of these three 

species are similar to other MPB disturbance studies from the southern Rockies, which 

documented increases of subalpine fir and aspen following MPB outbreaks (Sibold et al. 2007, 

Diskin and Rocca 2011, Collins et al. 2011, Kulakowski et al. 2013, Coop et al. 2014). Subalpine 

fir and Douglas-fir are shade tolerant and able to germinate in organic matter (Hadley 1994), 

allowing them to take advantage of opportunities created in insect impacted forests. The semi-

drought tolerance of Douglas-fir has likely facilitated this species to establish in the context of 

warming temperatures and recent drought. Subalpine fir only increased on north-facing slopes, 

taking advantage of the more stable soil moisture. Surprisingly, aspen abundance increased on 

both aspects despite its low tolerance to drought, high rates of elk browsing found within the 

park (Baker et al. 1997) and recent decline due to warming climate (Smith and Smith 2005, 

Anderegg et al. 2013, Coop et al. 2014). The increased abundance of aspen in the context of the 

recent bark beetle outbreaks probably reflects aspen’s ability to re-sprout quickly from roots and 

take advantage of available resources and reduced competition. The reasons for decreased 

regeneration of other species in relation to the recent bark beetle outbreaks are not fully clear. 

Topographic position may have been a key driver in this decline. Forty-seven percent of beetle 

impacted sites were located on south-facing slopes and 53% on north-facing. South-facing slopes 

had a 36% and 24% decline in DC1 for disturbed and undisturbed sites, respectively. This 

demonstrates that disturbance had little impact on the overall pattern of decline in regeneration. 

The already less dense vegetation and increased mortality of large trees on south-facing slopes 

may have increased wind and provided less shade, affecting a site’s evapotranspiration, 

snowpack retention and runoff rate (Pugh and Small 2012). The decrease in soil moisture and 
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greater soil loss from erosion associated with increased runoff could have been the limiting 

factors for tree regeneration.  This scenario could explain the higher rate of reduction in small-

diameter trees found in south-facing disturbed sites. 

While species regeneration on south-facing slopes did not benefit from disturbance, 

species on north-facing slopes did benefit. This further supports the importance between the 

interaction of topography and disturbance. On north-facing sites, small-diameter stems increased 

14% in disturbed sites while decreasing 5% in undisturbed sites. New canopy gaps and reduced 

competition, while being sheltered from effects of warming temperatures, allowed for greater 

increases in DC1. Furthermore, the greater release of advanced regeneration, evident by the 26% 

increase in medium-size trees (DC2) in post-beetle stands, is likely in response to greater 

moisture since advanced regeneration declined on south-facing slopes. More open canopies and 

reduced competition for light is often more effectively utilized by established vegetation (Veblen 

et al. 1991b). In a study from the southern Rockies, Collins et al. (2011) documented the 

doubling of growth in advanced regeneration in MPB disturbed sites.     

The response of vegetation to the 1978 Ouzel fire further supports the important role of 

disturbance in shaping forests in a changing climate. If disturbance does in fact provide 

opportunities for adaptation to climate (Overpeck et al. 1990, Rehfeldt et al. 2006), post-fire 

forest regeneration and recruitment should consist of drought tolerant and lower elevation 

species. However, within the four sites resampled in the Ouzel fire, forests converted from a 

spruce-fir cover type to an aspen-lodgepole pine cover type, species that are adapted to 

regeneration in post-fire sites. Although this response to fire has been consistent in these systems 

for the past several millennia (Caffrey and Doerner 2012), persistence of aspen provides 

evidence for a subtle contradiction. While aspen suckers are abundant immediately following fire 
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(Kay 1993, Romme et al. 1995, Kulakowski et al. 2013, Coop et al. 2014), aspen has also been 

shown to be susceptible to greater mortality from increasing temperatures and drought 

(Anderegg et al. 2013). Within the Ouzel fire, aspen both prolifically re-sprouted and recruited to 

large-diameter classes, suggesting that warming temperatures and drought have not influenced 

post-fire regeneration or recruitment. Post-fire site conditions and species adaptations to fire may 

be more of a factor in determining species composition than climate. This is further supported 

since plots were located equally on north and south-facing slopes. While classic patterns of post-

fire regeneration held true for the Ouzel fire, if temperatures continue to warm and drought 

becomes increasingly more frequent, this may not be the case in the future.  More research on 

recent fires could help elucidate if this pattern will persist in the future. 

Conclusions and Implications 

Forest change over the past 40 years in RMNP indicates topographic position and 

disturbance appear to play important roles in shaping vegetation response in a changing climate. 

The overall decrease in small-diameter trees (i.e., regeneration) and skew towards large-diameter 

stems is particularly important for future forest preservation. Substantial differences in 

vegetation response between aspect and elevation clearly demonstrate the importance of 

topographic position on how recent warming and highly variable precipitation are impacting 

changes in vegetation. The notion that topographic position can either buffer or exacerbate recent 

changes in climate is further supported by the drastic difference in species migration between 

aspects.  The lack of overall migration on northern aspects and overwhelmingly upslope 

migration documented on south-facing aspects distinctly illustrates the effects of topographic 

position in changing or maintaining habitat suitability. The spatial heterogeneity of topoclimates 

in mountainous terrain provides a variety of opportunities for vegetation to respond to climate 
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change. Mediation of water balance, evapotranspiration and soil moisture by topography appear 

to dictate regeneration patterns and whether species are able to persist in situ or are forced to 

migrate. Understanding the role of fine-scale topography in shaping climate change impacts on 

vegetation will be vital to understanding and anticipating future forest change. While topography 

seems to be a large driver in understanding forest change, the interactions of topography and 

disturbance are also important. Disturbance, especially in the context of topography, also plays a 

critical role in maintaining or creating opportunities for species to persist or migrate on the 

landscape. Current vegetation response to disturbance has remained consistent with historical 

responses in areas where the microclimate has not been altered such as on north-facing slopes. In 

areas where warming temperatures have not been buffered, disturbance has appeared to 

exaggerate warming effects, causing declines in vegetation.   

This research has important management implications for the preservation of forest 

species biodiversity under changing climates. For instance, this study identifies variables that are 

important to detecting potential climate refugia, which have been integral in the preservation of 

species during several climate shifts since the last ice age (Ashcroft et al. 2009, Ashcroft 2010, 

Bell et al. 2013). These refugia will be an important component of biodiversity preservation in 

the coming century and without refugia species may be lost from the landscape entirely. 

Incorporating forest change information from fine-scale topography research into species 

distribution models could help refine model predictions. This could allow for better identification 

of refugia locations so they can be protected. Ultimately, this information will provide managers 

with more reliable information for decision making in the face of an uncertain future.  

This study also provides information for better ecosystem management. The cascading 

effects of forest change on ecological processes and species interactions could be numerous and 
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hinder ecosystem function and cause loss of ecological services (Parmesan 2006). Understanding 

changes to forests is vitally important to maintaining ecological services such as water quality 

and ecological processes such as phenology. Decreased vegetation cover can alter the retention 

of snowpack, which increases or changes the timing of runoff. Earlier snowmelt could alter the 

timing of water availability to plants, affecting their phenological synchronies with pollinators or 

species that utilize them as food sources (Parmesan and Yohe 2003, Forrest and Miller-Rushing 

2010, Moritz and Agudo 2013). Increased rates of runoff could affect water quality by increasing 

sediment inputs to streams (Clow and Sueker 2000, Clow 2010) and alter timing and duration of 

peak flows (Pugh and Small 2012).  

It is becoming exceedingly difficult to manage forests undergoing rapid changes due to 

recent warming temperatures and highly variable precipitation patterns. Managers must be ready 

to make decisions with large amounts of uncertainty that have potential for unidentified 

cascading effects. To assist with this difficult task, Millar et al. (2007) offers three options for 

managing forests in the face of uncertainty. These options include: resistance, resilience and 

response. Resistance options attempt to manage against change or protect highly valued 

resources. Resiliency options attempt to build capacity of forest to return to previous condition 

after a perturbation and response options embrace change and assist transitions toward new 

systems. Response options have not been well received in wilderness areas since they often 

involve human manipulations such as facilitated migration. This leaves resiliency and resistance 

options as the most plausible. Currently, many federal agencies support the use of resiliency and 

resistance options and some aspects of these options have already been incorporated into service-

wide climate change strategic planning (NPS 2010). The uncertainty of how climate change will 

unfold in the future may require managers to have a more open minded approach to change. This 
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will be especially important when considering politically sensitive issues, such as disturbance 

from fire and insect outbreaks, and the role they play in maintaining the resiliency of forests 

(Millar et al. 2007). The heterogeneity of vegetation response in the context of topography, 

disturbance and climate change demonstrates that policy alone cannot dictate management. This 

information should persuade managers to conduct scenario planning through looking at a suite of 

potential options and outcomes in order to meet their missions. 
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Tables and Figures 

Table 1: Summaries for all species combined and seven individual species across all plots (n = 

63) by diameter class.  ABLA (Abies lasiocarpa), PICO (Pinus contorta), PIEN (Picea 

engelmannii), PIFL (Pinus flexilis), PIPO (Pinus ponderosa), POTR (Populus tremuloides), 

PSME (Pseudotsuga menziesii). DC1 (0-2.54cm), DC2 (2.54cm-7.62cm) and DC3 (>7.62cm).  

Significant changes noted in bold (P < 0.05). 

 
  DC1 DC2 DC3 Total Stems 

All Species  Stems/ha 1972 1282.585 557.542 1324.293 3164.42 

Combined Stems/ha 2013 1073.254 684.103 1447.459 3204.816 

  Percent Change -16.321 22.700 9.301 1.277 

  P-value (Wilcoxon)  0.1222 0.0661   0.0554 0.1664  

ABLA Stems/ha 1972 485.179 155.714 181.786 822.679 

  Stems/ha 2013 507.035 267.196 281.411 1055.642 

  Percent Change 4.505 71.594 54.803 28.318 

  P-value (Wilcoxon) 0.9513 <0.0001 <0.0001 <0.0001 

PICO Stems/ha 1972 71.957 167.826 674.783 914.566 

  Stems/ha 2013 44.848 71.63 511.217 627.695 

  Percent Change -37.674 -57.319 -24.240 -31.367 

  P-value (Wilcoxon) 0.0817 0.0122 0.0147 0.0008 

PIEN Stems/ha 1972 257.857 120.357 293.75 671.964 

  Stems/ha 2013 205.107 130.911 355.482 691.5 

  Percent Change -20.457 8.769 21.015 2.907 

  P-value (Wilcoxon) 0.2375 0.1068 0.0005 0.2386 

PIFL Stems/ha 1972 36.75 25.25 104 166 

  Stems/ha 2013 19.525 25.4 113.925 158.85 

  Percent Change -46.871 0.594 9.543 -4.307 

  P-value (Wilcoxon) 0.0576 0.0802 0.4052 0.6249 

PIPO Stems/ha 1972 0 0 8 8 

  Stems/ha 2013 0 0.6 9.2 9.8 

  Percent Change 0 0 15 22.5 

  P-value (Wilcoxon) 0 1 1 1 

POTR Stems/ha 1972 424 80.5 22.5 527 

  Stems/ha 2013 244.95 152.05 88.75 485.75 

  Percent Change -42.229 88.882 294.444 -7.827 

  P-value (Wilcoxon) 0.1552 0.0125 0.0471 0.961 

PSME Stems/ha 1972 6.842 7.895 39.474 54.211 

  Stems/ha 2013 51.789 36.316 87.474 175.579 

  Percent Change 656.928 359.987 121.599 223.881 

  P-value (Wilcoxon) 0.0039 0.0603 0.0023 0.0174 
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Figure 1:  Map showing all 68 sites sampled by Peet (1972) and resampled in 2013 (yellow 

points) within Rocky Mountain National Park. Red points indicate locations where PRISM 

climate was downloaded.  Within the park boundary green shaded area is subalpine forest, beige 

is montane forest and grey is unforested. 
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Figure 2: Mean annual minimum and maximum temperatures between 1895 and 2013 for Rocky 

Mountain National Park using 4K PRISM from four locations within RMNP. 
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Figure 3:  Mean annual precipitation between 1895 and 2013 for Rocky Mountain National 

Park.  Data downloaded is 4K PRISM from four locations within RMNP. 
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Figure 4:  Community mosaic diagram showing the distribution of forests series relative to 

topographic and moisture gradients for the Colorado Front Range. Bold lines indicate series 

boundaries (from Рееt 1981, with permission).   
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Figure 5: Mean number of stems per hectare plus SE for 1972 and 2013 for all species combined 

across all plots (n = 63) by diameter class. DC1 (0-2.54cm), DC2 (2.54cm-7.62cm) and DC3 

(>7.62cm).       
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Figure 6: Mean number of stems per hectare plus SE for 1972 and 2013 for all species combined 

across south and north-facing aspects by diameter class. DC1 (0-2.54cm), DC2 (2.54cm-7.62cm) 

and DC3 (>7.62cm). Standard errors are for the means rather than the differences. Statistically 

significant differences between 1972 and 2013 indicated by * (P < 0.05) based upon Wilcoxon 

sign rank test.   
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Figure 7:  Mean number of stems per hectare plus SE for 1972 and 2013for all species combined 

across high (>3048) and low-elevation sites (<3048) by diameter class. DC1 (0-2.54cm), DC2 

(2.54cm-7.62cm) and DC3 (>7.62cm). Standard errors are for the means rather than the 

differences. Statistically significant differences 1972 and 2013 indicated by * (P < 0.05) based 

upon Wilcoxon sign rank test.   
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Figure 8: Differences between 1972 and 2013 datasets for mean (diamonds) and median (lines) 

elevation of DC1 (0-2.54cm) by species for both north-facing (top) and south-facing (bottom) 

slopes. 
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