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ABSTRACT 

 

 

EFFECT OF ZINC CONCENTRATION AND SOURCE ON PERFORMANCE AND 

CARCASS CHARACTERISTICS OF FEEDLOT STEERS. 

 Three-hundred and sixty cross-bred steers (348.1 kg ± 28.9) were utilized to investigate 

the effects of zinc (Zn) concentration on performance and carcass characteristics of feedlot 

steers. Steers were blocked by weight and randomly assigned to one of the 5 supplemental Zn 

treatments (8 pens per treatment; 9 hd per pen). Treatments consisted of: 1) Control-50 (CON-

50; 50 mg of supplemental Zn/kg DM from ZnSO4); 2) Methionine control [MetCON-50; 50 

mg of supplemental  Zn/kg DM from ZnSO4 plus MHA to equalize HMTBa concentrations 

across treatments; 3) Organic-50 (ORG-50; Control diet supplemented with 50 mg of Zn/kg 

DM from Mintrex Zn plus MHA to equalize HMTBa intake across treatments); 4) Organic-100 

(ORG-100; Control diet supplemented with 100 mg of Zn/kg DM from MINTREX Zn plus 

MHA to equalize HMTBa intake across treatments 2-5); and 5) Organic-150 (ORG-150; 

Control diet supplemented with 150 mg of Zn/kg DM from Mintrex Zn). All steers were fed a 

typical high concentrate steam-flaked corn based finishing diet twice daily. Steers were 

individually weighed on d −1, 0, 144, and 145 and pen weighed on d 28, 56, 84, and 111. 

Ractopamine HCl was fed for the final 29 d of the finishing period to all treatments. On d 145, 

steers were transported to a commercial abattoir for slaughter. Initial and final body weight, 

ADG, DMI, and feed efficiency (g/f), were similar across treatments. However, there was a 

difference (P < 0.04) for ADG to be increased when MetCON-50 was compared to Con-50 on d-

56 pen weigh and d-84 pen weigh (3.91, 4.42 ± 0.17 and 4.96, 4.29 ± 0.21 respectively). Average 
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daily gain was also increased (P <0.03) when the CON-50 treatment was compared to the ORG-

50 treatment for the d-84 pen weigh period (4.96, 4.29 ± 0.21). There was a trend (P < 0.07) for 

gain:feed to be increased for the CON-50 when compared to MetCON-50 and ORG-50 for the 

d57-84 period (0.228, 0.198, 0.199 ± 0.01). Fat thickness, internal fat, hot carcass weight, KPH, 

marbling score, and dressing percentage were similar across treatments. Steers receiving ORG-

150 had a greater (P < 0.03) yield grade compared to steers receiving ORG-50 (2.99 vs. 2.76  ± 

0.08; respectively). Steers receiving 1080 Zn also had a greater (P < 0.01) yield grade compared 

to steers receiving ORG-100 (2.99 vs. 2.68  ± 0.08; respectively). There was a trend (P < 0.07) 

for steers receiving MetCON to have a greater yield grade compared to CON-50 (2.82 vs. 2.67 ± 

0.08; respectively). In addition, liver biopsies and blood samples were analyzed for Zn, Cu, and 

Fe concentrations as well as alkaline phosphatase in the blood. Initial liver biopsies were similar 

in Cu and Fe among treatments. Whereas, the Zn concentrations were greater ( P < 0.01) in the 

CON-50 group compared to the Methionine treatment group ( 218.7 vs. 170.2 ± 12.9). Day 111 

liver Zn concentrations tended ( P < 0.05) to be lower for CON-50 and MetCON-50 treatments 

compared to ORG-50 treatment, while no other differences were noted among treatments (117.8, 

123.7 vs. 158.0 ± 16.1). Day-0 plasma results indicate levels of Zn, Cu, and Fe to be similar 

among treatments with a trend (P < 0.07) in Fe concentrations to be less in the MetCON-50 

when compared to the CON-50 treatment (4.71 vs. 1.70 ± 0.85). As for the d-111 plasma 

analysis indicated no differences among treatments in regards to Zn, Cu, and Fe concentrations. 

The d-144 plasma analysis indicated no differences (P > .05) in Zn, Cu, and Fe concentrations 

among treatments. The alkaline phosphatase values for d-0, d-111, and d-144 were similar across 

treatments, yet the alkaline phosphatase means for each treatment increased over time. These 

data indicate that under conditions of this trial, increasing Zn concentration in the diet above 
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NRC recommendations has little impact on performance, however, may impact lipid partitioning 

in steers.  

Key Words: carcass characteristics, feedlot, performance, ractopamine, Zn  
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Chapter I: Literature Review 

Properties of Zinc 

 Zinc, (Zn) a divalent cation, has an atomic number of 30 and is found in group IIB on 

the periodic table (McDowell, 1992). Zinc is a bluish white lustrous metal with the following 

classification properties; Atomic weight: 65.38, Electron Configuration: [Ar] 3d
10

 4s
2
, Group: 

12, Period in Periodic Table: 4, Density: 7.14gcm
-3

, Melting point: 692.68 K, 419.53°C, 

787.15 °F, Block in Periodic Table: d-block, Classification: Metallic (WebElements, 2012, 

McDowell, 1992). Zinc is the 24
th

 most abundant element, and the largest mineable amounts 

are found in Australia, Asia, and the United States (Wikipedia, 2012). Typically Zn is stable in 

dry air, but the corrosion rate of Zn is increased as temperature and/or moisture increase along 

with the addition of carbon dioxide (Assembly of Life Sciences, 1979, Dorton, 2005). Once the 

corrosion process of Zn is initiated, it produces a light gray film that adheres tightly to the 

surface preventing further corrosion (Assembly of Life Sciences, Dorton, 2005). Due to this 

process Zn has been used to protect other metals from oxidation. Metals that are subject to 

corrosion such as iron, are given a protective coating of Zn. This common use of Zn is involved 

in the utilization of Zinc Oxide (ZnO) formed when Zn is exposed to air and forms a coating 

that protects the rest of the metal. This form of Zn is used in paints, some rubber products, 

cosmetics, pharmaceuticals, plastics, printing inks, soap and batteries to name a few.  

 Zinc is involved in diverse cellular processes, including catalysis and gene expression, 

and has been implicated as an inhibitor of apoptosis and of oxidative stress (Hambridge et al. 

2000, Liuzzi et al. 2001). At least 90 enzymes and the hormone insulin have Zn present 

(Whitten, 1988). Zinc functions as the central metal ion for several enzymes such as DNA and 

RNA polymerase, alkaline phosphatase (AP), peptidases, carbonic anhydrases (CA), and 

alcohol dehydrogenases (ADH) (Kimura, 1993).  The adrenal glands and pituitary glands 

http://en.wikipedia.org/wiki/Argon
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depend on Zn for proper function, as well as the pancreas and gonads (Whitten, 1988). Within 

the pancreas far more Zn is present than necessary for insulin activation. The remainder of Zn 

is the pancreas is utilized by carboxypeptidase (Vallee et. al. 1946).  

 Zinc functions within enzyme systems involved in nucleic acid metabolism, protein 

synthesis, and carbohydrate metabolism. (McDowell, 1992). An apparent role for Zn is as a 

component of Zn-fingers on binding proteins required to enhance transcription for specific 

genes. The concentrations of Zn in most mammalian tissues are in the order of 10 to 100mg/g 

wet weight, with little variation among species (McDowell, 1992). The amount of Zn 

concentration in a particular tissue varies depending on the specialization of that tissue 

(Mcdowell,1992).  

Metabolism 

  Absorption: Zinc absorption in rats and ruminants is typically a reflection of their 

needs (Suttle et. al. 1982). Zinc-deficient animals absorb a higher percentage of administered 

Zn, when fed the same diet before and after testing, (Miller, 1970). Yet, the influence of Zn 

status on Zn homeostasis is differentially regulated depending on each tissue. Furthermore, site 

and extent of absorption can differ. For example McDowell reported that in a study by Arora et. 

al (1969) the absorption of Zn in sheep was greater in the rumen than in the small intestine. 

Also, when considering age, the percentage of Zn absorption was higher in younger calves than 

in older cattle (Miller et. al. 1968). Yet, the age effect on Zn absorption could be an indirect 

effect rather than the inability of the small intestinal tissues to absorb the Zn (Miller et. al. 

1968). Miller (1968) demonstrated that in a diet adequate in Zn (38mg Zn/kg DM), 2.5 month 

old calves absorbed a much higher percentage of Zn than 4.5 month old calves. Yet, in a Zn 

deficient diet (2mg Zn/kg DM), there were no differences in Zn absorption with age (Miller et. 
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al. 1968). Perhaps, the fact that no difference in Zn absorption by age of animals receiving a Zn 

deficient diet indicates more than one mechanism regulating zinc absorption.  

  Even though the duodenum has been reported to be the major site for Zn absorption in 

the rat (Davies, 1980); absorption in ruminants may not only take place in the duodenum but 

also the rumen as discussed earlier. Once Zn has been absorbed into the intestinal mucosal cells 

(and possible the rumen papillae), a complex process occurs. This process can be broken down 

into four phases according to Cousins, (1982). The first phase involves the absorption of Zn 

into the intestinal mucosal cells. Zinc is transferred across the intestinal wall by a carrier 

mediated process (McDowell, 1992).  

 

Figure 1. Zinc absoprttion through the gut lumen.J. NUTR. 122:89-95 (1992) 

 

Absorption of Zn through the small intestine is regulated by a variety of low-molecular-weight 

binding ligands (McDowell, 1992). Metallothionein (a binding ligand) is a metal binding 

protein synthesized by hepatic and mucosal tissues, and can be influenced by dietary Zn and 

plasma Zn concentrations (Mcdowell,1992). The function of intestinal metallothionein is to 

limit the absorption of Zn within the intestinal mucosal cells when dietary Zn concentrations 
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are high (Cousins 1996, Underwood and Suttle, 1999). Elevated dietary Zn induces the 

production of metallothionein which then binds excess Zn and prevents further absorption 

(Davis and Cousins, 2000). When dietary Zn concentrations are low, metallothionein synthesis 

is decreased thus allowing for increased interactions of Zn and intracellular binding proteins 

such as Cysteine-rich intestinal binding protein (CRIP) that allow for the transport of Zn to the 

basolateral surface of the enterocyte.  

  Once in the enterocyte the absorption of Zn into the blood stream is dependent on Zn 

concentrations in the circulatory system along with the regulation of metallothionein in the 

enterocyte. When Zn concentrations in the blood are low, Zn transport into the blood will 

increase (Hambidge et. al. 1986). Yet, the reverse effect occurs when Zn concentrations are 

high in the blood; less Zn is absorbed from the intestinal cells into the blood stream. Transport 

of Zn from the intestinal lumen into the blood stream and from the blood stream into the lumen 

is a bidirectional process which the mechanism remain unknown (Hambidge et. al. 1986). Zinc 

that is absorbed through the rumen wall in ruminants can also be reabsorbed into the lumen of 

the small intestine. Within the lumen, Zn binds to the metallothionein (McDowell, 1999) unless 

the concentrations of Zn are lower in the blood. If Zn concentrations are lower in the blood, Zn 

will bind to cysteine rich binding protein (CRIP). Hempe and Cousins (1991) explain how 

CRIP moves Zn across the enterocyte to the basolateral side of the cell, then Zn is attached to a 

carrier molecule such as albumin. After Zn attaches to albumin it is transported throughout the 

body (Hempe and Cousins, 1991).  

  Zn absorption can also be regulated by other dietary factors. Chelated Zn, such as Zn 

methionine and zinc oxide, was metabolized differently after absorption in sheep (Spears and 

Samsell 1986). Therefore, suggesting that Zn is metabolized differently when absorbed as Zn 
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methionine rather than zinc oxide. Also, inositol hexaphosphates and pentaphosphates are the 

phytate forms that exert strong negative effects on Zn absorption (Lonnerdal, 2000). Yet, the 

amount of phytate found in the diet cannot interfere or limit the amount of Zn absorbed by 

acting as an inhibitor of Zn absorption in ruminants with a functional rumen (NRC, 2000). 

Phytate which can be found in cereal grains in the form of inositol hexophosphates and 

pentaphosphates, exert the negative effects on zinc absorption in non- ruminants (Lonnerdal, 

2000).  Also, McDowell explains that in another study (Cousin, 1978), there is evidence of 

dietary Zn and plasma Zn regulating the quantity of Zn absorbed by the body therefore playing 

a significant role in Zn homeostasis. Lonnerdal (2000), reports that with increasing amounts of 

Zn in meal, fractional Zn absorption (%) will decrease. Similarly, studies have shown that high 

levels of Zn had a negative effect on absorption when compared to a standard dose. 

Additionally the amount of protein in a meal has demonstrated to be positively correlated to 

zinc absorption (Sandstrom et al. 1980, Lonnerdal, 2000).  However, fiber has been considered 

to have a negative effect on Zn absorption, yet, this is usually due to the fact that most fiber-

containing foods also contain phytate (Lonnerdal, 2000). Lonnerdal (2000) states that it is 

unlikely that calcium per se has a negative effect on zinc absorption which agrees with previous 

work by Spencer et al. (1984) and Dawson-Hughes et al. (1986). Spencer and Dawson-Hughes 

added large amounts of calcium to a meal and found no effect on Zn absorption in human 

adults.  Researchers have suggested that Zn homeostasis in the rat is a result of Zn secretion 

into the intestine (Evans et al. 1979), while others reported that the regulation of Zn metabolism 

is due to dietary factors involved in control over the absorption of Zn.  The endogenous losses 

involved in metabolism could also alter absorption measurements of Zn. Influences on Zn 

homeostasis have been noticed when endogenous losses decrease as absorption increases 
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(Suttle et al. 1981). Suttle (1981) also demonstrated that regulation of Zn absorption changed 

rather than endogenous loss as Zn intakes were increased. Whether the absorption of Zn is up 

or down regulated, plasma Zn will dictate only part of Zn status within the animal.  

Transport and Distribution: Once Zn enters the blood circulatory system a variety of 

factors will dictate its metabolism. Zinc is transported through the blood stream bound to either 

albumin, -macroglobulin, and also as traces of metallothionein (Underwood and Suttle, 1999) 

and flows to the liver. Once in the liver Zn is primarily bound to metallothionein. 

Metallothionein in the liver is the major storage form of Zn, and can be mobilized during 

metabolic need (McDowell, 1992).  There are four isoforms of metallothionein present in 

mammals: metallothionein 1 and 2 which have ubiquitous tissue distribution with particular 

abundance in liver, pancreas, intestine, and kidney, whereas metallothionein 3 and 4 are found 

principally in brain and skin (Davis and Cousins, 2000). The binding of Zn to liver 

metallothionein is relatively weak, thus giving liver metallothionein the ability to acquire and 

release Zn. Whereas the bond between enterocyte derived metallothionein and Zn is extremely 

tight. 

 Since Zn can be transported across the small intestine as a metalloprotein and 

transported in the body by albumin, the attachment of Zn to methionine may alter its mode of 

absorption and transport in the animal’s body compared to Zn from Zn oxide (Greene et. al. 

1988). The metabolism of Zn in the blood after it is absorbed is affected by the ligands 

involved which can vary depending on Zn status (McDowell 1992, Underwood and Suttle 

1999). Only about two thirds of plasma Zn is bound to albumin in the portal blood stream 

(Underwood and Suttle, 1999). The other portion of plasma Zn can be bound to -

macroglobulin or to metallothionein for example. Even though the mechanisms of tissue uptake 
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of Zn have not yet been characterized, Zn complexed with albumin is readily available for 

uptake by tissues (McDowell, 1992). Yet, not all tissues that uptake Zn, make the Zn available 

to other tissues. For example, the uptake of Zn in bone and the central nervous system is 

relatively slow and firmly bound once acquired by these tissues, making the Zn unavailable to 

other tissues (McDowell, 1992).   

The distribution of Zn throughout the body is well understood, but the mechanisms 

involved in Zn uptake by other tissues beyond the liver are not well known (Cousins, 1996, 

Underwood and Suttle, 1999). Subsequently Zn is released back into the blood stream after 

about 30-40% of the Zn entering through the hepatic venous supply is extracted from the liver 

(McDowell, 1992).  The circulating Zn enters various extrahepatic tissues at differing rates, 

which consist of different rates of Zn turnover (Underwood and Suttle, 1999). Body tissues will 

exhibit different accumulation and turnover rates following oral administration and subsequent 

absorption (Miller et. al. 1970). After an oral dosing, plasma Zn concentrations reach their peak 

within 1 to 3 days followed by a rapid decline for 3 to 4 weeks and a subsequent very slow 

decrease (Miller et. al. 1970). Even though Zn tends to accumulate very slowly in some tissues, 

the amount in red blood cells, muscle, and bone continues to increase for several weeks after a 

single oral dose (Miller et. al. 1970).  In the blood stream 80% is present in the erythrocytes, 

which contain about 1mg Zn per 10
6
 cells (Underwood and Suttle, 1999). The pancreas, liver, 

kidney, and spleen have the most rapid accumulation and turnover of retained Zn (McKinney et 

al., 1962).  

 Most of the intracellular Zn is found in the cytosol (60-80%), with some Zn found in the 

crude nuclear fraction (10-20%) and small amounts in the microsomal and mitochondrial 

fractions (Saylor and Leach, 1980, McDowell, 1992). Zinc found in the cytosol is primarily 
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bound to proteins whereas other fractions of Zn may be found on the cell membrane 

(McDowell, 1992). Yet, Hempe et al., (1991) identified a low molecular mass, intracellular 

constituent from rat intestinal mucosa that binds Zn during transmucosal Zn transport. The low 

molecular mass was not metallothionein, based on the Cd-hemoglobin affinity assay (Hempe et 

al. 1991).  

Storage and Excretion: Zinc storage within an animal is minimal, leading to 

complications during a dietary Zn deficiency. Although Zn is widely distributed throughout the 

body, animals have limited capacity for storing Zn in a form where it can be mobilized rapidly 

in order to prevent a deficiency (McDowell, 1992). Along with its importance in Zn absorption, 

metallothionein is also involved with being the major storage form of Zn within the liver 

(Richards and Cousins, 1976). Spears and Samsell (1986) reported that Zn retention was 

greater for lambs fed Zn methionine compared with those fed a control or Zn oxide-

supplemented diet.  Even though the absence of recognized stores exist, Zn may be 

redistributed from large pools found in bone and muscle during a deficiency (Underwood and 

Suttle, 1999). Also, when Zn is fed in large amounts the Zn content greatly increases in some 

tissues including blood, pancreas, kidney, bone, hair, and liver, but may have little effect on 

other tissues such as muscle (Miller et al., 1970).  
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Zinc Deficiency and Toxicity: 

Deficiency: A role for Zn in alterations of gene expression could also underlie a 

characteristic sign of Zn deficiency, namely, the incidence of parakaeratosis in the epidermis, 

esophagus, and buccal epithelium. According to Covey et al., (2005) if a calf becomes deficient 

in any nutrient then the recovery from these deficiencies would likely be delayed, impaired 

performance, and changes in carcass quality are likely. In cattle signs for a severe Zn deficiency 

are reduced growth, feed intake, and feed efficiency; listlessness; excessive salivation; reduced 

testicular growth; swollen feet with open, scaly lesions and some others as reported by the NRC 

(2000) from studies conducted by (Miller and Miller,1962, and Ott et al., 1965). Typically 

plasma or liver concentrations may be used to diagnose severe Zn deficiencies, but plasma Zn 

determination is of little value in detecting marginal deficiencies. A redistribution of Zn in the 

body temporarily results in low plasma concentrations due to stress or a disease, and noted as a 

characteristic of a severe deficiency (Hambridge et al., 1986). In a study by Engle et al., (1997) 

Holstein steers were allocated by BW to two groups, and fed a marginally Zn deficient diet or a 

Zn adequate diet. Results indicated that a marginal Zn deficiency decreased fractional protein 

accretion rate, increased (P < .05) urine excretion, and tended to increase (P < 0.19) Na and 

decrease (P < 0.12) K concentrations in the urine (Engle et al., 1997).  

Toxicity: Zn toxicity when feeding beef cattle is not of great concern because the 

amount of Zn necessary to cause toxicity is much greater than the requirements. The NRC 

(1980) reports that the maximum tolerable concentration of zinc is 500 mg of Zn/kg DM. 

Whereas the requirement of Zn in beef cattle diets is 30 mg Zn/kg diet. In a survey conducted 

by Vasconcelos and Galyean (2007) some nutritionists recommended relatively high 

concentrations of certain minerals (e.g. Cu and Zn), which increased average values relative to 
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NRC (1996) recommendations. The (2007) Texas Tech University survey of nutritional 

recommendations of feedlot consulting nutritionists reported the mean for Zn to be 93 mg/kg 

DM (Vasconcelos and Galyean, 2007).  

Ingestion of toxic concentrations of Zn resulted in high concentration of Zn 

accumulation in the blood and tissues of non-ruminants and lambs (Ott et al., 1996). These 

elevated concentrations of Zn in the blood and tissues generally result in reduced gain, feed 

consumption, and feed efficiency. The same latter effects were observed in feeder cattle 

consuming relatively high levels of zinc (Ott et al., 1966b), when a study of the effect of high 

levels of dietary zinc on blood components and tissue minerals was carried out (Ott et al., 

1966). 

Also the impact of over feeding any element can result in up regulation of the excretion 

of a metal such as Zn into the environment (Engle et al., 1997). An element that is poorly 

available to an animal and/or over fed is excreted into the environment. In areas of intense 

livestock concentration, heavy metal contamination of soil and ground water is being regulated. 

The allowable amounts of these elements may not necessarily be determined by animal need, 

but by waste content. Therefore, to minimize excretory losses of metals such as Zn, sources 

providing better utilization to the animal must be found. 

Bioavailability of Mineral Sources: Currently, trace minerals are available in both 

organic and inorganic forms. Trace minerals defined as inorganic are those that are typically 

bound to sulfates, carbonates, chlorides, or oxides, while those defined as organic are bound to 

amino acids or protein complexes. The general premise behind increased bioavailability of 

organic trace minerals is that organic trace minerals are protected from many of the interactions 

(as previously mentioned) that can potentially make them unavailable for absorption (Hemken et 
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al., 1996). It has been theorized by some researchers that organic trace minerals remain intact in 

the gastrointestinal tract, through the sight of absorption, and perhaps beyond absorption.   

A number of studies have been conducted using in vitro and in vivo techniques to 

determine the relative bioavailability of trace mineral sources. These experiments typically use 

an inorganic mineral as a benchmark (100%) and compare other mineral sources to it. Results 

have been variable, however under certain circumstances (as summarized below), organic 

mineral sources have been shown to be more bioavailable than inorganic sources. Furthermore,  

it is challenging to interpret data from different experiments because different researchers may 

have used various methods of supplementation, different sources of trace minerals, a variety of 

different cattle types, and a variety of reproductive variables. Moreover, breed of cattle, 

antagonists present in the diet, as well as physiological status of the animal must be taken into 

consideration when comparing the results from different experiments.  

Beta agonists: When maximizing production efficiency within a specific feedlot 

management system, it is crucial to understand the growth mechanisms of finishing cattle 

(Winterholler et al., 2008). Ractopamine Hydrochloride is a -adrenergic agonist approved for 

commercial use in beef cattle in the United States in 2003 by the USDA. Since the initiation of 

Ractompamine use in commercial beef cattle diets, research has indicated this compound 

generally increases protein accumulation, enhanced growth performance, and may affect 

adipose tissue deposition, depending on the dose and diet by ractopamine interactions (Dib et 

al., 2010; Abney et al., 2007).  

Yet, even though the biological efficacy of ractopamine and a justification for its use 

has been well documented, thoughts on how to use this technology the best in commercial 

cattle feeding should be provoked (Pritchard, 2005). Currently, ractopamine is provided during 
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the last 28d to 42d prior to slaughter at 280mg * d
-1 

for feedlot steers. Feeding ractopamine at 

this rate can result in a 15 to 18 pound increase in hot carcass weight (HCW) over controls 

(Pritchard, 2005). Furthermore, ractopamine is biologically active when administered orally to 

cattle, and its response not only causes an economically but also biologically significant 

improvement in cumulative ADG and F/G (Pritchard, 2005). Therefore, potential concerns 

regarding the best use of ractopamine fed to commercial beef cattle is of much interest. Among 

these concerns is the recommended dosage accuracy for the full response of ractopmine. There 

are several factors involved when formulating for the adequate dosage of ractopamine such as 

the variation of individual DMI from steers in a single pen. Pritchard 2005, reports an example 

of a feedlot pen that has 498.95 kg steers consuming 8.16 kg DM and 635.03 kg steers 

consuming 12.7 kg DM that are to be sold in 30 d. These steers received diets formulated at 

19g RAC/T assuming an average 9.53 kg DMI of all pens on that batch of feed. Consequently, 

the light steers then received 171mg*d
-1

, and the big steers received 266 mg*d
-1

. Pritchard 

(2005) also explains that the swine industry has had to increase CP and lysine to get the full 

effect of ractopamine. However, with increased muscle accretion perhaps dietary increasing 

dietary Zn during beta agonist feeding should be considered due to the role that Zn plays in 

protein metabolism. 
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Chapter II: EFFECT OF ZINC CONCENTRATION AND SOURCE ON PERFORMANCE 

AND CARCASS CHARACTERISTICS OF FEEDLOT STEERS. 

 

Summary 

 Three-hundred and sixty cross-bred steers (348.1 kg ± 28.9) were utilized to investigate 

the effects of zinc (Zn) concentration on performance and carcass characteristics of feedlot 

steers. Steers were blocked by weight and randomly assigned to one of the 5 supplemental Zn 

treatments (8 pens per treatment; 9 hd per pen). Treatments consisted of:    1) Control-50 (CON-

50; 50 mg of supplemental Zn/kg DM from ZnSO4); 2) Methionine control [MetCON-50; 50 

mg of supplemental  Zn/kg DM from ZnSO4 plus MHA to equalize HMTBa concentrations 

across treatments; 3) Organic-50 (ORG-50; Control diet supplemented with 50 mg of Zn/kg 

DM from Mintrex Zn plus MHA to equalize HMTBa intake across treatments); 4) Organic-100 

(ORG-100; Control diet supplemented with 100 mg of Zn/kg DM from MINTREX Zn plus 

MHA to equalize HMTBa intake across treatments 2-5); and 5) Organic-150 (ORG-150; 

Control diet supplemented with 150 mg of Zn/kg DM from Mintrex Zn). All steers were fed a 

typical high concentrate steam-flaked corn based finishing diet twice daily. Steers were 

individually weighed on d −1, 0, 144, and 145 and pen weighed on d 28, 56, 84, and 111. 

Ractopamine HCl was fed for the final 29 d of the finishing period to all treatments. On d 145, 

steers were transported to a commercial abattoir for slaughter. Initial and final body weight, 

ADG, DMI, and feed efficiency (g/f), were similar across treatments. However, there was a 

difference (P < 0.04) for ADG to be increased when MetCON-50 was compared to CON-50 on 

d-56 pen weigh and d-84 pen weigh (3.91, 4.42 ± 0.17 and 4.96, 4.29 ± 0.21 respectively). ADG 

was also increased (P <0.03) when the CON-50 treatment was compared to the ORG-50 
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treatment for the d-84 pen weigh period (4.96, 4.29 ± 0.21). There was a trend (P< 0.07) for 

gain:feed to be increased for the CON-50 when compared to MetCON-50 and ORG-50 for the 

d57-84 period (0.228, 0.198, 0.199 ± 0.01). Fat thickness, internal fat, hot carcass weight, KPH, 

marbling score, and dressing percentage were similar across treatments. Steers receiving ORG-

150 had a greater (P < 0.03) yield grade compared to steers receiving ORG-50 (2.99 vs. 2.76  ± 

0.08; respectively). Steers receiving ORG-150 also had a greater (P < 0.01) yield grade 

compared to steers receiving ORG-100 (2.99 vs. 2.68  ± 0.08; respectively). There was a trend (P 

< 0.07) for steers receiving MetCON-50 to have a greater yield grade compared to CON-50 (2.82 

vs. 2.67 ± 0.08; respectively). In addition, liver biopsies and blood samples were analyzed for 

Zn, Cu, and Fe concentrations as well as alkaline phosphatase in the blood. Initial liver biopsies 

were similar in Cu and Fe among treatments. Whereas, the Zn concentrations were greater ( P < 

0.01) in the CON-50 group compared to the MetCON-50 treatment group ( 218.7 vs. 170.2 ± 

12.9). Day 111 liver Zn concentrations tended ( P < 0.05) to be lower for CON-50 and MetCON-

50 treatments compared to ORG-50 treatment, while no other differences were noted among 

treatments (117.8, 123.7 vs. 158.0 ± 16.1). Day-0 plasma results indicate levels of Zn, Cu, and 

Fe to be similar among treatments with a trend (P < 0.07) in Fe concentrations to be less in the 

MetCON-50 when compared to the CON-50 treatment (4.71 vs. 1.70 ± 0.85). As for the d-111 

plasma analysis indicated no differences among treatments in regards to Zn, Cu, and Fe 

concentrations. The d-144 plasma analysis indicated no differences (P > .05) in Zn, Cu, and Fe 

concentrations among treatments. The alkaline phosphatase values for d-0, d-111, and d-144 

were similar across treatments, yet the alkaline phosphatase means for each treatment increased 

over time. These data indicate that under conditions of this trial, increasing Zn concentration in 
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the diet above NRC recommendations has little impact on performance, however, may impact 

lipid partitioning in steers.  

Key Words: carcass characteristics, feedlot, performance, ractopamine, Zn 

 

Introduction 

Ensuring the adequacy of trace mineral nutrition for feedlot cattle is an important 

consideration when formulating feedlot diets. The Beef Cattle National Research Council 

(NRC, 2000) recommends that beef cattle feedlot diets contain 30 mg Zn/kg DM; data 

reviewed for the publication of the 2000 NRC did not warrant a change in dietary Zn 

concentration in the feedlot from other phases, such as the cow calf and stocker sector, due to 

inconsistent growth responses with higher concentrations of Zn supplementation. Despite the 

NRC (2000) recommended level of 30 mg Zn/kg DM, a survey of consulting feedlot 

nutritionist indicated that feedlot diets are formulated to contain, on average, 93 ppm Zn with a 

range of 40 – 213 ppm (Vasconcelos and Galyean, 2007). Zinc was not the only nutrient 

supplemented above the NRC (2000) requirements that were reported by Vasconcelos and 

Galyean (2007), but also major nutrients and trace minerals typically fell within a range of 1 to 

2 times the NRC (2000) recommendations for beef cattle.  

Source (organic or inorganic) of Zn has been reported to influence production 

parameters in feedlot cattle. According to Spears et al., (1989) organic and inorganic forms of 

Zn are metabolized differently following absorption and under certain conditions, organic 

forms of Zn have been reported to enhance performance and improve health and reproduction, 

but the specific mechanisms underlying observed responses remain unclear (Spears, 1996; 

Galyean (1996) and results have been inconsistent (Greene et al., 1988; Malcolm-Callis et al., 
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2000; Covey et al., 2005). Furthermore, Zn dose has also been of interest when considering 

best Zn supplementation practices. Even though, on average, consulting nutritionist formulate 

feedlot diets to contain Zn concentrations well in excess of the NRC (2000) requirements 

(Vasconcelos and Galyean, 2007), dose experiments in feedlot cattle are highly variable 

(Rhoads et al. 2003, Malcolm-Callis et al. 2000). Therefore, objectives of the present 

experiment were to investigate the effects of Zn concentration and source on performance, 

carcass characteristics, and mineral status of feedlot steers fed ractopamine hydrochloride the 

last 29 days on feed. 

 

Materials and Methods 

  Prior to the initiation of this experiment, care, handling, and sampling of the animals 

defined in this research project was approved by the Colorado State University Animal Care 

and Use Committee. 

Upon arrival to Colorado Beef in Lamar, CO, steers (n = 400; approximate pay-weight 

340.2 kg) had an overnight access to long-stemmed grass hay and water. The next morning, 

steers were trailed (approximately 1.0 km) to the Colorado State University research feedlot - 

Southeast Colorado Research Center (SECRC) for processing. The processing procedures 

included: 1) application of ear tags (lot tags and electronic identification tags), 2) vaccinations 

with Presponse-SQ® (Fort Dodge Animal Health, Fort Dodge, IA), Pyramid II plus Type 2 

BVD (Fort Dodge Animal Health, Fort Dodge, IA), and Promectin (Vedco, Inc, St. Joseph, 

MO), 3) administration of Safe-Guard (Intervet Inc. MN) to control internal parasites, and 4) 

growth implant administration (Revalor-XS; Merck Animal Health, NJ 20 mg of trenbolone 

acetate and 4 mg estradiol). All compounds were administered per the manufactures 

recommendation.  
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Three hundred sixty cross-bred steers (BW = 348.1 kg ± 28.9), selected from an initial 

group of approximately 400 head, were utilized in this experiment. The selection process was 

initiated by weighing all steers an assigning breed type scores on d -1. Breed scores specified to 

all steers were determined by using visual observations of hide color and assigning breed 

names. Steers exhibiting Brahman or dairy influence were excluded from further consideration 

for enrollment into this experiment. Steers were then ranked by body weight, and individuals 

that were beyond ± 2 SD from the mean were removed from the study.  In addition, any 

individuals showing health problems or excessive Brahman, Longhorn, or Dairy breeding were 

excluded from the study.  Upon initial processing, jugular blood samples were obtained from 

all steers for analysis of alkaline phosphatase activity as an indicator of Zn status. Alkaline 

phosphatase activity was determined within 24h of sample collection to serve as an additional 

blocking factor, if needed, to assist with similar alkaline phosphatase activity distributions 

across all pens of cattle. Remaining steers were assigned a random number from 1 to 1000 

using Microsoft® Excel 2002.  A sufficient number of steers with the lowest random numbers 

were removed from further consideration for the study leaving 360 eligible steers. Steers were 

ranked by body weight within breed type and divided into 8 weight block replicates.  Within 

each breed type by weight block, each set group of 5 ranked steers were assigned to treatments 

1 – 5 using the lowest to highest random number assigned to the steers, respectively.  This was 

repeated for each group of 5 ranked steers within each breed type by weight block. By 

following these procedures, 8 weight block pen replicates, each one composed of nine steers 

and exhibiting a similar breed type distribution were used for each treatment of the experiment. 

Alkaline phosphatase activity was similar across treatments using the above randomization 

procedure and therefore  was not used as a blocking factor.  
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The dietary Zn treatments consisted of: 1) Control-50 (CON-50; 50 mg of 

supplemental Zn/kg DM from ZnSO4); 2) Methionine control [MetCON-50; 50 mg of 

supplemental  Zn/kg DM from ZnSO4 plus MHA to equalize HMTBa concentrations across 

treatments; 3) Organic-50 (ORG-50; Control diet supplemented with 50 mg of Zn/kg DM 

from Mintrex Zn plus MHA to equalize HMTBa intake across treatments); 4) Organic-100 

(ORG-100; Control diet supplemented with 100 mg of Zn/kg DM from MINTREX Zn plus 

MHA to equalize HMTBa intake across treatments 2-5); and 5) Organic-150 (ORG-150; 

Control diet supplemented with 150 mg of Zn/kg DM from Mintrex Zn). To maintain iso-

concentrations of HMTBa across treatments 2-5, the following concentrations were utilized: 

Mintrex Zn contains 16.0% Zn and 80.0% HMTBa; MHA contains 84.0% HMTBa). Dietary 

Zn supplements were  mixed as a component of the finished feed for the entire 145 d 

experiment.  

The following day, steers were returned through the processing chute on d 0, individually 

weighed and tagged with visual tags identifying study number, and replicate, and animal 

number within each pen. As each individual steer left the chute they were sorted into treatment 

groups and the experiment was initiated. 

 Diets for all treatments were manufactured and fed two times per day starting at 0730 h 

and ending with the second feeding at approximately 1500 h. All steers were fed a typical high 

concentrate steam-flaked corn based finishing diet twice daily (Tables 1 and 2). Ractopamine 

HCl was fed for the final 29 d of the finishing period to all treatments. Feedings were consistent 

with the standard operating procedures at SECRC from d 1 through 145. On d 145, steers were 

transported to a commercial abattoir for slaughter. 
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Feedbunks for all treatments were evaluated each morning at 0630 h and each afternoon 

at 1600 h. Therefore, whenever feedbunks were observed empty for 2 consecutive mornings, 

the amount of feed delivered to each bunk was increased approximately 0.227 kg DM per head. 

Conversely, if excess feed was observed in the bunk for 2 consecutive mornings, the amount of 

feed delivered to the bunk was decreased an appropriate amount to entice the steers to clean the 

bunk.  Furthermore, a starter and a series of step-up diets were used to acclimate steers to a 

steam-flaked corn based diet. The diets were formulated to meet or exceed the requirements for 

all nutrients listed by the NRC (2000). The starter and all step-up diets were each fed for 7 d. 

Whereas, the finishing diet was fed from d 21 through the end of the experiment and was 

formulated to contain 2% crude protein equivalent from non-protein nitrogen, 4% neutral 

detergent fiber solely from corn silage as the roughage source in the diet, 22046 IU per kg DM 

vitamin A, and 33.1IU per kg DM vitamin E. Thus, Optaflexx (Elanco; 200 mg/hd/d) was fed 

for the final 30 days of the finishing period to all treatment groups.  

 Representative samples of feed ingredients and rations were obtained weekly. Dry  

matter of feed ingredients and rations were determined weekly at SECRC by drying a portion 

of each sample in a forced-air drying oven (60°C) for 48h. Feed ingredients and ration samples 

were composited by month and sent to a commercial laboratory (SDK Labs, Hutchinson, KS) 

for routine nutrient analysis. Orts were obtained for DM analysis whenever feed became 

spoiled due to adverse weather as well as on weigh days.  

 The dry matter delivery for each treatment was calculated by multiplying the as-fed 

feed delivery recorded for each day by the average weekly dry matter concentration determined 

by the drying oven. Therefore, the DMI for each pen was calculated by subtracting the amount 

of DM refused from total DM delivered and dividing the result by head-days for the pen. Initial 
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body weights used for the experiment were the average of individual weights obtained during 

processing on d-1 and d-0. Whereas, the final individual body weights were obtained on 2 

consecutive mornings immediately prior to the day of slaughter. Intermediate weights were 

obtained as pen weights for each treatment on d 28, 56, 84, and 111. Pen weights collected on 

d-111 were one week prior to the initiation of ractopamine supplementation. Each pen weigh 

period and total average daily gain were calculated by taking the total live weight gain and 

dividing by the number of days on feed for that given period. A four percent pencil shrink was 

applied to all weights prior to analysis.  The net energy requirement for maintenance 

(NEm) and gain (NEg) for each pen of steers, from d 0 through slaughter, was calculated using 

equations for medium-framed steer calves published by NRC (2000). The net energy for 

maintenance and NEg derived from the diet for each pen was calculated from pen performance 

and pen requirements for NEm and NEg using the quadratic equation derivation of energy 

equations (further described by Zinn, 1992).    

 The individual cattle health observations were conducted on a daily basis. Cattle 

exhibiting signs of respiratory disease were assigned a score of 0 or 1 for each of the following 

symptoms: depressed appearance, nasal discharge, ocular discharge, rapid breathing, or 

coughing. Therefore steers scoring 2 or more respiratory points were removed the pen and 

rectal temperature was recorded. A steer that exhibited a rectal ≥ 39.72º C was assigned an 

additional 2 respiratory score points. Steers that exhibited a combined score of 4 or more points 

were treated with the appropriate medications. Steers that received treatment were returned to 

their home pen and allowed to recover. Steers that were pulled a second time for the same 

disease were re-treated and then returned to their pen and allowed to recover. Subsequently a 

steer pulled a third time for the same disease was removed from the experiment. Also, steers 
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that were observed as injured or lame were removed from the pen, examined, treated, and an 

assessment was made to determine if the steers should be returned to their home pen. Steers 

that were deemed likely not able to recover were removed from the experiment. Any steer that 

was removed from the experiment for any reason was weighed in the squeeze chute or on the 

pen scale. The animal removal data including, date, pen number, steer number, body weight, 

diagnosis or reasons for removals, and disposition of the steer was recorded. Steers that died or 

that were euthanized during the course of the experiment were necropsied to determine the 

cause of death.  

 Steers were fed for 145 d then transported (266.2 km) to a commercial abattoir. On the 

day of slaughter steers were fed 30% of their daily feed allowance at 0700 h and trailed to 

Colorado Beef Feedyard for shipment at approximately 1130 h. The slaughter order, carcass 

tags, hot carcass weight (HCW), and liver scores were recorded on the day of slaughter. 

Carcass data were then collected following a 36 h chill (hot carcass weight, 12
th

 rib fat depth, 

longissimus muscle area, kidney-pelvic-and heart fat, calculated USDA yield grade, marbling 

score, and USDA quality grade).  

 Blood samples were obtained via jugular venipuncture (approximately 10 ml) from 3 

steers/pen at the initiation, d-111, and termination of the experiment for serum alkaline 

phosphatase activity and plasma mineral concentrations. Jugular blood samples were obtained 

using three different  vacutainer Serum tubes (Vacutainer® Serum; Plus; and Trace Element 

tubes; BD, Franklin Lakes, NJ) appropriate for each analysis.  

Liver biopsies were obtained from the same 3 animals per pen at the beginning and 

d111 (on week prior to ractopamine phase) of the experiment. Briefly, liver biopsy sites were 

clipped of hair, scrubbed three times with Betadine then scrubbed with 70% ethyl alcohol 
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(altering Betadine and 70% ethyl alcohol), and the area was anesthetized with 5ml of lidocaine. 

The liver biopsy was obtained through a 1 cm incision made with a scalpel blade between the 

11
th

 and 12
th

  ribs on a line from the tubercoxae to the point of the shoulder. A core sample of 

liver weighing approximately 50mg was taken by using the true-cut technique as described by 

Pearson and Craig (1980) using a modified JamShedi bone marrow biopsy punch (0.7 cm in 

diameter x 14 cm in length). Briefly, the biopsy probe was inserted into the liver and a negative 

pressure was applied with a 20cc syringe to aspirate the biopsy into the probe. All of the biopsy 

instruments were cold sterilized in 50% Nolvasan 50% deionized water in an enclosed stainless 

steel instrument container prior to use on each animal. Also, a new pair of sterile gloves was 

used for each biopsy. Once post biopsy, the instruments were placed back into the 50% 

Nolvasan and 50% deionized water solution and allowed to soak for approximately 10 min 

after every use. The biopsy probes were alternated between animals to allow for an increased 

retention time in the Nolvasan deionized water solution. Immediately after the liver biopsies 

were collected the steers received Banamine (Flunixin Megulamine; 1.1 mg/kg i.m.) and 

Oxytetracycline Hydrochloride (6.6-11.0 mg/lb body weight). Animals that were biopsied were 

then monitored twice daily (a.m./p.m.) for one week. If complications such as bleeding, 

decreased feed intake, and increased rectal temperature occur, the attending veterinarian was 

contacted immediately. For, this experiment no steers demonstrated signs of complications post 

liver biopsy.  

Analytical Procedures: Alkaline phosphatase activity was analyzed for all three blood 

collections time points (d-0, 111, and 144). After each collection period, all tubes were 

centrifuged at 600 x g (4 ºC) using the Allegra® X-15R Centrifuge (Beckman Coulter Inc., 

North American Commercial Operation, Fullerton, CA). Alkaline phosphatase activity was 
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determined using a Phosphatase Assay Kit (G-Biosciences, St. Louis, MO. USA) designed to 

measure the activity of phosphatases in biological samples and to screen for agonists and 

inhibitors. This phosphatase assay uses para-nitrophenyl phosphate (pNPP), a chromogenic 

substrate for most phosphatases including alkaline phosphatase. The phosphatases in the blood 

sample remove the phosphate group to generate p-nitrophenol, which is deprotonated under 

alkaline conditions to produce p-nitrophenolate that can be read at 405nm using the Synergy 

HT instrument (manufactured by BioTek Instruments Inc. Highland Park, P.O Box 998, 

Winooski, Vermont 05404-0998, USA). 

 Liver biopsy samples were analyzed for mineral content by weighing the liver sample 

into a pre-weighed (pre-weighed crucibles were acid washed and dried in a forced-air drying 

oven prior to use) ashing crucible. Crucibles were placed into a forced-air drying oven at 60ºC 

for 24h. After removing crucibles from the drying oven they were placed in a desiccator (with 

98% calcium sulfate and 2% calcium carbonate which served as the desiccant) for 25min. 

Samples were then reweighed and the DM of each sample was determined. Next samples were 

ashed in a muffle furnace (Thermolyne, ) at 600˚C for approximately 12h. Crucibles were then 

placed in the oven by using tongs and leaving approximately 2cm of space from the walls.  

Once samples were ashed, the furnace was turned off for a cool down period of 45min. After 

the first 45min the furnace door was opened for a subsequent cool down period of 45min. Next, 

samples were removed from the oven by using tongs and placed in a desiccator for 

approximately 25min.  Following the ashing procedure, 5ml of HCl (1 N HCL) solution (10:1 

distilled H2O to HCl) was added to each crucible and transferred to a test tube. Liver mineral 

concentrations were determined via inductively coupled plasma-atomic emission spectroscopy 

(ICP-AES) methods (Braselton et al., 1997) as described by Ahola et al. (2004) for Zn, Cu, Mo, 
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Mn, S, and Fe concentrations. Samples were diluted in distilled H2O to fit within a linear range 

of a standard curve generated by linear regression of known TM concentrations.  

Multielemental analysis was then carried out by the simultaneous/sequential ICP-AES, with 

cross flow nebulization, procedure. For plasma mineral analysis, 1.0 ml of plasma was added to 

pre-weighed crucibles and analyzed as described above. 

Statistical Analysis: The experimental design was a randomized, complete block design 

with 5 treatments. Live animal performance, non-categorical carcass data and blood and tissue 

response variables were analyzed as a randomized complete block design using the MIXED 

procedure of SAS® and repeated measures where appropriate using pen as the experimental unit. 

Treatment was included in the models as a fixed classification variable. Weight block replicates 

were included in the model as a random class variable and pen was considered the experimental 

unit. The contrasts of interest for the main effects of source included; CON-50 (50mg Zn/kg 

DM) vs. MetCON-50(50mg Zn/kg DM); CON-50(50mg Zn/kg DM) vs. ORG-50(50mg Zn/kg 

DM); MetCON-50(50mg Zn/kg DM) vs. ORG-50(50mg Zn/kg DM); CON-50 (50mg Zn/kg 

DM) and MetCON-50(50mg Zn/kg DM) vs. ORG-50(50mg Zn/kg DM). The contrasts of 

interest for the main effects of dose included ORG-50(50mg Zn/kg DM) vs. ORG-100(100mg 

Zn/kg DM), ORG-50(50mg Zn/kg DM) vs. ORG-150(150mg Zn/kg DM); ORG-100(100mg 

Zn/kg DM) vs. ORG-150(150mg Zn/kg DM); and a linear effect using linear the SAS® IML 

procedure. Copper,  Fe and Zn concentrations for the d 111 liver biopsy samples were analyzed 

model using d 0 liver biopsy respective mineral values as a covariate. 

Categorical carcass, data, including USDA quality grade, USDA yield grade, and liver 

abscess data, were analyzed using PROC GLIMMIX of SAS using the same model as listed 

above. A binomial was assumed for the categorical data. Treatment means for categorical data 
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were reported as least square means ± SEM for the likelihood that an individual carcass within 

each pen was classified into each quality and yield grade category, hot carcass weight category, 

and the likelihood that an individual liver within each pen showed signs of abscesses. As for 

live performance data was evaluated for the feedlot phase prior to initiation of Optaflexx and 

for the Optaflexx phase separately.  

 

Results and Discussion 

Initial and final body weight and overall ADG, DMI, feed efficiency, and calculated 

energy recoveries were similar across treatments (Table 3). Brown et. al. (2004) reported steer 

DMI, ADG, and ADG:DMI before re-implanting or over the entire feeding period were not 

influenced (P > 0.10) by additional Zn from ZnSO4 ,  Zn from Zinpro 100®, and Zn from 

Availa Zn®. Similar results were also reported by Malcolm-Callis et el. (2000) were reported 

where ADG and gain:feed were similar in beef steers supplemented with Zn (as ZnSO4) at 20, 

100, or 200 mg/kg of dietary DM. In the present experiment ADG was greater (P < 0.04) for 

steers receiving the MetCON-50 when compared to the CON-50 during d 29-56 and during d 

57-84 (Table 3). Average daily gain was also greater (P <0.03) in CON-50 steers when 

compared to ORG-50 supplemented steers during d 57-84. There was a trend (P < 0.07) for 

gain:feed to be increased for the ORG-50 supplemented steers compared to MetCON-50 

supplemented steers from d 57-84 (Table 3). Dry matter intake was greater (P < 0.03) in the 

MetCON-50 treatment compared to the CON-50 supplemented steers from d 0-28 (Table 3). 

Furthermore DMI was higher (P < 0.01) for ORG-50 supplemented steers compare to CON-50 

and MetCON-50 steers. Malcom-Callis et al. (2000) reported DMI to be higher (P < 0.10) in 

steers fed Zn in the form of a Zn amino acid complex compared to iso-amounts of ZnSO4 in a 
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28 d receiving experiment, but observed no differences in DMI throughout the remainder of the 

finishing period.   

Fat thickness, hot carcass weight, KPH, marbling score, and dressing percentage were 

similar across treatments (Table 5). Steers receiving ORG-150 had a greater (P < 0.03) yield 

grade compared to steers receiving ORG-50 (2.99 vs. 2.76  ± 0.08; respectively). Steers 

receiving ORG-150 also had a greater (P < 0.01) yield grade compared to steers receiving 

ORG-100 (2.99 vs. 2.68  ± 0.08; respectively). There was a trend (P < 0.06) for steers receiving 

MetCON-50 to have a greater yield grade compared to the CON-50 (2.82 vs. 2.67 ± 0.08; 

respectively). Longissiumus dorsi area was greater (P < 0.03) for steers receiving ORG-100 

compared to ORG-150 (88.5 vs. 87.4 ± 0.21).  

The proportion of cattle grading select was lower (P < 0.02) for CON-50 and tended (P 

< 0.06) to be lower for ORG-50 supplemented steers compared to MetCON-50 supplemented 

steers (Table 6). Furthermore, a trend (P < 0.10) for a linear dose effect in the proportion of 

cattle qualifying for YG 3 was observed.  As does of organic Zn increased the proportion of 

YG 3 cattle tended to increase (Table 6). Overall, the proportion of cattle: grading low choice 

or higher, grading standard, receiving an YG of 1 or 2 or 4 or 5 and the proportion of cattle 

with normal or abscessed livers were similar across treatments.    

 Initial liver biopsies were similar in Cu and Fe concentrations across treatments (Table 

7). Whereas, the Zn concentrations were greater (P < 0.01) in the CON-50 compared to the 

MetCON-50 supplemented cattle (Table 7). Thus, initial liver mineral concentrations were used 

as a covariate when analyzing d 111 liver mineral concentrations. Day 111 liver Zn 

concentrations tended ( P < 0.05) to be lower for CON-50 and Met-50 treatments compared to 

the ORG-50 treatment, while no other differences were noted among treatments (Table 7).  
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Plasma concentrations of Zn, Cu, and Fe were similar across treatments on d 0 and 144 

of the experiment (Table 7). Furthermore plasma alkaline phosphatase activity was similar 

across treatments on d 0, 111, and 144. Zinc absorption has been shown to be similar between 

Zn methionine and inorganic sources. However, evidence exists that Zn provided by Zn 

methionine is retained in the body more effectively than inorganic Zn (Brown et al. 2004, 

Spears, 1989).  

 In conclusion, these data indicate that under conditions of this experiment, source of Zn 

as well as increasing Zn concentration in the diet above NRC recommendations has little 

impact on performance, however, may impact lipid partitioning in steers.  
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Table 1. Dry matter composition of basal diets. 

 Diet,  DM % 

Ingredients
a 

Starter Step Up 1 Step Up 2 

Finisher 

No/Opt. 

Finisher 

w/Opt 

Steam Flaked Corn 40.45 45.60 62.71 75.42 75.39 

Corn Silage 22.07 25.08 15.73 9.78 9.78 

Alfalfa hay 28.37 14.67 6.75 0.00 0.00 

Corn Steep 3.00 3.00 3.00 3.00 3.00 

DDG’s 4.91 7.99 6.46 4.58 4.59 

Tallow 0.00 1.70 2.72 3.79 3.79 

Supplement 1.21 1.96 2.63 3.42 3.45 

Theoretical Nutrients      

   Dry matter, % 61.08 59.05 64.14 67.76 67.76 

   Crude Protein 13.50 13.50 13.50 13.50 13.50 

   Non-protein 

nitrogen
b 

1.000 1.500 2.500 3.500 3.500 

   Acid detergent fiber 19.63 15.16 9.654 5.294 5.295 

   Neutral detergent 

fiber 

29.74 25.17 18.51 13.30 13.30 

   Eff-NDF
c 

22.99 17.59 12.18 8.016 8.014 

   ME, Mcal/kg
d 

1.425 1.411 0.981 0.661 0.662 

   NEg, Mcal/kg
e 

1.093 1.235 1.378 1.494 1.494 

   NEm, Mcal/kg
f 

1.781 1.922 2.067 2.186 2.186 

   Calcium 0.700 0.700 0.700 0.700 0.700 

   Phosphorus 0.375 0.379 0.372 0.359 0.359 

   Magnesium 0.230 0.229 0.211 0.194 0.195 

   Zinc, ppm 150.0 50.00 50.00 50.00 50.00 

   Copper, ppm 25.04 15.00 15.00 15.00 15.00 

   Cobalt, ppm 0.500 0.200 0.200 0.200 0.200 
a
DM percentage unless stated otherwise 

b
Crude protein equivalent 

c
Effective neutral detergent fiber 

d
Metabolizable energy 

e
Net energy for gain 

f
Net energy for maintenance 
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Table 2. Dry matter composition of the basal ration supplements.  

 % of Supplement for Diets 

Ingredients
a 

Starter Step Up 1 Step Up 2 

Finisher 

No/Opt. 

Finisher 

w/Opt 

Limestone 41.2 49.46 49.24 45.38 45.12 

Urea 27.0 25.71 32.65 35.56 35.33 

Salt 20.7 12.79 9.50 7.31 7.26 

Potassium 

Chloride 

6.52 N/A N/A 5.41 5.37 

Ground Corn N/A 4.04 2.76 1.99 1.98 

Mineral Oil 1.98 4.01 2.74 1.99 1.98 

Optaflexx 45® N/A N/A N/A N/A 0.61 

Vitamin E 1.32 0.83 0.61 0.47 0.46 

Rumensin 0.66 0.41 0.46 0.47 0.46 

Manganese 

Sulfate 

N/A 0.76 0.56 0.41 0.41 

Zinc Sulfate N/A 0.69 0.51 0.38 0.38 

Sodium 

Selenite 

N/A 0.63 0.47 0.35 0.35 

Copper Sulfate N/A 0.30 0.22 0.15 0.15 

Tylan 100 N/A 0.25 0.18 0.12 0.12 

EDDI N/A 0.07 0.05 0.03 0.03 

Vitamin A 0.17 0.05 0.04 0.00 0.00 

Cobalt 

Carbonate 

N/A 0.02 0.02 0.00 0.01 

       a
Percentage of dry matter 
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a 
Treatments: 1) CON-50 (50mg Zn/kg DM ZnSO4); 2) MetCON-50 (50mg Zn/kg DM ZnSO4 + MHA); 

3) ORG-50 (50mg Zn/kg DM Mintrex Zn); 4) ORG-100 (100mg Zn/kg DM Mintrex Zn); 5) ORG-150 

(150mg Zn/kg DM Mintrex Zn) 

 

 

  

Table 3. Effect of zinc concentration and source on performance and calculated energy recoveries of 

feedlot cattle. 

 Treatment  P < 

Item 1
a 

2
a 

3
a 

4
a 

5
a 

SEM 1 vs 

2 

1 vs 

3 

3 vs 

4 

3 vs 5 

Body Wt,kg           

Initial 336.6 337.0 337.5 337.4 337.9 8.75 0.75 0.48 0.89 0.77 

D 28 383.7 383.3 381.1 380.3 381.3 7.98 0.91 0.43 0.58 0.87 

D 56 433.3 439.4 435.0 434.8 439.3 8.12 0.26 0.74 0.93 0.18 

D 84 493.7 487.7 489.4 488.9 494.7 8.98 0.56 0.70 0.85 0.09 

D 111 536.5 542.2 534.7 534.9 541.7 8.21 0.37 0.78 0.96 0.22 

D 145 594.8 600.8 588.0 586.3 597.5 10.93 0.42 0.44 0.80 0.18 

Adg,kg/d           

D 0-28 1.68 1.65 1.56 1.53 1.68 0.07 0.78 0.22 0.66 0.90 

D 29-56 1.77 2.00 1.93 1.95 1.77 0.08 0.04 0.16 0.86 0.17 

D 57-84 
2.25 1.95 1.94 1.93 1.98 0.10 

0.03 0.03 0.92 0.72 

D 85-111 1.61 1.72 1.61 1.64 1.68 0.12 0.38 0.99 0.87 0.72 

D 112-145 1.71 1.72 1.57 1.65 1.64 0.13 0.94 0.31 0.62 0.64 

D 0-145 1.78 1.82 1.73 1.72 1.79 0.04 0.47 0.33 0.81 0.18 

DMI kg/d           

D 0-28 6.38 6.71 6.83 6.70 6.69 0.10 0.03 0.01 0.19 0.14 

D 29-56 8.30 8.51 8.39 8.33 8.30 0.24 0.48 0.76 0.79 0.88 

D 57-84 10.16 9.90 9.82 9.42 10.16 0.29 0.49 0.38 0.22 0.99 

D 85-111 10.47 10.23 9.97 9.43 10.47 0.32 0.56 0.23 0.20 0.98 

D 112-145 10.24 10.17 9.73 9.10 9.73 0.41 0.87 0.33 0.21 0.99 

Gain:Feed           

D 0-28 0.263 0.247 0.228 0.229 0.234 0.011 0.26 0.03 0.90 0.50 

D 29-56 0.215 0.230 0.217 0.234 0.250 0.012 0.34 0.89 0.28 0.05 

D 57-84 0.228 0.198 0.199 0.205 0.202 0.010 0.07 0.09 0.52 0.77 

D 85-111 0.162 0.180 0.168 0.175 0.155 0.010 0.05 0.32 0.43 0.70 

D 112-145 0.168 0.170 0.161 0.179 0.168 0.011 0.84 0.54 0.29 0.64 

D 0-145 0.196 0.200 0.193 0.199 0.201 0.005 0.49 0.68 0.29 0.19 

Feed:Gain           

D 0-28 3.83 4.11 4.48 4.52 3.83 0.25 0.29 0.03 0.85 0.61 

D 29-56 4.88 4.43 4.81 4.39 4.88 0.28 0.20 0.85 0.23 0.54 

D 57-84 4.48 5.12 5.26 4.89 4.60 0.29 0.18 0.11 0.36 0.50 

D 85-111 6.50 6.00 6.28 5.97 6.16 0.33 0.38 0.32 0.59 0.84 

D 112-145 6.01 6.03 6.38 5.90 6.12 0.44 0.97 0.48 0.42 0.66 

D 0-145 5.16 5.04 5.21 5.03 5.00 0.14 0.44 0.77 0.24 0.18 

NEm, 

Mcal/kg DM 

2.19 2.21 2.22 2.29 2.25 0.05 0.77 0.72 0.22 0.59 

NEg, Mcal/kg 

DM 

1.53 1.54 1.54 1.61 1.57 0.05 0.79 0.73 0.22 0.62 
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Table 4. Effect of zinc concentration and source on carcass characteristics of 

feedlot cattle. 
 Treatment  P < 

Item 1
a 

2
a 

3
a 

4
a 

5
a 

SEM 1 vs 

2 

1 vs 

3 

3 vs 

4 

3 vs 

5 

Fat 

thickness, 

cm 

1.09 1.17 1.12 1.12 1.22 0.02 0.06 0.38 0.93 0.21 

Rib eye 

area, cm
2 

88.5 87.8 87.3 88.5 87.4 0.21 0.57 0.26 0.41 0.13 

KPH 1.86 1.84 1.87 1.85 1.89 0.03 0.56 0.91 0.73 0.71 

Yield 

Grade 

2.67 2.82 2.76 2.68 2.99 0.08 0.06 0.24 0.43 0.03 

HCW 

 

372.5 377.6 370.5 369.7 375.6 15.3 

 

0.28 0.67 0.86 0.30 

Marbling 

score 

398.8 385.4 392.5 386.9 391.1 5.21 0.09 0.41 0.44 0.85 

Dressing 

percentage 

62.61 62.88 63.01 63.05 62.87 0.31 0.61 0.45 0.94 0.76 

a 
Treatments: 1) CON-50 (50mg Zn/kg DM ZnSO4); 2) MetCON-50 (50mg Zn/kg DM 

ZnSO4 + MHA); 3) ORG-50 (50mg Zn/kg DM Mintrex Zn); 4) ORG-100 (100mg Zn/kg 

DM Mintrex Zn); 5) ORG-150 (150mg Zn/kg DM Mintrex Zn) 
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a 
Treatments: 1) CON-50 (50mg Zn/kg DM ZnSO4); 2) MetCON-50 (50mg Zn/kg DM ZnSO4 + 

MHA); 3) ORG-50 (50mg Zn/kg DM Mintrex Zn); 4) ORG-100 (100mg Zn/kg DM Mintrex Zn); 

5) ORG-150 (150mg Zn/kg DM Mintrex Zn) 

b
 Did not converge during PROC GLIMMIX analysis.  Results reported as the percentage of 

individual carcasses for each treatment. 

c
 The percentage likelihood that an individual liver showed symptoms of liver abscesses. 

d 
Other condemnations - telang (abnormal dialations of red, blue, or purple superficial capillaries, 

arterioles, or venules typically localized just below the outer surface) and contaminated. 

e
 Did not converge during PROC GLIMMIX analysis.  Results reported as the percentage of 

individual carcasses for each treatment. 

  

Table 5.  Effect of zinc source and concentration on categorical carcass 

characteristics 

              Treatment P < 

Item 1
a 

2
a 

3
a 

4
a 

5
a 

1 vs 

2 

1 vs 

3 

1, 2 

vs 3 

3 vs 

4 

3 vs 

5 

n= 69 71 71 72 72      

Quality 

Grade 
          

≥ Low 

Choice 

52.2 

± 

6.01 

31.9 

± 

5.61 

45.7 

± 

5.95 

37.5 

± 

5.70 

39.4 

± 

5.80 

0.25 0.59 0.68 0.51 0.59 

Select 

46.4 

± 

6.11 

68.1 

± 

5.70 

51.4 

± 

6.08 

61.1 

± 5.8 

57.7 

± 

5.97 

0.02 0.56 0.42 0.46 0.59 

≤ Standard
b 1.4 0.00 2.8 1.4 2.8 n/a

b 
n/a

b 
n/a

b 
0.56

 
0.98

 

Liver Scores           

Normal
b 

87.1 76.9 
74.2

9 

80.6

2 
77.6 n/a

b 
n/a

b 
n/a

b 
n/a

b 
n/a

b 

Abscesses
c 

8.6 ± 

3.44 

14.4 

± 

4.38 

20.0 

± 

4.79 

16.6 

± 

4.56 

16.8 

± 

4.62 

0.49 0.32 0.35 0.61 0.63 

Other
d 4.35 

± 

2.46 

8.69 

± 

3.39 

5.71 

± 

2.77 

2.78 

± 

1.94 

5.63 

± 

2.74 

0.49 0.78 0.92 0.55 0.99 

Yield Grade           

1 or 2 

65.6 

± 

6.36 

60.6 

± 

6.51 

66.4 

± 

6.65 

69.7 

± 

6.01 

54.3 

± 

7.10 

0.68 0.93 0.73 0.68 0.16 

3 

34.3 

± 

6.63 

30.7 

± 

6.33 

26.3 

± 

6.27 

28.6 

± 

6.46 

40.1 

± 

7.20 

0.66 0.33 0.39 0.76 0.11 

4 or 5
e 

0.01 8.69 7.30 1.69 5.56 n/a
b 

n/a
b 

n/a
b 

0.51 0.78 
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a 
Treatments: 1) 50mg Zn/kg DM ZnSO4; 2) 50mg Zn/kg DM ZnSO4 + MHA; 3) 50mg Zn/kg DM 

Mintrex Zn; 4) 100mg Zn/kg DM Mintrex Zn; 5) 150mg Zn/kg DM Mintrex Zn. 

b
 Copper,  Fe and Zn concentrations for the d 111 liver biopsy samples were analyzed model using d 0 liver 

biopsy respective mineral values as a covariate
 

 

  

Table 6. Effects of zinc concentration and source on liver and plasma mineral concentrations and plasma 

alkaline phosphatase activity in steers  Treatment       P < 

Liver 1
a 

2
a 

3
a 

4
a 

5
a 

SEM
 

1 vs 2 1 vs 3 3 vs 4 3 vs 5 

Day 0           

Zn 218.7 170.2 208.1 206.6 201.3 12.9 0.01 0.50 0.93 0.69 

Cu 106.2 89.5 94.3 111.1 123.2 28.7 0.61 0.72 0.73 0.56 

Fe 426.7 465.6 522.4 489.8 471.6 43.6 0.51 0.12 0.56 0.37 

Day 111           

Zn 117.8 123.7 158.0 128.4 143.0 16.1 0.81 0.08 0.23 0.53 

Cu 95.3 82.6 77.5 99.1 104.8 24.5 0.64 0.50 0.49 0.37 

Fe 486.3 411.4 412.1 420.2 430.0 42.7 0.22 0.24 0.84 0.70 

Plasma 

Day 0
b
 

          

Zn 1.46 1.03 0.87 0.72 0.91 0.42 0.20 0.08 0.59 0.88 

Cu 0.11 0.05 0.11 0.09 0.21 0.07 0.38 0.99 0.83 0.36 

Fe 4.71 1.70 2.43 1.93 2.38 0.85 0.03 0.09 0.64 0.96 

Day 111           

Zn 1.36 1.14 0.78 1.06 1.13 0.25 0.55 0.14 0.50 0.36 

Cu 0.08 0.14 0.26 0.36 0.27 0.12 0.63 0.18 0.56 0.95 

Fe 4.83 5.87 3.55 4.07 4.54 1.07 0..61 0.51 0.75 0.48 

Day 144           

Zn 1.82 2.71 2.57 2.16 2.24 0.47 0.22 0.31 0.55 0.65 

Cu 0.30 0.27 0.13 0.15 0.30 0.10 0.83 0.27 0.89 0.23 

Fe 11.4 11.2 15.2 11.4 11.0 2.03 0.92 0.19 0.21 0.17 

Alkaline 

Phosphatase

e 

          

Day 0 50.43 50.08 50.13 50.66 50.79 2.10 .9074 .9206 .8580 .8255 

Day 111 67.81 60.16 59.09 68.51 64.64 6.25 .4018 .3402 .2930 .5322 

Day 144 60.23 64.35 70.54 74.20 82.84 6.72 .6104 .2100 .7434 .2779 



39 
 

 

 

 

 

 

 

 

 

 

Appendix B 

  



40 
 

SAS code used to analyze Performance data. 

 

options ls=100 ps=150; 

data adg; 

input pen trt rep vt time adg; 

cards; 

; 

proc sort; 

by pen time; 

run; 

proc mixed scoring=2; 

class pen rep trt time; 

model adg= trt time trt*time/ddfm=kenwardroger; 

repeated /subject=pen(trt) type=ar(1) r rcorr; 

random rep;  

lsmeans  trt time trt*time/pdiff; 

contrast 'trt 1 vs trt 2' trt 1 -1 0; 

contrast 'trt 1 vs trt 3' trt 1 0 -1; 

contrast 'trt 2 vs trt 3' trt 0 1 -1; 

contrast 'trt 1 2 vs trt 3' trt -1 -1 2;  

run; 

 

 

options ls=100 ps=150; 

data adg; 

input pen trt rep vt time adg; 

cards; 

; 

proc sort; 

by pen time; 

run; 

proc mixed scoring=2; 

class pen rep trt time; 

model adg= trt time trt*time/ddfm=kenwardroger; 

repeated /subject=pen(trt) type=ar(1) r rcorr; 

random rep;  

lsmeans  trt time trt*time/pdiff; 

contrast 'trt 3 vs trt 4' trt 1 -1 0; 

contrast 'trt 3 vs trt 5' trt 1 0 -1; 

contrast 'trt 4 vs trt 5' trt 0 1 -1; 

contrast 'linear' trt -0.663392 -0.080533 0.7439255; 

run; 

 

 

options ls=100 ps=150; 

data bw; 

input pen trt rep vt time bw; 

cards; 

; 

proc sort; 

by pen time; 

run; 

proc mixed scoring=2; 

class pen rep trt time; 
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model bw= trt time trt*time/ddfm=kenwardroger; 

random rep; 

repeated /subject=pen(trt) type=ar(1) r rcorr; 

lsmeans  trt time trt*time/pdiff; 

contrast 'trt 1 vs trt 2' trt 1 -1 0; 

contrast 'trt 1 vs trt 3' trt 1 0 -1; 

contrast 'trt 2 vs trt 3' trt 0 1 -1; 

contrast 'trt 1 2 vs trt 3' trt -1 -1 2;  

run; 

 

 

options ls=100 ps=150; 

data bw; 

input pen trt rep vt time bw; 

cards; 

; 

proc sort; 

by pen time; 

run; 

proc mixed scoring=2; 

class pen rep trt time; 

model bw= trt time trt*time/ddfm=kenwardroger; 

repeated /subject=pen(trt) type=ar(1) r rcorr; 

random rep;  

lsmeans  trt time trt*time/pdiff; 

contrast 'trt 3 vs trt 4' trt 1 -1 0; 

contrast 'trt 3 vs trt 5' trt 1 0 -1; 

contrast 'trt 4 vs trt 5' trt 0 1 -1; 

contrast 'linear' trt -0.663392 -0.080533 0.7439255; 

run; 

 

 

options ls=100 ps=150; 

data dmi; 

input pen trt rep vt time dmi; 

if time=0 then delete; 

cards; 

; 

proc sort; 

by pen time; 

proc mixed scoring=2; 

class pen rep trt time; 

model dmi= trt time trt*time/ddfm=kenwardroger; 

random rep; 

repeated /subject=pen(trt) type=ar(1) r rcorr; 

lsmeans  trt time trt*time/pdiff; 

contrast 'trt 1 vs trt 2' trt 1 -1 0; 

contrast 'trt 1 vs trt 3' trt 1 0 -1; 

contrast 'trt 2 vs trt 3' trt 0 1 -1; 

contrast 'trt 1 2 vs trt 3' trt -1 -1 2;  

run; 

 

 

options ls=100 ps=150; 

data dmi; 

input pen trt rep vt time dmi; 
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if time=0 then delete; 

cards; 

; 

proc sort; 

by pen time; 

proc mixed scoring=2; 

class pen rep trt time; 

model dmi= trt time trt*time/ddfm=kenwardroger; 

random rep; 

repeated /subject=pen(trt) type=ar(1) r rcorr; 

lsmeans  trt time trt*time/pdiff; 

contrast 'trt 3 vs trt 4' trt 1 -1 0; 

contrast 'trt 3 vs trt 5' trt 1 0 -1; 

contrast 'trt 4 vs trt 5' trt 0 1 -1; 

contrast 'linear' trt -0.663392 -0.080533 0.7439255; 

run; 

 

 

options ls=100 ps=150; 

data feed to gain; 

input pen trt rep vt time ftg; 

cards; 

; 

proc sort; 

by pen time; 

proc mixed scoring=2; 

class pen rep trt time; 

model ftg= trt time trt*time/ddfm=kenwardroger; 

random rep; 

repeated /subject=pen(trt) type=ar(1) r rcorr; 

lsmeans  trt time trt*time/pdiff; 

contrast 'trt 1 vs trt 2' trt 1 -1 0; 

contrast 'trt 1 vs trt 3' trt 1 0 -1; 

contrast 'trt 2 vs trt 3' trt 0 1 -1; 

contrast 'trt 1 2 vs trt 3' trt -1 -1 2;  

run; 

 

 

options ls=100 ps=150; 

data feed to gain; 

input pen trt rep vt time ftg; 

cards; 

; 

proc sort; 

by pen time; 

proc mixed scoring=2; 

class pen rep trt time; 

model ftg= trt time trt*time/ddfm=kenwardroger; 

random rep; 

repeated /subject=pen(trt) type=ar(1) r rcorr; 

lsmeans  trt time trt*time/pdiff; 

contrast 'trt 3 vs trt 4' trt 1 -1 0; 

contrast 'trt 3 vs trt 5' trt 1 0 -1; 

contrast 'trt 4 vs trt 5' trt 0 1 -1; 

contrast 'linear' trt -0.663392 -0.080533 0.7439255; 

run; 
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options ls=100 ps=150; 

data gain to feed; 

input pen trt rep vt time gtf; 

cards; 

; 

proc sort; 

by pen time; 

proc mixed scoring=2; 

class pen rep trt time; 

model gtf= trt time trt*time/ddfm=kenwardroger; 

random rep; 

repeated /subject=pen(trt) type=ar(1) r rcorr; 

lsmeans  trt time trt*time/pdiff; 

contrast 'trt 1 vs trt 2' trt 1 -1 0; 

contrast 'trt 1 vs trt 3' trt 1 0 -1; 

contrast 'trt 2 vs trt 3' trt 0 1 -1; 

contrast 'trt 1 2 vs trt 3' trt -1 -1 2; 

run; 

 

options ls=100 ps=150; 

data gain to feed; 

input pen trt rep vt time gtf; 

cards; 

; 

proc sort; 

by pen time; 

proc mixed scoring=2; 

class pen rep trt time; 

model gtf= trt time trt*time/ddfm=kenwardroger; 

random rep; 

repeated /subject=pen(trt) type=ar(1) r rcorr; 

lsmeans  trt time trt*time/pdiff; 

contrast 'trt 3 vs trt 4' trt 1 -1 0; 

contrast 'trt 3 vs trt 5' trt 1 0 -1; 

contrast 'trt 4 vs trt 5' trt 0 1 -1; 

contrast 'linear' trt -0.663392 -0.080533 0.7439255; 

run; 
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SAS code used to analyze NEm and NEg 

data NEm; 

input pen trt rep vt time NEm NEg; 

cards; 

; 

proc sort; 

by pen time; 

run; 

proc mixed scoring=2; 

class pen rep trt time; 

model NEm= trt time trt*time/ddfm=kenwardroger; 

repeated /subject=pen(trt) type=ar(1) r rcorr; 

random rep;  

lsmeans  trt time trt*time/pdiff; 

contrast 'trt 1 vs trt 2' trt 1 -1 0; 

contrast 'trt 1 vs trt 3' trt 1 0 -1; 

contrast 'trt 2 vs trt 3' trt 0 1 -1; 

contrast 'trt 1 2 vs trt 3' trt -1 -1 2;  

run; 

 

data NEm; 

input pen trt rep vt time NEm NEg; 

cards; 

; 

proc sort; 

by pen time; 

run; 

proc mixed scoring=2; 

class pen rep trt time; 

model NEm= trt time trt*time/ddfm=kenwardroger; 

repeated /subject=pen(trt) type=ar(1) r rcorr; 

random rep;  

lsmeans  trt time trt*time/pdiff; 

contrast 'trt 3 vs trt 4' trt 1 -1 0; 

contrast 'trt 3 vs trt 5' trt 1 0 -1; 

contrast 'trt 4 vs trt 5' trt 0 1 -1; 

contrast 'linear' trt -0.663392 -0.080533 0.7439255;  

run; 
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data NEg; 

input pen trt rep vt time NEm NEg; 

cards; 

; 

proc sort; 

by pen time; 

run; 

proc mixed scoring=2; 

class pen rep trt time; 

model NEg= trt time trt*time/ddfm=kenwardroger; 

repeated /subject=pen(trt) type=ar(1) r rcorr; 

random rep;  

lsmeans  trt time trt*time/pdiff; 

contrast 'trt 1 vs trt 2' trt 1 -1 0; 

contrast 'trt 1 vs trt 3' trt 1 0 -1; 

contrast 'trt 2 vs trt 3' trt 0 1 -1; 

contrast 'trt 1 2 vs trt 3' trt -1 -1 2;  

run; 

 

data NEg; 

input pen trt rep vt time NEm NEg; 

cards; 

; 

proc sort; 

by pen time; 

run; 

proc mixed scoring=2; 

class pen rep trt time; 

model NEg= trt time trt*time/ddfm=kenwardroger; 

repeated /subject=pen(trt) type=ar(1) r rcorr; 

random rep;  

lsmeans  trt time trt*time/pdiff; 

contrast 'trt 3 vs trt 4' trt 1 -1 0; 

contrast 'trt 3 vs trt 5' trt 1 0 -1; 

contrast 'trt 4 vs trt 5' trt 0 1 -1; 

contrast 'linear' trt -0.663392 -0.080533 0.7439255;  

run; 
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SAS code used to analyze Carcass data. 

 

options ls=100 ps=150; 

data carcass; 

input pen trt rep et ft rea if yg hcw kph ms dp qg; 

cards; 

; 

proc sort; 

by pen; 

proc mixed scoring=2; 

class pen rep trt; 

model ft=trt/ddfm=kenwardroger; 

random rep; 

repeated /subject=pen(trt) type=ar(1) r rcorr; 

lsmeans  trt/pdiff; 

contrast 'trt 1 vs trt 2' trt 1 -1 0; 

contrast 'trt 1 vs trt 3' trt 1 0 -1; 

contrast 'trt 2 vs trt 3' trt 0 1 -1; 

contrast 'trt 1 2 vs trt 3' trt -1 -1 2;  

run; 

proc mixed scoring=2; 

class pen rep trt; 

model rea=trt/ddfm=kenwardroger; 

random rep; 

repeated /subject=pen(trt) type=ar(1) r rcorr; 

lsmeans  trt/pdiff; 

contrast 'trt 1 vs trt 2' trt 1 -1 0; 

contrast 'trt 1 vs trt 3' trt 1 0 -1; 

contrast 'trt 2 vs trt 3' trt 0 1 -1; 

contrast 'trt 1 2 vs trt 3' trt -1 -1 2;  

run; 

 proc mixed scoring=2; 

class pen rep trt; 

model if= trt/ddfm=kenwardroger; 

random rep; 

repeated /subject=pen(trt) type=ar(1) r rcorr; 

lsmeans  trt/pdiff; 

contrast 'trt 1 vs trt 2' trt 1 -1 0; 

contrast 'trt 1 vs trt 3' trt 1 0 -1; 

contrast 'trt 2 vs trt 3' trt 0 1 -1; 

contrast 'trt 1 2 vs trt 3' trt -1 -1 2;  

run; 

proc mixed scoring=2; 

class pen rep trt; 

model yg= trt/ddfm=kenwardroger; 

random rep; 

repeated /subject=pen(trt) type=ar(1) r rcorr; 

lsmeans  trt/pdiff; 

contrast 'trt 1 vs trt 2' trt 1 -1 0; 

contrast 'trt 1 vs trt 3' trt 1 0 -1; 

contrast 'trt 2 vs trt 3' trt 0 1 -1; 

contrast 'trt 1 2 vs trt 3' trt -1 -1 2;  

run; 

proc mixed scoring=2; 
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class pen rep trt; 

model hcw= trt/ddfm=kenwardroger; 

random rep; 

repeated /subject=pen(trt) type=ar(1) r rcorr; 

lsmeans  trt/pdiff; 

contrast 'trt 1 vs trt 2' trt 1 -1 0; 

contrast 'trt 1 vs trt 3' trt 1 0 -1; 

contrast 'trt 2 vs trt 3' trt 0 1 -1; 

contrast 'trt 1 2 vs trt 3' trt -1 -1 2;   

run; 

proc mixed scoring=2; 

class pen rep trt; 

model kph= trt/ddfm=kenwardroger; 

random rep; 

repeated /subject=pen(trt) type=ar(1) r rcorr; 

lsmeans  trt/pdiff; 

contrast 'trt 1 vs trt 2' trt 1 -1 0; 

contrast 'trt 1 vs trt 3' trt 1 0 -1; 

contrast 'trt 2 vs trt 3' trt 0 1 -1; 

contrast 'trt 1 2 vs trt 3' trt -1 -1 2;   

run; 

proc mixed scoring=2; 

class pen rep trt; 

model ms= trt/ddfm=kenwardroger; 

random rep; 

repeated /subject=pen(trt) type=ar(1) r rcorr; 

lsmeans  trt/pdiff; 

contrast 'trt 1 vs trt 2' trt 1 -1 0; 

contrast 'trt 1 vs trt 3' trt 1 0 -1; 

contrast 'trt 2 vs trt 3' trt 0 1 -1; 

contrast 'trt 1 2 vs trt 3' trt -1 -1 2;  

run; 

proc mixed scoring=2; 

class pen rep trt ; 

model dp= trt/ddfm=kenwardroger; 

random rep; 

repeated /subject=pen(trt) type=ar(1) r rcorr; 

lsmeans  trt/pdiff; 

contrast 'trt 1 vs trt 2' trt 1 -1 0; 

contrast 'trt 1 vs trt 3' trt 1 0 -1; 

contrast 'trt 2 vs trt 3' trt 0 1 -1; 

contrast 'trt 1 2 vs trt 3' trt -1 -1 2;   

run; 

proc mixed scoring=2; 

class pen rep trt; 

model qg= trt/ddfm=kenwardroger; 

random rep; 

repeated /subject=pen(trt) type=ar(1) r rcorr; 

lsmeans  trt/pdiff; 

contrast 'trt 1 vs trt 2' trt 1 -1 0; 

contrast 'trt 1 vs trt 3' trt 1 0 -1; 

contrast 'trt 2 vs trt 3' trt 0 1 -1; 

contrast 'trt 1 2 vs trt 3' trt -1 -1 2;  

run; 
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options ls=100 ps=150; 

data carcass; 

input pen trt rep et ft rea if yg hcw kph ms dp qg; 

cards; 

; 

proc sort; 

by pen; 

proc mixed scoring=2; 

class pen rep trt; 

model ft=trt/ddfm=kenwardroger; 

random rep; 

repeated /subject=pen(trt) type=ar(1) r rcorr; 

lsmeans  trt/pdiff; 

contrast 'trt 3 vs trt 4' trt 1 -1 0; 

contrast 'trt 3 vs trt 5' trt 1 0 -1; 

contrast 'trt 4 vs trt 5' trt 0 1 -1; 

contrast 'linear' trt -0.663392 -0.080533 0.7439255;  

run; 

proc mixed scoring=2; 

class pen rep trt; 

model rea=trt/ddfm=kenwardroger; 

random rep; 

repeated /subject=pen(trt) type=ar(1) r rcorr; 

lsmeans  trt/pdiff; 

contrast 'trt 3 vs trt 4' trt 1 -1 0; 

contrast 'trt 3 vs trt 5' trt 1 0 -1; 

contrast 'trt 4 vs trt 5' trt 0 1 -1; 

contrast 'linear' trt -0.663392 -0.080533 0.7439255; 

run; 

 proc mixed scoring=2; 

class pen rep trt; 

model if= trt/ddfm=kenwardroger; 

random rep; 

repeated /subject=pen(trt) type=ar(1) r rcorr; 

lsmeans  trt/pdiff; 

contrast 'trt 3 vs trt 4' trt 1 -1 0; 

contrast 'trt 3 vs trt 5' trt 1 0 -1; 

contrast 'trt 4 vs trt 5' trt 0 1 -1; 

contrast 'linear' trt -0.663392 -0.080533 0.7439255; 

run; 

proc mixed scoring=2; 

class pen rep trt; 

model yg= trt/ddfm=kenwardroger; 

random rep; 

repeated /subject=pen(trt) type=ar(1) r rcorr; 

lsmeans  trt/pdiff; 

contrast 'trt 3 vs trt 4' trt 1 -1 0; 

contrast 'trt 3 vs trt 5' trt 1 0 -1; 

contrast 'trt 4 vs trt 5' trt 0 1 -1; 

contrast 'linear' trt -0.663392 -0.080533 0.7439255; 

run; 

proc mixed scoring=2; 

class pen rep trt; 

model hcw= trt/ddfm=kenwardroger; 

random rep; 
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repeated /subject=pen(trt) type=ar(1) r rcorr; 

lsmeans  trt/pdiff; 

contrast 'trt 3 vs trt 4' trt 1 -1 0; 

contrast 'trt 3 vs trt 5' trt 1 0 -1; 

contrast 'trt 4 vs trt 5' trt 0 1 -1; 

contrast 'linear' trt -0.663392 -0.080533 0.7439255; 

run; 

proc mixed scoring=2; 

class pen rep trt; 

model kph= trt/ddfm=kenwardroger; 

random rep; 

repeated /subject=pen(trt) type=ar(1) r rcorr; 

lsmeans  trt/pdiff; 

contrast 'trt 3 vs trt 4' trt 1 -1 0; 

contrast 'trt 3 vs trt 5' trt 1 0 -1; 

contrast 'trt 4 vs trt 5' trt 0 1 -1; 

contrast 'linear' trt -0.663392 -0.080533 0.7439255; 

run; 

proc mixed scoring=2; 

class pen rep trt; 

model ms= trt/ddfm=kenwardroger; 

random rep; 

repeated /subject=pen(trt) type=ar(1) r rcorr; 

lsmeans  trt/pdiff; 

contrast 'trt 3 vs trt 4' trt 1 -1 0; 

contrast 'trt 3 vs trt 5' trt 1 0 -1; 

contrast 'trt 4 vs trt 5' trt 0 1 -1; 

contrast 'linear' trt -0.663392 -0.080533 0.7439255; 

run; 

proc mixed scoring=2; 

class pen rep trt ; 

model dp= trt/ddfm=kenwardroger; 

random rep; 

repeated /subject=pen(trt) type=ar(1) r rcorr; 

lsmeans  trt/pdiff; 

contrast 'trt 3 vs trt 4' trt 1 -1 0; 

contrast 'trt 3 vs trt 5' trt 1 0 -1; 

contrast 'trt 4 vs trt 5' trt 0 1 -1; 

contrast 'linear' trt -0.663392 -0.080533 0.7439255; 

run; 

proc mixed scoring=2; 

class pen rep trt; 

model qg= trt/ddfm=kenwardroger; 

random rep; 

repeated /subject=pen(trt) type=ar(1) r rcorr; 

lsmeans  trt/pdiff; 

contrast 'trt 3 vs trt 4' trt 1 -1 0; 

contrast 'trt 3 vs trt 5' trt 1 0 -1; 

contrast 'trt 4 vs trt 5' trt 0 1 -1; 

contrast 'linear' trt -0.663392 -0.080533 0.7439255; 

run; 
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options ls=100 ps=150; 

data carcass categ; 

other=telang+contaminated; 

input pen str trt rep  premchoice choice pc select standard liver telang 

contaminated denom; 

other=telang+contaminated; 

cards; 

; 

proc print; 

run; 

proc sort; by trt rep pen; 

proc means noprint sum; 

by trt rep pen; 

var pc select standard liver other denom; 

output out=carcass sum=pc select standard liver other denom; 

proc print; 

proc glimmix data=carcass; 

class rep trt; 

model pc/denom=trt/s ddfm=kr error=binomial link=logit; 

random rep; 

lsmeans trt/cl pdiff ilink; 

contrast 'trt 1 vs trt 2' trt 1 -1 0; 

contrast 'trt 1 vs trt 3' trt 1 0 -1; 

contrast 'trt 2 vs trt 3' trt 0 1 -1; 

contrast 'trt 1 2 vs trt 3' trt -1 -1 2;  

proc glimmix data=carcass; 

class rep trt; 

model select/denom=trt/s ddfm=kr error=binomial link=logit; 

random rep; 

lsmeans trt/cl pdiff ilink; 

contrast 'trt 1 vs trt 2' trt 1 -1 0; 

contrast 'trt 1 vs trt 3' trt 1 0 -1; 

contrast 'trt 2 vs trt 3' trt 0 1 -1; 

contrast 'trt 1 2 vs trt 3' trt -1 -1 2;   

proc glimmix data=carcass; 

class rep trt; 

model standard/denom=trt/s ddfm=kr error=binomial link=logit; 

random rep; 

lsmeans trt/cl pdiff ilink; 

contrast 'trt 1 vs trt 2' trt 1 -1 0; 

contrast 'trt 1 vs trt 3' trt 1 0 -1; 

contrast 'trt 2 vs trt 3' trt 0 1 -1; 

contrast 'trt 1 2 vs trt 3' trt -1 -1 2;  

proc glimmix data=carcass; 

class rep trt; 

model liver/denom=trt/s ddfm=kr error=binomial link=logit; 

random rep; 

lsmeans trt/cl pdiff ilink; 

contrast 'trt 1 vs trt 2' trt 1 -1 0; 

contrast 'trt 1 vs trt 3' trt 1 0 -1; 

contrast 'trt 2 vs trt 3' trt 0 1 -1; 

contrast 'trt 1 2 vs trt 3' trt -1 -1 2;   

proc glimmix data=carcass; 

class rep trt; 

model other/denom=trt/s ddfm=kr error=binomial link=logit; 
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random rep; 

lsmeans trt/cl pdiff ilink; 

contrast 'trt 1 vs trt 2' trt 1 -1 0; 

contrast 'trt 1 vs trt 3' trt 1 0 -1; 

contrast 'trt 2 vs trt 3' trt 0 1 -1; 

contrast 'trt 1 2 vs trt 3' trt -1 -1 2;   

run; 

 

 

options ls=100 ps=150; 

data yg categ; 

input pen eartag trt rep ygoneortwo ygthree ygfourorfive denom; 

cards; 

; 

proc sort; by trt rep pen; 

proc means noprint sum; 

by trt rep pen; 

var ygoneortwo ygthree ygfourorfive denom; 

output out=carcassind sum=ygoneortwo ygthree ygfourorfive denom; 

proc print; 

proc glimmix data=carcassind; 

class rep trt; 

model ygoneortwo/denom=trt/s ddfm=kr error=binomial link=logit; 

random rep; 

lsmeans trt/cl pdiff ilink; 

contrast 'trt 1 vs trt 2' trt 1 -1 0; 

contrast 'trt 1 vs trt 3' trt 1 0 -1; 

contrast 'trt 2 vs trt 3' trt 0 1 -1; 

contrast 'trt 1 2 vs trt 3' trt -1 -1 2;   

proc glimmix data=carcassind; 

class rep trt; 

model ygthree/denom=trt/s ddfm=kr error=binomial link=logit; 

random rep; 

lsmeans trt/cl pdiff ilink; 

contrast 'trt 1 vs trt 2' trt 1 -1 0; 

contrast 'trt 1 vs trt 3' trt 1 0 -1; 

contrast 'trt 2 vs trt 3' trt 0 1 -1; 

contrast 'trt 1 2 vs trt 3' trt -1 -1 2;  

proc glimmix data=carcassind; 

class rep trt; 

model ygfourorfive/denom=trt/s ddfm=kr error=binomial link=logit; 

random rep; 

lsmeans trt/cl pdiff ilink; 

contrast 'trt 1 vs trt 2' trt 1 -1 0; 

contrast 'trt 1 vs trt 3' trt 1 0 -1; 

contrast 'trt 2 vs trt 3' trt 0 1 -1; 

contrast 'trt 1 2 vs trt 3' trt -1 -1 2;  

run; 

 

 

options ls=100 ps=150; 

data yg categ; 

input pen eartag trt rep ygoneortwo ygthree ygfourorfive denom; 

cards; 

; 

proc sort; by trt rep pen; 

proc means noprint sum; 



52 
 

by trt rep pen; 

var ygoneortwo ygthree ygfourorfive denom; 

output out=carcassind sum=ygoneortwo ygthree ygfourorfive denom; 

proc print; 

proc glimmix data=carcassind; 

class rep trt; 

model ygoneortwo/denom=trt/s ddfm=kr error=binomial link=logit; 

random rep; 

lsmeans trt/cl pdiff ilink; 

contrast 'trt 3 vs trt 4' trt 1 -1 0; 

contrast 'trt 3 vs trt 5' trt 1 0 -1; 

contrast 'trt 4 vs trt 5' trt 0 1 -1; 

contrast 'linear' trt -0.663392 -0.080533 0.7439255; 

proc glimmix data=carcassind; 

class rep trt; 

model ygthree/denom=trt/s ddfm=kr error=binomial link=logit; 

random rep; 

lsmeans trt/cl pdiff ilink; 

contrast 'trt 3 vs trt 4' trt 1 -1 0; 

contrast 'trt 3 vs trt 5' trt 1 0 -1; 

contrast 'trt 4 vs trt 5' trt 0 1 -1; 

contrast 'linear' trt -0.663392 -0.080533 0.7439255; 

proc glimmix data=carcassind; 

class rep trt; 

model ygfourorfive/denom=trt/s ddfm=kr error=binomial link=logit; 

random rep; 

lsmeans trt/cl pdiff ilink; 

contrast 'trt 3 vs trt 4' trt 1 -1 0; 

contrast 'trt 3 vs trt 5' trt 1 0 -1; 

contrast 'trt 4 vs trt 5' trt 0 1 -1; 

contrast 'linear' trt -0.663392 -0.080533 0.7439255; 

run; 
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SAS code used to analyze Liver Biopsy data. 

 
 

options ls=100 ps=150; 

data liver; 

input Pen str TRT REP AvgZn1 AvgZn2 RationZn DMI; 

Znintake= RationZn*DMI; 

cards; 

; 

proc print; 

proc sort; 

by pen; 

proc mixed scoring=2; 

class pen rep trt; 

model AvgZn1=trt/ddfm=kenwardroger; 

random rep; 

repeated /subject=pen(trt) type=ar(1) r rcorr; 

lsmeans  trt/pdiff; 

contrast 'trt 1 vs trt 2' trt 1 -1 0; 

contrast 'trt 1 vs trt 3' trt 1 0 -1; 

contrast 'trt 2 vs trt 3' trt 0 1 -1; 

contrast 'trt 1 2 vs trt 3' trt -1 -1 2;  

run; 

 

 

 

 

 

options ls=100 ps=150; 

data liver; 

input Pen str TRT REP AvgZn1 AvgZn2 RationZn DMI; 

Znintake= RationZn*DMI; 

cards; 

; 

proc print; 

proc sort; 

by pen; 

proc mixed scoring=2; 

class pen rep trt; 

model AvgZn1=trt/ddfm=kenwardroger; 

random rep; 

repeated /subject=pen(trt) type=ar(1) r rcorr; 

lsmeans  trt/pdiff; 

contrast 'trt 3 vs trt 4' trt 1 -1 0; 

contrast 'trt 3 vs trt 5' trt 1 0 -1; 

contrast 'trt 4 vs trt 5' trt 0 1 -1; 

contrast 'linear' trt -0.663392 -0.080533 0.7439255; 

run; 
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SAS code used to analyze Alkaline Phosphatase data. 

 
 

options ls=100 ps=150; 

data AlkalineP; 

input pen str trt rep AlkP1 Unitsml; 

cards; 

; 

proc print; 

proc sort; 

by pen; 

proc mixed scoring=2; 

class pen rep trt; 

model AlkP1=trt/ddfm=kenwardroger; 

random rep; 

repeated /subject=pen(trt) type=ar(1) r rcorr; 

lsmeans  trt/pdiff; 

contrast 'trt 1 vs trt 2' trt 1 -1 0; 

contrast 'trt 1 vs trt 3' trt 1 0 -1; 

contrast 'trt 2 vs trt 3' trt 0 1 -1; 

contrast 'trt 1 2 vs trt 3' trt -1 -1 2;  

run; 

 

 

 

 

 

 

options ls=100 ps=150; 

data AlkalineP; 

input pen str trt rep AlkP1 Unitsml; 

cards; 

; 

proc print; 

proc sort; 

by pen; 

proc mixed scoring=2; 

class pen rep trt; 

model AlkP1=trt/ddfm=kenwardroger; 

random rep; 

repeated /subject=pen(trt) type=ar(1) r rcorr; 

lsmeans  trt/pdiff; 

contrast 'trt 3 vs trt 4' trt 1 -1 0; 

contrast 'trt 3 vs trt 5' trt 1 0 -1; 

contrast 'trt 4 vs trt 5' trt 0 1 -1; 

contrast 'linear' trt -0.753846 0.1052858 0.6485605; 

run; 
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SAS code used to analyze Plasma Zn  data. 

 
 

options ls=100 ps=150; 

data plasma; 

input Pen str TRT REP AvgCu AvgFe AvgZn1 RationZn DMI; 

Znintake= RationZn*DMI; 

cards; 

; 

proc print; 

proc sort; 

by pen; 

proc mixed scoring=2; 

class pen rep trt; 

model AvgZn1=trt/ddfm=kenwardroger; 

random rep; 

repeated /subject=pen(trt) type=ar(1) r rcorr; 

lsmeans  trt/pdiff; 

contrast 'trt 1 vs trt 2' trt 1 -1 0; 

contrast 'trt 1 vs trt 3' trt 1 0 -1; 

contrast 'trt 2 vs trt 3' trt 0 1 -1; 

contrast 'trt 1 2 vs trt 3' trt -1 -1 2;  

run; 

 

 

options ls=100 ps=150; 

data plasma; 

input Pen str TRT REP AvgCu AvgFe AvgZn1 RationZn DMI; 

Znintake= RationZn*DMI; 

cards; 

; 

proc print; 

proc sort; 

by pen; 

proc mixed scoring=2; 

class pen rep trt; 

model AvgZn1=trt/ddfm=kenwardroger; 

random rep; 

repeated /subject=pen(trt) type=ar(1) r rcorr; 

lsmeans  trt/pdiff; 

contrast 'trt 3 vs trt 4' trt 1 -1 0; 

contrast 'trt 3 vs trt 5' trt 1 0 -1; 

contrast 'trt 4 vs trt 5' trt 0 1 -1; 

contrast 'linear' trt -0.663392 -0.080533 0.7439255; 

run; 

 

 

 

 

 

 


