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ABSTRACT

ELECTROENCEPHALOGRAM CLASSIFICATION BY

FORECASTING WITH RECURRENT NEURAL NETWORKS

The ability to effectively classify electroencephalograms (EEG) is the foundation for

building usable Brain-Computer Interfaces as well as improving the performance of EEG

analysis software used in clinical and research settings. Although a number of research

groups have demonstrated the feasibility of EEG classification, these methods have not yet

reached a level of performance that is acceptable for use in many practical applications.

We assert that current approaches are limited by their ability to capture the temporal and

spatial patterns contained within EEG. In order to address these problems, we propose a new

generative technique for EEG classification that uses Elman Recurrent Neural Networks.

EEG recorded while a subject performs one of several imagined mental tasks is first modeled

by training a network to forecast the signal a single step ahead in time. We show that

these models are able to forecast EEG with an error as low as 1.18 percent of the signal

range. A separate model is then trained over EEG belonging to each class. Classification of

previously unseen data is performed by applying each model and using Winner-Takes-All,

Linear Discriminant Analysis or Quadratic Discriminant Analysis to label the forecasting

errors. This approach is tested on EEG collected from two able-bodied subjects and three

subjects with disabilities. Information transfer rates as high as 38.7 bits per minute (bpm)

are achieved for a two-task problem and 34.5bpm for a four-task problem.
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Chapter 1

Introduction

Electroencephalography (EEG) is a technique for measuring synchronized neural activity

by placing an array of electrodes on the surface of a subject’s scalp. Since the recording of

the first EEG signals by Hans Berger in 1924 [1], EEG has been used in a number of clinical

applications. For example, EEG is used as a diagnostic tool for epilepsy, brain damage

and sleep disorders and is commonly used in a variety of research contexts, such as the

localization of neural activity, the study of human development and the characterization of

numerous medical conditions [2].

Recently, an interest has also been sparked in the use of EEG for establishing a direct

channel of communication between the brain and a computerized device. These Brain-

Computer Interfaces (BCI) allow a user to control an external device by voluntarily altering

their mental state while a pattern analysis algorithm simultaneously attempts to identify

the corresponding change in the EEG signals. A device such as a mouse cursor, robot or

wheelchair can be instructed to take an action that has been previously associated with

the detected change in mental state. This procedure effectively bypasses our innate, motor-

based means of communication.

BCI are of immediate interest to those who have lost all ability to communicate with

the outside world. This condition, known as locked-in syndrome (LIS), can be caused by a
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number of diseases, such as amyotrophic lateral sclerosis, cerebral palsy and stroke [3]. In

addition to those suffering from LIS, BCI may also be extremely helpful to those who are

able to communicate with the outside world yet have an impaired ability to operate everyday

devices, such as wheelchairs, computers and telephones. Such impairments are common and

can be caused by spinal cord injury, multiple sclerosis and traumatic brain injury. Beyond

assistive technology, one might also imagine applications for BCI in virtual reality, gaming,

monitoring of emotional states and the every-day interaction between humans and machines.

As exciting as these prospects may be, reliable and real-time analysis of EEG is difficult

to achieve for a number of reasons. First of all, EEG measurements are extremely sensitive

and tend to have a very low signal to noise ratio. The electrical activity observed on the sur-

face of the scalp is measured on the microvolt level, requiring extremely sensitive amplifiers

and low impedances between the electrodes and the scalp. As a result of the small electrical

potentials involved, EEG is also very susceptible to contamination by various types of arti-

facts and noise. For example, biological sources of electrical activity such as sinus rhythms,

muscle contraction and ocular movement can cause artifacts that overwhelm the signals

generated by neural activity. Environmental electrical sources, such as domestic wiring,

household appliances and computer peripherals, can also produce a significant amount of

noise in EEG recordings, particularly in everyday settings. What’s more, the electrical

effects generated by neurons are extremely complex and are influenced by cell orientation,

surface contours of the brain and the shape of a subject’s head [2]. These barriers cause the

underlying signals to mix and fade so that only the effects of synchronized firing by large

pools of neurons can be measured.

In addition to the limitations of EEG measurement, the very nature of the human brain

makes EEG classification difficult. The human brain contains on the order of 100 billion

neurons. Each neuron may have numerous connections, each involved in complex electro-

chemical interactions. Furthermore, the human brain is stateful, meaning EEG recorded

at any given moment in time is closely related to the preceding activity. On top of the
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sheer complexity of the brain is the fact that human thought has a tendency to wander

and perform multiple tasks simultaneously. Even if a specific kind of neural activity can

be correctly identified from EEG, it may be difficult to know when a subject has lost

concentration or is performing confounding tasks.

In this thesis we investigate a non-linear, generative approach to EEG classification that

is designed to be both robust to artifacts and noise as well as powerful enough to capture

the complex patterns found in EEG. In this approach, we first construct a model for each

class of EEG that attempts to forecast the signal a single step ahead in time. Once a model

is constructed for each class, labels can be assigned to novel data by applying each model

and subsequently assigning the class label associated with the model that was best able to

forecast the EEG signal or by applying a secondary classifier to the forecasting errors.

In order to forecast EEG we use a type of learning machine known as the Elman Re-

current Neural Network (ERNN) [4]. ERNN belong to a broader set of learning machines

known as Artificial Neural Networks (ANN) [5]. ANN are comprised of a number of simple

computational units known as neurons. The neurons in an ANN have weighted intercon-

nections, including connections to input and output lines. ANN are trained to map some

inputs to outputs by adjusting these weighted interconnections in a way that minimizes a

given objective function. The ANN used here are trained using example inputs and outputs

for which the correct values are known, i.e., in a supervised fashion. It should be noted that

while the ANN used here are biologically inspired neural models, they are quite far from

being biologically plausible.

More specifically, ERNN belong to a subset of ANN known as Recurrent Artificial

Neural Networks (RNN). While feedforward ANN contain only connections from layer to

layer moving from the input layer to the output layer, RNN contain delayed feedback

connections. These feedback connections give RNN an intrinsic state, or memory, and

the ability to incorporate information from inputs that were previously presented to the

network. When combined with non-linear activation functions, RNN are capable of learning
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complex spatiotemporal patterns. Since RNN are able to model both spatial patterns as

well as temporal patterns, and because training of our RNN requires few prior assumptions,

we hypothesize that this approach may be able to capture many of the complex patterns

found in EEG while remaining robust to artifacts and noise. In previous work, we have

offered preliminary results demonstrating that ERNN can be used to construct effective

EEG classifiers [6].

In the experiments conducted here, we perform an offline analysis of EEG recorded

from five subjects. Two of these subjects are able-bodied, two have high-level spinal cord

injuries and one has severe multiple sclerosis. The goal of our analysis is to construct

a pipeline for EEG classification that can be used to build BCI systems. Following the

seminal work of Keirn and Aunon [7], we choose to focus on discriminating between EEG

produced while subject performs each of several different imagined mental tasks. A subject

may then control a computerized device by switching their mental state from task to task

in a controlled manner. We feel that this approach is general and offers many degrees of

freedom to BCI users. Additionally, classifying generic mental tasks retains the potential

for mutual learning. In other words, a BCI user may learn to perform the mental tasks in

ways that improve system performance while a computer algorithm simultaneously learns

to discriminate between patterns found in the user’s EEG. Although this approach seems

cumbersome at first, it may become second-nature after extended periods of use. Finally,

we hope that this approach is general enough to be applied to other EEG analysis domains.

In Chapter 2 we begin by reviewing the current state-of-the-art in EEG classification

and BCI systems. This review includes a discussion of popular feature representations and

classification algorithms as well as their potential limitations. In Chapter 3 we outline the

details of the experimental protocol used throughout the remainder of this thesis as well

as thoroughly introduce ERNN and our classification procedure. In Chapter 4 begin by

selecting proper parameters for training and regularizing our forecasters and classifiers. We

then present the final classification performance of our techniques for all five subjects. We
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also offer some discussion regarding the level of temporal information that ERNN are able to

capture and how classification performance might translate to the control of a BCI system.

In Chapter 5 we conclude by summarizing our results, performing a brief comparison with

other methods and commenting on some questions that remain to be answered in future

work.
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Chapter 2

Background

In this chapter we give a brief overview and discussion of the state-of-the-art in BCI systems.

In order to achieve this we begin by reviewing a number of popular paradigms around which

BCI are often built. We then attempt to roughly identify the current state-of-the-art for

each approach. Next, we offer some discussion regarding several common EEG feature

representations. Since this thesis is focused on the classification of EEG recorded during

imagined mental tasks, our discussion of feature representations is geared specifically toward

BCI that follow this paradigm. Finally, we discuss several papers found in the current

literature that are closely related to the work at hand.

2.1 BCI Paradigms

A number of paradigms for building EEG-based BCI systems have been explored in the

past two decades. These paradigms vary widely, from using well-known phenomena that

occur in EEG during interaction with a stimuli, to the use of biofeedback, to paradigms that

use sophisticated machine learning algorithms to classify spontaneous EEG. Each of these

approaches has advantages and disadvantages and, in order to justify the methods used in

this thesis, it is important to briefly review the most common BCI paradigms currently in
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use. Furthermore, it is important to identify the performance of the current state-of-the-

art in BCI so that we can properly evaluate the performance of the techniques used here.

The following review of BCI paradigms is organized to begin with methods that are more

constrained, in the sense that they require a level of overt attention from the user, and

concludes with methods that require little or no external stimuli and only the user’s covert

attention.

Paradigms for building BCI systems that utilize specific changes in EEG that occur

following the presentation of a controlled external stimuli have been implemented with

considerable success. Since these changes in EEG are brought about by the presentation of

a stimulus, they are known as evoked potentials (EP). For example, a number of BCI systems

have been built that utilize Steady-State Visually Evoked Potentials (SSVEP). SSVEP can

be elicited by instructing a subject to fixate on a box or checkerboard presented on an LCD

screen that is flickering at a fixed rate. A corresponding increase in power can then be

identified in the subject’s EEG at the same frequency and at the harmonic frequencies of

this flickering. SSVEP can be used to control a computerized device by flickering several

different stimuli at different rates while allowing the user to shift their gaze between the

different stimuli [8]. BCI systems that operate in this fashion have proven to be quite

effective, with recent research suggesting that an SSVEP speller system can be constructed

that achieves information transfer rates as high as 62.5 bits per minute (bpm) with only

minimal user training [9].

Another type of EP that is commonly used to construct BCI systems is known as the

P300. The P300 is an EP that occurs following the presentation of a rare-but-expected

stimulus. The P300 is so named because it appears in averaged EEG signals as a positive

deflection roughly 300ms following the onset of the presented stimulus. One example of a

BCI system that utilizes the P300 is known as the P300 speller. In this approach, a grid

of numbers or letters is presented to the user on an LCD screen. The rows and columns

of this grid are then flashed in a pseudo-random order. Ideally, a P300 is then elicited

7



when the user attends to a single character in the grid, since the character flashes relatively

infrequently and at intervals that are unknown to the subject [10]. The BCI can then

determine which character the user was attending to by tracking when each row and column

was flashed. Recent studies indicate that the P300 speller can be used very successfully,

achieving information transfer rates as high as 13.3bpm in subjects with amyotrophic lateral

sclerosis and a comparable 11.3bpm in healthy subjects [11].

Although approaches that utilize EP often achieve impressive results, they also suffer

from a number of fundamental limitations. Since the user of the BCI is required to attend

to some stimulus, they may become distracted from the task that they wish the computer

to perform or the message they wish to communicate. It is difficult to imagine, for exam-

ple, that a subject would be able control an electric wheelchair or prosthetic device while

simultaneously attending to a visual stimulus on an LCD screen. Furthermore, methods

that require a subject to carefully manipulate their gaze may not be practical for those with

some kinds of disabilities. Some users, for example, may not be able to precisely focus on

a visual stimulus. Finally, BCI users may find the repetitive presentation of a stimulus to

be unpleasant or even irritating.

One way of avoiding the problems found in paradigms that utilize EP is to classify

spontaneous EEG that is not directly tied to an external stimulus. To this end, several

groups have developed BCI systems that exploit the ability of many subjects to voluntarily

manipulate their µ (8-12Hz) and β (13-28Hz) rhythms in EEG recorded over their sensory-

motor cortices. For example, Wolpaw, et al., have explored BCI systems that operate by

training users to alter the power of their µ and β rhythms through the use of biofeedback [12].

Similarly, Pfurtscheller, et al., have explored techniques for operating BCI systems where

the user issues commands by performing imagined motor tasks, which have also been linked

to changes in µ and β rhythms [13]. The work done by both of these groups extensively

combines the use of biofeedback with machine learning. Although this mutual learning

certainly improves the user’s ability to use these BCI systems, it can make comparison
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with other approaches difficult. It should be noted, however, that the classification rates

achieved by Pfurtscheller, et al., have been reported to be as high as 98% correct with binary

decisions made in intervals of roughly 4s or less after three training sessions conducted over

three consecutive days.

As a further generalization upon the idea of classifying EEG recorded during imagined

motor imagery, Keirn, et al., have suggested the classification of EEG recorded during a

broader set of imagined mental tasks [7]. The imagined mental tasks to be classified are

typically chosen to be as neurologically different as possible. For example, the mental

tasks used by Keirn, et al., included complex problem solving, geometric figure rotation,

mental letter composing and visual counting. In this paradigm, a user can issue commands

to a BCI system by performing an imagined mental task that was associated with the

desired command before training. Recent research by Gálan, et al., has demonstrated that

this paradigm can successfully be used to navigate an electric wheelchair equipped with

laser range-finders through an obstacle course [14]. Anderson, et al., have also shown that

this approach can achieve a correct decision roughly every three seconds when using four

imagined mental tasks [15].

Classification of EEG recorded during imagined mental tasks can be extremely difficult

for a number of reasons. First of all, the patterns found in EEG during such mental tasks

can vary widely across subjects and even within the same subject but at different times.

Second, a subject may be performing more than one task simultaneously without being

aware that they are doing so. For example, a subject may be visualizing the numbers in

a counting problem, which may overlap with a separate visualization task. Finally, it is

unclear for whom and for which mental tasks EEG signals contain enough information to

reliably discriminate between the tasks. Nevertheless, this paradigm is extremely appealing

because it offers many degrees of freedom to BCI users and because it does not require an

external stimulus. Furthermore, it allows subjects to choose between a number of mental

tasks if they find one to perform poorly or to be unappealing. For these reasons, the
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remainder of this thesis is devoted to the classification of EEG recorded during imagined

mental tasks.

2.2 Feature Representations

As is the case with many classification problems, finding an appropriate way to represent

EEG data is an integral part of any BCI system. Several things are particularly important

to consider when selecting a feature representation for EEG classification. First, EEG

signals contain information that is both spatial as well as temporal in nature. Any feature

representation that neglects patterns that occur either across electrodes or through time

may discard important patterns that are present in the signal. Second, EEG is typically

recorded from between 8 and 64 electrodes, making it relatively high-dimensional. EEG also

has relatively high temporal resolution, typically between 128 and 1024 samples per second,

yielding a significant amount of data to process. Since BCI systems deliver results in real-

time and on minimal computing hardware, it is important that any feature representation

used in a BCI allows for the data to be processed quickly. Finally, EEG signals are known

to be extremely noisy, particularly in everyday environments. A feature representation that

eliminates noisy components of the signal or components that are not discriminating may

ease classification.

Since EEG signals often contain patterns that are oscillatory in nature, feature repre-

sentations that utilize frequency spectra are commonly used in BCI systems. In the context

of classifying imagined mental tasks, Millán, et al., are notable for their successful use of

frequency-based feature representations [16, 17, 14]. In this approach, the Power Spectral

Density (PSD) of the EEG signal is typically estimated across a relatively short window for

each electrode. Next, each PSD is divided into a number of bins, representing a frequency

band. Finally, a feature selection algorithm, such as canonical variates analysis, is used to

select relevant features that can ultimately be passed to a classification algorithm.

10



Although approaches that utilize PSD feature representations have delivered impressive

results, it is important to note that phase information is typically not considered. Since

both phase and frequency information are required to convert from the frequency domain

to the time domain, it is clear that some information is discarded. More specifically, feature

representations that are based on PSD cannot readily express differences in phase across

electrodes and, therefore, some forms of spatial patterns. Krusienski, et al., note that it

may be important to consider phase information [18]. Furthermore, Gysels, et al., have

demonstrated that phase-based features can be useful during the classification of imagined

mental tasks [19]. Additionally, the fact that a PSD is typically estimated across a window

implies that some forms of short-term temporal patterns may be indistinguishable. For

example, if the EEG signal moves from a low frequency to a high frequency during the

window it is indistinguishable from an EEG signal that moves from a high frequency to a

low frequency.

Time-Delay Embedding (TDE) is a feature representation that may be better able to

capture both spatial and temporal patterns. In this approach, all of the samples in a

window of EEG are concatenated together to form a single, higher-dimensional feature. In

the context of classifying imagined mental tasks, Anderson, et al., use TDE in combination

with blind source separation or dimensionality reduction, such as Short-Term Principal

Components Analysis or Maximum Noise Fraction [15, 20, 21]. Although TDE may avoid

some of the problems encountered when using features based on PSD, it also has several

drawbacks. Importantly, the length of temporal patterns that can be captured by TDE

feature representations is limited by the number of individual samples that are concatenated

together, known as the embedding dimension. Furthermore, the dimensionality of TDE

features increases linearly with size of the embedding dimension. The higher dimensionality

of TDE features may require that either dimensionality reduction techniques be used, which

may discard important aspects of EEG if not used carefully, or a relatively large amount of

training data be provided to sufficiently sample the feature space.
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Although current approaches have demonstrated that it is feasible to classify EEG and

construct BCI systems, these methods ultimately do not deliver classification accuracies

that are high enough for use in practical and reliable BCI systems. Due to the drawbacks

found in current feature representations and because of the difficulties in operating BCI

systems that rely on EP, we feel that it is important to continue exploring novel ways of

representing the spatiotemporal patterns found in EEG recorded during imagined mental

tasks. Since RNN may have the potential to find such patterns, they offer an exciting

alternative to current approaches.

2.3 Recurrent Neural Networks

Despite the potential that RNN may have for capturing patterns in EEG, the current

literature pertaining to this subject is relatively sparse. There are some works, however,

that use RNN to classify EEG outside the realm of BCI. For example, Güler and Übeyli

have utilized ERNN to classify normal and epileptiform EEG in subjects with epilepsy. In

these approaches, EEG signals are represented using low dimensional statistical features

extracted from Lyapunov Spectra or frequency-based properties generated using MUSIC or

Pisarenko’s method [22, 23]. ERNN are then compared with strictly feedforward networks

by training them to output an indicator variable corresponding to the desired class label.

These techniques have achieved classification rates in the 90% range for one-second EEG

segments and have demonstrated that ERNN typically achieve about 5% better classification

accuracy than strictly feedforward networks in this setting. These works did not, however,

compare ERNN with feedforward ANN that incorporate TDE.

The approach used in this thesis is quite different than that taken by Güler and Übeyli.

As we explain in detail in Chapter 3, we do not train our ERNN to output class labels

directly. Rather, we train a separate ERNN for each class to forecast the EEG signals

a single step ahead in time. This yields an expert at modeling the EEG from each class.
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Classification is then performed by examining the forecasting errors produced by each ERNN

over novel data. In this way, the errors produced by our ERNN can be thought of as low-

dimensional features that can subsequently be passed to a classifier.

Gupta, et al., have suggested a technique for time-series classification [24] that is concep-

tually similar to the approach described here, although our implementations and methods

differ in a number of important ways. First of all, Gupta, et al., did not explore the ap-

plication of their method to EEG classification. Instead, they tested their algorithm on

a computer vision problem where objects are represented using features in the form of a

time-series. A strong emphasis was also placed on the use of different initial context vectors

for each ERNN. Our approach, in contrast, simply uses a zero initial context vector in com-

bination with an initial transient period, as is explained further in Chapter 3. Gupta, et al.,

also explored the use of incremental training and training over concatenated sequences as

opposed to our approach of resetting the initial context vector after each sequence. Finally,

the details of the backpropagation algorithm used by Gupta, et al., for training their ERNN

is left somewhat unclear.

Oeda, et al., have also briefly described an approach to time-series classification that

is similar to the technique used here [25]. Described as an ensemble of ERNN, Oeda, et

al., train a separate network to forecast sample time-series from each class. Classification

is then performed by applying each forecaster and assigning the class label associated with

the network that generated the lowest forecasting error. Oeda, et al., demonstrated that

this approach can successfully classify artificially generated sinusoids. Additionally, they

applied this approach to a small set of electrocardiographs and demonstrated that it is

able to correctly identify the subject that produced the signals with an accuracy of about

74.7%. A detailed analysis of generalization performance and regularization, however, was

not performed and this approach was not applied to EEG classification.

To our knowledge, Coyle, et al., are the only other group to apply a similar approach to

EEG classification. In this approach, Coyle, et al., use feedforward networks in combination
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with TDE to perform single-step-ahead predictions of EEG signals [26]. Again, a separate

network is trained over sample EEG from each class. The mean squared error and mean

squared power of the predictions are then used as features that are passed to a Linear

Discriminant Analysis classifier. A comparison is then performed with a similar approach

that uses autoregressive models in place of neural networks and with an approach that

uses autoregressive coefficients instead of forecasting errors. Their analysis was performed

using EEG produced during imagined motor imagery and recorded during several separate

sessions. Although it is difficult to draw firm conclusions from this analysis since different

methods perform differently for different subjects, it seems safe to say that using forecasting

errors as features appears to typically work at least as well as autoregressive coefficients

and may be more reliable across multiple recording sessions.

Coyle, et al., have also published a number of works where a similar notion is utilized for

preprocessing EEG [27, 28, 29, 30]. In this approach, termed Neural Time-Series Prediction

Preprocessing (NTSPP), a feedforward network is again used in combination with TDE to

forecast the EEG signals for each class a single step ahead in time. Instead of using the

forecasting errors as features, however, the actual values of the forecast signal are used in

the remaining steps of the classification pipeline. The intuition behind using forecasting as

a preprocessing step is that components of the signal that are not very predictable may be

noise or information that is not very useful for classification. In these studies, the application

of NTSPP often results in a performance increase of roughly 1-10bpm.

The classification of time-series data, and specifically EEG, by forecasting with artificial

neural networks is certainly not strictly original to this thesis. The relative sparsity of work

directly related to this subject does, however, appear to suggest that it is quite novel and

under explored. Numerous questions remain to be answered regarding the algorithms and

parameters involved that may perform best. Additionally, the efficacy of this approach

and its robustness to the noisy and non-stationary nature of EEG signals remains to be

determined.
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Chapter 3

Methods

In this chapter we describe the details of all the algorithms and experiments that are used

throughout the remainder of this thesis. We begin by describing five EEG datasets used to

analyze the performance of our forecasting and classification algorithms. We then provide a

detailed description of ERNN and the methods we use for training them. Next, we formalize

how our ERNN are used to forecast EEG signals a single step ahead in time. Finally, we

describe how our forecasting errors can be used to perform EEG classification and outline

three methods for achieving this.

3.1 Experimental Data

In the following experiments we examine five EEG datasets recorded from five different

subjects. Subjects A and B are both able-bodied while Subject C has quadriplegia due to

a complete lesion at vertebra C4, Subject D has severe multiple sclerosis and Subject E has

quadriplegia due to a complete lesion at vertebra C1. For subjects A and B, EEG recording

was performed in a controlled laboratory environment while recording from Subjects C, D

and E was performed in the subject’s home environment in order to more closely replicate

the conditions under which a BCI might be used.
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Each subject was presented with a visual cue on an LCD screen requesting them to

perform one of four imagined mental tasks for the duration of the cue. A five-second

break was alloted between each sequence during which the subject was instructed to relax.

Presentation of the visual cues and data collection were performed using custom software.

For Subjects A and B, the following imagined mental tasks were used: imagined clenching

of right hand, imagined shaking of left leg, silently counting backward from 100 by 3’s and

visualization of a spinning cube. Ten sequences each lasting five seconds were recorded

during each mental task in a randomized order for a total of 200 seconds of EEG data. The

protocol used for Subjects A and B is summarized in Table 3.1.

Table 3.1: Experiment protocol for Subjects A and B

Task Id Duration Cue Mental Task
0 10x5s (none) Resting state
1 10x5s Right Hand Imagine clenching right hand into a fist
2 10x5s Left Leg Imagine shaking left leg
3 10x5s Math Silently count backward from 100 by 3’s
4 10x5s Spin Visualize a spinning cube

Table 3.2: Experiment protocol for Subjects C, D and E.

Task Id Duration Cue Mental Task
0 5x10s (none) Resting state
1 5x10s Count Silently count backward from 100 by 3’s
2 5x10s Fist Imagine clenching right hand into a fist
3 5x10s Cube Visualize a spinning cube
4 5x10s Song Silently sing a favorite song

A slightly different experimental protocol was used for Subjects C, D and E, summarized

in Table 3.2. These differences in protocol are due to the fact that the data for Subjects C,

D and E were borrowed from a larger and ongoing project designed to test the feasibility of

using BCI technology with disabled people in their homes. For these subjects the following

imagined mental tasks were used: silently counting backward from 100 by 3’s, imagined
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clenching of right hand into a fist, visualization of a spinning cube and silently singing a

favorite song. Note the only imagined mental task that is different between across all of

the datasets is imagined left leg movement versus silently singing a song. Five sequences

each lasting ten seconds were recorded during each mental task for a total of 200 seconds

of EEG data. In order to make the datasets recorded from Subjects C, D and E as similar

as possible to those recorded from Subjects A and B, each ten second sequence is split in

half to yield ten sequences each lasting five seconds.

Figure 3.1: 19 channel subset of the 10-20 system used for electrode placement.

All five datasets were recorded using a relatively inexpensive Neuropulse Mindset-24

amplifier [31]. An Electrocap using the 19 channel 10-20 system, shown in Figure 3.1, with

linked earlobe references was used for electrode placement [32]. The Mindset-24 contains a

hardware Sallen-Key bandpass filter with a passband of 1.5-34Hz. For Subjects A and B, the

data was recorded with a sampling rate of 256Hz while the data recorded from Subjects C,

D and E was initially recorded at 512Hz and later downsampled to 256Hz. This leaves our
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sampling rate at roughly four times the Nyquist rate. Channel F8 was ultimately discarded

from all five datasets due to a poor connection during recording from Subjects C, D and E,

leaving a total of 18 channels.

After data acquisition, a software Butterworth bandstop filter with an 18Db per oc-

tave roll-off and a stopband of 59-61Hz was applied to remove any remaining 60Hz noise

introduced by alternating-current electrical sources in the environment. A Maximum Noise

Fraction (MNF) filter was then trained for each subject using a five-second EEG sequence

that was found upon visual inspection to contain an eyeblink artifact [33, 34, 35]. The single

MNF component with the lowest frequency was then removed and the filter was applied to

each sequence in order to attenuate ocular artifacts. Next, the mean signal amplitude across

all channels is subtracted from each channel individually, known as a common average ref-

erence, in order to decorrelate the channels. The MNF filter and common average reference

are used because our experience has shown relatively small but noticeable improvements in

classification accuracy across most of the five subjects when these preprocessing steps are

included. Finally, each channel was shifted and scaled to have zero mean and unit standard

deviation for reasons that will be further discussed in Section 3.2.2. In Figure 3.2 we see a

sample five-second EEG recording from Subject A before and after preprocessing. Notice

that the ocular artifacts seen at roughly one and two seconds are essentially removed by

the MNF filter.

In order to simplify our initial analysis, we first consider a two-task subset of our imag-

ined mental tasks consisting only of the imagined right hand movement and count backward

from 100 by 3’s tasks. These two tasks were chosen because they were the first two tasks

that are common among all five datasets. In Chapter 4 we present our final classification

results for both the two-task and four-task problems.

To ensure that all of the experiments performed here more accurately represent the

way we can expect our classifiers to perform in the real world, we partition each dataset

into a 60% training partition, consisting of the first six sequences, and a 40% test parti-
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(a) Sample EEG sequence before preprocessing.

Time (s)

FP1

FP2

F3

F4

C3

C4

P3

P4

O1

O2

F7

T3

T4

T5

T6

CZ

FZ

PZ

0 1 2 3 4 5

(b) Sample EEG sequence after preprocessing.

Figure 3.2: A five second electroencephalogram before and after preprocessing.
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tion, consisting of the remaining four sequences. Unless otherwise noted, we use a six-fold

cross-validation procedure over the training partition for all model exploration and hyper-

parameter tuning. In other words, a separate model or classifier is trained for each of the

six ways, or folds, that five sequences can be chosen from the training partition. Training

performance is evaluated by averaging performance over each of these folds. Validation

performance, i.e., the performance used to tune hyper-parameters, is evaluated by applying

each of these models or classifiers to the sequence in the training partition that was excluded

from the given fold and then averaging the results.

Generalization performance is tested, after all hyper-parameter tuning is complete, by

training a separate model or classifier over each of the six folds and evaluating each classifier

over the entire test partition and, finally, averaging the results. Testing is done in this fashion

in order to simulate how our classifiers would perform in a real-world setting. That is, once

the classifier is trained, the remaining EEG signals would be utilized by a BCI user in order

to issue commands to a computerized device.

3.2 Elman Recurrent Neural Networks

The ANN architecture that we explore for modeling and classifying EEG is the Elman

Recurrent Artificial Neural Network (ERNN). ERNN were originally developed by Jeffrey

Elman in 1990 for finding patterns in natural language and have since been successfully

applied to a number of practical problems [4]. In addition to their history of successful

application, ERNN are appealing because it has been demonstrated that they are universal

approximators of finite state machines [36]. In other words, any given finite state machine

can be simulated by some ERNN given enough hidden units and the proper connection

weights.
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v1 v2
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Figure 3.3: An ERNN with two inputs, x, three hidden units, h, two visible units, v, and
two outputs, x. Note that the hidden layer has full recurrent connections.

3.2.1 Architecture

An ERNN, shown in Figure 3.3, consists of two distinct layers. The first layer, referred to as

the hidden layer, is composed of a number of neurons with sigmoidal activation functions.

The number of neurons in the hidden layer, also referred to as hidden units, is a parameter

given during the construction of an ERNN. Each hidden unit has full incoming connections

from each input as well as a constant bias value of one. Additionally, each hidden unit has

full recurrent connections between every other hidden unit with a single timestep delay. In

other words, the current value of each network input and the output of every hidden unit

at the previous timestep is fed into each hidden unit at the current timestep.

The values stored in the delay lines of the recurrent connections of an ERNN fully

represent the state of the network at any given time. As such, we refer to these values as

the context of the network. As is common practice, the initial context of our ERNN is set
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to the zero vector with the assumption that the network will sufficiently acclimate to the

input signal and achieve an acceptable context after some initial transient period [4].

The second layer, referred to as the visible layer, consists of one neuron per output.

Each neuron in the visible layer, also referred to as a visible unit, is strictly linear, i.e.,

the output of each visible unit is a weighted sum of the outputs of the hidden units and a

constant bias value of one.

In order to formalize the ERNN architecture, let us begin by defining the following

constants

L : the number of network inputs

M : the number of hidden units

N : the number of network outputs

Next, let x(t) be the L× 1 vector of inputs to our network at time t and z(t) be the M × 1

output of our hidden layer at time t. Also, let x̄(t) be x(t) with a constant one appended

and z̄(t) be z(t) with a constant one appended for our bias values. Then the output of our

hidden layer at time t can be defined by the following recurrence relation

z(t) = φ(Hx̄(t) + Sz(t − 1)), (3.1)

where H is the M × (L + 1) matrix of feedforward weights in the hidden layer, S is the

M ×M matrix of recurrent weights in the hidden layer and φ is our choice of sigmoid. Note

that we define our initial context z(0) = 0 as discussed earlier. Finally, the output of our

visible layer at time t can be defined as

y(t) = Vz̄(t), (3.2)

where V is the N × (M + 1) weight matrix for our visible layer. For the sake of notational
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brevity, we denote the output of an ERNN at time t as

y(t) = ernn(x(t)). (3.3)

3.2.2 Sigmoid and Initial Weights

When working with ERNN it is extremely important to use a proper sigmoid and weight

initialization scheme. This is important for two reasons. First of all, choosing initial weights

that are not in a reasonable region of the weight space results in large changes in the weights

during training, resulting in slow convergence. Second, if the initial weights are chosen so

that the sigmoid becomes immediately saturated, i.e., the sum of the inputs lands on the tails

of the sigmoid, then the gradient approaches zero for the affected neuron. This can cause

slow convergence and increases the likelihood of falling into a local minima before escaping

the saturated region of the sigmoid. Indeed, our experience has shown that neglecting these

details leads to dramatically increased training times as well as an increased frequency of

encountering local optima. In order to avoid these pitfalls, we have extended the suggestions

for fast training of Feedforward Networks made by LeCun, et al., to ERNN [37, 38].

LeCun’s first suggestion is to standardize the network inputs and outputs to have zero

mean and unit standard deviation. Furthermore, they suggest that it is desirable to keep the

outputs at each layer of the network near zero mean and unit standard deviation. Keeping

our average inputs and outputs near zero reduces the learning of unnecessary bias and

keeping the standard deviation near unity aids in our initial weight selection.

In order to achieve these goals, LeCun, et al., first suggest the use of a symmetric sigmoid

where φ(±1) = ±1, the maxima of the second derivatives of φ are at ±1 and where the gain

is close to unity in [−1, 1]. The constants in

φ(x) = 1.7159 tanh

(

2

3
x

)

(3.4)

23



are chosen to approximately possess each of these properties. In short, equation (3.4) is

chosen to retain its non-linear properties while still mapping the weighted sum of inputs to

nearly the same output over its normal operating range of [−1, 1].

Finally, LeCun, et al., suggest that our initial weights be drawn from a random uniform

distribution with

σ = κ−1/2, (3.5)

where κ is the number of incoming connections, or fan-in, for the given hidden unit and σ is

standard deviation of the initial weights. Assuming uncorrelated inputs and unit standard

deviation, equation (3.5) in combination with (3.4) yields outputs that approximately have

unit standard deviation. Given the applications that we explore here, however, we have

found that equation (3.5) still yields initial weights that are large enough to cause saturation.

As such, we scale equation (3.5) down by 2/3. Ultimately, the initial values for our hidden

weights, H0, are drawn from

H0 ∼ U
(

−
√

2/(L + M + 1),
√

2/(L + M + 1)
)

, (3.6)

where U(a, b) is the random uniform distribution between a and b. Similarly, since the linear

transfer function has zero gain, the initial values for our visible weights, V0, are drawn from

V0 ∼ U
(

−
√

2/(M + 1),
√

2/(M + 1)
)

. (3.7)

Ultimately, combining input and output standardization with a carefully chosen sigmoid

function and drawing our initial weight values from the corresponding distribution, we

achieve an initial ERNN with hidden units that are not saturated and where the input and

output at each layer is near zero mean and unit standard deviation.
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3.2.3 Training

In order to train our ERNN we use a form of batch gradient descent. It is not a straight-

forward task, however, to compute the error gradient for an ERNN due to the recurrent

connections found in the hidden layer. Nevertheless, it can be achieved through a process

known as Backpropagation Through Time (BPTT) [39, 5]. In order to computer the error

gradient for the hidden layer of an ERNN, we must first unroll the network through time.

This process is illustrated in Figure 3.4. Notice that by duplicating our hidden and visible

layers and attaching them to the inputs and outputs of our training sequence at previous

timesteps, we are able to construct a completely feedforward network, albeit a relatively

complex one. If we unroll our ERNN over the entire training sequence, we can compute the

error gradient directly using the same techniques commonly used for feedforward networks.

Unfortunately, unrolling an ERNN quickly becomes computationally intractable with

long training sequences, such as the EEG signals that we wish to investigate here. In order

to work around this problem, we simply unroll our ERNN a given number of steps, say ν,

before truncating the trailing layers of the network. This process is known as Truncated

Backpropagation Through Time and yields an approximation of the true error gradient.

Although the full derivation of BPTT is too lengthy to be presented here, we describe

this method by presenting its final form. First, let ξ be the error between the outputs of the

network and the target training values. Next, let and let δ(t) be the N × 1 column vector

of contributions to our error for each network output at time t. The ξ and δ used in the

experiments conducted here will be thoroughly described in Section 3.3. Additionally, let

b(t) = φ′(Hx̄(t) + Sz(t − 1)) (3.8)

where φ′ is the derivative of our sigmoid. First, we seek to find our error gradient with

respect to our hidden weight matrix. Using the chain rule for derivatives and by unrolling

the recursive z term in b, we can approximate our error gradient with respect to the hidden
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Figure 3.4: An ERNN unrolled three steps through time.
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weight matrix as

∇Hξ ≈
τ

∑

t=t0

min(τ,t+ν)
∑

i=t



VT δ′(i) · b(i) ·
i

∏

j=t+1

Sb(j)



 x̄T (t), (3.9)

where t0 is the first timestep in our sequence, τ is the final timestep in our sequence, ν

is the number of steps through time to unroll our network before truncation, V is our

visible weight matrix with the bias column removed and · denotes point-wise matrix multi-

plication. Similarly, the error gradient with respect to the recurrent weight matrix can be

approximated by

∇Sξ ≈

τ
∑

t=t0

min(τ,t+ν)
∑

i=t



VT δ′(i) · b(i) ·

i
∏

j=t+1

Sb(j)



 zT (t − 1). (3.10)

Finally, the gradient for our visible layer can be computed in the same batch fashion as

would be used for a two-layer feedforward network,

∇Vξ =
τ

∑

t=t0

δ′(t)z̄(t)T . (3.11)

Once the error gradients for our network have been approximated, we iteratively update

the network’s weight values using Scaled Conjugate Gradients (SCG). SCG is a fast gradient

descent algorithm pioneered by Møller that estimates second-order gradient information

[40]. Since training ERNN with BPTT requires the propagation of error gradients through

many layers, this second-order information may yield faster convergence rates than other

methods. Furthermore, the fact that SCG exploits some of the benefits of second-order

methods without requiring second derivatives to be explicitly computed, it seems to be an

ideal candidate for training ERNN. Although it is uncommon to use SCG to train Recurrent

Neural Networks, Gruber and Sick report that SCG outperforms RProp and Memoryless

Quasi-Newton with their DYNN recurrent architecture [41].
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3.3 Forecasting

The feedback loops found in ERNN and their dynamic nature makes them a promising

candidate for short-term, non-linear time-series forecasting. This notion is a cornerstone

of the techniques described here and, as such, we begin describing our technique for EEG

classification by formalizing a forecasting problem. In this forecasting problem, we utilize

an ERNN with L = 18 inputs as well as N = 18 outputs. We then train our ERNN to

model EEG signals by forecasting the value of each of the 18 channels a single step ahead

in time.

In order to train our ERNN to forecast EEG signals, we first seek an error measure

that is suitable for use with SCG and BPTT, as described in Section 3.2.3. There are a

number of things to consider when designing this error measure. First of all, it should

increase forecasting performance upon minimization. Second, it must be differentiable at

each timestep in order to calculate the error gradient. Furthermore, we must omit the error

incurred during an initial transient period. As mentioned in Section 3.2.1, this is due to

the fact that our initial context is set to the zero vector. Since it is unlikely for this initial

context to align with the learned network response during the initial values of the EEG

signal, we ignore the error at the beginning of each sequence. With this initial transient

period, our network is able to acclimate to the signal before being penalized. A relatively

short initial transient period of ρ = 32 timesteps, or 1/8 of a second with a sampling rate

of 256Hz, was empirically determined to be sufficient.

In order to meet these requirements, we choose to minimize the mean squared error

(MSE) between the current outputs of the network and the values of the EEG signal at the

following timestep less the outputs during the initial transient period. Our individual error

contributions at time t are then the average squared errors,

δ(t) =
(y(t) − x(t + 1))2

(T − 1 − ρ)N
, (3.12)
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where x(t) is the vector of EEG potentials at time t, y(t) is the vector of outputs from our

ERNN at time t and T is the total number of timesteps in the EEG sequence. Note that we

can substitute equation (3.12) into equations (3.9), (3.10) and (3.11) by letting τ = T − 1

and t0 = ρ. Our error measure is then the scalar MSE across all channels and all timesteps

from the end of our initial transient period to the end of our EEG sequence,

ξ =
T−1
∑

t=ρ

N
∑

n=1

δn(t). (3.13)

It should also be noted that, in practice, our training data consists of several discon-

nected EEG sequences. In order to account for this, we restart our ERNN at the beginning

of each sequence and stop the network at the end of each sequence. Thus, our error is ac-

tually found by computing the squared errors at each timestep across all sequences, except

during the transient periods, and then dividing by the combined length of the sequences less

the length of the initial transient periods. For notational simplicity, however, we restrict

ourselves to the error measure in equation (3.13).

In order to provide a simple benchmark against which our forecasting performance can

be evaluated and in order to demonstrate that our ERNN are learning more than trivial

means of forecasting EEG, we also define two naive error measures. We call our first naive

error measure the naive repeated, or Naive-R, error which is defined as

Naive-R =
1

(T − 1 − ρ)N

T−1
∑

t=ρ

N
∑

n=1

(xn(t) − xn(t + 1))2 (3.14)

and is equivalent to forecasting by simply repeating the previous input. We call our second

naive error measure the naive interpolated, or Naive-I, error which is defined as

Naive-I =
1

(T − 1 − ρ)N

T−1
∑

t=ρ

N
∑

n=1

(ln(t) − xn(t + 1))2 (3.15)
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where

l(t) = x(t) + (x(t) − x(t − 1))

and is equivalent to forecasting the EEG signal by performing a linear interpolation of the

previous two inputs.

In Section 4.1.1, we illustrate how our forecasting errors change as we vary each of our

hyper-parameters. Since we are using Mean Squared Errors and because our EEG signals

are scaled to have zero mean and unit standard deviation, we seek a more intuitive metric

for analyzing our forecasting errors. As such, we will also present our forecasting errors as

a percent of signal range (psr) defined as

percent signal range = 100
RMSE

(max signal) − (min signal)
(3.16)

where RMSE is the root mean squared error, i.e., the square root of our MSE, and where

max signal and min signal are the largest and smallest values across all channels and all

timesteps in our standardized EEG signal.

3.4 Classification by Forecasting

Now that we have outlined a method for training ERNN to forecast EEG, we present a

classification scheme based on these forecasters. The training procedure for our classification

algorithm, summarized in Figure 3.5, entails the training of a separate ERNN to forecast

sample EEG signals from each class. Thus, if we have K imagined mental tasks, we must

apply BPTT and SCG to K different ERNN. Each of these ERNN can then be considered

an expert at forecasting each type of EEG. To formalize this notion, we describe an ERNN

trained to forecast sample EEG signals from class kǫ{1, 2, . . . , K} as

yk(t) = ernnk(x(t)), (3.17)
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where yk(t) is the output of network k at timestep t. Once an ERNN has been trained to

forecast each class of EEG, our forecasting errors can be thought of as a feature vector with

the kth element being

ek(t) =
1

N

N
∑

n=1

(yk
n − xn(t + 1))2 (3.18)

for each ERNN k. Finally, we train a classifier to map our error features to class labels.

In Sections 3.4.1 3.4.2 and 3.4.3 we will describe three potential classifiers for mapping our

error features to class labels.
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..
.

Forecaster ERNN 1

Forecaster ERNN 2
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..
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Figure 3.5: Classification training procedure.
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Figure 3.6: Classification testing procedure.

In order to to assign a class label to novel data, summarized in Figure 3.6, we retain

each of our ERNN forecasters and our error classifier from the training procedure. Each

ERNN is then applied to the new EEG sequence and the resulting forecasting errors are

recorded. Finally, the error features are passed to the error classifier which assigns a class

label.
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3.4.1 Averaged Winner-Takes-All

A simple approach to assigning class labels is to let the winner take all (WTA). This

classifier assumes that the lowest forecasting errors for a previously unseen EEG sequence

will be produced by the ERNN that was trained to forecast EEG belonging to the same

class. Using this insight, we can simply assign the class label associated with the ERNN

that produced the lowest forecasting MSE. There are, however, two things that we consider

when taking this approach. First, we seek to classify EEG in a manner that is useful in

the context of BCI. Since our sampling rate is is much faster than a BCI user can issue

commands in a conscious and purposeful manner, we do not wish to assign class labels at

every timestep. Second, EEG signals are both noisy and often quite periodic. As a result, it

is common to see brief spikes in our forecasting error that can be smoothed out by averaging

our errors over several periods. These issues suggest that our WTA classification scheme

should average the forecasting errors over a short window before assigning a class label.

To formally define this approach, we first define the length of a short window, say ω,

over which we average our forecasting MSE. Following equation (3.18), our MSE averaged

over each interval becomes

êi
k =

1

ω

(i+1)ω−1
∑

t=ρ+iω

ek(t) (3.19)

for the ith interval. Finally, our class label Ci at interval i is assigned to be

Ci = argmax
cǫ{1,2,...,K}

êi
c. (3.20)

3.4.2 Quadratic Discriminant Analysis

Although the WTA approach is quite intuitive, it is possible that our forecasting errors will

not be so easily interpreted. For example, it may be possible that EEG belonging to some

class simply better lends itself to forecasting than another. In this case, our forecasting

errors would be biased toward one class, causing WTA to fail. It may also be possible
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that large forecasting errors are indicative of some classes and not others. In an attempt

to address these possibilities, we also consider classifying our errors using two generative,

statistical classifiers.

The first of these two classifiers that we explore is known as Quadratic Discriminant

Analysis (QDA) [42]. When using QDA, we assume that the class conditional probability

density of our error features for class c can be modeled using a multivariate Gaussian

P (e|C = c) =
1

(2π)K/2|Σc|1/2
e(−

1

2
(e−µc)T Σ−1

c (e−µc)), (3.21)

where Σc is the sample covariance matrix for our error vectors belonging to class c and µc

is the sample mean for our error vectors belonging to class c. It is then a relatively straight

forward exercise using Bayes’ rule to find our posterior probability density P (C = c|e). We

then notice that several terms can be canceled when comparing two classes by applying a

logarithm to each side logP (C = c1|e) < logP (C = c2|e). Thus, it is sufficient to find only

the largest of our discriminant functions

qc(e) = −
1

2
|Σc| −

1

2
(e − µc)

T Σ−1
c (e − µc) + log(γ), (3.22)

where the scalar γ = samples in class c
total samples

comes from our prior distribution. Note that the

decision boundaries between classes is quadratic. Again, we desire to assign class labels

only after an interval of ω. To achieve this we sum the values of our discriminant function

for each class over this interval so that

q̂i
c =

(i+1)ω−1
∑

t=ρ+iω

qc(e(t)). (3.23)

Since we are working with the log of the probability densities, this is equivalent to assuming

that our errors are independent at each timestep and finding the joint probability that all

samples in our window belong to class c. Our class labels are then chosen by finding the
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discriminant function that maximizes the joint probability

Ci = argmax
cǫ{1,2,...,K}

q̂i
c. (3.24)

3.4.3 Linear Discriminant Analysis

The last approach that we consider for classifying our forecasting errors is known as Lin-

ear Discriminant Analysis (LDA) [42]. LDA is also a generative, statistical classifier that

assumes our classes can be modeled with Gaussians. In fact, LDA is derived in the same

fashion as QDA with the caveat that we assume a common averaged covariance matrix.

The fact that we assume identical covariances leads to more terms canceling out and yields

the following discriminant functions

lc(e) = eT Σ−1µc −
1

2
µT

c Σ−1µc + log(γ), (3.25)

where Σ is the sample covariance matrix averaged across the samples in all classes. Note

that the decision boundaries between classes are now linear.

Again, we sum the values of l over our interval i under the assumption that our errors

are independent

l̂ic =

(i+1)ω−1
∑

t=ρ+iω

lc(e(t)) (3.26)

and, finally, assign our class label based on the highest probability of joint class membership

of our errors over the interval i

Ci = argmax
cǫ{1,2,...,K}

l̂ic (3.27)

Although LDA may seem more restricted than QDA, its linear decision boundaries may

make it less susceptible to over-fitting, particularly with noisy data. Additionally, the fact

that our sample covariances are averaged over all classes may yield a better estimate of the

true covariances, especially if some or all of the classes are undersampled.
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Chapter 4

Results and Discussion

In this chapter we present the results of the experiments we outlined in Chapter 3 as well as

offer some discussion and speculation pertaining to these outcomes. We begin by revisiting

our forecasting problem in order to explore the hyper-parameters involved and determine

values that achieve the best forecasting results. Next, we conduct an experiment designed

to explore the amount of temporal information that our ERNN are capturing. In this

experiment we place a feedback loop between the input and output layers of a trained

ERNN to form an iterated model. Upon the conclusion of our forecasting experiments,

we revisit our classification problem. Again, we begin by exploring the relevant hyper-

parameters, namely the effect of the number of hidden units on regularization. Next, we

apply each of our classification algorithms to the datasets described in Section 3.1. First,

we present these outcomes as classification accuracies over one-second intervals. Then, we

present our classification results in terms of information transfer rates. Finally, we offer

some analysis of the error classification boundaries that are learned by WTA, LDA and

QDA and the effects of varying the rate at which class labels are assigned.
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4.1 Forecasting

In this section we explore the ability of our ERNN to forecast EEG. Since the results

presented here are very similar for all five subjects, we only present the forecasting results

applied to the EEG recorded from Subject A. Unless otherwise noted, all of the experiments

performed here utilize the six-fold cross-validation procedure explained in Section 3.1. To

prevent ourselves from introducing any bias in our later experiments, we only look at the

training and validation errors during our forecasting experiments.

4.1.1 Parameter Selection

Thus far, our description of ERNN and our forecasting problem has left us with several

unexplored hyper-parameters. Namely, the number of steps through time that we should

unroll for BPTT, the number of training epochs that should be used with SCG and the

number of hidden units that we should use in our ERNN. In this section we explore each

of these hyper-parameters in turn and find appropriate values to be used in the remainder

of our experiments and analysis.

First, we should point out that regularization of our ERNN in all subsequent experi-

ments is performed by controlling the number of hidden units. In other words, we limit the

number of hidden units available to our ERNN in order to prevent them from learning noisy

or overly complex patterns that do not generalize well to new data. Although it may be

possible to regularize ERNN using other techniques, such as early-stopping or weight penal-

ties, our experience has demonstrated that limiting the number of hidden units typically

provides better generalization than limiting the number of training epochs. Furthermore,

using as few hidden units as possible also considerably improves the computational perfor-

mance of training and evaluating ERNN since the asymptotic runtime for both the forward

and backward passes grow quadratically as the number of hidden units increases but only

linearly as the number of training epochs increases. Additionally, avoiding weight penalties
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reduces the number of training parameters that must be explored. Further research may be

necessary, however, in order to more clearly define the effectiveness of other regularization

techniques in this setting.

Before determining the optimal number of hidden units to use in our ERNN, we must

first determine a suitable number of steps to unroll our network during BPTT gradient

approximation and a sufficient number of SCG epochs to perform before terminating the

training process. In order to find values for these parameters that work well, we first perform

a coarse grid search and then fine tune each parameter individually.
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Figure 4.1: Forecasting error as the number of steps unrolled in BPTT is varied.

In Figure 4.1 we see how the average ERNN forecasting error as a percent of signal

range (psr) varies as the number of steps that our network is unrolled is increased. Here,

the number of hidden units is fixed at 15 and the number of SCG training epochs is fixed at
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250. Both the training and validation forecasting errors beat the Naive-R error with only

one step unrolled, i.e., no optimization of the recurrent weights. This suggests that purely

spatial information may be enough to do better than simply repeating the previous signal

value. The Naive-I error is easily beat with somewhere between two and five steps un-

rolled suggesting that the additional temporal information continues to improve forecasting

performance. The forecasting error continues to decrease as the number of steps unrolled

increases until leveling off around 15-20 steps unrolled.

It appears that there is a fair amount of variability in the average performance when the

number of steps unrolled is less than about five. In Figure 4.1 we see a large spike in error

with 3 steps unrolled. This suggests that reliable training of ERNN is difficult to achieve

when BPTT is unrolled only a few steps. This may be explained by frequent encounters

with local optima during the training process caused by insufficient training of the recurrent

weights. If our recurrent weights are left mostly unoptimized, then the performance of our

ERNN may largely depend on our choice of initial weights, which is essentially random.

In the remaining ERNN experiments, we always unroll our networks 20 steps. This value

is chosen to be somewhat on the conservative side for two reasons. First, the experiment

shown in Figure 4.1 is only a representative sample of the potential network configurations

that we explore. It is possible, for example, that networks with a larger number of hidden

units may require that the network is unrolled more steps in order to be fully optimized

during training. Second, there is a small but observable decrease in validation error from

15 to 20 steps unrolled. Since our forecasting errors are ultimately quite small and since

regularization of our networks is performed by limiting the number of hidden units, we do

not wish to introduce additional forecasting error by choosing a value for the number of

steps unrolled that is too small.

Next, we investigate how our forecasting error changes as the number of SCG training

epochs is varied. In Figure 4.2 we see that both the training and validation errors easily

beat the Naive-R solution with fewer than 10 training epochs. The ERNN forecaster also
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Figure 4.2: Forecasting error as the number of SCG training epochs is varied.

beats the Naive-I solution after roughly 20 training epochs. The error then continues to fall

until leveling off with a error of approximately 1.79psr near 200 training epochs. Again, we

choose to use a conservative value of 250 training epochs to ensure that regularization is

controlled strictly by the number of hidden units.

In Figure 4.3 we see the training and validation forecasting errors as well as the naive

errors as the number of hidden units in our ERNN is varied. Notice that the validation error

is lowest at 45 hidden units with an error of 1.18psr and increases only very slightly as the

number of hidden units increases to 160, where we have an error of 1.19psr. Interestingly,

this small change in validation error suggests that our ERNN are only slightly over-fitting

the signal. We conjecture that this minimal over-fitting may be caused by two things. First,

it may be the case that our ERNN are learning to predict events that occur only in the
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Figure 4.3: Forecasting error as the number of ERNN hidden units is varied.

training data but occur following a precursor event. If such events as well as their precursors

are not present in the validation data, then we would expect that our training error may

continue to fall without a detrimental effect on our validation error. Second, it may be that

our forecasting errors are dominated by patterns that can be learned using a relatively small

number of hidden units. Thus, most of the over-fitting that occurs may cause only very

small changes in the observed validation error. It should be carefully noted, however, that

our training and validation forecasting errors do begin to noticeably separate with around

15-20 hidden units. This implies that our ERNN are indeed learning patterns that appear

in the training partitions that do not generalize to the validation partitions with relatively

few hidden units.

Overall, it seems quite clear that our ERNN are able to model EEG well, achieving a
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training error as low as 1.03psr and a validation error as low as 1.18psr while the Naive-R

and Naive-I errors are 3.46psr and 2.97psr respectively. Indeed, the validation error drops

below the Naive-R error with a mere 6 hidden units and below the Naive-I error with only

8 hidden units.

4.1.2 Iterated Models

Now that we have determined suitable hyper-parameters for training ERNN to forecast

EEG, we examine an interesting experiment that may provide additional insight into the

temporal information that ERNN are able to capture. In this experiment, we first train an

ERNN to forecast an EEG signal a single step ahead in time as described by equation (3.3).

Once training of our ERNN has completed, we place a feedback loop from the output layer

of our network to the input layer so that

y(t + 1) = ernn(y(t)) (4.1)

when t > T where T is the total number of timesteps in our training sequence. In this

way our ERNN becomes an autonomous and self-driven system, also known as an iterated

model.

In order to evaluate the performance of our ERNN as they transition from forecasters

to iterated models, we first train an ERNN to forecast all 18 of the first three seconds of a

six second EEG recording from Subject A. Once training of the ERNN has completed, we

allow it to run over the entire three-second training sequence and then transition its behavior

to that described by equation (4.1). We then superimpose the outputs from our iterated

model over the remaining three seconds of the EEG in order to compare the behavior of

our iterated model with the true signal.

In Figure 4.4 we see the result of this experiment over channel P4 when run with 20, 40

and 160 hidden units respectively. To the left of the vertical line at the three second mark,
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(c) Iterated model with 160 hidden units

Figure 4.4: To the left of the 3 second mark we see an ERNN forecasting EEG a single
step ahead. To the right of the 3 second mark we see the ERNN operating in an iterated
fashion, driven only by its previous predictions. Both sides are superimposed over the true
signal. 4.4a) with 20 hidden units the iterated model quickly dampens to zero. 4.4b) with
40 hidden units the iterated model falls into a periodic state. 4.4c) with 160 hidden units
the iterated model has very rich and long-lasting dynamics.
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we see an ERNN forecasting the data over which it was trained. Notice that the outputs

of our ERNN and the true EEG signal are typically very close during this stage, indicating

that our ERNN are able to closely track the true signal. At the three second mark we see

how our ERNN transitions to an iterated model. Notice that the outputs of our iterated

ERNN quickly diverge from the true signal. This suggests that our ERNN are not able to

fully capture the full underlying dynamics of the EEG. This is not a surprising result given

the fact that the underlying source of the signal is the human brain.

The behavior of our ERNN shortly after transitioning to iterated models, on the other

hand, depends greatly on the number of hidden units. Notice in Figure 4.4a that our iterated

model with only 20 hidden units quickly dampens to zero, where it remains. In Figure 4.4b,

however, we see that our iterated model with 40 hidden units falls into a clearly periodic

state where it appears to remain indefinitely. Next, in Figure 4.4c we see that our iterated

model with 160 hidden units produces rich and long-lasting dynamics.

Although the behavior of our iterated models is occasionally slightly different across

trials, channels, EEG sequences or subjects, the overall trend is quite clear and reproducible.

Iterated models with very few hidden units quickly fall to zero. Iterated models with slightly

more hidden units, on the other hand, tend to fall into periodic states with a relatively low

frequency. As the number of hidden units continues to increase, the iterated models achieve

higher frequency periods and more complex dynamics. As the number of hidden units grows

past about 150, these dynamics begin to closely resemble EEG signals.

In order to support our proposition that iterated models with many hidden units can

produce dynamics that closely resemble EEG, we also examine spectrograms of our iterated

models. These spectrograms are generated using a Continuous Wavelet Transform and

estimate the log of the energy that the EEG signal contains in the time-frequency domain.

In Figure 4.5 we see the results of this analysis. First, in Figure 4.5a we see the spectrogram

of an ERNN with 40 hidden units as it transitions from forecasting to an iterated model.

Note that we omit the ERNN with only 20 hidden units since the spectrogram would simply
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(a) Spectrogram of iterated model with 40 hidden units.

(b) Spectrogram of iterated model with 160 hidden units.

(c) Spectrogram of true EEG signal.

Figure 4.5: To the left of the 3 second mark we see the spectrogram of an ERNN forecasting
P4 a single step ahead. To the right of the 3 second mark we see the spectrogram of the
ERNN operating as an iterated model. Bright regions show areas of high energy. 4.5a)
with 40 hidden units our iterated model produces energy primarily at roughly 12Hz. 4.5b)
with 160 hidden units our iterated model produces transient energy roughly between 0 and
35Hz. 4.5c) the true signal shows transient energy between roughly 0 and 40Hz.
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show zero energy as the iterated model dies out. From this spectrogram it is clear that the

periodic signal generated by our iterated ERNN with 40 hidden units has a period of roughly

12Hz. Next, in Figure 4.5b we see the spectrogram of an ERNN with 160 hidden units as

it transitions from forecasting to an iterated model. Finally, in Figure 4.5c we see the

spectrogram of the entire true EEG signal. Notice that the spectrogram of our ERNN with

160 hidden units contains transient energy in roughly the same frequency ranges as the true

signal with the exception that it often contains slightly less energy in frequencies higher

than 35Hz.

It is difficult to draw firm conclusions from our experiments with iterated models for

several important reasons. First, the length of time during which our iterated models exhibit

complex behavior does not necessarily reflect the complexity of our forecaster. Indeed, even

relatively simply iterated functions can exhibit complex, long-term dynamics. Second, the

fact that our iterated models rapidly diverge from the true signal makes it difficult to

determine if their behavior is meaningful. Nevertheless, these experiments are fascinating

and, if nothing else, they suggest that further investigation is required into the relationship

between the number of hidden units in an ERNN and amount of temporal information that

they are able to capture.

4.2 Classification

In this section we examine the performance of the classification algorithms described in

Section 3.4 as they are applied to each of the datasets described in Section 3.1. We begin

by exploring the regularization requirements of our classification problem by examining how

our training and validation performance changes as we vary the number of hidden units in

our ERNN. We then present our final classification accuracies with decisions made at one

second intervals. Next, we describe an approach that is frequently used in BCI literature

for expressing the performance of our classifiers in terms of information transfer rates and
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provide our results in bits per minute (bpm). Next, we examine the effects of changing our

decision rate on classification accuracy and information transfer rate. Finally, we provide

some analysis of the decision boundaries learned by our error classifiers.

4.2.1 Regularization

Most of the parameters used to train our ERNN are carried over from Section 4.1.1, namely

the number of training epochs, steps unrolled and the length of our initial transient period.

The number of hidden units to use during classification, however, remains to be determined

because a different level of regularization may be required. In order to examine the regular-

ization requirement for our classification methods, we examine the training and validation

errors as the number of hidden units in our ERNN are varied. This experiment was repeated

for each subject and classifier. Since the results of these experiments are roughly the same,

we only show the outcome for the two-task problem for Subject A while using the WTA

classifier.

In Figure 4.6 we see the outcome of this experiment when carried out using WTA to

assign class labels. Notice that the average classification accuracy for our training partitions

approaches 100% with around 40 hidden units and that our average validation accuracy is

highest, roughly 85%, with between 10-20 hidden units. These results may seem somewhat

surprising since our evidence from Section 4.1.1 suggests that our forecasting errors continue

to decrease until 45 hidden units and our evidence from Section 4.1.2 suggesting that ERNN

with many hidden units create the richest iterated dynamics. We should keep in mind,

however, that our classification problem has a different goal than our forecasting problem

and therefore may require a different level of regularization.

Nevertheless, comparing our forecasting performance and our classification performance

as the number of hidden units is varied leads us to several interesting observations. Recall

from Figure 4.3 that our training and validation forecasting errors begin to separate at

roughly 10-20 hidden units, which is also where our classification accuracy peaks in Fig-
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Figure 4.6: Classification accuracy as the number of hidden units is varied using WTA.

ure 4.6. This suggests that our ERNN begin to learn some patterns that do not generalize

well starting with around 10-20 hidden units. One possibility for explaining the fact that

our forecasting errors continue to drop after 10-20 hidden units may be that our ERNN

continue to learn some patterns or noise that are present in EEG signals produced during

both imagined mental tasks. In other words, despite the fact that our ERNN begin to learn

patterns that do not generalize well, they may simultaneously be learning patterns that

are common among both of the EEG signals, causing the forecasting error to continue to

fall. Another interesting possibility is that the more complex and possibly longer-term pat-

terns learned by ERNN with many hidden units simply may not help discriminate between

classes. Presumably, the ability of our ERNN to capture complex and long-term temporal

patterns increases as the number of hidden units available increases. As this happens, our
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training procedure may reduce our forecasting error by favoring these complex, long-term

patterns over simpler, shorter-term patterns. While this may continue to reduce our fore-

casting error, it is possible that complex, long-term patterns do not discriminate between

classes well.

From a frequency perspective, we may draw somewhat different conclusions. Recall from

Section 4.1.2 that our iterated models with fewer hidden units tend to fall into periodic

states with relatively low frequencies while iterated models with many hidden units tend

to contain more high frequency and transient components. This may suggest that ERNN

with fewer hidden units place more of an emphasis on predicting low or medium frequency

components of the EEG signals. This notion may be supported by the fact that most of the

energy in an EEG signal lies in these frequencies. Since ERNN with relatively few hidden

units have limited resources, it makes sense that they first minimize the error associated with

the low to medium frequency components. Thus, the fact that ERNN with fewer hidden

units produce better classification results may suggest that relatively low to medium range

frequency components contain information that is most useful for discriminating between

imagined mental tasks.

4.2.2 Accuracy

Now that we have examined the effects of varying our regularization parameter on clas-

sification performance, we apply each of our classifiers to the data collected from each of

our five subjects using the six-fold cross-validation procedure described in Section 3.1. The

number of hidden units used for testing our classifiers is selected by finding the peak in our

validation performance. Our test accuracy is then evaluated by averaging the performance

of each of our six classifiers over the test partition, which consists of the final 40% of the

data. Testing of our classifiers is done in this manner in order to simulate the real-world use

of a BCI system. That is, once a classifier is trained, the user will issue commands to the

BCI system by voluntarily changing the mental task they are performing. Although, here,
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we only consider classification accuracies when decisions are made at one-second intervals,

we examine the effect of changing the rate at which our decisions are made in Section 4.2.4.

Table 4.1: Percent Correct Classification for Two Tasks.

Subject Method Hidden Units Training Validation Test
A

WTA

5 92.0% 88.3% 89.2%
B 8 97.7% 83.3% 67.5%
C 14 98.3% 93.3% 93.3%
D 17 95.3% 65.0% 52.1%
E 21 97.0% 73.3% 62.9%

Mean 13.0 96.1% 80.6% 73.0%
A

LDA

6 87.7% 83.3% 77.5%
B 2 86.3% 83.3% 81.7%
C 20 98.0% 90.0% 85.4%
D 24 97.3% 63.3% 52.9%
E 16 96.3% 71.7% 63.8%

Mean 13.6 93.1% 78.3% 72.3%
A

QDA

11 86.0% 80.0% 80.0%
B 11 95.0% 83.3% 80.4%
C 15 95.0% 88.3% 87.1%
D 1 64.3% 61.7% 51.3%
E 11 92.3% 73.3% 64.6%

Mean 9.8 86.5% 77.3% 72.7%

In Table 4.1 we see our classification accuracies for our two-task problem, consisting

of the imagined right hand movement and count backward from 100 by 3’s tasks, for all

five subjects and for all three methods. Additionally, we see the mean performance of

each classifier when averaged across all five subjects. While examining these classification

accuracies, we keep in mind that we would expect a random classifier to achieve 50% correct.

A number of interesting observations can be made from Table 4.1. First, notice that

our classification accuracies are quite high for the training partitions. This suggests that

our classification methods are at least capable of modeling the data from each class. Not

surprisingly, however, our classification accuracies decrease as the classifiers generalize to

the validation data and degrade further upon application to the test data. These drops in
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generalization performance suggest that some of the discriminating patterns found in the

training data do not appear in the validation or test data. This may be caused by noise in

the signal or by transient patterns or by a combination of both.

We also observe that the test classification accuracies vary considerably between the

subjects. Specifically, the test accuracies for Subject A and Subject B are quite high, in

the 80-90% range, while those for Subject B are modest, in the 60-80% range, and those for

Subject D and E are relatively low, in the 50-60% range. There are a number of potential

causes for this variability across subjects. It may be, for example, that some subjects are

more engaged in the recording session or are simply paying more attention. If some of the

subjects are distracted or uninterested, it may result in poor classification performance. The

individual differences among subjects and the environments in which EEG recording took

place should also be considered. Recall from Section 3.1 that Subjects A and B are able-

bodied individuals and that their recording sessions took place in a controlled laboratory

setting. Subjects C and E, on the other hand, have high-level spinal cord injuries and

Subject D has severe multiple sclerosis. Additionally, recording from Subjects C, D and

E took place in their homes. Although Subject C actually outperformed all of the other

subjects, the recording environments and disabilities of Subject D and Subject E may have

contributed to their poor performance.

Interestingly, we also notice that our WTA classification approach delivers roughly the

same performance as our LDA and QDA approaches. Looking at the mean performance

across subjects for each approach, it appears that WTA may slightly outperform LDA

and QDA, although it is difficult to draw any firm conclusions given the small number

of subjects. We do notice, however, that Subject B appears to be the only subject that

achieves a large performance improvement through the use of LDA or QDA. While the data

from Subject B may benefit from the additional flexibility introduced by LDA and QDA, it

appears that, in general, WTA is typically enough to discriminate between the forecasting

errors produced by our ERNN.
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Table 4.2: Percent Correct Classification for Four Tasks.

Subject Method Hidden Units Training Validation Test
A

WTA

11 89.2% 68.3% 53.5%
B 5 84.5% 62.5% 50.0%
C 14 90.7% 60.8% 67.5%
D 28 93.8% 42.5% 27.9%
E 12 85.0% 56.7% 36.9%

Mean 14.0 88.6% 58.2% 47.2%
A

LDA

12 85.8% 63.3% 41.6%
B 7 81.8% 55.8% 45.6%
C 21 91.8% 60.0% 56.0%
D 35 88.0% 38.3% 28.8%
E 21 87.3% 49.2% 28.3%

Mean 19.2 86.9% 53.3% 40.1%
A

QDA

13 76.7% 59.2% 40.7%
B 5 79.3% 55.8% 46.5%
C 16 74.3% 52.5% 48.8%
D 23 58.5% 36.7% 27.3%
E 14 72.2% 47.5% 39.0%

Mean 14.2 72.2% 50.3% 40.5%

Now that we have investigated the classification accuracies for our two-task problem, let’s

examine how they scale up to the full four-task problem. The outcome of these experiments

is shown in Table 4.2. Note that with a four-task problem, we expect that a random

classifier would achieve a classification accuracy of only 25%. Notice that Subject C again

achieves the highest classification accuracy, as high as 67.5%, while Subject A and B achieve

moderate performance and Subject D and E again achieve relatively poor classification

accuracy. Since Subject D and E achieve poor performance for both the two-task and four-

task problems, we conjecture that it is not simply a poor selection of mental tasks that leads

to these low classification accuracies. Overall, the results for our four-task problem seem to

align with those with the results found in our two-task problem with two exceptions. First,

our classification accuracies are considerably lower. Although this is not surprising due to

the increased number of classes, it is also somewhat disappointing. Examining classification
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accuracy alone, however, provides little insight into any improvement or reduction in overall

performance that is seen by increasing the number of mental tasks used. In Section 4.2.3,

we examine an approach that makes it easier for us to compare our the performance of our

two-task problem and our four-task problem.

Table 4.3: Confusion matrix for four tasks in the test partition for Subject C.

Predicted

Count Fist Cube Song

A
c
tu

a
l Count 80% 5% 10% 5%

Fist 0% 65% 35% 0%
Cube 20% 0% 55% 25%
Song 25% 5% 15% 55%

Table 4.4: Confusion matrix for four tasks in the test partition for Subject E.

Predicted

Count Fist Cube Song

A
c
tu

a
l Count 40% 25% 30% 5%

Fist 10% 65% 20% 5%
Cube 20% 20% 30% 30%
Song 20% 15% 50% 15%

Although we have seen how our classification accuracies vary across subjects, we have

yet to examine how each imagined mental task performs for a given subject. In Table 4.3

we see the confusion matrix for Subject C and for all four imagined mental tasks when using

WTA. Since the classification accuracies for Subject C were quite high, it is not surprising

that most of the values along the diagonal are also quite high. Specifically, notice that the

classification accuracies for the Count and Fist tasks are particularly high, suggesting that

our two-task problem was beneficial for Subject C. On the other hand, the Cube and Song

tasks are correctly classified far less often. Interestingly, notice that the Cube task is often
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confused for the Song and Count tasks and vice versa. This suggests that our classification

algorithms found the Cube and Song tasks to be quite similar. Eliminating one of these

tasks or replacing it with a different task might increase classification for Subject C.

In Table 4.4 we see a confusion matrix for Subject E, again for the four-task problem

and using WTA. Recall that we achieve far lower classification accuracies for Subject E.

Again, notice that the Count and Fist tasks performed best, suggesting that our two-task

problem was also favorable for Subject E. Notice that we see above random classification

accuracies for all values along the diagonal with the exception of the Song task, which is

classified as the Cube task 50% of the time. Interestingly, however, the Count and Fist

tasks are only rarely confused with the Song task. This leads us to a similar conclusion

to the one that we reached for Subject C. Namely, the Song task should be eliminated or

replaced with another imagined mental task.

The differences in performance that we see for various mental tasks in different subjects

suggests that a practical BCI system should consider the performance of various mental

tasks in a subject-specific manner. Each subject may find some mental tasks to be unpleas-

ant or difficult to perform. Furthermore, variations in brain organization and development

among subjects may cause differences in the patterns produced by various mental tasks.

4.2.3 Information Transfer Rate

Classification accuracies can be difficult to compare because they do not take the number

of classes or the rate at which decisions are made into account. In order to provide a

more universal indicator of our classification performance, we also present our classification

results in the form of information transfer rates. In the BCI literature, information transfer

rates are commonly calculated in bits per minute (bpm) according to

bits per minute = V

(

log2K + P log2P + (1 − P )log2

1 − P

K − 1

)

, (4.2)
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Table 4.5: Classification Bitrates for Two Tasks.

Subject Method Hidden Units Training Validation Test
A

WTA

5 35.9bpm 28.8bpm 30.4bpm
B 8 50.5bpm 21.0bpm 5.4bpm
C 14 52.5bpm 38.7bpm 38.7bpm
D 17 43.6bpm 4.0bpm 0.1bpm
E 21 48.3bpm 9.8bpm 2.9bpm

Mean 13.0 46.2bpm 20.5bpm 15.5bpm
A

LDA

6 27.7bpm 21.0bpm 13.8bpm
B 2 25.4bpm 21.0bpm 18.8bpm
C 20 51.5bpm 31.9bpm 24.0bpm
D 24 49.3bpm 3.1bpm 0.1bpm
E 16 46.3bpm 8.4bpm 3.3bpm

Mean 13.6 40.0bpm 17.1bpm 12.0bpm
A

QDA

11 24.9bpm 16.7bpm 16.7bpm
B 11 42.8bpm 21.0bpm 17.2bpm
C 15 42.8bpm 28.8bpm 26.8bpm
D 1 3.6bpm 2.4bpm 0.0bpm
E 11 36.5bpm 9.8bpm 3.7bpm

Mean 9.8 30.1bpm 15.7bpm 12.9bpm

where V = 60 is the classification rate in decisions per minute, K is the number of classes

and P is the classification accuracy as the fraction of correct decisions over total decisions.

Equation (4.2) is derived from an equation used in information theory used to describe the

number of bits per unit of time that can be transmitted across a noisy channel [43, 44].

In Table 4.5, we see our classification results in terms of information transfer rates for

our two-task problem. When viewed in this way, we see that Subject A and Subject C may

be expected to be able to communicate as many as 30.4bpm and 38.7bpm respectively when

WTA is used to assign class labels. Although Subject B is only expected to communicate

5.4bpm with WTA, up to 18.8bpm is achieved using LDA. For Subject D we see that very

little if any communication is expected using any our classifiers. For Subject E, we expect

only around 3bpm. Although our information transfer rates vary considerably between

subjects, we do achieve an encouraging average 15.5bpm across subjects when using WTA.
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Table 4.6: Classification Bitrates for Four Tasks.

Subject Method Hidden Units Training Validation Test
A

WTA

11 80.1bpm 35.8bpm 16.0bpm
B 5 67.9bpm 27.1bpm 12.5bpm
C 14 84.3bpm 24.8bpm 34.5bpm
D 28 94.0bpm 6.3bpm 0.2bpm
E 12 69.1bpm 19.6bpm 3.0bpm

Mean 14.0 79.1bpm 22.7bpm 13.2bpm
A

LDA

12 71.1bpm 28.2bpm 5.7bpm
B 7 61.6bpm 18.6bpm 8.6bpm
C 21 87.7bpm 23.7bpm 18.8bpm
D 35 76.8bpm 3.7bpm 0.3bpm
E 21 75.0bpm 11.7bpm 0.2bpm

Mean 19.2 74.4bpm 17.2bpm 6.7bpm
A

QDA

13 50.8bpm 22.7bpm 5.1bpm
B 5 56.2bpm 18.6bpm 9.3bpm
C 16 46.2bpm 14.9bpm 11.3bpm
D 23 21.8bpm 2.9bpm 0.1bpm
E 14 42.4bpm 10.2bpm 4.1bpm

Mean 14.2 43.5bpm 13.9bpm 6.0bpm

When using LDA and QDA, our mean bitrates drop by about 2-3bpm.

In Table 4.6, we see our classification results in terms of information transfer rates for

our four-task problem. We can now see that our classification algorithms do not scale as well

as we might hope as the number of imagined mental tasks is increased. When using WTA,

our mean information transfer rate drops from 15.5bpm to 13.2bpm, with LDA our mean

information transfer rate drop from 12.0bpm to a mere 6.7bpm and with QDA our mean

information transfer rate drops from 12.9bpm to 6.0bpm. Additionally, the information

transfer rate drops for each subject and for each algorithm as the number of mental tasks

is increased to four. Without online tests, however, it is difficult to know the impact that

this drop might have on a BCI user. Although the information transfer rates are lower, the

increased degrees of freedom may provide a better user experience and feedback.
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4.2.4 Decision Rate

Although we have investigated how our classification accuracies and information transfer

rates are affected by scaling from a two-task to a four-task problem, we have yet to exam-

ine how the rate at which our class labels are assigned effects performance. Recall from

Sections 3.4.1, 3.4.3 and 3.4.2 that each of our classification methods involves processing

our forecasting errors over an interval consisting of ω timesteps. In all of the experiments

performed up until now, we have used one-second intervals, ω = 256.
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Figure 4.7: Classification accuracy as the number of seconds between decisions is varied.

In Figure 4.7, we see how our test classification accuracy changes for Subject A in our

two-task problem as the seconds between decisions is varied. Interestingly, we are able to

achieve 100% correct classification when class labels are assigned every five seconds. It

is not ideal, however, to increase our decision interval until 100% correct classification is
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achieved. In Figure 4.8 we see how our information transfer rate changes as the decision

interval is increased. Clearly, the highest information transfer rates are achieved when class

labels are assigned very quickly. Most BCI users, however, will not issue commands at a

rate faster than about once per second until they have become extremely skilled at using

the system. It is for this reason that we use a decision interval of one second in all of the

other experiments performed here.
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Figure 4.8: Information transfer rate as the number of seconds between decisions is varied.

It seems that there is a balance to be found between classification accuracy and informa-

tion transfer rate. If a BCI system makes decisions very slowly, they will often be correct but

it will take a long time to convey very much information. If decisions are made too quickly,

a BCI system may operate faster than a user can control it. Additionally, a rapid decision

rate leads to many incorrect commands being issued. Online experiments are required in
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order to determine where exactly this balance lies and how user experience is affected by

decision rate. In fact, individual users may prefer flexible decision rates, especially as their

skill at operating a BCI system evolves.

4.2.5 Error Boundaries

In order to gain further insight into the differences between WTA, LDA and QDA, it is

important that we explore the decision boundaries that they are generating. In Figure 4.9,

we see the forecasting errors produced by each of the ERNN in our two-task problem plotted

against each other when applied to the data from both tasks in the test partition for Subject

A. Note that for errors to the left of the diagonal, the ERNN trained to forecast EEG from

our counting task was better able to forecast the signal. On the other hand, errors to

the right of the diagonal were better forecast by the ERNN trained over EEG from our

imagined right hand movement task. Although it appears that each ERNN is generally

better at forecasting the EEG over which it was trained, it is clear that our errors at each

timestep are extremely variable and largely overlap.

In Figure 4.10, we see the effect of averaging our errors over one-second intervals, as

is done by WTA. Note that when classifying these errors with WTA, the diagonal defines

the class boundary. Clearly, averaging the errors over a number of timesteps dramatically

reduces the noise and overlap seen in the individual errors. In Figure 4.11 we see contours

depicting the Gaussians used by LDA along with their linear intersection superimposed on

top of our forecasting errors from each individual timestep. Interestingly, these contours

intersect only slightly below and to the right of the diagonal. Although our class labels are

assigned by multiplying the probabilities determined by these Gaussians over an interval,

this plot suggests that LDA assigns these probabilities largely based on their relative location

to the diagonal. In Figure 4.12 we see contours depicting the Gaussians used by QDA along

with their quadratic intersection superimposed on top of our forecasting errors from each

individual timestep. Although our Gaussians now take on different shapes, we see that our
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intersection of equal probability is again near the diagonal and then cuts through the region

where the ERNN trained over the count task clearly produces lower forecasting error. This

evidence leads us to believe that LDA and QDA are assigning class labels in a way that is

extremely similar WTA.

It is also important to note that LDA and QDA rely on a number of assumptions. First,

both LDA and QDA assume sample means and covariances. Since the exact values of these

parameters can not determined, it is possible that our Gaussians are not ideally placed. Sec-

ond, LDA assumes that both classes have identical covariances. Figure 4.9 illustrates that

the forecasting errors for each class are distributed somewhat differently. Additionally, both

approaches assume that our classes can be effectively modeled by Gaussian distributions.

Again, Figure 4.9 suggests that our forecasting errors are not normally distributed since

the vast majority of samples are located in the lower left hand corner with fewer samples

fanning out along the diagonal. Finally, our method of combining errors over an interval

assumes that the errors are independent. Given the periodic and autocorrelated nature of

EEG, this assumption certainly does not hold. We conjecture that the violation of these

assumptions is the reason that LDA and QDA typically perform less favorably than the

simpler WTA.
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Figure 4.9: Forecasting errors.
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Figure 4.10: Averaged forecasting errors. Diagonal is WTA class boundary.
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Figure 4.11: Forecasting errors with LDA probability contours.

0.0 0.5 1.0 1.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

Count Model RMSE

H
a

n
d

 M
o

d
e

l 
R

M
S

E

Count

Hand

Diagonal

QDA Count

QDA Hand

Boundary

Figure 4.12: Forecasting errors with QDA probability contours.
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Chapter 5

Conclusions

In this chapter we offer some concluding remarks about the work performed in this thesis.

We begin by briefly summarizing the methods and results that were reported here. Next,

we offer a comparison of our results with the current state-of-the-art in BCI. Finally, we

discuss a number of questions that remain to be answered in future works.

5.1 Summary

In this thesis we developed a new algorithm for EEG classification that can be used to

build Brain-Computer Interfaces. To this end, we outlined a technique where ERNN are

used to model EEG by forecasting the signal a single step ahead in time. These ERNN

are trained using Backpropagation Through Time in combination with Scaled Conjugate

Gradients and careful initial weight selection. A classifier can then be constructed by

training a separate network to forecast sample EEG from each of the mental states of

interest. Each of these forecasters can be thought of as an expert at forecasting the type of

EEG over which it was trained. Class labels are then assigned to novel data by applying

each network and using one of three classifiers on the resulting errors. The first of these

classifiers, Winner-Takes-All, simply averages the forecasting errors over a brief window and
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assigns the class label associated with the ERNN that was able to forecast the EEG with

the lowest error. The remaining two classifiers, Linear Discriminant Analysis and Quadratic

Discriminant Analysis, are generative, statistical classifiers that model our forecasting errors

with Gaussians and assign class labels by finding the joint probability that a short window

of errors belongs to a given class.

Each of the hyper-parameters involved in these approaches was explored and it was

determined that with 20 steps unrolled, 250 training epochs and 40 hidden units, an ERNN

is able to forecast an EEG signal with a validation error as low as 1.18 percent of the signal

range. We also found that when a feedback loop is placed between the outputs and inputs

of an ERNN trained to forecast EEG that interesting dynamics can be observed. Notably,

ERNN with this configuration and above 160 hidden units generate signals with a frequency

spectrum similar to that of the true EEG signal.

We then applied each of our classification algorithms to five EEG datasets, two of which

were collected from able-bodied individuals in a laboratory setting and three of which were

recorded from subjects with disabilities in their home settings. A relatively inexpensive EEG

amplifier was used for data acquisition. These classification experiments demonstrated that

two subjects were able to achieve information transfer rates in the 30-38bpm range, one

subject was able to achieve information transfer rates as high as 18bpm and the remaining

two subjects were only able to achieve 0-3bpm. The mean information transfer rate across

all five subjects was 15.5bpm. Additionally, our examination of WTA, LDA and QDA has

reveled that WTA typically outperforms LDA and QDA and that the decision boundaries

found by each of these approaches are very similar. It is encouraging that the highest

classification rate was achieved with Subject C. As a person with quadriplegia and in their

home environment, Subject C certainly belongs to a target demographic for this technology.
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5.2 State-of-the-art

In Chapter 2 we reviewed a number of state-of-the-art BCI paradigms and EEG classification

algorithms. Due to the wide range of approaches that can be taken to build a BCI systems

and because of the various ways in which their performance is evaluated, it is difficult

to perform a direct comparison. We should recall, however, that current SSVEP speller

systems can achieve information transfer rates as high as 62.5bpm and that P300 speller

systems can achieve information transfer rates as high as 13.3bpm in healthy subjects.

Although our classification algorithm achieved a peak information transfer rate of 38.7bpm,

which is between the rates achieved by the aforementioned approaches, it should be noted

that classification of imagined mental tasks does not require the user to deliver their overt

attention to an external stimulus.

Due to the extensive use of user training, biofeedback and variable decision rates, it is

uncommon for information transfer rates to be reported in current literature concerning

the classification of imagined mental tasks. Nevertheless, an examination of two recent

works, one by Millán, et al., and one by Anderson, et al., reveals that these state-of-the-art

approaches achieve anywhere from 52% correct on a three-task problem every 0.5 seconds

to 78% correct on a five-task problem every 1.8 seconds before any user feedback [17, 20].

Substituting these values into our equation (4.2), we arrive at bitrates of 12.7bpm and

37.4bpm, respectively. This suggests that the experiments performed here are competitive

with the current approaches that utilize PSD and TDE feature representations.

To our knowledge, the only other work where EEG is classified using the errors produced

by neural networks trained to forecast EEG signals is that by Coyle, et al. [26]. Recall that

this approach was used to classify a two-task imagined motor movement problem and that

feedforward networks were used in combination with TDE, as opposed to recurrent networks.

The information transfer rates achieved in this particular study did not exceed 9.96bpm.

This suggests that ERNN may provide an advantage over feedforward architectures.
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Given these comparisons, it appears that our classifiers perform well relative to the

state-of-the-art for some of our subjects and relatively poorly for others. Without testing

these methods on more datasets and performing interactive testing it is difficult to know

if they will generally outperform other methods or not. The use of ERNN for classifying

EEG does, however, show considerable potential.

5.3 Future Work

A number of questions related to the work at hand remain to be answered. One of the

most obvious of these questions is whether or not other classifiers can outperform WTA,

LDA and QDA when applied to our forecasting errors. Since LDA and QDA rely on a

number of prior assumptions that may not hold in this setting, perhaps other classifiers

would do better. Support Vector Machines and Feedforward Artificial Neural Networks are

both examples of state-of-the-art classifiers that could be applied to our forecasting errors.

In addition to applying different classifiers to our forecasting errors, modeling EEG

at different or multiple timescales should be investigated. For example, increasing the

number of steps ahead that our networks are forecasting may yield different results. It

is also possible to train a single network or even several networks to forecast the signal

with different forecasting horizons. EEG signals could also be filtered and downsampled

to provide different frequency ranges to each of these forecasters. Such configurations may

provide better forecasting performance, since the memory requirement of the networks

would be reduced. Although we believe that these approaches should be investigated, one

must be careful not to introduce too many hyper-parameters into the classification pipeline

since the time required to search for these values may make such a configuration impractical

for use in a BCI system.

One of the major limitations of our current implementation is, in fact, computational

performance. Although the forward passes of our ERNN and the assignment of class labels
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can easily be performed in real-time, training of a classifier with 10 hidden units takes ap-

proximately 10 minutes on a 2.83Ghz Intel Core2 Q9550. We should note, however, that

our current implementation is written entirely in R, which is an interpreted programming

language designed for analysis and rapid prototyping [45]. Although an optimized version

written in a native language may run considerably faster, it still seems unlikely that a full

cross-validation and hyper-parameter search could be run on portable hardware while a BCI

users waits. Recent advances in distributed systems, however, suggest that this may not be

necessary. Ericson, et al., have suggested that a portable device may be used to stream EEG

to a cloud computing service, thereby reducing the need to perform demanding computation

on site [46]. Since the use of ERNN in a real-world setting may be computationally de-

manding, further investigation into more efficient, parallel and distributed implementations

should be investigated.

The use of RNN architectures other than ERNN should also be investigated. In partic-

ular, Echo State Networks (ESN) have received considerable attention in recent literature

[47, 48]. Since the recurrent weights of an ESN do not adapt during training, performance

can be orders of magnitude faster than ERNN, potentially overcoming the performance limi-

tations found in our current implementation. It remains to be determined, however, whether

or not ESN can offer the same forecasting and classification performance as ERNN. Future

experiments should compare the performance of ESN and ERNN to determine if the use of

ESN is a possible alternative.

Finally, we conclude this thesis with a note about online testing. Although the algo-

rithms explored here have delivered exciting results and have demonstrated an ability to

classify EEG in an offline setting, it is impossible to know whether or not they will prove

useful in interactive BCI systems. In order to properly evaluate the performance of these

methods, it is essential that they be integrated with a BCI system and interactively tested

with a number of subjects. Only then will it be clear whether or not our classifiers work with

an acceptable number of subjects and whether or not performance can be improved with
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feedback. Questions about how many and which mental tasks to use, how fast decisions

should be made, what user experience is like and whether or not people with disabilities find

BCI systems useful can not be fully answered without real-world application and testing.
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