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ABSTRACT

TO"WARD ASSIMILATION OF CLOUD RADAR DATA FOR

IMPROVEMENTS IN MESOSCALE FORECASTS

Unveiling the complex links between relevant physical processes at work in the

Earth's atmosphere is a step toward understanding the weather and climate of Earth.

Processes relating to the atmospheric branch of the hydrological cycle playa criti­

cal role in climate change through their impact on the atmospheric energy budget.

Clouds, and in particular ice clouds, are an essential component of the atmospheric

water cycle about which much uncertainty still exists. The paucity of observations

and the inherent difficulties in modeling ice clouds both contribute to this uncer­

tainty. Yet, the impact of this type of clouds on the atmospheric energy budgets

through their influence on radiative and latent heat processes, especially in the

upper-troposphere, is considerable. In recent years, much progress has been made

in the description of clouds in numerical weather prediction models. Together with

advancements in instrumentation and cloud observing capabilities, such as the ones

afforded by short wavelength cloud radars, this has granted a better general under­

standing of ice cloud formation and evolution in relation to the ambient conditions.

Improving data sets and models is a crucial part of a strategy to produce a more ac­

curate representation of ice cloud processes and consequent improvements in weather

forecast and climate predictions. In particular, the synergy of both these elements­

models and observations- is the most promising way to address the open question

about the role of ice clouds in climate change. Data assimilation offers an elegant

mathematical framework to bring observations and model forecasts together. While

it is no substitute for model improvement and development, it represents a powerful

tool to enhance the potential of the observations through the use of the model, and
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to improve the model performance providing optimal model initialization through

the use of measurements. In this larger picture, the focus of this research is to ad­

dress some specific questions related to the combined use of model and cloud radar

observations in advancing modeling and prediction of cirrus clouds. The core of

this work is the development of an assimilation system based on variational princi­

ples to perform both sensitivity studies and assimilation experiments with synthetic

and real radar reflectivity measurements. To this end, an ice growth model and its

adjoint are derived and used in one dimensional time-dependent variational assimi­

lation studies. Sensitivity studies are performed and key parameters in cirrus cloud

physics are identified. A more complex model-the Regional Atmospheric Modeling

System- is also used in cirrus simulations and its skill assessed with the goal of using

this model in four-dimensional variational experiments involving the use of radar

data. Results are promising and show both the feasibility and the great potential

of incorporating cloud radar observations into mesoscale models to improve cloud

prediction.

Angela Benedetti
Atmospheric Science Department
Colorado State University
Fort Collins, CO 80523
Fall 2001
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Chapter 1

Introduction

1.1 The global picture

Understanding the climate of Earth and the way climate varies in time requires a

quantitative knowledge of the way water is exchanged back and forth between its

main reservoirs both within the atmosphere and at the surface. The influence of the

hydrological cycle on the energy budget of Earth is central not only to understanding

present climate but also to the prediction of climate change. Processes relating to

the smallest of the reservoirs of water-the atmospheric branch of the hydrological

cycle- playa critical role in climate change through their impact on the atmospheric

energy budget. This is true both for water in vapor form, and water in condensed

(liquid and ice) form.

A component of the atmospheric water cycle about which much uncertainty still

exists is related to the ice phase. The paucity of observations and the inherent

difficulties in modeling ice clouds both contribute to this uncertainty. Yet, the

impact of this type of clouds on the atmospheric energy budgets through their

influence on radiative and latent heat processes, especially in the upper-troposphere,

is quite large (Liou, 1986). Figure 1.1 from Moore and Vonder Haar (2001) shows

a six-year average for 1985-1990 of thin upper-tropospheric cloud net radiative

forcing over the Pacific Ocean basin as computed using Earth Radiation Budget

Experiment (ERBE) radiative fluxes at the top of the atmosphere (TOA) and the

International Satellite Cloud Climatology Project (ISCCP) data. The Hartmann

et aI. (19912) regression technique is applied to isolate the high cloud contribution.

The forcing exerted by high clouds is quite large and positive between 10-25

degrees latitude in the Southern hemisphere and 5-15 in the Northern hemisphere

1
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Figure 1.1: Six-year average of high cloud net radiative forcing over the Pacific

Ocean. Figure is courtesy of Rich Moore.

over the Western Pacific area, both hemispheres, indicating that a heating of the

atmosphere is occurring at low latitudes. This heating principally arises from cirrus

clouds associated with convection (Stephens, 2001). Negative forcing is observed at

high latitudes, especially over the oceans.

The vertical distribution of radiative heating between the surface and the at­

mosphere, which depends on location and amount of cloud condensate as shown in

Stephens and Webster (1981), has a large impact on energy transport and atmo­

spheric circulation (Randall et al., 1989).

Stephens et al. (1998) show how outgoing longwave radiation (OLR) at the top
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of the atmosphere in the European Center for Medium-range Weather Forecast

(ECMWF) model is influenced by the amount of ice and its vertical distribution.

Figure 1.2 shows the difference between ERBE and ECMWF OLR global distribu­

tion averaged over the DJF 1987/1988 season for three model schemes with different

treatment of ice phase. Substantial differences can be noticed from a model run with

diagnostic (upper panel) and prognostic cloud scheme with two distinct fall speed pa­

rameterizations for the ice crystals (lower panels). Although the prognostic scheme

provides better estimates of OLR, the degree of agreement is subject to tuning of

the ice fallspeed parameterization (see also Jakob and Morcrette (1995)).

The tight link between cirrus clouds and upper tropospheric radiative and wa­

ter budget is shown in the work of Sherwood (1999). He hypothesizes that cloud

radiative forcing can be very important when dynamically converted into moisture

perturbations (see figure 1.3). In particular, he analyzes the response of the atmo­

spheric temperature to radiative forcing by cirrus clouds and relates this temperature

change to vertical advection of moisture. According to his conceptual model, appli­

cable in nonconvective areas but presupposing some deep convection to exist, cirrus

act as water vapor "pumps", and the strength of this pumping is a function of their

optical depth (i.e., thinner clouds are more efficient pumps).

Another reason upper tropospheric clouds are important is through their influ­

ence on stratospheric water budget (Danielson, 1982), their connection to strato­

spheric wave activity (Boehm and Verlinde, 2000), and their role in stratosphere­

troposphere exchange.

The above examples highlight some of the ways ice clouds influence the Earth's

climate system. In the next section we discuss most recent advances in ice cloud

observing and modeling.

1.1.1 State-of-the-art ice cloud modeling and observing systems

In recent years much progress has been made in the description of clouds in atmo­

spheric models. Most Numerical Weather Prediction (NWP) models and General

Circulation Models (GCMs) now have cloud prognostic capabilities, as replacement
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Figure 1.2: The difference between OLR observed by ERBE minus that obtained by

the ECMWF model for the DJF 1987/88 season. The upper panel is the difference

between ERBE and the model with the diagnostic version of the cloud scheme

and the lower two panels show differences between ERBE and the model with two

different representations of fall speed of ice crystals. From Stephens et al. (1998).
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Figure 1.3: Schematic of water vapor pumpmg, radiatively induced by cirrus

clouds. From Sherwood (1999).

to diagnostic schemes1 . The emergence of such schemes has been made possible

by the availability of new data sets from field experiments, satellite observations

and also from advancements in Cloud Resolving Models (CRM) and Large Eddy

Simulation (LES) models. A number of these high-resolution cloud models now in­

corporate rather sophisticated microphysical and radiative treatments of cirrus (see

for example, Khvorostyanov and Sassen (1998) and Meyers et al. (1997)). Some in­

clude explicit treatment of particle size distribution and bin microphysics (Lin, 1997)

as well as detailed description of ice initiation processes (De Mott et al. (1994) and

(1997)).

Amongst the existing datasets, a widely used one is represented by the above

mentioned ISCCP database (Rossow et al., 1987). This database contains a cloud

climatology based on cloud type, optical thickness and cloud top pressure, deter­

mined from visible and infrared satellite imagery. A similar philosophy is the basis of

the Clouds and the Earth's Radiant Energy System (CERES) experiment (Wielicki

1In diagnostic schemes, cloud description is based on diagnosis of fractional cloud coverage

and condensate from large--scale conditions. The interaction of clouds with radiation is handled

separately with respect to condensation and evaporation processes. At present, many NWPs and

GCMs include sophisticated prognostic cloud schemes which ensure a physical connection between

large-scale forcing and cloud formation and maintenance processes (see for example Tiedke (1993)

and Jakob (2001) for a description of the ECMWF prognostic cloud scheme; and Fowler et al.

(1996) for the description of the CSU-GCM prognostic cloud scheme).
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et al., 1996). The CERES instrument measures both solar-reflected and Earth

emitted radiation from the top of the atmosphere. Cloud properties are determined

using simultaneous measurements by other instruments such as the Moderate Reso­

lution Imaging Spectroradiometer (MODIS) on board the Earth Observing System

(EOS) Terra and Aqua satellites. As for active sensing of clouds from space, the

Lidar In-space Technology Experiment (LITE) provided samples of globallidar mea­

surements of thin cirrus clouds (Winker et al., 1996). Future satellite missions such

as CloudSat (Stephens et al., 2000b) and ESSP-3 (Winker and Wielicki, 1999) will

fly active sensors (radar and !idar respectively) for the detailed mapping of global

cloudiness.

In addition to these satellite programs, many ground and aircraft-based field

experiments were deployed with the goal of understanding cirrus clouds and their

interaction with radiation. We mention only one of them, the First ISCPP Regional

Experiment (FIRE), that is now entering in its fourth phase with the upcoming

Cirrus Regional Study of Tropical Anvils and cirrus Layers-Florida Area Cirrus

Experiment (CRYSTAL-FACE) deployment.

Ground-based cloud measurements are taken routinely with passive and active

sensors at the sites established by the Atmospheric Radiation Measurement2 (ARM)

Program. The ARM programs maintains three main sites, in Oklahoma (Southern

Great Plains (SGP) site), in Alaska (North Slope of Alaska (NSA) site) and on

Manus and Nauru islands in the Pacific Ocean (Tropical Western Pacific (TWP)

site), and instruments in a number of ancillary locations.

Together with an increasing number of observing missions, advancements in

2This multi-laboratory and interagency program was created in 1989 with funding from the

U.S. Department of Energy (DOE), as an effort to resolve scientific uncertainties about global

climate change, with a specific focus on improving the performance of general circulation models

used for climate research and prediction. In pursuit of its goal, the ARM Program operates field

research sites, called Cloud and Radiation Testbeds (CARTs), in several climatically significant

locations. Scientists collect and analyze data obtained over extended periods of time from large

arrays of instruments to study interactions of radiation and clouds, and their effect on weather

and climate. Source: http://www.arm.gov
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instrumentation and cloud observing capabilities have also been fundamental toward

a better representation of ice cloud properties. The use of millimeter wavelength

radars for cloud detection and monitoring has become very common over the past

years. Retrieval techniques for determining Ice Water Content (IWC) from radar

observations have been developed (Mace et a1., 1998a; Matrosov et a1., 1992 and

1994), and are still being evaluated and refined. There have been significant advances

in airborne in-situ instrumentation including particle impactors/replicators (and the

data processing thereof, see for example Heymsfield and Iaquinta, 2000), holographic

particle imaging (Cloud Particle Imager, CPI), and Counter-flow Virtual Impactors

(CVI). This progress in in situ instrumentation is essential for the evaluation of

radar-based retrieval methods. In turn, the radar-based methods provide highly

suitable means to obtain the data sets required for development and validation of

space-based techniques.

1.1.2 Bringing together observations and models

Better data sets and improved models are keys toward a more accurate represen­

tation of ice cloud processes and consequent improvements in weather forecast and

climate predictions. In particular, the synergy of both these elements-models and

observations-- is the most promising way to address the open question about the role

of ice clouds in climate change. In this perspective, two main ways of using data in

conjunction with models can be identified: one involves the use of data for the eval­

uation of models, and the development and testing of cloud parameterizations; the

other involves the assimilation of observed cloud fields into models. These two ap­

proaches are not opposed, rather they are complementary. Data assimilation offers

an elegant mathematical framework to compare observations and model forecasts.

While it is no substitute for model improvement and development, it represents a

powerful tool to obtain optimal initial or/and boundary conditions that insure more

realistic (i.e., closer to observations) model results. Once the model error induced by

suh-optimal initialization and/or forcing is corrected, specific aspects of the model,

either related to parameterizations or to numerical representation of physical pro-
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cesses, can be more closely scrutinized and evaluated making use of observations.

Ultimately, by combining these two approaches, the model performance as a whole

is improved and a more reliable prediction is obtained.

As a testimony to the importance of the first approach, the entire GEWEX

Cloud System Study (GCSS) science plan (Randall et al., 2000) is centered around

the development of new and improved parameterizations for large-scale GCMs us­

ing results from models that explicitly resolve the cloud scales and treat the cloud

formation from first principles (CRMs and LES). Before the latter can be reliably

used for this purpose they have to be themselves tested and improved using obser­

vations. Evaluation of NWP model prognostic cloud schemes using observations has

been the object of many recent studies (Mace et al., 1998b; Miller et al., 1999b) and

has been instrumental in gaining better knowledge of cloud formation and evolution

in relation to large-scale weather patterns. Comparison of model results with ob­

servations has been also a strong component of regional cirrus studies (Brown and

Field (2000); Benedetti and Stephens (2001); Fouilloux and Iaquinta (1998)).

On the other hand, an indication of the importance of data assimilation comes

from its long-standing application in operational forecast models. The initial state

of NWP models (analysis) is obtained by combining in an optimal way all possible

sources of information on the state of the atmosphere (observations of various types,

atmospheric equilibria, short-range forecasts). This procedure ensures a better qual­

ity of both the forecast and the reanalysis data products, often used in climate

studies as global data sets (Trenberth and Caron, 2000). Data that are routinely

assimilated at the operational level include conventional and satellite observations

of pressure, temperature, wind and water vapor. Requirements for operational, as

well as non-operational, assimilable data include good spatial and temporal cov­

erage. Although most NWP models have difficulties in producing realistic cloud

and precipitation fields, particularly at the beginning of the forecast period, oper­

ational data assimilation systems do not currently assimilate any quantity related

to the condensed phase of water. Progress has recently been made toward the as­

similation of precipitation fields both in large-scale models (Marecal and Mahfouf

(2000); Hou et al. (2000)) and in regional forecast models (see for example Zupanski
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and Mesinger (1995) and Zou and Kuo (1996)). Assimilation of cloud fields into

forecast mesoscale models is ongoing research (Vukicevic et al., 2001). This type of

observations is more challenging to assimilate due to the non-linear nature of the pa­

rameterizations involved in their description, and their inherent high temporal and

spatial variability. Problems related to precipitation and cloud field assimilation are

discussed in section 1.1.3 with particular attention to operational applications.

Issues notwithstanding, there is a great potential in assimilation of rainfall and

cloud measurements, and the exploration of this potential is the main motivation for

this research. The specific focus of this work is on the still unexplored assimilation of

cloud radar data into cloud-scale models, as a source of improvement in our current

understanding of ice clouds and interaction with the other atmospheric physical

elements. Motivation for the particular choice of radar data is offered in section 1.3.

1.1.3 Issues in assimilation of cloud and precipitation

Some of the main problems related to assimilation of precipitation and cloud fields

are discussed in this section. Among these, it is the intermittent nature of these

phenomena which makes them difficult to model, together with the scarcity of global

observations, particularly of cloud fields. The latter issue is especially crucial for

operational assimilation into NWP models.

Figure 1.4 shows a plot of 500mb temperature, occurrence of millimeter-wave

cloud radar returns above -20dBZ, indicative of cloud presence, and rain gauge

measurements at the ARM SGp3 site. From comparison of these time series for the

different variables we note the following:

• the tropospheric temperature shows a limited variation over a month (except

3The u.s. Southern Great Plains Cloud and Radiation Testbed (CART) site was the first

field measurement site established by DOE's ARM Program. The site consists of in situ and

remote-sensing instrument clusters arrayed across approximately 55,000 square miles in north­

central Oklahoma and south-central Kansas. Deployment of the first instrumentation to the SGP

site occurred in the spring of 1992, just 24 months after the program was approved. Additional

instrumentation and data processing capabilities have been incrementally added in the succeeding

years. Source: http/jwww.arm.gov
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Figure 1.4: 500mb temperature (upper panel), cloud occurrence quantified as

millimeter-wave radar returns i - 20dBZ (central panel), and rain gauge measure­

ments over the ARM SGP site. Data were obtained from the ARM Program spon­

sored by the U.S. Department of Energy, Office of Science, Office of Biological and

Environmental Research, Environmental Sciences Division. Figure courtesy of Ian

Wittmeyer.

for the beginning of the month);

• the presence of water condensed phase, i.e., cloud occurrence, is an intermittent

process;

• precipitation events are sporadic, with large variations in amplitude.

Although somewhat obvious, these differences underscore the fact that assimi-
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lation of fields which present a discontinuous behavior, such as cloud and precip­

itation, is inherently different from assimilation of continuous fields such as tem­

perature. The physics of the two types of processes-continuous and discontinuous--­

is represented in different ways in numerical models. For discontinuous processes,

parameterizations often consist of on-off switches activated by exceeding predefined

threshold values of given variables (i.e., condensation is activated if the specific hu­

midity is above a certain value). Creating data assimilation systems for this type of

parameterizations is an art in of itself. Zupanski and Mesinger (1995) discuss prob­

lems connected to developing a variational assimilation system based on the adjoint

for a regional forecast model-the National Centers for Environmental Prediction

(NCEP) eta model-in particular related to the on-off switch for convective pre­

cipitation amount in the Betts-Miller cumulus parameterization (Betts and Miller,

1986). As a solution the authors suggest the introduction of a continuous func­

tion that substitutes for the discontinuous switch. A similar approach involving the

elimination of discontinuities by modifying the full-physics model is proposed in

Verlinde and Cotton (1993). Vukicevic and Errico (1993) discuss requirements for

obtaining a meaningful adjoint model when the dynamical model is highly nonlinear

and presents discontinuities. The main requirement is that the sensitivity of func­

tions that control regime transitions is small with respect to the model sensitivity

for state vectors not near the critical states. They also make the point that the

nonlinear model has to have good skill in representing the physical phenomenon if

one hopes to obtain a well-behaved tangent linear and adjoint model. This is a non­

trivial requirement, given the relative poor skill of numerical models in forecasting

cloud occurrence and precipitation.

In terms of availability of direct observations, the difference between standard

meteorological variables and clouds is also relevant. As an example, figure 1.5 shows

surface synoptic data from weather stations worldwide (over land and ship) ingested

in an assimilation cycle at ECMWF. Meteorological variables that are routinely

measured include temperature, relative humidity, pressure, and wind speed and

direction. There is no equivalent of figure 1.5 for cloud fields.

Even when global-scale cloud observations are available, as for example geosta-
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Figure 1.5: Synoptic data from worldwide weather stations on land and ships

ingested in ECMWF model.

tionary satellite radiances, the inherent uncertainties in retrieving cloud informa­

tion from passive sensors only (Miller, 2000) or in directly assimilating cloudy pixel

radiances make them difficult to use in operational contexts. There is no general

agreement whether it is best to assimilate cloud information retrieved from measure­

ments or to import the measurements into the assimilation system directly. Both

methods present difficulties. Assimilation of retrieved quantities has the limitation

that the profiles contain not only observed information, but also pri.or information

used to constrain the retrieval. On the other hand direct assimilation of measure­

ments sensitive to cloud variables might pose problems related to nonlinearities in

the observational operator (i.e., the Radiative Transfer model for radiances) and

to the fact that model resolution might not be accurate enough to resolve cloud

features present in the observations. This problem is particularly relevant for NWP

models, and it is the reason why satellite radiances are assimilated operationally

only in cloud-·free conditions (Eyre, 1997). Cloud-sensitive observations seem more
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apt to be assimilated into mesoscale models that resolve cloud-scale features.

Radar measurements of cloud fields are not taken routinely, and are not avail­

able for operational assimilation. The exception is represented by few locations

where cloud data are collected and analyzed on a daily bases (e.g. the above­

mentioned ARM sites). Individual institutions and groups maintain observational

sites that take passive and active cloud measurements. An example is the Facility

for Atmospheric Remote Sensing (FARS) cloud research station affiliated with the

Department of Meteorology, University of Utah, and directed by Prof. K. Sassen.

Instruments at FARS include lidars and polarimetric Doppler radar. The Univer­

sity of Reading also maintains an observational site at Chilbolton, UK, provided

with a 94-GHz and 35-GHz radars for the study of cloud and precipitation systems

(Hogan et al., 2000). McGill University, Canada, has operated a precipitation and

cloud radar for about ten years, and data are almost continuously collected (Fabry

and Zawadzki, 1995). To the best of our knowledge there is no coordinated effort

to collect all radar data available from these different locations.

In this context, the advent of CloudSat will bring a very innovative and exciting

contribution for the data assimilation community, with the first ever global cloud

radar dataset.

1.2 Overview of recent cloud and rainfall assimilation studies

Although the potential of cloud observations for assimilation in mesoscale and large­

scale models has been recognized for a number of years, the difficulties discussed in

section 1.1.3 have limited the number of studies on cloud assimilation. Assimilation

of rainfall has recently received much attention, due, in part, to the availability

of observations from the Tropical Rainfall Measurement Mission (TRMM) satellite.

Here, a few of these studies are presented for their relevance in the general discussion

about assimilation of variables that are linked through the hydrological cycle.

In a recent study, Vukicevic et al. (2001) investigate the use of radiances from

the Geostationary Observational Environmental System (GOES) satellite to assim­

ilate low-level cloud information into the Regional Atmospheric Modeling System
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(RAMS) (Pielke et aI., 1992). The authors introduce a Mesoscale Radiance Model

inclusive of the mesoscale model and the Radiative Transfer observational operator

necessary to arrive from model variables to model equivalent radiances. A verifi­

cation of model fields shows that the cloud does not extend as far north and is

significantly brighter in the southern portion of the domain than the observations

show. Preliminary results from this study using the RAMS adjoint show a positive

response of cloud solution to the initial condition adjustment. More details on this

study are given in chapter 5.

Rainfall assimilation in a regional model is the focus of a work by Zou and Kuo

(1996) who show the positive impact of assimilation of observations from the Se­

vere Environmental Storm And Mesoscale Experiment (SESAME) on short--range

forecast of an observed Mesoscale Convective System (MCS) with a nonhydrostatic

mesoscale model (MM5). Model simulations of the same event without assimila­

tion of rainfall data failed to correctly simulate location and intensity of observed

precipitation. Assimilation of rainfall data led to a better forecast, and captured

mesoscale features relative to the structure of MCSs, lower- and upper-level jets,

the position of the dryline, the low-level moisture convergence, and the formation

of a localized capping inversion.

Other studies have explored the impact of assimilation of information contained

in precipitation and water vapor fields to improve global analysis with GCMs. Ger­

ard and Saunders (1999) discuss the introduction of SSM/I-derived Total Column

Water Vapor into the ECMWF model. As a result of the assimilation, the model­

predicted global water~--vapor is increased by 2%, particularly in areas where the

model is notoriously too dry. There is also an impact on circulation with an in­

crease of the strength of the Hadley cell. However, the use of TCWV information

is subject to the model physics (i.e., the model cannot retain additional moisture in

the Tropics and reacts through increased precipitation), and the authors imply that

a more optimal use of observations might be achieved both through improvement

in model shallow convection and vertical boundary-layer resolution, and through a

better specification of background errors in humidity fields in the data assimilation

system. Deblonde (1999) obtains similar results from the assimilation of SSM/I
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retrievals into the Canadian Meteorological Centre (CMC) model.

Mankal and Mahfouf (2000) find that one---dimensional variational assimilation

of TRMM rainfall rates into a single-column version of the ECMWF model improves

the short--term forecast, but is not able to trigger precipitation where the model

background field did not have precipitation to begin with.

The study of Hou et al. (2000) shows how assimilation of TRMM rainfall rates

and Total Precipitable Water (TWP) derived from the TRMM Microvawe Imager

(TMI) into a single column version of the Goddard Earth Observing System (GEOS)

GCM improves diagnosis of clouds and radiation in areas of active convection, and

the latent heating distribution and large-scale dynamical fields in the Tropics, while

reducing systematic errors in forecasts. In this study, it is implied that the combina­

tion of both types of observations, and/or the introduction of similar measurements,

leads to the largest improvement in model prediction.

Two main conclusions can be drawn from these studies: the most obvious is

that assimilation of atmospheric condensate fields, whether in precipitation or non­

precipitating form can have beneficial impact on all aspects of model forecasts, even

on those not directly related to the assimilated field itself. The second is that the

more information the better. Assimilation of rainfall information and cloud informa­

tion has great potential for positive impact on model forecasts, and improvements

in understanding of moist physics processes.

1.3 On the potential of assimilation of cloud radar data

Application of weather radar data in conjunction with models is not a novelty.

Doppler radar-derived wind fields and reflectivities, sensitive to precipitation-sized

scatterers, have been assimilated successfully into cloud models, both for retrieval

purposes, and for improvements in model initialization. The work of Sun and

Crook (1997) shows the applicability of a four-dimensional variational assimilation

of Doppler radar data into a cloud-scale model with warm rain parameterization

for optimal retrievals of winds and rainwater mixing ratio. In a follow-up study

(Sun and Crook, 1998), the authors show results from an observational case from
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the Convection and Precipitation/Electrification Experiment (CaPE); the 3D wind,

temperature and microphysical structure of the storm are obtained by minimizing

the difference between radar-observed radial velocities and rainwater mixing ratios

derived from radar reflectivities and their model equivalent. Verification with inde­

pendent aircraft data shows good agreement in the general structure of the storm

(vertical velocity, buoyancy and water vapor mixing ratio), demonstrating that inclu­

sion of radar data has the potential to improve general model prediction of variables

that are not directly observed. However, assimilation results for rainwater quan­

tities are sensitive to assumptions in deriving the mixing ratios from reflectivities.

In both these studies, the focus is more on optimal retrievals of winds and precip­

itation by combining Doppler radar observations and a cloud model, rather than

purely improving initial conditions for better model forecast. Wung et al. (2000)

show positive impact of radar data variational assimilation for simulation of a severe

thunderstorm, but they find large algorithm sensitivity to model microphysical and

turbulence parameterizations. They conclude that assimilation of radar observations

demonstrates the need for improved parameterizations that would allow models to

more accurately reproduce observed systems. A different approach for the use of

Doppler radar reflectivity is suggested by Rogers et al. (2000). The radar data are

used to tell the model where the deep moist convection is occurring, and conse­

quently to activate the convective parameterization scheme. Although this type of

data assimilation is non-optimal, it results in an improvement in model initialization

and forecasts of precipitation and mesoscale environment. Even with the limitations

indicated by the authors, related to specific model parameterizations, these studies

emphasize that assimilation of radar fields is feasible, and that radar observables

contain information regarding the general state of the atmosphere through coupling

of microphysical and dynamical processes.

Moreover, recent technological progress has granted the possibility of using radar

at different wavelenghts to obtain detailed cloud information for clouds normally

undetected by standard weather radars. Cloud radar data are good candidates for

assimilation purposes due to their high sensitivity to cloud bulk properties (particle

mean size and number concentration, Ice/Liquid Water Content, particle fallspeed).
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At the same time, the radar mapping is conceptually simple, and can be easily in­

corporated as the observational operator in an assimilation system. For most types

of ice clouds, the radar equation is simplified due to the fact that the Rayleigh ap­

proximation can be invoked, attenuation is weak, and a semi-analytical expression

for radar reflectivity can be derived. Most mesoscale models contain bulk micro­

physics parameters and prognostic variables from which the model equivalent radar

reflectivity can be derived. There is a wide range of empirical relationships, based

on both in-situ measurements and models that can be used to convert simply from

model Ice Water Content (or similarly Liquid Water Content) to equivalent reflec­

tivity (Liu and Illingworth (2000); Matrosov (1999); Liao and Sassen (1994)). For

these reasons, assimilation into numerical forecast models appears as a viable novel

application of cloud radar data.

1.4 Outline of research

This study is aimed at showing the feasibility and the benefits of assimilating cloud

information derived from radar data into two cloud models- a one-dimensional time­

dependent cloud ice growth model and a full-blown mesoscale model. Results are

relevant for possible assimilation of radar data into large-scale operational models.

The focus is on ice clouds, but the concepts and techniques presented are general

and can be applied to water clouds4 as well. The steps taken to achieve these goals

are summarized in what follows.

• A cloud resolving model, the CSU Regional Atmospheric Modeling System

(RAMS) developed by scientists at Colorado State University and the *ASTER

Division of Mission Research Corporation, was used in numerical simulations

of cirrus clouds. Sensitivity of the model to changes in various parameters

relevant to the formation and evolution of ice clouds was investigated using

an idealized cirrus test case. Model results were compared with other cirrus

models in the context of the GEWEX Cloud System Study (GCSS) Cirrus

4Application to mixed phase clouds, although conceptually possible, would need further refine­

ments in the observational operator, and introduction of data other than cloud radar only.
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Working Group (WG2) modeling and intercomparison activity (Starr et al.,

2000). The focus of this research was to assess model skill at cirrus cloud

prediction under "controlled" conditions.

• As a continuation of model skill assessment, the CRM was then used to sim­

ulate an observed cirrus case from the ARM-Unmanned Aerospace Vehicle

(UAV) Spring '99 campaign (Stephens et al., 2000a). Airborne radar obser­

vations were used in the evaluation of the model performance. A statistical

technique adapted from Hollingsworth and L6nnberg (1986) was introduced

to identify model biases and perform an error analysis.

• The knowledge acquired from studying cirrus formation with RAMS was ap­

plied to develop an ice growth model based on Mitchell (1988). This model

and its adjoint were used to investigate the feasibility of variational assimi­

lation of radar reflectivities with a series of experiments. These experiments

included the use of the adjoint to study model sensitivity to external inputs

(atmospheric state variables), initial cloud variable conditions, and model

parameters (fallspeed-diameter and mass-diameter parameterization coeffi­

cients). Synthetic radar reflectivities and real measurements from the above­

mentioned ARM-UAV case as well as from ground-based observations from

the ARM-SGP site were both used in the assimilation experiments.

• Based on results obtained with the one-dimensional model, further experi­

ments leading to four-dimensional variational assimilation of radar data were

performed using the adjoint of RAMS developed by Dr.T. Vukicevic, coordi­

nator of the Data Assimilation group at the Cooperative Institute for Research

in the Atmosphere (CIRA).

• As part of the assimilation work, a semi-analytical radar "mapping" was in­

troduced and tested. As a side result, a new retrieval of IWC using radiometric

and radar observations was developed. A few results from this retrieval are

presented in appendix A.
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The dissertation is structured in three parts. The first part comprises this intro­

duction and Chapter 2 which provides basic data assimilation concepts. The second

part includes chapter 3 which describes the cirrus modeling work accomplished with

the Cloud Resolving Model. The third part, which is the most substantial and novel

aspect of this research, is dedicated to the description of the one-dimensional cirrus

model, and its use in variational assimilation experiments (Chapter 4), and the dis­

cussion of the adjoint experiments using RAMS (Chapter 5) which are the prelude

to four-dimensional cloud data assimilation. Chapter 6 summarizes and concludes

this work. A brief summary of every chapter is offered here.

In Chapter 2, some introductory concepts regarding data assimilation with spe­

cific focus on the variational approach are presented. All components of a variational

assimilation system are introduced and described in detail, with particular care in

the definition of the adjoint. An example using the potential vorticity equation is

given to better illustrate theoretical concepts. The importance of error statistics is

also discussed. The material of this chapter is largely of a review nature.

In Chapter 3, experiments performed using RAMS to assess model skill in

cirrus prediction are presented. Section 3.1 describes the current problems in rep­

resentation of cirrus clouds in cloud resolving models. Specific reference is made to

the intercomparison activity of the GCSS Cirrus Working Group. In section 3.2 a

general overview of source of uncertainties in cloud models is presented. Concrete

examples are presented, using sensitivity studies performed with RAMS. In section

3.3.1, a description of the RAMS model is presented. A cirrus case study from the

1999 ARM-DAV observation campaign is presented in section 3.4 and used to eval­

uate the CRM performance. In section 3.5, an error analysis for the RAMS model

is presented. The final section (3.6) summarizes the main conclusions regarding the

cirrus modeling activity with RAMS. The material in this section is novel to the

extent that the modeling study is applied to case study data analyzed specifically

for this research.

Chapter 4 introduces the new ice cloud model that was developed specifically
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for this study. Section 4.1 provides the rationale for the development and the use

of a simple cloud model. Section 4.3.1 provides a detailed derivation of model

equations. In section 4.3.5, observations and RAMS cirrus simulations are used as

benchmark for the evaluation of the model. The derivation of the adjoint of the

cirrus growth model is presented in section 4.4.1. Application of the adjoint for

sensitivity studies is offered in section 4.4. Assimilation experiments using synthetic

and real observations are discussed in the remainder of the chapter. The content of

this chapter is original.

Chapter 5 describes sensitivity experiments performed with the RAMS adjoint.

The adjoint forcing is derived from synthetic reflectivities and used to understand

mesoscale model response to introduction of radar data. While the RAMS adjoint

system was developed by other investigators, the application of the model adjoint

and the inclusion of cloud radar data in a pre--4DVar study is original work.

Chapter 6 offers a summary of the entire dissertation work, and draws some

conclusions concerning the relevance of these experiments to the assimilation of

cloud radar data into NWP models.

Appendix A introduces the radar retrieval work that was generated from the

preparation for the assimilation experiments.
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ABC of data assimilation

2.1 Introduction

Data assimilation has a famous ancestor in K. F. Gauss. In his Theoria Motus

Corporum Crelestium (1809), he lays the basis for estimation theory in his attempt

to evaluate the orbits of comets and planets from incomplete astronomical data.

"This problem", he writes, "can only be properly undertaken when an approximate

knowledge of the orbit has been already obtained, which is afterward to be corrected as

to satisfy all of the observations in the most accurate manner possible". These words

recognize both the importance of having a formal knowledge of the phenomenon (i.e.

a "model") and of having observations to correct and improve the model prediction.

An analysis that includes model prediction and measurements is more accurate

and powerful than either one alone. Data assimilation can hence be defined as an

analysis technique in which the observed information is integrated into the model

state with respect for the physical properties and time behavior of the system.

As such, it is an essential component of any modeling activity. Each time model

parameters are adjusted to better match observed fields, this represents, however

rudimentary, a form of data assimilation. The difference between these empirical

forms of data assimilation and the more sophisticated assimilation systems is only in

the mathematical complexity, while the underlying goal remains to use observations

and models together, thus obtaining a more realistic representation of the physical

phenomenon, and with that, the sense that we are closer to understanding the

physical world which we live in.

The specific object of atmospheric data assimilation (hereafter, DA) is to produce

a regular, physically consistent representation of the state of the atmosphere from

21
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a series of measurements often sparse and uneven in time and space. DA not only

combines optimally observations with model estimates, but it confronts theory with

reality, which can potentially lead to improvements in both model and observing

systems.

In this section we introduce a general theory of data assimilation techniques in

atmospheric science, with special emphasis on variational data assimilation.

2.2 Data assimilation techniques

In their overview of assimilation concepts, Ide et al. (1997) divide DA techniques

into two broad categories: sequential assimilation and variational assimilation. In

sequential assimilation, observations are integrated in the model at each time they

are available, and used to "update" the model prediction. This procedure can thus

be described as a sequence of analyses performed at observation times, and of in­

tegrations of the model between successive analyses. This feature makes sequential

assimilation well adapted for NWP. The drawback of this type of DA is that obser­

vations only influence the estimated model state at later times, and the information

is propagated from the past to the future. For real-time weather forecasting, this is

not an issue, but it can be for reanalysis activities, in which it is desirable to use an

algorithm capable of carrying information both forward and backward in time. Ex­

amples of sequential DA are, in order of complexity: interpolation of observations,

dynamic initialization by repeated insertion of data (also known as Newtonian re­

laxation or "nudging", following the terminology of MacPherson (1991)), Cressman

Successive Corrections (Daley, 1991), Optimal Interpolation (Lorenc, 1981), and

Kalman Filter (Cohn, 1997). A general overview of these methods is presented in

Lorenc (1986).

In variational DA, all observations available over the assimilation period are in­

corporated at once in the adjustment process, so they all influence the final model

state. Since the analysis is adjusted to the observations over the whole interval,

the result is a smooth trajectory. For this reason, variational algorithms are also

called smoothing algorithms. Examples of variational methods are offered by XD-
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Var algorithms, where X represents the dimensionality of the var system, and can

be equal to 1, 2, 3 or 4. Sometimes the designation l+lD-Var, as opposed to 2D­

Var, is also employed to remove the ambiguity related to the use of one spatial and

one temporal coordinate (l+lD) versus the use of two spatial coordinates (2D).

It is important to make this distinction since the inclusion of the time dimension

brings about the true potential of variational methods, which is the propagation of

information backward in time, allowing for the inclusion of future information in

the assimilation. In this sense variational assimilation systems that do not include

the time dimension, such as 3D-Var systems, are closer to sequential algorithms,

although the details of actual assimilation procedure are different. Current N\VP

models implement operational 3D and 4D-Var assimilation systems (i.e. for the Eu­

ropean Center for Medium-range Weather Forecasts model see Rabier et al. (2000),

Mahfouf and Rabier (2000) and Klinker et al. (2000); for the National Centers for

Environmental Prediction model see Parrish et al. (1997)).

The focus on the remainder of the chapter will be on two of the above-mentioned

assimilation techniques: nudging and variational data assimilation (VDA). The rea­

son for this choice comes from the fact that nudging is frequently used in mesoscale

cloud modeling. An example is provided in chapter 3 with cirrus simulations ob­

tained from the RAMS model nudged with a large-scale forecast provided by the

European Center for Medium-range Weather Forecast. Variational assimilation is

discussed in depth since this technique was used in the assimilation experiments

presented in chapter 4 and 5. We feel it is important to provide a concise, yet com­

plete description of the basic theory of variational assimilation to allow for a better

understanding of the terminology used in the remainder of this work.

2.2.1 Nudging technique

The nudging data assimilation (NDA) technique (Anthes, 1974) consists in relax­

ing the model state to observations1 by adding a non-physical diffusive term to the

1In mesoscale models, "observations" can also be taken to be fields from a NWP large-scale

analysis. Fields generally nudged are winds, temperature and pressure. This type of NDA was
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model equations. The nudging terms are defined as the difference between the obser­

vation and the model solution multiplied by a nudging coefficient. In mathematical

(2.1)

terms,
ax = M(x) + (Xobs - x)
at Tng

where the first term on the RHS represents the physical forcing terms, and the

second term represents the nudging contribution. Solution of (2.1) depends both on

the initial condition and on the nudging coefficient, Tng . The value of Tng , also called

the relaxation coefficient, is generally chosen by numerical experimentation so as to

keep the nudging term small in comparison with the dominant forcing terms in the

governing equations, yet large enough to impact the simulation. As a general rule

Tng should increase with increasing observational error and increasing spatial and

temporal separation. The large sensitivity of the model solution to the choice of

nudging coefficient, which can force the model solution away from its physics and

violate physical constraints like mass and energy conservations, and the lack of an

optimum way to define the nudging coefficient, as found by Stauffer and Seaman

(1990), represent the major limitations of this technique. Another limitation is

that one can only nudge model-predicted variables and not derived variables such

as radar reflectivity, radiances, etc. Some investigators have suggested to estimate

nudging parameters using variational data assimilation (Zou et al., 1992; Stauffer

and Bao, 1993). Results from these studies show that optimal NDA is feasible, and

performs well as far as quality of assimilated fields. General advantages of the NDA

are the relative simplicity of implementation and the low computational cost.

2.2.2 Variational data assimilation

The variational technique applied to data assimilation was first introduced in op­

timal control theory as a means to "control" the output parameters of a complex

model by acting on the input parameters (Lions, 1971). A central component in

optimal control theory is represented by the adjoint of the tangent linear model as

a tool to efficiently compute local gradients of a scalar function of the model input

used in the RAMS simulations presented in chapter 3.
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and output parameters. The idea of using this technique in meteorological problems

was first suggested by Marchuk (1974). Since then several authors have used it in

various applications (sensitivity studies as in Hall et al. (1982), quasi-geostrophic

theory as in Lewis and Derber (1985), ocean modeling as in Bennett and Mcintosh

(1982), to mention only a few of the earlier studies). An excellent review of the

variational methodology is presented in Le Dimet and Talagrand (1986).

At the core of variational data assimilation is the search for an optimal solution

which minimizes the distance between model state and observations expressed in

terms of a cost function. Optimization of the cost function is performed using the

gradient information provided by integration of the adjoint model. The variational

problem can be cast in the following way. The nonlinear dynamical model predicts

the time evolution of the state vector x given an initial condition, Xo:

x = M(x, xo, x). (2.2)

where x is the time derivative of x. This can also be expressed in the following way:

x - M(x, xo, x) = G(x, x, xo) = o. (2.3)

Let's assume that we have a discrete series of observations Yobs at given times,

tabs over the assimilation interval [0, T]. Over the same interval of time, the model

solution is obtained by integration of equation (2.2). The cost function can be

defined as follows:

where PCr) is a mapping from the state variable space into the observational space.

The introduction of the function 6D(t - tabs), Dirac's delta, allows us to represent,

with a continuous function, observations that are discretely distributed in time.

Errors in the mapping (representativeness errors), as well as observational errors,

are included in the error covariance matrix W. The inverse of W, which appears in

(2.4), represents a weighting of the distance between model prediction and observed

state which takes into account uncertainties in observations and mapping.
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The optimal model state is obtained by minimization of the cost function a
with respect to a set of control parameters (i.e. the initial condition, the boundary

conditions, etc.), subject to the constraint 9 (the dynamical model). The inclusion of

the dynamical model as a constraint in the minimization process ensures consistency

of optimal control parameters with model physics since the solution is forced to be in

the model space. If the model is assumed perfect, and no model errors are included,

as in the standard variational formulation, it is said that the model is used as a

strong constraint (Sasaki, 1970).

Since the number of observations can never equal the number of possible model

states, especially when the model is a global high-resolution NWP model, the anal­

ysis problem is underdetermined (Lorenc, 1986). To address this issue, common

practice is the introduction of prior knowledge, expressed mathematically with the

inclusion of a background term Xb and its error covariance matrix, B in the definition

of the cost function:

a= ! iT(P(x) - YobsfW-1(p(x) - Yobs)r5D(t - tobs)dt
2 0

1 )T 1 )+ "2 (X - Xb B- (x - Xb . (2.5)

In NWP, the background is represented by the model forecast prior to the anal­

ysis, i.e. prior to the inclusion of new observations at successive times. Depending

on the specific application, the background information can also be provided either

by climatological records or by a global model reanalysis. More general expressions

of the cost function may include a model error term ((Menard and Daley, 1995),

(Zupanski, 1997)) and other so-called penalty terms to control spurious numerical

modes introduced in the model initialization by the assimilation process (i.e. gravity

wave control).

The quadratic form commonly chosen for the cost function allows establishment

of a link between estimation theory and optimization in the context of the nonlinear

least-squares technique. In general, it is also possible to choose a cost function that

is non-quadratic, by defining a different measure for the distance between model

and observations.



Chapter 2. ABC of data assimilation 27

Proceeding with the discussion of the variational approach, the Lagrangian of

the system is introduced:

c = 8+ /,T ),9dt (2.6)

where A is a parameter function called the Lagrange multiplier. The constrained

optimization consists in finding the minimum of the cost function subject to the

constraint provided by the physical model. This is obtained by minimizing the

Lagrangian, which entails, in turns, solving the Euler-Lagrange equations. To obtain

this set of equations, also known as the adjoint system, we have to evaluate M:.J and

set it to zero, according to the least-action principle. Note that these equations

are specific to the dynamical model under consideration and the preassigned cost

function. An example of derivation of Euler-Lagrange equations for a relatively

simple system is provided in section 2.3.2.

In the search for the minimum of !:..J, the adjoint system is integrated backward

in time, and its solution at time t = 0 represents the gradient of the Lagrangian

with respect to the initial condition. If the initial condition that was chosen at the

beginning of the simulation were perfect, so that, at time T, the cost function is at

its minimum, meaning that the model prediction is as close to the observations as

permitted by the error statistics, then the gradient at time t = 0 would be zero, and

there would be no need to correct the model prediction. Since this is rarely the case,

the adjoint solution, which represents the gradient of the cost function with respect

to the control variables, is used to march toward the minimum of the cost function.

Many optimization methods make use of the gradient information to optimize a

function, for example steepest descent or conjugate gradient algorithms. An accurate

description of the optimization procedure used in this study is offered in chapter 4.

The next section provides mathematical proof of the connection between estimation

theory and variational optimization through the introduction of the quadratic cost

function. In section 2.3 the components of a variational DA system are described in

detail following Bouttier and Courtier (1999).
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In atmospheric data assimilation problems, the cost function describes the difference

between model variables and observations weighted by their statistical significance.

Provided that this function is a quadratic form, and the mapping operator is linear

or weakly non-linear, a derivation of the cost function can be outlined from general

estimation theory principles. This is demonstrated in this section.

The analysis problem in estimation theory can be generalized using the concept

of conditional probability. According to Bayes' theorem, the joint probability of a

given model state x and an observational state Yobs occurring together is given by:

p(x 1\ Yobs) = P(XIYobs)P(Yobs) = p(Yobslx)p(x) (2.7)

where p(XIYobs) represents the probability of having a particular model state given

the observational state (what we are after); p(x) represents the probability of having

a given model state independent of the observations (the prior knowledge); P(Yobs) is

the probability of having a given observation (equal to 1 if the measurements have

been made and we know the value of Yobs) , and p(Yobslx) represents the probability

of having an observational value, given a model state. If the model state is projected

into the observational space via the mapping introduced in equation (2.4), p(Yobslx)

peaks at Yobs = P(x), but it is not exactly equal to a Dirac distribution because of

representativeness and observational errors.

Two main criteria can be applied to optimize P(XIYobs):

1. maximum likelihood

2. minimum variance

If we assume that the statistics are Gaussian, i.e. all variables are normally

distributed around their mean with predefined variance, the best estimates given by

the two criteria coincide, due to the fact that the Gaussian probability distribution

function (pdf) is symmetric. The quadratic form of the cost function is derived

making this assumption. The proof follows. Writing the pdf as Gaussian we have:
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p(x) Cl exp { - [~(x - Xb)TB-1(x - Xb) } ] (2.8)

p(Yobslx) = C2 exp { - [~(YObS - P(x)f'V-1(Yobs - P(x))] } (2.9)

where Cl and C2 are normalization constants.

Substituting in (2.7), we have:

p(XIYobs) = CIC2 exP {- [~(x - xbf'B-1(x - Xb) + ~(Yobs - p(x))TW-1(Yobs - P(x))]}

(2.10)

Optimization of (2.10) implies minimization of the exponent, which is exactly

the cost function that is minimized in variational assimilation. The solution of the

variational data assimilation problem represents the maximum likelihood/minimum

variance estimate of the optimal state, assuming all error statistics are Gaussian.

In this framework, and for linear (or semi-linear) observational operators2
, 3D-Var

DA and statistical interpolation with least-square estimation, are exactly equiv­

alent (Courtier, 1997). The equivalence ceases to exist, when the cost function

is non-quadratic, i.e. error distributions are non-Gaussian. Bayes' theorem can

still be applied for generic pdfs, but mathematical solution to the maximum likeli­

hood problem might involve resorting to approximations of the Gaussian statistics

(Lorenc, 1984).

2.3 Components of a VAR system

2.3.1 The dynamical model

In principle any model that describes the physical system under consideration can

be a good candidate for the DA problem. In practice, some dynamical models or

some parameterizations are more suitable than others. In NWP, for example, it is

customary to solve the dynamical equation in spectral space where differential equa-

2If the observational operator is nonlinear, the least square formulation needs to be extended

to nonlinear-least squares.
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tions are reduced to algebraic equations via the introduction of ad hoc transforms3.

Likewise, for certain classes of problems, it may be more convenient to solve the

assimilation problem in spectral space, whereas for others the analysis might give

better results if carried out in physical space. A similar question can arise when

considering the variable with respect to which the optimization is performed (control

variable). There are several variables that are routinely used in models to describe

the vapor distribution in the atmosphere (relative humidity, specific humidity, dew­

point temperature); although they all represent the same physical field, one can be

more convenient than the other to assimilate. Sometimes it can be a function of a

model variable that gives the best results.

Regardless the choice of model description, or of control variable, two things are

relevant before embarking on any type of DA:

1. assessment of model skill, i.e. the characterization of model performance in

representing the physical phenomenon;

2. evaluation of model sensitivities to change in initial or boundary conditions,

and/or model parameters (which are all possible candidates for the role of

control variables).

The first activity is crucial if we hope to obtain any type of improvement in the

model prediction via inclusion of data. If the model fields are far from what the

observational data indicate, it may be impossible to obtain a solution which satis­

fies, even within the given uncertainties, both the model and the observations. This

is particularly true in "standard" VDA, where the model error is not considered.

The second point underscores the importance of understanding the response of the

dynamical model to various forcings, which is in turn important when choosing con­

trol variables. The evaluation of model sensitivities can be carried out efficiently by

introducing the adjoint model. A general description of adjoint theory is presented

in the upcoming section.

3 An example of that is the use of Fourier transforms to solve for the zonal structure, and of the

spherical harmonics basis functions to solve for the meridional structure of the atmospheric flow

on the sphere.
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Given a linear operator A on the Hilbert space H and an inner product on H, the

adjoint operator, At, is defined as:

(Ax, y) = (x, Aty), 't/x, y E H (2.11)

The adjoint is a linear operator which always satisfies conditions of uniqueness

and existence in a finite-dimensional Hilbert space with respect to the specific choice

of inner product4
• For linear discrete operators that can be represented in matrix

form, the adjoint is simply the transpose. The definition (2.11) can be used to derive

the adjoint and establish its validity if a perfect (within numerical uncertainties)

equality is recovered when the inner product is computed with A and At.

In DA, the term "adjoint" is usually shorthand for adjoint of the dynamical

model (or of its tangent linear, if the dynamical model is nonlinear). The role of

the adjoint in variational assimilation is crucial. The adjoint solution allows for an

effective and fast computation of the gradient of the cost function. In theory, it

would be possible to compute the gradient by perturbing each point in time and

space, and then applying a finite difference or similar technique (forward sensitivity).

However, if the model domain is large, and the assimilation interval long, this may

be a computationally intensive task. The solution to this problem is to compute the

gradient with a single adjoint integration (adjoint or backward sensitivity). Provided

that the adjoint equations can be derived and solved, this results in an efficient

tool. The theoretical foundation for this use of the adjoint is discussed in detail by

Talagrand and Courtier (1987), and summarized briefly here.

Consider a scalar function of x in the generic Hilbert space, and let it be the cost

function5
, 8, introduced in section 2.2.2. The differential of 8 with respect to x, c58,

can be expressed symbolically using the inner product notation introduced earlier

c58 = (\7x8, c5x), (2.12)

4Most commonly, the Euclidean inner product is chosen.
5The function adoes not necessarily have to be the cost function usually introduced in vari-

ational DA, but can be any scalar function of model variables, representative of the particular

model aspect under consideration.
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where \7xO represents the gradient of 0 with respect to x. Suppose x is a differen­

tiable function of the variable y, x = F(y). The differential of x is equal to

(2.13)

where F ' = a~~y) is the Jacobian (tangent linear) operator. By rewriting o(x) as

o(F(y)) and substituting equation (2.13) into (2.12), the definition of adjoint in

(2.11) can be used to obtain

(2.14)

where F't represents the adjoint of the tangent linear operator F'.

By definition of gradient we have that

(2.15)

Equation 2.15 provides the basis for the use of adjoint operators in variational

assimilation, and more in general in linear sensitivity studies. If, for example, we

equate F with the dynamical model M of equation (2.2), and we equate y with the

initial condition Xo in the same equation, we have that the variation of the cost

function induced by a variation of initial condition (control variable) is equal to the

product of the adjoint of the tangent linear of the dynamical model times the change

of the cost function due to a variation in model solution x. To find the gradient

of the cost function with respect to the initial condition xo, a series of simple steps

can be taken: perturb xo, compute the new model solution x, compute the gradient

of 0 with respect to x, evaluate the adjoint of the tangent linear of the model and

multiply it by \7xO. An example taken from a meteorological application will help

clarify these concepts.
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We consider a simple differential equation describing the temporal evolution of the

linearized potential vorticity, (, for a shallow water system6 on an j-plane7 :

a((t) + Qo?te-at = 0
at

(2.16)

Equation (2.16) is linear with respect to the unknown ((t) and all quantities that

appear in it are nondimensional. The term Qo:.2te-at represents a mass source/sink.

The potential vorticity increases locally if there is a mass sink (Q < 0), and de­

creases if there is a mass source (Q > 0). Local conservation during the geostrophic

adjustment process occurs for Q = O. The parameter a controls the time-dependent

part of the forcing (small a corresponds to slow forcing, large a corresponds to rapid

forcing). The solution of equation (2.16) depends on the initial conditions, and on

the specification of the mass source/sink parameters.

Two type of problems can be addressed using variational DA for the system

described by (2.16):

1. Given a set of observations, (obs(t), at observation times, tobs, over the interval

[0, T], determine the initial condition on initial vorticity such that

(2.17)

is minimized.

2. Using the same observations, determine the optimum value of a.

6The shallow water system describes the dynamics of an incompressible (constant density) fluid

with a free upper surface. The fluid is supposed to be in hydrostatic balance, i.e. the vertical

pressure gradient is in balance with the gravity force, 8pj8z = -pg. Even though, through the

hydrostatic assumption, the vertical structure is omitted, the shallow water equations are used

extensively in geophysical fluid dynamics to describe the horizontal aspects of the flow. Examples

include horizontal wave propagation and barotropic instability problems (Schubert, 1997).
7The f-plane approximation consists of assuming the Coriolis parameter f constant with lati-

tude.
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The initial condition and the parameter a represent the control variables in the

optimization problem. The Lagrange function is written following (2.6):

(2.18)

The Euler-Lagrange equations are derived by taking the variation of L with

respect to the model solution ((t), in the neighborhood of a minimum, and setting

the variation to zero, as discussed in the general variational theory section 2.2.2.

(2.19)

where bJ represents the variation of the cost function induced by a variation in

model solution and is equal to JoT W- 1(((t) - (obs(t))bD(t - tobs)dt. Note that since

(2.16) is linear, only the time derivative term "survives" in the variational equation

(2.19).

If we integrate the second term on the RHS of (2.19) by parts we have:

iTA(t) ab[((t)] dt = [A(t)b((t)]6' -iT a[A(t)] b((t)dt. (2.20)
o at 0 at

At the minimum, bL = 0, and since the variation b( is arbitrary, the following

equation has to be satisfied:

subject to boundary conditions

A(O) = A(T) = 0

(2.21)

(2.22)

Equations (2.21) and (2.22) represent the adjoint system. The adjoint equation

(2.21) is linear in A(t), consistent with the definition of adjoint operator, and it

involves a backward integration in time (the partial derivative with respect to time

is in fact multiplied by a negative sign). The term including the observations,

W- 1(((t) - (obs(t))bD(t - tobs) , represents the derivative of the cost function with

respect to ((t), and acts as an external forcing in the adjoint equation. The adjoint

solution is dependent on the strength of this forcing, Le. on the weighted difference
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between model prediction and measurements. Note that, had the starting model

equation for the vorticity not been linear, linearization would have been necessary

in order to derive the adjoint equation. This linearization is always implicit in

the variational procedure since, to write bL, we apply a small perturbation to the

model solution, and we retain only the first order (linear) term, neglecting higher

order ones.

Next step is to show explicitly that the adjoint solution at time t = 0 represents

the gradient of the cost function with respect to the initial condition as shown for

the general case in section 2.3.2. Consider the variation of the Lagrangian with

respect to the initial condition on ((t):

8L
bL = 8((0) b«(O). (2.23)

Assuming the Lagrangian is not at its minimum and that the adjoint equation

(2.21) is still satisfied, (2.19) reduces to

bL = [A(T)b((T) - A(O)b((O)]. (2.24)

By requiring that the adjoint solution is zero at time t = T, Le. A(T) = 0, and

by taking the partial derivative of (2.24), it is easily seen that the adjoint solution

at initial time represents minus the gradient of the Lagrangian with respect to the

initial condition, Le.
8L

8((0) = -A(O). (2.25)

The gradient provided by the adjoint solution is used to find the optimal initial

condition, Le. the initial condition that ensures the forecast of potential vorticity

will be as close as possible to the observed values. There are a few optimization

methods which make use of the gradient information8 to optimize a quadratic (or

semi-quadratic) function. The most commonly used are Steepest Descent9 (SD)

8For highly nonlinear multidimensional problems, gradient methods are ineffective, and alterna­

tive methods, such as simulated annealing (Kirkpatrick et al., 1983) and genetic adaptive (Whitley,

1994) algorithms should be used.
9At present, the Steepest Descent method is more important as a theoretical rather than prac-

tical reference by which to test other methods. However, steepest descent "steps" are often incor­

porated into other methods.
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(Luenberger, 1984) and Conjugate Gradient (CG) (Gilbert and Nocedal, 1992) al­

gorithms. The principle on which both these methods are based is that the gradient

direction (or the conjugate direction) is the one that allows to move in an "optimal"

way toward the minimum. A mathematical proof of this, using the Lagrangian least

action principle, is presented in Vukicevic (2000). Other optimization methods cur­

rently used are Newtonian methods which are based on the necessary condition of

zero gradient at the optimum point. An overview of this type of algorithms can be

found in Jr. and Schnabel (1983). Regardless the specific choice of the method, the

search for the optimal point is generally carried out through an iterative procedure.

At each iteration, the new value of the control variable is updated as follows

(2.26)

where n is the iteration number, and (In is a variable stepsize lO . As mentioned

earlier, this approach to estimating the gradient is effective, since only one adjoint

integration is required to obtain the gradient. The extension to the use of adjoint

in linear sensitivity studies, i.e. to investigate model response to variations in initial

and boundary conditions and/or model parameters, is straightforward.

Utility of the adjoint solution is further explored in the remainder of this section

in which we address the problem of optimal parameter estimation using the varia­

tional technique. Consider the variation of the Lagrangian induced by a variation

of the parameter a:

bL = bJ + rT

.\(t)_o_ (O((t) + Qa2te-at ) b((t) dt
fa o((t) ot

+ iT .\(t)Qt2ae-at (2 - at)ba dt. (2.27)

Assuming again that the adjoint equation holds and its solution is known, the

variation of L with respect to a is

oL iToa = a .\(t)Qt2ae-at (2 - at)dt. (2.28)
_________~_----=c..:::..

lOThe stepsize can also be optimized to have faster convergence, using the variational procedure.

This requires two model evaluations, and can be expensive computationally.
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If the spatial component of the mass source/sink term is known, we can inte­

grate (2.28) to obtain the gradient ~~ and find iteratively the optimum value of the

parameter a:

(2.29)

This simple examplell illustrates the power of the variational technique whose

mathematical beauty and generality make it applicable to a broad range of physical

problems. In chapter 4 an application of adjoint and variational concepts to the

study of cirrus clouds with a microphysical model describing the cloud time and

vertical evolution is presented.

2.3.3 The observational operator (mapping)

In section 2.2.2 we introduced the notion of the observational operator, P(x). This

operator can be thought of as a mapping from the model space into the observational

space12 . The equation that defines this mapping is

Yobs = P(x) + ty, (2.30)

where ty represents the observation error, which is the sum of the instrumental error

and the representativeness error. The latter is due, for example, to discretization

and/or interpolation, or to errors in the observational operator itself. A detailed

discussion of errors is given in section 2.4.

There are many types of observational operators. For meteorological variables

such as specific humidity and temperature, which are commonly carried as prog­

nostic or diagnostic variables in any model, if the observations are co-located with

the model grid-points, P(x) is equal to the identity matrix. If observations are

available at locations that are noncoincident with model points, an interpolation,

llThe example presented here is an adaptation of a similar problem discussed in the class notes

of the course on Data Assimilation held by Dr. Tomislava Vukicevic at Colorado State University,

Department of Atmospheric Science in Spring 2000.
l2rn optimum estimation retrievals, this is also called the forward model (Rodgers, 1976). Here

we adopt the DA terminology to avoid confusion with the dynamical model M introduced in section

2.2.2.
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usually linear must be performed. The interpolation operator belongs to the cate­

gory of observational operators. For variables that are not directly carried in the

model, such as satellite radiances or radar reflectivities, the observational operator

is represented by a radiative transfer model or by a radar return model. These are

examples of non-linear operators. Under the assumption that these operators are

weakly nonlinear, a least square analysis can be still performed by considering the

Jacobian of the mapping (tangent linear approximation) (Courtier, 1997; Bouttier

and Courtier, 1999). Variational techniques allow also for the application of (highly)

nonlinear operators, although the existence of multiple minima for the cost function

can prevent convergence to the true absolute minimum, and the optimal solution

might not be representative. In an operational context, to avoid the problem of an

expensive search for the minimum, the nonlinear observational operators are lin­

earized (e.g., Janiskova et al., 1999), and an incremental technique is implemented

for which only a first order correction to the background is computed using the vari­

ational approach, and the analysis is updated using this correction (Mahfouf and

Rabier, 2000).

In section 4.3.4, the observational operator (radar reflectivity mapping) chosen

for the assimilation project is described and discussed. Another example of an

observational operator is provided by the radiative transfer model introduced in

appendix C.

2.3.4 The background

The background13 can be provided either by results from a previous model forecast,

as it is in NWP models, or from climatological records. If the background is pre­

scribed from a previous model forecast, biases and random errors in the forecast

model have to be characterized in order to define the background error covariance

matrix that appears in the definition of the cost function (2.5). Background er­

rors are usually correlated both in time and space. A common assumption is that

the background error is stationary in time, and some parameterized form of the

13In retrieval theory, the background is also known as a priori.
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background error covariance matrix can be described as a function of the spatial co­

ordinate only (Daley, 1991). The task of computing the background error covariance

matrix is challenging. For standard meteorological variables, such as temperature

and specific humidity, forecast background errors have been subject to accurate anal­

ysis. The general approach in operational models is to estimate error covariances

based on statistical comparisons with observations (Hollingsworth and L6nnberg

and L6nnberg and Hollingsworth, 1986).

However, if the analysis is performed with respect to a variable for which there

is little background information available, such a is the case for cloud or precipita­

tion fields, and this information is not reliable, it is safer to assume that the error

covariance is infinite, i.e. B-1 = 0, and just perform the optimization with the

information provided by the measurements. The problem with this approach is that

convergence could be slow if achievable at all, especially if the discrepancy between

model fields and measurements is large. In general, the inclusion of a background

term ensures more stability and efficiency in the convergence of the optimization

algorithm, and it might be necessary when the problem is seriously undetermined

due to the lack of observations. When some confidence can be put in the back­

ground fields, the results of the optimization of (2.5), with the background term

included in the definition of the cost function, might reflect this confidence to the

extent that the optimized fields will not depart too largely from the background,

and the relative importance of the measurements will be decreased. This aspect of

the DA system is controlled by preassigning a background error covariance matrix,

and an observation covariance matrix of given relative magnitude with respect to

each other. Implications on the results of the analysis are further examined in the

following section.

2.4 The importance of error statistics

To the concept of error, a negative meaning such as in "mistake" is often associated.

Errors are indeed an admission that we don't know the "true" value of a physical

variable, and our representation of it, either through a model or through a measure-
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ment, is necessarily approximate. However, errors can also be regarded as a measure

of how good our knowledge of a certain phenomenon is, and as an instrument to

improve this knowledge.

In any assimilation activity, the definition of error statistics is important for a

real improvement of the analysis through inclusion of measurements. If we specify

observational errors that are much larger than, for example, the background errors,

the influence of the latter will be disproportionate, and no real improvement with

respect to the background will be seen in the analysis. This is especially undesirable

if the background is not capturing certain aspects of the physical phenomenon that

are instead present in the observations14 . Vice versa if the background is assigned

a large error, the correction will only depend on the measurements, and if observa­

tions are uncalibrated or biased, this can lead to an unrealistic departure from the

background, and to a poor analysis. An accurate error analysis is especially impor­

tant when assimilating fields that are not directly observed, but are retrieved from

the measurements. Retrieved variables may have additional biases introduced by

specific assumptions used in the retrieval. A discussion of the implication of using

retrieved quantities as observations is found in Marecal and Mahfouf (2000), where

the authors explore the sensitivity of assimilation results to specification of errors

in surface rainfall rates from the TRMM satellite Microwave Imager. In general, is

is preferable to assimilate measurements directly, although this may add the further

complication of having to specify a complex observational operator. The advantage

is that potential biases are reduced because there is no intermediate forward model

to characterize.

Another important type of error is the error in the forecast model itself. In

Kalman filter theory, the model error is explicitly included, but the high computa­

tional cost of this technique limits its applicability to operational systems. In 4D­

Var systems this error was historically neglected. However, the proven importance

14A classical example of this is the delay in the observational proof of the ozone depletion over

Antarctica, known as the "ozone hole". Observations which were showing this depletion were

discarded because they were not in accordance with climatological values used as background

information!
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of accounting for it has prompted the development of state-of-the-art variational

systems that include the evaluation of model errors. Inclusion of model errors in

4D-Var assimilation has been explored by Zupanski (1997); in her study, the model

is used as a weak constraint and model error is divided into a systematic and a

random component (first-order Markov variable). The latter is used as a control

variable and estimated as part of the assimilation process; the former is assigned

as a function of the initial model bias, and its value at a given time depends only

on the value at a previous time. Results from this study, show that relaxing the

assumption of the model as a strong constraint improves the performance of the

assimilation system, and the quality of the assimilated fields, at a reasonable com­

putational cost. The constant increase of computing power and speed might render

feasible the inclusion of model errors even in operational 4D-Var setups.

2.4.1 The modeling of background and observational errors

In general, errors are assumed distributed according to a Gaussian function, with

expected value equal to zero (unbiased observations and background) and assigned

variance. If there is a bias15 which can be estimated and removed, the assumption

of unbiased fields can still be satisfied. Dee and Da Silva (1998) show how forecast

bias can be estimated as part of the data assimilation process, based on an unbiased

subset of the observing system. In chapter 3, an example of how to estimate biases

in cirrus simulations from using actual radar observations is shown.

Error statistics for multidimensional systems are expressed in terms of error co­

variance matrices. The diagonal of this matrix contains variances for each model

variable; the square root of the variances represent the standard deviations. Off­

diagonal elements are the error covariances and represent the cross-correlations

between each pair of variables in the model. In general, observations are assumed

uncorrelated, i.e. the error covariance matrix W, introduced in (2.4), is assumed

diagonal. Although commonly used, this assumption might not be true for obser-

15Biases in observations may arise from incorrect calibration, whereas biases in background fields

may be due to inherent model features related to parameterizations.
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vations that are taken from the same platform (radiosonde, aircraft or satellite)

or when several successive reports from the same station are used. Observation

preprocessing can also generate artificial correlations between transformed variables

(for example when converting specific to relative humidity a correlation with tem­

perature is introduced) or when a retrieval procedure is applied to data. Errors in

the observational operators can also introduce correlations: this is definitely true

for interpolation operators, especially when the spatial distribution of observations

is on a finer scale than model resolution. For nonlinear observational operators,

errors and error correlations can be due to the specific approximations used. For

example, in radiative transfer modeling, a common approximation is to treat the

atmosphere as plane-parallel as opposed to three-dimensional; while this may be

acceptable for radiative transfer in a clear sky, it might not be right in radiative

transfer through clouds (due to 3D effects and inhomogeneities). The presence of

correlations between observations is not necessarily a negative feature. However,

since such correlations are hard to estimate, it is general procedure to neglect them.

Background biases and error covariances are also hard to quantify because they

may depend on many different factors that are case dependent (i.e. background

biases may vary with latitude and time of the year). If the model forecast is used

as background, then this is almost equivalent to estimating model error covariances,

very much like is done in a Kalman filter approach. In general, a crude estimate

is made by taking an arbitrary fraction of the climatological variance. A better

estimate is obtained by comparison with an analysis of good quality, or using an

observational method as described in Hollingsworth and Lonnberg (1986). Ideally,

background errors should be flow-dependent since they are expected to vary with

the weather situation. This can be obtained in a Kalman filter approach or in

4D-Var with the model treated as a weak constraint. A correct specification of

background errors is important not only for the goodness of the analysis but also

because correlations in background errors spread information in data sparse areas,

and contain information about model balance properties. A detailed account of

these properties is given in Bouttier and Courtier (1999).
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Cirrus cloud modeling

3.1 Current issues in cirrus modeling

Cirrus clouds represents a challenge for modelers. In the past years, great im­

provements have been achieved in ice cloud representation both in large-scale and

cloud-scale models. Prognostic cloud schemes in NWP models have been proven

successful in qualitatively representing cirrus cloud cover associated with large-scale

forcings (Miller, 2000; Mace et al., 1998b). Quantitative evaluation of microphysical

cloud parameters is a topic of ongoing research. Climate models with prognostic

ice schemes appear to give more realistic simulations of the current Earth's climate

(Fowler et al., 1996), which is the premise for any type of inference on climate

change. A number of regional two-dimensional and three-~dimensional models in­

clude rather complex microphysical schemes to deseribe all relevant interactions

between ice species and the other hydrometeors (Cheng et al., 2001). Improved

radiation schemes are also an important element of modeling activities related to

cirrus, due to the recognized importance of atmospheric ice amount and distribution

in the atmospheric radiative budget, and the link of the latter to global precipita­

tion and evaporation cycles (Wu et al., 2000). Despite this effort in advancing the

representation of cirrus processes in numerical models, large discrepancies still ap­

pear when contrasting cirrus simulations with observations. Similarly, comparisons

of cirrus simulations obtained with different models show a large spread in results.

This points to the need for more work in improving and accurately testing model

parameterizations related to the description of the ice phase.

Possibly the most extensive combined cirrus modeling effort of the last years is

the one carried under the auspices of the GEWEX Cloud System Study program

43



Chapter 3. Cirrus cloud modeling 44

(GCSS, GEWEX is the Global Energy and Water Cycle Experiment). This pro­

gram counts four working groups that focus on different cloud systems (Boundary

Layer, Cirrus, Extra tropical Layer, Precipitating Deep Convective). Many different

models are involved in the project, with the mission of validating and developing

new parameterizations related to cloud processes to be included in climate mod­

els. To achieve this goal, emphasis is put on gaining a better understanding of

physical processes at work within the different types of cloud systems. The inter­

comparison of high resolution Cloud Resolving Models (CRMs) with Single Column

Models (SCMs) run for the same cloud scenarios, and the evaluation of both using

observations is an integral part of the GCSS strategy.

One of the GCSS working groups focuses on Cirrus Cloud Systems (WG2). The

main activity of the group has involved model intercomparison for a series of ide­

alized cirrus simulations with relatively simple initial conditions and large-scale

forcing coordinated by Dr. D. Starr. Results from sixteen models, ranging from

3-D Large Eddy Simulation (LES) models to 2-D CRMs and I-D SCMs models,

including the CSU RAMS, are presented and discussed in Starr et al. (2000). Here,

a brief summary of results relevant to the discussion of current issues in cirrus mod­

eling is presented. Amongst the participating models, two broad categories were

identified: models that were primarily developed as cirrus models versus models

originally developed to treat convective systems. As far as microphysical treatment,

the major distinction was between models with bin--microphysics versus models with

bulk-microphysics schemes1. In the results, some grouping can be seen for models

1Cloud scale models can be divided into two categories according to the treatment of microphys­

ical processes: bin microphysics models in which the evolution of hydrometeor size and number

concentration is described by dividing the particle spectra in size bins; bulk microphysics mod­

els in which an analytical size distribution is introduced and used to parameterize microphysical

processes providing an integrated description of the cloud bulk properties. The bulk microphysics

formulation is less accurate since it relies on the assumption about the hydrometeor size distribu­

tion, but it usually preferred in CRMs because it is computationally more efficient. A degree of

sophistication in bulk microphysical schemes is introduced by using prognostic equations for both

mixing ratio and number concentration (second moment bulk microphysics). For details on the
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with common heritage, but a large spread exists between ice field values from the

various models. Figure 3.1 from Starr et al. (2000) shows the time-behavior of

the horizontally-averaged Ice Water Path (IWP), which represents the vertically­

integrated IWC.

Results from models built primarily to be cirrus models or with a strong cirrus

heritage are shown by the heavy dashed (bulk microphysics) or heavy solid (bin

microphysics) lines. Thin solid lines correspond to results from models originally

developed to treat deep convective cloud systems and thin dashed lines correspond

to results from SCMs. Specific models are not identified. It appears evident that the

model predicted IWP can differ from model to model up to one order of magnitude,

especially in the "cold" cirrus case.

Another measure of model response is the vertical positioning of the cloud (i.e.

cloud top and base). Figures 3.2 and 3.3 shows the distribution of cloud top and

cloud base and corresponding cloud thickness for the warm and the cold cirrus cases

respectively. Once again the spread is noticeable and can be traced back to different

treatments in ice crystal fall speed parameterizations, although differences in other

model parameterizations are likely to play a role.

Based on results from the intercomparison activity some key points are identified

as necessary for advancement in current cirrus cloud modeling:

• The necessity for a better understanding of physical processes at work in for­

mation and evolution of cirrus leading to more accurate and physically based

parameterizations.

• The necessity for direct observations of ice cloud parameters, such as ice par­

ticle fall speed and IWC.

• The necessity for a procedure to compare cirrus observations and model results

quantitatively with the goal of evaluating newly developed parameterizations.

Recent progress in cloud observing capabilities on one hand, and computing

resources to run models at high spatial and temporal resolution on the other, will

subject, see Cotton and Anthes (1989).
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Figure 3.1: IWP (gm- 2) versus time for simulations of "cold" (upper panel) and

"warm" (lower panel) with 16 cloud models (see text for explanation). Figure cour­

tesy of Dr. D. Starr.
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allow these issues to be addressed in the near future.

3.2 Source of uncertainties in mesoscale models

49

Limited-area models are intrinsically different from global models for a number of

reasons. While large--scale NWP models solve the atmospheric dynamics equations

on the sphere, hence having a natural "closure" condition, mesoscale models require

lateral boundary conditions that have to be specified externally. Based on this

premise, three main sources of model errors in regional modeling can be identified:

• errors related to intrinsic model parameterizations (i.e. the use of a param­

eterization derived from laboratory or field experiments to describe real phe­

nomenon at all latitudes and time of the year);

• errors related to description of physical processes (i.e. the use of approxi­

mations that do not apply to the specific system under examination, such as

hydrostaticity, etc.);

• errors in externally specified initial or boundary conditions.

All three types of errors are reflected in both systematic and random errors in

model prediction. The hardest to quantify are errors in model parameterizations

and approximations to physical processes, since their quantification involve intensive

comparisons with direct observations (which are not always available) and the dis­

membering of the model to pin down specific "faulty" parameterizations. Sensitivity

studies can also help understand potential sources of model errors.

Errors in initial and boundary conditions, when specified for example from an­

other model, are also generally unknown, and so is the impact that erroneous initial

and boundary conditions might have on the mesoscale model forecast. More confi­

dence can be placed in boundary conditions specified from observing systems, whose

errors statistics are generally known. A general answer to the question of minimizing

model errors deriving from "bad" initial and boundary conditions can be found in

optimal assimilation of observations to correct them, and to ameliorate the model
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performance. This aspect of the problem is explored in chapter 5. In this chapter,

certain aspects related to quantification of model errors for RAMS are addressed.

3.3 Assessment of model skill

As discussed in chapter 2, an integral part of any assimilation activity is the un­

derstanding of the model behavior and the assessment of its skill in reproducing

the physical phenomena. The focus of the research presented in this chapter is on

acquiring familiarity with the mesoscale model (RAMS) to be used in the prelimi­

nary assimilation studies presented in chapter 5 by running it for a series of cirrus

simulations. Previous studies performed with RAMS showed that the model has

good skill in representing both thin nonbuoyant cirrus and thick convectively active

cirrus (Cheng et al., 2001), and captures main processes operating in cirrus at cloud

scales such as radiative/microphysics feedbacks (Wu et al., 2000) .

The approach taken here consists of first testing the model performance under

controlled conditions (the WG2 idealized cirrus cases), then using those cases as a

benchmark to study model response to changes in descriptions of specific processes

(ice growth mechanisms) and parameterizations (ice crystal fall speed). The choice

of focusing on these two aspects is based on results from the GCSS-WG2 intercom­

parison activity highlighted in the previous section. As a final step, an observed

cirrus case is simulated to evaluate model skill by direct comparison with measure­

ments. Results from 3D-channel and 3D model runs are presented. A statistical

approach is also introduced and applied to results from the 3D simulation to quan­

tify average model bias under the assumption of bias-free observations. An error

covariance matrix associated with simulated fields is computed by adapting a proce­

dure to estimate background error covariance used in NWP modeling, and used to

identify model strengths and deficiencies. An application of derived error covariance

matrices in retrievals of cloud properties from radar measurements is presented in

appendix A. Before moving on to the analysis of results, a general overview of the

CRM is offered in the following section.
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3.3.1 Description of the Cloud Resolving Model
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The RAMS model is built upon the full set of non-hydrostatic, compressible at­

mospheric dynamics and thermodynamics equations. Conservation properties of

scalar quantities such as water vapor and liquid and ice hydrometeors are also in­

cluded. The model includes a number of state-of-the-art parameterizations for

relevant processes, such as turbulent diffusion, solar and infrared radiation, moist

processes, cumulus convection, kinematic effects of terrain and sensible and latent

heat exchange between the atmosphere and the surface. The model also has data

assimilation capabilities such as nudging (operational) and 4D-Var (experimental).

RAMS' ancestors are a non-hydrostatic cloud model (Tripoli and Cotton, 1982) and

a mesoscale model originally developed to study sea breeze circulation (Mahrer and

Pielke, 1977). The previous codes have been rewritten to accommodate a higher

degree of flexibility, specifically the two-way interactive grid nesting capability of

the current version. The model is mostly used as a limited area model, and many of

its parameterizations have been designed to simulate mesoscale and high-resolution

cloud-scale processes. However, the model can also operate in a global configura­

tion by using two hemispheric grids. The two versions of the model used in this

work are RAMS 3b and RAMS 4.2. The main difference between the two versions,

which is relevant to cirrus simulations, is the implementation of a two-moment bulk

microphysics scheme in RAMS 4.2, which also includes simultaneous computations

of heat and vapor diffusion, along with hydrometeor and air temperature and water

content. Other features include the incorporation of the computation of poten­

tial temperature into the implicit diffusion equations, and the use of pre-computed

lookup tables using detailed bin calculations to improve accuracy of several pro­

cesses including autoconversion (transition from cloud droplets or ice crystals to

precipitation-sized particles due to collision and coalescence) and sedimentation.

More details on RAMS' development history and present capabilities can be found

in the RAMS 4.2 User's Guide (Walko and Tremback, 2000) and in recent paper by

citetcottonetalO1.

The main prognostic variables are wind components (u, v, w), the ice--liquid
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(3.1)

water potential temperature (Oil), the perturbation Exner function2 , (IT - ITo), the

total liquid water mass mixing ratio, and mixing ratios and number concentrations

of different hydrometer species. From these variables, temperature, potential tem­

perature, vapor mixing ratio and cloud--water mixing ratio are diagnosed. The grid

structure consists of a polar-stereographic grid in the horizontal and a terrain­

following vertical coordinate (az = In(p/ps)). Vertical and horizontal resolution are

user-defined.

The most current version (RAMS 4.4) also features a second moment bulk mi­

crophysics scheme (Walko et al., 1995; Harrington et al., 1995; Meyers et al., 1997),

i.e. prognostic equations for both mixing ratio and number concentration for all hy­

drometeor species, included pristine ice, snow and aggregates. Hydrometeors in each

category are assumed to be distributed according to a modified gamma function.

1 (D)V-l 1n,(D) = Nt - - _e-(DjDn )

f(v) Dn Dn

described by parameters Nt, total number concentration of ice crystals, Dn , char­

acteristic diameter, and v, width of the distribution. Assuming a given width of

the distribution, and knowing the mixing ratio and the number concentration, the

particle characteristic size can be retrieved inverting equation (3.1).

The prognostic equation for the mixing ratios of various hydrometeors, except

cloud water and vapor, is:

arat = ADV(r) + TURB(r) + SQURCE(r) - SINK(r) + SED(r), (3.2)

where ADV(r) and TURB(r) represent the advective and turbulent transport of r.

The SQURCE(r) and SINK(r) terms represent the possible generation or loss of

the species r by microphysical processes, such as autoconversion, collisional break­

up, secondary ice production due to riming, melting and shedding. A schematic

2The Exner function is defined as

( )

R/CP

II = Cp ; ,

where P is the atmospheric pressure and Po a reference value. R is the gas constant and Cp the

heat capacity of air at constant pressure.
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Figure 3.4: Flow diagram describing microphysical processes. From Cotton and

Anthes (1989).

of possible interactions between ice and other type of hydrometeors is shown in

figure 3.4. SED(r) accounts for local loss or gain of species r due to gravitational

sedimentation.

An equation similar to (3.2) is introduced in the secondo-moment bulk micro­

physics scheme for the number concentrations:

onat = ADV(n) + TURB(n) + SQURCE(n) - SINK(n) + SED(n) (3.3)

Details on parameterizations of specific processes can be found in Walko et al.

(1995) and (Meyers et al., 1997). Hydrometeors categories include

• pristine ice defined as small unaggregated ice crystals whose main growth

mechanism is vapor diffusion;

• snow defined as larger unaggregated ice crystals, whose main growth mecha-
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nism is vapor diffusion and riming3;
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• aggregates, whose main growth mechanism is self-explained by their defini­

tion;

• graupel;

• hail;

• rain;

• cloud droplets .

The threshold diameter for transition from pristine ice to snow is D = 125j,lm, but

this threshold can be altered. Cloud droplets, which are assumed to be supercooled,

and pristine ice are allowed to nucleate only from vapor, while all the other cate­

gories form from pre-existing hydrometeors and then grow by vapor deposition and

collision-coalescence mechanisms.

Ice nucleation results from four primary processes:

• a combination of vapor deposition and condensation freezing mechanism for

which the number of activated nuclei is derived from the amount of supersat­

uration with respect to ice (Meyers et al., 1992);

• homogeneous freezing of droplets and haze particle (De Matt et al., 1994);

• contact nucleation for which the number of potential nuclei is derived from an

observed temperature dependence;

• secondary ice particle production (Hallett and Mossop, 1974).

The radiation scheme used in this version of RAMS is a two-stream model with

3 bands in the shortwave and 5 in the longwave (Harrington, 1997). The required

inputs for the radiation routine are: optical depth, single scattering albedo and

asymmetry parameter of the cloud layer, derived from size-spectra of all hydrome­

teors as predicted in RAMS.

3Growth by riming involves the collection of frozen cloud droplets by the growing crystal. Due

to its nature, this mechanism is not very important in cirrus cloud evolution.
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3.3.2 Selected results from WG2 idealized test cases
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The idealized test cases and relative sensitivity studies are performed with a 2D

version of RAMS 3b. Profiles of temperature and relative humidity, shown in figure

3.5, were specified on the basis of the idealized "warm" and "cold" cirrus test cases

defined by the WG2 intercomparison protocol4 . To ensure prompt cloud formation,

the initial humidity field is supersaturated with respect to ice over a layer about 1

km deep (120% in a 0.5 km layer). Cloud top occurs at about -47°C in the warm

case, and -66°C in the cold case, respectively. Environment conditions correspond

to Spring/Fall 45°N and Summer 400 N standards with tropopause occurring 1 km

above the nominal cirrus layer.

The total length of the simulation was 6 hours. A large-scale forcing was imple­

mented for four hours of the simulation, and turned off for the last two hours, and

consisted of an adiabatic cooling ascent consistent with a rate of roughly 3 em 8-
1

.

Examples of cirrus time evolution as captured by the 2D model are shown in

figures 3.6 and 3.7 for the warm and cold cirrus cases respectively. Figures show

time snapshots of IWC vertical cross-sections. Some similarities in the two figures

are represented by the similar time evolution of the cloud from the initial formation

to dissipation stage. The main difference is the smaller maximum IWC (1 order

of magnitude) in the cold simulation, and the evolution of the cold cirrus into a

homogeneous layer as opposed to the more dynamical. evolution of the warm cirrus

into separate cells.

More details on cloud and cloud environment structure are shown in figures 3.8

and 3.9. Upper panel plots show horizontally-averaged IWP and vertically inte­

grated number concentration versus time. Despite the fact that the warm cirrus

IWP is approximately an order of magnitude larger that the cold cirrus IWP, inte­

grated ice crystal number concentrations are almost comparable in both cases (107

crystals per square meter at t=240 min into the simulation in the cold cirrus case,

and 4x107 crystals per cubic meter at the same simulation time in the warm cirrus

case), implying that ice crystals are larger in the warm case as opposed to the cold

4Details can be found on the web at http:j jeos913c.gsfc.nasa.govjgcss_wg2
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Figure 3.5: Idealized soundings for "warm" (solid line) and "cold" (dotted line)

cirrus test cases. Left panel shows temperature in degree Celsius and right panel

relative humidity in %. Data is courtesy of Dr. D. Starr.

case. This is to be expected from microphysical considerations since riming and

aggregation processes are more efficient at warmer temperatures. Central panels

show time series of environmental variables related to cloud dynamics, namely the

average zonal (u) and vertical (w) velocities, and their root mean square. The latter

is a measure of turbulent activity at cloud levels. The vertical average is performed

over a thin layer around cloud top that represents the generation layer. Mean verti­

cal motion at cloud levels is approximately zero in the cold cirrus case. However, a
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Figure 3.6: Warm cirrus IWC snapshots at various simulation times. Time interval

between plots is 1 hour, starting from the top left panel going counterclockwise.

mean vertical velocity of -2 em 8-1 is observable in the warm cirrus case (figure 3.8,

left middle panel) which seems to persist until the forcing is turned off at t=240 min

into the simulation. This appears to be an unphysical model response to balance



Chapter 3. Cirrus cloud modeling 58

2016

..

t=360 min

6 10 13
Distance (km)

~:r 'w. -,@"1ft

3

Ice Water Content,
17 r--------------,

8' 15
C 14

~ 12
.::.0 11
QJ

:r: 9
8'-- ---'

o2016

t=60 min

6 10 13
Distance (km)

~',.I;N,,·.·'~~M!'

3

Ice Water Content,
17r--------------,

8' 15~ii;;j;;;;jj;;~~ 14

~ 12
.::.0 11
QJ

::c: 98'-- -'

o

0.05 0.24 0.43 0.62 0.81 1.00
mgm-'

0.05 0.24 0.43 0.62 0.81 1.00
mgm-'

2016

t=300 min

6 10 13
Distance (km)

!'f;i!@:~,.t

3

Ice Water Content,
17 r-----------------,

8' 15

;: ~~ ~.~!,!!~!~!...,!~!.!.,!!...~~~~..------.~!
.::.0 11

QJ

:r: 9
8'-- ---'

o

Ice Water Content, t= 120 min
17

8' 15
C 14 ·= .._ ....
~12,'"
.::.0 11
QJ

::c: 98'-- -'

o 3 6 10 13 16 20
Distance (km)

0.05 0.24 0.43 0.62 0.81 1.00
mgm-'

0.05 0.24 0.43 0.62 0.81 1.00
mgm-3

20

_I

166 10 13
Distance (km)
J'i";'~'-~,~

3

Ice Water Content, t=240 min
17

8' 15

.l<: 14~I!!===!II=I=i' 12r~'"".....__I_:'·t~Ul.l:i~""

.::.0 11
QJ

:r: 9
8'-- ---'

o2016

t=180 min

6 10 13
Distance (km)

.~,:':e;::"'..,;ji.!l!!l!il!p:

3

Ice Water Content,
17

I ~~ ,!!!!!!!!~~!!!E~:.-~"..~ 12~_
.::.0 11
QJ

:r: 98'-- -'

o

0.05 0.24 0.43 0.62 0.81 1.00
mgm-'

0.05 0.24 0.43 0.62 0.81 1.00
mgm-3

Figure 3.7: Same as figure 3.6, but for the cold cirrus simulations.

the large-scale uplifting which requires further investigation. The root mean square

of zonal and vertical velocities shows a relatively active cloud and some turbulence

developing at a later stage of the simulation, right after the large-scale forcing is

turned off.
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Lower panels show in-cloud potential temperature (left) and broadband radiative

fluxes at cloud top and base (right). Note the decrease in mean potential tempera­

ture due to the superimposed large-scale cooling. Some impact on radiative fluxes

due to presence of the cloud is noticeable, especially in the warm cirrus case due to

higher IWP: the upward flux at cloud top appears slightly depressed at first due to

thickening of the cloud over timeS, then increases to its original value due to cloud

dissipation. The opposite behavior is observed in the downward flux at cloud base.

3.3.3 Sensitivity studies

Sensitivity studies were performed using RAMS version 3b as well in a 2D configu­

ration. Initial temperature, pressure, wind and relative humidity profiles are taken

from the idealized warm cirrus test case. The model was run for three hours, and no

forcing was implemented. Changes in IWP and cloud base height were considered

as a measure of model response (what here it is referred to as model sensitivity) to

change in parameterizations, as in the WG2 intercomparisons.

5Upward and downward broadband fluxes in the presence of a single cloud layer can be described

by

pt(z) = pt(zb)(l-€t)+€taT;

pl-(z) Pl-(zt)(l - €-l-) + €-l-aT;

where Zb, and Zt represent cloud bottom and top respectively, and € represents the cloud emissivity.

The cloud emissivity can be parameterized in terms of IWP as

€ =1- exp(-l3kIWP)

where 13 is the dijJusivity and k is an absorption coefficient. When the emissivity increases, there

is a corresponding decrease (increase) in upward (downward) flux at cloud top (bottom). In the

particular case shown, there is the additional effect of a decrease in cloud temperature Te , due

to the superimposed cooling that lowers it over the time interval the forcing is active (Stephens,

1994).
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Figure 3.8: Warm cirrus statistics. Upper left panel shows IWP (gm-2
) as a func­

tion of time (min); upper right panel shows vertically integrated particle number

concentration (#m-2); left central panels shows mean zonal (solid line) and vertical

(dotted line) velocities (m/s) and right panels shows root mean square zonal (solid

line) and vertical (dotted line) velocities vertically averaged over cloud generation

layer; bottom left panel shows environment potential temperature (K), and bot­

tom right panel shows upward radiative flux (Wm-2
) at cloud top (solid line), and

downward radiative flux at cloud base (dotted line).
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Figure 3.9: Same as figure 3.8, but for "cold" cIrrus.

Sensitivity to ice microphysics

In the RAMS, the user can select the hydrometeor categories of interest, and turn

off computations relative to other ones. This is done on a case-by-case basis to

save computational time. For example, in a cirrus simulation it is unlikely to have

formation of graupel or hail, since they are more likely associated with deep convec-
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tive systems. The cirrus simulation will be faster if computations relative to those

categories are not performed.

In what follows it was assumed that ice categories relevant to cirrus forma­

tion and evolution were pristine ice, snow and aggregates. Sensitivity to the inclu­

sion/exclusion of these three categories was investigated. This corresponds indirectly

to studying the influence and relative importance of various growth mechanisms. For

instance allowing the cirrus cloud to only be constituted of pristine ice crystals and

snow effectively imposes that only vapor depositional and riming growth are active,

and that only conversions between these two categories of unaggregated crystals are

possible, while aggregation growth is totally inhibited. This is an assumption which

might be closer to reality in cirrus clouds developing at colder temperatures and less

realistic in cirrus forming in warmer environment. Nevertheless, it is interesting to

understand the impact of assumptions made in the choice of model configuration,

and how those assumptions affect the final results. The following model configura­

tions are considered:

• all relevant ice categories (pristine ice, snow and aggregates - baseline case)

• pristine ice only (no snow or aggregates)

• pristine ice and snow (no aggregates)

• pristine ice and aggregates (no snow)

A run was made to confirm that the assumption that no other ice typology such

as hail or graupel formed during the cirrus simulation. Those ice categories were

found to have no relevance in cirrus composition.

Figure 3.10 shows a time series of IWP for runs including different ice categories.

The run with pristine ice only presents an IWP that increases steadily with time

and tends to asymptote toward the end of the simulation. The run with aggregates

and pristine ice shows a similar behavior, but the IWP starts to flatten out at an

earlier time, and then slightly decreases. The IWP associated with the baseline case

and the case with no aggregates shows a different trend; the initial increase is not

as large as in the previous two cases, and the subsequent decrease in time is more
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marked. Assumptions about ice microphysical processes have a direct influence on

total ice production and vertical distribution. When large crystals, both aggregated

and unaggregated, are inhibited from forming, the removal by sedimentation is

less effective, and the IWP of the cloud is larger (i.e. the ice "hangs" around

longer). When the aggregation process is activated (pristine+aggregates case), there

is a decrease in IWP. However, due to the absence of large crystals (snow), the

aggregation process is not as efficient. The case with no aggregates shows that

the principal agent of sedimentation removal is snow. The fact that the baseline

case shows similar IWP indicates that the aggregates mixing ratio is much lower

than snow+pristine ice mixing ratio, and aggregates contribute only slightly to

sedimentation removal. These results are pertinent to the specific cirrus case under

consideration. In general the impact of inclusion/exclusion of ice species might have

a different outcome depending on the condition of cloud formation and the external

environment. However, these results are relevant in showing the impact on cloud

properties of assumptions regarding microphysical processes.

This impact is also illustrated in the plot of cloud base height at various times

during the simulation (figure 3.11). Cloud base is much higher for the pristine ice

only case, consistent with the lower fall speed of small ice crystals. This should imply

a lower IWP, since IWP is proportional to cloud geometrical thickness. However,

ice removal by sedimentation is less efficient in this configuration, such that the

total IWC at cloud levels is actually higher, compensating for the lower geometrical

thickness.

Sensitivity to fall speed parameterizations

Further studies of the model response to different choices in parameterizations are

presented in this section. The interest in fall speed parameterizations is motivated

by the GCSS-WG2 intercomparison results, since there is a general consensus that

the spread in fall speed parameterizations is responsible for major discrepancies

between models. A survey conducted by P. Brown revealed that there are many

different fall speed parameterizations currently used in NWPs, GCMs, and CRMs.
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Figure 3.10: IWP versus time for various model configurations (see text for expla­

nations).

Three main categories are identified:

1. parameterizations based on particle size, v = aDb

2. parameterizations based on IWC, v = cIWCd

3. parameterizations that link terminal velocity to particle mass, projected area

and maximum dimension (e.g. Mitchell (1996), hereafter M96).

In general, parameterizations of type 1 are preferred in Cloud Resolving Models

which generally assume a size distribution, and hence evaluate explicitly mean par­

ticle size from mixing ratio and number concentration at each timestep. A degree

of complexity to this simple parameterization is added by the fact that coefficients

a and b depend on ice crystal shape (e.g. Mitchell, 1988).
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Figure 3.11: Cloud base at selected times for various model configurations (see

text for explanations).

Parameterizations of type 2 are generally preferred in NWPs and GCMs which

do not explicitly predict particle size but rather predict IWC.

Parameterizations of type 3 are more general since are derived from first princi­

ples (i.e. starting from the general expression for the aerodynamic drag force on a

particle6), and depend only weakly on particle shape (through the dependence on

6Following M96 we can write the aerodynamic drag force, FD, as:

1 2
FD = 2PV ACD (3.4)

where P is the air density, v is particle velocity, A is the particle's area projected normal to the

flow, and CD is the drag coefficient.

To solve for particle terminal velocity, equation (3.4) is equated to the force of gravity (= mg,

where m is particle mass and g is the gravity acceleration). An expression for the terminal velocity
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particle projected area perpendicular to the flow), which makes them particularly

attractive for description of cirrus crystal fall speeds.

Figure 3.12 shows results from 1998 survey of ice water fall speed relationships

used in GCSS cirrus cloud models, conducted by P. Brown of the United Kingdom

Meteorological Office. Shown are the relationships between mass weighted ice water

fall speed and ice water content used in various models. For reference, the Heymsfield

and Donner (1990) cirrus parameterization is shown as is the one used in Starr and

Cox (1985) model (indicated with the legend SCMl). Values of terminal velocities

can differ by up to two orders of magnitude between different parameterizations for

the same IWC.

Default particle terminal velocities in RAMS 3b (the model version used in this

part of the investigation) are computed via a combination of parameterization of

type 1 and type 2. The average fall velocity, Vt, is obtained by integrating over the

assumed mass distribution, m(D), and weighted according to the IWC as follows:

_ Jv(D)m(D)dD
v = IWC . (3.8)

In more recent versions of RAMS (4.2 and higher), Vt is calculated from a bin

representation using directly v(D). A plot of RAMS fall speeds for pristine ice,

is derived as:

(
2 ) 1/2

Vt = pA~D (3.5)

From (3.5), it can be seen that the fall speed depends on the particle mass and projected area.

In practice, equation 3.5 is hard to use, due to the presence of CD, and the terminal velocity is

found by empirically relating the Reynolds number, defined as

Re ~ Vt
D ,

v
(3.6)

(3.7)

which depends on Vt, v, the kinematic viscosity, and size of the particle, D (radius for a spherical

particle), to the Best number defined as,

X = CDRe2 = 2mgpD
2

Av2

containing m and A, and independent of Vt. For more details on this type of fall speed parame­

terizations see M96.
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Figure 3.12: Fall speed velocities (ms-1) vs IWC (gm-3). x and y axis scale is

logarithmic. Courtesy of P. Brown, U.K. Meteorological Office.

snow and aggregates is shown in figure 3.13. Coefficients a and b for the various ice

categories are given in table 3.1.
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Figure 3.13: Fall speed velocities (ms-1) vs size (f..Lm) for the three RAMS ice

categories pristine ice, snow, and aggregates.

Table 3.1: Fall speed coefficients for RAMS ice categories (MKS units).

Ice category Coefficient a Coefficient b

Pristine ice 316 1.01

Snow 4.836 0.25

Aggregates 3.084 0.20

In this section, we compare a baseline run with default RAMS terminal veloci­

ties with runs in which the parameterization of terminal velocities was changed. In

particular, we considered five parameterizations: three are taken from the above­

mentioned survey, corresponding to a fall speed treatment of type 2 as illustrated in

figure 3.14. The terminology comes from the fact that the two extreme parameter­

izations (upper Vt and lower Vt), and an intermediate one provided by Reymsfield

and Donner (1990) (referred to as R&D (1990) in the figures) were considered.
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Figure 3.14: Selection of fall speed velocities-IWC parameterizations chosen for

this study (see text for explanations).

The other two parameterizations included one in which the terminal velocity is

assumed constant for all IWCs and sizes, and one of type 3 provided by M96. IWP

results for the different runs are shown in figure 3.15. There is not a large impact of

changing fall speed parameterization on the total IWP other than the higher IWP

for the run with "lower" Vt. This result, in part unexpected, can be explained with

the apparent tendency of the RAMS model to create some compensating average

vertical motion at cloud levels that might be responsible for the similarities in the

IWPs between the different fall speed cases. However if we look at cloud base height

statistics (figure 3.16), large differences emerge. Type 1 parameterizations (RAMS

baseline) tend to place the cloud base much higher, implying the presence of numer­

ous small crystals that tend to sediment slowly. On the other hand, parameteriza­

tions of type 2 have lower cloud base heights, which imply a faster sedimentation

rate of ice crystals. The largest difference is cloud base height (~ 400 m) is observed

two hours after the beginning of simulation between the baseline case and the run

with upper Vt.
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Figure 3.15: IWP versus time for various terminal velocities (see text for explana­

tions).

In both cases the two effects-higher IWC, but lower vertical cloud extension for

type 1, and lower IWC but higher cloud geometrical thickness for type 2 parameterizations­

tend to compensate each other so that the total IWP is not overly affected. The Vt

from M96 produces results curiously similar to the constant Vt case, indicating that

there is not much variation in drag force parameters over time in this simulation.

While the vertically---integrated mass characteristics of the cloud are unchanged,

the vertical distribution of IWC is dramatically affected by the choice of param­

eterization. The impact of the different parameterizations would mainly show in

the vertical distribution of diabatic (latent and radiative) fluxes which may in turn

affect atmospheric lapse rate, and the stability properties of the atmosphere.
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Figure 3.16: Cloud base at selected times for various terminal velocities (see text

for explanations).

3.3.4 Concluding remarks on the sensitivity study

We presented cirrus simulations for an idealized test case, and studied model re­

sponse to changing microphysical parameterization. In particular, we focused on

the sensitivity of model output to the choice of bulk ice categories to describe the

cloud ice phase, and on the sensitivity to the choice of terminal velocity schemes.

These types of studies provide some understanding of model behavior under differ­

ent conditions. The ultimate test remains comparison with real measurements, but

sensitivity analyses help narrow down the relevant parameters that influence the

representation of the modeled cloud. These studies are also useful as a guideline

in choosing the type of parameterization that minimizes the discrepancies with real

world cases. Awareness of model sensitivity also helps to set error boundaries OIl
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model results.

3.4 Real case simulations
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While important knowledge can be gained by looking at idealized test case in which

forcings and initial conditions are controlled, the evaluation of model skill ultimately

must involve comparisons with real data. In the next sections we present results

from 3D-channel and 3D simulations of a cirrus cloud observed off the coast of

Kauai, Hawaii (22N-160W). This cirrus case was part of a series of observations

carried out in the context of the ARM-DAV Spring 1999 field campaign.

3.4.1 The ARM-DAV Spring 1999 Experiment

The ARM-DAV program established in 1991 has been pivotal in demonstrating

how measurements from unmanned aircraft platforms can contribute to our under­

standing of cloud microphysical and radiative processes. As part of this program,

a field campaign took place over the Pacific Ocean during Spring 1999 (Stephens

et al., 2000b). The campaign was operated from the Pacific Missile Range Facility,

located in Kauai, Hawaii (22N-160W). It was designed as a two aircraft experiment

to obtain accurate and multi-instrument measurements of cirrus clouds. The strato­

spheric aircraft Altus II was flown above cloud top (at an altitude of approximately

15 km) in formation with the Twin Otter flown below cloud base. The Altus II pay­

load provided measurements of spectral and broadband radiative fluxes, spectral

radiances from the Scanning Spectral Polarimeter (SSP), and lidar backscattering

from the Cloud Detection Lidar (CDL). The Twin Otter provided similar radio­

metric measurements as well as radar reflectivity from the NASA JPL/University

of Massachusett's 94 GHz Airborne Cloud Radar (ACR). Data were collected from

April 28 to May 18.

3.4.2 Synoptic overview of April 30 cirrus case

The cirrus case chosen for this study consisted of a single layer cloud observed on

April 30, 1999. On that day, an upper level low located about 1500 km north of
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Figure 3.17: GOES 10 visible images at 2200UTC on April, 30, 1999 (upper panel)

and at OOOUTC on May, 1, 1999 (lower panel) showing the advection of the cirrus

layer over the experiment area. Images are courtesy of Steve Miller.

Honolulu was deepening and moving slowly to the southwest. A trough extended

from the upper level low southwest to a second low near the dateline. Isolated

thunderstorm activity was associated with the second low, with the cirrus cloud

being advected over the observation area in response to the west to a southwest

wind aloft. The advection of the cirrus layer is visible in the satellite images from

GOES 10 at 2200UTC and OOOUTC respectively (fig. 3.17).

The aircraft lidar/radar measurements indicated a relatively thick layer of cirrus

between 7 and 12 km, deepening over time between 2200 and OOOUTC (figure 3.18),
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Figure 3.18: Co-located lidar and radar cirrus observation for April, 30, 1999.

congruent with the synoptic analysis.

It is interesting to note that lidar and radar measurements perfectly complement

each other. The radar misses the signal from small ice crystals residing at cloud top,

which is captured by the lidar. On the other hand the lidar signal gets attenuated

rapidly going downward from cloud top, due to the presence of larger crystals and

aggregates.

3.4.3 Overview of analysis method

We used two versions of RAMS, version 3b in a 3D-channel configuration and version

4.2 in a 3D configuration. Main differences between model versions were discussed in

section 3.3.1. Model predicted ice water content is converted into radar reflectivity

and compared with observations along the flight track. Horizontal averages are also
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compared. Conversion to radar reflectivity is explained in the next section. Results

from the 3D-channel simulations are presented in section 3.4.6. Results from the

3D simulations are presented in section 3.5.3 along with the RAMS error analysis.

3.4.4 Synthetic radar reflectivities from model fields

The mixing ratios of the various ice species for the model domain are saved at se­

lected times throughout the simulation, along with thermodynamic variables (tem­

perature, pressure, vapor mixing ratio). The total ice mixing ratio is computed as

the sum of the ice species mixing ratios. Temperature and pressure are used to

convert mixing ratios into total IWC by computing the value of air density at each

grid-point and time. The IWC is then converted into radar reflectivity, Z. The con­

version to radar reflectivity is straightforward if we assume a power law relationship

between IWC and Z,

Z = cIWCd
, (3.9)

where coefficients c and d depend on the radar wavelength. Values for a 94 GHz

radar, empirically estimated from in situ measurements, are taken from Liu and

Illingworth (2000) (hereafter, LIOO). Relation (3.9) can also be inverted to obtain a

simple estimate of IWC from measured radar reflectivities. In LIOO the accuracy of

such an estimate is reported to be around 20---30%. However, the authors point out

that the error on an individual value of IWC derived from specific measurements

of Z can be as high as 50-100%. To improve the estimate of IWC based on power

law relationships, they suggest the use of size or temperature dependent coefficients.

The uncertainty might thereby be reduced to 30-50% error on any single IWC value.

Results are presented for both radar reflectivity and IWC fields, bearing in mind

that equation (3.9) establishes a perfect equivalence between the two fields. IWC can

also be obtained from radar reflectivities combined with other types of observations

(for example radiometric measurements) as shown in appendix A.
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Figure 3.19: Example of Altus II trajectory off the coast of Kauai, on April, 30

1999.

3.4.5 Model implementation for the 3D channel-type LES runs

The CRM domain consisted of a single grid, centered at 22.5N and 160.25W, 80

km long and 4 kilometers wide oriented from east to west, representative of a cross

section along the study area at an angle of roughly 45 degrees with the flight track,

shown in figure 3.19.

The model resolution was 400 m in the horizontal and variable in the vertical from

400 m in the Boundary Layer to 50 m at cloud levels. The configuration of the model

run was 3D, but due to the fact that the total number of grid points in the zonal (x-)

direction was much greater than the number of grid points in the meridional (y-)

direction, it is more appropriate to consider the run a LES 3D-channel simulation.

It is thus impossible to establish a one-to-one comparison between observations

and model fields. Nevertheless, if we assume horizontal homogeneity of the cloud
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field, it is still meaningful to compare the simulated fields with the measurements,

especially in a domain average sense.

A rigid lid (w=O) was assumed at the top of the domain, and a damping method

to absorb wave energy was used to avoid possible reflections at the upper boundary.

At the lower boundary, the impermeability condition (w=O) was enforced; the lat­

eral boundary conditions were modeled as cyclic. Ocean surface temperature was

assumed constant. The initial fields (pressure, temperature, specific humidity and

wind speed) were specified from the ECMWF forecast over the study area. The

initial profiles were assumed to be horizontally homogenous. A large scale forcing

of roughly +3 em 8-1, constant in height, representative of a positive average ver­

tical velocity as given by the ECMWF analysis, was implemented throughout the

simulation. This forcing featured the large-scale advection of cloudy air mass over

the model domain, otherwise absent in the CRM, due to the fact that the ECMWF

fields were only ingested at the initial time and were horizontally homogeneous, i.e.

one profile was applied to the whole domain, and not updated during the course of

the simulation. Without this forcing it was verified that the CRM produced a much

shallower cloud which did not thicken over time as the observations were showing.

3.4.6 Results for the 3D-channel runs

Portions of the flight level data shown in figure 3.18 are reproduced in figures 3.20

along with the simulated radar reflectivity.

As anticipated, model simulations of cloud variability do not match the observa­

tions in any quantitative detail. Besides the fact that the model cross--section and

the data cross-section are not directly comparable on a one-to-one basis as men­

tioned in the previous section, there are a number of other reasons why the structure

of the predicted cloud differs from the observed cloud. The model initialization is

horizontally homogeneous as previously noted, and, as such, it lacks large-scale

structure. Despite these obvious deficiencies, encouraging qualitative agreement of

the modeled and the observed fields was found.

More meaningful is the comparison of the domain averaged model results with the
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Figure 3.20: Observed (upper panel) versus modeled (lower panel) radar reflectiv­

ity for the 3D--channel runs.

average of the observations. Figure 3.21 shows the vertical profile of the measured

radar reflectivity, averaged along the flight track over time period from 2311 and

2389UTC, along with average profiles derived from the ECMWF and the CRM Ice

Water Content. The comparison shows similarity between the CRM profile and the

profile measured by the ACR. However, the simulated cloud is too thick at upper

levels compared with the observations.

The CRM in the two-dimensional configuration is only capable of capturing

gross average features of the observed cirrus, but no real quantitative agreement is

found. The lack of similarity with the observations is mostly due to the rudimentary

implementation of the external forcing.
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Figure 3.21: Domain averaged radar reflectivity: comparison between observations

and CRM results.

3.5 RAMS error analysis7

3.5.1 Estimating model bias

By direct comparison of model derived radar reflectivities with observations, it is

possible to investigate the performance of the model for the specific case study,

and identify any model biases within the uncertainties of the relationship used to

convert IWC to radar reflectivity (or vice versa). It is usual to provide a qualita­

tive assessment of the model performance by verifying that the model succeeded

in producing a cloud of the correct geometrical thickness and in the right position.

7This section is part of a paper entitled: "Characterization of errors in cirrus simulations from

a Cloud Resolving Model for application in Ice Water Content Retrievals" by A. Benedetti and

G.L. Stephens, accepted for publication in Atmospheric Research, 2001.
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A more quantitative assessment is obtained by comparing average fields, such as

the domain-average IWC. One-to-one comparisons are also possible, although it is

more difficult to obtain a quantitative agreement when model fields are compared

with observed fields at each observation point. In this section, examples of both

methods (Le. point-by-point and average field analysis) are shown. The procedure

to compute model bias statistically is outlined in what follows. The model fields

from the 3D simulations are interpolated at the observation locations. For each data

point, the difference between measured and model value (hereafter referred to as the

observation increment, Daley, 1991) is computed using:

ik ik
Eik == ~obs -- ~~od' (3.10)

where k represents the index for the vertical levels, and i represents the index for

the horizontal grid points along the flight track, and the indices obs and mod refer

to observed and modeled reflectivities, respectively. The observation increment can

also be defined in terms ofIWC, making use of equation (3.9) to convert the observed

radar reflectivity into IWC.

To compute the expected value of the random variable Ek' which represents the

average bias between model and observations at every vertical level (Le. the model

bias if observations are assumed bias-free), one can evaluate the probability density,

p(Ek), using all available horizontal data points. The definition of expected value

can then be applied:

< Ek >== i:EkP(Ek)dEk. (3.11)

The symbol <> is generally used to indicate the expected value of any generic

function of the random variable. Assuming the observations are unbiased, if the

model were unbiased, the expected value in (3.11) would be zero. A nonzero value

indicates that the cloud forecast has a bias which, for a mesoscale model, can be

due either to the external large-scale initialization and forcing, or to physical pa­

rameterizations intrinsic to the model, as discussed in section 3.2.

The average bias at each level can also be estimated by taking the mean of all
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observation increments, Cik, over the total number of horizontal points, Nh :
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(3.12)

In the error analysis that follows, both definitions were used and the same result

was obtained for the average bias profile.

3.5.2 Error Covariance Matrix

Using equations (3.10) and (3.11), the concept of the Error Covariance Matrix is

now introduced. The covariance of two variables is defined as:

cov(s,q) =< (8- < s »(q- < q » >=< sq > - < s >< q > (3.13)

If sand q are totally uncorrelated then < sq >=< s >< q >, and their co­

variance is zero. To compute the covariance from the general definition (3.13), it is

necessary to know p(sq), the probability density of the product of the two random

variables, which enters in the evaluation of < sq > via the analogue of (3.11). In our

application, the two correlated variables are the biases at different vertical levels, Ek

and h As described in the previous section, it is in principle possible to empirically

derive p(EkEl), and use definition (3.13) to obtain the error covariance. Otherwise,

an estimate of the error covariance can be computed by:

(3.14)

(e.g., L'Ecuyer and Stephens, 2001). The diagonal elements of C represent the error

variance at each level, and are, by definition, positive. Their square root is the

standard deviation associated with the profile of horizontally averaged model fields.

Off-diagonal elements describe cross correlations between uncertainties at different

vertical levels. The amplitude of these cross correlations falls off as the vertical

separation between levels increases.

The error covariance matrix C characterizes model errors assuming that the

observational error is uncorrelated in the vertical and is known, so that it can be



Chapter 3. Cirrus cloud modeling 82

subtracted off. For mesoscale cloud forecasts, it is safe to assume that observational

errors are smaller than forecast errors, considering that there are multiple potential

sources of model errors (large-scale initialization and forcing, parameterizations,

etc.). However, this might not be true for uncalibrated sparse observations. If these

assumptions cannot be made, C represents a sum of both observational and model

forecast error covariances. Here we consider that C represents the model error

covariance, subject to the specific (and arbitrary) choice of initial and boundary

conditions and of mapping used to transform IWC into radar reflectivity. In the

analysis that follows, equation (3.14) was used to compute the ECM. Examples of

calculated ECMs are shown in section 3.5.3.

3.5.3 Error analysis results

Model implementation for the 3D nested-grid runs

For the 3D simulations, RAMS 4.2 was used. The CRM domain consisted of three

nested grids, situated at 22.5N and 160.25W, center of the field experiment area. For

the largest grid, 42x42 points and a horizontal resolution of 16 km were chosen. For

the second grid, the same number of grid points was maintained, and the horizontal

resolution increased to 4 km. The inner grid was designed to cover the measurement

area. It consisted of 82x82 horizontal points with a horizontal resolution of 1 km.

The vertical resolution for all three model grids was 500 m and the vertical domain

extended from the surface up to 15 km. The impermeability condition (w=O) at the

bottom and rigid lid at the top of the vertical domain were implemented as in the

previous 3D--channel run.

The main difference between 3D-channel and 3D nested-grid runs consisted in

the implementation in the latter of a large-scale forcing on the boundaries of the

outermost grid through the nudging technique described in chapter 2. Thermo­

dynamics and dynamics fields were specified from the ECMWF forecast over the

study area, as in the 3D- channel simulations, but initialization was horizontally­

nonhomogeneous. Ambient variables were assimilated over the total length of the

simulation (6 hours) with input of ECMWF data every 3 hours. Since model equa-
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tions are continuous and the nudging term has to be implemented at every model

timestep, large-scale model fields are linearly interpolated in time between two

subsequent intakes of data. In the 3D--channel simulations, it was seen that to

form a cloud from horizontally-homogenous initial conditions and periodical lateral

boundary conditions, it was necessary to superimpose a large scale vertical velocity

ofroughly 3 em 8-
1 throughout the simulation (as in the WG2 simulations presented

in the previous sections).

The nudging of the CRM with the ECMWF forecast playing the role of "obser­

vations", insured the proper large-scale forcing necessary for the initial formation

and subsequent persistence of the cirrus layer. However, the model was found to

be sensitive to different nudging assumptions. In fact, strength and location of the

nudging are controlled by the user via the relaxation coefficient, as discussed in

section 2.2.1. A range of recommended values, mostly dictated by experience and

practice, is given in the RAMS 4.2 manual. In this study, the radar observations

were used as a guide to select location and strength of the nudging, in order to

reduce the degree of arbitrariness in the choice of the coefficient, and in an attempt

to minimize the model bias. Despite this effort, the CRM still showed a positive

bias with respect to radar measured IWC as shown in the next section. This points

to the need for a more optimal way than nudging to incorporate large-scale infor­

mation into RAMS. A possible answer to this need is represented by the 4D-Var

system described in chapter 5.

Direct comparisons with observations

The observed reflectivities are shown in figure 3.22 (top panel) along with the model

results (central panel) for a portion of the flight track. The 3D configuration of the

model run permitted horizontal interpolation of model fields from the inner grid

along the flight track, and comparison of the observations and model fields at each

point.

The bottom panel of the same figure shows the observational increment, tilb

defined by equation (3.10). The synthetic reflectivities appear more horizontally
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homogeneous than the observed reflectivities, due to the coarse (compared to the

radar) model resolution. Since the observation increment is defined as the difference

between modeled and observed fields, the small scale discrepancies between model

and measurements are emphasized in the Eik plot. However, the model seems able

to capture the bulk features of the observed cloud, such as vertical position and

domain average radar reflectivity. A similar plot is also shown for the IWC field

(figure 3.23). Horizontally averaged profiles of model and measured reflectivity and

IWC are shown in figure 3.24 and figure 3.25 respectively.

The definitions of expected value introduced in section 3.5.1 were used to com­

pute the average model bias, Ek. The probability distribution function (pdf), p(Ek),

is shown in figure 3.26 at selected vertical levels.

This pdf was used to compute the expected value of the observation increment

according to equation (3.11). Figure 3.27 shows the average bias for the IWC com­

puted both as average and as expected value over the pdf. Both evaluations yielded

the same result.

The bias plot shows a general wet bias in the model, i.e. the model IWC is

larger than the observed IWC, except around 6.5 km where the situation is slightly

reversed. This is also apparent in the average IWC profiles of figure 3.25. We believe

that this bias is not related to the model physics, rather to the model response to

large scale forcing via the choice of nudging coefficients or to errors in the forcing.

However, both factors contribute to cloud model biases, and to understand the

relative importance of one versus the other, more model realizations are necessary

together with ensemble statistics from a number of different observational cases.

Error covariance matrix results

Following the procedure outlined in section 3.5.2, the error covariance matrices were

computed. Figure 3.28 and 3.29 show the ECM for the average reflectivity and the

average IWC, respectively.

The largest variance is shown around 6-8 km. This is where values of IWC (and

reflectivity) are also large. A good indicator of model uncertainty is the relative error
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levels.

by the value of average model field at the given vertical level. Figure 3.30 shows

a profile of model percent uncertainty as a function of altitude for the IWC. The

error is huge right above cloud base, and toward cloud top, indicating a mismatch

between model IWC and observations which could be caused by the coarse vertical
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resolution used in the simulation (500 m) and/or errors in the ECMWF analysis

forcing, resulting in a limited CRM capability to resolve fine vertical structures.

This discrepancy, which is also disclosed upon accurate scrutiny of the average

profile of figure 3.25, is revealed clearly in the error analysis. At all other levels, the

relative error is around 50%.

The model average IWC profile, corrected for the bias, along with its error

covariance can be used as a priori information to help/insure convergence of an

estimation-based retrieval algorithm, in a similar way as the background is treated in

data assimilation problems. Appendix A illustrates this application of the computed

ECM.

3.6 Summary

In this chapter, many different aspects of cirrus modeling were discussed. Model

behavior in simulating ice cloud processes was tested with various tools: controlled
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experiments, sensitivity analysis, and real case simulations. From the first two, it

was learned how model errors can be introduced by specific choices that are made re­

garding model parameterizations and description of microphysical processes. From

comparison with observations, the impact of model initialization was explored. It

was found that only under specific conditions does the model reproduce a cloud that

resembles that which has been observed, and these conditions include the introduc­

tion of large-scale information. A nudging technique was used in this chapter to

implement the assimilation of external data. Due to the arbitrary choice of nudging

strength, this is a suboptimal way of initializing and forcing the cloud model, yet

model performance is totally dependent on it, at least for the cirrus case examined.

It is concluded that exploration of other ways of assimilation of external informa­

tion, such as variational methods, are necessary. This in turn eliminates, or at least

minimizes, cloud model errors derived from initial condition specification (Le. from



a NWP forecast) which are not directly quantifiable, permitting a focus on errors

related to model physics.

The next chapter discusses variational experiments performed with a one-dimensional

ice growth model and serves as an overture for the assimilation of radar data into

cloud models, which is the main focus of this research.
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Chapter 4

Cloud radar data assimilation

4.1 Rationale for the use of a simplified model

In this chapter, a one-dimensional time-dependent ice growth model is introduced

and used in the context of variational retrievals and data assimilation. The sim­

plicity of the model facilitates learning since it allows for in-depth exploration of

various aspects of the data assimilation problem, while offering the advantages of

a direct control over model implementation, from the equations-on-paper stage to

the computer--coding stage. Multiple experiments to probe different solutions to

the assimilation problem are possible because the entire assimilation procedure is

computationally inexpensive.

While more sophisticated models, such as RAMS, offer the benefits of a coupling

between all physical processes, dynamical, microphysical and radiative, and hence

adduce a more realistic representation of the "real world", they are also harder to

implement. For instance, the job of developing a tangent linear and adjoint model

(which are strictly model-dependent!) for a complex nonhydrostatic cloud resolving

model might take months, even with the aid of automatic differentiation software.

For a less complex model, the task of developing the tangent linear and adjoint

might still not be trivial, but it is more tractable.

In the following sections, different applications of the ice growth model and its

adjoint are shown. The main applications are the use of the adjoint for sensitivity

studies as a way of examining the model, and the use of a variational technique

to explore the potential of assimilation of radar data. Various ramifications of this

investigation are explored and general implications are discussed.
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4.1.1 Specific goals of this modeling effort

The goals of this chapter are summarized as follows:

94

• Develop an ice growth model which describes cirrus cloud vertical and tempo­

ral evolution from basic principles using physically··based parameterizations

while maintaining an overall (but necessarily nonlinear) simple form;

• evaluate the model behavior by comparison of the model with radar-derived

cloud profiles;

• construct an adjoint based on the tangent linear version of the nonlinear model

to be used in sensitivity studies;

• use the adjoint in variational data assimilation of synthetic and real radar

refiectivities.

These activities are aimed at demonstrating the impact of radar data assimilation

in cloud model prediction. The steps taken in developing the Cirrus Ice Growth

Model and Adjoint (CIGMA) system are general, and the procedure is applicable to

more complex cloud models. Conclusions drawn from both sensitivity studies and

assimilation experiments are relevant to the broader assimilation contexts (such as

to the assimilation of cloud radar data into NWP models).

4.2 General overview of procedure

The microphysical model is based on the work of Mitchell (1988, 1991), Passarelli

(1978a, 1978b) and Drake (1972). Mitchell's formulation has been extended to

obtain two coupled prognostic equations to predict the time and vertical evolution

of two parameters of a gamma size distribution of fixed width, the characteristic

diameter (Dn ) and the total number concentration of ice crystals (Nt).

The model is initialized with profiles of diameter and number concentration de­

rived from temperature, specific humidity and pressure profiles specified from a

NWP forecast or from a sounding, making use of selected parameterizations cur­

rently implemented in other models. At each time step during the time integration,
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the updated profiles of Dn and Nt are mapped into radar reflectivity. At selected

assimilation times, the quadratic cost function introduced in chapter 2 is computed

and optimized with respect to the control variables. Two sets of optimum variables

are used: the initial conditions for Dn and Nt (cloud variables) and the initial pro­

files of temperature, pressure and specific humidity (environment variables). It was

found that some control variables yield more robust results than others. This conclu­

sion was supported by sensitivity studies conducted with the adjoint of the model.

The main findings of note are the extreme model sensitivity to initial conditions and

high nonlinearity with respect to the environmental variables.

The results of the optimization are used to perform a new model prediction until

convergence is reached. The optimization process uses the gradient of the cost

function with respect to the control variables which is computed using the adjoint

of the cloud model, as discussed in chapter 2.

The procedure is tested with synthetic data in order to insure its correct imple­

mentation. The use of synthetic data allows us also to study the problem under

"controlled" settings. The model is run with an arbitrary initial condition and

radar reflectivities are computed at given assimilation times. These "bogus" reflec­

tivities are used in the optimization as measurements. The initial profile is then

perturbed by a given percentage, and the optimization process is started. Various

tests are conducted to gain a better understanding of the radar data assimilation

system as a whole, and its response to various factors such as changing error statis­

tics, including/excluding a background, adding/subtracting information. Finally,

real observations are also used to study the impact of inclusion of radar reflectivity

profiles on cloud model prediction.

The results are encouraging. Assimilation of radar data into cloud models is

feasible, and radar data do contain valuable information on both cloud variables

and the environment. However, results are not always optimal and convergence is

not always achieved, especially when using real measurements. This problem might

be due to the use of a lD model lacking an explicit treatment of relevant physical

processes. The use of a more complex model and the inclusion of observations in

addition to radar reflectivity is an obvious extension of this research. However,
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since the OIGMA model makes use of parameterizations that are also used in more

complex models, some issues encountered with it are likely to be experienced even

with a different model.

The outline of the chapter is as follows. Section 4.3 presents a detailed descrip­

tion of the ice growth model, along with parameterizations and numerical procedures

introduced to solve model equations. Model validation using radar observations is

also presented. A sensitivity study using the adjoint is presented in section 4.4.

Section 4.5 describes and analyzes all components of the OIGMA assimilation sys­

tem specific to radar data assimilation. In sections 4.6 and 4.7 numerical results

from assimilation experiments that introduce both the synthetic data and actual

observations are presented and discussed. Section 4.8 summarizes the chapter and

elaborates on the major findings of this particular piece of research. Aspects of

this research are contained in the paper "Exploring the possibility of assimilation

of radar reflectivities in a cirrus model using a variational approach" , submitted for

the P.Wagner Memorial Award to the Desert Research Institute of Reno, NV.

4.3 The microphysical module

The model presented here is a Lagrangian time-dependent ID model that predicts

the evolution of ice particle size spectra in cirrus clouds. The assumption is that

given a state of the atmosphere that is favorable to the formation and maintenance

of an ice cloud, i.e. a profile of relative or specific humidity that is supersaturated

with respect to ice, we can predict the time evolution of cloud ice particles subject to

growth by vapor diffusion and aggregation (riming and break-up processes are not

included). The model does not predict the time rate of change of any thermodynamic

or dynamic variables, which are assumed fixed and are specified from a NWP forecast

or from a sounding. This is an obvious limitation to the degree of realism of the

model. However, if it can be assumed that the time scale over which the large-scale

atmospheric state changes is longer than the time scale over which cloud processes

take place, it is reasonable to treat the atmospheric state as fixed. This hypothesis

may more likely hold for long-lived clouds that are formed in connection to large-
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scale uplifting or as residuals of convection, such as some cirrus clouds, since the

time scale involved in their evolution ranges from a few hours up to a day (Boehm

et al., 1999).

The model can also be regarded as a bulk microphysical module that can be

incorporated into a more complex model which includes other microphysical pro­

cesses (liquid water clouds, precipitating/convective clouds) as well as the necessary

feedbacks on dynamical and radiative processes.

4.3.1 Model equations

Model equations are derived from the full continuity equation in flux form:

an(m, x, y, z, t) [ ( ) ] Aat + \7. n m,x,y, z, t y. = -p - VD + AG - L (4.1)

where n(m, x, y, z, t) represents the mass distribution of ice crystals and y. is the

vector velocity. The various terms in the RHS represents respectively:

.. P = loss of particles of mass m by precipitation: v(m) 8n(m;;y,z,t)

where v(m) is the fall speed of a particle of mass m;

.. VD = loss of particles of mass m by vapor diffusion growth: 8mn(r;;;::,y,z,t)

where mis the mass time derivative;

.. AG = gain by stochastic aggregation (production of particles of mass m due

to aggregation of particles of mass (m - m') and m'):

~ Jam n(m - m', x, y, z, t)n(m', x, y, z, t)K(m - m', m')g(T)dm'

.. AL = loss due to stochastic aggregation of particles of mass m and m':

n(m, x, y, z, t) Jooo n(m', x, y, z, t)K(m, m')g(T)drn'

where K(m, m') represents the aggregation kernel.
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Equation (4.1) can be explicitly rewritten as

an(m, x, y, z, t) aun(m, x, y, z, t) avn(m, x, y, z, t) 8[w - v(m)]n(m, x, y, z, t)
--'--------'-+ + + =at ax ay az

amn(m, x, y, z, t) 1 rm
, , ",

- am + "2 Jo n(m - m, x, y, z, t)n(m, x, y, z, t)K(m - m, m )g(T)dm

-n(m, x, y, z, t)100

n(m', x, y, z, t)K(m, m')g(T)dm'. (4.2)

Assuming horizontal homogeneity and including the precipitation term in the

vertical advection, the problem simplifies to:

an(m, z, t) a[w - v(m)]n(m, z, t)
at + az =

omn(m, z, t) 1 rm
" ",

- am +"2 Jo n(m - m, z, t)n(m, z, t)K(m - m, m )g(T)dm

-n(m, z, t)100

n(m', z, t)K(m, m')g(T)dm' (4.3)

Introducing the first and second moment of the mass distribution along with

their respective fluxes:

first moment (Ice Water Content), X(z, t) = Jooo mn(m, z, t)dm

Ice Water Content flux, Xj(z, t)=Jooo mv(m)n(m, z, t)dm

second moment (ex Radar Reflectivity), ((z, t) =Jooo m2n(m, z, t)dm

second moment flux, (j(z, t) = Jooo m2v(m)n(m, z, t)dm,

equation (4.3) can be used to write prognostic equations for the two moments of

the mass distribution. The procedure is to multiply by m and m2 respectively, and

integrate over the mass distribution between 0 and 00. The resulting prognostic

equations for X and ( are:

OX(z, t) a[wx(z, t) - Xj(z, t)]
at + az

a((z, t) a[w((z, t) - (j(z, t)]
at + az

100

mn(m, z, t)dm (4.4)

100

2mmn(m, z, t)dm (4.5)

+ 100100

mm' n(m, z, t)n(m', z, t)K(m, m')g(T)dmdm'
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where the following relation from Drake (1972) was used:

99

1
00

m"[~1mn(m-m',z,t)n(m',z,t)K(m-m',m')g(T)dm'-

n(m, z, t)100

n(m',z, t)K(m, m')9(T)dm'] dm = (4.6)

~100100

[(m + m')' - m' - m''Y]K(m, m')n(m, z, t)n(m', z, t)g(T)dmdm'.

In the next section, equations (4.4) and (4.5) are used to derive prognostic equa­

tions for the parameters of a size distribution.

4.3.2 Model parameterizations

Equations for the first and second moment of the mass distribution derived in the

previous section, can be reformulated through the introduction of a size distribution.

The "modified gamma" distribution (Stephens et al., 1990) was chosen for this

task, since it describes with relative realism observed size spectra in cirrus clouds

and it has nice analytical properties. This distribution is also used in RAMS bulk

microphysics scheme as described in section 3.3.1. The mathematical form of the

modified gamma distribution is reported again here for convenience:

1 (D)V-11n,(D) = Nt-- -- __e-(D/Dn )

r(v) Dn Dn
(4.7)

As mentioned, n,(D) is fully described by the parameters Nt, Dn , and v. For

simplicity, it is assumed that the width of the distribution v is a constant and does

not vary with time and height. Following Dowling and Radke (1990) we set it equal

to 2. An important property of the gamma-distribution is the following:

(4.8)

Some parameterizations are introduced in order to derive governing equations

for the evolution of characteristic diameter and number concentration. The mass m
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of an ice crystal and its fall speed v(D) are parameterized in terms of the crystal

diameter D:

m

v

(4.9)

(4.10)

where a, {3, a and b are parameters that depend on the shape of the ice crystals

(e.g. Mitchell, 1988 and 1991).

Using these parameterizations and recognizing that n(m)dm = n(D)dD for any

size and mass distribution, we can express X, Xf ( and (f in terms of Dn and Nt,

using the property of the gamma distribution given in equation (4.8):

X
N D/3 fCB + v) (4.11)a t n f(v)

Xf
N D/3+b f ({3 + b+ v) _ Db f({3 + b+ v) (4.12)aa t n f(v) - a n r({3 + v) X

( 2 N D2/3 f(2{3 + v) (4.13)a t n r(v)

(f =
2 ND2/3+br(2{3+bv) _ Dbf(2{3+b+v) " (4.14)a a t n f(v) - a n f(2{3 + v) ~

Parameterizations also need to be introduced for the terms that appear as inte­

grals in the RHS of equations (4.4) and (4.5). Starting with the growth by diffusion

term, it can be shown from thermodynamical considerations that the growth rate

by vapor diffusion is a power law in the diameter of the growing particle:

rh = f(T, p, q)D8 (4.15)

where rh is the mass time rate change, 6 is a coefficient that takes into account

ventilation effects (i.e. for 6 = 1 no ventilation effects are included) and f(T, p, q)

is a thermodynamic coefficient that depends on temperature pressure and specific

humidity. Factors that are related to the shape of the ice crystal which determine

its capacitance,l are also included in f. In what follows, it is assumed that the

1An analogy between diffusion of water vapor toward a growing particle and diffusion of charge

toward a conductor can be made. The capability of an object to accumulate charge is described by



Chapter 4. Cloud radar data assimilation 101

dominating shape for vapor diffusional growth processes is hexagonal plate, in which

case f(T,p, q) is simply:

f(T,p,q) = 4(Si -l)j(A+B) (4.16)

where Si is the supersaturation with respect to ice and A and B are constants

related to properties of air, such as vapor diffusivity and heat conductivity (e.g.,

Pruppacher and Klett, 1997).

Using equation (4.15) and equation (4.8), the evaluation of the vapor diffusion

integrals is straightforward:

lOO f(T, p, q)DOn(D)dD

100

2f(T, p, q)O'.DHl'n(D)dD

r(v + 8) °
f(T,p, q)Nt r(v) Dn

= 2f(T ) IN r(v + 8 + (3) DHf3
,p,qa t r(v) n

(4.17)

(4.18)

Similarly the aggregation integral that appears in the RRS of equation (4.5) can

be evaluated by assuming that the aggregation kernel has the form:

K(D, D') = ~(D +D')2Eelv(D) - v(D')1 (4.19)

with Ee, the collision efficiency. Set the aggregation efficiency2 Ea equal to g(T)Ee,

where g(T) is a temperature dependent coefficient (Mitchell, 1994) and use (4.19)

to get:

100100
mm'n(m, z, t)n(m', z, t)K(m, m')g(T)dmdm' =

[00 [00 0'.2 Df3 D'I'n-y(D)n-y(D')~(D + D')2EaalDb_ D,bldDdD' =
Jo Jo 4

O'.2~Eaa100
[00 0'.2 Df3 D'I'n-y(D)n-y(D')(D + D')2IDb- D,bldDdD' (4.20)

4 0 Jo
its capacitance. Similarly the capability of an ice crystal to accumulate water vapor is described

by a capacitance which is shape related as in electrostatic theory. The capacitance of a spherical

particle is simply equal to its radius; for an hexagonal plate, C = 2;, where r is the ice crystal

radius.
2Uncertainties in collision and aggregation efficiency are very large, especially for ice clouds.

Direct measurements are practically inexistent; parameterizations are made difficult by the depen­

dence of these quantities on habit of colliding crystals, turbulence, and ambient conditions.
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ax a[WX(z, t) - Xt(z, t)]
at + az

a((z, t) a[w((z, t) - (t(z, t)]
at + az

The integral above can be computed either numerically or analytically (Pas­

sarelli, 1978a) as a function of the given parameters (3, v and b. However, it just

represents a constant indicated in what follows with the symbol h.
Equations (4.4) and (4.5) can now be rewritten in the following form:

r(v + 6) 0
f(T,p, q)Nt r(v) Dn (4.22)

2f(T ) No r(v + (3 + 6) Df3+o
,p,q a t r(v) n

+ _1_a2N2~E aD2f3+2+bJ (4.23)
r(v)2 t 4 a n b

By using relations (4.11)---(4.14) in equations (4.22) and (4.23), a system of two

coupled nonlinear prognostic equations for Dn and Nt is derived as follows. Divide

equation (4.22) by X and equation (4.23) by (, and simplify the RHS using (4.11)

and (4.13) to get:

~ _aX + ~ ---,a[=---w_X-,-(z_'t...:.-)_-_X...:-t(...:.-z_,t..;...:.)]
X at X az

1 a((z, t) 1 a[w((z, t) - (t(z, t)]
"( at +"( az

f(T,p, q) k3D~-f3
a

2f (T, p, q) k4D~-f3
a

1 2+b+ k
s

NtG1aDn

(4.24)

(4.25)

where G1 = 7fEah and:
k - r(v+b+f3) k - r(v+2f3+b) k - r(v+o) k - r(v+f3+o)

1 - r(v+f3) ' 2 - r(v+2f3) ' 3 - r(v+f3) ' 4 - r(v+2f3) ,

Writing the two moments as:

(
r(;3 + v))

lnx In a r(v) + lnNt + {3lnDn

(
2r(2{3 + v))

In( In a r(v) + lnNt + 2;3lnDn

ks = r(v)r(v + 2;3)
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and assuming a, (3, a and b are constant with height and time, it follows that:

8lnX alnNt (3alnDn
& at + 8t
aln( alnNt 2(3alnDn
8t 8t+ at

and similarly

alnx alnNt + (3alnDn
8z 8z 8z

aln( alnNt + 2(3alnDn
8z 8z 8z

If one is to include a time or height dependence for the model parameters, the

above expressions have to be modified to include their derivatives with respect to

t or z. Finally, rearranging the terms which contain the first and second moment

fluxes, Xf and (f:

8w
8z

f(T, p, q) k3D~-f3 (4.26)
a

8w

8z

2f (T,p, q) k4D~-f3
a

1 2+b ( )+k
s

NtGlaDn . 4.27

By subtracting equation (4.26) from equation (4.27) and dividing through by

(3, an equation for the time and height evolution of the characteristic diameter is

derived:

.!. 8Xf k Db (b alnDn alnx )
X 8z a 1 n 8z + 8z

! 8(f k Db (balnDn aln()
( 8z a 2 n 8z + 8z

and combining all of the above expressions together, two coupled differential equa­

tions for Dn and Nt are obtained:

alnNt (3alnDn alnNt (3alnDn
8t + 8t + w 8z + w 8z +

_ kDb(balnDn alnNt (3alnDn )
a 1 n 8z + 8z + 8z

alnNt 2(3alnDn alnNt (3alnDn +
8t + 8t + w 8z + w2 8z

_ k Db (b alnDn alnNt 2(3alnDn )
a 2 n 8z + 8z + 8z
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Similarly, by multiplying equation (4.26) by 2 and by subtracting equation (4.27)

from the product, an equation for the number concentration is obtained:

alnNt
at +

Selection of a maximum value for Dn , Dmax , and for Nt, Nmax , allows to introduce

new variables:

x

y =

l ( Dn
)n D

max

l ( Nt )n N
max

(4.30)

(4.31 )

and, upon rearrangement, to derive a new set of equations in the nondimensional

variables x and y:

ax
at +

ay
+at

(4.32)

(4.33)

Equations (4.28)-(4.29) or their equivalent (4.32)-(4.33) constitute the system of

equations that describe the vertical and temporal evolution of Dn and Nt.

4.3.3 Numerical implementation

The numerical implementation is performed using a discrete version of the model

on a time and height grid constituted of equally spaced points. The numerical
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integration uses the leap-frog scheme with the Robert time filter Asselin (1972)

to eliminate the computational mode. The maximum timestep is determined by

the Courant criterion for numerical stability. It was found that the plain leap-frog

scheme yielded a numerically unstable solution for equations (4.32) and (4.33). The

leap-frog method with LAX correction offered a stable solution, but introduced too

large of a numerical dissipation (Press et al., 1992). A compromise was reached by

adding a dissipation term proportional to an arbitrary coefficient to equation (4.32).

The value for the coefficient was chosen to be equal to the smallest positive number

that allowed a stable solution. No dissipation was added to the prognostic equation

for the number concentration (4.33).

Coefficients that appear in the mass-diameter and fall speed-diameter param­

eterizations are taken from Mitchell (1988). Specific values used in the model are

relative to a mixture of unrimed plates, side planes, bullets and columns, and are

given here in MKS units:

a = 18.3010-3, /3 = 1.9, a = 11.7, b = 0.41

In what follows, we will assume that these parameters are not functions of time

and height. This is not true in reality because as the ic,e crystals grow and change in

shape and size, the parameters that define mass-diameter and fallspeed-diameter

relationships also change. In addition the ice growth rate has a dependence on

crystal shape as pointed out in a study by Mitchell and Chai (1998). In section 4.4,

model output sensitivity to choice of model parameters is discussed in detail.

The initial condition for characteristic diameter and number concentration can

be specified from various options:

1. Constant characteristic diameter and number concentration computed from

supersaturation with respect to ice, using a parameterization introduced by

Meyers et al. (1992). This parameterization describes heterogeneous ice nucle­

ation processes in RAMS, and prescribes the number of nucleated crystals as

an exponential function of supersaturation with respect to ice (Si). It must be

observed, though, that a more realistic treatment of ice crystal nucleation pro-
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cesses must include also homogeneous freezing of droplets and haze particles

which can be dominant at cold cirrus temperatures.

N "" e-O.639+0.1296Si
IN "" , (4.34)

2. Number concentration computed as in step 1., and characteristic diameter

derived from a parameterization used in the ECMWF model, cubic in the

difference between ambient temperature (T) and reference temperature (To =

273 K):

Dn ~ 326.3 + (T - To) (12.42 + (T - To)(0.197 + (T - To)0.0012)). (4.35)

3. Number concentration computed as in step 1., and characteristic diameter

derived from Nt and IWC, parameterized in term of vertical velocity and

temperature, following Heymsfield (1977) as reported in Cotton and Anthes

(1989):

(4.36)

It is assumed that the cloud layer is confined in height and no cloud is present

at the lowest and uppermost level of the z--grid which extends from the surface to

the upper troposphere. Boundary conditions are thus simplified.

4.3.4 Observational operators

The radar mapping

In chapter 2, the notion of an observational operators was discussed. In this section,

the general concepts are applied to assimilation of radar data. The model equivalent

radar reflectivity in the Rayleigh approximation can be obtained from the following

definition:

(4.37)
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where the size distribution is assumed to be a modified gamma distribution (see

equation (4.7)), as done in the development of the cloud model equations. Note

that the underlying assumption in the derivation of (4.37) is that the ice particles

behave as Rayleigh 3 scatterers at the radar wavelengths of interest (i.e., 3.19 or 8.57

mm for cloud radars), hence the dependence on the sixth power of the diameter.

We hence expect much higher sensitivity of radar reflectivity to diameter than to

number concentration (roughly sixfold).

By integrating with respect to D, we obtain:

z = f(v + 6) N D 6
r(v) t n

(4.38)

where the general property of the modified-gamma distribution was used again:

For larger crystals, the Rayleigh radar reflectivity overestimates the reflectivity,

due to its extreme dependence on particle diameter. To prevent this from happening,

a correction based on exact Mie calculations for the radar reflectivity which depends

on particle size was implemented.

Radar observations are usually given in equivalent radar reflectivity, which is

the normalized power that a population of water droplets would backscatter. For

comparison purposes, it is necessary to transform model ice reflectivities into equiv­

alent reflectivities. In order to do so, account must be taken of the variation of

the refractive index of ice with ice particle density. This is especially important

for larger aggregates: an ice aggregate of a given size and with a low density (i.e.

with air pockets, and holes in it) will backscatter less than a solid ice particle of the

same size. In the comparisons with the radar observations, a density correction to

reflectivity was applied (courtesy of Dr. S. Matrosov, private communication).

3Particles are said to be Rayleigh scatterers if they are much smaller than the wave­

length A of the incident radiation. Introducing the size parameter, x = 2~r where r is the

radius of the particle, the Rayleigh approximation applies if x << 1.
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Optical depth

The total optical depth represents a path integrated quantity:

(4.:39)

100 7r

O"ext = 0 n-y(D) 4:D2Qext(D)dD. (4.40)

By assuming that cirrus crystals are much larger than the wavelength so that

the extinction efficiency, Qext -+ 2, equation (3.14) is integrated to:

where O"ext(z) represents the extinction coefficient profile and the limits of the integral

are cloud base Zb and cloud top Zt. At visible wavelenghts the extinction coefficient

is given by:

(4.41)

From equation (4.41) it can be seen that the dependence of O"ext on Dn is

quadratic as opposed to the sixth power dependence of radar reflectivity. We expect

the sensitivity of T to the characteristic diameter to be twice as large in magni­

tude with respect to the sensitivity of T to the number concentration. The different

sensitivities of T and Z on particle size and number concentration are also directly

exploited in the IWC retrieval schemes introduced in the appendix.

4.3.5 Some comparison with model and observed cirrus spectra

In its original formulation (Mitchell, 1988), the model predicts ice crystal concen­

trations and sizes of ice particles given an input IWC. Comparisons show favorable

agreement of model versus measured ice particle spectra as discussed in Mitchell

(1988) and (1994), and more recently in Lawson et al. (1998) and Mitchell and Chai

(1998). However, the formulation presented here largely differs from the original

one since no information on the cloud IWC is provided as input, and the cloud is

formed from a supersaturated profile. In order to verify the degree of realism of

the model, it is necessary to compare model results with observations. This is an

essential part of the model skill assessment process discussed in chapter 2. To this
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end, two case studies were considered. One is the ARM-UAV Spring '99 campaign,

which is described in chapter 3. The other one is part of the cirrus observations

carried out at the ARM Southern Great Plain site duri.ng an Intensive Operational

Period (lOP) in Spring 1998. This latter case study is introduced below. A third

case study from the Fall 1996 ARM-SGP lOP is presented in appendix B. Data

from the ARM-SGP lOPs were provided by Dr. G.Mace.

Case study 1: Oklahoma, 8 May 1998

The cloud observed on May 8 appeared homogeneous and thick, as shown in the time

series of the Millimeter Wave Cloud Radar 4 (MMCR) radar backscattering. Figure

4.1 shows a vertical cross--section of radar reflectivity derived from the MMCR

signal along with a time series of cloud optical depth derived from Raman lidar data

(courtesy of Zhien Wang, University of Utah). The black solid line represents the

flight track of the University of North Dakota (UND) Citation, carrying several in

situ instruments. Microphysical quantities such as number concentration and mean

size were measured with a 2D-C probe. These observations are used in conjunction

with the radar profiles to evaluate the performance of the ice growth cloud model.

Figure 4.2 shows the time series of temperature, relative humidity with respect

to ice and aircraft altitude as recorded on board of the UND Citation. Figure 4.3

presents the time series of particle number concentration and mean size measured by

the 2D-C probe. The average mean size is around 250 J.Lm and the average number

concentration is around 20 particles per liter with peaks of 80 [-1.

Initial profiles of pressure, temperature, and speci.fic humidity to initialize the

model are from radiosonde measurements which are routinely taken over the ARM

central facility. The sounding we used, taken at 17:30UTC, is shown in figure 4.4.

Cloud temperatures range from -17°C at cloud base to -37°C at cloud top.

4The MMCR is a zenith-pointing radar that operates at a frequency of 35 GHz. The main

purpose of this radar is to determine cloud boundaries (e.g., cloud bottoms and tops). This radar

also reports radar reflectivity (dBZ) of the atmosphere up to 20 km. The radar possesses a Doppler

capability that allows the measurement of cloud constituent vertical velocities.
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Figure 4.1: Radar reflectivity and total optical depth time series for a thick cirrus

layer observed over the ARM SGP site, Oklahoma, on May 8, during the Spring

1998 Cloud lOP.

The relative humidity profile shows a relatively dry layer right below 5.6 kID,

and moist layer between 6 and 12 km. This sounding is used to provide initial

environmental fields to the the ice growth model. Type 1 initialization for cloud

variables was used, and the initial constant characteristic diameter was set equal

to 100 J-lm. For comparison purposes, the mean size for the gamma distribution is

computed from the following integral:

- Jo
oo

Dn(D)dD
D = Jooo n(D)dD = vDn. (4.42)

In situ observations of ice particle number concentration and mean size were com­

pared with the corresponding model fields over approximately a half hour interval

from 17:30 UTC to 18:00 UTC. Model--predicted reflectivities were also compared
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Figure 4.2: Relative humidity with respect to ice (upper panel), temperature (mid­

dle panel), and plane altitude (lower panel) recorded between 17:30 and 17:48 UTC

on board of the UN Citation on May 8, 1998.

with MMCR profiles averaged over the same time interval.

Figure 4.5 shows the microphysical parameters predicted by the model versus the

in situ values, the latter are rebinned to match model vertical resolution (100 m).

As it appears, although the shape of the profiles is reasonable, the model number

concentrations are much too low with respect to the in situ concentrations. The

discrepancy is as large as two orders of magnitude. Note that this discrepancy can

also be due to the lack of homogeneous nucleation processes in the model. Better

agreement is found for values of mean size. This is reflected in the comparison

between model and observed radar reflectivities (see figure 4.6).

The model predicts a radar reflectivity that is lower than the observed reflectivity

due to the underprediction of the number of ice crystals. The difference is, however,

less marked than the difference in number concentration, due to the fact that the
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mean size vertical structure is reasonably well represented, and radar reflectivity is

more sensitive to size than number concentration (this will become evident in dis­

cussions in section 4.3.4). We notice that the reflectivity profile is slightly misplaced

with respect to the observed profile. Since the base of a cloud is directly related to

the fall speed of the cloud particles, as shown in chapter 3, this problem is "fixed"

by using a lower coefficient a for the power law v = aDb (more on this in secti.on

4.4). The result is a better coincidence of observed and model cloud base (see figure

4.7). The decreased value of the parameter (a = 5.8) is used throughout the rest

of this case study comparison. This result suggests that a is an important model

parameter that can be optimized using the observations.

The main reason for the discrepancy between observed and model number con­

centrations resides in the fact that the initialization for Nt requires local supersatu­

ration with respect to ice, but the initial sounding of figure 4.4 is not supersaturated

with respect to ice at cloud levels. This is a problem often encountered when uS:lng
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Figure 4.3: Ice particle mean size (upper panel), and number concentration (lower

panel) measured between 17:30 and 17:48 UTC by the 2D-C probe on board of the

UN Citation on May, 8 1998.
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Figure 4.4: Temperature (upper panel) and relative humidity (lower panel) at 17:30

UTe on May, 8 1998. Sounding launched from the ARM-SGP central facility. Data

were obtained from the ARM Program sponsored by the U.S. Department of Energy,

Office of Science, Office of Biological and Environmental Research, Environmental

Sciences Division.

radiosonde measurements which are known to lack accuracy in the humidity fields,

especially at upper tropospheric levels (Zipser and Johnson, 1998). Investigation

showed that most radiosonde soundings presented a dry bias due to technical prob­

lems with the humidity sensor as reported in (Miller et al., 1999a). When using
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Figure 4.5: Comparison between observed (solid line) and model number concen­

trations and mean sizes (dashed line) averaged over a half hour interval.
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Figure 4.6: Comparison between observed (solid line) and model reflectivities (solid

line) averaged over a half hour interval.
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Figure 4.7: Same as in figure 4.6, Decreased value of a parameter (see text for

explanations) .

the relative humidity profile from radiosonde to initialize cloud models, a very long

spin-up time for cloud formation in the model is often observed. Another reason

for this discrepancy is the lack of a parameterization for homogeneous nucleation.

However, in this particular case, the latter is not the dominating source of error since

the cloud temperatures are comparatively warm, and do not go below the threshold

of -38°C for homogenous nucleation (De Mott et al., 1994).

In situ measurements for the levels between 6 and 7.5 km do not show supersat­

uration with respect to ice either, but it must be remembered that they are taken

after the formation of the cloud. The particle must have been exposed to large ice

supersaturations in order to nucleate, but the growth processes act as supersatura­

tion sinks, and unless new supersaturation is created by vertical uplifting induced,

for example, by radiative-convective overturning, the environment becomes under­

saturated especially around cloud base. To verify this hypothesis, the initial relative

humidity was arbitrarily increased to reach a level close to water saturation, thus

producing a supersaturation with respect to ice that is large (figure 4.8).
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Figure 4.8: Atmospheric state variable profiles between 6 and 7.5 km. Temperature

is shown in the upper panel. Relative humidity (RH) in the lower panel. The various

profiles represents respectively: original RH wrt water (solid line), original RH wrt

ice (short dashed), increased RH wrt water (dot-dashed), and increased RH wrt ice

(long dashed).

This figure shows the relative humidity with respect to ice profile before and

after the arbitrary increase, along with the relative humidity with respect to water.

Note that the cloud levels are now close to being water saturated, and are ice su­

persaturated. If we allow higher ice supersaturations to occur, the resulting number

concentration becomes closer to the in situ observations, as exemplified in figure

4.9. The improvement in agreement between model and observed reflectivity is also

noticeable (see fig. 4.10).
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Figure 4.9: Comparison between observed (solid line) and model number concen­

trations and mean sizes (dashed line). Meyers et al. (1992) initialization for Nt and

constant initialization for Dn (lOOj.lm). Increased value of RH wrt water (see text

for explanations).

These results suggest that the model is capable of reproducing realistic fields,

but due to the specific high sensitivity of the initial number concentration to su­

persaturation with respect to ice, the model can only operate under "controlled",

Le. supersaturated, conditions. A positive aspect of this otherwise undesirable but

expected high sensitivity is that there is information contained in the number con­

centration field regarding the initial supersaturation experienced by the cloud upon

its formation. Since radar reflectivity is sensitive to number concentration, even if

to a lesser degree than it is sensitive to characteristic size, some information may be

extracted from radar measurements regarding the initial moist field that "forces"

the cloud.

When other types of initializations for Dn were used (different value of con­

stant Dn , and ECMWF parameterization, see section 4.3.2), similar behaviors were

observed as seen in figures 4.12 and 4.11, and 4.13 and 4.14.
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Figure 4.10: Same as figure 4.9, but for radar reflectivity.
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Figure 4.11: Same as figure 4.9, but for initial value of Dn = 50/-Lm.
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Figure 4.12: Same as figure 4.10, but for initial value of D n = 50j.lm.
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Figure 4.13: Same as figure 4.9, but for ECMWF initialization for Dn .
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Figure 4.14: Same as figure 4.10, but for ECMWF initialization for Dn .

Case study 2: Kauai, April 30 1999

Our second case study is the already familiar cirrus case observed on April 30, 1999

during the ARM-DAV Spring 1999 campaign. For details on this set of cirrus obser­

vations, we refer to section 3.4.1. For this case study, there was no availability of in

situ measurements, and the comparison is carried out only between model predicted

and observed radar reflectivities profiles. However, RAMS and ECMWF model

results for the same case were also available, and were included in the comparison.

Initial atmospheric profiles (shown in figure 4.15) and vertical motion were taken

from the ECMWF forecast over the study area. Cloud temperatures range from ­

17°C at cloud base to -52°C at cloud top. Relative humidity is low in the lower

middle troposphere (~ 2.5km), and higher in the middle troposphere. The profile

is not saturated with respect to water at cloud levels.

The same issues encountered in the SGP case study when using ice unsaturated

profiles were found in this case study (see figure 4.16). The model radar reflectivity

appears to be too low compared to observed values. In this particular case, the lack
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Figure 4.15: Temperature (left) and relative humidity (right) at 23:20 UTC on

April, 30 1999, Kauai, Hawaii.

of homogeneous nucleation could be a large source of error, since cloud tempera­

tures are low. This factor in addition to the subsaturated relative humidity profile

contributes to the discrepancy between model and observed reflectivities. When

increasing the relative humidity at cloud levels (6--12 km) as shown in figure 4.17,

the agreement is improved for all different characteristic diameter initializatiolls (see

figures 4.18, 4.19, 4.20, and 4.21).

Comparisons with other models is presented in figure 4.22.
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Figure 4.16: Comparison between observed (solid line) and model reflectivities.

Meyers et al. (1992) initialization for Nt and constant initialization for D n (100f,lm).

The reflectivity profile for the model presented in this section is the one from

the simulation with increased relative humidity and constant initial characteristic

diameter equal 100 j.tm. Radar reflectivities for ECMWF and RAMS runs, are

computed from the model derived IWC using an IWC-Z relationship, as explained

in section 3.4.4. Simulations from the two different versions of RAMS are included.

Version 4.2 produces an average radar reflectivity profile which is in better agreement

with observations. For more details on the RAMS simulations, and explanations of

the differences between the two model versions, we refer the reader to chapter 3.

In general all models do a reasonable job in reproducing the observed cloud. The

major discrepancies, examined model by model, are as follows:

RAMS 3b reflectivity mostly overestimates observed value, except right above

cloud base.

RAMS 4.2 places the cloud in the right position, but has a bright reflectivity bias

throughout the cloud, and a slight dark bias right above cloud base, similar
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Figure 4.17: Atmospheric state variable profiles between 6 and 12 km. Temper­

ature is shown in the upper panel. Relative humidity (RH) is shown in the lower

panel. The various profiles represent respectively: original RH wrt water (solid

line), original RH wrt ice (short dashed), increased RH wrt water (dot-dashed),

and increased RH wrt ice (long dashed).

to RAMS 3b.

ECMWF has the right reflectivity near cloud base, but no cloud above 10.5 km,

whereas radar observations show a top at 12 km.

CIGMA shows a similar behavior to the ECMWF profile, except for an overesti­

mation of reflectivity at cloud base.
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Figure 4.18: Same as figure 4.16, but for the increased relative humidity profile of

figure 4.17.
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Figure 4.19: Same as figure 4.18, but for Dn = 50j..lm.
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Figure 4.20: Same as figure 4.18, but for ECMWF Dn initialization.
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Figure 4.22: Comparison of radar reflectivity fields for a cirrus case observed in

Kauai, Hawaii, on April 30, during the Spring 1999 ARM--UAV campaign.

Conclusions on model evaluation

The comparisons presented above show that the model, when initialized with rela­

tive humidity profiles dose to water saturation (hence supersaturated with respect

to ice at cloud levels), is capable of reproducing realistic ice clouds, if not per­

fectly in the magnitude of the fields, at least in the correct shape of the profiles.

Some issues remain concerning the applicability of this simple model under variable

environment conditions. A major deficiency hinted at previously is the lack of a

prognostic equation for supersaturation that would take into account local changes

in supersaturation induced by cloud processes (evaporation as a source and deposi­

tional growth as a sink of moisture). The lack of radiative/convective overturning,

crucial in cirrus dynamics as discussed in Wu et al. (2000) is also a major limitation

of the model. Highly desirable would also be the inclusion of other microphyskal

processes such a parameterization for homogeneous nucleation processes.

However, even using a model with obvious limitations, it is possible to learn
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much about how radar data assimilation might impact our understanding of the

model and of processes important to cirrus clouds in general. The remainder of this

chapter focuses on showing that radar reflectivity measurements contain information

regarding both cloud parameters and state parameters of the environment in which

the cloud formed. This potentiality is fully explored in the next sections, starting

from the study of model sensitivity to external inputs and model internal parameters.

4.4 Sensitivity studies

In this section we discuss the adjoint model and present results for the sensitivity

studies. Based on the description of the adjoint of a linear model provided in chapter

2, it can be seen that the adjoint solution provides the sensitivity of the final model

state (or a function of the model state) to an arbitrary change in initial condition

or input parameters. The sensitivity is linear since it is based on a tangent linear

approximation of the nonlinear model. For small perturbations, this is generally a

good approximation. For large perturbations, or for highly nonlinear models, the

linear sensitivity analysis might not be appropriate, as discussed in Saltelli (1999),

since it does not consider higher order terms that account for interactions between

different inputs. Given this limitation, the linear sensitivity analysis remains a

powerful tool to learn about the model and assess its skills.

A study of sensitivity is necessary in order to establish whether the output

variable, radar reflectivity in this application, is sensitive to the chosen control

variables. Two opposite situations can be found: the output variable is not sensitive

enough to the input or the output is too sensitive. In the former case, even large

perturbations do not affect the final result, and it will not be possible to recover

the optimal value of the control variable due to the lack of information regarding

the control in the observable quantity. The second case is more delicate; on the one

hand it is desirable to have sensitivity to initial condition, but if the model is highly

nonlinear this might turn out to be detrimental to convergence. Small perturbations

can change the output by large amounts and the optimization algorithm will not

be able to find the real minimum of the cost function. The use of linear (adjoint)
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analysis identifies a priori variables to which the model is most sensitive, providing

those clues about the model performance.

The use of the adjoint model in sensitivity studies has a long-established tradi­

tion. Since its early application to investigate the sensitivity of a nonlinear radiative­

convective climate model (Hall et al., 1982), the adjoint analysis has been applied

in the study of cyclogenesis (Vukicevic and Raeder (1995); Vukicevic (1998)), atmo­

spheric blocking (Zou et al., 1993a), tracer transport (Vukicevic and Hess, 2000),

and CO2 seasonal cycle (Kaminski et al., 1996). As an advantage over the so called

forward model sensitivity in which the model is perturbed for every grid point and

each time in space, the adjoint sensitivity provides a computation of the model

sensitivity to a given variable (or set of variables, including initial or boundary con­

ditions, physical model parameters, etc.) in only one integration, since the adjoint

is defined for all model points and times. The adjoint technique requires a solution

of a differential equation, and the accuracy of the method is subject only to the

accuracy of the linear assumption invoked.

4.4.1 Construction of the adjoint model

Adjoint construction can be summarized by the following practical steps (Errico and

Vukicevic, 1992):

1. Develop a Tangent Linear (TL) version of the nonlinear model under consid­

eration (if model is already linear, this step is obviously not necessary);

2. in the TL model find every equation (diagnostic or prognostic) where a par­

ticular dependent variable occurs on the right-hand side. For discrete models,

variables that have distinct gridpoint indices are considered distinct.

3. For each variable found in step 2, the equation that determines its corre­

sponding adjoint variable has the same terms as the TL equation on the RHS,

but here these are coefficients that multiply whatever dependent variable was

originally on the left-hand side.
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4. If particular TL equations must be solved in a certain order, then for the

adjoint they must be solved in the reverse order. For example, in CIGMA the

computation of radar reflectivity is performed after the prediction of diameter

and number concentration; in the adjoint it is exactly the opposite, i.e. the

adjoint of Z is computed before that of Dn and Nt.

5. Diagnostic variables continue to be determined by diagnostic equations. Prog­

nostic variables are computed backward in time.

Automatic adjoint construction is based on these few steps. More details on

the actual implementation and efficient coding of these operations can be found

in Giering and Kaminski (1998). There are several automatic differentiation pack­

ages available to the scientific community, such as the Tangent linear and Adjoint

Compiler (TAMC) software (Giering, 1999), ODYSSEE (Faure and Papegay, 1997),

ADIFOR (Bischof et al., 1995). For our application, TAMC was used to derive the

adjoint of the discretized version of the model described by equations (4.32) and

(4.33). The software is easily accessible, and provides a rapid assembling of the

adjoint, provided the input and output variables are all specified in the call to the

main model subroutine. The resulting adjoint code is not optimized for speed, and

some modifications are necessary in order to increase its computational efficiency.

In order to do that, the tangent linear version of the model was also derived using

the same automatic differentiation code. The tangent linear model derived with

TAMC is usually accurate, and can be used to identify the coefficients (first deriva­

tives) that need to be saved from a run of the nonlinear model and then used in

the adjoint calculation. If all coefficients are saved in the forward run and read in

direct access mode, the adjoint computation is greatly sped up. The tangent linear

code also offers a way of verifying the correct functioning of the adjoint. By com­

paring the adjoint and tangent linear solution for a given perturbation, the validity

of the adjoint is established if a perfect (within numerical uncertainties) equality is

recovered.

Initially the adjoint was built using cloud variables, such as initial characteristic

diameter, initial number concentration and the model parameters G, 13, a and b
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introduced in section 4.3.2 as control variables. A second version of the adjoint was

then constructed with respect to environmental variables (vertical velocity, temper­

ature, pressure and specific humidity). When changing control variables, the adjoint

of the model has to be rederived since it is strictly dependent on the choice of the

variable with respect to which the variation is taken. Once the adjoint is derived, the

linear sensitivity of the model to a given input variable can be efficiently computed.

4.4.2 Sensitivity to model cloud-related variables

In this first part of the sensitivity study, we focus strictly on the cloud-related

variables. We consider a 5% change in the input parameters: percentage variation

makes it easier to compare perturbations in variables with different units. For vector

variables, the percentage perturbation is taken over the whole profile.

Plots of radar reflectivity absolute variation (in dBZ) are shown in figure 4.23

and an interpretation of the results follows. The sensitivity of Z to Do and No is

straightforward to interpret: an increase in either field induces an increase in radar

reflectivity. As anticipated, the radar reflectivity is more sensitive to the initial char­

acteristic diameter profile, than to the initial number concentration profile. More

exactly the radar reflectivity is almost six times more sensitive to initial characteris­

tic diameter than to initial number concentration. It hardly seems worthwhile going

to the trouble of deriving an adjoint to reach this obvious conclusion. However, the

sensitivity of model radar reflectivity to other variables is far less intuitive. As an

example, the central panels of figure 4.23 show the sensitivity to fall speed-diameter

relationship parameters. An increase in a of 5% leads to an increase of 15 dBZ in Z

at cloud base. This means that if the fall speed velocity of ice crystals is increased,

the bigger crystal will concentrate preferentially at cloud base before hitting the

subsaturated region, i.e. before starting to evaporate, hence enhancing the radar re­

flectivity at cloud base. Recalling the comparisons presented in section 4.3.5, it was

noticed that the model put the cloud base too low (see figure 4.6), and a reduction

in the fall speed parameter a, gave a better agreement with observations. This is

explained clearly by the sensitivity plot. Conversely, if the coefficient b is increased,
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ice crystals fall at a lower speed (remembering that b < 1), resulting in a deficit of

radar reflectivity at lower levels. It is worth noticing, however, that sensitivities to

parameters a and b are large throughout the cloud depth, indicating how important

a correct representation of the particle fall speed is for cirrus modeling. Results

shown in the lower two panels indicate a large sensitivity to the mass-··diameter re­

lationship parameters below cloud base and above cloud top, and little sensitivity

inside the cloud.

The sensitivity analysis was also performed on the cloud-layer optical depth. Re­

sults are presented in table 4.1. As expected, the sensitivity of T to Do is two-fold

the sensitivity of T to No, reflecting the quadratic dependence of T on characteristic

diameter, and linear dependence on number concentration. Varying the fall speed

coefficients a and b had a small (almost negligible) negative impact on the total vari­

ation of optical depth. The mass-·diameter relationship parameters have opposite

impact with respect to each other. An increase in the parameter a, which is related

to the density of the nonspherical ice crystals, decreases the optical depth,5 while

an increase in the parameter f3 increases the cloud optical depth.

4.4.3 Sensitivity to environmental fields

Further sensitivity studies were conducted with a different version of the adjoint of

the cloud model derived using environment variables as control. A 0.5% change in

the input fields, temperature pressure, specific humidity and vertical velocity, was

considered. The response of radar reflectivity to changing these variables is large in

amplitude, except the one for vertical velocity (see figure 4.24).

This particularly high sensitivity to temperature is related to the Meyers et al.

(1992) parameterization used to initialize ice crystal number introduced in section

5Visible optical depth can be approximated by the following relation from Stephens (1978)

3IWP
T~--

2PiT e

where Pi is the density of ice and Te is the effective radius.

(4.43)
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Figure 4.23: Sensitivity of radar reflectivity to 5% change in input parameters. In

order, starting from the upper left corner: sensitivity of Z to initial characteristic

diameter profile (left top panel); sensitivity to initial characteristic number con­

centration profile (top right panel); sensitivity to fall speed parameter (middle left

panel), a; sensitivity to fall speed parameter, b (middle right panel); sensitivity to

mass parameter, a (bottom left panel); sensitivity to mass parameter, (3 (bottom

right panel). See text for explanations.
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Table 4.1: Sensitivity of cloud visible optical depth to a 5% change in input vari­

ables. Value of optical depth for unperturbed conditions is T = 0.2338.

Parameter DoT Change in T (%)

Initial diameter profile, Do 0.0241660271 10

Initial number concentration profile, No 0.0126533825 5.5

Fall speed parameter, a -6.25227694E-05 -0.01

Fall speed parameter, b -0.00216991128 -3.5

Mass-Diameter relationship parameter, a -0.00123489264 -0.5

Mass-Diameter relationship parameter, f3 0.00129'82504 0.6

4.3.2, which we transcribe here for convenience:

N '" e-O.639+0.1296Si
IN '" , (4.44)

Since this is an exponential function of Si, which, in turn, is a nonlinear function

of temperature, small changes in temperature can lead to a large difference in the

initial condition for the number concentration. This, in turn, dominates the time

evolution of the particle number concentration in the cloud. The resulting extreme

sensitivity to the temperature profile appears to be an intrinsic characteristic of

the physical system, amplified by our choice of parameterization to describe the

system. Results indicate that an increase (decrease) in temperature leads to a large

decrease (increase) in radar reflectivity. The explanation follows: when T increases,

the saturation vapor pressure with respect to ice decreases according to the follow

relationship directly derived from the Clausius-Clayperon equation:

esi ~ 6.11 exp [~ ( - 2~3 + ~) ] (4.45)

where T < 273K. Consequently the supersaturation with respect to ice diminishes

and the number of ice nuclei that heterogeneously nucleate decreases. Since the radar

reflectivity is a linear function of the number concentration, it can be concluded that
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Figure 4.24: Sensitivity of radar reflectivity to 0.5% change in atmospheric vari­

ables. In order, starting from the upper left corner: sensitivity of Z to initial temper­

ature profile (left upper panel); sensitivity to initial specific humidity profile (right

upper panel); sensitivity to pressure (left lower panel); sensitivity to vertical velocity

(right lower panel).

an increase in temperature will decrease the radar signal. As mentioned, this seems

to be a property of the physical system under study, but might not necessarily be

a characteristic of all ice cloud systems6 . However, a similar behavior may also

be encountered when studying the sensitivity to temperature of more sophisticated

models that make use of parameterizations similar7 to equation (4.44).

6For example, in mixed phase clouds, the sharp increase in radar reflectivity around the melting

layer, also known as bright band (Stephens, 1994), reflects a different behavior ofthe physical system

with respect to temperature variations.
7A commonly used parameterization to estimate the number concentration of ice nuclei is also
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With regard to the model reflectivity sensitivity to a change in the specific hu­

midity, it is observed that an increase (decrease) in specific humidity increases (de­

creases) the radar signal. This is also related to the change in supersaturation as

discussed in section 4.3.5. Sensitivity to pressure has a similar magnitude and shape

as sensitivity to specific humidity. Sensitivity to vertical motion is especially pro­

nounced at cloud base, although much smaller than the sensitivity to other state

variables. When the vertical velocity is increased, the variation of Z is particularly

emphasized and negative at cloud base, indicating that a stronger updraft (w is

positive upwards) results in a smaller number of large particles at cloud base, and

hence in a reflectivity deficit. This result might have been different had the model

included a prognostic equation for supersaturation. An increase in vertical velocity

creates supersaturation in the lifted parcel by adiabatic cooling, and hence would

have a larger impact on the final reflectivity profile.

The sensitivity of the optical depth to changes in the state variables is summa­

rized in table 4.2. According to this analysis, a colder cloud is optically thinner

than a warmer cloud, i.e. an increase in temperature leads to a dramatic decrease in

cloud optical depth. This is once again related to the decrease in supersaturation,

and in the consequent reduction in initial number concentration. An increase in

either pressure or specific humidity, hence in supersaturation, induces an increase

in optical depth. A vertical velocity increase has a small negative impact on optical

depth.

4.4.4 Concluding remarks on the sensitivity study

It is important to note that the sensitivity analysis is based on a linearization of

the nonlinear cloud model, and, as such, might not correctly represent nonlinear

feedbacks that a change in one or more parameters could induce on the output fields

and on the other model parameters. Moreover, only a subset of the parameter space

is sampled in the linear analysis, and its validity is limited to small perturbations

around the baseline case. Nevertheless this analysis allows understanding of model

exponential in temperature and is found in Fletcher (1962).
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Table 4.2: Sensitivity of cloud visible optical depth to a .5% change in atmospheric

state variables. Value of optical depth for unperturbed conditions is T = 0.01764.

Parameter f::j.T Change in T (%)

Temperature, T -0.0263474584 -150

Specific humidity, q 0.00109758112 6

Pressure, p 0.00109898427 6

Vertical velocity, w -1.41718516E-07 -0.0008

response to perturbations in input parameters, and detection of nonphysical model

behaviors (for example, the disproportionate sensitivity to temperature or lack of

sensitivity to vertical velocity).

The knowledge gained from these sensitivity studies is applied in the next sec­

tions that explore more directly the impact of assimilating radar data into the ice

growth model described in the first part of the chapter.

4.5 Toward variational assimilation of radar data

The variational experiments described here fall under the category of 1+In -Var

assimilation (one spatial and one temporal coordinate). All the concepts introduced

in chapter 2 are applied and illustrated using concrete examples. These include the

use of synthetic data to investigate the possibility of recovering the "true" initial

conditions (controlled experiments), and the use of true observations to study the

potential of radar information for improving cloud prediction.

Experiments designed to evaluate the CIGMA assimilation system developed in

this study comprise:

• use of different control variables;

• sensitivity to the magnitudes of mapping and observational errors;

• inclusion/exclusion of background term;
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• inclusion/exclusion of additional information (specifically optical depth).

137

In the next section, these aspects are briefly discussed from a theoretical point

of view to provide further background material to the reader. A detailed overview

of the optimization procedure is also presented.

4.5.1 On the choice of control variables

Based on the sensitivity study presented in section 4.4 we used two different sets

of control variables: initial conditions on cloud variables (initial characteristic di­

ameter, Do, and initial number concentration, No) and initial conditions on envi­

ronmental variables. For the latter, we experimented with temperature and specific

humidity, two variables commonly optimized in operational assimilation systems.

Due to the high sensitivity of the model to temperature, it was difficult to use tem­

perature as a control variable. Even a small perturbation in temperature profile

induces a large change in radar reflectivity for the reasons discussed in section 4.4.

Under these circumstances, it was verified that the optimization procedure was un­

stable, and the algorithm did not converge to the minimum. Thus, it was decided to

use only specific humidity as a control variable. The sensitivity to the initial profile

of this variable is still substantial, but not as dramatic as for temperature. Another

reason to use specific humidity is that it is easier to justify a large correction to

in-cloud specific humidity on a physical basis than it is to justify a large correction

to in-cloud temperature. For example, specific humidity can be advected and un­

dergo a substantial increase over a short time scale. Some experiments of parameter

optimization using the variational technique for the parameter a of the fall'-speed

velocity relationship were also conducted. Results are presented in section 4.6.3.

4.5.2 Discussion of radar observational and m.apping error

In chapter 2 we discussed the importance of error statistics in the data assimilation

system. The matrix W-1 that appears in the cost function (2.4) is the inverse of the

error covariance matrix. There are two contributions to this error: the contribution
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that comes from the measurements and the contribution that comes from the map­

ping. In general the first contribution is the smallest, since measurements of radar

reflectivities are rather accurate (within 0.5-1.0 dBZ which corresponds to approxi­

mately 20% accuracy8); the error in the mapping is harder to define. Assuming that

the forward dynamical model has no error, then the mapping error is only due to

errors in the parameterizations used, for example in the value v = 2, chosen for the

width of the gamma distribution, or the approximation made in using the Rayleigh

radar reflectivity instead of performing an exact calculation. If the mapping is an­

alytical, an attempt to estimate this type of error can be made from the derivative

of the mapping with respect to specific parameters. The radar mapping of section

4.3.4 depends on the parameter v, and it follows that

az 6 r(v + 6)
av = NtDn r(v) [F(v + 6) - F(v)] (4.46)

where F(x) = ~(~}, proportional to the first derivative of the gamma function, is the

digamma function (Abramovitz and Stegun, 1974). If the mapping is nondifferen­

tiable with respect to the parameter, first derivatives can be obtained by perturbing

the parameter value and taking the finite difference. Similarly, if the adjoint of the

mapping with respect to the parameter is available, first derivatives can be obtained

by an adjoint computation. The absolute error is then written as:

az
~Z = av~v. (4.47)

In what follows, this mapping error was not included, nor was the dynamical

model error. Instead the sensitivity to the error assumptions was investigated by

arbitrarily increasing the magnitude of the elements of W.

8Radar reflectivity is usually measured in dBZ which is a logarithmic scale. The mathematical

definition is ZdBZ = 10LoglO (Z), where the units of Z are mm6m-3 • When propagating the error

on Z to ZdBZ we have to differentiate the above expression with respect to Z to get: ~ZdBZ =

8~d!Z ~Z = 10Lo~10(e) IlZ. If ~Z = 0.2Z (20% error on reflectivity), then ~ZdBZ ~ 0.86dBZ.

The accuracy quoted in the text is relative to the MMCR radar as reported in the ARM web site.
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4.5.3 Adding information
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It is possible to add other types of observations, if available, to the measurement

vector Yobs. This can potentially improve the constrained optimization procedure,

provided that the new information is sensitive to the control variables. However,

when new information is added, convergence might be slower since the requirements

the optimum variables have to satisfy are stricter, Le. the search in the parameter

space is limited by the introduction of the additional constraint. To test this, the

visible total cloud optical depth, T, was used as a further piece of information in

the synthetic data assimilation with cloud variables as control. The mapping for

optical depth from model number concentration and characteristic size is described

in section 4.3.4. This measurement is expected to be available along with radar

reflectivity in future aircraft and satellite experiments.

4.5.4 Including the background

In our application using synthetic measurements and specific humidity as a control,

a fictional background was defined as a perturbation of the true (known) profile with

a preassigned uncertainty associated with it. The influence of the inclusion of the

background and of the magnitude of the background error on the performance of

the assimilation system was then investigated. It was found that if no information is

contained in the measurements regarding the control variable, then the optimization

converges back to the background, and this convergence depends on the relative

magnitude of specified observational and background errors, as discussed in section

2.3.4. In the assimilation of real measurements, no background was used, and the

inversion was done purely using observations.

4.5.5 Optimization procedure

The optimization procedure is started with an initial guess for the control variables.

The nonlinear cloud model is run, and the model equivalent radar reflectivity is

obtained. The cost function is evaluated using equation (2.4) which we rewrite here



Chapter 4. Cloud radar data assimilation

in discrete form:
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(4.48)

(4.49)

The adjoint forcing is given by the derivative of J with respect to the model

output variables, and has to be computed at each evaluation of the cost function.

Explicitly:
oj _ (aZ)T oj
ax - ax aZ

where x = (x, y) is the model output vector, and x and y represent the two nondi­

mensional variables introduced in section 4.3.2. ~~ represents the Jacobian of the

radar reflectivity with respect to the model variables. We rewrite ~~ as two vectors:

oj
ax
oj
ay

Recalling that

x

y =

(4.50)

(4.51)

Z can be rewritten in terms of x and y:

_ f(6 + v) y 6 6x
Z - f(v) Nmaxe Dmaxe

hence

(4.52)

and the adjoint forcing is simply:

aZ
ax
aZ
ay

6Z

Z

(4.53)

(4.54)

oj
axoj
ay

(4.55)

(4.56)
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which is dimensionally consistent with units of W which are mm6m-3
• The "forced"

adjoint equation is integrated backward in time in order to compute the gradient of

the cost function wrt the control variables needed by the optimizer. The initial guess

for the control variables, the value of the cost function and its gradient with respect

to the control variables are passed to the optimization routine which computes the

value for the new guess. Several line search routines are available. This application

uses a quasi--Newtonian algorithm developed by Zou et al. (1993b). A new value of

the initial condition is calculated, and the whole process repeated until convergence

is reached. The convergence criterion is fixed internally in the optimizer via user­

specified optimization parameters, i.e. minimum value of the norm of the gradient,

minimum and maximum step-lengths, etc. Once the predefined convergence crite­

rion is satisfied, the "optimal" initial condition is used to run the nonlinear model

and produce the optimal model solution. In section 4.6 we will show some examples

of optimized initial conditions using synthetic and real data.

A schematic of the optimization procedure is presented in figure 4.25.

4.6 Results of optimization using synthetic measurements

The optimization procedure described above was tested using synthetic measure­

ments. These tests are useful for verifying the correct implementation of the proce­

dure, as well as for understanding the nature of the optimization problem at hand,

as a step toward the assimilation of real measurements.

From an arbitrary initial condition ("truth"), the radar forward model was used

to calculate synthetic radar reflectivities. Similarly, synthetic optical depths were

also computed using the forward model described in section 4.3.4. Unperturbed

temperature, pressure and specific humidity profiles from the ECMWF forecast for

the April, 30 1999 cirrus case were used. Biases and errors due to initial conditions

and model assumptions are not a concern here because the same model is run to

produce synthetic measurements and for the optimization process. The initial value

ofthe characteristic diameter is derived using the ECMWF parameterization (type 2.

initialization). The reflectivity threshold for cloud detection is chosen to be -30 dBZ.
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Figure 4.25: Flowchart of the optimization procedure, beginning with the forward

model computation from a first guess initial condition.

Cloud radar can detect equivalent cloud signals as low as -50 dBZ (Clothiaux et al.,

1995). The reason for our choice is related to the spaceborne 94-GHz radar that will

be on board of CloudSat whose sensitivity is estimated to be around -28/-30 dBZ.

Once the synthetic measurement dataset is created, and synthetic measurements are

made available at the given assimilation times, the model is run with a perturbed

initial condition and the optimization is performed following the step procedure

outlined in section 4.5.5.

4.6.1 Cloud variables as control variables

From preliminary tests, it was found that it is better to work with dimensionless

control variables, since this ensures a better behavior of the optimization algorithm.
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The optimization was then performed with respect to ~z;o and Yo, defined as:
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Xo

Yo =

l ( Do )n D
max

l ( No )n N
max

(4.57)

where Do and No represent the initial profiles of characteristic diameter and number

concentration. The following sections present results for the synthetic data assimi­

lation experiments performed with these control variables.

Sensitivity to magnitude of perturbation

Initial profiles of characteristic diameter and number concentration were perturbed

by a variable percentage, and the behavior of the optimization with respect to

recovering the true initial profiles was monitored. The magnitudes of the elements

of the error covariance matrix W were fixed to approximately 25% of the "bogus"

reflectivity value at each level (ldBZ). The assimilation system was run until the

change in the cost function from one iteration to the next was no more than a

prescribed small increment (E = 10-6) This was achieved in approximately 15-20

iterations depending on the specific case. The criterion for testing the convergence

is to compare the initial and the final values of the cost function, and to look at

profiles of recovered control variables as functions of iteration. Intuitively, we expect

the convergence to be better for small perturbations.

Table 4.3 offers an overview of the behavior of the cost function. The amplitude

of perturbation and the initial and final values of the cost function are listed.

For negative perturbations, it is indeed true that the larger the perturbation

the more the algorithm has problems with the convergence. For example, with a

perturbation in both control variables of -30%, the final cost function decreases to 4%

of its original value whereas for a perturbation of -10% the cost function decreases

to 0.18% of its original value. For positive perturbations, however, the opposite

behavior is observed (larger perturbations lead to larger percentage decreases in the

cost function). It is also interesting to notice that the assimilation system recovers

the true profiles better when starting from positive perturbed initial conditions,
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Table 4.3: Initial and final values of the cost function versus initial condition

perturbation.

Perturbation (%) Jo JFIN J,J~N (%)

-30 7204 294 4.

-20 3517 14 0.3

-10 1978 3.5 0.18

+10 860 1.8 0.2

+20 3224 6.7 0.2

+30 6783 13 0.19

+50 16618 27 0.16

that is to say that it performs better in reducing the amplitude of the initial fields

rather than in increasing it. This characteristic is illustrated in figure 4.26 and

figure 4.27 in which it can be seen that the analysis profile matches more closely

the true profile of reflectivity in the case of a positive perturbation than in the

case of a negative perturbation. This can be summarized by the statement that

the algorithm is more effective at dissipating the cloud than at creating it. This

results is also confirmed in section 4.6.2, where we investigate the use of specific

humidity as control variable. A limitation of the assimilation system related to

the low sensitivity of radar reflectivity to initial number concentration also appears

evident from the analysis of both figures 4.26 and 4.27: regardless of the sign of the

perturbation, the initial condition for the characteristic diameter is better recovered

that the initial condition for the number concentration, whose profile remains close

to the initial guess. However, at upper levels, where there is no radar signal, the

final profile of the characteristic size coincides with the initial guess.
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Figure 4.26: Characteristic diameter (top left panel), number concentration (top

right panel) and synthetic reflectivity at final time (bottom left panel) as functions

of iteration. The initial perturbation is -30%.

Sensitivity to vertical displacement perturbations

In this section, the focus is on ability of the assimilation system to recover true

profiles from a perturbation that shifts the system in the vertical direction. Various

perturbations were explored. Results are shown in figure 4.28 for one case where
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Figure 4.27: Same as figure 4.26, but for an amplitude perturbation of +30%.

the initial condition misplaced the cloud 1 km higher than the true position, and

the magnitude of the characteristic diameter and number concentration profiles was

also increased by 20%.

The model is not able to recover true initial conditions below cloud base where,

according to the model, there is no radar signal. Once again this shows, that there is

no possibility of creating a cloud where there is no cloud to begin with by adjusting

only the initial cloud profiles. However, the assimilation is successful in reducing the
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Figure 4.28: Characteristic diameter (top left panel), number concentration (top

right panel) and synthetic reflectivity at final time (bottom left panel) as functions

of iteration. The initial profile is perturbed by 20% and misplaced by 1 km with

respect to true profile.

initial excessive reflectivity at upper levels, mainly by reducing the characteristic

size.
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Table 4.4: Initial and final values of the cost function versus magnitude of obser­

vational plus mapping errors.

Error (dBZ) Jo JFIN J)~N (%)

0.5 (~ 10%) 12900 27 0.21

1 (~ 23%) 3224 6.7 0.21

2 (~ 46%) 806 1.7 0.21

3 (~ 69%) 358 0.74 0.20

5 (~ 115%) 129 0.27 0.20

Sensitivity to error assumptions

The response of the CIGMA assimilation algorithm to varying magnitudes of errors

is investigated in this section. The perturbation of the initial profiles is fixed to a

given value (i.e. 20%), and the error covariance matrix for observations and mapping

is varied. The results are summarized in table 4.4 using the criterion introduced in

the previous section (comparison of initial and final values of the cost function).

The relative decrease of the cost function is approximately three orders of mag­

nitude, regardless the magnitude of observational and mapping errors. This implies

that, even when it is assumed that the measurements and the mapping are close to

perfect, there is an intrinsic limitation on the system with respect to recovering the

true profiles of cloud variables imposed by the statistical description of the state

variables and respective errors.

Figures 4.29 and 4.30 show optimum profiles of size, concentration and reflectiv­

ity for 1dBZ and 5dBZ errors, respectively.

The magnitude of observation plus mapping errors does not seem to influence

the convergence. This is a meaningful result in the sense that information can be

extracted even when model mapping and/or measurements are not accurate. Since

assimilation is performed with the same nonlinear model used to produce the syn­

thetic data set, model biases are irrelevant. The data set used in the experiments
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Figure 4.29: Characteristic diameter (top left panel), number concentration (top

right panel) and synthetic reflectivity at final time (bottom left panel) as functions

of iteration. The initial perturbation is 20%. Observation plus mapping error is 1

dBZ (~ 23%).

is thus ideal for the specific model. This is obviously not true when the model is

confronted with actual observations, and this conclusion might need to be reconsid­

ered.
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Figure 4.30: Same as figure 4.29, but for an error of 5dBZ.

Inclusion of optical depth

The effect of adding further information to the assimilation system is now exam­

ined. Optical depth information can be derived from a variety of active and passive

instruments. Miller et al. (2000) introduced an estimation-based technique for the

retrieval of cloud optical depth from satellite radiances (examples were shown in

chapter 3). The optical depth shown in figure 4.1 was derived from Raman lidar

with a technique based on Young (1995).
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The additional constraint should ensure a more physical solution, and hence

should improve the analysis, provided that the information added is meaningful,

and the error in the new piece of information is not degrading the convergence. In

particular, since the total optical depth is linearly sensitive to the number concentra­

tion, it is anticipated that adding this information will lead to a recovery of the true

initial concentration. However, this improvement did not occur, and it was found

that the inclusion of the optical depth information did not have a strong impact

on the analysis. This is shown in figure 4.31. If these results are compared to the

same case with no optical depth information, shown in figure 4.29, no substantial

differences are evident.

An hypothesis to explain this behavior is that total optical depth alone does not

provide enough additional independent information with respect to radar reflectivity

to dramatically improve the algorithm. The sensitivity of optical depth to size is still

dominant over its sensitivity to concentration. The inclusion of profile information

such as cloud extinction as a function of height (as obtained by, i.e., lidar or other

profiling instruments) could be of greater benefit to the assimilation. This can be

easily tested with synthetic data, but is beyond the scope of this research, which

focus on assimilation of radar measurements. Investigation of the assimilation of

information other than radar reflectivity will be pursued in future research.

Discussion of results

From these synthetic assimilation experiments with cloud variables, two main con­

clusions can be drawn: the assimilation system performs relatively well in recovering

the true initial condition for the characteristic diameter under various conditions for

perturbation magnitude and mapping plus observation errors. However, the initial

condition for the number concentration is not recovered as effectively, reflecting the

fact that radar reflectivities contain more information about the size of the cloud

particles than the number concentration. Inclusion of optical depth information

does not lead to any improvement.

The algorithm is also found to be less effective in recovering true profiles when
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Figure 4.31: Same as figure 4.29, but with the inclusion of total optical depth

information. The accuracy of the optical depth is same as the accuracy in radar

reflectivity (23%).

the initial conditions are misplaced. This represents a limiting factor for the as­

similation of real measurements, since it seems that the model is not able to adjust

the cloud variables in a region where no cloud is present to begin with. Adjusting

environmental variables might be the solution to this problem.
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4.6.2 Specific humidity as a control variable

In this series of experiments, the dimensionless specific humidity, defined as

q* = log (-q )
qmax

153

(4.58)

was used to ensure the positivity of the corrected value of q and better behavior of

the optimization procedure.

Sensitivity to the magnitude of the perturbation

This section explores the capability of the assimilation system to "recover" the true

profile from the perturbed profiles. Wet (specific humidity too high) and dry (specific

humidity too low) biased profiles are specified. The perturbation is applied between

5 and 11 km, and the error on observations plus mapping is fixed to 25%. Table

4.5 summarizes the results. As in previous sections, the criterion for comparison

between different perturbations is the relative decrease in the cost function.

Figures 4.32 and 4.33 show sample profiles of specific humidity and radar re­

flectivity as functions of iteration for perturbation amplitudes of -20 and +20%

Table 4.5: Initial and final values of the cost function versus the magnitude of the

perturbation to the specific humidity profile.

Perturbation (%) Jo JFIN J)~N (%)

-20 14700 781 5

-15 6942 292 4

-10 2989 260 9

-5 1018 318 31

+5 1058 5 0.4

+10 3363 35 1

+15 7440 155 2

+20 13463 132 0.9
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Table 4.6: Initial and final values of the cost function as functions of error magni­

tude.

Error (dBZ) Jo JFIN J jON (%)

0.1 (~ 2.3%) 1342282 13198 0.98

1 (~ 23%) 13422 132 0.98

2 (~ 46%) 3535 33 0.93

3 (~ 69%) 1491 15 1.00

5 (~ 115%) 537 5.3 0.98

respectively. For all perturbations, the assimilation system was able to recover true

specific humidity profiles, but only at cloud levels. However, as already found in

the experiments with cloud variables as control variables, the assimilation system is

more efficient in reducing rather than increasing the amount of ice, and hence the

radar reflectivity.

Sensitivity to error assumptions

The sensitivity to error assumptions is investigated, as in section 4.6.1, by fixing the

perturbation to a given value (i.e. 20%), and by varying the error covariance matrix

W. The results are summarized in table 4.6.

For a given perturbation to the initial condition, no sensitivity to the error

magnitude is found in the relative decrease of the cost function from its initial value

to its final value. Example of profiles of specific humidity and radar reflectivity

recovered from assimilations with a value of the error amplitude equal to 1 dBZ

(corresponding to approximately 23%) are shown in figure 4.34.

Inclusion of background

Results from the optimization without a background term in the definition of the

cost function indicate that the observations contain no information about the specific



Chapter 4. Cloud radar data assimilation 155

12

10,.--...,

E
..Y.
'-...../

-+-' 8...c
OJ
Q)

::r::
6

4

0.000

12

-----,---------,----

___ --'_~ ..._l....._ ,

0.001 0.002 0.003
Specific Humidity (kg/kg)

'I l~ i 'T~T~~

- 20 --10 0 10
Reflectivity (dBZ)

- True profile

- Initiol model profile
First iteration

". - Second iteration
Third iterotion

- Lost iteration
L..L..L...............-'-' ~.l....L...o....~ ~........c..L-'-' ~-'-'-'-~ I _~

10
~

E
..Y.
'---'

-+-' 8s:
0'
Q)

I
6

4

-30

Figure 4.32: Specific humidity (top panel) and synthetic reflectivity at final time

(bottom panel) as functions of iteration. The initial perturbation is -20%.

humidity profile below cloud base. The optimization procedure is not capable of

correcting the initial guess, and there is only partial convergence to the true solution.

The implication is that without additional information on specific humidity below

cloud levels, it is not possible to recover the profile from the radar reflectivity alone.
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Figure 4.33: Same as fig 4.32, but for an initial perturbation of +20%.

This can be further examined by introducing an arbitrary background humidity

profile with a prescribed error covariance matrix, and by observing the behavior of

the optimization as a function of the accuracy of the background relative to the

magnitude of the measurements plus mapping errors.

For these experiments, the cost function was modified to include the background
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Figure 4.34: Specific humidity (top panel) and synthetic reflectivity at final time

(bottom panel) as functions of iteration. Observational plus mapping error is 1 dBZ

corresponding to ~ 23%.

term and rewritten as:

(4.59)

where qo is the initial profile of the dimensionless specific humidity, and q; is the
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specific humidity background profile. The gradient of the cost function with respect

to qo also includes the background term, B-1(qo - q;). The initial perturbation was

fixed to 20% of the true profile between 5 and 11 km, as in the previous experiments.

The background is chosen to be -20% of the true profile between 5 and 11 km.

Two extreme cases are considered: for the first one, the background error is much

larger than the observational error (50% error on background versus 1% error on

observations); in the second case the situation is reversed (1% error on background

versus 50% error on observations). Figure 4.35 applies to the first case, and it shows

that, when higher confidence is put in the measurements, the convergence toward

the true profile of specific humidity (upper panel) and radar reflectivity (lower panel)

is good everywhere except below cloud base. This is to be expected: the radar mea­

surements are not sensitive to changes in specific humidity where the radar does

not see a cloud, i.e. where the signal is below the threshold for radar detection.

(here arbitrarily fixed to the value of -30 dBZ). Moreover, the model does not have

other prognostic or diagnostic equations that can relate ice production/dissipation,

and hence the radar reflectivity, to the water vapor field. Only so much informa­

tion can be extracted from this combination of observations and model fields. The

background information is not able to compensate for this lack of information in

the measurements since low confidence is placed on the former information. On

the other hand, when low confidence is given to the measurements, and high confi­

dence is attributed to the background, the profiles will converge to the background

as shown in figure 4.36. In this figure, it is also shown that the final result is not

close to the true profile, due to the fact that the chosen background was poor and

a high weight was undeservedly assigned to it. This result underscores the criti­

cal nature of placing proper error assumptions on the various components of the

assimilation system. If there are reasons to completely trust the background infor­

mation, and the observations are only intended to perform a slight adjustment on

the background, the error covariance matrices can be defined such as to reflect this

confidence. Otherwise, if the observations have a high information content with re­

spect to the control variable, and the background information cannot be trusted-or

there is no background information available-the system can be set up so as to use
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only measurements. For assimilation of radar data, a situation of compromise is

desirable.

From the synthetic examples, it is clear that the radar observations contain

significant information about the true profile of specific humidity at cloud levels,

but we cannot hope to infer the specific humidity at lower levels by using just

the microphysical model as a constraint. By having a background that has some

influence below cloud base, it is possible to compensate for the lack of information

of the measurements. Another possibility is to complement radar observations with

other types of measurements that contain information on the specific humidity at

low levels or to use a more complex model.

Discussion of results

Results from this set of experiments with specific humidity as a control variable

show that information is contained in radar reflectivities about the water vapor

field within the cloud. Some limitations that are intrinsic to the nature of the

assimilation problem with the CIGMA model are highlighted:

• radar data assimilation is more successful in suppressing an excess in the cloud

rather than in creating a cloud;

• radar measurements contain information only on the specific humidity field at

cloud levels, due to the constraint imposed by the model.

The first of these conclusions seems to be robust and consistent with findings

from the precipitation assimilation studies discussed in the introductory chapter.

Both Hon et al. (2000) and Marecal and Mahfouf (2000), using different models,

came to similar conclusions that the optimization was more successful in correcting

pixels with an excess of precipitation rather than in increasing precipitation where

the model underpredicts. A strict requirement for the assimilation of precipitation or

cloud data is that the model has to at least succeed in forecasting some precipitation

or some cloud, so that there is a nonzero sensitivity of these fields to the control

variable, thus allowing the observations to impact the model prediction. It is not
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cloud model also has an impact on the humidity fields at levels outside the cloud

boundaries.

4.6.3 Model parameters as control variables

The goal of this section is to show that radar reflectivity measurements can be used

in variational data assimilation to optimize model parameters on which the solution

depends. The same set of synthetic data was used to probe the capability of the

assimilation system in recovering optimal parameter values used in the "creation"

of the dataset. The focus is on the parameter a that appears in the fall velocity­

size parameterization (v = aDb). From the sensitivity study, it was found that

radar reflectivity is sensitive to this parameter, especially in the vicinity of the

cloud base. In the section dedicated to the validation of the forward model, we saw

that a reduction in a could lead to a better agreement between model and observed

reflectivities, especially concerning the positioning of the cloud. For this assimilation

experiment we varied the parameter a by a given percentage and attempted to

recover its true value through the assimilation. Results are shown in table 4.7.

Even if perfect convergence was not achieved, the iteration procedure was truncated

when the decrease of the cost function and its gradient were reasonably large. This

allowed us to retrieve a final value for the variable a which is accurate to within 3%

with respect to the true value, i.e. the assimilation of radar data was able to correct

for approximately 97% of the initial parameter mismatch.

Figure 4.37 shows the initial and final profiles of the radar reflectivity compared

to the true profile for the optimization of the parameter a. The difference between

the initial guess and the true value is minimal. It seems that the optimized profile

of the reflectivity does not follow the true profile any more closely than the initial

guess. However, it can be noticed by looking right above cloud base that the opti­

mization has performed a correction at cloud levels where the sensitivity of radar

reflectivity to a is the highest (see figure 4.23). This indicates that the variational

assimilation of reflectivity data is capable of correcting the model prediction in the

right direction subject to the specific model sensitivity characteristics. Assimilation
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Table 4.7: Value of a as a function of iteration. True value of a= 11.7 Initial

perturbation -50%.

Iteration # a J

0 5.85 860

1 6.85 646

2 7.34 581

3 9.31 218

4 17.2 1819

5 11.39 6

of measurements that are more directly related to particle fall speed velocity, such

as Doppler radar reflectivities, is likely to offer better results in this type of model

parameter optimization. To do this will require the development of a Doppler radar

mapping operator and relative adjoint, and this is a task that will be part of future

research.

4.7 Results of optimization using real measurements

From the use of synthetic measurements, a lot was learned about the radar data

assimilation problem. However, synthetic measurements are no substitute for real

observations, whose assimilation is the ultimate goal. In this section we experiment

with assimilation of real radar data for the two cases presented in section 4.3.5

(ARM-DAV Kauai, April 30, 1999 and ARM-SGP May, 8 1998). As noticed in

that section, it was not possible to get a reasonable agreement between the model

and observations without adjusting the profile of relative (or specific) humidity to

values close to water saturation within the cloud. Nonetheless, since a cloud was

generated, and we know that sensitivity to change in initial conditions is large, it is

possible to examine how the system behaves when assimilating real measurements,

and whether the patterns found in the synthetic data assimilation experiments are
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Figure 4.37: Comparison of true synthetic reflectivity at final time (black) with

reflectivity computed initial value of a (blue) and optimized value of a (red).

also reproduced in the experiments with real data.

The type of experiments conducted are divided in two categories: experiments

with original state variable profiles, and experiments with increased relative (or spe­

cific) humidity. Experiments of the former type were performed to determine the

possibility of improving the initial humidity field experienced by the cloud through

variational assimilation, instead of "manually" increasing the in-cloud relative hu­

midity to a value close to water saturation as described in section 4.3.5. In this

context, the manual increase of humidity to match model and observed values, can

be considered a (very) rudimentary form of data assimilation. It is desirable to use

a more objective and reliable approach. Experiments of the second type only serve

the purpose of determining whether or not a further improvement in the increased

humidity profile is possible so as to obtain a better agreement between model pre­

dicted and observed reflectivities. The remainder of the section presents results from

this series of experiments. Only radar reflectivities were used since the addition of

optical depth did not particularly improve the synthetic data assimilations. No
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background was included. Results show that some of the conclusions derived from

experiments with synthetic data still hold for assimilation of real data.

4.7.1 Cloud variables as control variables

Assimilation experiments using cloud variables (characteristic diameter and number

concentration) as control variables were only partially successful. Some improvement

in model predicted radar reflectivity upon assimilation of observed reflectivities was

obtained. However, due to the higher sensitivity to size, the model tried to cor­

rect the initial condition on diameter rather than on both diameter and number

concentration. This behavior, already observed in the synthetic runs, prevents the

assimilation from correcting for erroneous initial conditions on the number concen­

tration. As a result, the cost function stalls after a few iterations, and its decrease

is limited. The improvement in model prediction is also modest. Moreover, the

fact that the model underpredicted the radar reflectivity reproduces the worst case

scenario of the synthetic measurements. Recalling the discussion about the sensi­

tivity of the assimilation system to the amplitude of the perturbation, it was in fact

observed that the optimization recovered true profiles more effectively for positive

rather than negative perturbations.

Figure 4.38 shows results from the optimization of initial particle size and number

concentration using a constant diameter initial profile. The atmospheric profiles are

the original ones given by the ECMWF forecast at 23:20 UTC over the Kauai

area (shown previously in figure 4.15). Instantaneous observed reflectivities are

assimilated over a half hour time interval with a frequency of 5 minutes. The

impact of a more frequent assimilation of radar data over the forecast window on

the results of the optimization was not investigated. This will be a subject of

future work. Comparison is made between the model-predicted profile at final time

and the observed profile at final time as a function of the iteration. Note that

the instantaneous profiles show more variability than the domain-averaged profiles

shown in the comparison section 4.3.5 (figure 4.16). The figure shows dramatically

that almost all the correction in the radar reflectivity profile is accounted for by a
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Figure 4.38: Characteristic diameter (top left panel), number concentration (top

right panel) and synthetic reflectivity at final time (bottom left panel) as functions

of iteration for assimilation of real measurements. Observation plus mapping error

is 2 dBZ (~ 46%). Constant initialization for the characteristic diameter.

correction on initial particle size. The number concentration is increased only by a

small amount, if at all.

Figures 4.39 and 4.40 show optimum initial conditions on the size and number

concentration for an initial condition for the specific humidity close to water satura-
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Figure 4.39: Same as figure 4.38, but with increased initial specific humidity.

Constant initialization for the characteristic diameter.

tion (sec figure 4.17). The difference between these two figures is the initialization

chosen for the characteristic diameter.

Experiments with the ARM-SGP indicated a similar behavior. In both exam­

ples, there is definitely a large impact of the radar data assimilation on the initial

profiles of characteristic size, and the cloud predicted with optimized fields is geo­

metrically thicker than the first guess cloud and better resembles the instantaneous
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Figure 4.40: Same as figure 4.38, but with increased initial specific humidity.

ECMWF initialization for the characteristic diameter.

observed profile. However, this is not sufficient, since the initial condition for the

number concentration is almost unaffected by the inclusion of radar data. This re­

inforces the conclusion drawn from the synthetic data experiments: it is possible to

correct for an initial condition for the diameter by using real observations, but it

it not possible to correct the number concentration. Better results are obtained by

correcting the specific humidity profile on which the number concentration depends

(see the next section).
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Assimilation experiments with real data using specific humidity as a control vari­

able rather than No and Do were more successful. Starting from the Kauai case

with the original specific humidity profile, figure 4.41 shows the profile of specific

humidity, and the corresponding initial number concentration as functions of itera­

tion. Radar reflectivity is also shown. A small increase in specific humidity at upper

levels can induce a huge increase of up to several orders of magnitude in the num­

ber concentration (note the logarithmic scale on the horizontal axis of the number

concentration plot). This increase would be even larger if homogeneous nucleation

were considered.

This result implies that the radar measurements can be used to infer information

in the vapor field within the cloud. When the specific humidity is initially increased

at cloud levels, the correction on specific humidity, and hence on initial number

concentration, is much smaller (see figure 4.42). However, given the results from

figure 4.41, this step of initially increasing the specific humidity is not necessary. The

inclusion of radar reflectivities has no real impact near cloud base, where the initial

guess for the specific humidity is not corrected. This behavior was also manifest in

the assimilation of synthetic data.

For the cirrus case observed at the ARM-SGP on May 8 1998 the results are

similar to the Kauai case. The assimilation of radar reflectivities improves the

agreement between the model prediction and the observed cloud by optimizing the

initial condition for the specific humidity (see figure 4.43).

4.8 Summary and conclusions

This chapter offered an overview of the ice growth model developed for variational

assimilation studies of radar data. A full derivation of model equations was offered

along with a detailed discussion of model parameterizations and assumptions. A

detailed evaluation of model performance by comparison to cirrus observations was

also given.

A linear sensitivity analysis to a range of variables (particle size and number
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Figure 4.41: Specific humidity (top left panel), number concentration (top right

panel) and synthetic reflectivity at final time (bottom left panel) as functions of

iteration for assimilation of real measurements. Observation plus mapping error is

2 dBZ (~ 46%). Constant initialization for the characteristic diameter. Original

specific humidity profile.

concentration initialization, model parameters, and atmospheric profiles) was also

performed by introducing the adjoint of the model. The results highlight the acute

sensitivity of the cloud model to certain key parameters.
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Figure 4.42: Same as figure 4.41, but for an increased initial specific humidity.

Variational data assimilation experiments were performed using both synthetic

and true measurements. Responses to varying initial conditions and elements of the

assimilation system, such as the observational plus mapping error covariance ma­

trix, were investigated. The results demonstrate the feasibility of the assimilation of

radar reflectivity and that such assimilation has real potential to improve cloud pre­

diction. Experiments also highlight a number of serious limitations, some of which

are related to the specific model used9 , such as the lack of prognostic equations for

9Results from any assimilation exercise are necessarily model dependent, i.e. a different model
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Figure 4.43: Same as figure 4.41, but for the SGP May 8 1998 cirrus case.

thermodynamical and dynamical fields, and the lack of representation of turbulent

and radiative processes, which limit the applicability to real world clouds whereas

others are more pertinent to the radar data themselves, such as the higher sensi­

tivity of radar reflectivity to particle size than to number concentrations. We now

attempt to address the first type of limitation using a more detailed cloud resolving

model (RAMS) and pursue the assimilation of radar data using the adjoint of this

with different physics and/or parameterizations will have peculiar sensitivities, and hence a specific

response to the assimilation of radar fields.
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Chapter 5

Prelude to 4D-VAR assimilation using RAMS

adjoint

5.1 Introduction

This chapter introduces some preliminary results obtained with the Regional Atmo­

spheric Modeling Adjoint System (RAMAS, Vukicevic et al. (2001)), which can be

considered the prelude to four-dimensional data assimilation of radar reflectivities

into the RAMS model.

The RAMAS software has been completed only recently, and it has not yet been

tested under a wide range of conditions. Results shown in this chapter are hence

highly experimental. They include the investigation of system sensitivity of the ice

cloud amount to thermodynamic variables (potential temperature), moist variables

(specific humidity), and dynamic variables (horizontal and vertical winds). The

goal of the first part of this study is to examine whether the sensitivity of the radar

reflectivity to changes in environmental conditions is as large as indicated by th.e

CIGMA system in section 4.4 of Chapter 4. As pointed out, this disproportionate

sensitivity could be either a model artifact or a feature common to both a simplified

and a complex mesoscale model. RAMAS can help address this question.

The second set of experiments is more directly connected to four--dimensional

variational assimilation. Various synthetic radar reflectivity datasets are created by

perturbing a RAMS baseline forward run, and then used to compute the adjoint

forcing for the cost function as in chapter 4. The forcing is applied to the adjoint

equation, which is then solved in a time backward integration to get the system

response to the assimilation of "bogus" reflectivities. Gradients of the cost function

174
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with respect to ice variables (pristine ice and snow), water vapor, temperature,

perturbation Exner function (related to pressure), and winds are obtained from the

adjoint solution. These gradients at initial time represent what would be needed

to implement the search routine and get the updated optimal initial or boundary

conditions for the chosen control variables, Le. specific humidity or temperature.

This is the only missing step in the 4DVar process, which will be fully carried out

as part of future work. Results presented in this chapter are analyzed and discussed

under the 4DVar optimal model initialization perspective, but also under a new

perspective, as instruments for understanding the model, and for extracting the

largest quantity of information from cloud radar data by using the model to connect

all atmospheric fields to ice cloud characteristics.

5.1.1 Variational data assimilation in regional models

In the introductory chapter of this thesis some of the previous variational assim­

ilation studies performed with regional forecast models were briefly reviewed. In

section 3.2 of Chapter 3, sources of uncertainties for regional models were concisely

presented, and data assimilation was identified as a way to address errors related to

sub-optimal choices of initial and boundary conditions, and by doing so, to minimize

the mesoscale model forecast error. In this section, we expand on this topic with the

goal of providing a more complete picture. A fundamental difference between global

and regional models is the need of the latter for accurate lateral boundary condi­

tions (LBC) in addition to initial conditions (IC). There is evidence that mesoscale

forecasts are more sensitive to LBC than to IC specification (Errico et al., 1993).

This is due to the fact that as time progresses features are advected from inflow

boundaries into the interior of the domain, as interior features exit at the outflow

boundaries. In general, boundary conditions for limited-area models are specified

from some source external to the model, for example a global-scale NWP forecast or

weather station sounding data, unless horizontal periodicity of the fields is imposed.

This specification of boundary conditions requires some form of data assimilation.

An example of this was offered in chapter 3 with the nudging of ECMWF fields into
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RAMS where, based on the discussion presented in chapter 2, it was reemphasized

that nudging is a sub--optimal data assimilation technique. For this reason, a valid

alternative (or a complementary tool) to nudging is variational assimilation.

However, the value of variational assimilation goes beyond that of being an

optimal model initialization technique. In fact, the power of the adjoint model

which is at the core of variational systems can be exploited to learn about the

behavior of a nonlinear models as illustrated in chapter 4. In addition, the optimal

combination of observations and model fields opens the doors to extracting more

information than either of the two components has by itself. Model prediction needs

to be evaluated with real data. Observations on the other hand, offer only a partial

representation of the atmosphere state, since they are only sensitive to a specific

field, whether it is cloud variables, specific humidity or CO2 concentrations. The

model however can represent all the links between directly observed variables and

non-observed variables, and it can bring out the full potential of the observations.

An example of this application is presented in the following sections: cloud radar

data alone do not provide information on the state of the whole 3D atmosphere.

Yet it will be shown that, since radar reflectivities are sensitive to ice cloud amount,

and the latter is a result of specific atmospheric conditions, it is possible to derive

information about the ambient environmental conditions in which the cloud formed,

through the use of the mesoscale model and its adjoint.

5.2 Requirements for VDA into limited-area models

Requirements for variational DA into mesoscale models include primarily the need

for computational efficiency. If the model is run for real-time forecasts, the opti­

mization of the cost function has to be as fast as possible. In general, optimization

is truncated after a few iterations, and an approximate solution is used.

Methods to improve convergence through preconditioning of the control variable

are also utilized extensively. Preconditioning implies a redefinition of the first guess

for the control variable so to bring it closer to its optimal value and improve con­

vergence. These methods are generally based on an approximation to the matrix of
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the second derivatives of the cost function-the Hessian1-(see for example Zupanski

(1998)) .

Alternatively, an expedient approach used in operational settings is to implement

a linearized version of the nonlinear model in the optimization procedure as done in

the ECMWF 4DVar system (e.g Mahfouf and Rabier, 2000). As shown in figure 4.25,

each time a new value of the control variable is obtained as result of the optimization,

a new call to the nonlinear model is performed before recomputation of the cost

function. This call makes many applications computationally intractable, since any

weather forecasting or cloud model is usually very expensive. This represents the

main drawback of the variational technique, and the solution of this efficiency issue

is a discipline in and of itself. However, it is obviously desirable to keep efficiency in

mind while constructing the adjoint of the nonlinear model. Similarly advisable is

the efficiency of the operational operator. This is especially crucial for assimilation

of cloudy radiances, since the radiative transfer operator is rather complex, and

computation can be quite slow. An efficient radiative transfer code is presented in

IThe fact that the Hessian matrix is useful in preconditioning can be illustrated very simply.

Considering the cost function, J(xo), we wish to minimize with respect to the control variable Xu,

the necessary condition for a minimum is that its gradient, \7 J(xo), is equal zero. If the gradient

is expanded in Taylor series about a point Xo near the minimum, xo, we have

(5.1)

where \72 J(xo) is the Hessian matrix. At the minimum \7 J(xo) = 0, which implies

(5.2)

Neglecting higher order terms and rearranging, the optimal value is given by

(5.3)

If the Hessian is known and its inverse is well-behaved, and the observational operator is linear,

then the least square minimization problem can be solved in one step by applying equation (5.3).

In general the Hessian matrix is too big to be computed and stored at all model points during the

optimization procedure. For this reason, approximate estimates to the Hessian (for example only

diagonal elements) are calculated beforehand and used in the optimization.
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appendix C. For this reason when assimilating cloud information, radar data are

ideal, since the mapping can be implemented very efficiently.

In the experiments with the CIGMA model, speed was not a real issue, due to

the relative simplicity of the model. However, when dealing with a model such as

RAMS, accuracy and speed are priorities. The next section briefly outlines specific

characteristics of RAMS adjoint construction.

5.3 RAMS adjoint construction

Construction of an adjoint system even for a complex mesoscale model such RAMS

follows the simple steps outlined in section 4.4.1 with the caveats about discontin­

uous processes listed in the introduction (section 1.1.3). The derivation of RAMAS

was conducted mainly with the Automatic Differentiation software TAMC (Giering,

1999), also used in the CIGMA adjoint model construction. The validation of the

adjoint code obtained with TAMC was performed by first comparing the Tangent

Linear solution to the difference of two slightly perturbed nonlinear model solutions

and then using the TL to validate the adjoint via the scalar product equality of

equation (2.11). More details on RAMAS development and evaluation can be found

in Ghemires et al. (2001) and Vukicevic et al. (2001).

The structure of the RAMAS software conforms to the general RAMS structure.

A main driver coordinates, at each time step, the calls to the different subroutines

that treat various physical processes such as advection, turbulence, microphysics,

and radiation. In the adjoint, these calls are performed in reverse order and the

time stepping is backward from final to initial time. All main subroutines in the

forward model have their corresponding adjoint subroutine. The initial condition

on each adjoint variable is zero.

Efficiency of the adjoint integration, listed as a requirement in the previous

section, is achieved quite simply but ingeniously in RAMAS by saving the basic

state in the nonlinear model run and by reading it in during the evaluation of the

adjoint solution. This technique was also used in CIGMA. One major limitation is

represented by the fact that a huge quantity of memory is used to store the forward
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trajectory. In this study, the adjoint integration had to be limited to one hour

for this reason. One solution to the problem of memory space is the subdivision

of the adjoint integration into small adjoint sub--problems for the construction of

small pieces of trajectory and the parallelization of the adjoint code as suggested by

Ghemires et al. (2001).

5.4 Experiment setup

As already discussed, a prerequisite for cloud variational assimilation is that a cloud

must be present in the model, Le. the model has to show some ability to predict

at least the occurrence of the cloud, if not the correct position and microphysics

characteristics, otherwise the inclusion of cloud data does not have any impact.

As briefly mentioned in chapter 3 when discussing results from 2D simulations,

it is very difficult to initiate cloud formation from ice undersaturated horizontally

homogeneous initial conditions, regardless the degree of sophistication of the model.

The intrinsic model spin up time can be long, and in certain cases the cloud might

not form at all if an external forcing is not superimposed. We hence decided to

use the idealized warm cirrus profile from the GCSS-WG2 intercomparison activity

which, being supersaturated, ensured cloud formation2
• The single grid was chosen

to cover an area of approximately 20x20 km in the horizontal, and it extended from

the surface up to 17.5 km in the vertical. Horizontal resolution was fixed at 500 m.

Vertical resolution was variable, lower at low levels and higher at cloud levels. Since

the idealized profiles are generally representative of midlatitude average conditions,

the grid was centered over the Oklahoma ARM site. This choice also minimized the

2The rationale for implementing the model in this configuration was to avoid additional external

model forcing that could mask the effect of radar data assimilation. This is also the main reason

why new cirrus simulations were performed and the 3D simulations presented in chapter 3 were not

used. Those simulations were in fact heavily nudged, and the radar observations were assimilated

indirectly by the manual tuning of the nudging coefficients to minimize model bias. Another

major limitation to using multiple nested grid simulations such as the Kauai case is the fact that

at present RAMAS does not have a multi-grid nesting capability in the adjoint formulation that

mirrors RAMS'.
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Figure 5.1: Domain averaged profile of IWC (mg m-3 ). Relative contributions

from pristine ice and snow are also shown.

impact of topography. The simulated cloud is similar to the one shown in figure

3.6 of chapter 3 with a peak ice water content of 5 mg m-3 and a vertical extension

of approximately 2.5 km, from 7 to 9.5 km, at one hour after the beginning of the

simulation. The horizontally--averaged profile of IWC and the relative contribution

of pristine ice and snow 3 contents are shown in figure 5.l.

The presence of the initial cloud field allowed for investigation of the model

response to forcings in the environment and in the ice cloud itself. Results from

these experiments are shown in sections 5.5 and 5.6.

3As a reminder, pristine ice crystals represent unaggregated crystal of diameter smaller than

125 J-lm, whose main growth process is vapor deposition, while snow represents larger crystals

grown by vapor deposition and riming, i.e. by collection of supercooled cloud droplets. The latter

process is not relevant in cirrus clouds.
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5.5 System response to change in environmental variables

This first set of experiments seeks to quantify the impact of a percentage change

in environmental parameters on cloud ice and radar reflectivity. As illustrated in

chapter 4, this impact can be quantified by analyzing the solution of the adjoint

equation. The adjoint forcing for the variable cloud ice is chosen to be equal to

unity. This choice is explained by the following simple considerations. In chapter 2,

section 2.3.2, it was shown how the adjoint operator provides a means to compute

the gradient, and hence the sensitivity, of any scalar function of the variable x with

respect to any other variable that x depends on (y in our example) via the simple

inner product of equation 2.15:

(5.4)

where F't is the adjoint operator. Suppose that the functional we are finding the

gradient for is the variable x itself, i.e. a= x. In this case \7xa is simply equal to 1,

and \7ya = F' t. In a way, this can be considered the most elementary choice of cost

function. Assuming the variable x depends on a set of variables, i.e. y is a vector

with components Yl, Y2, Y3, etc., the total variation of x will be given by:

(5.5)

which explicitly is

ax ax ax
~x = -a~Yl + -a~Y2 + -abaY3 + ... (5.6)

Yl Y2 Y3
The relative contributions are represented by the terms of the sum, which are

the solutions of the adjoint equation with respect to the given variable. In what

follows, x is first identified with the pristine ice mixing ratio (rpice) and then with

the snow mixing ratio (rsnow )' The variables Yl, Y2,... are identified with the

environmental variables of potential temperature (B), specific humidity (q), zonal

wind (u), meridional wind (v), vertical wind (w), and perturbation Exner function

(II'). Hence we have

(5.7)
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and similarly for snow mixing ratio.

From equation (5.7), the corresponding variation of radar reflectivity due to a

change in ice content can also be computed using the following equation from chapter

3:

where

IWG = (rpice + rsnow)Pa

(5.8)

(5.9)

Pa is the local air density, and c and d are coefficients that relate the radar reflectivity

to the cloud ice water content and depend on the radar wavelength. In the runs used

for these pre-assimilation experiments, aggregates were not included, based on the

results from the sensitivity studies to inclusion/exclusion of ice categories presented

in chapter 3. The variation in radar reflectivity is given by:

fJZ
!J.Z = -£;)--!J.rpice

Urpice

where from equation (5.9) and (5.8):

(5.10)

fJZ

fJrpice
fJZ fJ(IWG) = cd(IWG)(d-l) Pa.

D(IWG) fJrpice
(5.11)

5.5.1 Sensitivity results

Environment fields provided by the nonlinear model integration and gradients pro­

vided by the adjoint integration were averaged over the horizontal domain to obtain

vertical profiles. A perturbation of 1%of forward model fields was applied uniformly

to the average profiles of ambient variables, and corresponding pristine ice and re­

flectivity variations at cloud levels, i.e. where average ice water content was not

zero, were computed. To facilitate comparison, all field sensitivities are expressed in

pristine ice mixing ratio units (single terms of equation (5.7), that is the "absolute"

sensitivities are shown). Results are presented in figures 5.2 and 5.3 for pristine ice.

A comparison of sensitivity to specific humidity and potential temperature (Up­

per panels of figure 5.2), indicates that a higher sensitivity at cloud levels is ex­

plained by the pristine ice mixing ratio profile to the potential temperature field.
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Figure 5.2: Sensitivity of pristine ice mixing ratio to 1% change in ambient vari­

ables. In order, starting from the upper left corner: sensitivity of rice to specific

humidity, q (top left panel); sensitivity to potential temperature, () (top right panel);

sensitivity to Exner perturbation function, IT' (middle left panel); sensitivity to ver­

tical wind, w (middle right panel); sensitivity to zonal wind, u (bottom left panel);

sensitivity to meridional wind, v (bottom right panel). See text for explanations.
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Figure 5.3: Same as figure 5.2, but for radar reflectivity.

Considering an average value for pristine ice of 210-06 kg/kg, corresponding to

approximately 1 mg m-3 , a 1% increase in potential temperature at cloud levels

induces a percentage increase in pristine ice of roughly 10%. Much lower is the

change in pristine ice induced by a 1% variation in specific humidity (~ 0.01%). It

must be observed, however, that specific humidity values at cloud altitudes from

6-10 km are quite small, and a 1% variation is not very significant. By contrast, a
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1%variation in potential temperature at those levels corresponds to approximately

3K, which is a rather large perturbation in temperature. The potential temperature

response is in phase with the response to a perturbation in the specific humidity.

Since potential temperature and temperature are anticorrelated, Le. an increase in

the former corresponds to a decrease in the latter at constant pressure, this implies

that the temperature response is out of phase with the response to a specific humid­

ity perturbation. An increase in temperature at cloud levels, leads to a decrease in

ice content. These RAMAS sensitivity experiments seem to confirm what was found

with the ice growth model in chapter 4. The main difference is that the impact of

a change in temperature is not as dramatic in the results presented here as in the

results shown in section 4.4. This is due to the fact that temperature affects, in a

complex manner, different processes related to ice cloud formation and evolution,

such as ice nucleation. Also, there might be some compensation occurring in the

regional model where the processes are all interdependent. The CIGMA model cap­

tures certain aspects of the ice cloud physics, but it does not provide a full picture

of all cloud-ambient interactions.

The impact of perturbing the other ambient variables is very small, except for

pristine ice variation due to perturbation of II' which reaches a maximum of 1%

toward cloud top. Another interesting feature is the larger sensitivity to vertical

motion shown in the right middle panel, than for the horizontal motion shown in

the bottom panels (note the change in scale in the horizontal axes). In particular, an

increase in vertical motion increases supersaturation at upper levels, hence enhanc­

ing the amount of condensed ice. Nonlinearity of model dynamics and physics can

also amplify small changes in forced vertical motion, contributing to the creation

of supersaturation. This effect was not captured by the CIGMA system due to the

lack of a predictive equation for supersaturation. Radar reflectivity variation pro­

files (figure 5.3) also show a higher sensitivity to temperature, although the shape of

the profiles is quite different. The impact is especially felt at the cloud boundaries

where the values of the radar reflectivity are smaller and the sensitivity is higher.

Similar results for the snow mixing ratio and the relative radar reflectivity vari­

ation are shown in figures 5.4 and 5.5. The shape of these profiles appear very
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similar, although the absolute magnitudes of the variations are lower than for the

corresponding variations in the pristine ice profile (note that same scale is used for

the horizontal axes). The slightly large impact that a change in ambient variables

has on pristine ice than on snow can also be interpreted as a sign that the balance at

upper tropospheric levels, where pristine ice is preferentially concentrated, is more

delicate, and more sensitive to perturbations in surrounding conditions, as well as

being related to the nonlinearity of nucleation processes. The percent variation is,

however, unchanged due to the lower average cloud snow mixing ratio (see figure

5.1).

Pristine ice and snow maximum and minimum gradients and absolute variations

over the entire domain at cloud levels are shown in tables 5.5.1 and 5.5.1. Units for

the gradients are: k9{k9 for the variable 0, ~~~~~ for q, k:!/~9 for the wind variables

and J~(::i<) for the Exner function. Units for Clrpice and Clrsnow are kg/kg and

for ClZdBZ are dBZ (multiplicative factors take care of the conversion from radar

reflectivity in mm6m-3 to dBZ). The maximum positive and negative value of the

gradients are indicated i.n the table with the symbols G+ and G-. Variations of 1%

of environment parameters are considered with respect to average values at cloud

levels. The results confirm what was shown by the average vertical profiles. A

relevant feature discovered from the analysis of the results was that maximum (and

minimum) values occurred preferentially at the boundary of the domain. This is a

very promising result for the use of boundary conditions as control variables in the

assimilation process. A similar behavior is also found in the RAMAS system for a

cost function-like forcing as presented in the following sections.

5.6 System response to cloud synthetic data inclusion

Different synthetic datasets were created by perturbing the original model reflectiv­

ity. As discussed in the RAMS error analysis (chapter 3, section 3.5), model errors

can be both systematic (biases) and random. The synthetic data sets were designed

to account for different possible scenarios, and three cases were chosen:

(a) Pure random perturbation up to 50% of the local model reflectivity value on
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Figure 5.4: Same as figure 5.2, but for the snow mixing ratio.

cloudy grid points only;

(b) same as in (a) for cloudy grid points, but synthetic data are also defined for

non-cloudy points (i.e. points with zero value for the radar reflectivity) as

random perturbation up to 200% of an (arbitrary) reference value of IWC

equal to 0.5 mgm-3 ;
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Figure 5.5: Same as figure 5.3, but for radar reflectivity variations induced by

perturbations in the snow mixing ratio.

(c) Same as in (b), but with added 20% bias.

The results from case (a) and case (b) were very similar, due to the fact that

the cloud covered almost the whole study area. Results from case (b) and case (c)

presented just slight differences in the magnitude of the gradients. For this reason,

only results for case (c), which describes the most likely scenario are presented and
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Table 5.1: Maximum and minimum impact of 1% environmental parameter varia­

tion at cloud levels on pristine ice mixing ratio.

Variable G- G+ I1r;ce I1r;ce I1ZiBz I1ZtBz

() 0.000193 3.8e-05 0.00058 0.000114 0.39 0.077

q 0.108 0.022 1.08e-07 2.2e-08 7.3e-05 1.48e-05

u 0.0035 0.0034 3.5e-07 3.4e-O'7 0.0024 0.0023

v 0.0035 0.0034 3.5e-07 3.4e-07 0.0024 0.0023

w 0.00053 0.00011 5.3e-08 1.1e-08 3.58e-05 7.43e-06

II' 0.0011 0.0013 2.14e-06 2.58e-06 0.0014 0.0017

Table 5.2: Same as table 5.5.1, but for snow mixing ratio.

Variable G- G+ I1r;now I1r;now I1ZiBz I1ZtBz

() 6.4e-05 1.6e-05 0.000192 4.8e-05 0.129 0.032

q 0.035 0.009 3.5e-08 9.0e-09 2.36e-05 6.07e-06

u 0.00011 0.00011 1.1e-08 l.le-08 7.4e-06 7.4e-06

v 0.00011 0.00011 1.1e-07 1.1e-07 7.4e-05 7.4e-05

w 0.000176 4.5e-05 1.76e-08 4.5e-09 1.2e-05 3.0e-06

IT' 0.0035 0.0004 7.e-06 8.e-07 0.00472 0.00054

discussed (in general model forecast might present a bias with respect to observations

and definitely has a random error component).

The "synthetic" forcing is applied to the ice categories of pristine ice and snow.

The forcing is derived from the cost function

(5.12)

and has the form

(5.13)
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where Z represent the model-derived reflectivity, and Zobs the "bogus" reflectivities

that play the role of observations. W is the observational and mapping error co­

variance matrix, already introduced and discussed in previous chapters. By using

(5.11), equation (5.13) is explicitly rewritten as

aJ _ ( )(d-l) -l( )-a- - cd IWC PaW Z - Zobs .
rpice

(5.14)

Similar equations are derived for the snow mixing ratio by simply substituting r pice

with rsnow .

Sensitivity to the magnitude of forcing, controlled by the magnitude of the ma­

trix W elements, was also investigated. Observational plus mapping errors were

prescribed as a percentage of the bogus radar reflectivity value at every grid point.

Results for errors equal to 25% (case c.l) and 50% (case c.2) are presented in the

following sections. Comparison of case c.1 results is made between pristine ice and

snow.

5.6.1 Experimental results for forced pristine ice cases

Case c.1: 25% observational+mapping error

Due to limitation in storage, and to the large amount of disk space required to save

basic state fields at every timestep for the adjoint integration, the assimilation could

only be performed for a one-hour time window. The forcing was hence applied at

t = 60 minutes, and the adjoint integration was performed backward to time t = o.
The final time of the adjoint integration corresponds to initial time of nonlinear

model integration. The adjoint solution at t = 0 corresponds to the negative gradient

of the cost function with respect to the particular control variable (see equation

(2.25), chapter 2). If the 4DVar assimilation were to be carried out, this adjoint

solution would be used to correct the initial guess on the control by the iterative

procedure sketched in section 2.3.2. The sign of the correction is determined by the

sign of the adjoint solution, since the minimization routine will follow the direction

opposite to the gradient of the cost function to march toward the minimum. For

instance, considering the initial condition on vertical motion as control variable and
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assuming that this initial condition is a state of rest, a positive adjoint vertical

motion solution implies that a positive correction is applied to the initial vertical

velocity field, and areas of ascending motions are created in the model domain as a

result of the assimilation. When implementing the correction in a 4DVar operational

setting, however, extra care is placed on filtering out, with the aid of penalty terms in

the cost function, gravity waves that might be artificially excited by introducing an

imbalance in the initial fields. However, this is more an issue in a hydrostatic model

rather than in a nonhydrostatic model since in the latter the gravity waves that are

excited are quickly shed and a new balance is achieved. The detailed description of

how to operationally implement 4DVar assimilation in mesoscale models is beyond

the scope of this chapter. However, the discussion about the sign of the adjoint

solution corresponding to the sign of the correction can help interpret the results

shown in the remainder of the chapter.

Figure 5.6 shows a west side three-dimensional plot of the adjoint pristine ice

solution (representing minus the gradient of the cost function with respect to pris­

tine ice) for experiment (c.1) at final time (upper panel) and fifteen minutes earlier

(lower panel). A green cursor shows the relative vertical locations of adjoint fields.

Figure 5.7 shows the same variable at t = 30m and t = Om. Note how the absolute

magnitudes of the gradients decrease from final time to initial time. Light grey rep­

resents adjoint solution values smaller than -3 10°7 , whereas the orange isosurface

represents adjoint solution values greater than 3 10°7: the random component of the

forcing creates alternating areas of positive and negative perturbations.

Focusing our attention on the solution at t = 0 (lower panel of figure 5.7), let us

consider how the correction would be implemented on the initial pristine ice field, if

the pristine ice mixing ratio were chosen as the control variable in the assimilation.

The adjoint solution, although initially very large in magnitude, both toward cloud

top and cloud base, and spread out over the whole domain area except for some

"holes" at the initial time, is considerable only in sporadic areas around cloud top.

The largest correction would hence be applied in selected regions of the domain

and preferentially at upper cloud levels, where the forcing is mainly exercising its

influence, and where the cloud is thicker (see figure 5.1). This finding confirms that
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Figure 5.6: West view three-dimensional snapshots of positive (orange) and nega­

tive (light grey) adjoint pristine ice solution computed with RAMAS for case (c.l)

forcing. Isosurface value is 3107 for positive and -3107 for negative fields, Units

1
are kg/kg'
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Figure 5,.7: Same as figure 5.6, but for t = 30m (upper panel) and t = 0 (lower

panel).
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t=30 m

t=O

Figure 5.9: West view three-dimensional snapshots at t = 30m (upper panel)

and t = 0 (lower panel) of positive (red) and negative (blue) potential temperature

adjoint solution computed with RAMAS for case (c.1) forcing. Isosurface value is

0.1 for positive and -0.1 for negative fields. Units are Je
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Figure 5.10: West view three-dimensional snapshots at t = 30m (upper panel) and

t = 0 (lower panel) of positive (light violet) and negative (light blue) perturbation

Exner function adjoint solution computed with RAMAS (c.1) forcing. Isosurface

value is 1 for positive and -1 for negative fields. Units are J/(f9K)'
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mesoscale model with physically consistent equations, dynamical responses will also

be consistent amongst them. When implementing the correction, however, caveats

mentioned earlier about the excitation of spurious gravity waves have to be taken

into consideration.

Case c.2: 50% observational+mapping error

Increasing the amplitude of the errors, i.e. decreasing the forcing leads to smaller

values for the gradients. This does not necessarily imply the impossibility of a

successful data assimilation as seen in Chapter 4. Since the model is assumed

perfect, however, the magnitude of observational and mapping errors does control

how much the measurements are driving the model initialization. This result is

evident in the plots of the cost function gradient for a higher error (50%) on the

synthetic radar reflectivities. Gradients are generally smaller, indicating a lower

impact of the assimilation on the variation of the cost function, and consequently

a lower correction of control variables. For the sake of brevity, only results at the

initial time for environmental variables are shown.

5.6.2 Experimental results for forced snow cases

The same cost function forcing implemented for pristine ice was applied to force snow

mixing ratio and obtain adjoint solutions for snow ice fields and ambient parameters.

Results are presented in the next section only for 25% magnitudes of errors (case

c.1). Results for 50% magnitudes of errors (case c.2) are not shown, since increase

in errors has the same impact as in the pristine ice case.

Case c.l: 25% Observational+mapping error

Figures 5.18 and 5.19 show a times series of the cost function gradient with respect

to snow mixing ratio. Isosurface contour levels are as in figure 5.6 to facilitate

comparisons. Note that at final time (upper panel of figure 5.18) gradients are

much larger at lower levels than at upper levels, indicating that the influence of

snow forcing is mainly exerted at cloud base. The green cursor indicates the vertical
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Figure 5.11: 11V"est view three-dimensional snapshots at t = 30m (upper panel) and

t = 0 (lower panel) of positive (light yellow) and negative (light green) zonal wind

adjoint solution computed with RAMAS for case (c.1) forcing. Isosurface value is

0.1 for positive and -0.1 for negative fields. Units are mIls.
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t=30 m

t=O

Figure 5.12: West view three-dimensional snapshots at t = 30m (upper panel) and

t = 0 (lower panel) of positive (light red) and negative (purple) vertical wind adjoint

solution computed with RAMS adjoint for case (c.1) forcing. Isosurface value is 0.1

for positive and -0.1 for negative fields. Units are ~I .ms
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t=O

Figure 5.13: Same as figure 5.8 for the specific humidity adjoint solution at time

t = 0, but for a 50% mapping+observation error (case c.2).

t=O

Figure 5.14: Same as figure 5.9 for potential temperature adjoint solution at time

t = 0, but for a 50% mapping+observation error (case c.2).
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t=O

Figure 5.15: Same as figure 5.10 for perturbation Exner function adjoint solution

at time t = 0, but for a 50% mapping+observation error (case c.2).

t=O

~ -=
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Figure 5.16: Same as figure 5.11 for zonal wind adjoint solution at time t = 0, but

for a 50% mapping+observation error (case c.2).
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t=O

Figure 5.17: Same as figure 5.12 for vertical wind adjoint solution at time t = 0,

but for a 50% mapping+observation error (case c.2).

position of the maximum sensitivity. In time, the gradient at lower levels tends to

get much smaller, as illustrated in figure 5.19. In particular, at initial time only

some sporadic areas can be seen, mainly at upper levels. This is not an indication

that the assimilation of radar data would not work if the snow mixing ratio were to

be used as a control variable, since the gradient is nonzero, but simply smaller than

in the corresponding pristine ice case. Nonetheless, it raises a question regarding

the frequency of data ingestion. Although, this question is not explicitly addressed

in this study, the figures show that the impact of the assimilation of cloud data

when the cloud variables are used as control decreases over time, i.e. the longer

the assimilation interval, the smaller the correction to the initial conditions. By

extrapolation, if the interval is too long, there might be very little or no impact at all

on the cloud variables which reiterates the conclusion already discussed in chapter 4

that cloud variables might not be the best candidates to be used as control variables.

As already shown in the pristine ice cases, the situation for the ambient atmospheric

variables is completely different. In fact, the magnitude of the gradient does increase
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going backward in time, and the highest influence is felt at the initial time. This

is illustrated by figures 5.20-5.24. Another remarkable result is the fact that the

gradient is also nonzero outside of the cloudy levels which reinforces what was found

in the pristine ice cases, and offers a proof of the viability of ice cloud radar data

assimilation to improve the model representation of the whole atmospheric state.

5.6.3 Comparative discussion of pristine ice and snow results

As already mentioned in section 5.5, the pristine ice forcing appears to induce a

larger response in the ambient atmospheric variables. This can be due simply to the

fact that the pristine ice contribution to the total ice water content is larger than the

snow contribution, as shown in figure 5.1, leading to the higher impact of forcing

the pristine ice adjoint solution. However, this could be related to the fact that

pristine ice is more directly connected to the water vapor, temperature and vertical

motion through nucleation and depositional growth processes. Upper tropospheric

moisture balances might be more sensitive to radar data input due to the fact that

the specific humidity fields at those levels are rather small, where the impact of

observations is felt the most. However, when using real observations, a portion of

the pristine ice crystals might be missed, thus reducing the impact of pristine ice

forcing, due to the fact that radar reflectivity is more sensitive to large crystals than

small crystals. Comparison between the two type of forcings (for pristine ice and

snow) will have to be repeated with real measurements to ascertain whether the

results are consistent with what was found using the synthetic data.

5.7 Conclusion to the 4DVar prelude

Very promising results for the assimilation of cloud radar data into a regional model

were obtained with the RAMS adjoint system (RAMAS). Sensitivity studies showed

that temperature is the variable with the largest impact on ice amount, especially

if the forcing is applied to upper tropospheric smaller crystals (pristine ice). These

results confirmed what was found in the sensitivity assessment performed with the

CIGMA adjoint. The system response to the inclusion of cloud radar data showed
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t=60 m

t=45 m

Figure 5.18: West view three-dimensional snapshots of positive (pink) and nega­

tive (very light yellow) snow adjoint solution computed with RAMAS for case (c.2)

forcing. Isosurface value is 3107 for positive and -3107 for negative fields. Units

1
are kg/kg.
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Figure 5.19: Same as figure 5.18, but for t = 30m (upper panel) and t = 0 (lower

panel).
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Figure 5.20: Same as figure 5.8 for the specific humidity adjoint solution, but for

snow mixing ratio as the forcing variable.
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Figure 5.21: Same as figure 5.9 for the potential temperature adjoint solution, but

for snow mixing ratio as the forcing variable.
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Figure 5.22: Same as figure 5.10 for the perturbation Exner function adjoint solu­

tion, but for snow mixing ratio as the forcing variable.
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Figure 5.23: Same as figure 5.11 for the zonal wind adjoint solution, but for snow

mixing ratio as the forcing variable.
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Figure 5.24: Same as figure 5.12 for the vertical wind adjoint solution, but for

snow mixing ratio as the forcing variable.
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not only a large response in the cloud ice amount and distribution, but also to

other model variables responsible for cloud formation and persistence. These re­

sults indicate that if any of these variables were to be used as control variables in

the optimization procedure, the initial and boundary conditions on these environ­

mental fields would be improved so as to obtain a cloud prediction doser to reality.

Since temperature and specific humidity are the variables which are commonly used

as the control variables in NWP variational data assimilation systems, these results

imply that the assimilation of cloud radar data would be beneficial to advance NWP

cloud prediction. Improvement in cloud forecasting is bound to improve the char­

acterization of the other components of the hydrological cycle such as evaporation

and precipitation, which are related to clouds, as well as characterization of other

environmental conditions, as the results of this chapter show. These conclusions can

be extended to all other cloud types detected with active and passive sensors.

In addition to this important, but somewhat obvious outcome of the cloud radar

data assimilation, another fundamental implication is the possibility to extract the

highest amount of information from the data by using the model as a constraint.

As pointed out in chapter 4, cloud radar data only give an indication of the vertical

distribution of ice amount. With additional information such as a second radar

frequency or other type of measurements, other cloud-related quantities such as

particle size and number concentration can be derived as shown in the retrieval pre­

sented in appendix A. However, when radar data are optimally used in conjunction

with a full mesoscale cloud model, far more information can be extracted from those

measurements. Although they do not directly contain any indication of the temper­

ature or specific humidity fields, optimal values of the initial temperature or specific

humidity fields can be extracted via the variational assimilation, as shown in the

previous sections. Links between cloud variables and dynamical and thermodynam­

ical variables can be explored in the context of the variational system, and specific

model aspects can be improved, guided by the assimilation results. In this regard,

variational data assimilation is much more than optimal model initialization, and

becomes a powerful modeling tool itself.



Chapter 6

Summary and concluding remarks

This research addresses some specific issues related to the optimal combined use

of cloud models and cloud radar observations toward improvements in modeling

and predicting cirrus clouds, and more generally toward improvements in numerical

weather forecasting. While the answer to these questions is not univocal, we believe

that the methods suggested here have great esthetic value and the results yield

ample scientific relevance.

6.1 Summary of results

A major component of this dissertation was the development of a variational assim­

ilation system. A detailed overview of variational principles was provided in chapter

2 to familiarize the reader with the notation and terminology specific to variational

assimilation. Comparisons with other data assimilation techniques were also briefly

discussed. All components of a variational assimilation system were described, in

particular the adjoint model, which is the core of any variational algorithm.

In chapter 3, the RAMS model skill to simulate cirrus cloud formation and evo­

lution was investigated with novel techniques. This investigation was instrumental

in understanding key processes in cirrus modeling and identifying major types of

deficiencies that could be addressed with a more effective use of observations. The

first set of experiments were conducted using an idealized cirrus test case. This sim­

plified scenario, also used in the context of the modeling activity of the GCSS-WG2,

allowed a better understanding of the physical processes involved in cirrus formation

and maintenance. RAMS results for the idealized cirrus test cases were compared

with other cirrus models involved in the GCSS-WG2 activity. All models ran the

213
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same cases, with the same initial conditions and forcing. The comparisons showed

a large spread in the results for IWP and cloud geometrical thickness, as well as

for dynamical and radiative quantities. Differences in the way the various models

treated formation, maintenance and dissipation of the cirrus cloud were marked,

and this was manifested in the intercomparisons. The main conclusion from this

activity was that the way microphysical processes are represented and linked to

thermodynamical, dynamical and radiative processes is a key factor in the accurate

representation of ice cloud systems.

Sensitivity of the RAMS model to microphysical parameterizations was also in­

vestigated, and it was found that the model response in cloud IWP and geometrical

thickness was sensitive to the fall velocity parameterization. The model was also

strongly affected by the choice of bulk ice categories included in the simulation.

RAMS was then used to simulate an observed cirrus case. Radar observations of

subtropical cirrus clouds from the ARM~-UAV Spring 1999 experiment (Stephens

et al., 2000a) were used in the evaluation of the model performance. For the first set

of experiments, the model was run in a 2D configuration with a horizontally homo­

geneous initial condition and a periodic lateral boundary condition. Results showed

that cloud formation did not occur without the implementation of large-scale forc­

ing in the form of a prescribed cooling at cloud levels, corresponding to a gentle

large-scale uplift of 3 em 8-1. The model cloud did not reproduce accurately the

observed cloud, with the exception of gross features such as horizontally-averaged

IWC. Discrepancies were due to the three-dimensional channel configuration and

the lack of more realistic large-scale forcing. The model was subsequently run in a

3D configuration, with horizontally non-homogeneous initial conditions; a nudging

technique was used to assimilate model data provided by the ECMvVF forecast over

the experiment area. A tuning of the nudging strength was necessary in order to

obtain good agreement with observations, although the fine structure of the cloud

was not well represented in the model simulations due to the coarse resolution.

Formation and persistence of the cirrus cloud system were directly related via the

nudging to large-scale fields. A model error analysis was performed for these 3D

simulations using a statistical approach. Model biases for the chosen configuration
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were identified and error covariance matrices for the domain average radar reflectiv­

ity and IWC fields were computed . Despite the tuning of the nudging coefficients,

it was found that the model exhibited a slight wet bias (i.e. over predicted IWC)

throughout the cloud, except at cloud base where the radar reflectivity was lower

than the observed value. The main results of this chapter were the assessment of

the regional model skill through both the investigation of the model response to

change in physical parameterizations and the application of a statistical analysis to

understand model biases and errors.

Chapter 4 introduced a simplified ice cloud model for radar data assimilation

experiments. This model is an original extension of the work of Mitchell (1988) and

is based on conservation equations for the first and second moments of the mass

size distribution. It predicts the time and vertical evolution of the parameters of a

modified gamma size distribution describing a precipitating ice cloud in which va­

por deposition, aggregation and sedimentation processes are active. The inputs are

ambient variable profiles (temperature, pressure and specific humidity). Compari­

son of model fields with ground-based radar observations and in situ microphysical

observations from various field campaigns (ARM-DAV Spring 1999 in Kauai, and

Spring 1998 and Fall 1997 lOPs at the ARM SGP site) were conducted to evaluate

model performance. The ice growth model showed a good degree of realism when

operating under ambient conditions close to water supersaturation. The adjoint of

the cloud model was hence derived and used to investigate the model sensitivity to

various inputs and the feasibility of 1+ID variational assimilation of radar reflectivi­

ties. Sensitivity studies showed a moderate model response to specific humidity and

a large response to temperature variations. The latter was related to the choice of

parameterization used for cloud variable initialization. In particular, initial particle

number concentration, derived from an exponential function of supersaturation was

highly dependent on temperature. This result highlighted the importance of key

model parameterizations in determining model response to changes in ambient vari­

ables. A low sensitivity was displayed by the model to changes in vertical motion.

The direct impact of vertical velocity on model radar reflectivity was unrealistically

negligible. We believe that this was due to the lack of a prognostic equation for
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supersaturation, hence the lack of an indirect effect of increasing vertical velocity on

specific humidity and ice amount, as well as to the lack of turbulence and radiation

interactions.

Variations of model output due to perturbations in input parameters such as the

coefficients that define the fall speed-diameter and the mass-diameter relationship

were also investigated. Results show that certain aspects of the modeled ice cloud

depend strongly on the parameters selected, which in turn depend on assumptions

regarding the shape of the crystals that form the cloud. For example, cloud base

position was strongly controlled by the choice of the fall speed coefficients.

Variational cloud radar data assimilation experiments with the the cloud model

and its adjoint were performed. An iterative optimization procedure, based on

a gradient method, was implemented to recover optimal initial conditions for the

cloud model that minimized the weighted difference of modeled and observed radar

reflectivities (cost function). First tests were performed with synthetic data and

two different sets of control variables: cloud variables and specific humidity. Ini­

tial profiles of the control variables were perturbed by a given percentage, and the

optimization algorithm was started with these perturbed initial conditions. It was

found that the algorithm was able to converge to the true initial conditions in most

cases within a reasonable number of iterations. However, when the cloud variables

were used as control variables, only initial condition for the characteristic diameter

was recovered, while the number concentration was hardly improved at all by the

inclusion of radar reflectivities, due to the low sensitivity of the radar backscattered

signal to the number concentration as opposed to the large sensitivity to crystal

size. It was concluded that a different choice of cloud control variable, such as IWC

could be more adequate. Better results were obtained when specific humidity was

used as a control variable since the initial number concentration was related to the

available supersaturation. An improvement in specific humidity profiles implied as

well an improved initial particle number concentration profile, indicating that the

use of ambient variables as control variables is more effective. Another important

finding of experiments with synthetic data was the fact that, even with optimal

initial conditions, the model was not capable of creating a cloud where there was
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no cloud. When the perturbation of the initial condition was accompanied by a

vertical misplacement of the initial profiles, the convergence to the true profile was

worse. This represents a limitation of the assimilation system that can be ascribed

to the lack of prognostic equations for ambient variables in the model. In gen­

eral, it appeared that the assimilation was more effective in recovering true profiles

when the perturbation was positive rather than when perturbation was negative,

implying that inclusion of data was more effectual in reducing an excess of cloud

rather than increasing a deficit. Experiments with synthetic data also included the

investigation of the sensitivity to assumptions on observational and mapping error

magnitude, which showed that even for large uncertainties in the "bogus" reflectivity

the assimilation was still successful in recovering the true initial profile; the inclusion

of additional information provided by the cloud visible optical depth, which did not

bring any substantial improvement to the assimilation result; and the inclusion of

a background term, which showed how making correct error assumptions is crucial

in variational data assimilation in order to obtain a meaningful optimal solution.

The assimilation system was also tested for optimal model parameter estimation,

focusing on one of the fall velocity parameters. The variational system was suc­

cessful in recovering the true initial value of the parameter from a perturbation as

high as 50% by using measurements-the radar reflectivities- that are not directly

sensitive to particle fall speed. This result opens the door to new applications of

radar reflectivity measurements, not accessible without the use of a cloud model in

conjunction with the radar mapping. Finally, real radar observations were used to

perform further assimilation experiments. Assimilation of radar data was successful

and allowed the retrieval of optimal initial conditions which improved model pre­

diction. This original result demonstrated both the feasibility and the benefits of

cloud radar data assimilation into cloud models.

Implications of radar data assimilation were further explored in chapter 5 where

RAMS and its adjoint (RAMAS) were used in preliminary 4DVar experiments.

The application of a full-blown mesoscale model allowed for the investigation of

the impact of ice cloud radar data on the three-dimensional mesoscale environ­

ment. Results from this chapter are highly experimental and novel since it was the
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first time that the RAMAS software was ever used for assimilation of cirrus clouds

(and the first time as well that ice clouds were the subject of an assimilation exer­

cise). The only previous study on cloud assimilation with RAMAS focused on lower

level water clouds observed from satellite-based passive sensors (Vukicevic et al.,

2001). Experiments included sensitivity studies-which are onmipresent throughout

this work-conducted with the RAMS adjoint. Variations in ice amount induced

by perturbations in ambient fields were quantified and discussed. Results partially

confirmed what was found in chapter 4. However, the magnitude of the sensitiv­

ity was smaller due to the action of compensating processes acting in the complex

mesoscale model. Preliminary variational experiments with the use of synthetic data

reflectivities were also conducted. Results demonstrated that inclusion of ice cloud

radar data impacts significantly all ambient variables from potential temperature to

specific humidity and wind. The influence was more important the more direct the

link between cloud ice amount, on which radar reflectivity depends, and the specific

ambient variable under consideration. For this reason the impact on temperature

variations was larger than the impaet on horizontal wind variations. The influence

of data inclusion was felt not only at cloud levels, but also outside of the cloud re­

gion, especially at the boundary of the domain. These results are relevant for future

assimilation of cloud radar data into weather forecasting models.

6.2 Relevance of this research to weather forecasting

The importance of data assimilation for numerical weather forecasting is well known.

Standard meteorological variables are routinely assimilated into the major NWP

models such as the ECMWF and NCEP models. Recently, research has focused on

improving key aspects of the forecast models that had been previously qualified as

second order effects, such as moist processes involving clouds. Effort has been put

into both advancing the representation of the links between clouds and precipitation

at convective scales (cumulus parameterizations), and representation of large-scale

clouds such as low-level stratus and high-level cirrus clouds, that are not directly

related to precipitation, but considered important in the atmospheric hydrological
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cycle, in the atmospheric general circulation and in the global energy cycle. These

advancements in cloud description in these models have prompted a redefinition of

data assimilation into NWPs. In particular, atmospheric data other than temper­

ature, specific humidity, and winds are now sought to be assimilated. Clouds and

rainfall are palatable candidates, by virtue of the availability of global datasets from

satellites. Assimilation of these variables may become operational in the next few

years. Dnder this perspective, the research presented in this study is relevant to

weather forecasting improvement. Cloud radar data will be available on a global

scale in the next future with the deployment of the CloudSat mission. The tech­

niques presented and illustrated in this dissertation, with the necessary refinements

to satisfy operational requirements, can be used in NWP assimilation systems to

ingest CloudSat data. It will then be possible to fully exploit the potential of cloud

radar data to advance weather prediction.

6.3 Future work

Plans for future work include refinements of the CIGMA system. In particular, the

derivation of the Hessian matrix is already well on its way. The Hessian will be used

for preconditioning in order to improve the convergence of the minimization process.

Since the model is computationally inexpensive, the exact derivation of the Hessian

is possible. This will allow some comparative studies with preconditioning performed

with various approximations to the Hessian that are commonly used. Development

of other observational operators for the inclusion of different types of observations,

for example Doppler radar reflectivities and radiances, is planned. We also intend

to characterize model errors and include of the model error term in the assimilation

system. Further assimilation experiments to take advantage of the opportunities

afforded by a simplified system before embarking in full four-dimensional variational

experiments with the RAMAS model are also in the plan. In particular, the model

need to be refined in its basic formulation. For example, the introduction of a

parameterization for homogeneous nucleation will improve the degree of realism of

the model in representing cirrus clouds which form at low temperatures. Likewise,
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the introduction of explicit parameterizations for turbulence/radiation/microphysics

interaction will allow us to use the single column model to derive initial Ice Nuclei

(IN) concentration from cloud radar observations.

We eagerly hope to apply the tools and the instruments discussed in this disser­

tation to variational assimilation of real radar data that are already available, for

example from the ARM sites, or will be available in the near future from upcoming

field experiments. A proposal has been recently submitted to NASA in response

to a call for proposals relative to the CRYSTAL-FACE experiment. We intend to

actively participate in the pre- and post-experiment modeling activity, on the basis

of what was outlined in chapters 3 and 5. 4DVar experiments will not be restricted

to ice clouds, but will encompass other cloud types, building on the work by and

in collaboration with Dr. T.Vukicevic and her co-workers at CIRA. In particular,

we would like to address the main issue encountered in the exploration of radar

data assimilation which is the limited capability of the assimilation system in im­

proving the initial conditions when the cloud ice amount was underpredicted or no

cloud at all was present in the model simulation. A way to address this issue is

to enhance the mesoscale model skill in cloud prediction by using it, for example,

in a LES configuration with bin microphysics and increased horizontal and vertical

resolution. This solution requires a longer computational time and large computer

storage capabilities, but it would allow us to better represent the cloud physics by

reducing model errors and to extract more information from the measurements. In

the study by Vukicevic et al. (2001), this expedient is used to improve a RAMS

simulation of a stratus cloud over the central US and obtain a better representation

of the mesoscale variability (particularly in cloud droplet concentration) which was

present in the satellite radiances. The LES bin microphysics version of RAMS was

run over the same domain as a bulk microphysics single--moment version, and it

was shown that the LES run had a higher degree of horizontal and vertical inhomo­

geneity. Not only the simulation was more realistic, but the data assimilation was

also more effective. The benefits of data assimilation are indeed much greater if the

model errors are not dominant or well characterized. Another way to overcome the

limitation highlighted chapter 4 and 5 is to include in the assimilation additional
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measurements that would complement the cloud radar data, such as radiances or

other types of measurements which are sensitive to the humidity and temperature

fields, even in the absence of clouds. The success of the assimilation will still be

dependent on the model skill and on how far from cloudy conditions the initial fields

are: if the profiles are too dry, the model will not be able to produce clouds, even

upon assimilation of cloud observations. In principle, however, if the observations

contain enough information about the ambient environmental fields, there is no limit

on the correction that can be implemented through the assimilation system.

Ultimately, we are interested in performing a combined cloud and precipitation

experiment to assess the relative importance of the two components for advancing

both cloud and surface rainfall prediction. Data for these experiments, planned in

collaboration with T. L'Ecuyer, will be provided by the TRMM satellite. Long­

term plans involve the preparation for radar data assimilation on a global scale with

CloudSat-like datasets.

These combined efforts will hopefully contribute to completing the colorful mo­

saic of cloud-environment interactions and a better understanding of Earth's weather

and climate.
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Appendix A

Radar retrievals of ice cloud properties

A.I Introduction

In this appendix a brief overview of an optimal-estimation radar retrieval of ice

cloud properties is presented. The retrieval was an off-spring of the development of

the radar mapping for the assimilation studies, and was motivated by the need for an

ice cloud algorithm for CloudSat 94-GHz spaceborne radar. Many elements of the

retrieval theory are in common with variational assimilation. The following sections

are part of a paper by Benedetti and Stephens (2001) accepted for publication in

Atmospheric Research.

A.2 Fundamentals of retrieval

The retrieval approach used in this study is adapted from Austin and Stephens

(2001) (hereafter, AS01) based on work by Rodgers (1976) and (1990) and Marks

and Rodgers (1993). The retrieval is formulated in the context of estimation the­

ory, and allows for the inclusion of a priori information. It provides a quantitative

estimate of the uncertainty in the retrieved quantities, and the relative influence

of the measurements and a priori data on the retrievals. In AS01 a retrieval of

stratus cloud microphysical parameters is described. The retrieval assumes a log­

normal distribution of cloud droplets and uses radar observations and optical depth

information. The difference between this work and AS01 is the specific application

of the retrieval technique to ice clouds.

The radar measurements and the optical depth values, represented by the vector

y, are related to the parameters we wish to retrieve, x (state vector), by a forward
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model F:

y = F (x, b) + f y

234

(A.I)

where b represents the forward model parameters that are not retrieved, and Ey

includes the measurement error and the forward model error.

The retrieval algorithm seeks the optimal solution, X, by minimizing a quadratic

cost function:

J = (x - xafS~l(x - xa) + (y - F(x, b)fS;l(y - F(x, b)), (A.2)

where Sy is the forward model plus observation error covariance matrix whose diag­

onal elements represents the uncertainties that define €y in (A.I). Xa is the a priori

profile based on likely or statistical values of the state vector elements, and Sa is

the a priori covariance matrix, which represents the uncertainty of this profile.

Minimization of the cost function leads to an iterative solution for the optimal

state vector:

where K represents the Jacobian of the forward model with respect to the state

vector (K = ~~), also known as the kernel matrix. Convergence is achieved when:

(A.4)

with ~x = xi+l - xi; n is the dimension of the state vector. The error covariance

matrix Sx is given by:

(A.5)

The diagonal elements of the matrix Sx provide uncertainty estimates for the

retrieved parameters, and off-diagonal elements provide correlations between pa­

rameter uncertainties.

After convergence is achieved, a quality test for the goodness of the fit is per­

formed computing the following quantity:

x2 = (y - F(x)fS;l (y - F(x)) + (xa - xfS~l (xa - x) (A.6)
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Equation (A.6) represents a random variable which follows a X2 distribution

with n degrees of freedom. A good retrieval should give a X2 of order n. For a

more rigorous definition, X2 tables can be consulted to find the critical values of

this variable that are within the desired statistical significance (Siegel and Morgan,

1996). In this work, only IWC retrievals with associate X2 significant to the 1% level

are shown.

Other valuable information can be derived by computing the matrix quantity:

(A.7)

Using (A.7), equation (A.3) can be rewritten as

(A.8)

where I is the identity matrix.

The A matrix provides information on the relative weighting of the measure­

ments and the a priori data. Ideally, A should be equal to the identity matrix,

and the retrieval of the state parameters should rely solely on the measurements,

unless there is a reason to trust the a priori information. The greater the departure

from unity, the more heavily the a priori profile is used. In reality, however, since

measurements and forward model errors might give rise to unphysical retrievals, the

introduction of a priori information ensures more stability in the inverse solution

acting as a constraint on the retrieval (Rodgers, 1976). Usually, a priori information

and the relative covariance matrix are derived from climatological records. When

retrieving those variables for which a global climatology is not yet available, for ex­

ample IWC, defining a plausible a priori with the appropriate error is a challenging

task. The following sections try to answer this question by using the CRM results

presented in chapter 3 and their ECM as a priori information for the retrieval of

IWC.
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A.3 Forward model equations
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The "usual" gamma distribution is assumed to describe the size spectra of ice crys­

tals, which are approximated as spheres:

1 (D) (1/-1) 1 ( D)
n(D) = Ntr(v) D

n
D

n
exp - D

n
. (A.9)

Nt represents the total number concentration, Dn the characteristic diameter and v

is the distribution width. The moments of the distribution, I(p), are:

where

1 100

I(p) = Nt 0 DPn(D)dD = D~F(p), (A.I0)

(A.12)

F( ) = r(v + p) (A.ll)
p r(v)

The IWC is defined in terms of the third moment of the size distribution:

IWC = roo pi!!...D3n(D)dD,
Jo 6

with Pi representing the bulk ice density.

Assuming that ice crystals are approximately Rayleigh scatterers at the W--band

radar frequency, the following definition of radar reflectivity Z can be used:

(A.13)

(A.14)

At visible wavelenghts, the extinction efficiency approaches the limit of 2, and

the visible extinction coefficient, O'ext, can be written as:

l OO7f
O'ext = - D2n(D)dD

o 4

Using equation (A.I0), we can rewrite equations (A.12) through (A.14) as fol-

lows:

IWC 7f r (3 + v) N D3 (A.15)"6 r(v) Pi t n

Z r(v + 6) ND6 (A.16)r(v) t n

O'ext
!!...r(v+2)ND2 (A.17)2 r(v) t n
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The visible optical depth is computed by integrating the extinction coefficient

through the cloud layer:

rZtop

7 = Jz. (Jext(z)dz
Zbase

(A.18)

Equations (A.15)-(A.18) constitute the basis of the retrieval. In the version of

the retrieval presented here, equation (A.15) was used to rewrite the characteristic

diameter in terms of the IWC, and the IWC was directly retrieved assuming a bulk

ice density of 0.92 gm-3 . In principle, all the distribution parameters, Nt, v and .on
are functions of the vertical coordinate at cloud levels, and 3n independent mea­

surements, with n number of cloud levels, are needed to fully retrieve the parameter

profiles. In practice, we have a radar reflectivity profile (n measurements) and a

column optical depth, for a total of (n + 1) measurements. So it is necessary to

make some assumptions to reduce the number of retrievables. In this study, the

width of the distribution is assumed constant with height, with a fixed value of 2.

The number concentration is also assumed constant with height, and a layer average

value is retrieved, along with the IWC profile. More details on the implementation

and validation of the retrieval along with a complete error analysis will be part of

future work.

A.4 Application of ECM to the retrieval of cirrus cloud properties

A.4.1 Use of RAMS model field as a priori

The average IWC profiles and the ECM computed from the CRM simulations can be

used as a priori information for the retrieval of IWC. The advantage of an optimal

estimation retrieval over the use of the IWC-Z relationship of equation (3.9) is

that new measurements can be easily added to the retrieval, for example the cloud

optical depth, allowing for the retrieval of additional information. Moreover, a full

error analysis is readily available by computing the matrix Sx. This is a significant

advantage over an empirical approach. Examples of the retrieved IWC from the

Kauai radar data are presented in the following section.

The cloud optical depth information was calculated using the retrieval described
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in Miller et al. (2000), courtesy of Steve Miller. SSP and GOES radiance data were

used in the optical depth estimation. Optical depth results for the Kauai cirrus case

are shown in Stephens et al. (2000a).

AA.2 IWC retrievals

The average bias-corrected IWC profile and the ECM computed from the CRM

simulations are used as a priori information for the retrieval of IWC. A comparison

is made between retrievals obtained using RAMS profile versus an arbitrary constant

a priori profile with large error covariance. The retrieved IWC is also compared to

IWC estimated with relation (3.9). The a priori layer--average number concentration

is chosen arbitrarily and assigned a large error. We hope to relax this assumption

in the future by making use of the number concentration value provided by the

CRM. In situ measurements are needed to perform an error analysis on number

concentration, similar to the one presented in chapter 3 of this study for the IWC.

Figure A.l shows the retrieved layer average microphysical fields, the IWC (top

panel), the number concentration (middle panel) and characteristic diameter (bot­

tom panel) using the RAMS profile as a priori. Error bars on layer averages are

also shown. The error on the characteristic diameter is propagated from the errors

on IWC and number concentration. Figure A.2 shows the same variables, but for

an arbitrary constant a priori profile. When using a constant profile it is necessary

to choose a large variance, since no realistic estimate of the errors can be made.

This leads to an A matrix nearly equal to the identity matrix. Conversely, when

information from the CRM is used, the algorithm makes use of it, and the matrix A

is not perfectly unity, although its departure from the unit matrix is not excessive,

indicating that the a priori is not completely driving the retrieval.

The retrieved IWC values in the two cases are comparable, although it appears

that the retrieved average number concentration is larger, and correspondingly the

average characteristic diameter is lower, when using the RAMS a priori profile. The

retrieval errors are also similar. It may appear that no substantial improvement is

seen when using the model-derived profile. However, it was found that retrieved



values with a significant X2 value more frequently occurred when using the RAMS

profile rather than the constant profile, resulting in a larger number of "acceptable"

retrievals. This indicates that, although a retrieval is in principle possible even in the

case of "bad" a priori data, a more accurate a priori profile is in general preferable.

The IWC retrieval presented in this work was compared with the radar-only

IWC retrieval described in LIDO to provide some form of validation, and discuss

some of the main differences between these two approaches. The advantage of an

optimum estimation retrieval over the use of empirical IWC-Z relationship, is that

new measurements can easily be added to the retrieval, for example the cloud optical

depth, allowing for the retrieval of additional information. It is found that values

of IWC retrieved with the two methods are quite different. Figures A.3 and A.4

show scatterplots of IWC retrieved with the present method versus the estimate of

IWC given by inverting equation (3.9). The data are scattered, indicating a poor

agreement. When using the RAMS profile, slightly better agreement is obtained.

This may be due to the fact that relation (3.9) was used to assign the CRM bias.

Discrepancies can be attributed to the use of an invariant IWC-Z relationship that

does not account for variations in thermodynamic and microphysics parameters

(such as temperature and ice crystal size) across the cloud layer whereas retrievals

based on the method introduced in this paper accommodates some of this variation.

One possible improvement is to incorporate the temperature or size information, if

available, to obtain improved, parameter-dependent coefficients for multiple IWC-Z

relationships. It should be further mentioned that the goal of these comparisons is

not to determine which retrieval gives the most realistic estimate of IWC, as this

requires a validation against independent IWC data; the purpose is rather to place

results from current estimation-based retrieval into context with respect to IWC-Z

retrieval techniques which are more commonly used.
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Figure A.I: Microphysical properties for April 30 cirrus, retrieved using CRM a priori.
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Figure A.2: As in figure A.I, but using constant a priori.
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Figure A.3: IWC from optimal estimation retrieval versus IWC derived from IWC-Z

relationship. CRM fields were used as a priori.
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Figure A.4: As in figure A.3, but using the constant a priori profile.





Appendix B

More on ice growth model evaluation

B.1 Case study 3: Oklahoma, 26 September 1997

A second cirrus case observed during the Fall 1997 Cloud lOP at the ARM SGP

site was considered. The radar image shown in figure B.l together with the Raman

lidar optical depth, shows a cloud that appears quite thin and broken at the initial

time, and then grows into a thicker cirrus. In situ observations were available

from 18:lOUTC to approximately 21:00UTC. No radiosonde was launched during

the flight of the UND Citation. The two closest soundings are 17:30UTC, and

23:30UTC. The 17:30UTC sounding was chosen for model initialization. In situ

measurements are analyzed over a time interval of half an hour between 18:30 and

19:00UTC (one hour after the sounding). Discrepancies between model and observed

fields are going to be enhanced due to this additional factor.

Figure B.2 shows time series of temperature, relative humidity with respect to

ice and plane altitude as recorded on board of the UND Citation. Time series of

measurements show more fluctuations than the May 8 case, which is a sign of a less

horizontally homogeneous cloud.

Figure B.3 presents time series of particle number concentration and mean size

measured by the 2D-C probe. The average mean size is around 100 /l-m and the

average number concentration is around 10 particles per liter with a peak of 70 [-1.

As previously seen the initialization with unsaturated intial profiles does not

provide a good agreement of model predicted cloud concentrations and reflectivities

(not shown). When the supersaturation is increased and the profile is brought close

to water saturation at cloud levels (see B.4), a closer agreement is otained for all

different characteristic diameter initializations (see figures B.5 and B.7, B.8 and B.6,
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09/26/97: Radar Reflectivity and Optical Depth
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Figure B.1: Radar reflectivity and total optical depth time series for a cirrus cloud

observed over the ARM SGP site, Oklahoma, on September, 26 during the Fall 1997

Cloud rop.

and B.9 and B.10).
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Figure B.2: Relative humidity with respect to ice (upper panel), temperature

(middle panel), and plane altitude (lower panel) recorded between 17:30 and 17:48

UTC on board of the UN Citation on May 8, 1998.
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Figure B.3: Ice particle mean size (upper panel), and number concentration (lower

panel) measured between 18:30 and 19:00 UTC by the 2D-probe on board of the

UN Citation on September, 26 1997.
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Figure B.4: Atmospheric state variable profiles between 10 and 12 km. Temper­

ature is shown in the upper panel. Relative humidity (RH) is shown in the lower

panel. The various profiles represents respectively: original RH wrt water (solid'

line), original RH wrt ice (short dashed), increased RH wrt water (dot-dashed),

and increased RH wrt ice (long dashed).



Appendix B. More on ice growth model evaluation 249

-

-

-Model

In situ

0.08

12.0 r----_--~---~----r---~-·-

Ell.6~~
~ "'"'-:::::;:;:;':;::;##~i ~ ~:~ = <: '::::::":;'~.:'.:;'~~.~~;';'~.:'.~:':.~.:':':'~~~~
....,
~ 10.4-

10.0 "- ~__~ ~ _

0.00 0.02 0.04 0.06
Mean max dimension (mm)

12.0----.
E 11.6
~
'---" 11.2

Q)

"D 10.8::J....,
....,

10.4<c
10.0

0.001

<:::"·2
............~

0.010 0.100 1.000
Concentration ([-')

10.000
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Figure B.6: Same as figure B.5, but for radar reflectivities.
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Figure B.7: Same as figure B.5, but for initial value of Dn = 50/-lm.
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Figure B.8: Same as figure B.6, but for initial value of Dn = 50/-lm.
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Figure B.9: Same as figure B.5, but for ECMVVF initialization for Dn •
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Appendix C

Properties of reflected sunlight derived from a

Green's function method l

C.l Abstract

The inference of optical depth and particle size of clouds and aerosols using remotely

sensed reflected radiance at solar wavelengths has received much attention recently.

The information these measurements provide is path integrated. However, very little

is known about the vertical distribution of this weighting. To characterize it, we first

solve the Radiative Transfer Equation (RTE) by a Green's function approach, and

then investigate the sensitivity of the weighting to vertical inhomogeneities in the

extinction by introducing a function that is closely related to the Green's function,

herein called the Contribution Function. This function calculates the contributions

to the radiance at the upper boundary of the medium by underlying layers. Three

hypothetical clouds of identical optical depth but exhibiting different extinction

profiles were used in this study. The Contribution Function was found very sensitive

to the extinction profile. The global reflection and transmission matrices used to

construct the Green's function, derived using an eigenmatrix method, resulted in an

efficient, stable, and accurate method for calculating the emerging radiances that

can be extended to multilayered media.

C.2 Introduction

Measurements of sunlight scattered in the Earth's atmosphere are used to infer infor­

mation about cloud and aerosol particles as well as information about the abundance

ITo appear in Journal of Quantitative Spectroscopy and Radiative Tranfer, 2001.
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of trace gases in the atmosphere. Retrieval methods developed to infer optical depth

and particle size of clouds and aerosol using observations of solar reflectance typ­

ically rely on measurements in two or sometimes more spectral regions or bands

(e.g. Nakajima and King (1990) and Platnick (2000)). This approach yields path

integrated information that is weighted in some way according to the distribution of

particles along the path. The weighting accounts for the vertical transport through

plane parallel layers in a manner that quantifies the relative information content of

each layer to the overall reflected or transmitted signal. A description of the nature

of this path weighting of information has been given by Platnick (2000).

The present work extends and generalizes his characterization of the weighting

by using a Green's function formulation to calculate contributions to the radiance

emerging at the upper boundary of a vertically inhomogeneous medium with a con­

stant single scattering albedo. This solution provides, in a straightforward manner,

a way of investigating the sensitivity of these contributions to the prescribed inho­

mogeneities (such as the vertical variations of the extinction or scattering functions)

as a continuous function of the vertical coordinate.

Although many different techniques have been developed to solve the radiative

transfer equation (Lenoble, 1985), the Doubling-Adding method (DA) (van de Hulst

(1962) and Irvine (1975)) and the eigenmatrix formulation (e.g. Discrete Ordinate

Radiative Transfer, DISORT (Stamnes et al., 1988)) are the most commonly used

methods for dealing with vertically inhomogeneous media.

The eigenmatrix method solves the RTE by first discretizing the angular varia­

tion in the phase function and radiance, and then treating the resulting system of

equations as a two-point BVP (Boundary Value Problem). For vertically uniform

optical properties, eigenmatrix methods are used to construct its solution. This

method dates back to Chandrasekar (1960). The DA method solves the RTE by

converting the two--point BVP into an IVP (Initial Value Problem) via a Riccati

transformation; this introduces the concept of global reflection (~) and global trans­

mission ('J) operators, that account for multiple reflections in a layer. For a single

layer, homogenous in its optical properties, the DA method is reduced to simple

doubling. For multilayered media, the interaction principle is used to compute the
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global reflection and transmission matrices for the whole medium via the adding

technique, once 9( and 'J for all layers are known.

The connection between the eigenmatrix and the DA method of solution was

described by Waterman (1981). In that work he used the interaction principle to

relate the matrix exponential to the global reflection and transmission operators.

However, the computation of global 9( and 'J were approximated for thin (7 < 1)

media, due to numerical instabilities encountered in thicker media. In this paper we

reformulate Waterman's work by calculating 9( and 'J without approximation via

the eigenmatrix approach in a manner that yields a numerically stable solution for

any arbitrary optical depth. Subsequently these stable forms for 9( and 'J are used

to compute the Green's function, from which the goals stated above can be attained.

This approach has received some attention in astrophysics (Kalkofen, 1985) and in

hydrologic optics (Mobley, 1995).

The outline of the paper is as follows. Section C.3 introduces a stable semi­

analytical form for global 9( and 'J derived from the matrix exponential solution of

the sourceless RTE. The solar source function is then added and the Green's function

is derived in terms of the global 9( and 'J. Section C.4 explores the numerical solution

of the azimuthally dependent radiances for a single layer medium using the methods

described in section C.3. Results are compared against a standard doubling code.

The Contribution Function and its integral, the Integrated Contribution Function,

are also introduced using the Green's function solution. We show vertical profiles

of these functions and discuss their implications toward inferring extinction profiles

from reflected solar radiation. This issue is further addressed by exploring the extent

to which different portions of the medium contribute to the observed radiances at

the boundary. This is quantified in section C.5 via the simple concept of penetration

optical depth. A summary and conclusion are provided in section C.6 along with

a discussion of the physical significance of these results to the inverse problem of

radiative transfer.
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C.3 Theoretical Foundations

C.3.! Basic concepts

This study is posed in terms of the radiative transfer through a single isolated layer of

an absorbing and scattering medium that possesses a prescribed vertical variation of

optical properties. The layer will be taken to extend vertically from z = 0 to z = H.

The extension to a multi-layered medium is possible by a repeated application of

the interaction principle for each layer, provided that the single scattering albedo Wo

is constant in every layer. The solution for the i th layer is propagated as a boundary

condition for the (i + 1)th layer in exactly the same manner as in the DA method.

The resulting form of the solution will be invariant with respect to the number of

layers.

Discretization of the Radiative Transfer Equation

Under the assumption that the single layer optical medium is horizontally homoge­

neous, the transfer of monochromatic diffuse radiation through the layer is governed

by the plane-parallel equation of radiative transfer:

dI(z, /1, c/J)
/1 =dz

ae(z)I(z, /1, c/J) (C.l)

()1271" 11as z ", , , ,+ -4- P(z, /1, c/J, /1 ,C/J )I(z, /1 ,C/J )d/1 dc/J + ~(z, /1, c/J),
7f 0 -1

where I(z, /1, c/J) is the specific intensity at level z along the direction specified by

/1 (cosine of the polar angle) and c/J (azimuth angle), ae is the extinction function,

as the scattering function, P(z, /1, c/J, /1', c/J') is the phase function, and ~(z, /1, c/J) is

the source.

To approximate the solution to (C.l) we discretize the integro-differential equa­

tion and then solve the resulting boundary value problem (BVP) with the boundary

condition given in section CA.l by combining eigenmatrix and interaction principle
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methods. With the radiance written as

M

I(z, jJ-, cP) = L Im(z, jJ-)cos[m(cP - cP0)],
m=O

(C.2)

where cP0 is the solar azimuth angle, and with similar expansions for the source term

and the phase function in conjunction with equation (C.2), we obtain a system of

M uncoupled equations, one for each term of the azimuthal expansion. Thus the

solution of (C.l) reduces to the solution of m BVPs. The radiance field can be

divided into N upwelling and N downwelling streams for each mode m, producing

radiance vector pairs I~(z) and I;;;'(z). The RTE equation thus reduces to its fully

discrete matrix form:

where tm(z) and rm(z) represent the local transmission and reflection matrices

( ) (I + oo,m) () +"-ae Z M + 4 as z MPm "\IV,

_ (I + oo,m) ()MP-W
4 as Z m·

(C.4)

(C.5)

M is the diagonal matrix whose elements are the inverse of cosines of the quadra­

ture angles, W is the diagonal matrix whose elements are the quadrature weights

and P~ and P;;;, are the forward (+) and backward (-) phase function matrices,

specified for a given m. 1 is the unit matrix.

The source of diffuse radiation at solar wavelength can be written as

(C.6)

where P~m are the forward and backward phase function vectors associated with

scattering of the direct solar beam. F8 represents the monochromatic irradiance

incident at the top of the layer and the exponential factor is the attenuation of this

direct beam to the level z of interest.
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Solution of the RTE for a vertically inhomogeneous layer

The usual method of solving (C.3) for a vertically varying optical medium is to

divide the atmosphere into a number of distinct but vertically uniform layers. We

develop an alternative solution to (C.3) for given specific analytical forms of the

vertical variation of the extinction. The solution proceeds under the assumption

that the single scattering albedo is constant through the layer. This is reasonable

for wavelengths in the visible and near-infrared region of the spectrum.

The profile of the extinction function is defined as a"e(z) = d~~) and by O"s(z) =

W o d~~Z) where W o is the single scattering albedo. The condition O"e(z) > 0, Vz must

hold. This specific form of the extinction was chosen to simplify the integration of

the exponential solution described below. We now redefine the source term and the

local transmission and reflection matrices as

I:m(z) d'ljJ(Z)L ( ) (C.7)dz m z ,

tm(z)
d'ljJ(z)

(C.8)~tm,

rm(z)
d'ljJ(z)

(C. g)~rm,

where t m and r m are the local reflection and transmission matrices defined for

constant coefficients, and L~(Z) is given by

W H I I

L±(z) = -.::...F: MPT e- Jz O"e(Z )dz /110
m 4~ 8 8m .

Using equations (C.7)-(C.IO) we now rewrite equation (C.3):

!i (I~(Z)) _d'ljJ(z) A(I~(Z)) + d'ljJ(z) (L~(Z))
dz I~(z) - dz I~(z) dz L~(Z)'

where we have introduced the (2N x 2N)-matrix:

The integral solution to (C.Il) thus follows as
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( I~(H))I~(H)
= eAm'IjJ(H) (I~(O)) + rH

eAm('IjJ(H)-'ljJ(z)] (L~) d'ljJ(z) dz,(C.13)
I~(O) Jo L~ dz

where 1;;'(0) are the boundary conditions, and 'ljJ(z) represents the integral with

respect to z of the extinction coefficient. 'ljJ(H) is the total optical depth, which

in remote sensing literature is also indicated with the symbol T. In the following

discussion, the two symbols are interchangeable.

To simplify the notation, hereafter the subscript m is dropped and all dependence

on azimuth mode is understood.

Properties of the exponential matrix

A key step in evaluating (C.13) is the evaluation of the exponential matrix eA'IjJ(z) ,

and for this purpose it is convenient to diagonalize A. From linear algebra we know

that a square matrix A gives rise to the eigenvalue problem

AX=XA, (C.14)

where X is the matrix whose columns are the eigenvectors of A and A is the diagonal

matrix whose elements are the eigenvalues of A. It is well known that the eigenvalues

of the A matrix are real and come in pairs (±Ak, k = 1, ... ,N) (?).

From equation (C.14), it follows that

A = XAX-1 . (C.15)

By expanding the matrix exponential in a Taylor series of the variable 'ljJ(z), we

have:

(C.16)

where eA'IjJ(z) is a diagonal matrix. The solution of the RTE is thus reduced to

computing the eigenvalues and eigenvectors of A. As is knowIl, this task poses

numerical difficulties, but the form of A can be exploited to reduce the order of the

problem from 2N to N by applying the technique of deflation of polynomial degree

(Stamnes and Conklin, 1984). This not only reduces the computational time, but
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offers insight into the underlying structure of the exponential matrix itself. Details

of this approach applied to the matrix A are presented in appendix A.

Using the spectral decomposition of A and the two matrices

x=

and

X-I =

where from appendix A we have

v+ [I - (U+1U_)2t1U+1

v_ (u+1u_)v+,

we can write the exponential matrix as follows:

where

(C.17)

en (z)

e12(z)

e21 (z)

e22(z)

u+eA+1P(Z)v+ _ u_e-A+1P(z)v_,

u+eA +7J>(z)v__ u_e-A +7J>(z)v+,

-u_eA+1P(z)v+ + u+e-A+1P(z)v_,

_u_eA+1P(z)v_ + u+e-A+1P(z)v+.

(C.18)

(C.19)

(C.20)

(C.21)

Here A+ is the diagonal matrix corresponding to the positive eigenvalues of A.
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Thus the elements of the eigenmatrix are linear combinations of decaying and

growing exponentials. The growing exponentials are a source of numerical insta­

bility when 'ljJ(z) becomes large. This instability can be circumvented by using the

interaction form of the solution to (C.lI) which requires the specification of the

global reflection and transmission matrices.

C.3.2 Global Reflection and Transmission matrices

Recasting the eigenmatrix solution into the form of the interaction principle leads

to a direct derivation of the global transmission and reflection operators. Using the

interaction principle for a single layer of depth H, and in the absence of sources, we

can write:

'J(O, H)I+(O) + 'R(H, O)I-(H)

'R(O, H)I+(O) + 'J(H, O)I-(H), (C.22)

where 'J(O, H) and 'R(O, H) are the global transmission and reflection functions

for illumination from below, and 'J(H,O) and 'R(H,O) are for illumination from

above.

From the homogeneous solution of the RTE (first term on right hand side of

equation (C.13)) we have:

which can be rewritten as

el1(H)I+(O) + e12(H)I-(0)

e21(H)I+(0) + e22(H)I-(0).
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Solving for 1-(0) and I+(H), gives:

I+(H) [el1(H) - e12(H)e2l(H)e21(H)]I+(0) +
e12 (H) e22

1(H) 1- (H)

1-(0) = e2l(H)I-(H) - e22
1(H)e21(H)I+(0).

Comparing equation (C.22) to (C.25) we establish that:

(C.25)

'J(O, H)

':R(H, 0)

'J(H, 0)

':R(O, H)

ell (H) - e12(H)e2l(H)e21(H),

e12 (H) e2l (H),

e2l(H),

-e22
1(H)e21 (H).

(C.26)

(C.27)

(C.28)

(C.29)

Thus the global reflection and transmission matrices are completely determined

from linear combinations of elements of the eigenmatrix. In principle, these matrices

are stable over all ranges of optical depth. However, the form of equations (C.26­

C.29) remains unstable. The steps toward achieving a stable form of':R and 'J are

discussed in appendix B. With the development described there, the stable forms of

these matrices are:

and

'J(H, 0)

':R(H, 0)

-u+[I - (u+lu_)2][(u+lu_tle-A+1P(H)]

{I - [(u+1U_)-l e-A+1P(II)]2}-lU =l (C.30)

(C.31)

For a layer of constant Wo, even though (Je(z) and (Js (z) are varying as assumed

in this work, ':R(H,O) = ':R(O, H) and 'J(H,O) = 'J(O, H).
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A direct numerical comparison with the global reflection and transmission ma­

trices derived using doubling showed that both ~ and 'J, calculated using single

precision, are stable up to a total optical depth of 1000. This technique allows for

the evaluation of global 'J and ~ for the entire layer without any approximation or

first order expansion. When the source terms are taken into account, the radiance

exiting the top of the layer can be computed efficiently and accurately.

C.3.3 Derivation of the Green's function matrix

In this section we will use the interaction principle and the global reflection and

transmission matrices developed above to compute the Green's function. The solu­

tion to the RTE equation with sources may be written as

(
I+(H))
I-(H)

(C.32)

where the source term is given by the following integral:

J± = rll
eA['¢(ll)-1/1(z)] (L:) d'ljJ(z) dz.

Jo L dz
(C.33)

If we rewrite the solution in the interaction principle form, and substitute the

global ~ and 'J matrices, we have:

(
'J(O, H) ~(H, 0) ) ( 1+(0) )

~(O, H) 'J(H,O) I-(H)

+ (I -~(H, 0) ) (J:) .
o -'J(H,O) J

(C.34)

Since global ~ and 'J do not depend on z, we can bring the matrix inside the

integral that defines the source term and proceed to multiply the two matrices:
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(C.35)

(0
1 -'R(H,O)) eA('IjJ(H)-'ljJ(z)) =

-T(H, O)

( 0

1 -'R(H,O)) ( ell(H - z) e12(H - z) ) =

-T(H,O) e21(H - z) e22(H - z)

(
ell(H - z) - 'R(H, 0)e21(H - z) e12(H - z) - 'R(H, 0)e22(H - z) ) =

-T(H, 0)e21(H - z) -T(H, 0)e22(H - z)

(
G++(H - z) G+_(H - z) )

= G(H - z).
G_+(H - z) G __ (H - z)

Expression (C.35) represents the Green's function matrix for the RT problem.

Since it contains ell, e12, e21, and e22, its form is numerically unstable for large

optical depths. However if we consider equation (C.35), the Green's function ma­

trix can be subdivided into four submatrices which contain decaying and growing

exponentials. As before, we can manipulate each of these submatrices separately in

an effort to induce stability.

Beginning with the top left corner submatrix G++(H -z), if we write ell(H -z)

and e21 (H - z) explicitly we have:

G++(H - z) =

ell (H - z) - 'R(H, 0)e21 (H - z) =

u+eA+['IjJ(H)-'ljJ(z)] V + _ u_e-A+('IjJ(H)-'ljJ(z)] V _

-'R(H, 0)(-u_eA+('IjJ(H)-'ljJ(z)] v+ + u+e-A+['IjJ(H)-'ljJ(z)]v_)

u+eA+['IjJ(H)-'ljJ(z)]v+ + 'R(H, O)u_eA+['IjJ(H)-'ljJ(z)]v+

_u_e-A+['IjJ(H)-'ljJ(z)]v_ - 'R(H, O)u+e-A+['IjJ(Il)-'ljJ(z)] v_

(C.36)

The reason for the regrouping of the matrices becomes evident by noting that

the two terms which contains e-A+('IjJ(H)-'ljJ(z)] are inherently stable, since A+ is a

diagonal matrix of all positive elements and by definition 'IjJ(H) > 'IjJ(z) , Vz < H.

However, the two terms containing eA+('IjJ(H)-'ljJ(z)] are unstable.
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We write these terms as

u eA+['l/J(II)-'l/J(z)]V + 9?-(H O)u eA+['l/J(H)-'l/J(z)]V+ +, - +

u+[1 + u+ l 9?-(H, O)u_]e-A+['l/J(H)-'l/J(Z)]V+ (C.37)

If we use global 9?- derived in section C.3.2 in the above expression, we can

proceed to compute a stable form for (C.36):

G++(H - z) =

u+{ -[I - ((u+lu_)-le-A+'l/J(Il))2tl(u+lu_)-le-A+'l/J(H)

+(u+1u_)e-A+'l/J(H) [I _ ((u+1u_)-le-A+'l/J(H))2t1}(u+1u_)-le-A+'l/J(z)v+

-[u_ + 9?-(H, O)u+]e-A+['l/J(H)-'l/J(z)]v_ (C.38)

This expression appears complex, but is numerically stable.

Similarly we can divide the submatrix in the top right corner of (C.35) G+_(H­

z), into a stable part and an unstable part and stabilize the latter, making use again

of the computed 9?-:

G+_(H - z) =

u+{ -[I - ((u+lu_tle-A+'l/J(H))2tl(u+lu_)-le-A+'l/J(H)

+(u+1u_)e-A+'l/J(H) [I - ((u+1u_)-le-A+'l/J(H))2t1}(u+1u_)-le-A+'l/J(z)y_

-[u_ + 9?-(H, O)u+]e-A+['l/J(ll)-'l/J(z)]y+ (C.39)

For the submatrix in the bottom left of (C.35), G_+(H - z), we can apply a

similar procedure, this time using 'J and obtain:

G_+(H - z) =

-u+[1 - (U+1U_)2][1 - ((u+lu_tle-A+'l/J(H)?tl(u+lu_)-le-A+'l/J(z)

[I - e-A+['l/J(H)-'l/J(z)] (U+1u_)-le-A+['l/J(H)-'l/J(Z)] (u+1u_)]v+ (CAO)
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For the submatrix in the bottom right corner of (C.35), G __ (H - z):

G __ (H - z) =
-u+[1 - (U:t1U_)2][1 - ((u:tl(u:tlu_)-lu_)-le-A+'IjJ(H))2tl(u:tlu_)-le-A+'IjJ(z)

[I - ((u:tlu_tle-A+['IjJ(H)-'ljJ(Z)))2]v+ (C.4l)

One thing to notice is that the above expressions have redundant matrix groups.

For example u:t1u_ appears several times, but needs to be calculated only once.

Moreover v+ and v_can be expressed in terms of u+ and u_, through relations

(C.65), derived in appendix A, that we repeat here for convenience:

v+ [I - (U:tlU_?tlU:tl

v_ (u:t1U_)v+

These relations completely determine the Green's function matrix. In section

CA.2 we will apply it to compute the contribution to the upwelling radiance at the

upper boundary of a scattering and absorbing medium by the lower layers.

C.4 Numerical Results

We present two applications of the results obtained in the previous sections. The

first uses global reflection and transmission matrices to compute the radiance exiting

the upper boundary of a medium via the interaction principle. This approach is

computationally more efficient than doubling, particularly for optically thick media,

yet achieves a similar degree of accuracy. A comparison of radiances computed with

a doubling code, and the global 9< and 'J derived in the present work is summarized

in section C.4.l.

The second numerical application pertains to the computation of the Contribu­

tion Function and the Integrated Contribution Function, using the Green's function

solution, for different profiles of cloud properties. This application is relevant for
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remote sensing problems where it is important to know the vertical path weight­

ing of the information contained in the radiance measured at the top boundary.

The Green's function that we introduced in section C.3.3 is the generalization of

the weighting function commonly used in retrievals based on atmospheric thermal

emission. In the case when scattering can be neglected and where internal thermal

sources are present, the RTE reduces to its scalar form. The weighting function can

then be simply recovered by assuming a given form for the extinction coefficient.

This results in an analytical, exponential transmission function. When scattering is

dominant, as in the case of reflected solar radiation, defining a weighting function

is more complicated. The Green's function formulation for the solution of RTE is

useful towards defining this weighting function as will be shown in section CA.2.

CA.! Radiance calculations and comparison with the doubling method

Consider a single layer of total optical depth 'ljJ (H). Assume the source function is

only given by the solar contribution and consider a direct solar beam incident from

a direction (f..l0' cP0) impinging at the top of the layer. Using equation (C.IO) we

can evaluate the integral given in (C.33) and obtain an analytical expression for J±:

(CA2)

and

where

(

I ) -1 We _ 7jJ(H)

5t = - - A -4F0MP~e 1"0,
f..l0 7r

± _ ( I ) -1 We T
52 - --A -4F0 MP0 ·

f..l0 7r

According to equation (C.32), the solution for the radiance is given by:

(CA3)

Rearranging the above expression using the interaction principle as in equation

(C.34) we have:
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I+(H) 'J(O, H)I+(O) + 'R(H, O)I-(H)

-'J(O, H)5t - 'R(H, 0)52 + 5t

'R(O, H)I+(O) + 'J(H, O)I-(H)

-'R(O, H)5t + 51 - 'J(H, 0)52,

(C.44)

(C.45)

The boundary conditions are:

F, "'(II)

1+(0) = Rgl-(O) +Ag~e- 1'-0
7r

I-(H) = 0,

(C.46)

(C.47)

where we assume that there is no diffuse incoming radiation at the top of the layer

and the surface reflection is specified by the matrix R g • For a Lambertian surface,

R g has a very simple form with all equal rows, i.e.

R = Ag (WIJ.tl W2J.t2 ... WNJ.tN),
g 7r : : : :. . . .

where Ag is the ground albedo. For the case of a generic surface, the matrix

R g will have a more complicated structure, which has to be specified according to

the reflecting properties of the surface. For the case of a completely opaque surface,

Ag = O. In what follows, we will use this assumption. We are aware of the fact

that for optically thin clouds, surface albedo is a major problem in remote sensing

using optical channels, and setting Ag = 0 is a simplifying assumption that cannot

be made in practice. Nonetheless such assumption is applicable in the presence of

thicker clouds or over opaque surfaces such as oceans, and results are still relevant

for these cases.

The solution for the radiance field is:
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F: :El!!l
'J(O, H)RgI-(O) + 'J(O, H)Ag~e - 1>0

7r

-'J(O, H)St - 'R(H, 0)S2 +st
F: 'f/;(H)

(I - 'R(O, H)Rgt 1('R(0, H)Ag~e - 1>0
7r

-'R(O, H)St + Sl - 'J(H, 0)S2)'

(CA8)

(CA9)

Note that for each azimuthal component, m, of the radiance vector (see equa­

tion (C.2)) the global reflection and transmission matrices have to be re--evaluated,

since they are also azimuthally-dependent. There is nothing new here since all the

development in the previous sections can be applied for all terms of the azimuthal

expansion, provided that eigenvalues and eigenvectors of the A matrix are evaluated

for all m.

The phase function used in this study is the Henyey-Greenstein, characterized

by the asymmetry parameter g (Liou, 1980). Standard linear algebra routines (LA­

PACK, Linear Algebra PACKage, (Anderson et al., 1999)) were utilized to compute

the eigenvalues and eigenvectors of the A matrix. The radiances were computed

for N = 16 streams, using Gaussian quadratures. The doubling-adding radiative

transfer code used for the comparison ofresults is documented in Miller et al. (2000).

Radiances obtained with the global reflection and transmission have been com­

pared against those from a doubling code, and agreement between these methods

was as expected from numerical uncertainties (see Tables C.4.1.a and CA.1.b).

There is, however, one exception to the very dose agreement obtained. This

applies to a particular set of parameters, corresponding to the case of low quadrature

angles (f-l < 0.09) in conjunction with conservative scattering (wo ~ 1), an optically

thin layer (T < 1), and a highly forward peaked phase function ( g ~ 0.85). All

other combinations of optical parameters are not affected by this same problem;

convergence of the azimuthal cosine series is obtained in most cases with a few

expansion terms.

For optically thick media, the calculation of the global reflection and transmis­

sion matrices is more efficient than in the doubling method since the number of

matrix multiplications is independent of the optical depth of the layer. The total
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number of matrix multiplications, excluding the computation of the eigenvalues and

eigenveetors, required ~ and '1 is 11, regardless of the optical depth of the layer.

By comparison, for the doubling method to reach an optical depth of 16 starting

from an optical depth !J.T = 0.001, 28 matrix multiplication are required (14 for ~

and 14 for '1), where this figure is derived from the relation 2P!J.T = T, and in our

example p=14. For this case the eigenmatrix approach will be faster than doubling

by more than a factor of two.

We would like to also point out that the present method combines the advantages

of the DA, via the introduction of the global reflection and transmission matrices,

with the advantages of the eigenmatrix approach. In the case where the boundary

conditions change, the new radiances exiting the boundaries of the medium can be

computed in a straightforward manner using '1 and ~, without solving a new BVP

as it is required if DISORT is used to perform the calculation. On the other hand,

if the optical properties of the layer change, the global reflection and transmission

matrices can be recomputed in only 11 matrix multiplications, which will be faster

than performing a doubling calculation (once again, this depends on the optical

depth of the layer as pointed out in the previous paragraph).

The numerical results above pertain to a single layer atmosphere. Further inves­

tigation is necessary to evaluate quantitatively the advantages of the present method

of solution over others in the case of a multi-layered medium.

CA.2 Green's function results: Contribution Function and Integrated

Contribution Function

In general, the Green's function solves the integral form of an ordinary differential

equation, so we can use it to calculate the solution for the radiance exiting the

boundaries of the layer. This application is, however, redundant, since more efficient

methods to compute the solution to the RTE have been developed. In this section

we apply the Green's function form of the solution in a new manner to establish a

way of obtaining information about the vertical distribution of the radiance field.

To this end we return to equation (C.34) and express it in terms of the Green's
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function matrix derived in that section:

(
I+(H)) =
1-(0) (

'J(O, H) 9((H,O)) ( 1+(0) )
9((0, H) 'J(H,O) I-(H)

l
H

( G++(H - z) G+_(H - z) ) (L+) d1jJ(z)+ --dz(C.50)
o G_+(H - z) G__ (H - z) L- dz

For simplicity, as was done for the radiance calculations presented in the previ­

ous subsection, we assume a non-reflecting lower boundary (Ag = 0), so that the

homogeneous part of the solution vanishes and equation (C.50) reduces to:

(
I+(H)) = rH

( G++(H - z) G+_(H - z) ) (L+) d1jJ(z) dz.
1-(0) io G_+(H - z) G__ (H - z) L- dz

(C.51)

(C.52)

In satellite applications, we are mostly interested in the radiance exiting the

upper boundary, so we write it explicitly:

I+(H) = lH

[G++(H - Z)L+ + G+_(H - Z)L-]d~~Z) dz.

It is clear from (C.52) that the submatrix G++(H - z) is responsible for the

redistribution of the upwelling components of the solar source vector (L+) and

G+_(H - z) is responsible for the redistribution of the downwelling components of

the solar source vector (L-) into upwelling radiance. For any particular direction,

it is only necessary to examine a single row of the submatrices G++(H - z) and

G+_(H -z) and sum over all m azimuth components. If however, the satellite were

nadir pointing, then only the m = 0 component would be sufficient to compute the

remotely sensed radiances.

The radiance at the top of the atmosphere is the result of the convolution between

the Green's function and the solar source function, so that it is necessary to study

this convolution in order to establish what level within the medium mostly influences

the observed radiance. We explore this matter with the aid of the Contribution

Function and its integral.
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We rewrite equation (C.52) as

where
+ _ d'l/J(z)

W(H,z) = [G++(H - Z)L + G+_(H - Z)L ]~

represents the Contribution Function.

Similarly we introduce an Integrated Contribution Function as

(C.53)

(C.54)

Iw(H, z) = lH

W(H, z')dz'. (C.55)

The integral does not span over the whole layer so that I w maintains a z­

dependence. When integrated over the whole depth of the layer (Le. z = 0), the

radiance exiting the upper boundary is recovered. For any other value z, I w gives

the integrated contribution to the upwelling radiance at the top of the layer from

all levels below H. The radiance computed from the Green's function formulation

for the case of a nonreflecting lower boundary (no homogenous solution, but only a

particular solution of the RTE) has been compared with previous results from dou­

bling and global ~ and 'J radiance comparison (see section C.4.l). Good agreement

has been found, which indicates that our computation of W(H, z) and its integral

is correct.

C.4.3 Examples of reflection from vertically varying clouds

To illustrate an application of the Contribution Function and the Integrated Contri­

bution Function introduced in the previous section, we examine three hypothetical

clouds with the following extinction coefficient profiles:

(a) (Je constant with height (homogeneous cloud)

(b) (Je increasing linearly with height ("stratus-like" cloud)

(c) (Je decreasing linearly with height ("cirrus-like" cloud)
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Figure C.l: Vertical profiles of extinction coefficient for three hypothetical clouds

(see text for details).

A plot of these extinction profiles is shown in figure C.l. This cloud classifica­

tion is arbitrary and is suggested by the fact that stratiform clouds tend to have

larger droplets near their top and smaller droplets at their base, hence an extinction

coefficient increasing with height, while the converse is true for cirrus clouds. It is

clear that there are factors other than the ae profile that distinguish stratus from

cirrus clouds, in particular the scattering phase function, which renders this repre­

sentation of the optical properties of these clouds unrealistic. We are also aware

that the linear form of the ae vertical dependence and the assumption of constant

single scattering albedo are limiting factors in our analysis. Nevertheless, we believe

that useful insight can be gained by examining the different Contribution Function

and Integrated Contribution Function profiles obtained for each of the three cases.

We consider two different values of total optical depth, T = 1 and T = 10, and

single scattering albedo, Wo = 1 (conservative case) and Wo = 0.2 (nonconservative
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Figure C.2: Profiles of Contribution Function and Integrated Contribution Func­

tion in the direction 01 = 8.35° for the three cloud scenarios and two different single

scattering albedoes, as labeled (upper panels, Wo = 1; lower panels, Wo = 0.2). See

text for explanations. Optical parameters: T = 1, 9 = 0.8. Cosine of solar zenith

angle, f-L0 = 1.0.

case). Again an Henyey-Greenstein phase function is used for the calculations, and

the asymmetry parameter is fixed at a value of 0.8. We computed profiles of W(H, z)

and lw(H - z) for a solar zenith angle of 0° and 60°.

Figure C.2 shows the profiles of W(H, z) and lweI! - z), for the direction ()1 =

8.35°, for optical depth T = 1. The upper panel is relative to W o = 1.0 and the lower

panel to Wo = 0.2. The cosine of the solar zenith angle is f.L0 = 1.0. Figure C.3 is

the same as figure C.2, except for an optical depth of 10.
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Figure C.3: As in figure C.2, except 7 = 10.

If we analyze the case (a) and case (b) profiles, we note that the main difference

between the two cases resides mainly in the fact that for the 7 = 1 case the Con­

tribution Function and its integral have non negligible values throughout the layer,

while the 7 = 10 profiles are more concentrated at cloud top, indicating that most

of the contribution to the upwelling radiance is coming from the upper portion of

the cloud.

A qualitative explanation for this type of behavior lies in the fact that when the

medium is optically thin (7 < 1), contributions to the upwelling radiance at the top

of the atmosphere involve the entire medium regardless of o"e(z). When the optical

depth is large, the radiance tends toward saturation. In this case, an additional

layer of small optical depth to the base of the medium would negligibly change

the radiance at the upper boundary. The situation is different for the "cirrus"

cloud (case (c)): the profiles are quite spread out in both cases indicating that
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contributions to the total radiance are obtained from a larger portion of the cloud,

even in the optically thick case, with respect to the stratus and homogeneous cases.

From these results, we conclude that the Contribution Function and its integral,

like the Green's function, are very sensitive to o"e(z). This has a strong bearing

on retrieval of cloud optical depth when remotely sensing different cloud types. It

appears that the information that one retrieves from radiance measurements at the

top of the layer comes preferentially from different levels, according to the type of

cloud that it is being sensed.

An analogous trend is also evident in the nonconservative case as shown in

the lower panels of figures C.2 and C.3. The major difference with respect to the

conservative case lies in the magnitude of the contributions (note that the horizontal

scales change from panel to panel). Although the shape of the profile is similar to

the conservative case, in the nonconservative case the amplitude of the two functions

is noticeably smaller.

Similar conclusions can be drawn for the case of a solar zenith angle of 60°

(J10 = 0.5) (figures C.4 and C.5) as far as the vertical distribution of the contribution

goes for the three cloud scenarios. The major difference resides in the magnitude of

the contributions in the conservative cases.

In the T = 1 conservative case (figure CA, upper panel), the magnitude of the

contributions is larger with respect to the corresponding case for J10 = 1 (figure C.2,

upper panel). In contrast, for the T = 10 conservative case (figure C.5, upper panel),

the magnitude is smaller with respect to the corresponding case for J10 = 1 (figure

C.3, upper panel). For the nonconservative case, comparing the lower panels of figure

C.2 and CA and figures C.3 and C.5, no major differences can be noted between the

J10 = 1 and J10 = 0.5 examples. This is due to the fact that for absorbing media, the

increase in optical path traveled by the photons due to absorption is more dramatic

than the increase in optical path due to a lower solar zenith angle.
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Figure C.4: As in figure C.2, except f-l0 = 0.5.

C.5 Further applications: the penetration optical depth

With the function Iw(H - z) introduced in section C.4.2 we can quantify the per­

centage of the total upwelling radiance associated with a layer extending downward

from the top of the cloud to some reference level z'. Define the optical depth of the

layer (z', H) by Tp . This penetration optical depth, Tp , is a useful way of under­

standing what portions of the cloud contribute to the measured radiance at cloud

top as described by Platnick (2000).

Figure C.6 shows a contour plot of Tp versus the total cloud optical depth T

of the layer (horizontal axis) and the percentage of total radiance at the upper

boundary (vertical axis), for a single scattering albedo of 1 (upper panel) and 0.2

(lower panel) for the homogeneous cloud. The solar zenith angle is 0°. Note that

when the percentage is 100%, Tp equals T. The conservative and nonconservative
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Figure C.5: As in figure C.2, except T = 10 and {L8 = 0.5

cases yield different results in terms of Tp . For example, if the total optical depth is

4, 90% of the total radiance emerges from the layer of optical depth approximately

equal to 1.6 when W o = 1. For the same percentage and total optical depth, Tp ~ 1.1

for Wo = 0.2. This indicates that absorption reduces the level of penetration within

the cloud, leading to a more concentrated contribution near cloud top. This result

is also shown in the previous section with the profiles of W(H, z) and Iw(H, z).

At higher solar zenith angle, 60°, a similar trend is observed (see figure C.7). The

increase of solar zenith angle contributes to the reduction of the penetration optical

depth because the path length the photons travel is increased by ..l..., where {L0 is
J-t0

the cosine of the solar zenith angle. This increases the probability of absorption or

scattering. For the same example considered before, i.e. total T = 4 and percentage

of total radiance equal to 90%, Tp ~ 1.1 in the conservative case and Tp ~ 0.7 in the

nonconservative case.
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Figure C.6: Contour plot of penetration optical depth (7p) as a function of total

optical depth and percentage of upwelling radiance at the upper boundary. Two

single scattering albedo are shown: We = 1 (upper panel) and We = 0.2 (lower

panel). The cosine of the solar zenith angle is 1.0.

The penetration optical depth is the same for the three clouds considered, indi­

cating that it is not possible to discriminate between clouds of different types only

from a measurement of the reflected radiance at the top of the atmosphere, unless an

assumption is made concerning the form of the extinction coefficient, or multispec­

tral measurements are also performed. For example multi-spectral measurements

can be taken over a very narrow spectral interval where the cloud particles scatter

conservatively (e.g. We = 1), but where the surrounding atmospheric gas exhibits

strong variations in absorption as in the case of the oxygen A-band (750-760 nm).

This requires additional information about the cloud height and thickness such as

may be provided by an active instrument (e.g. radar). Alternatively" measurements
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Figure C.7: As in figure C.6, except the cosine of solar zenith angle is 0.5.

can be performed in various region of the spectrum at different wavelengths where

there is negligible absorption by atmospheric gases but strong variations of Wo of

the cloud particles.

C.6 Summary and conclusions

Properties of sunlight scattered from vertically inhomogeneous media have been in­

vestigated using a Green's function approach. The eigenmatrix solution of the RTE

in concert with the interaction principle have been explored in a new way to obtain

the Green's function matrix. To achieve a general and stable form of the Green's

function, stabilization of global reflection and transmission matrices, derived from

the eigenmatrix, was performed. Radiances computed with the resultant stable

global :R. and 'J, for a range of optical depths, single scattering albedoes and asym-
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metry parameters, are in excellent agreement with those calculated from a doubling

code.

By definition, the Green's function, when weighted by the source function in the

form of a convolution, produces the solution of the RTE. From this form of solution,

with the aid of the Green's function we introduced the Contribution Function and

its integral to show the distribution of the vertical weighting for different extinction

profiles. To explore this aspect, we used a homogenous cloud (ae constant with

height), a "stratus-like" cloud (ae increasing linearly with height) and a "cirrus­

like" cloud (ae decreasing linearly with height), in all cases maintaining constant

W o and constant total T. Analysis of profiles of the Contribution Function and the

Integrated Contribution Function has shown that the vertical weighting is sensitive

to the extinction profile as well as to the single scattering albedo and to the solar

zenith angle.

With the aid of the Integrated Contribution Function, the concept of penetration

optical depth, that is, the optical depth at which a given percentage of the radiance

measured at cloud top is recovered, was introduced. It was found that the penetra­

tion optical depth is a strong function of single scattering albedo and solar zenith

angle, but is insensitive to the extinction profile. This contrasts with the effective

level of contribution, which is sensitive to the extinction profile. In particular, for

a given penetration optical depth, the corresponding penetration depth is generally

greater for cirrus clouds than for the other two clouds considered, since the extinc­

tion increases from cloud top down at a lower rate than for the stratus and the

homogeneous cloud.

These results suggest that information recovered from path integrated measure­

ments, such as visible upwelling radiances at the top of the atmosphere observed

by a satellite instrument, originates from specific regions within the cloud and is

dependent on the type of cloud sensed. This study provides a quantitative method

for assessing the level from which the information is mainly coming from, provided

some educated guess can be made about the cloud scene being observed and the

type of extinction profile such a cloud might have. The method introduced in this

paper, when combined with profile information provided by active sensors, may lead
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to a more definitive way of retrieving extinction profiles in cloud.
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C.B Appendix 1.

Consider the eigenvalue problem in the vector form

(C.56)

where Ar is a generic eigenvalue of A and xr is the eigenvector associated.

If we choose to write xr as constituted of two vectors of dimension N, ur and vr

we have:

(C.57)

which can be written as

Summing and subtracting the above equations, we get:

(C.58)

(t + r) (ur - vr )

(t - r) (ur + vr )

Ar(Ur + vr )

Ar (ur - vr ). (C.59)

Multiply the first row of (C.59) by (t - r) and the second row by (t + r). Upon

rearrangement,

(t - r)(t + r)(ur - vr )

(t + r)(t - r)(ur + vr )

If we introduce the new matrices and vectors

(C.60)

B = (t - r)(t + r),
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we obtain two new eigenvalue problems:

(0.61)

The eigenvalues of the matrix A are simply the square root of the eigenvalues

of either the matrix B or C. Having computed the eigenvalues and eigenvectors of,

say, the matrix B we can recover the eigenvectors of A. From the first equation of

the system in (0.59), the vector sr, eigenvector of C can be expressed in terms of

the vector dr,

.... (t+r)d....
Sr = AT r,

from which follows:

or

(0.62)

~ [I (t + r)] d
2 + A

r
r

~ [_ 1 (t + r)] ....,
2 + A

r
Cr' (0.63)

Since Ar can be positive or negative, we have another set of equations for Ar < 0:

.... ![I_ (t+rl]JUr 2 IArl r

.... ![-1- (t+rl]J (0.64)Vr 2 IArl r'
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Inspection discloses that vr corresponding to Ar > 0 is equal to -ur for Ar < O.

Similarly vr corresponding to Ar < 0 is equal to -ur associated with Ar > O. This

implies that we only have to compute ur for both Ar positive and negative to obtain

the full eigenvector matrix.

Let u+ be the matrix whose columns are the vectors ur for Ar > 0 and u_ the

matrix whose columns are the the vectors ur for Ar < o.
Thus the matrix X takes the following form:

(
u+ u_)X=

-u_ -u+

It can be shown that the inverse of X, X-I, has a similar form:

X-I = ( v+ v_),
-v_ -v+

and the elements of X-I can be computed from the elements of X using the

following matrix relationships

[I _ (-1 )2]-1-1u+ u_ u+

(u+1u_)v+

obtained from XX-:n. = X-IX = I.

C.9 Appendix 2.

(C.65)

Beginning with the form of the matrix exponential derived in section C.3.I, we

derive a stable semi-analytical expression for the global reflection and transmission

operators.

Starting from equation (C.28), we rewrite it explicitly as

T(H, 0) e?}(H)

(-u_eA+¢(H)v_ + u+e-A+¢(H)v+t1.
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Rearranging

'J(H, 0) {(_u_eA+'l/J(H)y_) [I _ (u_eA+'l/J(H)y_)-l(u+e-A+'l/J(H)y+)]}-l

[I - (u_eA+'l/J(H)y_ )-1 (u+e-A+'l/J(H)y+)t1(-u_ eA+'l/J(H)y_ t 1

where

(C.67)

Ql (u_eA+'l/J(H)y_)-l(u+e-A+'l/J(H)y+)

Q2 (u_eA+'l/J(H)y-).

Expanding the term [I - Ql]-l in series we have:

(C.68)

By using the expressions for y± derived in section C.3.1, Ql and Q2 can be

manipulated to yield:

Substituting in (C.68) and re-summing the geometric series, we obtain the fol­

lowing expression for 'J, which involves only decaying exponentials:

'J(H, 0) -u+[1 - (U=;:l u _)2][(U=;:lu _)-le-A+'l/J(H)]

{I - [(U=;:l u _)-l e-A+'l/J(H)]2}-lU =l. (C.69)

In a similar way we can compute a stable form of the global reflection matrix,

~, starting from equation (C.27):
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'.R(H, 0) e12(H)e2l(H)

(u+eA+7I'(H)y_ _ u_e-A+7I'(H)y+)

(_u_eA+7I'(H)y_ + u+e-A+7I'(H)y+)-1. (C.70)

The stable form for 'J derived above leads to a stable form for the global reflection

matrix '.R.

'.R(H, 0) -u+[I - (U:;:lU_ )e-A+7I'(H) (U:;:lU_ )-le-A+7I'(H)]

{I - [(u:;:lu_)-le-A+7I'(H)]2}-lU=l.
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Table C.l: Comparison of radiances computed with a doubling code (D) and with

the global 9( and 'J technique presented in this study (RT). rn is the index for the

expansion terms of the azimuthal series. /-l represents the cosine of the quadrature

angles (observing directions). 1+(H) and 1- (0) represent respectively the upwelling

and downwelling radiances summed up to the ill -th term of the azimuth expansion

senes.

a. Optical parameters: T = 1, We = 1, 9 = 0, /-l0 = 0.866

/-l m D I+(H) RT I+(H) % diff. D 1-(0) RT 1-(0) % diff.

0.9894 0 8.1189E-02 8.1189E-02 0.0 7.3267E-02 7.3315E-02 0.06

0.7554 0 9.4889E-02 9.489E-02 0.0 8.3060E-02 8.3114E-02 0.06

0.0950 0 1.4232E-01 1.4232E-01 0.0 8.3294E-02 8.3382E-02 0.1

b. Optical parameters: T = 1, We = 1, 9 = 0.8, /-l0 = 0.866

/-l m D I+(H) RT I+(H) % diff. D 1-(0) RT 1-(0) % diff.

0.9894 0 9.9717E-03 9.9460E-03 0.25 1.6764E-01 1.6752E-0l 0.07

0.7554 0 1.6232E-02 1.6209E-02 0.15 1.8942E-01 1.8919E-01 0.12

0.0950 0 4.8565E-02 4.8541E-02 0.25 6.9504E-02 6.8196E-02 1.88

0.9894 3 1.0576E-02 1.0562E-02 0.13 2.8254E-01 2.8223E-01 0.11

0.7554 3 2.1393E-02 2.1344E-02 0.2 6.9865E-01 6.9835E-01 0.04

0.0950 3 8.3972E-02 8.3859E-02 1.34 1.33,09E-01 1.3082E-01 1.7

0.9894 7 1.0577E-02 1.0597E-02 0.19 2.8442E-01 2.8408E-01 0.12

0.7554 7 2.1415E-02 2.1382E-02 0.15 8.3781E-01 8.3742E-01 0.05

0.0950 7 8.4466E-02 8.4264E-02 0.24 1.3444E-01 1.3211E-01 1.72

0.9894 11 1.0577E-02 1.0597E-02 0.19 2.8441E-01 2.8408E-0l 0.12

0.7554 11 2.1408E-02 2.1402E-02 0.02 8.59123E-01 8.584E-0l 0.07

0.0950 11 8.4532E-02 8.4381E-02 0.18 1.3445E-01 1.3218E-01 1.68

0.9894 15 1.0577E-02 1.0597E-02 0.19 2.8441E-01 2.8408E-01 0.12

0.7554 15 2.1406E-02 2.1225E-02 0.84 8.6311E-01 7.7356E-01 10.3

0.0950 15 8.4497E-02 8.4449E-02 0.06 1.3447E-01 1.2792E-01 4.86
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LIST OF ABREVIATIONS

ARM - Atmospheric Radiation Measurement program

ACR - Airborne Cloud Radar

CDL - Cloud Detection Lidar

CERES - Clouds and the Earth's Radiant Energy System

CIRA - Cooperative Institute for Research of the Atmosphere

CPI - Cloud Particle Imager

CVI - Counter-flow Virtual Impactor

CRM - Cloud Resolving Model

CRYSTAL - Cirrus Regional Study of Tropical Anvils and cirrus Layers

CSU - Colorado State University

DA - Data Assimilation

DAO - Data Assimilation Office

ECMWF - European Center for Medium-Range Weather Forecasts

EOS - Earth Observing System

ERBE - Earth Radiation Budget Experiment

FIRE - First ISCPP Regional Experiment

FACE - Florida Area Cirrus Experiment (part of CRYSTAL)

lOP - Intensive Operational Period

ISCCP - International Satellite Cloud Climatology Project

IWC - Ice "Vater Content

IWP - Ice "Vater Path

GCM - General Circulation Model

GEOS - Goddard Earth Observing System

GOES - Geostationary Observational Environmental System

LES - Large Eddy Simulation

288



lLITE - Lidar In-space Technology Experiment

JPL - Jet Propulsory Laboratory

MODIS - Moderate-Resolution Imaging Spectroradiometer

NASA - National Aeronautics and Space Administration

NCEP - National Centers for Environmental Prediction

NOAA - National Oceanic and Atmospheric Administration

NSA - North Slope of Alaska (ARM site)

NWP - Numerical Weather Prediction

RAMS - Regional Atmospheric Modeling System

SGP - Southern Great Plains (ARM site)

SCM - Single Column Model

SESAME - Severe Environmental Storm And Mesoscale Experiment

SSM/I - Special Sensor Microwave/Imager

SSP - Scanning Spectral Polarimeter

TMI - TRMM Microwave Imager

TOA - Top Of the Atmosphere

TRMM - Tropical Rainfall Measuring Mission

TWP - Tropical Western Pacific (ARM site)

UMass - University of Massachusetts

VAR - Variational (Data Assimilation)
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