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ABSTRACT

THE MÖBIUS NUMBER OF THE SYMMETRIC GROUP

The Möbius number of a finite group is its most important nontrivial combinatorial

invariant. In this paper, we compute the Möbius numbers of many partially-ordered sets,

including the odd-partition posets and the subgroup lattices of many infinite familes of groups.

This is done with an eye towards computing the Möbius number of the symmetric group on

18 points.
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7.1 The Möbius Number of S2 ! Sm . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxix

7.1.1 Classifying Complements to the Base Group . . . . . . . . . . . . . . . . . . . xxxix

7.1.2 The Intransitive Complement KI . . . . . . . . . . . . . . . . . . . . . . . . . xl

7.1.3 The Transitive Complement . . . . . . . . . . . . . . . . . . . . . . . . . . . . xl

7.1.4 Proving There Aren’t More Complements . . . . . . . . . . . . . . . . . . . . xli

7.1.5 Counting Numbers of Conjugates . . . . . . . . . . . . . . . . . . . . . . . . . xli

7.1.6 The Lattice of Subgroups Lying Above a Complement . . . . . . . . . . . . . xlii

7.1.7 Applying Crapo’s Complement Theorem . . . . . . . . . . . . . . . . . . . . . xliii
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Chapter 1

Preface

This work is primarily a result of my advisor’s excellent graduate combinatorics class. I

came into graduate school like many graduate students, studying math but not knowing

what area appealed most to me. Alexander Hulpke’s combinatorics class quickly showed me

that discrete math was my favorite area, and in particular his inspiring lecture on Möbius

numbers led me to ask if he had any research projects involving these mysterious invariants!

Five years of research later, here is the work I have done. I could not have asked for a better

advisor and am extremely grateful for all the time he devoted to me.

Beyond my advisor, I owe a huge thanks to the wonderful support group I have had

over the years. My family was incredibly helpful getting me a head start on my education

as a child and through my undergraduate education. Upon entering graduate school, my

coadvisor Tim Penttila became a very inspiring and valuable mentor. Robert Liebler and

the fellow attendees of the seminar he created, the Rocky Mountain Algebraic Combinatorics

Seminar, also provided much support and guidance throughout my research. Lastly, a large

thanks goes out to the very friendly community of graduate students I had, always there as

resources, sounding boards, and friends.
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Chapter 2

Background

2.1 Posets and Lattices

As the Möbius number is a combinatorial invariant of a lattice, we begin by defining a lattice,

and a more general structure, a poset.

Let ≤ be a binary relation on a set P. We say ≤ is a partial-ordering on P if and only

if it satisfies the following properties:

reflexive: ∀x ∈ P, x ≤ x

transitive: ∀x, y, z ∈ P, (x ≤ y and y ≤ z) ⇒ x ≤ z

antisymmetric: ∀x, y ∈ P, (x ≤ y and y ≤ x) ⇒ x = y

A poset (P,≤) is a set P with a partial-ordering ≤ . If P is a finite set, we say (P,≤) is

a finite poset . In this thesis, all posets will be finite. If the ordering ≤ is clear, then the

poset (P,≤) is typically abbreviated as P. If x ≤ y but x &= y, we write x < y.

An interval in a poset P, written [x, y], is the set of all elements in P between x and y.

That is, [x, y] = {z ∈ P : x ≤ z ≤ y}.

Suppose x, y, z ∈ P satisfy the following three properties:

(i) x ≤ z

(ii) y ≤ z

(iii) ∀w ∈ P, (x ≤ w and y ≤ w) ⇒ z ≤ w
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In this case we say z is the least upper bound or join of x and y, written z = x ∨ y.

That is, z is the smallest element that is greater than or equal to both x and y. Similarly we

can define the greatest lower bound or meet of x and y, written z = x∧ y, as the largest

element that is less than or equal to both x and y.

If P is a poset where every pair of elements has a unique least upper bound and a unique

greatest lower bound, we say P is a lattice. Since we are only concerned with finite posets,

for our purposes every lattice L has a unique maximum element, written 1L, and a unique

minimum element, written 0L. These elements are obtained by taking x1 ∨x2 ∨ · · · ∨xn = 1L

and x1 ∧ x2 ∧ · · · ∧ xn = 0L, where L = {x1, x2, . . . , xn} .

Typically a lattice is visualized via a Hasse diagram, a graph with one vertex for each

element of the lattice and one edge drawn for each maximal inclusion. It is always drawn

such that y is higher than x if x ≤ y.

If x, y are elements of a lattice P with x ∧ y = 0̂P and x ∨ y = 1̂P , we say that x is a

complement of y, or x complements y.

For example, we can consider the lattice of divisors of 12 where the ordering is given by

divisibility. Here the meet of two elements is their greatest common divisor an the join of

two elements is their least common multiple. That is, x ≤ y if and only if x|y. We draw the

corresponding Hasse diagram below. In this lattice, 3 is a complement for 4 but not for 6.

In fact, 6 has no complement.

We say that x is a modular element of a lattice if no two complements of x are com-

parable. For example, in the lattice above, every element is modular.
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2.2 The Principle of Inclusion-Exclusion

Möbius numbers can be seen as a generalization of the Principle of Inclusion-Exclusion.

We state the Principle of Inclusion-Exclusion and notice a key property which will then be

generalized to create the definition of Möbius numbers.

Consider subsets A1, A2, . . . , An of some set A. The Principle of Inclusion-Exclusion says

that the size of A1 ∪ A2 ∪ · · · ∪ An can be obtained if one knows the sizes of intersections of

an arbitrary number of the Ai. Specifically,

|A1 ∪ A2 ∪ · · · ∪ An| =
∑

i

|Ai| −
∑

i<j

|Ai ∩ Aj | +
∑

i<j<k

|Ai ∩ Aj ∩ Ak| − · · ·

+(−1)n−1 |A1 ∩ A2 ∩ · · · ∩ An|

where all indices are chosen from {1, 2, . . . , n}. We can view this as a lattice (L,≤) on the

set of all intersections of the Ai along with their union where the ordering relation is subset.

Notice that intersections of subsets are alternately counted with the coefficient +1 or -1

in order to not over- or under-count any element and the notion of how many times you have

counted an element comes entirely from the structure of the inclusion of subsets in other sets.

One can see that the sum of the coefficients over any interval in this lattice must be zero

in order to count each element exactly once. This concept can be generalized to any finite

lattice; this is how we define the Möbius function.

2.3 Defining Möbius Numbers

Definition 1 Let L be a finite lattice. Then the Möbius function of L is µ : L × L → Z

and is recursively defined as follows:

∑

z∈[x,y]

µ (x, z) =

{
1 if x = y
0 otherwise

.

Notice that this is a perfectly well-posed definition: the base case is given by intervals of

size 1. Identify ordered pairs of elements of L with intervals in L in the natural way. Then for
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any interval [x, y] of size n > 1 we can assume we know the Möbius number for any interval

of size less than n and use the definition to get

µ(x, y) = −
∑

z∈[x,y],z #=y

µ (x, z)

since any such [x, z] will have at most n − 1 elements.

Recall that every finite lattice L has a minimum and maximum element, respectively just

the meet of all elements and the join of all elements. Call these elements 0 and 1.

Definition 2 Let L be a finite lattice. The Möbius Number of L is written µ(L) and is

defined as µ(L) = µ(0, 1).

Notice that if Ln is the lattice of divisors of a positive integer n, then µ(n) = µ(Ln) where

µ(n) is the classical number-theoretic Möbius function given by:

µ (n) =






−1 if n is square-free and r is odd
0 if n is not square-free
1 if n is square-free and r is even

where r is the number of distinct prime factors of n. Thus this definition generalizes the

classical number-theoretic Möbius function, hence the name.

Additionally, as mentioned before, the coefficients of 1 and -1 that appear in the for-

mula for Principle of Inclusion-Exclusion are simply the Möbius numbers in the poset of

intersections of sets, ordered by containment.

2.4 The Möbius Number of a Group

Given any finite group G, we get a corresponding lattice of subgroups. The elements of

the lattice of subgroups are simply all subgroups of G. The meet of two subgroups is their

intersection and the join of two subgroups is the subgroup generated by them.

Definition 3 Let G be a finite group. The lattice of subgroups of G is written L(G). The

Möbius number of G is written µ(G) and is defined as µ(G) = µ(L(G)).

Notice that if G is isomorphic to the cyclic group Ck then µ(G) = µ(k) since the subgroups

of G will correspond exactly to the divisors of k with the same inclusion.
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2.5 The Thesis Question

This brings us to the fundamental question of the thesis: What is the Möbius number of Sn,

the symmetric group of degree n?

The motivation for this comes from the fact that the Möbius number is a very useful

combinatorial invariant of a lattice. The Principle of Inclusion/Exclusion, the formula for

the inverse for the Riemann-Zeta function, and the Euler characteristic of a simplicial complex

are examples of uses of Möbius numbers in combinatorics, number theory, and topology (see

for example section 3.8.8 in [20]).

In group theory, Möbius numbers were first used by Philip Hall [7] to count epimorphisms.

As the full symmetry group of a set, the symmetric groups are a natural class of groups for

which to seek the Möbius numbers. Additionally, every finite group embeds as a subgroup of

some symmetric group via its regular representation. Thus µ(Sn) really involves the subgroup

lattice of every permutation group of degree n and thus ultimately every group of order n.

Therefore this is really a question about all finite groups and trying to understand not only

the subgroup lattice of the symmetric group but the subgroup lattices of all groups.

Viewed in this light, there is a particularly interesting aspect of this problem due to a

theorem in [11].

Theorem 4 The Möbius number of a group is always divisible by the order of its derived

subgroup.

In the case of the symmetric group of degree n, we have that the derived subgroup is the

alternating group of degree n, which has order n!/2. Thus even though the subgroup lattice

of every group appears in the subgroup lattice of the symmetric group, somehow the Möbius

numbers of the symmetric groups cannot just be wild or random; it must always somehow

nicely work out to be a multiple of n!/2. Using the techniques in this paper, we hope to

explain this enigma in more cases.
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2.6 Prior Work

As stated above, given any group G, the set of subgroups ordered by inclusion forms a lattice,

L (G). Trying to find the Möbius function of the subgroup lattice of Sn has proven to be a

very challenging task. For small n one can simply construct the entire subgroup lattice of Sn

and compute the Möbius number in GAP. The values of µ (Sn) for n ∈ {2, 3, . . . , 8} are:

n 2 3 4 5 6 7 8
µ (Sn) −2!

2
3!
2 −4!

2
5!
2 −6! 7!

2 −8!
2

Also, if n ≥ 3, |Aut (Sn)| = n! for n &= 6 and |Aut (S6)| = 2 · 6!. Thus, Stanley [20, Page

191] asked if µ (Sn) = (−1)n−1 |Aut (Sn)| /2 for all n ≥ 3. This question has been answered

in the negative [19].

While brute force computation works fine for small n, this approach quickly fails. For

example for n only equal to 12, there are over 10.5 × 109 subgroups across more than ten

thousand conjugacy classes! (It should be noted that from this point on in the paper, when-

ever we refer to numbers of subgroups we always mean numbers of conjugacy classes of

subgroups; information gathered for one member of a conjugacy class is easily transferred to

all other members.) Thus more theory must be brought to the problem. Using more general

techniques, the value of µ (Sn) has been computed for three infinite families, namely n prime,

n twice a prime, or n a power of 2.

Theorem 5 [19] Let n be a prime or a power of two. Then

µ (Sn) = (−1)n−1 n!

2
.

It should be noted that the case where n is prime was worked out in [13] as well using

very different techniques.

Thus these two families agree with the formula presented in Stanley’s question. However,

this is not the case with the third family (for example n = 14 is a counterexample).
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Theorem 6 [19] Let n = 2p where p is an odd prime. Then

µ (Sn) =






−n! if n − 1 is prime and p ≡ 3 ( mod 4)
n!
2 if n = 22
−n!

2 otherwise
.

Additionally, the author has computed µ(S12) = −12!, which is the smallest counterex-

ample to Stanley’s question [12].

Shareshian’s proofs in [19] primarily used a closure operation (see Subsection 3.1) that

reduced the problem of finding the Möbius number of Sn to finding out certain information

about the transitive permutation groups on n points. When n is prime, twice a prime, or a

power of two, the transitive subgroups of Sn are relatively easy to describe. For example if

n is prime then the only transitive groups are in fact the primitive groups on n points, by

definition permutation groups that do not preserve any nontrivial partition of {1, 2, . . . , n}.

If a transitive group does preserve a nontrivial partition it is called imprimitive. Primitive

permutation groups have been described in detail in the O’Nan-Scott Theorem [6] which is

also heavily used in his proof. However, these techniques are unlikely to extend successfully

to other infinite families. For example, up to conjugacy, S18 has 983 transitive subgroups,

but only four are primitive. Thus the number of transitive subgroups quickly explodes for

other values of n that allow more imprimitive groups. See Section 4 for our approach on how

to get around this explosion of imprimitive groups.
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Chapter 3

Combinatorial Tools

In this section, we state two very useful theorems for computing Möbius numbers proved

in [5].

3.1 Closure Operations

In this subsection, we examine a certain type of structure-preserving map from a poset to

itself. Suppose we have a map from P to P , written as ·, satisfying the following three

properties for all x, y ∈ P :

(i) x ≤ x

(ii) x = x

(iii) x ≤ y ⇒ x ≤ y

Such a map is called a closure operator. If x ∈ P has x = x, we say that x is closed.

Given a closure operator, we can take the subposet consisting of only the closed elements of

P, which we call the quotient poset P . This name is used because P ∼= P/ ∼ where ∼ is

the equivalence relation given by x ∼ y ⇔ x = y.

Usually computing a Möbius number from the definition involves far too many terms in

the recursion; applying closure operations greatly reduces this. The following theorem is

often referred to as Crapo’s Closure Theorem.
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Lemma 7 [5] Let · be a closure operator on P and x, y ∈ P. Let S = {z ∈ P : z = y} . Then

∑

z∈S

µP (x, z) =

{
µP (x, y) if x = x
0 if x < x

.

Notice that the more closed elements we have, the more complicated the quotient poset

is, but the fewer terms there will be in the sum. Conversely, if we don’t have many closed

elements, we’ll have a small quotient poset but have many more terms in the sum. Thus in

picking a closure operation we have a trade-off between the sum being more complicated and

the quotient poset being more complicated. We will revisit this trade-off in Section 4.

3.2 Crapo’s Complement Theorem

Theorem 8, often referred to as Crapo’s Complement Theorem [5], is a very powerful tool in

obtaining the Möbius number of a lattice.

Theorem 8 [5] Let L be a lattice with minimum element 0 and maximum element 1. Define

ζ on L × L as the characteristic function of the relation ≤. Let x ∈ L and let x⊥ be the set

of complements to x in L. Then

µ(L) =
∑

y,z∈x⊥

µ(0, y)ζ(y, z)µ(z, 1).

In particular, if there exists x ∈ L such that x has no complement in L, then µ (L) = 0.

3.3 Normal Subgroups are Modular in the Subgroup
Lattice

Notice also that if H and K are subgroups of G then H is a complement for K in the lattice

of subgroups of G if and only if H ∩K is the trivial group and < H, K >= G. The following

simple but useful lemma shows why typically in applying Crapo’s Complement Theorem

(Theorem 8) we want to look at complements to a normal subgroup.

Lemma 9 Let H ! G. Let K1 and K2 be two different complements to H in G. Then

K1 &≤ K2.

10



Proof. By the Second Isomorphism Theorem, any complement to H must be isomorphic

to G/H . In particular, |K1| = |G/H| = |K2|. Thus if K1 and K2 are distinct they are not

comparable since if one was a subgroup of the other, they would be equal.

Equivalently rephrased in lattice-theoretic terms, a normal subgroup is always a modular

element of the subgroup lattice. Thus when using a normal subgroup, we get a much simpler

form of the Complement Theorem.

Corollary 10 Let H ! G. Then

µ(G) =
∑

K∈H⊥

µ(K)µ(K, G).

We show one more important application of the complement theorem. This will become

useful in Section 7.

Lemma 11 [19] Let H ≤ Sn and H &≤ An where H does not contain an odd involution.

Then µ (H) = 0.

Proof. We show that the proper subgroup H ∩ An of H has no complement in L (H) and

then apply Crapo’s Complement Theorem.

Assume K complements H ∩ An. That is, K (H ∩ An) = H and K ∩ (H ∩ An) = {()} .

Since K (H ∩ An) = H &≤ An, and H∩An contains only even elements, K must contain some

odd element k. Since k is an odd element in H, k cannot be an involution, so k2 &= (). Thus

〈k2〉 is a nontrivial subgroup contained in K ∩ (H ∩ An) , which is a contradiction.

Thus H ∩ An does not have a complement in L (H) , so µ (H) = 0.

11



Chapter 4

2-Closures

4.1 Choosing a Closure Operation

As stated above, there is a trade-off in choosing what closure operation to use when applying

Crapo’s Closure Theorem (Theorem 7) to a lattice L. Applying a closure operation that has

many closed elements means that few get sent to the maximum element of L. In this case

the quotient lattice L is large, but the sum in Theorem 7 has few terms. The extreme case

of this is if we take the trivial closure operation that maps every element of a lattice to itself.

In this case the Closure Theorem simply tells us that µ(L) = µ(L). In the other extreme, we

could take the closure operation that maps every element of L to the maximum element of

L. Then we just get back the defining recursion of the Möbius function:
∑
x∈L

µ(0, x) = 0.

In [19], the closure operation primarily used is closure on orbits. That is, define the

closure operation · on L (Sn) for any G ≤ Sn by G = S (O1) × S (O2) × ... × S (Om)

where O1,O2, ...,Om are the orbits of G and S (Oi) is the symmetric group on Oi. Fol-

lowing Wielandt [21], we call this group the 1-closure of G (the naming is fortunate -what

he calls the 1-closure is actually a closure operation on the lattice). With such a closure op-

eration, the closed subgroups are all direct products of symmetric groups. These correspond

bijectively to the set of partitions of {1, 2, . . . , n}. Thus the quotient lattice is isomorphic

to the lattice of partitions of a set with n elements. The Möbius number of this lattice is

easily worked out to be (−1)n−1 (n − 1) using induction and the Complement Theorem, for

example see [20, Example 3.10.4] or [12]. The groups that get sent to Sn under this closure
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operation are by definition the transitive subgroups of Sn, since they only and only they have

one orbit on n points. Thus

∑

G ≤ Sn

G transitive

µ (G) = (−1)n−1 (n − 1)!. (4.1)

Thus on the closure operation trade-off, Shareshian [19] used a closure operation that was

very heavily weighted to one side: the Möbius number of the quotient lattice was extremely

easy to compute, however for arbitrary degrees (other than the families in Theorems 5 and

6) there will be an enormous number of transitive groups (see Theorem 14) and thus many

terms in the sum. Our goal is to pick a new closure operation where the sum has fewer terms

in exchange for the quotient lattice being more complicated but still tractable.

4.2 The 2-Closure of a Group

Given any group G acting on {1, 2, . . . , n}, we can define a new action of G on the set of

pairs of distinct points from {1, 2, . . . , n} by defining [a, b]g = [ag, bg] for a, b ∈ {1, 2, . . . , n}

and g ∈ G. We call this the action on pairs. If a group has just a single orbit on pairs of

distinct points, it is called 2-transitive.

One can then define (again following Wielandt [21]) the 2-closure of G ≤ Sn to be the

largest subgroup of Sn having the same orbits on pairs as G. We write 2cl(G) for this largest

subgroup. This is easily seen to be a closure operation on the lattice of subgroups of a group.

Clearly G ≤ 2cl(G) and 2cl(G) = 2cl(2cl(G)). Additionally it preserves incidence, since if

G ≤ H , the orbits of G on pairs are a refinement of the orbits of H on pairs. Thus any

group that preserves the orbits on pairs of G must also preserve the orbits on pairs of H , so

2cl(G) ≤ 2cl(H). A permutation group G with G = 2cl(G) is called 2-closed. (Note that

this closure operation has been studied before, for example in [21]. However the author is

unaware of its prior use to compute Möbius numbers.)

Note that any 2-transitive group is automatically primitive, since a pair of points chosen

from the same nontrivial block could get set to a pair of points lying in different blocks. Thus

13



this is a stronger reduction than reducing to only transitive or primitive groups. However,

we will pay for this in that the quotient lattice will become more difficult to compute.

4.3 Cyclic Groups are 2-Closed

It will be useful to have classes of groups that we know up front are 2-closed; this will be

further discussed in Section 4.5. We can then guarantee that these will show up in the

quotient lattice when the 2-closure operation is applied. Here we show any cyclic group is

2-closed.

Theorem 12 Any permutation representation of a cyclic group is 2-closed.

Proof.

Let G be a cyclic permutation group. Let H = 2cl(G). First notice that by definition, G

and H have the same orbits on pairs. When looking at an orbit on pairs, one can read off the

orbits of a point stabilizer by simply examining a single orbit on pairs and seeing how many

places the second coordinate can go while the first remains fixed. Thus the orbits of a point

stabilizer in G are the same as the orbits of the corresponding point stabilizer in H , since G

and H have the same orbits on pairs. We will repeatedly apply this observation below. We

proceed by induction on the number of orbits.

Assume G has only one orbit on the points {1, 2, . . . , n}. Then StabG(1) is trivial and has

trivial orbits, so StabH(1) has trivial orbits and is trivial as well. Thus H and G are both

acting regularly, so |H| = n = |G|. Additionally, G ≤ H . Thus G = H .

Now assume G has m orbits called O1,O2, . . . ,Om. Let π be the projection homomor-

phism onto orbits 2 through m. That is, if G =< c1c2 · · · cm > where each ci is a cycle on

Oi, we have that π(c1c2 · · · cm) = c2 · · · cm. Then we know that π(G) is 2-closed by induction

hypothesis since π(G) will have one fewer orbits. Thus π(H) = π(G). Additionally by exam-

ining a pair consisting of two points from O1, we can see that on the first orbit H projects

onto C1 :=< c1 >.

14



Thus H is a subdirect product of C1 with < c2 · · · cm >. Assume H > G. Then ck
1 ∈ H

but not in G for some natural number k, or cj
2 · · · cj

m ∈ H but not G for some natural number

j. (We get such elements as generators of the normal subgroups in our subdirect product.)

Let 1 be a point in O1 and 2 be a point in O2. In the first case, the orbits of StabH(2) are

larger than that of StabG(2) since the cycle type of ck
1 must actually be a cycle type that

was not found in StabG(2). In the second case, the orbits of StabH(1) are larger than that

of StabG(1) for the same reasoning. Either case is a contradiction, since the orbits on pairs

of H and G are the same.

Thus G is always 2-closed.

Note that this result cannot be extended to all abelian groups. For example 〈(1, 2)(3, 4), (3, 4)(5, 6)〉

is abelian but has 2-closure equal to 〈(1, 2), (3, 4), (5, 6)〉, a strictly larger group.

4.4 Applying the 2-Closure Operation and a Reduction
to 2-Transitive Groups

Let µ2(G) be the Möbius number of the lattice of 2-closed subgroups of G. If we apply the

Closure Theorem to the 2-closure operation, we get

∑

G ≤ Sn

G 2-transitive

µ (G) = µ2(Sn) (4.2)

There are extremely few 2-transitive groups compared to transitive groups. For example

on 18 points, there are 983 transitive groups but only four 2-transitive groups. In general,

there are provably far fewer 2-transitive groups than transitive by results of Pyber and

Shalev [17]. A result of Pyber and Shalev shows there are asymptotically few primitive

subgroups (and thus even fewer 2-transitive subgroups).

Theorem 13 [17] The number of conjugacy classes of primitive subgroups of Sn is at most

nc log n for some constant c.
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Comparatively, a result of Pyber says there are asymptotically an enormous number of

transitive groups in the case of prime powers. It follows that there is an enormous number

of transitive groups for any degree by taking wreath products of these transitive groups on

prime powers (for example building a transitive group on 36 points by taking the wreath

product of a transitive group on 4 points with a transitive group on 9 points).

Theorem 14 [16] Let p be a prime. The number of transitive subgroups of Sn, n = pα is

at least 2ap
n2

log n for some constant ap.

Thus the number of terms in the right hand side of the sum in Equation 4.2 will be

extremely small compared to the number of terms in the right hand side of the sum in

Equation 4.1. Additionally, the sizes of the groups that do appear (besides the alternating

and symmetric groups) will be small by a theorem of Praeger and Saxl.

Theorem 15 [15] Any primitive group of degree n that is not An or Sn has order less than

4n.

The symmetric group can have transitive subgroups much larger than this, for example

in S18 the order of S9 ! S2 (see Section 4.5 for a definition of !) is larger than 418.

In addition to being small in number and harmless in size, doubly-transitive groups are

much more tightly classified. Although algorithms for constructing all transitive groups of a

given degree exist [8], there is not in general an easy description of all transitive groups of

an arbitrary degree. However, the 2-transitive groups are fully classified for any degree as

a consequence of the Classification of Finite Simple Groups (see for example Theorem 5.3

of [4]). Thus the sum in the Closure Theorem is vastly simplified. This essentially reduces

the problem of finding µ(Sn) to finding µ2(Sn), at least for most n. It should be noted that

µ(An) will come up as a term in the sum in 4.2 since An will be 2-transitive. However, the

subgroup lattice of An and the subgroup lattice of Sn are so similar that typically An itself

can be dealt with by some ad-hoc techniques. For example in [12], A12 was easily discarded

in the computation of µ(S12).
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To compute µ2(Sn) at first glance one would need all 2-closed subgroups. However, getting

a description of all 2-closed subgroups of Sn is not feasible. If we again apply the 1-closure

operation to the lattice of 2-closed subgroups, we get a reduction to only the transitive

2-closed subgroups.

Theorem 16
∑

G ≤ Sn

G transitive and 2-closed

µ2 (G) = (−1)n−1 (n − 1)!

Proof. We apply the Closure Theorem using the 1-closure operation on the lattice of 2-

closed subgroups. The left-hand side of the sum is clear; the only 2-closed groups that get

mapped to Sn under the 1-closure operation are the transitive groups. For the right-hand

side, we must verify that when applying the 1-closure operation to the lattice of 2-closed

subgroups that we do in fact get all possible partitions of the set {1, 2, . . . , n} (the formula

on the right-hand side is simply the Möbius number of the lattice of partitions of a set with

n elements). Thus we just need to construct one 2-closed group for each partition of the

set {1, 2, . . . , n}. Since every cyclic group is 2-closed (Theorem 12), we can simply pick a

group generated by a single element whose cycle type is given by the partition we want. For

example, if n = 8 then the partition {{1, 2, 3}, {4, 5, 6, 7}, {8}} is realized as the 1-closure of

the cyclic (and hence 2-closed) group 〈(1, 2, 3)(4, 5, 6, 7)(8)〉. Thus the quotient lattice of the

lattice of 2-closed subgroups under the 1-closure operation is the entire lattice of partitions.

Notice that we now have effectively reduced the problem to finding µ2(G) of transitive

2-closed groups G < Sn since the above equation could then be solved for µ2(Sn). For a

particular degree there are typically not very many of these: in the case of degree 18 we have

that only 93 of the 983 transitive subgroups are actually 2-closed.

Thus our primary goal is now to describe what the 2-closed transitive subgroups are

for various degrees and then to compute the 2-closed Möbius numbers of transitive 2-closed

subgroups. This is the goal of the remainder of this section and a place where much future

work can be done.
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4.5 Classifying the 2-Closed Transitive Subgroups

We aim to get a description of the 2-closed transitive subgroups. By Theorem 12 we know that

in degree n we will always have the cyclic group of order n as a 2-closed transitive subgroup.

The symmetric group of degree n will also be 2-closed. Tests in GAP have revealed two

promising traits. Many of the remaining transitive 2-closed subgroups are wreath products

in natural action of 2-closed groups of smaller degree or subgroups of such wreath products.

(The wreath product in natural action of two permutation groups A and B is written

A ! B. If B acts on m points, A ! B is the permutation group formed by taking a direct

product of m copies of A acting disjointly and then letting B permute the copies of A.) In

particular, if A and B are 2-closed permutation groups acting respectively on n and m points

with nm < 32 then A ! B is again 2-closed. As it was verified in GAP for so many cases, we

make the following conjecture:

Conjecture 17 Let A and B be 2-closed. Then A !B in the natural action is also 2-closed.

Also, not many of the subgroups of the 2-closed wreath products are again 2-closed. For

example, of the 93 2-closed transitive groups on 18 points, only 59 are not wreath products of

2-closed groups of smaller degree (and two of those 59 are accounted for by the cyclic group

of degree 18 and the symmetric group of degree 18). Thus it will be necessary to obtain some

general conditions for a proper subgroup of a wreath product to be 2-closed.

4.6 Current Progress on the Computing the 2-Closed
Möbius Numbers of Transitive 2-Closed Subgroups

One reason the reduction to 2-closed groups seems like a fruitful approach is how much

simpler some subgroup lattices get after taking 2-closures. For example, there is no known

simple theoretical argument that computes µ(S2 !S3). Through a brute force enumeration of

the subgroup lattice using GAP, we can obtain µ(S2 ! S3) = 48.

However, consider complements to the subgroup 〈(1, 2)(3, 4)(5, 6)〉 in the subgroup lattice

of S2 ! S3. Again through enumeration of the subgroup lattice using GAP, we find it has two
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complements:

〈(3, 5)(4, 6), (1, 3, 5)(2, 4, 6), (1, 2)(3, 4), (3, 4)(5, 6)〉

and

〈(1, 2)(3, 6)(4, 5), (1, 3, 5)(2, 4, 6), (1, 2)(3, 4), (3, 4)(5, 6)〉

However, neither of these groups is 2-closed. In fact both have 2-closure equal to S2 ! S3.

Notice 〈(1, 2)(3, 4)(5, 6)〉 is 2-closed by Theorem 12. Thus in the lattice of 2-closed subgroups

of S2 ! S3, we have an uncomplemented subgroup, so µ2(S2 ! S3) = 0 by the Complement

Theorem.

Thus it is plausible that we can get a hold on the 2-closed Möbius numbers of groups

whose Möbius numbers we couldn’t find. We now show that the argument above generalizes

to all groups of the form S2 ! Sm.

4.7 The 2-Closed Möbius Number of S2 ! Sm

Theorem 18 For all integers m > 1, µ2(S2 ! Sm) = 0.

Proof.

First we do the case where m = 2. One can easily verify that every subgroup of S2 ! S2

is 2-closed. Thus the lattice of subgroups of S2 ! S2 is isomorphic to its lattice of 2-closed

subgroups. Therefore µ2(S2 ! S2) = µ(S2 ! S2) which is zero by Theorem 28 in [12].

Now assume m ≥ 3. Let H = 〈(1, 2)(3, 4)(5, 6) · · ·(2m − 1, 2m)〉, the diagonal subgroup

of the base group. We show that any complement to H in the subgroup lattice of S2 !Sm has

2-closure equal to S2 ! Sm. Since H is cyclic, H will be an uncomplemented subgroup in the

lattice of 2-closed subgroups of S2 !Sm by Theorem 12. The Complement Theorem will then

give us that µ2(S2 ! Sm) = 0.

Let K be a complement for H in the subgroup lattice of S2 ! Sm. Write OH for the

orbits of H on pairs, and OK for the orbits of K on pairs. An easy computation shows that

OH = A ∪ B where

A = {{[1, 2], [2, 1]}, {[3, 4], [4, 3]}, . . . , {[2m − 1, 2m], [2m, 2m− 1]}}

19



and

B = {{[1, 3], [2, 4]}, {[3, 1], [2, 4]}, {[1, 4], [2, 3]}, {[4, 1], [3, 2]}, . . .}

That is, A is the set of pairs of points from the same H-orbit and the B is the set of pairs of

points where each point was chosen from a different H-orbit.

Similarly, we compute the orbits on pairs of S2 ! Sm as

{[1, 2], [2, 1], [3, 4], [4, 3], . . . , [2m − 1, 2m], [2m, 2m − 1]}

and

{[1, 3], [2, 4], [3, 1], [2, 4], [1, 4], [2, 3], [4, 1], [3, 2], . . .}

In summary, S2 ! Sm has just two orbits on pairs, one orbit where the points in the pairs

come from the same block, and one orbit where the the points in the pair come from different

blocks.

Notice that the union of all elements in A would give us the first orbit of S2 ! Sm and

the union of all elements in B would give us the second orbit of S2 ! Sm. Thus if K and H

together generate all of S2 !Sm, we must have that the join of OH with OK must be the orbits

on pairs of S2 ! Sm. Thus OK must have an orbit with one pair from each set of A and an

orbit with one pair from each set of B. (Notice that saying OK has an orbit with one pair

from each set in A is equivalent to saying that K must be transitive on the blocks, which is

certainly true since H acts trivially on the blocks.) Thus we just need to show without loss

of generality that K has an element that maps [1, 2] to [2, 1] and an element that maps [1, 3]

to [2, 4].

Since H is in fact the center of S2 ! Sm, H is a normal subgroup. Thus we have S2 ! Sm =

H ! K. Therefore every element of S2 ! Sm is expressible in the form hk for some h ∈ H

and k ∈ K. In particular, (5, 6) ∈ S2 ! Sm. Since there are only two elements in H , either

(5, 6) ∈ K as well or (1, 2)(3, 4)(7, 8) · · · (2m − 1, 2m) ∈ K.

Assume (5, 6) ∈ K. Since K is transitive on the blocks, every transposition in S2!Sm is also

in K. For example, let k ∈ K be some element with {5, 6}k = {1, 2}. Then k−1(5, 6)k = (1, 2)

since we simply relabel the points of (5, 6) according to the permutation given by k. Thus
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(1, 2), (3, 4), (5, 6), . . . , (2m − 1, 2m) are all elements in K, so their product is as well. But

their product is the generator of H , which cannot be in K since H and K intersect trivially.

Thus (5, 6) is not in K.

Therefore the other case must hold: (1, 2)(3, 4)(7, 8) · · · (2m − 1, 2m) ∈ K. Call this

element k. Then [1, 2]k = [2, 1] and [1, 3]k = [2, 4]. Thus K has the same orbits on pairs as

S2 ! Sm, so it is not 2-closed. Applying the Complement Theorem, we have µ2(S2 ! Sm) = 0.
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Chapter 5

An Even Closure Operation and an
Odd Poset

One of the most natural and well-studied posets is the poset Πn of partitions of an n-element

set ordered by refinement. A related object is the subposet of partitions of an n-element set

using only odd-size parts and the maximum element {{1, 2, . . . , n}}. We call this the odd-

partition poset and denote it Πodd
n . This poset will come up in our work as the quotient poset

of subgroup lattices under certain closure operations, as will be seen soon. For example, the

diagram below illustrates Πodd
4 :

1234

1|234 2|134 3|124 4|123

1|2 |3 |4

This poset arises in our work when considering the following closure operation on the

subgroup lattice of a group G. Let H be a subgroup of G. Then

H =

{
H : if |H| is odd
G : if n is even

It is trivial to verify that this is in fact a closure operation. Additionally, when applied to
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the lattice of subgroups of the symmetric group of degree n followed by the closure operation

that replaces groups by setwise stabilizers of orbits (which is equivalent to simply replacing

them by their orbits themselves), one obtains the odd partition poset as the quotient poset.

This is true because a group with an orbit of even length must have even order. Direct

products of cyclic groups with odd orders give all partitions with only odd part size.

Computing the Möbius number of this poset for some small values of n reveals a simple

pattern:

µ
(
Πodd

1

)
= 1

µ
(
Πodd

2

)
= −1

µ
(
Πodd

3

)
= −1 · 1

µ
(
Πodd

4

)
= −1 · 1 · −3

µ
(
Πodd

5

)
= −1 · 1 · −3 · 3

µ
(
Πodd

6

)
= −1 · 1 · −3 · 3 · −5

µ
(
Πodd

7

)
= −1 · 1 · −3 · 3 · −5 · 5

µ
(
Πodd

8

)
= −1 · 1 · −3 · 3 · −5 · 5 · −7

µ
(
Πodd

9

)
= −1 · 1 · −3 · 3 · −5 · 5 · −7 · 7

µ
(
Πodd

10

)
= −1 · 1 · −3 · 3 · −5 · 5 · −7 · 7 · −9
...

The fact that this pattern continues forever is the main result of this section:

Theorem 19 Let Πodd
n be the odd-partition poset of an n-element set. Then the Möbius

number µ(Πodd
n ) is given by

µ(Πodd
n ) =

{
(−1)(n−1)/2 ((n − 2)!!)2 : if n is odd
(−1)n/2(n − 1) ((n − 3)!!)2 : if n is even

where k!! denotes the double-factorial, the product of all integers between 1 and k with the

same parity as k.

It should be noted that the absolute value of this sequence does appear on The On-Line

Encyclopedia of Integer Sequences as sequence A000246 [10] in other combinatorial settings.

Our characterization of the sequence was not listed and has been submitted.

It should also be noted that this formula is stated as “known” on page 291 of [3]. However

no reference is given, and even after contacting the authors, a prior proof in the literature

was not found. Here we provide an original and elementary combinatorial proof simply
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using generating functions, induction, the Zeilberger-Wilf Algorithm, and techniques from

undergraduate calculus and differential equations.

The following well-known result will be used heavily in Section 5.1, so we state it explicitly.

For a proof see [20].

Lemma 20 [20, Proposition 3.8.2] Given posets P and Q with (x, y) ≤P×Q (x′, y′) , we have

that

µP×Q ((x, y) (x′, y′)) = µP (x, x′) µQ (y, y′)

and in particular

µ(P × Q) = µ(P ) · µ(Q).

Notice that the odd partition poset in general is strictly a poset and not a lattice.

Remark 21 The poset Πodd
n is not a lattice for n ≥ 12.

Proof. Notice that if n = 12, the elements

{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12}}

and

{{1, 2, 4}, {3, 5, 6}, {7, 8, 9}, {10, 11, 12}}

have two least upper bounds:

{{1, 2, 3, 4, 5, 6, 7, 8, 9}, {10, 11, 12}}

and

{{1, 2, 3, 4, 5, 6, 10, 11, 12}, {7, 8, 9}}

For any n > 12 we will have a subposet of Πodd
n isomorphic to this by simply adding singletons

to each of these partitions. Thus none of these are lattices since lattices have unique least

upper bounds.

Because of this, the frequently used and very powerful lattice-theoretic tools such as

Crapo’s Complement Theorem ( [5]) will be inapplicable in this situation. We thus proceed

instead with bare-knuckled enumerative combinatorics. The proof follows in four steps:
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1. In Section 5.1, we write down a true but unwieldy recurrence relation for the Möbius

numbers of the odd-partition posets based on the defining recurrence for Möbius num-

bers. This will be easy to verify but essentially impossible to work with since it will

involve sums indexed over integer partitions with odd part size.

2. In Section 5.2, we emulate the product formula for the partition generating function

to build two generating functions. We will show these two generating functions are

equal if and only if Theorem 32 is true. The generating functions graciously handle the

messiness of the sums from Section 5.1 for us.

3. In Section 5.3, we write down an Initial Value Problem and show that it has a unique

solution.

4. In Section 5.4, we show the two generating functions are in fact equal by verifying that

they both solve the Initial Value Problem. The crucial step in this verification is done

via induction using the brilliant and powerful Zeilberger-Wilf Algorithm as documented

in [14].

For notational convenience, let

µn =

{
(−1)(n−1)/2 ((n − 2)!!)2 : if n is odd
(−1)n/2(n − 1) ((n − 3)!!)2 : if n is even

That is, µn is the name we are giving to the numbers themselves. We will proceed to show

that these numbers are in fact the Möbius numbers of the posets.

5.1 Recurrence for the Möbius Numbers

Let λ 4 n. That is, λ is a partition of the integer n. If B a partition of the set {1, 2, · · · , n}

such that the multiset of sizes of parts of B is λ, we say B has type λ. For our purposes, we

require λ uses only parts that have odd size or size n. Expressing λ in frequency notation,

we have λ = (1λ13λ35λ5 · · · (2k + 1)λ2k+1nλn) be a partition of the integer n. That is, λ is a

partition of n with λ1 parts of size 1, λ3 parts of size 3, and so on. Notice that in the odd
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partition poset, the set partitions must be of this type. Additionally λn can only be 0 or 1,

and if it is 1 then all other λi are 0.

We now use the Orbit-Stabilizer Theorem to count the number of set partitions of an

n-element set with a fixed type λ = (1λ13λ35λ5 · · · (2k + 1)λ2k+1nλn). Clearly if λn = 1 then

there is only one partition. Otherwise we have n! elements of Sn acting pointwise on the

elements of the set {1, 2, . . . , n}. The stabilizer of a set partition with type λ will be a direct

product of imprimitive wreath products of symmetric groups: while preserving the partition

we can permute within any one of the parts or we can permute parts of the same size. Thus

the stabilizer is
⊗

i∈{1,3,5,...,2k+1}

Si ! Sλi

which has order
∏

i∈{1,3,5,...,2k+1}

λi! · i!λi .

By the Orbit-Stabilizer Theorem, we see that Πodd
n has

n!∏
i∈{1,3,5,...,2k+1} λi! · i!λi

set partitions of type λ.

For fear of something relatively simple becoming obfuscated by excessive notation, we

give an example. The set {1, 2, 3, 4, 5, 6, 7, 8} has many partitions of the type (1232) in Πodd
8 .

That is, we have set partitions with two parts of size 1 and two parts of size 3. We wish to

count how many such partitions it has. Letting S8 act on the points 1 through 8, we have

8! total group elements acting. We now count how many fix such a partition. We have one

copy of S3 acting on each part of size 3. We have an S2 that swaps the parts of size 3, and

another S2 that swaps the parts of size 1.

Thus total we have 8!
3!2·2·2 partitions with type (1232).

Next observe that any two partitions of the same type will have the same Möbius number,

since the poset lying underneath will be isomorphic with the isomorphism given via an Sn

conjugacy map.
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Suppose a set partition P has type λ = {n1, n2, · · · , nm} (written as a multiset). Then

the subposet consisting of all elements of Πodd
n less than or equal to P is isomorphic to the

product poset of Πodd
n1

, Πodd
n2

, . . . , Πodd
nm

. Therefore by Lemma 20 we have

µ(P ) =
∏

i∈{1,2,...,m}

µ(Πodd
ni

)

At this point, writing down the recurrence relation for the Möbius numbers amounts to

just putting all the above pieces together. We know by the defining recurrence of Möbius

Numbers that the Möbius number of Πodd
n is the negation of the sum of the Möbius numbers

of all smaller partitions in Πodd
n . We can group these smaller elements according to partition

type. By the above arguments, for each type, we know how many elements there are with

that type and what the Möbius number is as a product of smaller Möbius numbers. Summing

over all valid partitions gives us our recurrence:

Lemma 22 Let P be the set of all types of partitions that occur in Πodd
n except for the trivial

partition consisting of just 1 part of size n. Abbreviate mi = µ(Πodd
i ). Then

µ(Πodd
n ) = −

∑

λ∈P

∏

i∈{1,3,5,...,2k+1}

n!mλi
i

λi! · i!λi

where λ = (1λ13λ35λ5 · · · (2k + 1)λ2k+1).

5.2 Building the Generating Functions

Recall our notational shortcut: mi = µ(Πodd
i ).

Also recall the well-known infinite product formula for the generating function for parti-

tions of sets:
∏

n∈N

1

1 − tn
=

∏

n∈N

∞∑

i=0

tn·i

We observe that by slightly modifying the right-hand side of that infinite product, we can

get expressions very similar to what we have in Lemma 22. First of all we throw out any

even n, since these are not part sizes that will come up in the odd partition poset except

for maximal elements, which we will handle separately. Additionally, the term tn·i should be
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multiplied by mi
n

i!n!i to give the Möbius numbers and the Orbit-Stabilizer counts that occur in

Lemma 22. Thus by applying that recurrence in each degree, we have that

∏

n odd

∞∑

i=0

mi
n

i!n!i
tn·i = 1 + t − m2

2!
t2 − m4

4!
t4 − m6

6!
t6 − m8

8!
t8 − · · ·

On the other hand, we can use the power series expansion for the exponential function to

do a different manipulation to the same series:

∏

n odd

∞∑

i=0

mi
n

i!n!i
tn·i =

∏

n odd

e
mn
n! tn = em1t+

m3
3! t3+

m5
5! t5+

m7
7! t7+···

These two expressions for the same power series provide us with our fundamental strategy

for proving that the Möbius numbers mi really are the numbers µi as we claim. We simply

write down the same two power series with µi instead of mi. The power series are equal if

and only if for all i, µi = mi. Stated more formally:

Lemma 23 Let

L(t) = eµ1t+
µ3
3! t3+

µ5
5! t5+

µ7
7! t7+···

and let

R(t) = 1 + t − µ2

2!
t2 − µ4

4!
t4 − µ6

6!
t6 − µ8

8!
t8 − · · ·

Then L(t) = R(t) is equivalent to Theorem 32.

The goal of the next two sections is to show that L(t) is indeed equal to R(t).

5.3 The Initial Value Problem

We now define an Initial Value Problem, intentionally writing down the obvious Initial Value

Problem solved by L(t) as defined in Lemma 23 simply using the chain rule and the derivative

of the exponential.

dy

dt
= y · (µ1 +

µ3

2!
t2 +

µ5

4!
t4 +

µ7

6!
t6 + · · · ) (∗)

y(0) = 1
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We would like to claim that ∗ has a unique solution. To do this we show:

Lemma 24 The series µ1 + µ3

2! t
2 + µ5

4! t
4 + µ7

6! t
6 + · · · converges absolutely for −1 < t < 1.

Proof. Applying the standard ratio test for convergence of power series from an undergrad-

uate calculus course yields the desired result.

Clearly all involved functions are differentiable and have continuous partial derivatives.

Thus the standard theorem on uniqueness of solutions to an Initial Value Problem from an

undergraduate Differential Equations course applies and we get:

Lemma 25 The Initial Value Problem ∗ has a unique solution.

5.4 Verifying the Generating Functions Both Solve the
Initial Value Problem

The fact that L(t) satisfies the Initial Value Problem is clear. To show that R(t) also satisfies

the Initial Value Problem, we trivially check that the initial condition holds. We then plug

R(t) into both sides of the differential equation. Basic algebra shows that all terms of odd

degree match. The terms of even degree are not so obvious. To show that the coefficients

match on the terms of even degree is equivalent to verifying the following identity for all even

n:

On =
∑

k∈{2,4,...,n}

On−kOk−1

(
n

k

)

where On is defined to be |µn|. To solve this sum, we use the Zeilberger-Wilf Algorithm

as explained in [14] devised for verifying such hypergeometric identities. To do this, we

reformulate our sum by defining Pn = O2n and using the fact that O2k−1 = O2k
2k−1 . Thus our

sum becomes

1 =
∑

k

Pn−kPk

(
2n
2k

)

(2k − 1)Pn
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so that we are summing over all k and proving the identity for all n rather than just for even

n. Following [14], we then plug in the right-hand side to Gosper’s Algorithm (as implemented

in Maple) to get the proof certificate. In this case the proof certificate (R(n, k) in the notation

of page 25 of [14]) is the function

(−2n − 1 + 2k)(k − 1)k

(2n + 1)(k − n − 1)n
.

Following the proof on page 25 of [14] verifies the identity. Thus the proof of Theorem 19 is

complete.
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Chapter 6

The Möbius Number of the Socle

One very important normal subgroup of a group is the socle, the subgroup generated by all

minimal normal subgroups of a group. One can show that the socle of a group is always a

direct product of simple groups, see for example [6]. Thus we would like a formula for the

Möbius number of a direct product of simple groups. This would allow us to compute the

Möbius number of the socle of a group and get the Möbius number of the group itself if

the group is not’t much more complicated than its socle. In our particular case, we want to

compute the Möbius numbers and thus 2-closed Möbius numbers of the transitive 2-closed

groups. Here the socle is a particularly good normal subgroup to use! Often these groups

are wreath products whose subgroup lattice is mostly socle -in the case of degree 18, S6 ! S3

would be such an example since the socle would be A6 × A6 × A6.

Thus a formula for the Möbius number of the socle of a group is an important step on

the way to getting the Möbius numbers of the symmetric groups. In this section we provide

such a formula with proof. It should be noted that the results in this section, while proven

independently by the author, rather easily follow from results in [2].

6.1 Subdirect Products

We begin by classifying complements to one factor in a direct product. In order to do this

we first need some basic definitions and results on subdirect products. All of this with more

detail can be found in [6].

If a group G is a subgroup of A × B, it has natural projection maps πA : G → A and
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πB : G → B. If πA(G) = A and πB(G) = B and the kernels of these two projection maps

intersect trivially, we say that G is a subdirect product of A and B.

Let H = 〈ker(πA), ker(πB)〉. Clearly this is a normal subgroup of G, since both kernels

are. By the First Isomorphism Theorem, we have G/H ∼= A/πA(H) ∼= B/πB(H).

Thus we see that to start with groups A and B and build a subdirect product from them,

they must have a common factor group. Suppose we have some D ! A and E ! B with

A/D ∼= B/E. Let ζ : A/D → B/E be an isomorphism. Then we can describe the subdirect

product of A with B as

A ̂B = {(a, b) : a ∈ A, b ∈ B, Daζ = Eb}

Notice there is not in general a unique subdirect product of A with B, different choices

of D, E, and ζ will result in different subdirect products. We always have the trivial group

as a common factor group; this corresponds to the fact that the direct product can always

be formed.

6.2 Complements in Direct Products

In this section we work out the structure of a complement to one factor of a direct product.

Lemma 26 Let G = H × K. Let φK : G → K be the projection map onto K. Let K ′ be

a complement for H in the subgroup lattice of G. Then K ′ is of the form K ′ = H0 ̂K for

some H0 ≤ H with H0 isomorphic to some homomorphic image of K. Additionally, φK has

trivial kernel when restricted to K ′.

Proof. Let φH : G → H similarly be the projection map onto H . Let K ′ ≤ G and assume

K ′ is a complement of H . Since < H, K ′ >= G and H = ker φK , we have φK(K ′) = φK(<

H, K ′ >) = φK(G) = K. Let H0 = φH(K ′). By the Second Isomorphism Theorem, K ′ is

isomorphic to K. Thus H0 is isomorphic to a homomorphic image of K since projection

maps are homomorphisms. The image lies in H , so H0 ≤ H .

Thus we have that K ′ is a subdirect product of H0 with K ′.
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Since ker(φK) = H , we have ker(φK |K ′) = K ′ ∩ ker(φK) = K ′ ∩ H which is trivial. Thus

we see that φK has trivial kernel when restricted to K ′.

Note the condition that φK has trivial kernel when restricted to K ′ is intuitively saying

that H0 must be ‘fully glued’ to some factor of K ′. This makes sense because having any

‘unglued’ pieces of H0 would intersect nontrivially with H and thus K ′ would not be a

complement.

Also notice that this does in fact give an algorithm for constructing all complements to H

in G = H ×K. We get one class of complements for each such H0 (an automorphism may be

applied to form the subdirect product in a different manner). Thus finding all complements

simply amounts to finding all subgroups of H isomorphic to a homomorphic image of K and

knowing the automorphisms of these subgroups. We use this strategy to compute the Möbius

numbers of some special direct products.

Lemma 27 Let G = H×K and assume K has no nontrivial homomorphic image isomorphic

to a subgroup of H. Then µ(H × K) = µ(H)µ(K).

Proof. We look at complements to H in the subgroup lattice of G. The only possibility for

H0 as described in Lemma 26 is the trivial group, which gives K itself as the only complement.

Since K is normal in G, the interval of subgroups between K and G is isomorphic to the

subgroup lattice of H by the Fourth Isomorphism Theorem. Thus we can apply Crapo’s

Complement Theorem in the simpler form given in Corollary 10 to get that the Möbius

number of G is

µ(G) = µ(K)µ(K, G) = µ(K)µ(H).

Example 28 One can easily compute (for example just from the definition of µ using GAP)

that the Möbius number of S3 is 3 and the Möbius number of A5 is -60. Thus the Möbius

number of S3 × A5 is -180 since the only homomorphic images of A5 are trivial or A5 itself,

and A5 is not isomorphic to a subgroup of S3.
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Notice that Lemma 27 has a very nice aesthetic parallel to a similar property of the

number-theoretic Möbius function. Namely, for any integers n and m, if n and m are coprime

then µ(nm) = µ(n)µ(m). Here we have a similar result for groups; it would seem that the

hypothesis of Lemma 27 is a sufficient condition for whatever it means for two groups to be

coprime!

Also notice that Lemma 27 does not follow from the fact that the Möbius number of a

product poset is the product of the Möbius numbers of each factor. In general the lattice

of subgroups of H × K will be much larger than the product lattice of the subgroups of H

with the subgroups of K. The example above illustrates this: many subdirect products of

S2 (a homomorphic image of S3) with a subgroup of A5 isomorphic to S2 will appear in the

subgroup lattice of S3 × A5. These subdirect products are not direct products of subgroups

of each lattice.

6.3 The Homomorphic Images of a Product of Simple
Groups

In order to apply Lemma 27, we will first want a classification of all possible homomorphic

images of a direct product of simple groups.

Lemma 29 Let U1, U2, . . . , Um be distinct nonabelian simple groups. Let G = Ue1
1 × Ue2

2 ×

· · · × Uem
m . Then every homomorphic image of G is of the form Uf1

1 × Uf2
2 × · · · × Ufm

m for

some natural numbers fi ≤ ei for i ∈ {1, 2, . . . , m}.

Proof. This result is equivalent to showing that any normal subgroup of G also has the

above form. Let N ! G. Let π be the projection of N onto U , some factor of G. Since U

is simple, π(N) is either trivial or all of U , since intersecting a normal subgroup of G with

a factor of G will produce again a normal subgroup of G. Thus since N projects trivially or

fully onto each factor, N is a subdirect product powers of the Ui. Simplicity of the Ui implies

that any subdirect product actually degenerates to a direct product, so N is of the required

form.
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Note that additionally for the normal subgroup, the ‘gluing’ in the subdirect product

must be trivial, ie we cannot have any diagonal subdirect products of the simple groups in

N . If we did, one could apply an inner automorphism, conjugating by an element of one of

the simple groups in the diagonal subdirect product, and N would not be normal.

6.4 The Möbius Number of a Direct Power of an Abelian
Simple Group

A direct power of an abelian simple group looks like Cn
p = Cp × Cp × · · · × Cp︸ ︷︷ ︸

n

for some prime

p and some integer n. This is clearly isomorphic to a vector space of dimension n over the

field with p elements, and the subgroups of such a group will correspond to the subspaces of

a such a vector space. The Möbius number of a finite vector space is well-known and can be

found for example in Chapter 3 Exercises 28 and 45 of [20]. Thus we have:

Corollary 30 The Möbius number of Cn
p is (−1)np(n

2).

6.5 The Möbius Number of a Direct Power of a Non-
abelian Simple Group

Theorem 31 Let T be a nonabelian simple group. Let T n = T × T × · · · × T︸ ︷︷ ︸
n

. Then

µ(T n) =
n∏

j=1

(µ(T ) − (j − 1)A)

where A is the size of the automorphism group of T .

Proof. We use Lemma 26 to enumerate all possible complements to T1. In each case we

analyze the structure of the interval of the subgroup lattice lying above the complement.

Finally we apply the Complement Theorem.

Again let K ′ be a complement to T1. Let K = T2 × · · · × Tn. Then as in the lemma,

K ′ = H0 ̂K for some H0 ≤ T1 with H0 a homomorphic image of K. By Lemma 29, the only

homomorphic images of K are isomorphic to 1, T, T 2, T 3, · · · , T n−1. However, only 1 and T

are subgroups of T1, so they are the only two choices for H0.
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Case 1: If H0
∼= 1, K ′ = K. In this case the interval [K, G] is isomorphic to the subgroup

lattice of T since G/K ∼= T1 by the First Isomorphism Theorem.

Case 2: If H0
∼= T , K ′ is a subdirect product of T1 and T2 × · · · × Tn. In this case we

claim the interval [K ′, G] is just a totally ordered lattice with two nodes. That is, K ′ is

maximal in G. To see this is true, assume we have a subgroup J with K ′ ≤ J ≤ G. Then

any projection of K ′ has to be a subgroup of the same projection of J . That is, φT1(K
′) = T1

and φK(K ′) = K implies φT1(J) = T1 and φK(J) = K as well. Thus J is also a subdirect

product of T1 and K. Since ker(φK |J) must be a normal subgroup of T1, it is either 1 or T1.

If ker(φK |J) = 1 then J = K ′. If ker(φK |J) = T1 then J = G. Thus K ′ is maximal in G.

The Möbius number of such a lattice, a totally ordered lattice with two elements, is -1.

Now we just have to count how many different ways each can occur. Clearly there is

only one way Case 1 can happen. However, for Case 2, in the subdirect product H0 can

be identified with any of the n − 1 different homomorphic images of K isomorphic to T .

Additionally, any automorphism of T can be applied to H0 to identify it in a different way.

Thus we have (n − 1)A different subdirect products in Case 2 where A = |Aut(T )|.

At last we apply the Complement Theorem, summing over complements of T1. This yields

µ(T n) = µ(T )µ(T n−1) + (n − 1)Aµ(T )(−1)

which can be viewed as a recurrence relation with respect to n. Solving the recurrence

proves the theorem.

6.6 The Möbius Number of a Socle

Combining Theorem 31 with Lemma 27, we get the Möbius number of any socle in terms of

the Möbius numbers of the socle types.

Theorem 32 Let G be a direct product of finite simple groups. More specifically, let U1, U2, . . . , Um

be distinct nonabelian simple groups and let Cp1, Cp2, . . . , Cpn be abelian simple groups (cyclic
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groups) for some distinct primes p1, p2, . . . , pn. Let Ai be the size of the automorphism group

of Ui for each i ∈ {1 . . .m}. Let F =
n∑

i=1
fi. Let

G = Cf1
p1

× Cf2
p2

× · · · × Cfn
pn

× Ue1
1 × Ue2

2 × · · · × Uem
m .

Then

µ(G) = (−1)F
n∏

i=1

p
(fi

2 )
i

m∏

i=1

ei∏

j=1

(µ(Ui) − (j − 1)Ai).

Proof. First assume G has no abelian direct factors. Then G = Ue1
1 × Ue2

2 × · · · × Uem
m

for some nonabelian simple groups U1, U2, . . . Um. Without loss of generality, assume |U1| <

|U2| < . . . < |Um|. We claim that taking H = Ue1
1 and K = Ue2

2 × · · · × Uem
m satisfies the

conditions of Lemma 27. By Lemma 29, we have that the only homomorphic images of K

are of the form Uf2
2 × · · · × Ufm

m for some fi ≤ ei. Assume such a group was isomorphic to a

subgroup of H . Then we have U2 ≤ Uf2
2 ×· · ·×Ufm

m ≤ H (without loss of generality f2 > 0).

Consider the projection maps from H onto its factors (the copies of U1). At least one of

these projection maps must have a nontrivial image when applied to U2 ≤ H , otherwise U2

would be trivial. Let π : U2 → U1 be such a map with nontrivial image. Since ker(π) is a

normal subgroup of U2 and the image under π is nontrivial, the kernel must be trivial and

π(U2) = U2 ≤ U1. But we cannot have U2 ≤ U1 since U2 has larger order than U1. Thus

applying Lemma 27 gives µ(G) = µ(Ue1
1 )µ(Ue2

2 × · · · × Uem
m ). By repeatedly applying this

process next with U2, then with U3, and so on, we can write

µ(G) = µ(Ue1
1 )µ(Ue2

2 ) · · ·µ(Uem
m )

and combining the above formula with Theorem 31 proves the result for the case where G

has no abelian direct factors. We now must show that any abelian direct factors split off

multiplicatively as well.

Once again let G = Cf1
p1

× Cf2
p2

× · · · × Cfn
pn

× Ue1
1 × Ue2

2 × · · · × Uem
m . Taking H =

Cf1
p1

× Cf2
p2

× · · · × Cfn
pn

and K = Ue1
1 × Ue2

2 × · · · × Uem
m satisfies the conditions of Lemma

27, since an abelian group could not possibly have a subgroup isomorphic to a homomorphic

image of a direct product of nonabelian simple groups (since Lemma 29 shows that any such
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homomorphic image is nonabelian). Thus µ(G) = µ(H)µ(K), so the abelian part does indeed

split off multiplicatively.

At last we compute the Möbius number of the abelian part. Again Lemma 27 implies

that

µ
(
Cf1

p1
× Cf2

p2
× · · · × Cfn

pn

)
= µ

(
Cf1

p1

)
µ
(
Cf2

p2

)
· · ·µ

(
Cfn

pn

)

since no power of a cyclic group Cp could have a subgroup isomorphic to the homomorphic

image of an abelian group that does not have elements of order p. Applying Corollary 30 to

each factor proves the result.

Example 33 The Möbius number of C2 is -1. The Möbius number of A5 is -60 and its

automorphism group has size 120. The Möbius number of A6 is 720 and its automorphism

group has size 1440. Thus we have

µ(C2 × A3
5 × A2

6) = −1 ∗ −60 ∗ (−60 − 120) ∗ (−60 − 2 ∗ 120) ∗ 720 ∗ (720 − 1440) =

−1, 679, 616, 000, 000.

This is a computation that would clearly not be feasible by any brute force enumeration of

the subgroup lattice! Notice that this is in fact divisible by the order of the derived subgroup

of A3
5 × A2

6 which has order 603 ∗ 3602 (equal to the group order). Thus we are in agreement

with Theorem 4 [11].

It should be noted that there is an ongoing project by Joe Bohanon to compute the

Möbius numbers of all sporadic simple groups that has computed the Möbius numbers of

sporadic groups Ru and Suz [1]. Additionally [18] has the Möbius numbers of some infinite

families of simple groups, including linear groups of dimension two.
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Chapter 7

Möbius Numbers of Wreath Products
and Some Low-Index Subgroups
Towards Computing µ(S18)

In this section we compute the Möbius numbers of several infinite families of wreath prod-

ucts. This is useful when using Shareshian’s closure operation which reduces computation of

µ(Sn) to computation of the Möbius numbers of transitive subgroups, since most transitive

subgroups are wreath products and subgroups of wreath products. In particular we will ap-

ply these results to obtain the Möbius number of the symmetric group of degree 18, pending

the completion of a large computer calculation currently running.

7.1 The Möbius Number of S2 ! Sm

Theorem 34 µ(S2 ! Sm) =

{
0 if m is even
2mµ(Sm) if m is odd

We prove Theorem 34 by using Crapo’s Complement Theorem on the base group of the

wreath product. In order to do this, we will find representatives of conjugacy classes of

complements to Sm
2 in the subgroup lattice of S2 ! Sm, compute the sizes of these conjugacy

classes, and determine the lattice that lies above any such conjugate.

7.1.1 Classifying Complements to the Base Group

First note that any complement to the base group must be isomorphic to Sm since the base

group is a normal subgroup and S2 !Sm/Sm
2

∼= Sm. We claim there are two conjugacy classes
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of complements, a class of transitive complements and a class of intransitive complements.

We write KT for a representative of the class of transitive complements and KI for a repre-

sentative of the class of intransitive complements. We first construct KI , then construct KT ,

and then prove that there are no further conjugacy classes.

7.1.2 The Intransitive Complement KI

To construct an intransitive complement, we simply write down generators:

KI = 〈(1, 3)(2, 4), (1, 3, 5, . . . , 2m − 1)(2, 4, 6, . . . , 2m)〉

We can see that this group has trivial intersection with Sm
2 since KI acts trivially within

the blocks but Sm
2 acts only within the blocks. Together with Sm

2 it generates all of S2 ! Sm

since it provides any way to act upon the blocks and Sm
2 provides any way to act within

the blocks. Thus KI is a complement to the base group and is intransitive with orbits

{1, 3, 5, ..., 2m− 1} and {2, 4, 6, . . . , 2m)}.

7.1.3 The Transitive Complement

To construct the transitive complement KT , consider Sm in its usual action on m points. A

point stabilizer is isomorphic to Sm−1. This point stabilizer has a unique index two subgroup,

namely the alternating group on m − 1 points, Am−1. Let Sm now act on cosets of Am−1.

This will produce an action of Sm on 2m points. The action will be transitive since acting

on the cosets of a subgroup is always transitive. This action will also have a block system

with blocks of size 2 since Am−1 is not a maximal subgroup of Sm but instead is an index

two subgroup of a maximal subgroup of Sm. This process of taking a point stabilizer and

then acting on the cosets of a subgroup of the point stabilizer to yield an imprimitive action

of larger degree is called taking an inflation. For example, the regular representation of S3

is an inflation of the action of S3 on 3 points. See [8] for more details. This inflation of Sm

acting on m points to an action on 2m points is our complement KT .

To see that KT is a complement, notice that it acts as the full symmetric group on the
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blocks. Thus Sm
2 and KT do together generate S2 ! Sm. Also, KT can’t have any nonidentity

elements which fix all blocks, since then the action on the blocks would have a nontrivial

kernel but the image of this action is isomorphic to Sm
∼= KT . Thus KT intersects trivially

with Sm
2 .

7.1.4 Proving There Aren’t More Complements

We now show that any complement must be conjugate to either KI or KT .

Theorem 35 As constructed above, KI and KT are representatives for the only two conju-

gacy classes of complements to Sm
2 in S2 ! Sm.

Proof. Let K be a complement to Sm
2 in S2 ! Sm. We do a proof by cases based on whether

K is transitive or intransitive.

First assume K is intransitive. Since K is transitive on the blocks, it must have an orbit

of length m. Since it preserves the m blocks of size 2, one orbit of length m implies that K

must in fact have two orbits of length m. Conjugating K with a permutation such that one

of the orbits is {1, 3, 5, . . . , 2m − 1} will produce KI .

Next assume K is transitive. Considering the action of K on the blocks as permutation

isomorphic to Sm acting on m points shows that K is an inflation of this action. By Lemma

3.1 in [8], there is only one conjugacy class of such permutation groups, since there is only

one Aut(Sm)-class of Am−1 subgroups in Sm.

7.1.5 Counting Numbers of Conjugates

It turns out both conjugacy classes of subgroups are of size 2m−1.

Lemma 36 Both KT and KI have 2m−1 conjugates in S2 ! Sm.

Proof. Let K ∈ {KT , KI}. By the Orbit-Stabilizer Theorem, the number of conju-

gates of K is nK = [S2 ! Sm : N(K)] the index of the normalizer of K. The element

(1, 2)(3, 4)(5, 6) · · ·(2m − 1, 2m) is in the center of S2 ! Sm and not in K, so the normal-

izer of K is strictly larger than K by a factor of at least 2. Thus nK ≤ 2m−1.
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We now construct 2m−1 conjugates to prove that nK is in fact equal to 2m−1. Consider

an element g ∈ K with order m. As a permutation, g must be a double m-cycle since

it preserves the block system with m blocks of size 2. Without loss of generality, g =

(1, 3, 5, . . . , 2m − 1)(2, 4, 6, . . . , 2m). This double m-cycle corresponds to a partition of the

2m points into two sets of size m, namely {{1, 3, 5, . . . , 2m − 1}, {2, 4, 6, . . . , 2m}}. Assume

K has a different element h of order m that acts on the blocks in the same manner as g.

Then gh−1 would be a nontrivial element of K∩Sm
2 which contradicts K being a complement

to Sm
2 . Thus we can identify conjugates of K with the partition of the points into two sets

of size m coming from the element tht acts on the blocks in the same manner as g.

We now count such partitions. Assume the point 1 is in the first set. Then 2 must be in

the second set. For each of the m− 1 remaining blocks, we have two choices, to put the first

point with 1 and the second point with 2 or vice-versa. Thus there are 2m−1 such partitions

which gives 2m−1 different conjugates of K.

7.1.6 The Lattice of Subgroups Lying Above a Complement

We apply the following theorem from Shareshian [19].

Theorem 37 Let G = NK with N ! G and K a complement for N . Let L be the lattice

of subgroups of N normalized by K. Then the lattice of subgroups between K and G is

isomorphic to L.

Thus we only need to figure out what subgroups of Sm
2 are normalized by a complement

K. The answer turns out not to be dependent on the conjugacy class of complements K is

chosen from but actually only on the parity of m.

Lemma 38 Let K be a complement for Sm
2 in S2 ! Sm. Let L be the lattice of subgroups

inbetween K and S2 ! Sm. Then µ(L) =

{
0 if m is even
1 if m is odd

Proof. Notice that Sm
2 is in fact an m-dimensional vector space over the field with 2 elements.

Thus any subgroup of Sm
2 can be identified with the solutions of some linear equations in m

variables x1, x2, . . . , xm. The action of K on such a subgroup via conjugation can be seen
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as permuting the indices on these variables. Thus for a subgroup to be normalized by K,

the system of equations must be completely invariant under any permutation of the indices.

There are exactly four systems of equations with this property:

• No equations.

• x1 + x2 + · · · + xm = 0

• For all i, j ∈ {1, 2, . . . , m}, xi + xj = 0

• For all i ∈ {1, 2, . . . , m}, xi = 0

Clearly the first and fourth correspond respectively to the maximal and minimal elements

of this lattice. Additionally, the third is contained in the second if and only if m is even.

Thus if m is even we have a totally ordered lattice with Möbius number zero, while if m is

odd we have a Möbius number of 1.

7.1.7 Applying Crapo’s Complement Theorem

We now apply Crapo’s Complement Theorem to prove Theorem 34.

Proof. Let K be the set of all complements to the base group in S2 ! Sm. Applying Crapo’s

Complement Theorem to the subgroup Sm
2 in S2 ! Sm yields

∑

K∈K

µ(K)µ(K, S2 ! Sm).

Notice that µ(K) = µ(Sm) since K ∼= Sm. By Lemma 38 µ(K, S2 !Sm) is 0 or 1 depending

on whether m is even or odd, respectively. By Lemma 36 and Lemma 35 there are exactly

2m terms in the sum. Thus plugging directly into Crapo’s Complement Theorem proves the

result.

7.2 The Möbius Number of S3 ! Sm

Theorem 39 µ(S3 ! Sm) =

{
0 if m is even
−6mµ(Sm) if m is odd
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We follow basically the same approach as to the proof of Theorem 34, however this

time classifying complements is too complicated to do by studying orbits. Instead we use

techniques from cohomology.

7.2.1 Classifying Complements to the Socle

There is one obvious complement to the socle. We use the following permutation represen-

tation:

S3 ! Sm =

〈
(1, 2, 3), (1, 2), (1, 4)(2, 5)(3, 6), (4, 7)(5, 8)(6, 9), . . . ,
(2m − 5, 2m − 2)(2m − 4, 2m − 1)(2m − 3, 2m)

〉

We get corresponding representation for the socle:

Cm
3 = 〈(1, 2, 3), (4, 5, 6), (7, 8, 9), . . . , (2m − 2, 2m − 1, 2m)〉

We now construct a complement and count how many conjugates it has.

Lemma 40 The following subgroup of S3 ! Sm is a complement for the socle:

S2 ! Sm =

〈
(1, 2), (1, 4)(2, 5)(3, 6), (4, 7)(5, 8)(6, 9), . . . ,
(2m − 5, 2m − 2)(2m − 4, 2m − 1)(2m− 3, 2m)

〉

This group has exactly 3m distinct conjugates, each of which is a complement.

Proof. An S2 acting on each component will intersect trivially with the C3 that acts on each

component. The socle acts trivially on the blocks, so the full Sm acting on the blocks also

intersects trivially with the socle. Thus Cm
3 ∩ S2 ! Sm is trivial.

Together the S2 and the C3 generate all of S3 on each component. Thus 〈Cm
3 , S2 ! Sm〉 =

S3 ! Sm

Notice that NS3(Sm(S2 ! Sm) = S2 ! Sm since any element with a three-cycle on one of the

blocks will conjugate an S2 to a distinct two-cycle. The number of conjugates is the index of

the normalizer which is |S3 ! Sm|/|S2 ! Sm| = (6m ∗ m!)/(2m ∗ m!) = 3m.
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We now use cohomology to show that there are no more conjugacy classes of complements.

For a more detailed exposition regarding the following process, see Section IV.4 of [9]

We have the following homomorphism with the socle = Cm
3 as the kernel:

(1, 2, 3) 6→ ()

(1, 2) 6→ (1, 2)

(1, 4)(2, 5)(3, 6) 6→ (1, 4)(2, 5)(3, 6)

(4, 7)(5, 8)(6, 9) 6→ (4, 7)(5, 8)(6, 9)

...

(2m−5, 2m−2)(2m−4, 2m−1)(2m−3, 2m) 6→ (2m−5, 2m−2)(2m−4, 2m−1)(2m−3, 2m)

We have that (S3 ! Sm)/Cm
3 = S2 ! Sm. We use the Coxeter presentation of this group:

S2 ! Sm = 〈x1, x2, x3, . . . , xm : R〉 where R consists of the following relators:

• x2
i for each i ∈ {1, 2, . . . , m}

• (x1x2)4

• (x1xi)2 for each i ∈ {3, 4, . . . , m}

• (xixj)2 for each i ∈ {2, 3, . . . , m − 2} and j ∈ {i + 2, i + 3, . . . , m}

• (xixi+1)3 for each i ∈ {2, 3, . . . , m − 1}

(1, 2, 3) is mapped to the identity so we don’t need to consider it. However, we now

consider all possible ways of pairing the other generators with elements from the normal

subgroup. We give generators names:

x1 = (1, 2)

x2 = (1, 4)(2, 5)(3, 6)

x3 = (4, 7)(5, 8)(6, 9)
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...

xm = (2m − 5, 2m − 2)(2m − 4, 2m − 1)(2m− 3, 2m)

and note that any complement will be generated by elements of the form x1n1, x2n2, x3n3, . . . xmnm

for some n1, n2, . . . nm in the socle. Note also that the socle is a vector space. In particular

we make the following identification:

(1, 2, 3) = [1, 0, 0, 0, . . . , 0]

(4, 5, 6) = [0, 1, 0, 0, . . . , 0]

(7, 8, 9) = [0, 0, 1, 0, . . . , 0]

...

(2m − 2, 2m − 1, 2m) = [0, 0, 0, . . . , 1]

Thus we get m×m matrices corresponding to the actions of x1, x2, x3, . . . , xm on the socle

by conjugation:

x1 6→





−1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1





x2 6→





0 1 0 · · · 0
1 0 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1





x3 6→





1 0 0 · · · 0
0 0 1 · · · 0
0 1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1





...
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xm 6→





1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1
0 0 0 · · · 1 0





We now use the fact that x1n1, x2n2, x3n3, . . . xmnm must satisfy the same relators that

x1, x2, x3, . . . xm do to get restrictions on the possibilities for n1, n2, n3, . . . nm. Call

n1 = [n1,1, n1,2, n1,3, . . . , n1,m]

n2 = [n2,1, n2,2, n2,3, . . . , n2,m]

n3 = [n3,1, n3,2, n3,3, . . . , n3,m]

...

nm = [nm,1, nm,2, nm,3, . . . , nm,m]

First relator: x2
1

(x1n1)
2 = x1n1x1n1 = x2

1n
x1+1
1 = ()

which implies [n1,1, n1,2, n1,3, . . . , n1,m]





0 0 0 · · · 0
0 2 0 · · · 0
0 0 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · 2




= [0, 0, 0, . . . , 0]

and thus we have that n2 = n3 = · · · = nm = 0.

Second through mth relator: x2
i for i ∈ {2, 3, . . . , m}

(xini)
2 = xinixini = x2

i n
xi+1
i = ()
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which implies [ni,1, ni,2, . . . , ni,m]





2 0 · · · 0 0 0 0 · · · 0 0
0 2 · · · 0 0 0 0 · · · 0 0
...

...
. . .

...
...

...
...

...
...

...
0 0 · · · 2 0 0 0 · · · 0 0
0 0 · · · 0 1 1 0 · · · 0 0
0 0 · · · 0 1 1 0 · · · 0 0
0 0 · · · 0 0 0 2 · · · 0 0
...

...
...

...
...

...
...

. . .
...

...
0 0 · · · 0 0 0 0 · · · 2 0
0 0 · · · 0 0 0 0 · · · 0 2





= [0, 0, . . . , 0]

so also

[2ni,1, 2ni,2, . . . , 2ni,i−1, ni,i + ni,i+1, ni,i + ni,i+1, . . . , 2ni,m] = [0, 0, . . . , 0]

and thus we have that ni,i+1 = −ni,i and ni,j = 0 for all other values of j.

Note at this point there are exactly m free variables, so the system can have at most

3m solutions. Above we constructed 3m complements, so we knew there were at least 3m

solutions. Thus the remaining relators impose no further restrictions on our solutions, and

the only complements are exactly the 3m complements we constructed above.

7.2.2 The Lattice of Subgroups Lying Above a Complement

We again apply Theorem 37.

Lemma 41 Let K be a complement for Cm
3 in S3 ! Sm. Let L be the lattice of subgroups

inbetween K and S3 ! Sm. Then µ(L) = −1.

Proof. Recall that Cm
3 is in fact an m-dimensional vector space over the field with 3 elements.

Thus any subgroup of Cm
3 can be identified with the solutions of some linear equations in m

variables x1, x2, . . . , xm. The action of K on such a subgroup via conjugation can be seen

as permuting the indices on these variables (from the action of the Sm) and negating the

variables (from the action of the Sm
2 ). Thus for a subgroup to be normalized by K, the

system of equations must be completely invariant under any permutation of the indices and

negation of variables. There are exactly two systems of equations with this property:
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• No equations.

• For all i ∈ {1, 2, . . . , m}, xi = 0

These respectively correspond to all of Cm
3 and the identity subgroup. Thus we have a

Möbius number of -1.

7.2.3 Applying Crapo’s Complement Theorem

We now apply Crapo’s Complement Theorem to prove Theorem 39.

Proof. Let K be the set of all complements to the socle in S3 ! Sm. Applying Crapo’s

Complement Theorem to the subgroup Cm
3 in S3 ! Sm yields

∑

K∈K

µ(K)µ(K, S2 ! Sm).

Notice that µ(K) = µ(S2 ! Sm) since K ∼= (S3 ! Sm) /Cm
3

∼= S2 ! Sm. By Lemma ??

µ(K, S2 ! Sm) is -1. By Lemma 40 and Lemma 41 there are exactly 3m identical terms in

the sum. Theorem 34 computes the value of µ(S2 ! Sm). Plugging directly into Crapo’s

Complement Theorem proves the result.

7.3 Groups with Socle A2
n

Notice that Sn ! S2 is isomorphic to A2
n ! D8. The groups between A2

n and Sn ! S2 thus

correspond to the subgroups of D8. In order for such a group to be transitive on 2n points

(the kind we’re interested in for computing the Möbius number of S2n), it must contain the

involution from D8 that swaps the two copies of An. Only four subgroups of D8 contain such

an involution. Of those four, one of them is simply A2
n !D8∩A2n. Any subgroup contained in

the alternating group gets thrown out of our computation by the trick presented to eliminate

the alternating group in [12]. Thus there are only three relevant subgroups with above socle.

These three subgroups are the subgroups we handle in the three subsections below.
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7.3.1 The Möbius Number of Sn ! S2

We again apply Crapo’s Complement Theorem to compute the Möbius Number of Sn ! S2

(Corollary 43), though this time in a simpler fashion. We prove a more general result where

we produce a subgroup that has no complement in the subgroup lattice of G !S2 for G ≤ Sm

and G &≤ Am. This yields an empty sum in Crapo’s Complement Theorem, giving the answer

of zero.

Theorem 42 Let G ≤ Sm and G &≤ Am. Then µ (G ! S2) = 0.

Proof. We show that G ! S2 has a subgroup H with no complement in L (G ! S2) and then

apply Crapo’s Complement Theorem.

Let B1 = {1, 2, . . . , m} and B2 = {m + 1, m + 2, . . . , 2m} . Let G1 be the first copy of

G in the wreath product and G2 be the second copy of G in the wreath product, where

G1 permutes B1 and G2 permutes B2. Thus every element of G ! S2 can be written as g1g2g

where g1 ∈ G1, g2 ∈ G2, and g ∈ {(), (1, m + 1) (2, m + 2) · · · (m, 2m)} . That is, 〈g〉 is the S2

being used in the wreath product. Let

H = {g1g2 : g1 ∈ G1, g2 ∈ G2, and sgn (g1) = sgn (g2)} .

We see that H is a subgroup of G ! S2, since if g1g2, h1h2 ∈ H, then sgn (g1) = sgn (g2) and

sgn (h1) = sgn (h2) so sgn (g1h1) = sgn (g1) + sgn (h1) = sgn (g2) + sgn (h2) = sgn (g2h2) .

Alternatively, one can see that H ≤ G ! S2 by noticing that H = (G1 × G2) ∩ A2n. Readers

familiar with subdirect products will notice that H is simply the subdirect product of G with

itself with respect to the epimorphism sgn : G → S2.

Assume K ≤ G ! S2 and K complements H in L (G ! S2) . That is, HK = G ! S2 and

H ∩ K = 〈()〉 . First notice that since K ≤ G ! S2, every element of K is of the form k1k2k,

where k1 ∈ G1, k2 ∈ G2, and k ∈ {(), (1, m + 1) (2, m + 2) · · · (m, 2m)} . We now make the

key claim in the proof:

∃k1k2k ∈ K, sgn (k1) &= sgn (k2) and k &= () (7.1)
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To prove this claim, first assume ∀g1g2g ∈ K, sgn (g1) = sgn (g2) . Then ∀g1g2g ∈

HK, sgn (g1) = sgn (g2) . However, since G1 &≤ Am, ∃r ∈ G1 with r odd. Also, () ∈ G2 and

() is even. Thus r() = r ∈ G ! S2 but sgn (r) &= sgn () . Therefore r &∈ HK, so HK &= G ! S2,

which contradicts K being a complement to H . Thus ∃g1g2g ∈ K, sgn (g1) &= sgn (g2) .

Next assume ∀h1h2h ∈ K, h = (). Then K ≤ G1×G2 so HK ≤ G1×G2, so HK &= G !S2,

which contradicts K being a complement to H . Thus ∃h1h2h ∈ K, h &= ().

Case 1: sgn (h1) &= sgn (h2) . In this case, the element h1h2h satisfies (7.1).

Case 2: g &= (). In this case, the element g1g2g satisfies (7.1).

Case 3: sgn (h1) = sgn (h2) and g = (). In this case, the element g1g2gh1h2h = g1g2h1h2h =

(g1h1) (g2h2) h satisfies (7.1), since sgn (h1) = sgn (h2) and sgn (g1) &= sgn (g2) implies that

sgn (g1h1) &= sgn (g2h2), and h &= ().

Thus in every case, we have that ∃k1k2k ∈ K, sgn (k1) &= sgn (k2) and k &= (). Now

consider U =
〈
(k1k2k)2〉 . Clearly U ≤ K since (k1k2k)2 ∈ K. Notice that k = k−1 and

kk1k ∈ G2 and kk2k ∈ G1, since we are conjugating by k. Thus we compute

(k1k2k)2 = k1k2kk1k2k

= k1k2kk1 (kk) k2k

= k1k2 (kk1k) (kk2k)

= (k1 (kk2k)) (k2 (kk1k)) .

We see that k1 (kk2k) ∈ G1 is odd, since sgn (k1) &= sgn (k2) , and similarly k2 (kk1k) ∈ G2

is odd. Thus sgn (k1 (kk2k)) = sgn (k2 (kk1k)) , so (k1k2k)2 ∈ H.

Thus U ≤ H ∩K. However, since k1 (kk2k) ∈ G1 and k2 (kk1k) ∈ G2 are odd, (k1k2k)2 &=

(). Thus U is a nontrivial subgroup of H ∩ K, which is a contradiction.

Therefore H does not have a complement in L (G ! S2) , so µ (G ! S2) = 0.

Thus as a corollary we have:

Corollary 43 µ(Sn ! S2) = 0 for all n ≥ 1.
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7.3.2 The Möbius Number of An ! S2

Here we compute the Möbius number of An !S2, an important index 4 subgroup of Sn !S2. It

is very surprising that the values are nonzero and do not depend on the Möbius number of

An, but rather it is a simple explicit formula in terms of n. No such simple formula is known

for the Möbius number of An.

We begin by classifying complements to the socle. We find there is a unique conjugacy

class of complements with n!/2 complements.

Lemma 44 There is a unique conjugacy class of complements to An ×An in An !S2 isomor-

phic to S2. There are n!/2 complements in this conjugacy class.

Proof.

Since An×An is normal in An !S2, every complement is isomorphic to the quotient, which

is just S2. We take the obvious permutation representation on 2n points, where elements a1

and a2 generate An on {1, 2, . . . n} and

g = 〈(1, n + 1)(2, n + 2) · · · (n, 2n)〉

so we have

An ! S2 = 〈a1, a2, g〉

.

Clearly 〈g〉 is a complement. Consider another complement K. It must be generated by

some element k with:

k = 〈(1, an+1)(2, an+2) · · · (n, a2n)〉

where

{an+1, an+2, . . . a2n} = {n + 1, n + 2, . . . 2n}
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since k must be of order 2 and swap the blocks. Thus k is conjugate to g by some element

of Sn acting on {n+1, n+2, . . . 2n}. Call this conjugating element c. Thus we have c−1kc = g.

By closure under conjugation, kg must be in An ! S2. Notice

kg = kc−1kc = (kc−1k)c

which is in the base group. Thus c is in An and not just Sn, so any two complements are

conjugate.

Notice the element g is centralized by g itself as well as any element of the form aag for

a ∈ An. Thus we have that the centralizer of g has 2n!/2 elements, and thus this centralizer

has index n!/2 since the group order is 2n!2. Thus there are exactly that many complements.

Next we study the sublattice of An ×An normalized by the S2 described above. We write

An
φ̂
An as a shorthand for the diagonal subdirect product of An with itself, constructed using

φ as the automorphism. We write An
ĝ
An as a shorthand for the diagonal subdirect product

of An with itself, constructed using conjugation by g ∈ Sn as the automorphism.

Lemma 45 Let An
φ̂
An be a diagonal subdirect product contained in An × An. Let S2 be

the complement to the base group in the wreath product described above. Then An
φ̂
An is

normalized by S2 if and only if φ has order 2.

Proof. Note that An
φ̂
An =

{(
g, gφ

)
: g ∈ An

}
. Assume An

φ̂
An is in fact normalized by

S2. Conjugation by the generator of S2 swaps the coordinates of An × An and any of its

subgroups. Thus we have

{(
g, gφ

)
: g ∈ An

}
=

{(
gφ, g

)
: g ∈ An

}

Since φ permutes the elements of An, we can reindex the set on the right, replacing g by

gφ.

{(
g, gφ

)
: g ∈ An

}
=

{(
gφ◦φ, gφ

)
: g ∈ An

}
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which shows we must in fact have φ ◦ φ equal to the identity map.

Additionally, the following combinatorial lemma from [20] will prove useful.

Lemma 46 [20] If the intersection of all maximal elements of a lattice is not the minimum

element of the lattice, the lattice Möbius number is zero.

We are now ready to prove the theorem.

Theorem 47 µ(An ! S2) =

{
6!2/2 if n = 6
(−1)n n!2

4 if n &= 6

Proof.

We apply Crapo’s Complement Theorem to the socle. Lemma 44 classifies the comple-

ments. An easy computation shows µ(S2) = −1. Thus we have

µ(An ! S2) = (−1)
n!

2
µ(S2, An ! S2)

Applying Theorem 37, we can compute µ(S2, An ! S2) by computing the Möbius number

of the sublattice of An ×An normalized by S2. For notational convenience, for any subgroup

H of An × An, write LN(H) to denote the sublattice of H normalized by S2. Rephrasing

above, we have µ(S2, An ! Sn) = µ(LN(An × An)).

To do this, we apply a closure operation to LN(An×An). Let π1 and π2 be the projection

maps onto the first and second factors, respectively. Then our closure operation is H =

π1(H) × π2(H). That is, we map to the direct product of the projections onto each factor.

We apply the closure theorem to this operation. The quotient lattice consists of the

subgroups that were already just direct products. Since these subgroups had to be normalized

by the S2, they must be the same on each factor. Thus we have that the quotient lattice is

isomorphic to the subgroup lattice of An. We also must analyze what gets mapped to the

full group An ×An under this closure operation. Of course An ×An itself does. Besides this,

for a subgroup to get mapped to the top requires that the projections onto each factor are

isomorphic to An, so the group must be a diagonal subdirect product of An with itself.
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We now enumerate based on different cases of diagonal subdirect products of An with

itself, as the automorphism used in building the subdirect product will affect the outcome.

Notice that the automorphism must be of order one or two as explained by Lemma 45.

i) Identity: Here the sublattice consists of diagonal subdirect products of every subgroup

of An. Thus the lattice is isomorphic to the sublattice of An.

ii) Conjugation by a two-cycle: In this case, we again apply a closure operation. The two

points swapped by the two cycle must lie in the same orbit. Thus if we apply the closure

operation that replaces a permutation group by its orbits, we get the partition lattice on

n−1 points as the quotient lattice. This has Möbius number (−1)n−2(n−2)! by the formula

for the Möbius number of the partition lattice (see for example [20, Example 3.10.4] or [12].

Nothing gets mapped toAn ×An under this closure operation except itself. Thus in this case

LN(An
ĝ
An) = (−1)n−2(n − 2)!.

iii) Conjugation by an element of order two that is a product of multiple disjoint two-

cycles: Let g be the element of order two that we are conjugating by. Then in LN(An
ĝ
An),

the intersection of all the maximal elements contains < g >. This is because if we have

some H ∈ LN(An
ĝ
An) that does not contain g, then H is a proper normal subgroup of

< H, g >, which cannot be equal to An since An is simple. Thus this has Möbius number

zero by Lemma 46.

Thus LN(An × An) = n!
2 , which completes the proof.

7.3.3 The Möbius Number of 1
2

[
S2

n

]
2 for Even n

The group 1
2 [S2

n] 2, is an index 2 subgroup of Sn ! S2 defined as follows. Let h1 and h2

generate An on {1, 2, . . . , n} , and let

h3 = (1, n + 1, 2, n + 2) (3, n + 3) (4, n + 4) · · · (n, 2n) .

Then we define 1
2 [S2

n] 2 = 〈h1, h2, h3〉 , an index 2 subgroup of Sn ! S2. Notice that this

group is just a direct product of An with itself, except every time the components are switched

using the element h3, the sign of the permutation of the second component is also switched.
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Theorem 48 If n is even, µ
(

1
2 [S2

n] 2
)

= 0.

Proof. We show that 1
2 [S2

n] 2 satisfies the hypothesis of Lemma 11 for even n.

Let h = (1, n + 1) (2, n + 2) (3, n + 3) (4, n + 4) · · · (n, 2n) . Thus h is even, so h3 is odd

since h3 = (n + 1, n + 2)h. Thus 1
2 [S2

n] 2 &≤ A2n.

We now must show that 1
2 [S2

n] 2 does not contain an odd involution. First notice 1
2 [S2

n] 2 ≤

Sn !S2, since {h1, h2, h3} ⊆ Sn ! S2. Thus every element of 1
2 [S2

n] 2 can be written in the form

g1g2g where g1 permutes {1, 2, . . . , n} , g2 permutes {n + 1, n + 2, . . . , 2n} , and g ∈ {h, ()} .

That is, 〈g〉 is the S2 being used in the wreath product. Define the following sets:

A =

{
g1g2g ∈ 1

2

[
S2

n

]
2 : sgn (g1) = sgn (g2) and g = ()

}

B =

{
g1g2g ∈ 1

2

[
S2

n

]
2 : sgn (g1) &= sgn (g2) and g = h

}

Notice that h3 ∈ B and {(), h1, h2} ⊆ A. For any a ∈ A, ah1 ∈ A, ah2 ∈ A, and ah3 ∈ B.

For any b ∈ B, bh1 ∈ B, bh2 ∈ B, and bh3 ∈ A. Thus 1
2 [S2

n] 2 ⊆ A ∪ B. If g1g2g ∈ A, then

g1g2g = g1g2 so g1g2g is even since sgn (g1) = sgn (g2) . Thus A cannot contain an odd

involution. If g1g2g ∈ B, then g1g2g = g1g2h. Thus

(g1g2h)2 = g1g2hg1g2h

= g1g2 (hg1h) (hg2h)

= g1 (hg2h) g2 (hg1h) .

Since sgn (g1) &= sgn (g2) , we have g1 (hg2h) and g2 (hg1h) are odd elements acting on

{1, 2, . . . , n} and {n + 1, n + 2, . . . , 2n} respectively. Thus (g1g2h)2 &= (), so g1g2h is not an

involution, so B cannot contain an odd involution. Since 1
2 [S2

n] 2 ⊆ A ∪ B and neither A or

B contain an odd involution, 1
2 [S2

n] 2 doesn’t contain an odd involution.

Note that in the proof above, 1
2 [S2

n] 2 is in fact equal to A ∪ B.

Also note that we do not yet have a general description of what happens in this case for

odd n. Such a theorem would be very useful for future Möbius number computations.
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7.4 A Corollary Regarding Complementation in Sub-
group Lattices

Corollary 49 For the following families of groups, every subgroup of those has a comple-

ment.

S2 ! Sm

S3 ! Sm

An ! S2

where m is any odd positive integer and n is any positive integer.

Corollary 49 follows immediately from Theorem 34 and Crapo’s Complement Theorem,

since if there existed a subgroup H ≤ S2 ! Sm without a complement, applying Crapo’s

Complement Theorem would imply µ(S2 ! Sm) = 0. However for m odd, it is not zero.
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Chapter 8

Towards the Möbius Number of S18

As stated above, to compute the Möbius Number of S18, we need only to look at the proper

transitive subgroups via Equation (1) in Section 4.1. Primitive groups (including A18) are

easily handled separately. Among the transitive subgroups of degree 18, we can look at things

case-by-case, broken up according to block size. Any group of block size 2 or 3 has a solvable

radical and can be handled in the same manner as the theorems presented in Sections 7.1

and 7.2. A group with block size 9 has at most an S2 acting on the blocks, which greatly

simplifies the structure of such a group. Thus ad-hoc techniques including the ones used

in Section 7.3 can handle these groups. What remains are the groups with block size 6.

All of these are subgroups of S6 ! S3. A computer computation is underway to compute all

subgroups of this group. Once this terminates, it will be possible to get the Möbius numbers

of the remaining subgroups. At this point we will have the Möbius number of S18, which is

the smallest currently unknown value.
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Chapter 9

Future Work

Though explained in the other sections, here is a short summary of the major goals of the

research, the techniques proposed, and why these look promising.

The ultimate goal would be to compute µ(Sn) for all n. This would fully settle this

problem which Pahlings, Stanley, and Shareshian have worked on. These new techniques

proposed here may yield some infinite families, which would be significant progress. At the

very least, some more small values of n for which µ(Sn) has not been computed will certainly

fall, for example n = 18, 20, 24, 28, 30, . . .. All of this would be new work; since Shareshian’s

infinite families there has been no further progress on this question.

We first use the socle formula as a stepping stone to get Möbius numbers of wreath

products (eventually we need the 2-closed Möbius numbers, but once we have the Möbius

numbers we should be able to obtain the 2-closed Möbius numbers via the Closure Theorem

on the 2-closure operation). This should be feasible since typically a wreath product is

”mostly” socle.

Next, we continue to classify transitive 2-closed wreath products by figuring out what

subgroups of wreath products can be 2-closed as well as showing that a wreath product of

two 2-closed groups is again 2-closed, proving Conjecture 17. This should yield a description

of what transitive 2-closed groups can occur for various degrees. Given how many of the

transitive 2-closed subgroups of S18 fit into this category, it is reasonable that this approach

will describe many or all of the transitive 2-closed subgroups for other degrees as well.

We then continue to compute 2-closed Möbius numbers of the transitive 2-closed groups.
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Many more results like Theorem 18 should be feasible, especially since GAP computations

and current results seem to indicate that the 2-closed Möbius numbers seem to come out

”easier” than Möbius numbers. The family of groups in Theorem 18 are a perfect example;

no formula is known for their Möbius numbers but the 2-closed Möbius numbers just come

out to be zero.

With the above values of 2-closed Möbius numbers, we can compute the 2-closed Möbius

number of the symmetric group of degree n for as many n as possible via the Closure The-

orem on the 1-closure operation being applied to the lattice of 2-closed subgroups. This

will certainly happen for some previously intractable small values and hopefully for infinite

families or even all n.

We then obtain the Möbius numbers of the doubly-transitive groups that arise, and

determine where the doubly-transitive groups occur. Since these are fully classified, knowing

which doubly-transitive groups occur in what degree will not be an issue. Computing the

Möbius numbers should be feasible as well, at least in some cases. For example in degree 18,

PSL(2, 13) and PGL(2, 13) are the only two doubly-transitive groups that are not symmetric

or alternating. Both of these groups are linear groups of dimension two, which have already

had their Möbius numbers computed in [18].

Finally, we use the 2-closed Möbius number of Sn along with the Möbius numbers of the

doubly-transitive groups to compute the Möbius number of Sn via the Closure Theorem on

the 2-closure operation (though µ(An) will come up as well, we can handle An in a manner

similar to Sn or use some ad-hoc arguments to deal with it).

Additionally, future progress is possible without the use of 2-closures. This is the direction

of Section 7. By obtaining the Möbius numbers of large families of imprimitive groups using

the complement theorem, one may get more milage out of simply reducing to transitive

groups instead of doubly-transitive. There are currently some large computations running

that when coupled with the results of Section 7 will soon yield the Möbius number of S18, as

discussed at the end of Section 7.
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de Burnside. Comment. Math. Helv., 59(3):425–438, 1984.

[12] Kenneth M Monks. The Möbius number of the symmetric group of degree 12. Master’s
thesis, Colorado State University, 2008.

[13] H. Pahlings. Character polynomials and the Möbius function. Arch. Math. (Basel),
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