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ABSTRACT

STORING CYCLES IN HOPFIELD-TYPE NEURAL NETWORKS

The storage of pattern sequences is one of the most important tasks in both biological and ar-

tificial intelligence systems. Clarifying the underlying mathematical principles for both the storage

and retrieval of pattern sequences in neural networks is fundamental for understanding the gener-

ation of rhythmic movements in animal nervous systems, as well as for designing electrical circuits

to produce and control rhythmic output. In this dissertation, we investigate algebraic structures

of binary cyclic patterns (or for short cycles) and study relations between these structures and the

topology and dynamics of Hopfield-type networks with and without delay constructed from cyclic

patterns using the pseudoinverse learning rule.

A cycle defined by a binary matrix Σ is called admissible, if a connectivity matrix J satisfying

the cycle’s transition conditions exists. We show that Σ is admissible, if and only if its discrete

Fourier transform contains exactly r = rank(Σ) nonzero columns. Based on the decomposition of

the rows of Σ into disjoint subsets corresponding to loops, where a loop is defined by the set of

all cyclic permutations of a row, cycles are classified as simple cycles, and separable or inseparable

composite cycles. Simple cycles contain rows from one loop only, and the network topology is a

feedforward chain with feedback to one neuron if the loop-vectors in Σ are cyclic permutations of

each other. For special cases this topology simplifies to a ring with only one feedback. Composite

cycles contain rows from at least two disjoint loops, and the neurons corresponding to the loop-

vectors in Σ from the same loop are identified with a cluster. Networks constructed from separable

composite cycles decompose into completely isolated clusters. For inseparable composite cycles at

least two clusters are connected, and the cluster-connectivity is related to the intersections of the

spaces spanned by the loop-vectors of the clusters.

The remainder of this thesis deals with the dynamics of Hopfield-type networks with connec-

tivities constructed from admissible cycles. In this approach, the connectivity is composed of two

contributions, C0J
0 and C1J, where the matrix J0 serves to store cycle’s patterns as fixed points

and the matrix J induces the transitions between the cycle’s patterns. Delayed couplings are
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associated with the transition matrix J. An admissible cycle is called strongly retrievable if for ap-

propriate initial data the network dynamics undergoes a persistent oscillation in accordance with

cycle’s transition conditions. An admissible cycle is called weakly retrievable if for any M there

exists a sufficiently large delay time τ such that at least M consecutive patterns are retrieved.

When the Hamming distance between successive cycle-patterns is greater than one, the sign-

changes in the network dynamics occur asynchronously, leading to the occurrence of intermediate

patterns that are not contained in the cycle-matrix. We call the time-intervals with these interme-

diate patterns misalignment intervals and introduce a novel method to analyze the lengths of these

intervals, which is referred to as Misalignment Length Analysis (MLA). Using this method, inter-

mediate patterns are determined and for a special class of cycles a recurrence relation for successive

misalignment intervals is established. In addition, a class of cycles, related to properties of the

intermediate patterns, is identified which can be proved to be weakly retrievable in the case C0 = 0

and for sufficiently large values of the gain scaling parameter, λ, of the sigmoid coupling function.

More generally, we also prove that for a given J constructed from a preselected cycle in that class,

all other cycles satisfying the transition conditions associated with J are weakly retrievable as well.

These results provide an analytic explanation for the long-lasting transient oscillations observed

recently in simulations of cooperative Hopfield-type networks with delays.

For general values of C0, C1, λ, we perform a linear stability analysis and give a complete de-

scription of all possible bifurcations of the trivial solution for networks constructed from admissible

cycles. Numerically we illustrate that, depending on the structural features of a cycle, admissible

cycles are stored and retrieved either as attracting limit cycles or as long-lasting transient oscil-

lations. Moreover, if the cycle is revealed as attracting limit cycle, this limit cycle is created in

a Hopf bifurcation from the trivial solution, and the transition from fixed point attractors to the

attracting limit cycle is established through multiple saddle-nodes on limit cycle bifurcations.

Lastly, simulations showing successfully retrieved cycles in continuous-time Hopfield-type net-

works and in networks of spiking neurons exhibiting up-down states are presented, which strongly

suggests that the results of the study presented in this dissertation can be extended to more com-

plicated networks.
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CHAPTER 1

INTRODUCTION: NEURAL NETWORKS AND CYCLIC

PATTERNS

Storage of pattern sequences is one of the most important tasks in both biological and artificial

intelligence systems. A sequence of symbols containing repetitions of the same subsequence is

said to be complex [1–3], and cyclic patterns (or cycles of patterns) form one important class of

sequences. In animal nervous systems, cyclic patterns of neuronal activity are ubiquitous, and have

been suggested to be important in visual processing [4], olfaction [5] and memory formation [6],

and partially responsible for generating and controlling rhythmic movements such as locomotion,

respiration, swallowing and so on [7–13]. In electronic engineering, analog circuits made with

operational amplifiers mimicing neural networks such as cooperative cellular neural network (CNN)

rings etc have been extensively used to study the origination and underlying mechanisms of both

cyclic patterns [14] and long-lasting transient oscillations [15, 16]. In this chapter, to provide the

necessary background and preliminaries for our research on the mathematical principles for both

storage and retrieval of cyclic patterns in neural networks, we briefly review relevant recent results

on cyclic patterns from neurophysiology, electronic engineering and mathematics, and introduce

both the Hopfield-type neural networks and the pseudoinverse learning rule.

1.1 Cyclic Patterns, Delay-Induced Oscillations and Bifurcations

1.1.1 Rhythmic Movements and CPG Networks

Cyclic patterns of neuronal activity are ubiquitous in animal nervous system, and important in

different functional tasks from sensory processing, movement production and control to memory

formation. Neural networks that can produce cyclic patterned outputs without rhythmic sensory

or central input are called central pattern generators (CPGs) [9]. Since the first modern exper-

imental evidence of the CPGs networks was demonstrated in the nervous system for controlling

flight of locust in 1961 [17], the CPGs networks in different animal species have been extensively
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Figure 1.1: Reconstructing snail respiratory CPGs network. Left: Schematic diagram of snail
(Mollusk Lymnaea) respiratory CPGs network (in vivo). Right: Photomicrograph of the recon-
structed snail respiratory CPGs network (in vitro). (Redrawn from [18])

investigated both in experiments and theory. While in some lower level invertebrate animals de-

tailed connectivity diagrams among identified CPGs neurons have been experimentally determined

(Figure 1.1) [18–20], the anatomic structure of CPGs networks in most higher vertebrate animals

including human beings remain largely unknown [10,11,21].

According to Yuste [12], the network connectivity problem, i.e. experimentally identifying

the connectivity diagram of biological neural networks, is one of the four basic problems that

have to be solved to fully understand a biological neural network. However, recent experimental

observations [22, 23] suggested that CPGs may be highly flexible, some of them may even be

temporarily formed only before the production of motor activity [8]. This makes experimentally

identifying the architecture of CPGs very difficult. As indirect approaches to solve the network

connectivity problem, observable movement features such as symmetry etc. have been used to

infer aspects of CPGs structures [24,25]. In this dissertation, we directly start from the concept of

admissible cycles (cycles that can be stored in a network with the pseudoinverse learning rule), and

systematically study the structural features of these cycles and how they determine the topology [26]

and the dynamics [27,28] of networks constructed from them.

‘
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1.1.2 Delay-Induced Long-lasting Transient Oscillations

As one of the most popular models of artificial neural networks for content addressable mem-

ory, in the past few decades, Hopfield neural network have been widely used in not only associative

memory but also pattern recognition, optimization and many other applications [29–36]. Due to

its broad applications, ring networks, which are rings of unidirectionally or bidirectionally coupled

neurons, have attracted much attention recently [37–42]. In terms of the number of inhibitory con-

nections, unidirectional ring networks can be divided into even and odd networks in accordance to

the parity of the number of inhibitory connections [43]. It has been well known that odd networks

are capable of generating sustained oscillations, and both numerical and analog circuit simulations

showed that although the theoretical results suggested eventual convergence of any solution trajec-

tory in even networks [37,41,44], long lasting oscillations can be very easily observed [15,37]. Figure

1.2 illustrates the analog circuit implementation of an excitatory (even) unidirectional ring network

model (upper panel), and a representative experimental recording of the long-lasting transient

oscillations (lower panel).

Figure 1.2: Analog circuit made with operational amplifiers implementation of an excitatory ring
network (upper panel) and a representative experimental recording of the long-lasting transient
oscillations from the analog circuit simulations (lower panel). (Redrawn from [42])

It has been shown that the long lasting transient oscillations can not be explained by the analysis

of the asymptotic behavior of the network [37]. More recently, Horikawa and Kitajima [42] studied

the waves of transient oscillations traveling along unidirectionally coupled excitatory ring networks.

They called the consecutive neurons in a ring network with the neuronal states having the same
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sign at the same time instant blocks, and the next block in the direction of boundary propagation

forward block. They found that the propagation velocities of the boundaries depend on the length

of the blocks (the number of neurons in the blocks). The boundary with shorter forward block

propagates faster than that with longer forward block, and the discrepancy in propagating velocities

leads to collisions between the boundaries of the shortest blocks, and at each collision between two

boundaries, the corresponding block disappears and the adjacent blocks merge into one block.

Based on this observation, they proposed a kinematical model to account for the traveling waves

of the long-lasting transient oscillations in ring networks with excitatory unidirectional couplings.

Recently, the so called long-lasting transition oscillations were reported in other types of ring

networks, such as excitatory ring networks with bidirectional couplings [16] etc.

We call the asynchronous sign-changes corresponding to the boundaries between block describe

by Horikawa and Kitajima [42] in time domain misalignments, and refer to the smallest interval

containing all misalignments occuring during the network state transition from one binary pattern

to the next as misalignment interval. In this dissertation, we propose a novel method for studying

transient oscillations in a broader class of networks by analyzing dynamics of misalignments and

lengths of misalignment intervals, and refer to the method as Misalignment Length Analysis (MLA).

The method consists of two parts, one is qualitative, and the other is quantitative. The qualitative

method provides a complete qualitative description of the evolution of the network dynamics. For

a special type of networks, the quantitative method provides a recurrence equation in misalignment

intervals for each one of them, such that the number of binary patterns the network can successfully

retrieve can be accurately computed.

1.1.3 Delay-induced Bifurcations in Hopfield-type Neural Networks

Hopfield-type neural networks with delayed couplings are asymmetric generalizations of the

symmetric, continuous-time networks introduced by Hopfield [30]. Not only because of its broad

applications, but also due to its analytically tractable nature, the dynamics of Hopfield-type net-

works with discrete/distributed transmission delay(s) has recently attracted considerable research

interest from the dynamical systems theory community (see for example [37–42,45–47] etc.). Camp-

bell and collaborators [39, 40, 48] studied the stability and bifurcations of both the trivial solution
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and the nontrivial synchronous and asynchronous periodic solutions bifurcating from the trivial

solution in ring networks of bidirectionally coupled neurons. Cheng et al [46, 47] studied general

continuous-time Hopfield-type neural networks of n neurons with different activation functions with

and without delay. Inspired by some geometric consideration, they formulated the parameter con-

ditions for the existence of the 2n multiple stable stationary solutions, and estimated the basins of

attraction of the coexisting multiple stable stationary solutions.

In this dissertation, using a geometric analysis, we show that the transition from fixed points

to the attracting limit cycle bifurcating from the trivial solution occurs through multiple saddle-

nodes on limit cycle bifurcations. Also, using both the Matlab packages MatCont 3.1 and DDE-

BIFTOOL 2.03, we demonstrate that the cyclic patterns prescribed in the corresponding networks

are stored and retrieved as different mathematical objects. Depending on their structural features,

cyclic patterns are respectively stored and retrieved either as attracting limit cycles, or as unstable

periodic solutions bifurcating from the trivial solution, or as long lasting transient oscillations.

1.2 Hopfield-type Neural Networks and Pseudoinverse Learning
Rule

Applications of artificial neural networks in studying CPGs networks attracted much interest

and efforts [14, 25, 49–55] ever since the first modern evidence of the existence of the CPGs was

discovered in 1961 [17]. The dynamics of CPGs networks is determined by phenomena on the

intracellular, synaptic, and network levels. As Hopfield-type neural networks neglect specific dy-

namics of single neurons, and are analytically tractable, in comparison to other network models,

Hopfield-type networks are better suitable for studying the role of network structures in generat-

ing rhythmic activities. However, most Hopfield-type networks used for studying the generation

of cyclic patterns are discrete-time networks [51–53, 56], and in both real biological neural sys-

tems and realistic electronic circuits mimicing neural networks, no “neuron” acts like those in

discrete-time networks. Moreover, the dynamics of continuous-time Hopfield-type neural networks

with delayed couplings has recently motivated and elicited much progress in dynamical system

theory [38–40,45–48,57–60]. Therefore, clarifying the underlying mathematical principles for both

storage and retrieval of cyclic patterns in continuous-time Hopfield-type neural networks is not only
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fundamental for understanding the generation of the rhythmic movements in animal nervous sys-

tems and better designing analog electronic circuits to produce and control rhythmic output, but

also helpful in advancing the study of nonlinear dynamics of functional differential equations, which

is in the current interest of research in applied mathematics, and many aspects of the theory are still

under development [60–62]. In this section, we introduce both the continuous-time Hopfield-type

neural networks and the pseudoinverse learning rule, which was recently shown to be biologically

plausible [63]. In this dissertation, we mainly focus on the continuous-time Hopfield-type neural

networks constructed from admissible cycles with the pseudoinverse learning rule.

A continuous-time Hopfield-type network [30] is described by a system of ordinary differential

equations for ui(t), 1 ≤ i ≤ N , which model the membrane potential of the i-th neuron in the

network at time t. Assuming that all neurons are identical, normalizing the neuron amplifier input

capacitance and resistance to unity and neglecting external inputs, the governing equations are,

dui
dt

= −ui +
N∑
j=1

J̃ijvj , 1 ≤ i ≤ N, (1.1)

where vj(t) is the firing rate of the j-th neuron and J̃ = (J̃ij)N×N is the connectivity matrix. The

firing rate vj is related to the membrane potential uj through a sigmoid-shaped gain function,

vj = g(uj), which we choose, following [30], as g(uj) = tanh(λuj), where λ controls the steepness.

Using vector notation, u = (u1, . . . , uN )T , v = (v1, . . . , vN )T , (1.1) can be more compactly written

as (dots denote time derivatives)

u̇ = −u + J̃ tanh(λu), (1.2)

where here and subsequently a scalar function applied to a vector or matrix denotes the vector or

matrix obtained by applying the function to each component, i.e.

tanh(λu) = (tanh(λu1), tanh(λu2), . . . , tanh(λuN ))T .

Alternatively, since uj = arctanh(vj)/λ, (1.2) can be rewritten as a system of differential equations

for the firing rates,

v̇ = λ(I− diag(v2))(J̃v − arctanh(v)

λ
), (1.3)

where I is the N ×N identity matrix.
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Figure 1.3: Interpretation of the binary states “+1” and “−1” traversed by a single neuron in
Hopfield-type networks as the “up” and “down” states observed in typical CPGs and cortical
neurons. Left: Membrane potential distribution of the spontaneous activity for a striatal medium
spiny (MS) neuron whose membrane potential is shown on the right. Right: A representative
trace of the membrane potential of a striatal MS neuron showing the spontaneous up and down
states. The dashed line indicates a voltage at −72mV, and the line segment at the bottom right
corner indicates a time lapse of 1 second. (Redrawn from [64])

In order to avoid the unrealistic nature of the two-state McCulloch-Pitts threshold devices [65],

Hopfield extended his original discrete neural network model [29] into a continuous-time form [30].

It is necessary to emphasize that this is actually another reason why we choose Hopfield-type neural

networks. In neurophysiology it is well known that both CPG neurons and cortical neurons show

bistable membrane behaviors, which are commonly referred to as plateau potentials [21, 66, 67] or

up-down states [68, 69]. Accordingly, a sequence of the binary states +1 and −1 traversed by a

single neuron in a Hopfield-type network can be interpreted as a sequence of up and down states,

respectively (Figure 1.3). In this dissertation, we study the structure of binary pattern cycles that

can be stored in networks of the above form (1.2). Following [29, 30], any N -dimensional {−1, 1}-

valued column vector is identified with a binary vector or pattern, and we use + and − to denote

1 and −1.

Personnaz et al. [1, 56] studied the storage of sequences of patterns in discrete-time Hopfield-

type networks. A sequence of p patterns ξ(µ) = (ξ
(µ)
1 , ξ

(µ)
2 , . . . , ξ

(µ)
N )T , 1 ≤ µ ≤ p, ξ

(µ)
i = + or −,

is defined by p transition conditions ξ(µ) → f (µ), where f (µ) is one of the given vectors, i.e.,

f (µ) ∈ {ξ(1), . . . , ξ(p)} for each µ. Thus a sequence is characterized by two N × p-matrices Σ =

(ξ(1), . . . , ξ(p)) and F = (f (1), . . . , f (p)). The two matrices are related to each other by the transition

conditions, which can be conveniently formulated in terms of a p× p transition matrix as F = ΣP,
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where Pνµ = 1 if f (µ) = ξ(ν) and 0 otherwise. For example, for p = 3 and the simplest case of

a sequence starting at ξ(1) and terminating at ξ(3), ξ(1) → ξ(2), ξ(2) → ξ(3), ξ(3) → ξ(3), we have

F = (ξ(2), ξ(3), ξ(3)) and P is singular, but the general definition in terms of Σ and F allows to

consider more complex as well as multiple sequences. Personnaz et al [56] showed that the storage

of such a sequence leads to the matrix equation,

JΣ = F, (1.4)

for the connectivity matrix J of the discrete network. It was pointed out in [56], that, if FΣ+Σ = F ,

where Σ+ is the Moore-Penrose pseudoinverse of Σ, then (1.4) has the exact solution J = FΣ+,

which was called associating learning rule by these authors.

A cycle of p patterns is a sequence with F = (ξ(2), ξ(3), . . . , ξ(p), ξ(1)), i.e., ξ(µ) → ξ(µ+1) for

µ < p and ξ(p) → ξ(1), and the corresponding transition matrix is

P =



0 0 0 · · · 0 1

1 0 0 · · · 0 0

0 1 0 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 0 0

0 0 0 · · · 1 0


. (1.5)

We are interested in the storage of cycles in the continuous-time Hopfield networks defined by (1.2).

Our approach to compute a connectivity matrix J̃ for this purpose follows [14]. In this dissertation,

the connectivity matrix J̃ is decomposed as

J̃ = βK(C0J
0 + C1J), (1.6)

where J0 serves to stabilize the network in its current memory state and J imposes the transi-

tions between the memory states. Here, C1 = 1 − C0 and C0, 0 ≤ C0 ≤ 1, control the relative

contributions of the two components of J̃. The fixed point condition is realized by requiring that

v = β1ξ
(µ), with a parameter 0 < β1 < 1, is a fixed point if C0 = 1. Noting that arctanh(x) is an

odd function and |ξ(µ)
i | = 1, this leads, according to (1.3), to the condition

J̃β1ξ
(µ) =

1

λ
arctanh(β1ξ

(µ)) =
1

λ
arctanh(β1)ξ(µ),

8



Figure 1.4: A successfully retrieved cycle Σ (see text for details) in a network of three neurons. A
shows the firing rates vi(t) of the three neurons and the raster plot B shows the overlaps m(ν)(t),
which measure the similarity of the network state v(t) with each of the six patterns in the cycle
(see text). C illustrates the retrieval of the cycle in the phase space of the system.

for every µ, hence J̃Σ = βKΣ with βK =
1

λβ1
arctanh(β1), which has the solution J̃ = βKJ0 with

J0 = ΣΣ+. (1.7)

Regarding the transition conditions, we stipulate that v(t) = β1ξ
(µ) implies v(t + τ) = β1f

(µ) for

some τ , and require accordingly for C0 = 0 that J̃Σ = βKF . This leads to equation (1.4), which in

terms of the transition matrix P, equation (1.5), becomes

JΣ = ΣP. (1.8)

According to the associating learning rule of [56], (1.8) has the solution

J = ΣPΣ+, (1.9)

provided that ΣPΣ+Σ = ΣP. If this condition is not satisfied, (1.8) has no solution.

The main objective of the first part of this dissertation is the study of the existence and prop-

erties of the solutions of (1.8) along with the structural features of the corresponding cycles, and

the network topologies resulting from J0 and J defined by (1.7) and (1.9). Although this part of

research does not depend on whether there is a time delay in network couplings or not, we consider

the extension of (1.2) to a dynamical system with a delay,

u̇ = −u + C0βKJ0 tanh(λu) + C1βKJ tanh(λuτ ), (1.10)
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with a delay-time τ > 0 and uτ (t) = u(t − τ), and consider the network (1.2) without delay

as a special case. As the simulations presented in this dissertation will be all in networks with

delayed couplings, we show here one example of a successfully retrieved cycle in (1.2), a network

of N = 3 neurons. The cycle consists of six states, Σ = (ξ(1), . . . , ξ(6)), with ξ(1) = (+,+,+)T ,

ξ(2) = (+,+,−)T , ξ(3) = (+,−,−)T and ξ(3+µ) = −ξ(µ) for µ = 1, 2, 3. The retrieval of the cycle is

illustrated in Figure 1.4. The raster plot B in this figure shows the overlaps, defined in general as

m(ν)(t) =
1

N

N∑
i=1

vi(t)ξ
(ν)
i , 1 ≤ ν ≤ p, (1.11)

of the actual network state v(t) with the patterns of the cycle. The overlap m(ν)(t) is a normalized

measure of the similarity of v(t) with ξ(ν). Maximal similarity with ξ(ν) and −ξ(ν) occurs for m(ν)

close to 1 and −1, respectively. The raster plot of the overlaps in Figure 1.4B as well as the time

series in Figure 1.4A clearly illustrate that the cycle is retrieved successfully. The parameters C0

and β used in this simulation were C0 = 0.6 and β = 4.
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CHAPTER 2

ADMISSIBILITY AND NETWORK TOPOLOGY

2.1 Admissible Cycles and Cyclic Permutation Groups

Definition 2.1.1. Let P be the cyclic p× p-permutation matrix defined in (1.5). A cycle defined

by a binary N × p-matrix Σ = (ξ(1), ξ(2), . . . , ξ(p)) is said to be admissible, if there is a real N ×N

matrix J such that equation (1.8) is satisfied.

Note that if Σ is admissible, the solution to (1.8) may be not unique. If there are several

solutions, we select (1.9) as distinguished solution because of its close relationship to J0, see Remark

2.1.1(b) below.

Gencic et al [14] considered a special type of cycles defined by p binary vectors Σ′ =

(ξ(1), ξ(2), . . . , ξ(p)), which satisfy the transition condition ξ(1) → ξ(2) → · · · ξ(p) → −ξ(1) → −ξ(2) →

· · · − ξ(p) → ξ(1). In this dissertation we consider these cycles as special cases of cycles of period 2p

with Σ = (Σ′,−Σ′).

For storing sequences, Personnaz et al [56] pointed out that, if the associating learning rule

FΣ+Σ = F is satisfied, the rows of F are linear combinations of the rows of Σ. This follows from

the fact that Σ+Σ is the orthogonal projection matrix onto the subspace of Rp spanned by the rows

of Σ. For storing single cycles, their conclusion can be reformulated geometrically as follows:

Proposition 2.1.1. A cycle Σ of size N × p is admissible, if and only if its row space is invariant

under P, i.e.

span{R(Σ)} = span{R(ΣP)}, (2.1)

where R(Σ) denotes the set of all row vectors of Σ.

Note that |R(Σ)| ≤ N , and if |R(Σ)| < N then two or more different rows of Σ are identical,

that is, the corresponding neurons traverse the same cycle. Although this is a kind of redundancy,

we do not exclude this possibility in our general discussion.
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We next formulate a useful alternative admissibility criterion involving the eigenspaces of P.

Since P is a circulant matrix, P has the orthogonal eigenvectors v(k) = (1, ρk, ρ2k, . . . , ρ(p−1)k)T

for 0 ≤ k < p, where ρ = e2πi/p (i =
√
−1) is the basic primitive p-th root of unity [70], and

in this special case the eigenvalues are ρ̄k. We set V = (v(0), v(1), . . . , v(p−1)), λj = ρ̄j−1 (1 ≤

j ≤ p), Λ = diag(λ1, . . . , λp) and note that P = V ΛV −1 with V −1 = V ∗/p, where here and

subsequently complex conjugation is marked by an overbar and an asterisk denotes the adjoint

(complex conjugate transpose) matrix or vector.

Since the transition matrix P leaves its eigenspaces invariant, it follows that if the row space of

Σ coincides with the direct sum of its projections onto the eigenspaces of P, then Σ is admissible.

Based on this consideration, we obtain the following admissibility criterion.

Theorem 2.1.2. Let Σ be a cycle whose matrix form is of size N × p, and let Σ̂ = ΣV . Then Σ

is admissible, if and only if Σ̂ has precisely r nonzero columns, where r = rank(Σ) = rank(Σ̂).

Proof: Noting that JΣ = ΣP = ΣV ΛV −1 implies JΣ̂ = Σ̂Λ, it follows that Σ is admissible if

and only if there exists an N ×N -matrix J such that

JΣ̂ = Σ̂Λ, (2.2)

which implies

Jcolj(Σ̂) = λjcolj(Σ̂), 1 ≤ j ≤ p, (2.3)

where colj(Σ̂) denotes the j-th column of Σ̂.

Suppose now that Σ is admissible and rank(Σ) = r. Since the columns of V consist of eigen-

vectors associated to distinct eigenvalues of P, it follows that Σ̂ = ΣV has r linearly independent

columns. Assume colµ1(Σ̂), . . . , colµr(Σ̂) are linearly independent. Then (2.3) implies that λµ1 ,

. . . , λµr are eigenvalues of J and colµ1(Σ̂), . . . , colµr(Σ̂) are the corresponding eigenvectors. If Σ̂

has an additional nonzero column, colj(Σ̂), with j /∈ {µ1, . . . , µr}, then by (2.3) this column is an

eigenvector of J corresponding to the eigenvalue λj and λj 6= λµi for 1 ≤ i ≤ r. On the other

hand, colj(Σ̂) is a linear combination of colµ1(Σ̂), . . . , colµr(Σ̂) which is impossible, since eigen-

vectors corresponding to different eigenvalues are linearly independent. Thus all columns except

colµ1(Σ̂), . . . , colµr(Σ̂) must be zero.
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Conversely, assume Σ̂ has r nonzero columns colµ1(Σ̂), . . . , colµr(Σ̂) and all other columns of Σ̂

are zero. Since rank(Σ̂) = r, these columns are linearly independent. Let Q be a p×p permutation

matrix that maps the column j to the column µj for 1 ≤ j ≤ r. Then

Σ̂ = [0, . . . , 0, colµ1(Σ̂), 0, . . . , 0, colµr(Σ̂), 0, . . . , 0]

= [colµ1(Σ̂), . . . , colµr(Σ̂), 0, . . . , 0]Q.

Let Σ̂0 = [colµ1(Σ̂), . . . , colµr(Σ̂)] and Σ̂∗0 be the adjoint (complex conjugate transpose) matrix of

Σ̂0 and define

J = Σ̂ΛQT

 (Σ̂∗0Σ̂0)−1Σ̂∗0

O(p−r)×N

 .
Then

JΣ̂ = Σ̂ΛQT

 (Σ̂∗0Σ̂0)−1Σ̂∗0

O(p−r)×N

 [Σ̂0, ON×(p−r)]Q

= Σ̂ΛQT

 Ir×r Or×(p−r)

O(p−r)×r O(p−r)×(p−r)

Q
= Σ̂Λdiag(s1, . . . , sp)

= Σ̂Λ.

where Ir×r is the identity matrix of size r × r, Om×n is zero matrix of size m× n, and

sj =


1, ifj ∈ {µ1, . . . , µr}

0, ifj /∈ {µ1, . . . , µr}
.

Remark 2.1.1. A group theoretical interpretation of admissible cycles Σ and the associated matrices

J0 and J can be given as follows:

(a) We denote by Zp the cyclic group of order p defined by addition of integers modulo p. Viewed as

permutation group, the generator of Zp, addition by 1 mod p, corresponds to the cyclic permutation

{0, 1, . . . , p − 1} → {1, 2, . . . , p − 1, 0}, and the matrix P is an orthogonal representation of this

generator in Rp or Cp that cyclically permutes row vectors to the left. Accordingly, the matrices

Pk, 0 ≤ k < p, form a p-dimensional representation of Zp with Pp = I, the p× p identity matrix.
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(b) The admissibility condition span{R(Σ)} = span{R(ΣP)} means that the rows of Σ span a

subspace of Rp or Cp that is invariant under P, and hence under the full representation of Zp, that

is,

span{R(Σ)} = span{R(ΣPk)}, 0 ≤ k < p.

Moreover, with J = ΣPΣ+ and ΣPΣ+Σ = ΣP, we find that J2 = ΣP2Σ+ and inductively

Jk = ΣPkΣ+, 0 ≤ k < p, (2.4)

which shows that Jp = ΣΣ+ = J0 and JkΣ = ΣPk for 0 ≤ k < p. This means that J restricted

to the column space span{C(Σ)}, where C(Σ) denotes the set of column vectors of Σ, generates a

representation of Zp in this subspace of RN . We also note that J0 is the orthogonal projection onto

span{C(Σ)}, and

J0Jk = JkJ0 = Jk, (2.5)

for all 0 ≤ k < p, which is a straightforward consequence of the basic properties ΣΣ+Σ = Σ and

Σ+ΣΣ+ = Σ+ of the pseudoinverse and (2.4). Clearly, the ranks of J, J0 and Σ coincide and are

equal to the dimensions of the vector spaces span{C(Σ)} and span{R(Σ)} in which Zp acts with

matrix generators J and P, respectively.

(c) The group Zp has exactly p irreducible complex representations which are all one-dimensional

and are generated by multiplication of a complex number by ρ̄k, 0 ≤ k < p [71]. When restricted

to real spaces and ρk /∈ R, the multiplications by ρ̄k and ρk = ρ̄p−k can be combined to form a

two-dimensional real irreducible representation space, in which the generator of Zp acts by rotation

of vectors by the angle 2πk/p. For the representation of Zp in the full space of p-dimensional row

vectors generated by P, the rows in V ∗ are (complex) basis vectors for these irreducible subspaces,

and those basis vectors with eigenvalues ρ̄k for which Σ̂ has a nonzero column span the irreducible

subspaces in span{R(Σ)}. (Real bases in case of ρ̄k /∈ R are obtained by taking real and imaginary

parts of these vectors, but we prefer to use the complex basis vectors.) Likewise, the non-zero

columns of Σ̂ form complex bases of the irreducible subspaces of the Zp-representation generated

by J in span{C(Σ)}. We note that, given a row-vector x ∈ Cp, xV is the discrete Fourier transform

of x, and the components of xV are the expansion coefficients of x represented by the basis vectors

in V ∗/p.
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Closely related to the group Zp are the p-th roots of unity, which in turn are intimately related

to the cyclotomic polynomials. In sections 2.1 to 2.3 we will make some use of these polynomials

and therefore summarize their basic properties in the appendix.

(d) Given a row-vector x ∈ Rp, the orbit of x under P is defined as the the set {x, xP, . . . , xPp−1}.

For generic x ∈ Rp, this set is a basis of Rp, however the set of binary row vectors, x = η, is finite

and the orbit of η, which we call a loop, may span only a proper subspace of Rp. In the next section

we classify (admissible) cycles according to the decomposition of R(Σ) into sets of rows belonging

to different loops. To pursue this, we will introduce a concept of irreducibility that differs from the

standard group-theoretical version above.

2.2 Classification of Cycles

2.2.1 Simple Cycles

Definition 2.2.1. Let η = (η1, η2, . . . , ηp) be a p-dimensional binary row vector. The set

{ην : ην = ηPν , ν = 0, 1, 2, . . . , p− 1},

is called a loop and is denoted by Lη.

Remark 2.2.1. For any loop Lη, |Lη| ≤ p. More precisely, |Lη| = m, where m is a factor of p. In

particular, if η = (+,+, . . . ,+), then |Lη| = 1, as ηP = η.

Definition 2.2.2. A cycle Σ is called simple, if its row vectors are from a loop generated by some

row vector η, i.e.,

R(Σ) ⊆ Lη. (2.6)

A cycle Σ is composite, if it is not simple.

Definition 2.2.3. Let Σ be a cycle. The set GΣ = {η1, η2, . . . , ηq} is said to be a generator of Σ,

if

Lηi ∩ Lηj = ∅, ∀i 6= j, (2.7)

and

GΣ = {η1, η2, . . . , ηq} ⊆ R(Σ) ⊆
q⋃
i=1

Lηi . (2.8)
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Note that any vector in Lηi ∩ R(Σ) can be chosen as generator instead of ηi in GΣ, that is,

the generators are unique up to cyclic permutations and the condition to be vectors in R(Σ). In

particular, for simple cycles there is only one generator, |GΣ| = 1, and every row in R(Σ) can be

chosen for this generator. A simple criterion for admissibility is the following.

Proposition 2.2.1. A cycle Σ is admissible if Lη ⊂ span{R(Σ) ∩ Lη} for every η ∈ GΣ.

Proof: This follows immediately from the fact that, under the given hypothesis, every row in

R(ΣP) can be represented as linear combination of a subset of rows in R(Σ).

Definition 2.2.4. Let η be any row vector. The rank of η is defined as the dimension of the vector

space spanned by the row vectors in the loop generated by η, i.e.,

rank(η) = dim span{Lη}. (2.9)

Theorem 2.2.2. Let Σ be a simple cycle generated by η, i.e., η ∈ R(Σ) ⊆ Lη. Then Σ is admissible,

if and only if

rank(Σ) = rank(η). (2.10)

Proof: Suppose rank(Σ) = rank(η). Then span{R(Σ)} = span{Lη} as R(Σ) ⊆ Lη. Since P

is nonsingular and LηP = Lη, it follows that span{R(ΣP)} = span{Lη}, hence Σ is admissible.

Conversely, suppose that Σ is admissible, i.e. span{R(Σ)} = span{R(ΣPm)} for all m ∈ N.

Assume rank(Σ) < rank(η). Then there exists η̂ ∈ Lη with η̂ /∈ span{R(Σ)}. Let η̂ = ηPµ for some

0 < µ < p. Since η ∈ R(Σ), it follows that

η̂ ∈ R(ΣPµ) ⊂ span{R(ΣPµ)} = span{R(Σ)},

which contradicts η̂ /∈ span{R(Σ)}.

Remark 2.2.2. In general, although P preserves the rank of any cycle Σ, the vector space spanned

by the row vectors of Σ may not be invariant under P. For simple cycles, the condition (2.10) guar-

antees that the vector space spanned by the rows of Σ is invariant under P, and hence guarantees

the admissibility of Σ. The condition (2.10) will be referred to as admissibility condition for simple

cycles.
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2.2.2 Separable Composite Cycles

In order to generalize the class of simple admissible cycles to the class of separable composite

cycles, we first introduce the concept of decomposability of the row space of a cycle into irreducible

subspaces.

Definition 2.2.5. Let Σ be an admissible cycle of period p, and let U = span{R(Σ)}. Note that

admissibility implies UP = U , i.e. U is invariant under P. Let V ⊆ U be a subspace of U and

assume VP = V and R(Σ) ∩ V 6= ∅. Then

(a) The subspace V is called reducible if there exists a proper subspaceW of V such thatWP =W

and R(Σ) ∩W 6= ∅.

(b) The subspace V is said to be decomposable, if V has the direct sum decomposition

V = V1 ⊕ V2 ⊕ · · · ⊕ Vn, (2.11)

where n ≥ 2, Vi is invariant under P and Vi ∩ R(Σ) 6= ∅ for every 1 ≤ i ≤ n. The subspace V is

said to be indecomposable, if it is not decomposable. If Vi in (2.11) is indecomposable for every i,

then (2.11) is called a complete decomposition of V.

(c) The vector space U is called semisimple, if U is the direct sum of irreducible subspaces in the

sense of (a). Note that semisimplicity of U includes the case where U is irreducible, in which case

we call U simple.

Remark 2.2.3. We emphasize that, because our purpose is to study the structure of the invari-

ant subspaces spanned by the row vectors of Σ, the concepts of reducibility and decomposabil-

ity introduced in Definition 2.2.5 are slightly different from the standard definitions used in the

representation theory of finite groups (we require that each subspace contains a row vector of

Σ). An irreducible/indecomposable invariant subspace in the sense of Definition 2.2.5 may be re-

ducible/decomposable in terms of the standard definitions of representation theory applied to the

cyclic group Zp generated by P.

It is clear that if Σ is simple and admissible, then U is simple and consequently indecomposable,

as η ∈ Ui implies that ηPk ∈ Ui for every k ∈ N. However, the converse is not necessarily true. In

the next example, we show that the vector space spanned by the row vectors of a composite cycle

may be reducible but not decomposable.

17



Example 2.2.1. Consider

Σ =



+ + + − − −

+ + − − − +

+ − − − + +

+ − + − + −


,

and let ηj = rowj(Σ). Clearly, Σ is a composite cycle, as it is generated by {η1, η4}. Let U =

span{R(Σ)}, U1 = span{Lη1} and U2 = span{Lη4}. Since η4 = η1 − η2 + η3, i.e. η4 ∈ U1, we

have that U2 ⊂ U1 = U . Moreover, R(ΣP) = {η2, η3,−η1,−η4} implies UP = U , hence Σ is

admissible. Since both U1 and U2 are invariant under P it follows that U is reducible, however, U

is not decomposable.

Proposition 2.2.3. Let Σ be an admissible cycle with generator GΣ = {η1, . . . , ηq}. Assume

U = span{R(Σ)} is semisimple and let U = U1 ⊕ U2 ⊕ · · · ⊕ Un be a decomposition of U into

irreducible subspaces. Then n ≤ q and there exists a subset {i1, . . . , in} ⊆ {1, . . . , q} such that

Uj = span{Lηij } for 1 ≤ j ≤ n. Moreover, if span{Lηi} 6= span{Lηj} for every i, j ∈ {1, . . . , q}

with i 6= j, then n = q.

Proof: Let η ∈ GΣ and let V ∈ {Uj |1 ≤ j ≤ n} be the subspace in the decomposition of

U that contains η. Invariance of V implies ηP ∈ V, hence ηP2 ∈ V and by induction Lη ⊂ V,

thus span{Lη} ⊂ V. Since span{Lη} is invariant, span{Lη} ∩ R(Σ) 6= ∅ and V is irreducible, it

follows that V = span{Lη}, and there exists no η′ ∈ GΣ, η′ 6= η, such that span{Lη′} is a proper

subspace of span{Lη} and vice versa. Thus, for i 6= j, either span{Lηi} ∩ span{Lηj} = {0} or

span{Lηi} = span{Lηj}. It follows that there exists i1, . . . , in ∈ {1, . . . , q}, ij 6= ik if j 6= k, such

that

span{R(Σ)} = span{
q⋃
i=1

Lηi} =

n⊕
j=1

span{Lηij }.

Example 2.2.2. Let η1 = (+,+,−,+,+,−), η2 = −η1 and η3 = (+,+,+,−,−,−). Let Σ be the

9× 6-cycle defined by

Σ = (ΣT
1 ,Σ

T
2 ,Σ

T
3 )T ,
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where Σj = (ηTj , (ηjP)T , (ηjP
2)T )T for j = 1, 2, 3. Then GΣ = {η1, η2, η3}, span{R(Σ)} =

span{Lη1} ⊕ span{Lη3}, and span{Lη2} = span{Lη1}. Clearly, span{Lη1} and span{Lη3} are ir-

reducible, thus span{R(Σ)} is semisimple. Likewise, for the cycle Σ = (ΣT
1 ,Σ

T
2 ), span{R(Σ)} =

span{Lηi}, i = 1, 2, hence span{R(Σ)} is simple.

In general, the vector space U = span{R(Σ)} of an arbitrary composite cycle Σ may have

subspaces which are not invariant or do not contain any binary row vector of Σ, or both. By

contrast, if U is semisimple, U can be decomposed into irreducible subspaces corresponding to

the loops of their generators, but some of these subspaces may coincide. This coincidence is still

considered as a degeneracy (see Section 4.3), which we exclude in the class of separable cycles

introduced next.

Definition 2.2.6. Let Σ be a composite cycle with generator GΣ, i.e. |GΣ| ≥ 2. We call Σ

separable, if span{R(Σ)} is semisimple and span{Lη} 6= span{Lη′} for any η, η′ ∈ Gη with η 6= η′.

If Σ is not separable, Σ is said to be inseparable.

Note that the hypotheses for a cycle Σ to be separable require that U = span{R(Σ)} is invariant

under P, i.e. separable cycles are a priori admissible.

Theorem 2.2.4. (Separability Condition for Composite Cycles) Let Σ be a composite cycle

with generator GΣ = {η1, η2, . . . , ηq}. Then Σ is separable, if and only if

rank(Σ) =

q∑
i=1

rank(ηi). (2.12)

Proof: If Σ is separable, (2.12) follows directly from Proposition 2.2.3 and Definition 2.2.6.

Conversely, suppose (2.12) holds. Since

span{R(Σ)} = span{(
q⋃
i=1

Lηi) ∩ R(Σ)} ⊆ span{
q⋃
i=1

Lηi},

(2.12) implies that span{Lηi∩R(Σ)} = span{Lηi} for each 1 ≤ i ≤ q, span{Lηi}∩span{Lηj} = {0},

if i 6= j, and hence

span{R(Σ)} =

q⊕
i=1

span{Lηi}.
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It follows that each span{Lηi} is irreducible, thus Σ is separable according to Definitions 2.2.5 and

2.2.6.

Example 2.2.3. Consider

Σ =



+ + + + − − − −

+ + + − − − − +

+ + − − − − + +

+ − − − − + + +

+ + − − + + − −

+ − − + + − − +

+ − + − + − + −



.

We have that GΣ = {η1, η5, η7}, where ηj = rowj(Σ), 1 ≤ j ≤ 7. It is easy to see that U1 =

span{Lη1}, U2 = span{Lη5}, and U3 = span{Lη7} intersect trivially, hence

U = span(R(Σ)) = U1 ⊕ U2 ⊕ U3,

which implies that Σ is separable, and hence admissible.

2.2.3 Inseparable Composite Cycles

By Definition 2.2.6, inseparability of a composite cycle Σ happens in two different cases. In the

first case, the vector space U = span{R(Σ)} has a reducible but indecomposable invariant subspace,

which entirely contains another invariant subspace as a subspace (see Example 2.2.1). This includes

the case where U is semisimple and span{Lη} = span{Lη′} for two different generators η and η′ (see

Example 2.2.2). In the second case, the vector space U has two or more indecomposable (reducible

or not) invariant subspaces sharing a nontrivial intersection as common proper subspaces. We now

discuss the admissibility of these two types of inseparable composite cycles.

Definition 2.2.7. Let GΣ = {η1, η2, . . . , ηq} be a generator of a cycle Σ. A subset EGΣ =

{ε1, ε2, . . . , εr}, r ≤ q, of GΣ is called an essential generator of Σ, if EGΣ is minimal in the sense

that

(a) span{R(Σ)} ⊆ span{
r⋃
i=1
Lεi};
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(b) for any εi, εj ∈ EGΣ with i 6= j, span(Lεi) ∩ span(Lεj ) is a proper subspace of both span(Lεi)

and span(Lεj );

(c) for every ηi ∈ GΣ, if ηi /∈ span{
q⋃

j=1,j 6=i
Lηj}, then ηi ∈ EGΣ.

Note that an admissible cycle may have different sets of essential generators, i.e. EGΣ is in

general not unique. Proposition 2.2.1 can be directly rephrased in terms of essential generators.

Proposition 2.2.5. A cycle Σ is admissible, if for any essential generator EGΣ, Lε ⊂ span{R(Σ)∩

Lε} for every ε ∈ EGΣ. Conversely, if Σ is admissible and EGΣ = {ε1, . . . , εr} is an essential

generator of Σ, then

rank(Σ) ≤
r∑
i=1

rank(εi) ≤ |R(Σ)| ≤ N. (2.13)

Remark 2.2.4. The condition (b) in Definition 2.2.7 includes three cases.

(a) For every i 6= j, span{Lεi} ∩ span{Lεj} = {0}, and q = r. Composite cycles in this case are

separable.

(b) For every i 6= j, span{Lεi} ∩ span{Lεj} = {0}, but q < r. Composite cycles in this case

are inseparable and degenerate. In this case U may be semisimple or not, and has the complete

decomposition U =
q⊕
i=1

span{Lεi} (see Proposition 2.2.3). Accordingly, we have that a degenerately

inseparable composite cycle Σ is admissible, if and only if rank(Σ) =
q∑
i=1

rank(εi). This generalizes

separable cycles and includes, for example, the case where for some η ∈ R(Σ) also −η ∈ R(Σ), but

Lη ∩ L−η = ∅ (see Example 2.2.2).

(c) For some i 6= j, span{Lεi}∩span{Lεj} is a nontrivial proper subspace of both invariant subspaces

span{Lεi} and span{Lεj}. Composite cycles in this case are genuinely inseparable. This type of

cycles is more complicated than the other two. We next study the structure of this type of cycles,

and establish an admissibility condition.

Proposition 2.2.6. Let η and η̃ be two p-dimensional row vectors. If η ∈ span{Lη̃}, then

span{Lη} ⊆ span{Lη̃}.
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Proof: If η ∈ Lη̃, we are done. Suppose η ∈ span{Lη̃}, i.e., η =
p∑

ν=1
αν η̃P

ν , αν ∈ R, but η /∈ Lη̃,

then for every t ∈ {1, 2, . . . , p}, ηPt =

(
p∑

ν=1
αν η̃P

ν

)
Pt =

p∑
ν=1

(
αν η̃P

ν+t
)
, i.e., Lη ⊆ span{Lη̃},

hence span{Lη} ⊆ span{Lη̃}.

Remark 2.2.5. Proposition 2.2.6 tells that if a row vector is in the vector space spanned by the

loop generated by another row vector of the same dimension, then the vector space spanned by the

loop generated by this row vector is a subspace of the vector space spanned by the other one. Since

for any genuinely inseparable composite cycle, at least two indecomposable invariant subspaces

intersect nontrivially, it is natural to ask:

(a) Does there exist a row vector such that this nontrivial intersection is spanned by the loop

generated by it?

(b) If this row vector exists, can it be {−1, 1}-valued?

As we will see below in Proposition 2.2.9, the answer to the first question is affirmative, however,

it remains unclear whether there always exists a binary row vector such that the loop generated

by it spans the nontrivial intersection of two indecomposable invariant subspaces. The approach

we will use in the proof of Proposition 2.2.9 only guarantees the existence of a genuine row vector,

which may or may not be binary.

Let V be defined as in Theorem 2.1.2, i.e. V = (v(0), v(1), . . . , v(p−1)), where v(k) =

(1, ρk, ρ2k, . . . , ρ(p−1)k)T and ρ = e2πi/p.

Definition 2.2.8. A row vector η (not necessarily binary) is said to annihilate the column v(k) of

V , if ηv(k) = 0, i.e. the two vectors are orthogonal.

Note that, since v(k) is an eigenvector of P and all eigenvalues of P are nonzero, η annihilates

v(k) if and only if ηPν annihilates v(k) for every ν ∈ Z. We need the following fact about the

eigenvectors and eigenvalues of circulant matrices, see, e.g., [70].

Lemma 2.2.7. Let η = (η1, . . . , ηp) be an arbitrary real and nonzero row vector, and let Ση be

the p × p-matrix defined by rowj(Ση) = η(PT )(j−1) for 1 ≤ j ≤ p. Then V ∗Ση = ΛηV
∗, where

Λη = diag(λη,1, . . . , λη,p) with λη,k =
p∑
j=1

ηjρ(j−1)(k−1).

Extending Definition 2.2.1 to non-binary real row vectors and noting that R(Ση) = Lη, an

immediate consequence of Lemma 2.2.7 is the following:
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Corollary 2.2.8. Assume that ηv(j) 6= 0 if and only if j ∈ {k1, . . . , ks} ⊂ Zp, where Zp =

{0, 1, 2, . . . , p− 1}. Then {v(k1)∗, . . . , v(ks)∗} is a (complex) basis for span{Lη}.

Proposition 2.2.9. Let Σ be a cycle with essential generator EGΣ = {ε1, . . . , εr}. Assume that for

some i 6= j the indecomposable subspaces Ui = span(Lεi) and Uj = span(Lεj ) intersect nontrivially,

and Ui ∩ Uj is a proper subspace of both Ui and Uj. Then there exists a row vector η such that

Ui ∩ Uj = span{Lη}.

Proof: Assume that εiv
(k) 6= 0 and εjv

(k) 6= 0 if and only if k ∈ Ki ⊂ Zp and k ∈ Kj ⊂

Zp, respectively. Assume further that K ≡ Ki ∩ Kj = {k1, . . . , ks}. According to Corollary 1,

{v(k1)∗, . . . , v(ks)∗} is a basis for Ui∩Uj . Let pi(x) and pj(x), x ∈ C, be the polynomials pi(x) = εix,

pj(x) = εjx, where x = (1, x, x2, . . . , xp−1)T . Since the row vectors defined by the coefficients of

pi(x) and pj(x) annihilate exactly the v(k) with k ∈ Zp\Ki and k ∈ Zp\Kj , respectively, pi(x) and

pj(x) contain the minimal polynomials of ρk for every k ∈ Zp\Ki and k ∈ Zp\Kj , respectively, as

factors. Multiplying these factors yields a polynomial pij(x) of degree ≤ p− 1 with pij(ρ
k) = 0 for

every k ∈ Zp\K and pij(ρ
k) 6= 0 for every k ∈ K. Set p0(x) = pij(x) if the degree of pij(x) is p− 1.

If the degree of pij(x) is < p− 1, set p0(x) = pij(x)p̃ij(x), where p̃ij(x) is any polynomial such that

p̃ij(ρ
k) 6= 0 for every k ∈ K and the degree of p0(x) is p− 1. Let η be the row vector of coefficients

of p0(x). Then η and ηPν for any ν ∈ Z annihilate every v(k) for k ∈ Zp\K, and ηv(k) 6= 0 for

every k ∈ K, hence span{Lη} = span{v(k1)∗, . . . , v(ks)∗} = Ui ∩ Uj .

Example 2.2.4. In this example, we demonstrate how to find a row vector as claimed in Proposi-

tion 2.2.9 with the method described in the proof. Consider the composite cycle with N = 10 and

p = 18 defined by Σ = (ΣT
1 ,Σ

T
2 )T , where

Σ1 = (εT1 , (ε1P)T , . . . , (ε1P
6)T )T ,Σ2 = (εT2 , (ε2P)T , (ε1P

2)T )T ,

and

ε1 = ( + + + + + + + − + − − − − − − − + − ),

ε2 = ( + + + − − − + + + − − − + + + − − − ).
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This is a genuinely inseparable composite cycle with GΣ = EGΣ = {ε1, ε2}. The polynomials p1(x)

and p2(x) can be factorized as follows,

p1(x) = (1− x)(1 + x+ x2)(1− x+ x2)(1 + x3 + x6)(1 + 2x+ 2x2 + x3 + x6),

p2(x) = (1− x)(1 + x+ x2)(1− x3 + x6)(1 + x3 + x6)(1 + x− x2).

The factors 1− x, 1 + x+ x2, 1 + x3 + x6, 1− x+ x2 and 1− x3 + x6 are cyclotomic factors (see

e.g. [72]), and the sum of their degrees happens to be 17. Multiplying them out gives

p0(x) =

17∑
j=0

(−1)jxj ,

thus the row vector η constructed in the proof of Proposition 2.2.9 is obtained as the binary vector

with alternating signs, η = (+,−,+,−, . . . ,+,−), and span{Lη} = span{η}. One can easily verify

that span{η} = span{Lε1} ∩ span{Lε2}.

Based on their structural features and using a simple inclusion-exclusion argument, an admis-

sibility condition for inseparable composite cycles can be formulated as follows.

Theorem 2.2.10. (Admissibility Condition for Inseparable Composite Cycles) Let Σ be

a cycle with essential generator EGΣ = {ε1, . . . , εr}. Then Σ is admissible if and only if

rank(Σ) =
r∑
i=1

rank(εi)−
r∑

i,j;i 6=j
dim(span{Lεi} ∩ span{Lεj})

+
r∑

i,j,k;i 6=j 6=k
dim(span{Lεi} ∩ span{Lεj} ∩ span{Lεk})

− · · · ± dim(
r⋂
i=1

span{Lεi}).

(2.14)

Remark 2.2.6. The admissibility condition (2.14) is valid for any cycle, and the conditions (2.12)

and (2.10) for separability and admissibility of simple cycles, respectively, can be thought of as

special cases thereof.

Example 2.2.5. Let Σ be the cycle from Example 2.2.4. One can easily verify that rank(ε1) = 7

and rank(ε2) = 3. Since dim(span{Lε1} ∩ span{Lε2}) = 1, this cycle is admissible.
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2.3 Network Topology

To simplify the discussion, we exclude in this section multiple appearances of a binary row

vector in a cycle, that is, we consider only cycles Σ with |R(Σ)| = N .

The classification of cycles Σ in Section 2.2 was based on the decomposition of R(Σ) into

subsets of rows associated with disjoint loops. It is, therefore, natural to identify the neurons

corresponding to the same loop with a cluster. However, if a cycle has fewer essential generators than

generators, the row vectors of a non-essential generator must be combined with one or more essential

generators and, moreover, there may be several choices for essential generators. We therefore make

the simplifying assumption that all generators are essential generators. For admissible cycles Σ this

means that for any two distinct generators η1, η2, the intersection of their spaces span{Lηj ∩R(Σ)},

j = 1, 2, is a proper subspace of both of them ({0} if the cycle is separable). An immediate

consequence of this assumption is that

rank(Σ) ≤
q∑
j=1

rank(ηj) ≤ N, (2.15)

if Σ is admissible and GΣ = {η1, . . . , ηq}. The clusters are isolated if and only if Σ is separable. If

Σ is inseparable, some of the clusters are connected.

Regarding the connectivity within a cluster, linear dependences among its row vectors will

prevent any special structure. We call cycles for which such dependences do not occur minimal.

Definition 2.3.1. An admissible cycle Σ with generator GΣ = {η1, η2, . . . , ηq} is minimal, if

EGΣ = GΣ and for every 1 ≤ i ≤ q,

|Lηi ∩ R(Σ)| = rank(ηi). (2.16)

Remark 2.3.1. If Σ is a minimal simple or separable composite cycle, then Σ is of full row rank. If

Σ is a minimal inseparable cycle, then the row vectors in R(Σ) ∩ Lηi form a basis of span{Lηi} for

every ηi ∈ GΣ. Thus for any minimal cycle Σ, (2.15) holds and the inequalities become equalities

if and only if Σ is simple or separable. In this case, Σ has full row rank and Σ+ = ΣT (ΣΣT )−1,

which implies that J0 = ΣΣ+ = I, the N ×N identity matrix.
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For any two (N × p)-cycles Σ and Σ′ with R(Σ) = R(Σ′), the cycle matrices are related to

each other by Σ′ = QΣ, where Q is an N ×N permutation matrix. If in addition Σ is admissible

with connectivity matrix J̃, then Σ′ is also admissible and has connectivity matrix J̃′ = QJ̃Q−1.

Accordingly, if u is the state of the network with connectivity matrix J̃, then u′ = Qu is the

network state corresponding to J̃′, and solutions u(t) and u′(t) of the corresponding differential

equations are just permutations of each other as tanh(u′) = tanh(Q−1u) = Q−1 tanh(u).

Without loss of generality, we therefore may assume that a minimal cycle with generators

η1, . . . , ηq has the form

Σ = (ΣT
1 ,Σ

T
2 , . . . ,Σ

T
q )T , (2.17)

where R(Σj) ⊆ Lηj , 1 ≤ j ≤ q, and the vectors in Σj are sorted from top to bottom as ηj , ηj1 , ηj2 , . . . ,

with ηji = sjiηjP
νji , sji = 1 if −ηj /∈ Lηj and sji ∈ {−1, 1} if −ηj ∈ Lηj , and 0 < νji < νjk if i < k.

We call this form the standard form of a minimal cycle.

The minimality requirement does not suffice in general to induce a special network topology

within the clusters. We have to require in addition that the powers in the Σj are consecutive.

Definition 2.3.2. A minimal cycle Σ in standard form is said to be a minimal consecutive cycle,

or briefly MC-cycle, if the powers of P in Σj above are consecutive, that is, νji = i for all 1 ≤ i <

rank(ηj).

In order that Definition 2.3.2 is consistent with the minimality requirement, the rows in Σj

must be linearly independent. The next proposition shows that this is indeed the case, where for

simplicity we consider only the case sji = 1.

Proposition 2.3.1. Let η 6= 0 be any p-dimensional row vector with rank(η) = k. Then the vectors

{η, ηP, ηP2, . . . , ηPk−1} are linearly independent.

Proof: Let s be the largest positive integer such that {η, ηP, . . . , ηPs−1} are linearly indepen-

dent. Then ηPs is a linear combination of {η, ηP, . . . , ηPs−1},

ηPs =

s−1∑
ν=0

ανηP
ν . (2.18)

Right-multiplying this equation by P yields a representation of ηPs+1 as linear combination of

{ηP, ηP2, . . . , ηPs}, and replacing ηPs in this representation by (2.18) shows that ηPs+1 is also a
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linear combination of {η, ηP, . . . , ηPs−1}. By induction we find that, for any 0 ≤ ν < s− p, ηPs+ν

is a linear combination of {η, ηP, . . . , ηPs−1}, hence this set is a basis for Lη.

For simple MC-cycles there is only one cluster. In Subsection 2.3.1 we discuss the possible

connectivity structures in such networks in some detail, including the possible values of N for a

given p, and we also comment on the network topology of simple minimal but non-consecutive cycles.

Semisimple MC-cycles consist of isolated clusters corresponding to the different loops in the cycle.

Each of these loops forms a simple MC-cycle, and we just give an example in Subsection 2.3.2.

Inseparable minimal (consecutive or non-consecutive) cycles are more complicated and will be

discussed in Subsection 2.3.3. In Subsection 2.3.4 we demonstrate the effects of fewer essential

generators than generators by two examples.

2.3.1 Simple MC-Cycles

2.3.1.1 Network Topology

According to Definition 2.3.2, a simple MC-cycle has the form

Σ = (ηT , s1(ηP)T , s2(ηP2)T , . . . , sN−1(ηPN−1)T )T , (2.19)

with rank(η) = N ≤ p and si ∈ {−1, 1}. Since the image of the last row vector of Σ under P is a

linear combination of the row vectors of Σ, ΣP has the form ΣP = AΣ, where

A =



0 s1 0 . . . 0 0

0 0 s1s2 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . sN−3sN−2 0

0 0 0 . . . 0 sN−2sN−1

a1 a2 a3 . . . aN−1 aN


, (2.20)

with a1, . . . , aN ∈ R and a1 6= 0. Moreover, since Σ has full row rank, Σ+ = ΣT (ΣΣT )−1, which

implies

J = ΣPΣ+ = A. (2.21)

Equations (2.20) and (2.21) show that the network constructed from a simple MC-cycle consists

of a feed-forward chain from the Nth neuron to the first neuron, and feedback to the Nth neuron
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from the subset of the neurons for which ai 6= 0, which in any case includes the first neuron. If

aj = 0 for j > 1, then a1 = ±1, and the network topology is that of a ring, with either excitatory

(a1 = 1, J = PT if all sj = 1) or inhibitory connection (a1 = −1) from neuron 1 to neuron N .

Vectors of the form η = (σ, σ) or (σ,−σ) have rank(η) ≤ p/2, and if rank(η) = p/2 = N we have

either of these two types of ring structures (see Subsection 2.3.1.3).

Example 2.3.1. In Figure 2.1A and B, we illustrate the topology of the networks constructed

from the following two simple MC-cycles,

Σ =



+ + + + + + + − − − − − − −

+ + + + + + − − − − − − − +

+ + + + + − − − − − − − + +

+ + + + − − − − − − − + + +

+ + + − − − − − − − + + + +

+ + − − − − − − − + + + + +

+ − − − − − − − + + + + + +



,

and

Σ̃ =



+ + − + − −

+ − + − − +

− + − − + +

+ − − + + −

− − + + − +


,

respectively. The cycle Σ has a “repeating block structure”, Σ = [B,−B], where B is the block

consisting of the first 7 columns of Σ (N = p/2 = 7). This causes the image of the last row to be

the negative copy of the first row, i.e. η7P = −η1, where ηi = rowi(Σ). It follows that a1 = −1

and ai = 0 for i > 1, thus the first neuron only sends an inhibitory feedback to the seventh neuron

(Figure 2.1A). Similarly, for the cycle Σ̃, N = p− 1 = 5, and in this case the image of the last row

is a linear combination of all other row vectors, η̃5P = −η̃1− η̃2− η̃3− η̃4− η̃5, where η̃i = rowi(Σ̃).

Accordingly for this cycle ai = −1 for every i, i.e. every neuron sends inhibitory feedback to the

fifth neuron in the network (Figure 2.1B).
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Figure 2.1: Topology of networks constructed, respectively, by a simple MC-cycle withN = p/2 = 7
(A, Example 2.3.1), a simple MC-cycle with N = p − 1 = 5 (B, Example 2.3.1), a minimal
simple but non-consecutive cycle with N = p − 2 = 7 (C, Example 2.3.2), a separable MC-cycle
(D, Example 2.3.5) and a minimal genuinely inseparable composite cycle (E, Example 2.3.6). In
panels A-D, excitatory (inhibitory) synaptic connections are labeled with red (blue) lines with
arrowhead indicating the direction of the connections. In panel E, in order to highlight the clusters
in the network, connections within the same clusters are labeled with black lines, and connections
between neurons in different clusters are labeled with dark red lines. Directions and polarities of the
connections are not shown in E. For all of the 5 networks illustrated in this figure, self-connectivities
are not included.
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The two examples above demonstrate that the value of N = rank(η) plays an important role for

the network topology of simple MC-cycles. We discuss possible values of N for given cycle-lengths

p in the next paragraph.

For minimal but non-consecutive cycles with N < p − 1 we can have “gaps” in the standard

form which lead to feedforward chains interrupted by neurons with higher connectivities. The next

example demonstrates this possibility.

Example 2.3.2. Consider η = (+,+,+,+,+,+,−,−,−) (p = 9), and

Σ = (ηT , (ηP)T , (ηP2)T , (ηP4)T , (ηP5)T , (ηP6)T , (ηP8)T )T .

This cycle is minimal as rank(η) = rank(Σ) = 7, but not consecutive. The gaps are between

the third and fourth rows, and the sixth and seventh rows. Since the seventh and first rows are

consecutive, there are no other gaps. The connectivity matrix is

J =



0 1 0 0 0 0 0

0 0 1 0 0 0 0

−1 0 1 0 1 −1 1

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 −1 1 −1 1 0 1

1 0 0 0 0 0 0



,

and shows that we still have the forward chain 3→ 2→ 1→ 7→ 6→ 5→ 4, but neurons 3 and 6

receive multiple inputs. The network topology is shown in Figure 2.1C.

2.3.1.2 N -p relations

Definition 2.3.3. Let Np : Xp → Ω be the function defined by Np(η) = n if η annihilates (p− n)

columns of V , where V is defined as in Theorem 2.1.2, Xp is the set of binary row vectors of length

p, and Ω = {1, 2, . . . , p− 1}.

Remark 2.3.2. It is a direct consequence of Theorem 2.1.2 that Np(η) = rank(η). Therefore,

for a given value of p, the image-set Np(Xp) contains all possible values of N for which there

exists η ∈ Xp such that (2.19) defines a simple MC-cycle. Furthermore, in Section 2.2.3 we have
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associated with η ∈ Xp the polynomial pη(x) = η(1, x, . . . , xp−1)T , where x is a complex variable.

Since pη(ρ
k) = ηv(k), ηv(k) = 0 (i.e. η annihilates v(k)) if and only if pη(x) has a factor which is

a multiple of the minimal polynomial of ρk. Thus Np(η) = rank(η) is intimately related to the

factorization of pη(x).

There appears to be no general characterization of or formula for Np(η). Even for row vectors

with repeating block structure such as η = (σ,−σ) or (σ,−σ, σ) (σ ∈ Xp/2 or Xp/3), the factorization

of pη(x) does not reveal a formalizable pattern. We therefore just list the sets Np(Xp) in Table 2.1 for

1 ≤ p ≤ 20. Note that Nq(Xq) ⊂ Np(Xp) if q divides p, since rank(η) = rank(σ) if η = (σ, σ, . . . , σ)

(p/q repetitions) and σ ∈ Xq. We therefore include in Table 2.1 only those values N ∈ Np(Xp),

for which there exists a row vector η ∈ Xp with N = rank(η), and η is NOT a repetition of some

shorter vector σ. To illustrate how Table 2.1 was obtained, we compute Np(η) for a row vector

with p = 6 in Example 2.3.3.

Vectors η of the form η = (σ, σ, . . . ) ∈ Xp with σ ∈ Xq have minimal period ≤ q under cyclic

permutations. The number of binary vectors of minimal period p is found by subtracting the number

of all vectors with smaller minimal period from 2p. An inclusion/exclusion argument shows that

this number is given by

Mp = 2p −
s∑

k=1

(−1)k−1
∑

1≤i1<···<ik≤s
2p/(pi1pi2 ···pik ),

if p1, p2, . . . , ps are the distinct prime numbers occurring in the prime factorization of p (Mp = 2p−2

if p is prime). Accordingly, the number of maximal loops, i.e. loops with |Lη| = p, is Mp/p.

Example 2.3.3. Let η = (+,+,−,−,−,+). This vector has a repeating block structure, η =

(σ,−σ), where σ = (+,+,−). For p = 6 the matrix V is given by

V = (v(0), v(1), . . . , v(5)) =



1 1 1 1 1 1

1 ρ ρ2 −1 ρ4 ρ5

1 ρ2 ρ4 1 ρ2 ρ4

1 −1 1 −1 1 −1

1 ρ4 ρ2 1 ρ4 ρ2

1 ρ5 ρ4 −1 ρ2 ρ


,
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Table 2.1: Values of N ∈ Np(Xp) attained by some η ∈ Xp that is NOT of the form (σ, σ, . . . , σ)
with σ ∈ Xq, q < p, for p ≤ 20.

p N p N

1 1 11 11
2 1 12 6,7,8,9,10,11,12
3 3 13 13
4 2,4 14 7,13,14
5 5 15 11,13,15
6 3,5,6 16 8,10,11,12,13,14,15,16
7 7 17 17
8 4,6,7,8 18 7,9,11,12,13,14,15,16,17,18
9 7,9 19 19
10 5,9,10 20 10,12,13,14,15,16,17,18,19,20

where ρ = e2πi/6. The polynomial pη(x) has the following factorization,

pη(x) = 1 + x− x2 − x3 − x4 + x5

= (1− x3)(1 + x− x2)

= (1− x)(1 + x+ x2)(1 + x− x2).

Since Φ1(x) = x − 1 and Φ3(x) = x2 + x + 1 are the first and the third cyclotomic polynomials,

and ρ0 = 1 is the primitive first root of unity and ρ2 and ρ4 are the primitive third roots of unity,

it follows that η annihilates v(0), v(2) and v(4). Therefore, N6(η) = 6− 3 = 3.

Some of the N -values in Np(Xp) in Table 2.1 can be explained directly, without factorizing

pη(x). We summarize three simple but important facts.

Proposition 2.3.2. (a) {1, p} ⊂ Np(Xp) for any p > 2.

(b) If p > 2 is prime, then Np(Xp) = {1, p}.

(c) p− 1 ∈ Np(Xp) if p is even and p > 4.

Proof: Since rank(+,+, . . . ,+) = 1, it follows that 1 ∈ Np(Xp) for any p. To show that

p ∈ Np(Xp) for p > 2, consider η = (−,+,+, . . . ,+) and let Ση be the p × p-matrix defined by

rowj(Ση) = η(PT )j−1, 1 ≤ j ≤ p. By induction, one shows that det(Ση) = (−2)p−1(p − 2) which

completes the proof of (a).

Statement (b) is an immediate consequence of the fact that Φp(x) =
p∑
j=1

xj−1 is the minimal

polynomial of ρk, 0 < k < p, if p is prime and is irreducible over Q, hence if η 6= ±(+,+, . . . ,+),

Φp(x) and pη(x) cannot contain a common factor.
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To show (c), let σ = (+,−,+,−, . . . ,+,−) ∈ Xp−2 and set η = (σ,−,+). By performing

elementary row operations on the matrix Ση with rows rowi(Ση) = ηPi−1, 1 ≤ i ≤ p− 1, it can be

shown that Ση has full rank. The details are straightforward but tedious to write down explicitly

and will be omitted.

Remark 2.3.3. (a) If p is prime, then rank(η) = p for any η 6= ±(+,+, . . . ,+). For non-prime

values of p one also can construct several different vectors with rank(η) = p. For example, if p is

odd, then rank(η) = p if η = (+,−,+,−, . . . ,+,−,+), which is easily shown using elementary row

operations. A generalization is provided by vectors η with
∑
i
ηi = 1. All our case studies indicate

that these vectors have rank(η) = p as well.

(b) For even p > 4, the vector constructed in the proof of Proposition 2.3.2(c) is just one example

of a vector with rank(η) = p− 1. In general, if η = (η1, . . . , ηp) and
∑
i
ηi = 0, then η is orthogonal

to (+,+, . . . ,+), and rank(η) ≤ p− 1. Case studies indicate that such a vector has maximal rank

p− 1 if it does not have a “repeating block structure”.

2.3.1.3 Simple anti-symmetric cycles

The characteristics of the cycles considered by [14] are that the cycle length p is even and the

second p/2 columns of the cycle matrix are the negatives of the first p/2 columns in the same order.

We call such cycles anti-symmetric. Here we discuss the possible values of the rank of the cycle

matrix if these cycles are simple and admissible.

Proposition 2.3.3. Assume p is even, p = 2n, and η = (σ,−σ) with σ = (σ1, . . . , σn) ∈ Xn. Then

we have the following possibilities for rank(η).

(a) 1 ≤ rank(η) ≤ n. Moreover, d ≡ n − rank(η) is even, and if d ≥ 2 the σj satisfy d linearly

independent homogeneous linear equations with integer coefficients.

(b) If p = 2k, k ≥ 2, then rank(η) = n.

(c) If p = 2n with n > 2 prime and σ 6= ±(+,−,+, . . . ,+,−,+), then rank(η) = n.
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Proof: (a) Let η = (σ,−σ), σ ∈ Xn, and define the p × p-matrix Σ by rowj(Σ) = η(PT )j−1,

1 ≤ j ≤ p. This matrix is a circulant matrix and contains all rows of Lη, hence rank(η) = rank(Σ).

According to the properties of circulant matrices, the eigenvalues of Σ are of the form

λ =

p∑
i=1

ηiρi−1 =
n∑
i=1

(σi − σiρn)ρi−1, (2.22)

where ρ is any pth root of unity. Thus rank(η) coincides with the number of distinct pth roots

of unity for which the right-hand side of (2.22) is nonzero. Since ηPn = −η, it follows that

rank(η) ≤ n, and clearly rank(η) ≥ 1, which proves the first statement of (a). To complete the

proof of (a), we note that the 2n distinct roots of x2n = 1 (x ∈ C) comprise n roots with xn = 1

and n roots with xn = −1. Thus d = n − rank(η) coincides with the number of distinct roots of

xn = −1 for which

pσ(x) =

n∑
i=1

σixi−1 = 0. (2.23)

If n is odd, pσ(−1) 6= 0, and if n is even, (−1)n = 1, thus all roots in question have nonzero imaginary

parts, which implies that d is even. If d ≥ 2, pσ(x) is divisible by a cyclotomic polynomials Φm(x),

where m divides n but not 2n. The degree of Φm(x) is given by Euler’s totient function, ϕ(m), and

is even. The condition that pσ(x) factors through Φm(x) then leads to ϕ(m) linearly independent

homogeneous equations that must be satisfied by the σi, and since Φm(x) has integer coefficients,

the coefficients of these equations can be chosen as integers as well. If pσ(x) contains several

cyclotomic polynomials Φmj (x), 1 ≤ j ≤ r, as factors, the number of linear equations satisfied

by σ is ϕ(m1) + · · · + ϕ(mr), and all these relations are linearly independent as the cyclotomic

polynomials are distinct and irreducible over the rationals.

(b) If p = 2k, k ≥ 2, the only factor that divides p but not n = 2k−1 is p. The cyclotomic polynomial

of p is Φp(x) = 1+xn and has degree n, that is, Φp(x) cannot be a factor of pσ(x) which has degree

n− 1.

(c) Assume now that n > 2 is prime. In this case, Φ2n(x) = Φn(−x) is the only cyclotomic

polynomial in question and is given by Φn(−x) = 1 − x + x2 − x3 + · · · + xn. Thus, if σ is not of

the form σ = ±(+,−,+,−, . . . ,+,−,+), Φn(−x) does not factor through pσ(x).

Since for η = (σ,−σ) a “rank deficiency” (rank(η) < n) occurs only if σ satisfies a system of

linear equations, the number of σ’s for which rank(η) = n is considerably larger than the number
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of σ’s for which η has a rank-deficiency. Thus “generically” we expect that vectors of the form

(σ,−σ) have full rank n. The vector σ = (+,−,+,−, . . . ,+,−,+) is, of course, a very special case

as (σ,−σ) has the repeating block structure (+,−,+,−, . . . ,+,−) which has minimal rank 1. We

illustrate the occurrence of rank deficiencies by an example.

Example 2.3.4. Let p = 18 = 2 · 32, i.e. n = 9. The cyclotomic polynomials that can give rise

to a rank deficiency are here Φ6(x) = 1 − x + x2 and Φ18(x) = 1 − x3 + x6. The condition that

pσ(x) = σ1 + σ2x+ · · ·+ σ9x8 factors through Φ6(x) leads to the equations

σ1 − σ3 − σ4 + σ6 + σ7 − σ9 = 0,

σ2 + σ3 − σ5 − σ6 + σ8 + σ9 = 0.

The only binary vector satisfying these conditions (up to cyclic permutations) are ±σ(1), ±σ(2) and

±σ(3), where

σ(1) = (+,+,+,+,+,+,+,−,+),

σ(2) = (+,+,+,−,+,+,−,−,+),

σ(3) = (+,+,−,+,+,−,+,−,+).

Since Φ6(x) has a single pair of complex conjugate roots, rank(σ(ν),−σ(ν)) = 9− 2 = 7, ν = 1, 2, 3.

Similarly, in order that Φ18(x) factors through pσ(x), the conditions σj + σj+3 = 0 for 1 ≤ j ≤ 6

must be satisfied, leading to rank(σ,−σ) = 3. All vectors with block structure σ = (σ̃,−σ̃, σ̃) with

σ̃ ∈ X3 have this property, and lead to η = (σ̂, σ̂, σ̂) with σ̂ = (σ̃,−σ̃), i.e. rank(η) = rank(σ̂). This

includes σ̃ = (+,+,+) with rank(σ̂) = 3, and σ̃ = (+,−,+) with rank(σ̂) = 1. In the latter case,

both Φ6(x) and Φ18(x) are factors of pσ(x).

The rank of generic vectors (without rank deficiency) of the form (σ, σ) or (σ,−σ) is equal to

the length of σ. The converse question is under which circumstances a vector η ∈ Xp with p even

and rank(η) = p/2 has this form. We state two simple sufficient conditions for this property.

Proposition 2.3.4. Assume p = 2n, η ∈ Xp, and rank(η) = n. If p = 2k, k ≥ 2, or n > 2 is

prime, then η is either of the form (σ, σ) or (σ,−σ) for some σ ∈ Xn.

Proof: Let η = (σ, σ̂) with σ, σ̂ ∈ Xn. We consider again the matrix Σ defined in the proof of

Proposition 2.3.3 with eigenvalues

λ =
n∑
i=1

(σi + ρnσ̂i)ρi−1,
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where ρ is a pth root of unity, p = 2n. Assuming that rank(η) = n, there exist precisely n distinct

roots ρ of x2n = 1 for which λ = 0. We decompose these roots again into roots satisfying xn = 1

and xn = −1, respectively, and set accordingly

λ±(x) =

n∑
i=1

(σi ± σ̂i)xi−1.

(a) Assume that p = 2k (n = 2k−1) for k ≥ 2. If there exists a root ρ of xn = −1 for which

λ = 0, λ(x) must contain the cyclotomic polynomial Φ2n(x) = 1 + xn as a factor, which is only

possible if σi − σ̂i = 0 for all i, because λ(x) has at most degree n − 1. Thus η = (σ, σ) in this

case. Conversely, assume that all roots ρ for which λ = 0 are roots of xn = 1. Then λ+(x) must

contain all cyclotomic polynomials Φν(x) for ν = 1, 2, . . . , 2k−1 as factors. Since the product of

these polynomials is 1 − xn, this cannot hold unless σi + σ̂i = 0 for all i, thus η = (σ,−σ) in this

case.

(b) The case p = 2n with n > 1 prime is treated similarly. Here the cyclotomic polynomials which

factor through xn − 1 are 1 − x and Φn(x) = 1 + x + · · · + xn−1, and the cyclotomic polynomials

which factor through 1 + xn are 1 + x and Φn(−x). Since n > 1, either Φn(x) is a factor of λ+(x)

or Φn(−x) is a factor of λ−(x), which implies that either σ̂ = σ or σ̂ = −σ.

An extension of Proposition 2.3.4 to more general values of p appears highly nontrivial, because

a multitude of cyclotomic polynomials have to be considered if the prime factorization of n is more

complicated. We have examined all vectors η with rank(η) = p/2 for p ≤ 20 and found that all

these vectors have the form (σ, σ) or (σ,−σ). Other vectors with rank(η) = p/2 may exist for larger

values of p, but if so we expect the number of these vectors to be much smaller than the number

of (σ, σ)- or (σ,−σ)-vectors of full rank.

2.3.2 Separable MC-Cycles

For separable MC-cycles with generators GΣ = {η1, η2, . . . , ηq}, the spaces span{Lηj} and

span{Lηk} intersect trivially if j 6= k. If Σ is in standard form, this implies immediately that

J has a block structure, J = diag(J1, . . . ,Jr), where Jk is an Nk × Nk-matrix of the form (2.20)

with Nk = rank(ηk). Accordingly, a network constructed from a separable MC-cycle is decomposed

into r disconnected clusters and for each cluster the connectivity matrix has the form corresponding

to a simple MC-cycle.
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Example 2.3.5. Consider the 7× 8-cycle

Σ =



+ + + + − − − −

+ + + − − − − +

+ + − − − − + +

+ − − − − + + +

+ + − − + + − −

+ − − + + − − +

+ − + − + − + −



.

This cycle has the generators η1, η5, η7 (ηj = rowj(Σ)) and is separable and in standard form.

Moreover, η4P = −η1, η6P = −η5, and η7P = −η7. Thus the network is decomposed into three

clusters consisting of neurons 1, 2, 3, 4, neurons 5, 6, and neuron 7, with cycle-connectivity matrices

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0


,

 0 1

−1 0

 ,

and −1, respectively. The topology of this network is illustrated in Figure 2.1D. We note, however,

that the cluster consisting of neuron 7 cannot show oscillations without delay, since a 1D dynamical

system does not have limit cycles. By contrast, with delay included, we can find oscillations already

for N = 1 for appropriate parameter values.

General separable cycles still can be decomposed into isolated clusters as span{R(Σ)} is semisim-

ple, however, the network topology in each cluster maybe more complicated (see Subsection 2.3.4).

The issue with separable cycles is that, even if the subcycles corresponding to the different clusters

are retrieved, these oscillations are in general not synchronized. We comment on this issue further

in Chapter 6.

2.3.3 Minimal Inseparable Cycles

For minimal inseparable cycles Σ with generators GΣ = {η1, η2, . . . , ηq}, at least two subspaces

span{Lηj ∩R(Σ)} and span{Lηk∩R(Σ)} (j 6= k) have a nontrivial intersection. Accordingly, Σ does
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not have full row-rank, rank(Σ) <

q∑
i=1

rank(ηi) = N, which implies in particular that J0 6= I. It

is still possible to partition the network into clusters, but some clusters may be connected and the

network topology within the cluster corresponding to the loop Lηj will in general not coincide with

the network topology predicted by the submatrix Σj of the corresponding simple cycle. Thus the

consecutiveness requirement does not have an effect, whereas the minimality requirement takes care

that the sub-matrices in J0 and J defining the connectivities within the clusters are non-singular.

The following example illustrates these features.

Example 2.3.6. Consider the 10× 12-cycle Σ = (ΣT
1 ,Σ

T
2 ,Σ

T
3 )T , where

ΣT
1 = (ηT1 , (η1P)T , (η1P

2)T , (η1P
3)T )T ,

ΣT
j = (ηTj , (ηjP)T , (ηjP

2)T )T , j = 2, 3,

with

η1 = ( + + + − + + + − + + + − ),

η2 = ( − + + + − − − + + + − − ),

η3 = ( + − − + − − + − − + − − ).

This is a minimal inseparable admissible cycle with generator GΣ = {η1, η2, η3}. The connectivity

matrix J is given by

J =
1

8



0 7 0 −1 1 −1 1 −1 −1 −1

−1 0 7 0 −1 1 −1 −1 −1 −1

0 −1 0 7 1 −1 1 −1 −1 −1

7 0 −1 0 −1 1 −1 −1 −1 −1

1 −1 1 −1 2 6 2 0 0 0

−1 1 −1 1 −2 2 6 0 0 0

1 −1 1 −1 6 −2 2 0 0 0

−1 −1 −1 −1 0 0 0 −2 6 −2

−1 −1 −1 −1 0 0 0 −2 −2 6

−1 −1 −1 −1 0 0 0 6 −2 −2



,

and J0 has the same block structure as J (with self-feedbacks of all neurons). From the form of J

(and J0) we infer that the cluster corresponding to η1 is connected to the clusters corresponding
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to η2 and η3, while the latter two clusters are not directly connected. This connectivity structure

is due to the fact that span{Lη1} intersects span{Lη2} and span{Lη3} in the one-dimensional

spaces spanned by (+,−,+,−, . . . ,+,−) and (+,+,+, . . . ,+), respectively, whereas span{Lη2}

and span{Lη3} intersect trivially. The network topology for this example is shown in Figure 2.1E.

In general, two clusters corresponding to two generators η, η′ ∈ GΣ are connected, if there exists a

sequence η = η1, η2, . . . , ηs−1, ηs = η′ of generators such that span{Lηj} and span{Lηj+1} intersect

nontrivially for 0 ≤ j < s.

2.3.4 Further Examples

The examples in this subsection serve to illustrate the possible effects of fewer essential genera-

tors than generators. Consider a cycle Σ with EGΣ = {ε1, . . . , εr}. If r < |GΣ|, the loop vectors of

at least one generator are contained in the span of the loop vectors of another essential generator.

Assuming |R(Σ)| = N , this implies

rank(Σ) ≤
r∑
i=1

rank(εi) < N,

and we encounter again a rank-deficiency that will destroy special structures in the clusters corre-

sponding to the essential generators.

Example 2.3.7. The 6× 6-cycle

Σ =



+ + − − + −

+ − − + − +

− − + − + +

− + − + + −

+ − + + − −

+ − + − + −


,

has two generators, row1(Σ) and row6(Σ), but row6(Σ) = row1(Σ) + row3(Σ) + row5(Σ), thus there

is only one essential generator, ε = row1(Σ). Without the sixth row, Σ would be a simple MC-cycle
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with ring-topology. The presence of the sixth row destroys this structure, which is revealed in the

following forms of J0 and J,

J0 =
1

4



3 0 −1 0 −1 1

0 4 0 0 0 0

−1 0 3 0 −1 1

0 0 0 4 0 0

−1 0 −1 0 3 1

1 0 1 0 1 3


, J =

1

4



0 4 0 0 0 0

−1 0 3 0 −1 1

0 0 0 4 0 0

−1 0 −1 0 3 1

−1 −4 −1 −4 −1 −3

−1 0 −1 0 −1 −3


.

Example 2.3.8. The cycle

Σ =


1 −1 1

−1 1 −1

1 1 1

 ,

has three generators and one essential generator that can be chosen as the first or second row.

Since Σ is non-singular, Σ is admissible and J0 is the identity matrix. A successfully retrieved

cycle shows three consecutive phases 1, 2, and 3 during an oscillation. In phases 1 and 2, neuron 1

is “on” (+) and in phase 3 it is “off” (−), while neuron 2 is “on” in phase 1 and “off” in phases 2

and 3. Clearly, neuron 3 is “on” during all 3 phases. The matrix J is given by

J =


−1 1 1

−1 0 0

0 0 1

 ,

and shows that neurons 1 and 2 form an excitatory/inhibitory pair, whereas neuron 3 acts excitatory

on neuron 1. Without this third neuron the oscillations of neurons 1 and 2 as required by the first

two rows of Σ could not be implemented, since the submatrix of Σ consisting of these rows is not

admissible.
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CHAPTER 3

MISALIGNMENT LENGTH ANALYSIS - QUALITATIVE AND

QUANTITATIVE THEORY

In this chapter, we introduce a novel method for studying the relaxation dynamics of networks

constructed from admissible cycles, which we refer to as Misalignment Length Analysis (MLA).

The method consists of two parts, a qualitative theory on the evolution of binary patterns and a

quantitative method for estimating the duration of the oscillation corresponding to a cycle stored

in the Hopfield-type neural network. We begin, in Section 3.1, by explaining the motivation for the

MLA method, before introducing the two parts of the method in detail in Sections 3.2 and 3.3.

3.1 Failures in Retrieving Admissible Cycles

Motivated by both biological nervous systems and analog electronic circuits, delays are intro-

duced in continuous-time neural network models to model both finite inter-neuron transmission

and (binary) state switching times. In our model, the delay coming from the finite inter-neuron

transmission time is incorporated through a delay time τ in the coupling term imposing transition

conditions in the network (1.10). The delay arising from the finite switching time is incorporated

as the membrane constant in the network (1.1) and (1.10), and the membrane constant can be

related to the gain scaling parameter λ [30] in both (1.1) and (1.10). Although in our networks,

the gain scaling parameter λ is set uniformly throughout the whole network, starting from different

initial values, the magnitude |ui(t)| will take different times to decrease to zero. The larger the

initial magnitude ui(t) starts from, the longer |ui(t)| will take to decrease to zero. As not all blocks

(consecutive “+”s or “-”s in each row of a cycle Σ are called a (temporal) block) have the same

length (the number of the same signs), it follows that, even though all components of the initial

data are taken with the same magnitude, the magnitudes of different ui(t)’s will become different

after just a few network state transitions (we call the column vector of the signs of the membrane

potentials of all neurons in the network at a time instant the network state at the time instant;

41



and the change of the network state from ξ(µ) to ξ(µ+1) a network state transition; a more precise

definition of the start- and end-times of a network state transition is given in Subsection 3.3.1.2).

Thus, after just a few network state transitions, the membrane potentials of different neurons would

need different times to switch from one sign to the other.

This time difference in state-switches, i.e. sign-changes, during one network state transition has

two effects. First, if the Hamming distance between two successive patterns in the cycle is greater

than one, then after a few network state transitions, the membrane potentials of different neurons

will change their signs asynchronously, except for neurons which behave dynamically identical, i.e.

ui(t) = uj(t) or ui(t) = −uj(t) for all t ≥ 0. Thus, excluding dynamically identical behavior of

two neurons, sign-changes of membrane potentials of different neurons occur one at a time during

a network state transition.

Second, through the delayed inter-neuron couplings, membrane potential(s) that changed sign(s)

in one network state transition earlier may force the membrane potentials that changed signs later

in the same network state transition to start the state-switches earlier in the next network state

transition. This leads to a consistent decrease in the magnitude of the membrane potential at the

beginning of the first state-switch in successive network state transitions.

Next, in networks constructed from two different types of admissible cycles, we illustrate how

asynchronous state-switches (sign-changes) cause retrieval fail.

Figure 3.1: Retrieval failures caused by the second effect of the time difference in state-switches.
A All intermediate patterns satisfy the transition conditions imposed by the prescribed cycle. B
Not all intermediate patterns satisfy the transition conditions imposed by the prescribed cycle. The

backgrounds in grayscales of both panels are the overlaps m
(ν)
i (t) [14, 26]. Parameters are set as:

λ = β = 10, τ = 2.1.
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Example 3.1.1. In this example, we illustrate retrieval failure for two different types of admissible

cycles. We choose the following typical cycles for each of the two types,

Σ =



+ + − + −

+ − + − +

− + − + +

+ − + + −

− + + − +


, and Σ̃ =



+ + − + − −

+ − + − − +

− + − − + +

+ − − + + −

− − + + − +


. (3.1)

The connectivity matrices of the two networks are constructed with the pseudoinverse learning rule

(1.8) as follows,

J =



0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0


, and J̃ =



0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

−1 −1 −1 −1 −1


.

The network constructed from Σ is a unidirectional excitatory (also known as cooperative) ring

network. This type of networks has drawn much attention in the past few years, and it has been

well known that there is no stable periodic solution [37,42], and the so called long-lasting transient

oscillations have been observed in both numerical and analog electronic circuit simulations of such

networks [16, 42]. In contrast, the network constructed from Σ̃ has more complicated network

topology (see Chaper 2), and richer dynamics (see Chapter 5).

Figure 3.1 illustrates retrieval failures caused by the asynchronous state-switches in the networks

constructed from these two cycles. While the relaxation dynamics of the two networks look very

different (between the starting points of two successive state-switches, the membrane potentials

in the network constructed form Σ (panel A) are smooth and monotone; but in some of the

membrane potentials in the network constructed from Σ̃ (panel B), between the starting points

of two successive state-switches, “humps” and “valleys” appear), retrievals in both networks fail

in the same way, and the failures are both due to the above second effect of the asynchronous

state-switches.
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Taking panel A as example, at around t = 25ms, u4(t) (blue curve) acomplishes its state-switch

first, and after approximately 2.1ms (τ = 2.1ms), u3(t) (red curve) is forced to start its state-

switch (reaches its turning point) first. At this starting point of the state-switch (red open circle)

for retrieving ξ(2) (the overlap m(ν)(t) in the background shows that over the interval from around

t = 28ms to around t = 31ms, ξ(2) is successfully retrieved), the magitude is smaller than that

at the starting point of the first state-switch (blue open circle at around t = 24ms) for retrieving

ξ(1). As the simulation continues, this effect becomes more and more significant, and ultimately, it

forces the retrieval of ξ(2) that is highlighted by a black arrow to fail. Panel B illustrates how the

same effect forces the retrieval of ξ(2) (highlighted by a black arrow) to fail.

Remark 3.1.1. Although the retrievals of the two cycles fail in the same way, the dynamics of

the two networks are not exactly the same. For example, while the membrane potential ui(t) of

each neuron in the network shown in Figure 3.1A is monotone between the beginning of every

state switch and that of the next state switch, there are some “humps” or “valleys” riding on the

membrane potential curves shown in Figure 3.1B between the starting points of two successive

state switches.

In the next section, motivated by the first effect described above, we develop a novel qualita-

tive theory to characterize the dynamics of these three types of networks, and after establishing

the quantitative method of the MLA in Section 3.3, we proceed to prove some important results

described in Section 3.2.

3.2 Qualitative Theory of Binary Patterns Dynamics

Although the qualitative theory we are going to develop in this section can be applied to general

simple cycles (and hence to separable composite cycles), rigorous proofs of the most important

results provided in Section 3.3 will be restricted to simple MC-cycles. To keep both sections

consistent, we confine ourselves in this section to simple MC-cycles too.

3.2.1 Interpolating Cycles with Intermediate Transitions

Definition 3.2.1. Let Σ = (ξ(1), . . . , ξ(p)) be any simple MC-cycle. The matrix B ∈ NN×p, called

the backward sequence matrix, or for short, BS-matrix of Σ, is constructed as follows:
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Step 1: Let Σ′ = (ξ(1), . . . , ξ(p), ξ(1), . . . , ξ(p)) and set B′i,1 = 1 for all i = 1, . . . , N ;

Step 2: If Σ′i,jΣ
′
i,(j−1) = 1, then B′i,j = B′i,(j−1) + 1, otherwise B′i,j = 1 for all i = 1, . . . , N

and j = 2, . . . , 2p;

Step 3: Let Bi,j = B′i,j+p for all i = 1, . . . , N and j = 1, . . . , p.

Remark 3.2.1. As Σ is a cycle, i.e., Σ represents an infinite cyclic (repeating) sequence of binary

patterns, and Σ itself is a smallest block repeating in the sequence, it follows that the i-th row of

the BS-matrix B represents the infinite sequence of positive integers associated to the i-th row of

Σ, and the row vector in B is the corresponding repeating block in the sequence.

Definition 3.2.2. Let B be a BS-matrix. Then the left-infinite sequence bi,j =

. . . ,Bi,(j−2),Bi,(j−1),Bi,j is called the j-th backward sequence associated to the i-th neuron, where

Bi,k = Bi,((k−1) mod p)+1. We define an ordering of the j-th backward sequences bi,j and bk,j

associated to the i-th and k-th neurons with i 6= k as follows:

Step 1: 

bi,j < bk,j , if Bi,j < Bk,j

bi,j > bk,j , if Bi,j > Bk,j

Set the 0-th parity π0 = 1 and jump to Step 2, if Bi,j = Bk,j

Step 2: Let m ≥ 1 be the smallest integer such that Bi,j−r = Bk,j−r for r < m and Bi,j−m 6=

Bk,j−m. For any 1 ≤ r ≤ m define the parity πr by πr = −πr−1 if Bi,j−r ≥ Bi,j−r+1 and πr = πr−1

otherwise, In this case, we define the ordering of bi,j and bk,j as
bi,j < bk,j , if Bi,j−m < Bk,j−m and πm = 1, or Bi,j−m > Bk,j−m and πm = −1;

bi,j > bk,j , if Bi,j−m > Bk,j−m and πm = 1, or Bi,j−m < Bk,j−m and πm = −1.
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Example 3.2.1. By the above definitions, the BS-matrices corresponding to Σ and Σ̃ in the

example in Section 3.1 are derived as follows

B =



1 2 1 1 1

2 1 1 1 1

1 1 1 1 2

1 1 1 2 1

1 1 2 1 1


, and B̃ =



1 2 1 1 1 2

2 1 1 1 2 1

1 1 1 2 1 2

1 1 2 1 2 1

1 2 1 2 1 1


.

For demonstration purpose, we consider B̃ and i = 2, j = 2, and k = 3 to construct two backward

sequences bi,j and bk,j as follows

b2,2 = · · · , 1, 1, 2, 1, 2, 1

b3,2 = · · · , 1, 2, 1, 2, 1, 1

Since the first element in b2,2 that is different from the one in b3,2 appears at the second position

counting leftward, and the corresponding parity is π1 = −1, and B̃2,1 = 2 > 1 = B̃3,1, it follows

that b2,2 < b3,2.

Remark 3.2.2. Observe that in the membrane potentials shown in Figure 3.1B, at around t = 54ms,

u2(t) (purple curve) changes sign earlier than u3(t) (red curve). The network states right after the

zeros of u2(t) and u3(t) can be recognized from the figure as (+,+,+,−,−)T and (+,+,−,−,−)T

respectively. We call these two patterns intermediate patterns or network states. Note that the

order in which the switches of u2(t) and u3(t) occur is consistent with the ordering of the two

backward sequences b2,2 and b3,2. In the following, we will develop an “algorithm” to derive the

intermediate binary network states that occur during the transitions from one prescribed cycle

state to the next one, and order them using the ordering of the backward sequences bi,j such that a

complete picture of the evolution of the binary network states can be obtained. In Section 3.3, we

will rigorously prove that for cycles with intermediate patterns satisfying the transition conditions

imposed by the cycles, the qualitative description of binary network states dynamics is indeed

consistent with the actual binary network states dynamics. Next, before continuing to develop the

algorithm, we show that for simple MC-cycles, the order we defined above is a total order.
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Proposition 3.2.1. Let Σ be any admissible cycle and assume that ηi 6= ηk and ηi 6= −ηk for all

ηi, ηk ∈ R(Σ) with i 6= k. Let the relation < be as defined in Definition 3.2.2. Then < is a total

order.

Proof: Assume < is not a total order, then there exist ηi, ηk in R(Σ) with i 6= k such that the

corresponding bi,j = bk,j for some j. Accordingly, we have that Bi,j−m = Bk,j−m for all m ≥ 0. It

follows that the i-th row and the k-th row in B are exactly the same, and this implies that either

ηi = ηk or ηi = −ηk.

Remark 3.2.3. Since for simple cycles, minimality is equivalent to linear independence of row vec-

tors, it follows that the order defined in Definition 3.2.2 is a total order over the set of all simple

MC-cycles.

Definition 3.2.3. Let Σ be a simple MC-cycle, and let ξ(µ) and ξ(µ+1) any two consecutive (col-

umn) patterns in Σ. Let dµ = d(ξ(µ), ξ(µ+1)) be the Hamming distance of the two patterns. A

binary (column) pattern ξ̃(µ,ν) is called an intermediate pattern between ξ(µ) and ξ(µ+1), if ξ̃(µ,ν) is

interpolated as follows,

Step 1: If ξ
(µ)
i = ξ

(µ+1)
i , then ξ

(µ,ν)
i = ξ

(µ)
i for all ν = 1, . . . , dµ − 1;

Step 2: Let Aµ be the set of row indices i with ξ
(µ)
i 6= ξ

(µ+1)
i and order the i ∈ Aµ as i1 < i2 <

· · · < idµ−1 in accordance with the ordering of the backward sequences bi,µ. Set ξ̃(µ,0) = ξ(µ) and

define the ν-th intermediate pattern by ξ̃
(µ,ν)
i = ξ̃

(µ,ν−1)
i if i 6= iν and ξ̃

(µ,ν)
i = −ξ̃(µ,ν−1)

i if i = iν .

Definition 3.2.4. The cycle Σ̂ is called the interpolated cycle of Σ, if Σ̂ is the cycle with all the

ordered intermediate patterns filled in between the corresponding prescribed patterns.

Next, we demonstrate how to find the interpolated cycle Σ̂1 for Σ in Example 3.1.1 step by

step. The interpolated cycle Σ̂2 for Σ̃ can be obtained similarly.

Example 3.2.2 (Intermediate Transitions). As by a cyclic permutation, any pattern in Σ can be

shifted to the first column, for the convenience of discussion, we start from the first prescribed

pattern ξ(1). Since d(ξ(1), ξ(2)) = 4, only one entry in the pattern does not change sign during

the network state transition between the first and second prescribed patterns, and there are three

intermediate patterns.
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Step 1: Since ξ
(1)
1 = ξ

(2)
1 , it follows that ξ̃

(1,1)
1 = ξ̃

(1,2)
1 = ξ̃

(1,3)
1 = 1;

Step 2: The 2nd, 3rd, 4th and 5th entries of the pattern ξ(1) change signs during the network

state transition to the next pattern ξ(2). Therefore, we need to order the four backward sequences

b2,1 = . . . , 1, 1, 1, 1, 2

b3,1 = . . . , 1, 1, 1, 2, 1

b4,1 = . . . , 1, 1, 2, 1, 1

b5,1 = . . . , 1, 2, 1, 1, 1

Following the algorithm for ordering backward sequences, we obtain:

b3,1 < b5,1 < b4,1 < b2,1.

Step 3: According to the order of the backward sequences, we have that the third entry changes

sign first, i.e. ξ̃
(1,1)
3 = −ξ(1)

3 and all other entries remain unchanged. The second, third and fourth

patterns are determined similarly, and the fourth pattern turns out to be the second pattern in the

prescribed cycle. Thus, we obtain the following three intermediate patterns

ξ̃(1,1) =



+

+

+

+

−


, ξ̃(1,2) =



+

+

+

+

+


, ξ̃(1,3) =



+

+

+

−

+


.

Step 4: Repeating the three steps above for the other 4 prescribed patterns, the interpolated

cycle Σ̂1 is obtained as follows,

Σ̂1 =



+ + + + + + + + − + + + + + + − − − + +

+ + + + − + + + + + + − − − + + + + + +

− + + + + + + − − − + + + + + + + + + +

+ + + − − − + + + + + + + + + + − + + +

− − + + + + + + + + + + − + + + + + + −


.

To emphasize the difference between prescribed and intermediate patterns, we use black and blue

colors to label them respectively, and also use vertical lines to separate them. In each pattern (both
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prescribed and intermediate) we use red color to highlight the entry at which the pattern changes

sign.

Following exactly the same steps, the interpolated cycle Σ̂2 is obtained as follows,

Σ̂2 =



+ + + + + + − − + + + − − − − − − − − −

+ + + − + + + + + − − − − − − − + + + +

− + + + + − − − − − − − − + + + + + + −

+ + − − − − − − − − + + + + + − − + + +

− − − − − − − + + + + + − − + + + + − −


.

Figure 3.2: Network state transitions in actual simulations of the networks constructed from Σ
(A) and Σ̃ (B) in Example 3.1.1. The backgrounds in both panels are raster plots of their overlaps
m(ν)(t) [14, 26] in grayscales. Above each panel, all intermediate patterns are labeled. Parameters
for the simulations are set as: β = λ = 100, τ = 2.5ms.

Figure 3.2 shows the actual simulations of the networks constructed from Σ (A) and Σ̃ (B) with

both initial data taken as their first prescribed patterns. Above each panel, all the intermediate

patterns are labeled. From the curves of the membrane potentials ui(t), every intermediate pattern

can be very easily identified. For example, in panel A, the first intermediate pattern is ξ̃(2,1),

and over the time interval between the first and second white dashed lines only the purple curve,

i.e. u4(t), is below the horizontal axis, therefore, ξ̃(2,1) = (+,+,+,−,+)T . All other intermediate

patterns can be identified similarly, and it can be easily checked that all of them are indeed exactly

the same as the intermediate patterns determined above.

Remark 3.2.4. In Section 3.1, we have seen that if the prescribed cycle does not correspond to

a stable periodic solution of the network (1.10), then the prescribed cycle will be retrieved as
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relaxation oscillations, and will ultimately die out through one of the two scenarios illustrated in

Figure 3.1A and B, respectively. In the first scenario, between successive starting points of any

two state switches during two consecutive network state transitions, the membrane potentials ui(t)

monotonically inscreases or decreases, which enables us to derive accurate results in the network

corresponding to such a scenario. However, in the second scenario, between the starting points of

two successive state-switches, some “humps” or “valleys” riding on the membrane potential curves

occur. Although these “humps” or “valleys” make a quantitative description of the evolution of

binary patterns difficult, a complete qualitative description of the evolution of the binary patterns,

including the “humps” and “valleys” riding on the membrane potential curves, can be obtained.

In the next subsection, we describe how to derive this complete qualitative description.

3.2.2 Qualitative Theory on Binary Patterns dynamics

Definition 3.2.5. The ν-th intermediate pattern ξ̃(µ,ν) between two successive patterns ξ(µ) and

ξ(µ+1) of the prescribed cycle Σ is said to satisfy the transition conditions imposed by the prescribed

cycle Σ, if

Jξ̃(µ,ν) = ξ̃(µ+1,ν), (3.2)

where J is the connectivity matrix constructed from Σ with the pseudoinverse learning rule (1.9),

and ξ̃(µ+1,ν) is the ν-th intermediate pattern between the prescribed pattern ξ(µ+1) and ξ(µ+2).

Example 3.2.3. Clearly, all the intermediate patterns of Σ̂1 in Example 3.2.2 satisfy the transition

conditions (3.2) imposed by the prescribed cycle Σ. As an extreme simplification of the original sys-

tem of delay differential equations (1.10) with C0 = 0, we consider the following discrete dynamical

system

xn = Jsign(xn−1) (3.3)

and define the infinite sequence of binary patterns generated by repetitively applying the discrete

dynamical system (3.3) on an initial binary pattern ξ∗ as the orbit of ξ∗ under the dynamical system

(3.3). Then as the intermediate patterns of the cycle Σ satisfy the transition conditions imposed

by Σ, the interdediate patterns in Σ̂1 themselves form orbits starting from any of them. Simple
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computations show that these orbits consist of two periodic orbits and one fixed point listed as

follows

ξ̃(1,1) (3.3)−−−→ ξ̃(2,1) (3.3)−−−→ ξ̃(3,1) (3.3)−−−→ ξ̃(4,1) (3.3)−−−→ ξ̃(5,1) (3.3)−−−→ ξ̃(1,1) (3.3)−−−→ · · ·

ξ̃(1,3) (3.3)−−−→ ξ̃(2,3) (3.3)−−−→ ξ̃(3,3) (3.3)−−−→ ξ̃(4,3) (3.3)−−−→ ξ̃(5,3) (3.3)−−−→ ξ̃(1,3) (3.3)−−−→ · · ·

and

ξ̃(1,2) (3.3)−−−→ ξ̃(2,2) = ξ̃(1,2) (3.3)−−−→ ξ̃(3,2) = ξ̃(1,2) (3.3)−−−→ ξ̃(4,2) = ξ̃(1,2) (3.3)−−−→ ξ̃(5,2) = ξ̃(1,2) (3.3)−−−→ · · ·

Clearly, the two periodic orbits respectively starting from ξ̃(m,1) and ξ̃(m,3) for any m are exactly

the same, and using matrix representation, the periodic orbit is given as follows

Σ′ =



+ + + + −

+ + + − +

+ + − + +

+ − + + +

− + + + +


. (3.4)

It is also clear that some intermediate patterns in the interpolated cycle Σ̂2 must not satisfy the

transition conditions imposed by Σ̃, as the Hamming distance between two successive prescribed

patterns is not always the same. It is not difficult to check that the images of the intermediate

patterns in Σ̂2 converge to the following two periodic orbits

Σ̃′1 =



+ + − − − +

+ − − − + +

− − − + + +

− − + + + −

− + + + − −


, and Σ̃′2 =



+ − − + − +

− − + − + +

− + − + + −

+ − + + − −

− + + − − +


. (3.5)

Remark 3.2.5. Since the network constructed from Σ is an excitatory (also known as cooperative)

ring network, and it has been well known that there is no stable periodic solution in such a network

[37, 42], it follows that all oscillatory solutions relax to one of the fixed point attractors, and the

oscillatory solutions break via collisions of the boundaries between the adjacent blocks (a consecutive
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set of neurons in a ring network with membrane potentials having the same sign at the same time is

called a (spatial) block, and the length of each block equals the number of neurons in the block) of the

oscillatory solutions [42]. Horikawa and Kitajima [42] pointed out that in the waves of oscillatory

solutions traveling along a ring network, the bounary followed by a shorter block travels faster

than that followed by a longer block. However, even in unidirectional ring networks, the prescribed

cycle may have multiple shortest blocks, and these blocks may have different “priorities” to be

“annihilated” via boundary collisions. Therefore, more information than just the length of the

smallest blocks is needed, and this is the “duty” of the backward sequences. Next, we redefine a

block as a temporal block, i.e. consecutive “+”s or “-”s in row vectors of the cycle-matrix Σ, and

describe how to use the backward sequences to locate the blocks with the highest “priority” to be

“annihilated” by boundary collisions.

Definition 3.2.6. Let Σ ∈ {−1, 1}N×p be an admissible cycle, and {bi,j : i = 1, . . . , N , j =

1, . . . , p} the set of all backward sequences associated to the entries of Σ. Let ξ′ be the pattern

derived from some ξ(µ) in Σ by replacing ξ
(µ)
k by −ξ(µ)

k , where the associated backward sequence

bk,µ ∈ min{bi,j : i = 1, . . . , N , j = 1, . . . , p}. Then the pattern ξ′ is called a derived pattern and the

cycle Σ′ that is formed of the orbit of ξ′ under (3.3) is referred to as a derived cycle of Σ.

Remark 3.2.6. Depending on ξ′, the derived cycle Σ′ may correspond to a fixed point attractor

or stable periodic solution, or just another cycle satisfying the transition conditions imposed by

Σ. If Σ′ does not correspond to any fixed point attractor or stable periodic solution, then by

repeating the same steps described in the above definition, a derived cycle Σ′′ of the derived cycle

Σ′ can be obtained, and we call this derived cycle Σ′′ a second order derived cycle. If Σ′′ does not

correspond to any fixed point attractor or stable periodic solution, then the above procedure can

be continued until a derived cycle corresponding to some fixed point attractor or stable periodic

solution is obtained.

Clearly ξ′ = ξ̃(m,1) for some m, and if the intermediate patterns satisfy the transition conditions

imposed by the prescribed cycle, then ξ′′ = ξ̃(m,2) for some m. More generally, if the intermediate

patterns satisfy the transition conditions imposed by the prescribed cycle, then the n-th order de-

rived pattern is an n-th intermediate pattern of the prescribed cycle Σ. Therefore, the intermediate
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patterns indeed tell the whole story of the qualitative dynamics of the network constructed from

the prescribed cycle Σ.

If intermediate patterns do not satisfy the transition conditions imposed by the prescribed cycle

Σ, then the network states may evolve into different “destinations”.

Figure 3.3: Qualitative description of the dynamics of the networks constructed from simple MC-
cycles. Parameters are set as: β = λ = 100, τ = 2.3.

Example 3.2.4. Figure 3.3A and B illustate actual simulations of the networks constructed from

Σ and Σ̃ respectively. On the top of each panel, three and two thick black bars labelled with

upside-down black arrows indicate the time intervals over which different phases of the qualitative

dynamics of the network states are highlighted. The backgrounds in both panels are raster plots of

the membrane potentials u(t). Comparing them with the derived cycles obtained in Example 3.2.3

shows that the derived cycles indeed capture the qualitative dynamics of the network states.

3.3 Quantitative Theory on Misalignment Length Dynamics

In the preceding Section, we have developed a novel qualitative method to fully describe the

qualitative dynamics during the relaxation of the network states from the initial state to an attrac-

tor, either a fixed point attractor or a stable periodic solution. Based on this complete description

of the transient network dynamics, in this section we develop the quantitative part of our MLA

method, which captures the dynamics of the misalignment lengths through an iterated map. We

begin by introducing the main “building blocks” needed for the quantitative MLA method.
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3.3.1 Building Blocks - Relaxation Times and Misalignment Lengths

3.3.1.1 Hopfield-type Networks with C0 = 0 and λ = β →∞

Neglecting the term for stabilizing the network in its current memory state, i.e. setting C0 = 0,

and introducing new variables xi(t) = λui(t) and s = tλ, (1.10) can be rewritten as follows,

ẋi(s) = − 1

λ
xi(s) + βK

N∑
j=1

Jij tanh(xj(s− τ)) (3.6)

This indicates that, from the point of view of biophysics, the gain scaling parameter λ can be

related to the membrane time constant of the neurons in the network, and the membrane time

constant of real neurons typically falls in the range from 10 to 100 ms [73]. In our studies on

storage and retrieval of cycles of binary patterns in Hopfield-type networks, due to two reasons, we

usually choose large values for the parameter λ. The first reason is that we interpret sequences of

the binary states +1 and -1 traversed by single neurons in Hopfield-type networks as sequences of

up and down states observed experimentally in cortical and CPG neurons [26], and the time scale

of these subthreshold membrane bistable behaviors is much larger (∼ 1 sec) than that of single

potential actions [74]. The second reason is due to the simple fact that

lim
λ→∞

tanh(λuj(t− τ)) = sign(uj(t− τ))

and replacing tanh(λuj(t − τ)) by sign(uj(t − τ)) largely simplifies the process of solving the

delay differential equations system (1.10). Therefore, for the convenience of introduction of the

MLA method, we consider the systems with λ → ∞ in this section, and in the next chapter, we

demonstrate that the results obtained in networks with λ→∞ provide a decent approximation of

the corresponding results in networks with λ large but finite.

Since βK = β/λ [14, 26], to avoid βK approaching zero when λ approaches ∞, we take β to be

a multiple of λ, i.e. β = αλ, where α is some positive constant. Without loss of generality and

also for simplicity, we set β = λ, i.e., βK = α = 1. Accordingly, we obtain the following network

equations

u̇i(t) = −ui(t) +
N∑
j=1

Jijsign(uj(t− τ)), (3.7)

which will form the basis for developping the quantitative MLA method.
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3.3.1.2 Notations and Terminology

Suppose we choose the first pattern ξ(1) in the prescribed cycle Σ to set up an initial data as

u(t) = aξ(1), for all t ∈ [−τ, 0), (3.8)

where the coefficient a ∈ R+ is an arbitrarily selected positive real number. Then starting from

t = 0, as long as ξ
(2)
i 6= ξ

(1)
i , the membrane potential of the i-th neuron, ui(t), exponentially de-

creases or increases, and changes sign during the decrease or increase, and we call this sign-change

process state-switch of the i-th neuron. When retrieving the second pattern ξ(2), no matter how

many neurons change sign, they change it at the same time. If some pattern ξ(µ) with µ > 1 in the

prescribed cycle Σ differ from the next pattern ξ(µ+1) in Σ by more than one entries, i.e. the Ham-

ming distance dµ = d(ξ(µ), ξ(µ+1)) > 1, then some neurons will start changing signs asynchronously

when retrieving the pattern ξ(µ+1). We call these asynchronous sign-changes of the membrane po-

tentials misalignment of the zeros of the membrane potentials (or for short, misalignment) during

the network state transition from one prescribed pattern to the next, and refer to the smallest

interval, on which all sign-changes switching the network states from one prescribed pattern to the

next take place, as the misalignment interval.

Next, we formally define concepts and introduce the notations for the quantitative MLA method.

First, we restate the concept of a network state used informally in Section 3.1.

Definition 3.3.1. Let u(t) be a solution of the network constructed from an admissible cycle Σ.

If, for a given t, ui(t) 6= 0 for all 1 ≤ i ≤ N , then the (binary) column vector

ζ(t) = sign(u(t)), (3.9)

is called the network state at time t.

Remark 3.3.1. Qualitatively, we denote the time interval during which the network state changes

from prescribed cycle pattern to the next a network state transition. To make this qualitative

description precise, we define distinguished times at which these transitions start and end.

Let J be the connectivity matrix constructed from any admissible cycle Σ with the pseudoinverse

learning rule (1.8), and let the initial data be imposed as u(t) = aξ(1) ∈ RN with a > 0 and for all

55



t ∈ [−τ, 0). Then the corresponding initial value problem of nonlinear system of delay differential

equations is formulated as
u̇i(t) = −ui(t) +

N∑
j=1

Jijsign(uj(t− τ)), t ≥ 0

ui(t) = aξ
(1)
i , t ∈ [−τ, 0)

(3.10)

Similar to the method of steps [75], we start solving the above initial value problem of delay

differential equations by solving first its corresponding initial value problem of linear ordinary

differential equations on the interval [0, τ),
u̇i(t) = −ui(t) +

N∑
j=1

Jijξ
(1)
j

ui(0) = aξ
(1)
i

, t ∈ [0, τ). (3.11)

To emphasize the difference between the two different types of initial value problems in the forms of

(3.10) and (3.11), respectively, we call (3.11) and analogous equations following from (3.10) derived

initial value problems.

Since Jξ(µ) = ξ(µ+1), where µ = 1, . . . , p and ξ(p+1) = ξ(1), the derived initial value problem

(3.11) becomes 
u̇i(t) = −ui(t) + ξ

(2)
i

ui(0) = aξ
(1)
i

, t ∈ [0, τ)

The solution to this problem is easily obtained as

ui(t) = e−t[(et − 1)ξ
(2)
i + aξ

(1)
i ], t ∈ [0, τ)

i.e.

ui(t) =


ξ

(2)
i (1− (1 + a)e−t), if ξ

(2)
i 6= ξ

(1)
i

ξ
(2)
i (1− (1− a)e−t), if ξ

(2)
i = ξ

(1)
i

, t ∈ [0, τ) (3.12)

Different from the standard method of steps, instead of continuing to solve the derived initial value

problem on the next interval [τ, 2τ), we use the solution (3.12) to define the first variable time

interval I0.

Designating the first zero of ui(t) by ti(0), provided that ξ
(1)
i 6= ξ

(2)
i , i.e.

ti(0) = min {t > 0 : ui(t) = 0, and i ∈ A0} , (3.13)
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where A0 is the set of row indices i with ξ
(1)
i 6= ξ

(2)
i used in Definition 3.2.3, the first (variable)

time interval I0 is defined as follows

I0 = [0, ť(0) + τ),

where

ť(0) = min
i∈A0

{ti(0)} .

If ξ
(1)
i = ξ

(2)
i , as in this case ui(t) moves towards ξ

(2)
i from aξ

(1)
i without sign-change, i.e. i 6∈ A0,

we say that ti(0) is not defined.

Similarly, we identify another important time point t̂(0) on the first interval I0 as

t̂(0) = max
i∈A0

{
ti(0) : ui(ti(0)) = 0, ť(0) ≤ ti(0) < ť(0) + τ

}
,

and define the first misalignment interval as [t(0), t̂(0)], i.e. the length of the first misalignment

interval, ∆T0, is computed as

∆T0 = t̂(0)− ť(0), (3.14)

which we refer to as the first misalignment length. Clearly, as |ui(0)| = a for every i = 1, . . . , N ,

it follows that ti(0) = ln(1 + a) provided ti(0) is defined, i.e. ξ
(1)
i 6= ξ

(2)
i . Thus, we have that

ť(0) = t̂(0) = ln(1 + a), and accordingly,

∆T0 = 0,

and

I0 = [0, ln(1 + a) + τ). (3.15)

We note that, since (3.15) always holds as ∆T0 = 0, we don’t have to take intermediate patterns

into account yet. But as we continue to define the subsequent (variable) intervals In with n ≥ 1,

∆Tn may become positive. In this case, if any intermediate pattern appearing in this subinterval

does not satisfy the transition conditions imposed by the prescribed cycle Σ, it may change the

time course of the membrane potentials in the next interval In+1. To avoid this complication,

in this dissertation, we develop the MLA method for admissible cycles with intermediate patterns

satisfying the transition conditions they impose only, and extend it to more general admissible cycles

in forthcoming work. Next, we extend notations related to the first interval I0 to any interval In,

and proceed to obtain the general formula for these intervals.
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Figure 3.4: Illustration of the notations and definitions related to the misalignment lengths ∆Tn in
timing diagrams. Panel (A) illustrates how non-trivial misalignment arises in the two components
u1(t) (blue curve) and u2(t) (red curve) of a sketched solution u(t) starting from a “uniform” initial
data u1(t) = −1 and u2(t) = 1 for all t ∈ [−τ, 0]. Among quantities with the same value, only one
is labeled. For example, as ť(0) = t̂(0), only ť(0) is labeled. Quantities with zero value are not
labeled either. For example, as ∆T0 = ∆T1 = 0, these two quantities are not labeled. Panel (B)
illustrates how the misalignment length ∆Tn changes with increasing n.

Definition 3.3.2. Assuming that the n-th interval In−1 and all relevant quantities, i.e. ti(n− 1),

ť(n− 1), and t̂(n− 1), have been defined, and, for t > ť(n− 1) + τ , at least one component of the

solution u(t) changes sign, we define the (n+ 1)-th (variable) time interval In and all its relevant

quantities ti(n), ť(n), t̂(n) as follows

ti(n) = min{t > t̂(n− 1) : ui(t) = 0, i ∈ An}, (3.16)

where An is the set of row indices i with ξ
(n+1)
i 6= ξ

(n+2)
i and ξ(ν) = ξ((ν−1) mod p)+1 for any ν > 0;

ť(n) = min
i∈An

{ti(n)} , and t̂(n) = max
i∈An

{ti(n)} ; (3.17)

and

In = [ť(n− 1) + τ, ť(n) + τ). (3.18)

Defining the (n+ 1)-th misalignment interval as [ť(n), t̂(n)], the length of this interval, referred to

as the (n+ 1)-th misalignment length, is computed as

∆Tn = t̂(n)− ť(n). (3.19)
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Definition 3.3.3. With the notation from Definition 3.3.2, we define the start- and end-times of

the n-th state transition ξ(n) → ξ(n+1) as ť(n − 1) + τ and t̂(n), respectively. Moreover, for any

i ∈ An, we define the initial values of the state-switches during the n-th network state transition

as ui,n = ui(t̃i(n)), where

t̃i(n) = min{t̃ : t̃ < ti(n) and u̇i(t̃i(n)) is continuous in (t̃, ti(n))}. (3.20)

Then, letting j, k ∈ An be defined by

j = arg min
i∈An

{|ui,n|}, and k = arg max
i∈An

{|ui,n|},

we set

ǔ(n) = uj,n, û(n) = uk,n, Ťn = tj(n)− t̃j(n), T̂n = tk(n)− t̃k(n) (3.21)

and call Ťn and T̂n the (n+ 1)-th minimal and maximal relaxation times, respectively.

Figure 3.4A illustrates how a non-trivial misalignment length ∆T2 arises. The figure illustrates

the two components u1(t) (blue curve) and u2(t) (red curve) of a sketched solution u(t) starting

from the “uniform” initial data u(t) = ξ(1) (i.e. a = 1) for all t ∈ [−τ, 0]. Since in the first interval

I0, t2(0) = t1(0) = ln(1 + a) = ln 2, and in the second interval I1, only the component u2(t) (red

curve) changes sign, it follows that ∆T0 = ∆T1 = 0. Since the component u1(t) (blue curve) does

not change sign in the second interval I1, its magnitude at the end of I1, û(2), becomes larger

than that of the component u2(t) (red curve), ǔ(2), it follows that in the third interval I2, u1(t)

(blue curve) will need longer time to reach its zero, i.e. t̂(2) > ť(2). So in this example, the first

non-trivial misalignment ∆T2 = t̂(2)− ť(2) > 0 arises in the third interval I2.

Figure 3.4B illustrates how the misalignment length ∆Tn changes with increasing n in the

timing diagram of a sketched solution u(t) in two successive time intervals In and In+1. From this

figure, we can see that 
∆T0 = T̂0 − Ť0, if n = 0

∆Tn = T̂n − Ťn + ∆Tn−1 if n > 0

, (3.22)

and the first minimal and maximal relaxation times are Ť0 = ť(0) and T̂0 = t̂(0) respectively. In

the next subsection, we prove this important relation, and based on this relation, we develop the

quantitative method.
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3.3.2 Recurrence Equations and Duration of the Delay-Induced Relaxation Oscilla-
tions

Before proving the relation (3.22), we first prove two other important results.

Lemma 3.3.1. Let Σ = (ξ(1), . . . , ξ(p)) be a simple MC-cycle with its intermediate patterns sat-

isfying the transition conditions imposed by Σ. Let u(t) be a solution of the network of the form

(3.7) constructed from Σ and starting from u(t) = aξ(µ) for some a ∈ R+ and 1 ≤ µ ≤ p. Let

bi,k and bj,k be the backward sequences introduced in Section 3.2 with the total ordering “<”. Then

bi,k < bj,k implies that

ti(n) < tj(n) (3.23)

and

|ui,n| < |uj,n| (3.24)

for any k, and i, j ∈ An with n > 0.

Proof: Recalling the definition of the order of the backward sequences in Definition 3.2.2, we

have that bi,k < bj,k implies one of the following holds true,

• Bi,k < Bj,k;

• Bi,k−m < Bj,k−m and πm = 1;

• Bi,k−m > Bj,k−m and πm = −1.

We prove the statement for first case in detail, for the other two cases the proof proceeds similarly.

Recall that in Section 3.1 we defined the set of consecutive “+”s or “-”s in each row of a cycle

Σ represented as a loop a temporal block. For example, suppose η3 = (+,+,+,−,+,+,−,−,+) ∈

R(Σ) is the 3rd row vector of a given cycle Σ, then the temporal blocks in η3 are (+,+,+,+),

(−), (+,+), and (−,−). According to the definition of the BS-matrix, it is clear that the entry

Bi,k counts the number of “+” or “-” in the “current” block before and including the k-th element

in the i-th row. For example, still consider the row vector η3 given above, B3,2 = 3, because in

the “current” block1, the entry Σ3,2 = + is the third “+”. Also, if Bi,k = 1, then the membrane

1“current” in this example means in time we are at the second column, and “current” block means the temporal
block containing the current entry Σ3,2 = +
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potential ui(t) has a zero at a time point corresponding to the block boundary right before the

“current” entry Σi,k. Based on this, it follows that Bi,k < Bj,k implies that the last zero of uj(t)

is located at some point in a variable time interval Inj which appears, in time, before the last

zero of ui(t) that is located at some point in another variable time interval Ini , and we have that

ni − nj = Bj,k −Bi,k.

Now, consider the corresponding derived initial value problem of the form (3.11). Since here we

only care about the magnitude, and the initial value is 0, the corresponding derived initial value

problem can be simplified as follows,
d|ui|
dt

= −|ui|+ 1

|ui(ti(ni))| = 0

. (3.25)

It is straightforward to see that the solution to this initial value problem is:

|ui(t)| = 1− e−(t−ti(ni)).

Similarly, we can obtain

|uj(t)| = 1− e−(t−tj(nj)).

Since Bi,k < Bj,k implies that ti(ni) < tj(nj), it follows that |ui(t)| < |uj(t)|.

Since the intermediate patterns of Σ satisfy the transition conditions imposed by Σ, following

from the Definitions 3.2.3 and 3.2.4, we have that di,k < dj,k implies that the i-th component

of the prescribed pattern ξ(n) changes sign before the j-th component forms the corresponding

intermediate pattern ξ(n,νi), where ξ((n−1) mod p)+1 = ξ(k), and the two corresponding intermediate

patterns are ξ(n,νi) and ξ(n,νj) with νi < νj . It follows that |ui,n| < |uj,n|.

Since ui,n is reached earlier than uj,n, and |ui,n| < |uj,n|, it follows that the two zeros ti(n) and

tj(n) also satisfy the order ti(n) < tj(n). This completes the proof.

Lemma 3.3.2. Let Ťn and T̂n be the (n+1)-th minimal and maximal relaxation times of a solution

u(t) of the network constructed from a simple MC-cycle Σ = (ξ(1), . . . , ξ(p)) with the intermediate

patterns satisfying the transition conditions imposed by Σ, and assume the solution starts from a

uniform initial condition, i.e. u(t) = aξ(µ) for some a ∈ R+ and 1 ≤ µ ≤ p and all t ∈ [−τ, 0).

Then

Ťn = ť(n)− ť(n− 1)− τ, (3.26)
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and

T̂n = t̂(n)− t̂(n− 1)− τ, (3.27)

Proof: Since the intermediate patterns of Σ satisfy the transition conditions imposed by

Σ, following from the Definitions 3.2.3 and 3.2.4, we have that, if ti(n) = ť(n), then the i-th

neuron is the first neuron starting its state-switch on the (n + 1)-th interval In. It follows that

Ťn = ť(n)− ť(n− 1)− τ . The formula (3.27) is obtained analogously. This completes the proof.

Proposition 3.3.3. Let Ťn, T̂n and ∆Tn be defined as above, and the initial data for retrieving

the prescribed cycle be uniform in magnitude, i.e. u(t) = aξ(µ) for some 1 ≤ µ ≤ p, a ∈ R+, and

t ∈ [−τ, 0). Then we have that the relation (3.22) holds true.

Proof: The relation (3.22) is an immediate consequence of the Lemma 3.3.2.

Since if the Hamming distance between any two consecutive patterns of a cycle is 1, the cycle

does not have any intermediate pattern and the misalignment length is always 0, it follows that

using the MLA terminology, this case is trivial. So next, we consider more general cases, i.e.,

the Hamming distance between two consecutive patterns is always greater than or equal to 2,

and demonstrate in an example how to use the relation (3.22) of misalignment lengths to find a

recurrence equation. This recurrence equation is then used to find a lower bound for the duration

of the delay-induced relaxation oscillations.

Example 3.3.1. Consider the simple admissible cycle Σ with the connectivity matrix J,

Σ =



+ + + −

+ + − +

+ − + +

− + + +


, J = ΣPΣ+ =



0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0


.

This network is an excitatory, unidirectional ring of four neurons. A simulated solution of the

network equations starting from the inital data u(t) = ξ(1) for all t ∈ [−τ, 0) is shown in Figure 3.6.

In general, if the i-th neuron changes sign first during the n-th network state transition and the

j-th neuron changes sign last during this transition, then the i-th neuron changes sign at ť(n) and
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the j-th neuron changes sign at t̂(n) = ť(n) + ∆Tn, and both Ťn and T̂n can be explicitly derived

as

Ťn = ln(1 + |ǔ(n)|), where ǔ(n) = ui(ť(n− 1) + τ), (3.28)

and

T̂n = ln(1 + |û(n)|), where û(n) = uj(ť(n− 1) + ∆Tn−1 + τ). (3.29)

Since in this example, we have

|ǔ(n)| = |ui(ť(n− 1) + τ)| = 1− e−(τ−∆Tn−1) (3.30)

and

|û(n)| = |uj(ť(n− 1) + ∆Tn−1 + τ)| = 1− e−(3τ+Ťn−2+Ťn−1+∆Tn−1), (3.31)

it follows that

Ťn = ln(2− e−(τ−∆Tn−1)) (3.32)

and

T̂n = ln(2− e−(3τ+Ťn−2+Ťn−1+∆Tn−1)). (3.33)

Applying (3.32) to Ťn−1 and Ťn−2 yields

Ťn−1 = ln(2− e−(τ−∆Tn−2)), and Ťn−2 = ln(2− e−(τ−∆Tn−3)),

and substituting this into (3.33) gives

T̂n = ln

(
2− e−(τ+∆Tn−1)

(2eτ − e∆Tn−2)(2eτ − e∆Tn−3)

)
. (3.34)

Thus, substituting both (3.32) and (3.34) into (3.22) gives a recurrence equation

∆Tn = ln

(
2e∆Tn−1 − e−τ

(2eτ − e∆Tn−2)(2eτ − e∆Tn−3)

)
− ln(2− e−(τ−∆Tn−1)). (3.35)

By direct computations, the “initial condition” for this recurrence equation is derived as

∆T0 = 0

∆T1 = ln

(
2− (1− a)e−τ

1 + a

)
− ln(2− e−τ )

∆T2 = ln

(
2− (1− a)e−τ

2(1 + a)eτ − (1− a)

)
− ln(2− e−τ ) + ∆T1

(3.36)
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where a is the coefficient of the initial data (3.8), and in this example we set a = β1 = 0.9999. With

the above initial condition (3.36), any misalignment ∆Tn, can be computed iteratively using (3.35).

Figure 3.5 illustrates both the update function f(x) = ln
(

2ex − e−τ

(2eτ−ex)2

)
− ln

(
2− e−(τ−x)

)
with

τ = 1, 2, and 5 respectively (A), and iterations of the recurrence equation (3.35) with the initial

condition (3.36) (B).

Figure 3.5: Illustration of the recurrence equation (3.35). A Graph of the function f(x) with
τ = 1, τ = 2, and τ = 5 respectively. B Cobweb diagram of the iterates of the recurrence equation
(3.35) with the initial condition (3.36). The two gray dotted vertical lines locate τ and ln 2 + τ on
the horizontal axis.

Figure 3.6: Delay-induced relaxation oscillation converging to a stable fixed point (1, 1, 1, 1)T . The
background in the left panel is the raster plot of the overlaps m(µ)(t). The right panel plots the
prescribed cycle Σ generated by the row vector η = (+,+,+,−).
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Since the (n+ 1)-th transition starts at ť(n) + τ , it follows that if n̂ > 0 is the smallest integer

such that ∆Tn̂ ≥ τ , then the sign vector of the coupling term Jsign(u(t−τ)) of the network (3.7) for

t > ť(n̂)+τ will be different from the next prescribed pattern. Therefore, the (n̂+1)-th pattern will

not be retrieved successfully. In other words, the condition for failure in retrieving the (n̂ + 1)-th

patterns is

∆Tn̂ ≥ τ. (3.37)

Figure 3.5B shows that the first iteration for which the misalignment exceeds τ = 2 is the

13th, i.e. n̂ = 13. Therefore, in the network with τ = 2, 13 prescribed patterns can be retrieved

successfully. Figure 3.6 illustrates retrieval of this cycle with the above parameter values, showing

that indeed 13 consecutive patterns are retrieved successfully. Since ť(n+ 1)− t̂(n) > τ , n̂τ can be

used as an approximate lower bound for the duration of the transient oscillations.
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CHAPTER 4

RETRIEVABILITY OF ADMISSIBLE CYCLES

In Chapter 3 we developed a novel method for analyzing the relaxation dynamics of net-

works constructed from admissible cycles, referred to as Misalignment Length Analysis (MLA).

The method consists of qualitative and quantitative parts. In this chapter, with the help of the

quantitative MLA method, we prove that simple MC-cycles with intermediate patterns satisfying

the transition conditions imposed by the cycles are weakly retrievable. Then, starting from this

result, we study retrievability of general admissible cycles.

4.1 Retrieving Admissible Cycles in Networks with C0 = 0

The network constructed from the cycle Σ given in Example 3.3.1 is an excitatory unidirec-

tionally coupled ring network. It has been well-known that such networks have no stable periodic

solution, and the delay-induced long lasting transient oscillations exist for a large set of parameter

values and initial conditions. In Example 3.3.1, with the sigmoid-shaped gain function approxi-

mated by the signum function, we have derived the recurrence equation (3.35) for the misalignment

lengths, and demonstrated, by iteratively solving this recurrence equation for the largest misalign-

ment length ∆Tn̂, how an approximate lower bound n̂τ for the duration of the long lasting transient

oscillations can be obtained. Actually, following exactly the same procedure, a recurrence equation

can be obtained for every network constructed from a simple MC-cycle if the intermediate patterns

satisfy the transition conditions imposed by the cycle. For composite cycles, we will show that a

lower bound for the duration of the delay-induced transient oscillations in networks constructed

from them is the smallest of the lower bounds of the simple cycle components of the composite

cycle.

Although the results in Chapter 3 were obtained in the limit when the gain scaling parameter

λ→∞, with tanh(λx) approximated by sign(x), they can be extended to networks with finite but

still large λ by applying the method of singular perturbations [76]. In this chapter, we assume that
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λ is sufficiently large such that the properties of the networks are qualitatively identical to those of

networks with λ→∞.

From (3.35), we can see that when τ → ∞, the misalignment length ∆Tn will approach its

initial value. In other words, the larger the delay τ , the longer the misalignment ∆Tn will be stuck

around its initial value, and hence, the more prescribed patterns the network will retrieve. If we

denote the largest number of the prescribed patterns the network can retrieve by n̂, then n̂→∞, as

τ →∞. Next, motivated by this simple observation, we introduce the concepts of weak and strong

retrievability of admissible cycles, and prove that every admissible cycle is weakly retrievable.

Definition 4.1.1. Let Σ = (ξ(1), . . . , ξ(p)) be an admissible cycle, and u(t) a solution of the network

(1.10) constructed from Σ starting from an initial data u(t) = aξ(µ) for all t ∈ [−τ, 0], ξ(µ) ∈ Σ and

a ∈ R+. We say that u(t) satisfies the transition conditions imposed by Σ over an interval

(0, T ), if u(t) satisfies

sign(u(t)) = ξ((µ+n+1) mod p)+1, (4.1)

for t ∈ (t̂(n), ť(n+ 1)), and all n for which ť(n+ 1) < T .

Definition 4.1.2. An admissible cycle Σ is strongly retrievable, if the system (1.10) has a stable

periodic solution u(t) satisfying the transition conditions imposed by Σ.

Definition 4.1.3. An admissible cycle Σ is weakly retrievable, if for any integer m > 0, there

exists a τ0 > 0, such that the largest number n̂ of prescribed patterns every network constructed

from Σ with τ ≥ τ0 retrieves is greater than m.

Next, we prove that every admissible cycle is weakly retrievable in the network constructed

from it with C0 = 0, and λ sufficiently large. For C0 > 0, the prescribed admissible cycles may

or may not be retrieved in the networks constructed from them. We will discuss the retrieval of

admissible cycles in such networks in examples in Section 4.2.

Lemma 4.1.1. Let ∆Tn and ∆T̃n be the misalignment lengths of two networks constructed from

admissible cycles. If ∆Tn ≤ ∆T̃n for all n, and the network associated to ∆T̃n is weakly retrievable,

then the network associated to ∆Tn is weakly retrievable too.
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Proof: This is clear, as ∆Tn < τ is the condition for successful retrieval of the n-th prescribed

pattern.

Theorem 4.1.2. Every simple MC-cycle Σ with intermediate patterns satisfying the transition

conditions imposed by Σ is weakly retrievable in the network constructed from it for λ sufficiently

large.

Proof: Let Σ̃ be the simple MC-cycle generated by the following first row: η̃1 =

(+,+, . . . ,+,−) ∈ {−1, 1}p. The backward sequence b̃1,p of this row is the smallest possible back-

ward sequence that can occur in any simple MC-cycle Σ ∈ {−1, 1}N×p, thus we have that b̃1,p ≤ bi,j

for all backward sequences in Σ. It then follows from Lemma 3.3.1 that

∆Tn ≤ ∆Tn

for all n, where ∆Tn and ∆Tn are the n-th misalignment lengths of Σ and Σ̃, respectively. According

to Lemma 4.1.1, it is sufficient to show that Σ̃ is weakly retrievable.

Now, following exactly the preceding used in Example 3.3.1, a recurrence equation for ∆Tn is

obtained as follows

∆Tn+p−1 = ln

(
2e∆Tn+p−2 − e−τ

p−1∏
k=2

(2eτ − e∆Tn+p−1−k)−1

)
− ln(2− e∆Tn+p−2−τ ). (4.2)

From this recurrence equation, it can be seen that ∆Tn+p−1 = ∆Tn+p−2 for all n ∈ N as τ → ∞.

Moreover, as τ →∞, the difference |û(k)−ǔ(k)| → 0 for all k ≤ p−1, and accordingly, |Ťk−T̂k| → 0,

which implies that |∆Tk − ∆Tk−1| → 0. Since ∆T0 ≡ 0, there exists τ∗ such that ∆Tp−1 < τ if

τ ≥ τ∗. By continuity, we can find for any ñ ∈ N and τ̃ > τ∗ such that ∆Tn < τ for all n ≤ ñ if

τ ≥ τ̃ , that is, Σ̃ is weakly retrievable.

Corollary 4.1.3. For a given J ∈ RN×N , all simple MC-cycles Σ ∈ {−1, 1}N×p satisfying JΣ =

ΣP are weakly retrievable.
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Figure 4.1: Retrieval of the inseparable composite admissible cycle Σ from Example 4.1.1. Param-
eters for the simulation are set as: C0 = 0, λ = β = 100, τ = 1.2ms.

Example 4.1.1. Consider the following inseparable composite admissible cycle Σ and its connec-

tivity matrix J

Σ =



+ − − +

− − + −

− + − +

+ − + +


, J = ΣPΣ+ =



0 1 1 1

0 0 0 −1

0 0 −1 0

−1 0 1 1


,

This cycle is an inseparable composite cycle, and the network constructed from it is neither excita-

tory nor a ring network. But simulations show that Σ is indeed stored and retrieved as delay-induced

long lasting transient oscillations. Since the longest block in Σ is of length 3, it can be expected

that its misalignment lengths are bounded by ∆Tn ≤ ∆Tn, where ∆Tn are the misalignment lengths

for the cycle from Example 3.3.1. We have already seen that, with C0 = 0, τ = 2, the network from

Example 3.3.1 can retrieve exactly 13 prescribed patterns. Figure 4.1 shows a simulated solution

of the network constructed from the composite cycle Σ above. Obviously the number of prescribed

patterns the network retrieves is actually much larger than 13, illustrating that the bound from

Theorem 4.1.2 is really a worst case scenario.

Remark 4.1.1. Similar behavior as shown in Example 4.1.1 has been found in networks constructed

from other admissible cycles even if they were not simple MC-cycles. We conjecture that for a given
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J, all cycles Σ satisfying JΣ = ΣP are weakly retrievable. A proof of this more general conjecture

is still pending and will be the subject of future research.

In the following, given an admissible cycle Σ with connectivity matrix J constructed from Σ,

we call any other cycle Σ′ satisfying JΣ′ = Σ′P a derived cycle.

Although Theorem 4.1.2 requires Σ to be the cycle prescribed in the network, i.e., the network is

constructed from it, we emphasize that Σ is not the only cycle that can be retrieved in the network.

In Corollary 4.1.3, we have shown that any simple MC-cycle Σ′ satisfying the transition condition

imposed by Σ can be retrieved in the network constructed from Σ, and numerical obervations

indicate that this is indeed true for any admissible cycle Σ! In the next example, we demonstrate

that in the network constructed from a randomly chosen prescribed admissible simple cycle

Σ =



+ + − + − −

+ − + − − +

− + − − + +

+ − − + + −

− − + + − +


, (4.3)

in addition to Σ, three other cycles are successfully retrieved.

Example 4.1.2. Consider the network constructed from the cycle (4.3) using the pseudoinverse

learning rule. The connectivity matrices J0 and J are respectively constructed as J0 = ΣΣ+ and

J = ΣPΣ+, and JΣ = ΣP as Σ is admissible. In order to reveal how many other cycles satisfy

the transition conditions imposed by Σ, we investigate the evolutions of all binary state patterns

ξ ∈ {−1, 1}5 under the transition operation ξ 7→ sgn(Jξ). In Figure 4.2, we illustrate the evolution

graphs of the binary state patterns. Following [56], we represent each binary column vector ξ ∈

{−1, 1}N by a decimal integer. Before converting binary vectors to decimal integers, the digit −1

in ξ is replaced by 0. For instance, ξ = (+,+,−,+,−)T is replaced by (1, 1, 0, 1, 0) first, then

converted to 24 + 23 + 21 = 26.

The evolution graphs exhibit four loops. Direct calculations show that these four loops corre-

spond to four cycles satisfying the transition conditions imposed by Σ. Labeling these four cycles

by Σ1, Σ2, Σ3 and Σ4 respectively (see Figure 4.2), all four cycles satisfy JΣi = ΣiP, i = 1, 2, 3, 4,
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Figure 4.2: Graphs of evolution of the state patterns ξ(µ) in the state space {−1, 1}5 under the
transition operation ξ(µ) 7→ sgn(Jξ(µ)), where J is constructed from the cycle (4.3) using the
pseudoinverse learning rule.

where P is the cyclic permutation matrix of the form (1.5). For i 6= 4, P is of order 6, and for i = 4,

P is of order 2. Note that Σ4 is not a simple MC-cycle. Clearly, the cycle Σ3 is the prescribed

cycle Σ.

Figure 4.3A and B respectively illustrate the retrieved time series in raster plots of the four

cycles and the projections of their phase trajectories onto the three-dimensional (u2, u3, u4) phase

subspace. Both illustrations suggest that the four cycles are retrieved successfully. This confirms

Corollary 4.1.3.

In the next section, we discuss retrieval of prescribed and derived admissible cycles in networks

with C0 > 0.

4.2 Retrieving Admissible Cycles in the Networks with C0 > 0

In general, the connectivity of a network (1.10) contains two components [14, 26], J0 and J.

One is for stabilizing individual patterns in Σ as fixed points of the system, and the other is for

imposing the transitions among patterns prescribed by the cycle Σ. We use the two parameters

C0 and C1 = 1 − C0 to control the relative contributions of these two components in shaping the

dynamics of the network. In Section 4.1, we proved in Theorem 4.1.2 that when only the transition

component J is included, i.e. C0 = 0, every prescribed simple MC-cycle can be retrieved with both
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Figure 4.3: Retrieval of the 4 coexisting derived cycles. A Raster plots of the time series of the four
retrieved cycles, Σ1, Σ2, Σ3, and Σ4. The network is constructed from the cycle (4.3). Clearly, the
prescribed cycle Σ = Σ3 = −Σ2, and Σ1 = (η̂T , (η̂P)T , . . . , (η̂P5)T )T , with η̂ = (+,+,+,−,−,−).
The cycle Σ4 is of length two and JΣ4 = Σ4P = −Σ4. The i-th row in each raster plot represents
the firing rates vi(t) of the i-th neuron. The parameters are set as β = 3, C0 = 0, τ = 10ms,
and λ = 20. B Projections of the phase trajectories of the four cycles onto the (u2, u3, u4) phase
subspace.

λ and τ sufficiently large. For C0 = 1, the transition conditions imposed by the prescribed cycle

Σ are completely removed. Consequently, no cycle is stored in such networks [56], and we will not

consider this type of networks here. In this section, we consider networks with 0 < C0 < 1, and

discuss retrieval of prescribed admissible cycles.

Theorem 4.2.1. Suppose a network of the form (1.10) is constructed from an admissible cycle

Σ = (ξ(1), ξ(2), . . . , ξ(p)), and in the (n + 1)-th time interval [nτ, (n + 1)τ), the solution of the

network (1.10) satisfies sgn(u(t)) = ξ(µ) for some 1 ≤ µ ≤ p. Then in the next time interval

t ∈ [(n+ 1)τ, (n+ 2)τ), βKβ1ξ
(µ+1) is an asymptotically stable equilibrium point of (1.10).

Proof: Since sgn(u(t)) = ξ(µ) for all t ∈ [nτ, (n+ 1)τ), for λ sufficiently large, we may assume

v(t) = β1ξ
(µ), or equivalently, u(t) = arctanh(β1ξ

(µ))/λ = βKβ1ξ
(µ). Thus, constraining ourselves

to the (n+ 2)-th time interval, i.e., t ∈ [(n+ 1)τ, (n+ 2)τ), and substituting u(t− τ) = βKβ1ξ
(µ)

into (1.10), we obtain a nonlinear system of ordinary different equations,

u̇(t) = −u(t) + C0βKJ0 tanh(λu(t)) + C1βKJβ1ξ
(µ).
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Since Jξ(µ) = ξ(µ+1) [14, 26], we have

u̇(t) = −u(t) + C0βKJ0 tanh(λu(t)) + C1βKβ1ξ
(µ+1). (4.4)

Assuming u∗ is an equilibrium solution of (4.4), substituting u(t) = u∗ into (4.4) gives

u∗ = C0βKJ0 tanh(λu∗) + C1βKβ1ξ
(µ+1).

Let v∗ = tanh(λu∗), then

1

λ
arctanh(v∗) = C0βKJ0v∗ + C1βKβ1ξ

(µ+1).

Direct substitution shows that v∗ = β1ξ
(µ+1) is a solution of the above equations. This shows that

u∗ = βKβ1ξ
(µ+1) is an equilibrium solution of (4.4).

Next, we show that the equilibrium solution u∗ = βKβ1ξ
(µ+1) is asymptotically stable on

[(n + 1)τ, (n + 2)τ). Let u(t) be a perturbed solution around the equilibrium solution u∗, that

is, u(t) = u∗ + δu(t). Thus, u̇(t) = δu̇(t). Linearizing the right hand side of the inhomogeneous

system (4.4) around u∗ and substituting u∗ = βKβ1ξ
(µ+1) into the linearized system yield

δu̇(t) = C0βJ0Ξδu(t)− δu(t),

where β = βKλ, and Ξ = diag(1 − tanh2(λβKβ1ξ
(µ+1)
1 ), . . . , 1 − tanh2(λ βKβ1ξ

(µ+1)
N )). Since

ξ
(µ+1)
i ∈ {−1, 1} for every i, and λβKβ1 = arctanh(β1), it follows that Ξ = (1 − β2

1)I. Therefore,

we get

δu̇(t) = Aδu(t), (4.5)

where A = C0β(1−β2
1)J0−I. Since the connectivity matrix J0 and the identity matrix I commute,

they are simultaneously diagonalizable. That is, if Q diagonalizes A, i.e. Q−1AQ = Λ = diag(σ1,

σ2, . . . , σN ), with <(σ1) ≥ <(σ2) ≥ · · · ≥ <(σN ), where <(x) designates the real part of the

complex number x, then

Λ = C0β(1− β2
1)Q−1J0Q− I. (4.6)

Since J0 = ΣΣ+ is idempotent, the eigenvalues of J0 are either 0 or 1. Thus,

σi = C0β(1− β2
1)− 1 or − 1
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Since β =
arctanh(β1)

β1
, and 0 < β1 < 1, it follows that

σi = C0
arctanh(β1)(1− β2

1)

β1
− 1 or − 1 (4.7)

Since C0 ≤ 1,
arctanh(β1)(1− β2

1)

β1
is a monotonically decreasing function of β1 over the open

interval (0, 1), and moreover,

lim
β1→0

arctanh(β1)(1− β2
1)

β1
= 1, lim

β1→1

arctanh(β1)(1− β2
1)

β1
= 0,

it follows that <(λi) < 0 for all i. This shows that u∗ = βKβ1ξ
(µ+1) is asymptotically stable over

the interval t ∈ [(n+ 1)τ, (n+ 2)τ), which completes the proof.

Suppose the pattern ξ(µ) has been retrieved successfully in the (n + 1)-th time interval, i.e.

sgn(u(t)) = ξ(µ) for t ∈ [nτ, (n+ 1)τ), neglecting the transient transitions. Substituting u(t− τ) =

βKβ1ξ
(µ) into (1.10) and taking the continuity of the solution at t = (n + 1)τ into account, we

obtain the following derived initial value problem
u̇(t) = −u(t) + C0βKJ0 tanh(λu(t)) + C1βKβ1ξ

(µ+1)

u((n+ 1)τ) = βKβ1ξ
(µ)

. (4.8)

Theorem 4.2.1 guarantees that in the next time interval, u∗ = βKβ1ξ
(µ+1) is an asymptotically

stable equilibrium point. Therefore, if in the (n+ 1)-th time interval, the solution u(t) entered the

basin of attraction of u∗ in the (n+ 2)-th time interval, then u(t) would be attracted to u∗ in the

(n + 2)-th time interval. Accordingly, the next pattern ξ(µ+1) in the cycle Σ would be retrieved

successfully. Next we follow Cheng et al. [46, 47] to adopt a similar geometry-based method to

analyze the basin of attraction of the stable equilibria of the above derived nonlinear system (4.8).

Let the right-hand side of (4.8) be denoted by f(u) = (f1(u), . . . , fN (u))T , where for every

i = 1, 2, . . . , N ,

fi(u) = −ui + C0βK

N∑
j=1

J0
ij tanh(λuj) + C1βKβ1ξ

(µ+1)
i . (4.9)

We prove two simple but useful results.

Lemma 4.2.2. Let J0 be constructed from any admissible cycle Σ ∈ {−1, 1}N×p using the pseu-

doinverse learning rule (1.7). Then J0
ii ≥ 0 for every i = 1, 2, . . . , N .
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Proof: Let Σ = UΛV ∗ be the singular value decomposition of Σ, where Λ is an N×p diagonal

matrix, and V ∗ is the adjoint of V . Then Σ+ = V Λ+U∗, where Λ+ is the p ×N diagonal matrix

obtained from Λ by taking the reciprocal of each non-zero element on the diagonal of Λ, leaving

the zeros in place, and transposing the resulting matrix. Thus, if Λ = diag(σ1, σ2, . . . , σk, 0, . . . ,

0) with σi 6= 0 for every i ≤ k, and k ≤ min{N, p}, then Λ+ = diag(σ−1
1 , σ−1

2 , . . . , σ−1
k , 0, . . . ,

0) and ΛΛ+ = diag(1, 1, . . . , 1, 0, . . . , 0). Since J0 = ΣΣ+ = UΛΛ+U∗, it follows that J0
ii =

k∑
j=1

UijU
∗
ji, where Uij and U∗ji are the entries in the place (i, j) and (j, i) in the matrices U and U∗

respectively. Since U∗ji = (Uij)
∗, it follows that UijU

∗
ji = ‖Uij‖2, where ‖Uij‖ is the modulus of the

complex number Uij . Therefore, we have that

J0
ii =

k∑
j=1

‖Uij‖2.

Since ‖Uij‖2 ≥ 0 for every j ≤ k, it follows that J0
ii ≥ 0 for every i.

Lemma 4.2.3. Let i = 1, . . . , N be fixed. If C0βJ
0
ii > 1, then there exist two values pi and qi of the

i-th component ui of the membrane potential function u with pi < 0 < qi, such that ∂ifi(u)|ui=pi = 0

and ∂ifi(u)|ui=qi = 0 for i = 1, . . . , N .

Proof: Since ∂ifi(u) = C0βKJ
0
iiλ(1− tanh2(λui))− 1, setting ∂ifi(u) = 0 and replacing βKλ

by β gives C0βJ
0
ii(1− tanh2(λui)) = 1, it follows that

tanh2(λui) =
C0βJ

0
ii − 1

C0βJ0
ii

, (4.10)

which implies that the equation ∂ifi(u) = 0 has two distinct solutions pi and qi with pi < 0 < qi

only when C0βJ
0
ii > 1. This completes the proof.

Remark 4.2.1. The last equality (4.10) implies that if C0βJ
0
ii > 1, then there exist two distinct real

values pi and qi with pi < 0 < qi such that ∂ifi(u)|ui=pi = 0 and ∂ifi(u)|ui=qi = 0. Moreover, if

C0βJ
0
ii = 1, then ∂ifi(u) = 0 only at ui = 0, and if C0βJ

0
ii < 1, then ∂ifi(u) < 0 for all ui ∈ R.

Therefore, if C0βJ
0
ii < 1 for every i, then the equation for equilibrium points f(u) = 0 will have

only one solution. Direct substitution of u = βKβ1ξ
(µ+1) into the equation f(u) = 0 shows that

βKβ1ξ
(µ+1) is the solution. Since in this case ∂ifi(u) < 0 for all i and u ∈ RN , it follows that the

unique equilibrium u∗ = βKβ1ξ
(µ+1) is globally asymptotically stable. Accordingly, we have the

75



Figure 4.4: The graphs for f̂i(ui) (A), f̄i(ui) (B), and f̌i(ui) (C). The parameters for the three
curves are set as follows, C0 = 0.6, β = 3, λ = 10, J0

ii = 1 and J0
ij = 0 for all i 6= j (this corresponds

to Σ being separable, minimal and consecutive [26]). The red curve in D is the solution curve of the
equation (4.12). The white, light gray and dark gray backgrounds in D correspond to the regions
in the parameter plane where the system (1.10) with ring topology with one inhibitory connection
has 1, 3 or 1, and 3N equilibria respectively. On the boundary between light-gray region and dark-
gray region, which coincides with the solution curve (red curve in D) of (4.12), both the multiple
saddle-nodes on limit cycle bifurcations and saddle-node bifurcations occur. The former bifurcation
breaks the limit cycle, and both bifurcations create all the rest equilibria.

that, if C0βJ
0
ii < 1 and τ is sufficiently large in comparison to the time span of the transients, then

any admissible cycle is retrievable, and any cycle satisfying the transition condition imposed by the

prescribed cycle can be retrieved in the network constructed from the prescribed cycle.

For C0βJ
0
ii > 1, since ξ(µ) ∈ {−1, 1}N for all µ ∈ N, and the “forcing term” C1βKβ1ξ

(µ+1)
i in

(4.9) vertically shifts the curve of the function (see Figure 4.4A, B and C)

f̄i(ui) = −ui + C0βKJ
0
ii tanh(λui), (4.11)

we have that f̌i(ui) ≤ fi(u) ≤ f̂i(ui) for every i = 1, 2, . . . , N , where

f̌i(ui) = −ui + C0βKJ
0
ii tanh(λui) + k−i , f̂i(ui) = −ui + C0βKJ

0
ii tanh(λui) + k+

i

with

k−i = −C0βK

N∑
j=1,j 6=i

|J0
ij | − C1βKβ1, k+

i = C0βK

N∑
j=1,j 6=i

|J0
ij |+ C1βKβ1.
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If f̂i(pi) < 0 and f̌i(qi) > 0, then the function fi(u) must intersect with the horizontal axis at

three distinct points. Accordingly, if f̂i(pi) < 0 and f̌i(qi) > 0 for every i, then the derived system

in (4.8) has 3N equilibria. Moreover, with further constraints on the parameters, 2N of these 3N

equilibria become asymptotically stable. A similar results has been proved in [46], and using the

same arguments as in [46], we can prove the two lemmas below. We summarize the three parameter

conditions as

(H1) : C0βJ
0
ii > 1;

(H2) : f̌i(qi) > 0 and f̂i(pi) < 0;

(H3) : C0β

N∑
j=1

|J0
ij |(1− tanh2(ληj)) < 1,

where ηj is chosen such that tanh2(ληj) = min{tanh2(λuj)|uj = čj , âj}, with čj and âj defined

exactly as in [46], and i = 1, 2, . . . , N .

Lemma 4.2.4. Under (H1) and (H2), the derived nonlinear system in (4.8) has 3N equilibria.

Lemma 4.2.5. Under (H1), (H2) and (H3), the derived nonlinear system in (4.8) has 2N asymp-

totically stable equilibria.

Clearly, f̂i(ui) and f̌i(ui) are respectively the upper and lower bounds for the function fi(u).

Depending on the values of C0 and β, the curve fi(u) may intersect with the ui(t) axis in one,

two or three points. For C0βJ
0
ii > 0, let ui = pi and take ξ

(µ+1)
i = 1, then setting fi(u) = 0

and substituting pi = − 1

λ
arctanh

(√
C0β − 1

C0β

)
yield the following transcendental equation for

the curve of the saddle-node bifurcations of the system (4.8) occuring at ui = pi,

arctanh

(√
C0β − 1

C0β

)
−
√
C0β(C0β − 1) + C1arctanh(β1) = 0, (4.12)

where β = arctanh(β1)/β1, and β1 ∈ (0, 1). For the saddle-node bifurcations of the derived system

in (4.8) occuring at ui = qi, the equation for the bifurcation curve can be obtained similarly by

taking ui = qi = −pi and ξ
(µ+1)
i = −1. A simple direct calculation shows this result in equation

(4.12). Therefore, we use it for finding the parameter values of both saddle-node bifurcations.

We numerically solve the above equation (4.12) for C0 with values of β between 1 and 5. The

red curve in Figure 4.4D illustrates the solutions (β,C0) for β ∈ (1, 5]. It is interesting to note

that numerically this curve coincides with the curves of the multiple saddle-nodes on limit cycle
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Figure 4.5: Breaking the cycles in the networks with (A and C) and without delay (B and D). The
curves in E and F illustrate the occurrence of the saddle-node bifurcation in the derived system in
(4.8).

bifurcations in the networks (1.10) with ring topology with one inhibitory connection and without

transmission time delay. In Figure 4.4D, we use the background with different grayscales to indicate

the regions in the β-C0 parameter plane in which the corresponding networks (1.10) with ring

topology with one inhibitory connection have 1 (white background), 3 or 1 (light gray backgound),

and 3N (dark gray backgound) equilibria. As we will see in Chapter 5, a multiple saddle-nodes on

limit cycle bifurcation [77] and several saddle-note bifurcations occur on the boundary between the

light-gray and dark-gray regions. The multiple saddle-nodes on the limit cycle bifurcation breaks

the limit cycle, and both bifurcations create all of the remaining equilibria in the networks without

transmission delay. We will discuss this in more detail in Chapter 5. In the next example we show

that it is the saddle-node bifurcation in the system (4.8) that breaks the successful retrievals of

the prescribed cycles, and we also compare this bifurcation with the multiple saddle-nodes on limit

cycle bifurcation in the corresponding network without transmission delay.
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Example 4.2.1. In order to compare the saddle-node bifurcation of the derived system in (4.8)

with the multiple saddle-nodes on limit cycle bifurcation in the corresponding network without

transmission time delay, we consider the networks constructed using the pseudoinverse learning

rule from the following admissible cycle,

Σ =


+ + + − − −

+ + − − − +

+ − − − + +

 . (4.13)

The network equations for this cycle are

u̇1(t) = −u1(t) + C0βK tanh(λu1(t)) + C1βK tanh(λu2(t− τ))

u̇2(t) = −u2(t) + C0βK tanh(λu2(t)) + C1βK tanh(λu3(t− τ))

u̇3(t) = −u3(t) + C0βK tanh(λu3(t))− C1βK tanh(λu1(t− τ))

. (4.14)

It is easy to verify that only two cycles are stored in this network, one is the prescribed cycle (4.13),

the other is the cycle of the two patterns, (−,+,−)T and (+,−,+)T . In Chapter 5, we will show

in numerical continuation computations that in this network the prescribed cycle Σ is stored as an

attracting limit cycle. In Figure 4.5 A, B, C and D, we respectively illustrate 180 phase trajectories

starting from randomly chosen initial data which are very close to the origin in simulations in

networks with (A, C) and without (B, D) transmission delay. The trajectories converging to

the same first binary pattern are plotted in the same color. The light-gray arrow in Figure 4.5A

indicates the point at which t = τ . At this point the delay term C1βKJ tanh(λu(t − τ)) in the

system (1.10) ceases being fixed, and the trajectory starts to evolve towards the point corresponding

to the binary pattern (−,+,+)T , labeled with a dark-gray arrow. Here, we avoid calling the point

equilibrium, because although after the saddle-node bifurcation in the derived system (4.8) an

attracting node does exist around this point, it does not exist before the bifurcation. However, in

the region around this point, the system behaves like that in the neighborhood of a saddle, i.e. the

trajectory approaches the point, and then moves away from it. In contrast, in the network without

delay, there is no such a period as in the network with delay before t = τ (the arch between

the starting point and the point labelled with the light-gray arrow). The phase trajectories of

the networks without delay directly approach the point at which a saddle-node on limit cycle
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bifurcation occurs when the parameter values move across the bifurcation curve. Therefore, in

Figure 4.5B along the purple representative phase trajectory, there is no point corresponding to

that labelled with a light-gray arrow in Figure 4.5A. This is the most significant difference between

the corresponding phase trajectories in the two networks. Using the Matlab packages for numerical

continuation computations and bifurcation analysis, DDE-BIFTOOL and Matcont, we verified

that each of the two purple representative phase trajectories in Figure 4.5A and B converges to

an attracting limit cycle (see Chapter 5 for details). In Figure 4.5C and D we illustrate the

phase trajectories (180 trajectories in each panel) in the same two networks with the parameter

C0 increased from 0.75 (A and B) to 0.76. Clearly, both networks stop retrieving the prescribed

cycle. In Chapter 5, we will see that a multiple saddle-nodes on limit cycle bifurcation [77] occurs

during the increase of C0 in the network both with and without delay, which breaks the limit

cycle corresponding to the prescribed cycle into 6 pairs of saddles and nodes. In Figure 4.5E, we

illustrate the curves of the function (4.9) with ξ
(µ+1)
i = 1 (the upper solid and dashed curves) and

−1 (the lower solid and dashed curves) respectively. When C0 increases from 0.75 to 0.76, the

graphs of the functions (4.9) move from the solid curves to the dashed curves, while the points

fi(pi) and fi(qi) move across the horizontal axis, indicating that a saddle-node bifurcation occurs

in the derived system (4.8). In order to visualize the portion of the curves close to the horizontal

axis more clearly, in Figure 4.5F we illustrate the portion of the solid and dashed curves in the

region enclosed by a dashed gray box in Figure 4.5E.
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CHAPTER 5

BIFURCATIONS IN NETWORKS CONSTRUCTED FROM

ADMISSIBLE CYCLES

Having investigated the retrievability of admissible cycles in Chapter 4, in this Chapter we con-

tinue to study how these cycles stored in a network. Through a systematic bifurcations analysis,

we show that the local bifurcations of the trivial equilibrium in networks constructed from admis-

sible cycles are determined by the structural features of these cycles, and that admissible cycles

are stored and retrieved either as attracting limit cycles, unstable periodic solutions or as so called

long-lasting transient oscillations, which are suggested to be consequences of interactions between

unstable periodic solutions and stable and unstable equilibria. We begin our study with a linear

stability analysis of the trivial equilibrium solution.

5.1 Scenarios for Possible Local Bifurcations of the Trivial Equi-
librium Solution

Consider the nonlinear system of delay differential equations (1.10). Since the delay-time τ is

treated as a parameter, we rescale time t as t = t̃τ and set w(t̃) = u(t̃τ) to obtain

ẇ(t̃) = τ
[
−w(t̃) + C0βKJ0 tanh(λw(t̃)) + C1βKJ tanh(λw(t̃− 1))

]
.

Dropping the tilde to simplify the notation, the rescaled system of delay differential equations

studied in this chapter takes the form

ẇ(t) = τ
[
−w(t) + C0βKJ0 tanh(λw(t)) + C1βKJ tanh(λw(t− 1))

]
. (5.1)

For systems without transmission delay, τ = 0, we set w(t) = u(t) and study bifurcations in the

system of ordinary differential equations

ẇ = −w + C0βKJ0 tanh(λw) + C1βKJ tanh(λw). (5.2)
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Clearly, w∗ = 0 is an equilibrium solution, referred to as trivial equilibrium, of both systems (5.1)

and (5.2). By expanding the right-hand side of (5.1) into a Taylor series in the neighborhood of

w∗ = 0 and neglecting the nonlinear terms, the linearization of (5.1) about the trivial equilibrium

is derived as follows

˙δw(t) = A1δw(t) + A2δw(t− 1), (5.3)

where A1 = τ(C0βJ0− I) and A2 = τC1βJ. Suppose (5.3) has a solution of the form δw(t) = eσtφ

with σ ∈ C and φ ∈ RN , and accordingly δw(t − 1) = eσ(t−1)φ. Substituting these two functions

back into (5.3) gives

σeσtφ = τ(C0βJ0 − I)eσtφ+ τC1βJeσ(t−1)φ. (5.4)

The equation (5.4) reduces to a linear, homogeneous system of algebraic equations, ∆(σ)φ = 0,

where ∆(σ) is called the characteristic matrix of the linearized system (5.3),

∆(σ) = (σ + τ)I− τC0βJ0 − τe−σC1βJ.

Thus, (5.4) has a nontrivial solution if and only if

det(∆(σ)) = 0, (5.5)

which is called the characteristic equation of (5.3). The solution set of (5.5) forms the spectrum

of the infinitesimal generator A of the strongly continuous semigroup {T (t)|t ≥ 0} of the solution

maps T (t) : C → C, where for every t ≥ 0, the solution map T (t) is defined by the relation

wt(θ) = T (t)ϕ(θ) with the initial data ϕ(θ) ∈ C [61, 62].

As the connectivity matrices J0 and J are constructed from the prescribed cycle Σ with the

pseudoinverse learning rule (1.7) and (1.9), we have that J0 and J commute [26], and accordingly,

J0 and J are simultaneously diagonalizable [78]. Suppose Q is a nonsingular matrix which simul-

taneously diagonalizes the connectivity matrices J0 and J. Thus, if the characteristic matrix has

the diagonalization ∆(σ) = QKQ−1, where K = diag(κ1, κ2, . . . , κN ), then

det(∆(σ)) = det(K) =

N∏
i=1

κi

and

K = (σ + τ)I− τC0βQ−1J0Q− τe−σC1βQ−1JQ.
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Suppose the prescribed admissible cycle Σ is simple, minimal and consecutive, then J0 = I [26],

and

K = (σ + τ(1− C0β))I− τe−σC1βQ−1JQ.

Since Jp = I, it follows that K̃ = diag(κ̃1, κ̃2, . . . , κ̃N ) with κ̃i = e2niπi/p, where K̃ = Q−1JQ,

i =
√
−1, 0 ≤ n1 < n2 < · · · < nN ≤ p− 1, and N ≤ p. Accordingly, we get

κi = σ + τ(1− C0β)− τC1βe
−σ+2niπi/p. (5.6)

Thus, the characteristic equation (5.5) becomes

N∏
i=1

(
σ − τC1βe

2niπi/p−σ + τ(1− C0β)
)

= 0. (5.7)

For networks of the form (5.2) without transmission delay, the same procedure leads to

N∏
i=1

(
σ − C1βe

2niπi/p + (1− C0β)
)

= 0. (5.8)

For the linear stability analysis, we set σ = α + iω with α, ω ∈ R. From (5.7), it then follows

that 
α+ τ(1− C0β) = τ(1− C0)βe−α cos(ω̃)

ω = τ(1− C0)βe−α sin(ω̃)

(5.9)

where ω̃ = 2niπ/p − ω. Since a local bifurcation from the trivial equilibrium requires neutral

stability, we set α = 0 in (5.9). Accordingly, a necessary condition for a local bifurcation from

w∗ = 0 is that 
τ(1− C0β) = τ(1− C0)β cos(ω̃)

ω = τ(1− C0)β sin(ω̃)

(5.10)

holds for at least one of the possible N values of ω̃. Adding the first equation squared to the second

equation squared in (5.10) gives

C0 =
β + 1

2β
− ω2

2τ2(β − 1)β
. (5.11)

Solving the first equation in (5.10) for ω yields

ω =
2niπ

p
− arccos

1− C0β

(1− C0)β
. (5.12)
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Figure 5.1: Curves of characteristic roots with zero real part (A-D) and the curve of the double-
zero characteristic roots (E). In A, B, C and D, the solid curves correspond to ni = 1 or 5; the
dashed curves correspond to ni = 2 or 4; and the dash-dot curves correspond to ni = 3. For ni = 0,
<(σ) > 0 for all 0 ≤ C0 ≤ 1 and 1 < β, therefore no curve corresponding to ni = 0 is shown for
β > 1 and 0 ≤ C0 ≤ 1. In both C and D the dash-dot curve consists of two parts. On the top
part, the characteristic roots σ move across the imaginary axis along the real axis, and on the right
part, the characteristic roots σ move across the imaginary axis off the real axis. The open circle in
D is the intersection of the two parts of the dash-dot curve, which is a double zero and suggests a
Bogdanov-Takens bifurcation [58, 59, 79]. The dotted curve in E corresponds to the double zeros
of the characteristic equation (5.7). The parameters for the curves shown in this figure are set as
follows, p = 6, τ = 0 (A), τ = 0.2 (B), τ = 0.4 (C), and τ = 0.8 (D).

Substituting then (5.12) into (5.11) provides an implicit equation for the curves of the characteristic

roots with zero real part,

C0 −
β + 1

2β
+

1

2τ2(β − 1)β

(
2niπ

p
− arccos

1− C0β

(1− C0)β

)2

= 0. (5.13)

Preceding in the same way for networks without transmission delay, equation (5.8), the above

implicit equation reduces to

C0 =
1− β cos(2niπ/p)

(1− cos(2niπ/p))β
. (5.14)

Since P is the cyclic permutation matrix (1.5), the eigenvalues of P are the p-th roots ρk =

e2kπi/p of unity, and its (k + 1)-th eigenvector corresponding to ρk has the general form v(k) =

(1, ρk, . . . , ρ(p−1)k)T . In Chapter 2, we have seen that the indices ni in the characteristic equations

(5.7) and (5.8) are determined by the structural features of Σ. Specifically, if the cycle Σ annihilates

the (k + 1)-th eigenvector, i.e. Σv(k) = 0, then k will not appear in the set of the N indices
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{ni|i = 1, 2, . . . , N}. Thus, the structural features of a cycle Σ determine the linear stability of the

equilibrium points of the networks constructed from it by selecting the indices ni that appear in

the corresponding characteristic equation (5.7) or (5.8), and hence indirectly determine the local

dynamics of the networks with and without transmission delay.

Therefore, in general, for a given p, depending on how the characteristic roots move across the

imaginary axis on the curves defined by (5.13) or (5.14), a scenario of all possible local bifurcations

of the trivial equilibrium solution of a network constructed from a simple cycle of length p can be

determined. As an illustrative example, we show the scenario of all possible local bifurcations of

the trivial equilibrium solution of the networks constructed from simple cycles of length p = 6 in

Figure 5.1.

The curves in panels A, B, C and D respectively illustrate the characteristic roots with zero real

part for the transmission delays τ = 0, 0.2, 0.4, and 0.8. The solid and dashed curves correspond

to purely imaginary characteristic roots, and ni = 1 or 5 and ni = 2 or 4, respectively. If the index

ni = 1, 5 or ni = 2, 4 is “chosen” by the prescribed cycle, then when parameters of the network

move across the corresponding solid or dashed curve transversely, a Hopf bifurcation will occur.

The dash-dot curve on the top of each of the four panels corresponds to zero characteristic roots

and ni = 3. Since no quadratic term appears in the Taylor expansion of the right-hand side of (5.1)

around the trivial solution w∗ = 0, it follows that if the prescribed cycle “selects” ni = 3 (i.e. J

has an eigenvalue with ni = 3), and the parameters of the network move across the dash-dot curve

on the top transversely, a pitchfork bifurcation will occur.

It is necessary to mention that the curve of zero characteristic roots is independent of the

transmission delay τ . A direct calculation shows that the explicit formula for this curve is

C0 =
1 + β

2β
, (5.15)

and in this case ni = p/2, where p is not only just 6, it could be any even natural number with

p/2 being odd. It is also not difficult to see that for ni = p/2, in addition to the dash-dot curve

(5.15) on the top in every panel A, B, C and D, the equation (5.13) has other solutions. These

“extra” solutions correspond to purely imaginary characteristic roots too. In C and D, these

“extra” solutions are plotted as dash-dot curves on the right. Accordingly, if ni = 3 is chosen,
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then when the parameters (C0, β) move across the curve of these “extra” solutions transversely,

also a Hopf bifurcation will occur. As the “extra” solutions change with the transmission delay τ ,

the curve of these solutions moves together with other curves corresponding to purely imaginary

characteristic roots, and intersects with the dash-dot curve on the top at one single point (open

circle in Figure 5.1D). At this point, the curve of the first (i.e. leftmost) “extra” solution terminates.

Since the intersection point corresponds to a double zero of the characteristic equation (5.7), it can

be verified through direct computations that at this point a codimension-two Bogdanov-Takens

bifurcation takes place [58,59,79]. The points on the dotted curve in E correspond to these double

zeros.

In general, for networks constructed from admissible cycles with p even, Figure 5.1 provides

an overview of the scenario of all possible local bifurcations of the trivial equilibrium solution. If

ni = p/2 is “chosen”, then at the trivial equilibrium solution of the corresponding network, Hopf

bifurcations, pitchfork bifurcation, and Bogdanov-Takens bifurcation will occur. If ni = p/2 is

not “chosen”, then at the trivial equilibrium solution, only Hopf bifurcations can occur. If ni = 0

is “selected”, then all the solutions bifurcating from the trivial equilibrium, including the trivial

equilibrium itself, are unstable.

Directly substituting ω = 0 into (5.11) and (5.12) gives ni = p/2. Since for networks constructed

from admissible cycles with p odd, p/2 is not an integer, it follows that no index ni can be p/2,

and accordingly, when the characteristic roots move across the imaginary axis, none of them passes

through the origin. Thus, in such networks, no pitchfork bifurcation can take place, and only Hopf

bifurcations occur at the trivial equilibrium solution.

Considering composite cycles, since every network constructed from a separable composite cycle

consists of isolated clusters, and each of these clusters corresponds to a simple cycle associated with

a generator of the cycle according to Chapter 2 or [26], it follows that the local bifurcations of the

trivial equilibrium of such networks are determined by the structural features of its simple cycle

components, which are as described above. By contrast, in networks constructed from insepara-

ble composite cycles, the local bifurcations from the trivial equilibrium solution are much more

complicated.
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In the next section, we demonstrate how the structural features of the prescribed cycles de-

termine the local bifurcation structures through characteristic examples. We demonstrate that

prescribed cycles are stored and retrieved in the corresponding networks as different mathematical

objects. Anti-symmetric simple MC-cycles (see Chapter 2 or [26]) of size N × p with N = p/2 are

stored and retrieved as attracting limit cycles created from the Hopf bifurcation which occurs when

the pair of the conjugate complex characteristic roots with the largest real part move across the

imaginary axis transversely from the left. Simple MC-cycles of size N × p with N = p are stored

and retrieved as transient oscillations that are exclusively due to the effects of the transmission

delay. More complicated cycles, including general simple cycles and inseparable composite cycles,

both prescribed and derived, are stored and retrieved as either attracting limit cycles or transient

oscillations induced by the delay.

5.2 Bifurcations in Networks Constructed from Admissible Cycles

In Section 5.1, we have explained how the structural features of an admissible cycle prescribed

in a network can be used to determine the local bifurcations from the trivial equilibrium. In

this section, we discuss the structure of these bifurcations in more detail for different types of

admissible cycles, and study how they are connected with bifurcations from nontrivial equilibria

using numerical continuation techniques.

We first recall two definitions from Chapter 2 and [26].

Definition 5.2.1. A cycle Σ is called simple, if it is generated by one single binary row vector η,

in other words, its rows are cyclic permutations of a binary row vector η. That is, if ηi is the i-th

row of Σ, then ηi = ηPk for some k ∈ N.

Definition 5.2.2. A binary row vector η = (η1, η2, . . . , ηp) ∈ {−1, 1}p is said to be anti-symmetric,

if it has the following two properties: (a) p is even; (b) η = (ζ,−ζ), where ζ = (ζ1, ζ2, . . . , ζp/2) ∈

{−1, 1}p/2. A cycle Σ of size N × p is called anti-symmetric simple MC, if it has the following four

properties: (a) Σ is simple; (b) ηi is anti-symmetric for every i, where ηi designates the i-th row of

Σ; (c) rank(Σ) = N ; (d) ηi+1 = ηiP for all 1 ≤ i < N , where P is the cyclic permutation matrix

defined by (1.5).
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Remark 5.2.1. For example, the admissible cycle (4.13) discussed in Example 4.2.1 is an anti-

symmetric simple MC-cycle of size N × p with N = p/2. Gencic et al. [14] have considered the

storage and retrieval of such cycles. Both numerical simulations and analog electronic circuit

experiments demonstrated successful storage and retrieval of such cycles in Hopfield-type neural

networks without delay. In Chapter 2 and [26], we showed that networks constructed from such

cycles are rings of unidirectionally coupled neurons (see Figure 5.2). In such ring networks of N

neurons, the connection from the first neuron to the N -th neuron is inhibitory, and except for this

connection, all other connections are excitatory. It has been well known that for ring networks of

unidirectionally coupled neurons, if the number of inhibitory couplings is odd, the ring networks

can generate sustained oscillations, and such ring networks have been widely used in different areas

ranging from digital circuits for variable-frequency oscillations [80] to models of nervous systems

for generating rhythmic movements [81,82].

5.2.1 Bifurcations in Networks Constructed from Anti-symmetric Simple MC-Cycles
with N = p/2

We now give a complete description of the local bifurcations from the trivial equilibrium for

antisymmetric simple MC-cycles with N = p/2 (p even). In particular, we show that in such

networks a Hopf bifurcation occurs creating a stable limit cycle that evolves into the prescribed

cycle stored in the networks both with and without delay. We first discuss the bifurcations for the

case of the cycle (4.13) in detail. For this cycle, J0 = I and

J =


0 1 0

0 0 1

−1 0 0


Example 5.2.1. Due to its anti-symmetric structure, the cycle Σ defined in (4.13) annihilates the

first, third, and fifth eigenvectors v(0) = (1, 1, 1, 1, 1, 1)T , v(2) = (1, ρ2, ρ4, 1, ρ2, ρ4)T , and v(4) =

(1, ρ4, ρ2, 1, ρ4, ρ2)T of the cyclic permutation matrix P, where ρ = eπi/3. Accordingly, it “selects”

the indices n1 = 1, n2 = 3, and n3 = 5 for the characteristic equation (5.7) or (5.8) of the network

constructed from it both with and without delay, corresponding to the complex conjugate pair of

roots x̃1 = eiπ/3, x̃5 = e−iπ/3 and the real root x̃3 = −1. Figure 5.3A shows the bifurcation curves
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Figure 5.2: Topology of the networks constructed from anti-symmetric simple MC-cycles of size
N × p with p = 2N . Such networks have topology of unidirectionally coupled neurons. All
connections, except for the one from the neuron 1 to the neuron N which is inhibitory (dashed
line), are excitatory (solid lines).

of the network without delay. The solid curve is the Hopf bifurcation corresponding to n1 = 1

and n3 = 5, and the dashed curve is the pitchfork bifurcation corresponding to n2 = 3. Since 0,

2, and 4 are not the ni indices in the characteristic equation (5.8), it follows that the limit cycle

created from the Hopf bifurcation corresponding to n1 = 1 and n3 = 5 may be stable, and the

Hopf bifurcation corresponding to ni = 2 and 4 cannot occur in this network. Using the MatLab

package MatCont 3.1, we numerically continued both the equilibrium solutions and the periodic

solution created from the trivial solution via the Hopf bifurcation. Both the analytic computations

and numerical simulations confirm that the limit cycle created from the trivial solution via the

Hopf bifurcation is stable. Numerical simulations (see Figure 1.4 in Chapter 1 or Figure 1 in [26])

show that the limit cycle satisfies the transition conditions imposed by the prescribed cycle (4.13).

Moreover, numerical continuation (Figure 5.3C and D) also indicate that the prescribed cycle is

retrieved as attracting limit cycle (see the six nodes labelled by dark green pentagrams in panel

D).

Figure 5.3E-H illustrate the results of the same analysis implemented in the network with delay.

From the distribution of the characteristic roots (F) and the bifurcation curves (E), it is apparent

that the delay changes the structure of the local bifurcations of the trivial solution significantly.

Especially, due to the interaction between the Hopf bifurcation (K,L) corresponding to n2 = 3 and

the complex conjugate characteristic roots with the second largest real part (J) and the pitchfork

bifurcation, a codimension two Bogdanov-Takens bifurcation occurs in the network with delay, while

this bifurcation does not happen without delay. We recall from Section 4.2 that for the matrices
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Figure 5.3: Local bifurcations of the trivial solution of the network constructed from the anti-
symmetric simple MC-cycle (4.13). Panels from A to D are for the network without delay, and
panels from E to F are for the network with delay (τ = 2.0ms). Panels A and E show the bifur-
cation curves of the two networks respectively. In both panels, the solid curves are the bifurcation
curves corresponding to n1 = 1 and n3 = 5, and the dashed curves are those of the bifurcations cor-
responding to n2 = 3. The horizontal dotted line in each of A and E indicates the path (C0 = 0.73)
in parameter space along which the numerical continuation computations were carried out. The
intersection between the dotted line and the solid curve indicates where the Hopf bifurcation oc-
curs, and in both networks, this bifurcation creates the attracting limit cycle corresponding to the
prescribed cycle (4.13). In both panels, the dashed curve on the top is the curve corresponding
to the pitchfork bifurcation, and all other (dashed and solid) curves are Hopf bifurcation curves.
Panels B, F and J show the location of the characteristic roots when the conjugate pair of roots
with the largest (B,F) and second largest (J) real parts move across the imaginary axis from the
left transversely, which indicates a Hopf bifurcation. Panels C and D show the results of numerical
continuations of the trivial and non-trivial equilibria and the periodic solution bifurcating from the
trivial solution. In panels C, D, G, H, K and L, we adopt the notations of MatCont [83], and
use H to label Hopf bifurcations, BP to label Branch (pitchfork bifurcation) Points, and LP to
label Limit Point (fold or saddle-node) bifurcations, respectively. The dark green pentagrams in
panels D and H label the branches of nodes continued from the multiple saddle-nodes on limit
cycle bifurcation. Panel I displays the unstable periodic solution (β = 2.0345) bifurcating from the
trivial solution via the first “extra” Hopf bifurcation corresponding to n2 = 3, and K and L display
numerical continuations of this periodic solution. The continuation computations shown in C and
D were implemented in MatCont 3.1. The continuation computations shown in G H, K and L
were implemented in DDE-BIFTOOL 2.03.
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Figure 5.4: Curves of possible local bifurcations (in both black and gray) of networks constructed
from simple MC-cycles of period p = 4 (A), 8 (B), 6 (C), and 10 (D) respectively. The black curves
in the four panels are those respectively chosen by the four prescribed cycles, Σ1 (A), Σ2 (B), Σ3

(C), and Σ4 (D) (see text for the generators of these four cycles). For Σ1 (A) and Σ2 (B), the
numbers of neurons in the two networks are N = 2 and N = 4. Clearly, in this case, p/2, which is
2 and 4 respectively, is not “chosen” by the prescribed cycles. Therefore, the pitchfork bifurcation
(short dashed “horizontal” curve on the top of each panel) does not occur, and accordingly, the
Bogdanov-Takens bifurcation (intersection between the short dashed “horizontal” curve on the top
and the short dashed “vertical” curve on the left of each panel) does not occur either. For Σ3

(C) and Σ4 (D), the numbers of neurons in the two networks are N = 3 and N = 5. Thus,
p/2, which is 3 and 5 respectively, is “chosen” by the prescribed cycles. Therefore, in these two
networks, both Hopf bifurcations and pitchfork bifurcation occur at the trivial equilibrium solution.
Since the networks shown in this figure are with transmission delay (τ = 2.0ms), it follows that
the Bogdanov-Takens bifurcation occurs at the trivial equilibrium solution in these two networks
too. All the curves are obtained by numerically continuing Hopf bifurcations and steady-state
bifurcations with DDE-BIFTOOL 2.03. Parameters for the computations were set as λ = 10,
τ = 2.0.
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J0 and J derived from the cycle (4.13) with p = 6, the transition and fixed point conditions are

also satisfied for the cycle

Σ =


+ −

− +

+ −

 ,

with p = 2 (referred to as “derived cycle”). This cycle is retrieved as unstable periodic solution

in the network with delay, but does not induce a periodic solution without delay. Figure 5.3I

illustrates the profile of this unstable periodic solution at C0 = 0.73 and β = 2.0345. Figure 5.3K

and L illustrate the numerical continuation of this periodic solution.

Despite the dramatic differences between networks with and without delay, in terms of the

“principal” Hopf bifurcation associated with the complex conjugate characteristic roots pair with

the largest real part, which corresponds to n1 = 1 and 5 for the cycle (4.13), delay does not change

the qualitative structure of the local bifurcations of the trivial equilibrium. Numerical simulations

and continuation results (see panels G and H) show that a limit cycle is created from the trivial

solution via the “principal” Hopf bifurcation. By checking the direction of the Hopf bifurcation, it

can be seen that this limit cycle is stable, and by computing the overlap [14,26], it is found that it

corresponds to the prescribed cycle (4.13).

Remark 5.2.2. We conclude this subsection with a complete description of the local bifurcations

from the trivial equilibrium for general simple, anti-symmetric MC-cycles with N = p/2. For these

cycles, we have that J0 = I and

J =



0 1 0 0 · · · 0 0

0 0 1 0 · · · 0 0

...
...

...
...

. . .
...

...

0 0 0 0 · · · 0 1

−1 0 0 0 · · · 0 0


.

The eigenvalues of this matrix are the roots of x̃N = −1, i.e. x̃i = eniπi/N , x̃2N−i = 1/x̃i, with

ni odd and 1 ≤ ni ≤ N − 1, whereas for N odd we have these complex conjugate root pairs for

1 ≤ ni ≤ N − 2 (ni odd) and there is the additional real root x̃N = −1 corresponding to nN = N .
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In the next two paragraphs we discuss these two cases and illustrate them for the four cycles

Σ1, Σ2, Σ3, Σ4 with p = 4, 8, 6, 10 (N = 2, 4, 3, 5), respectively. All of these cycles are generated

by η = (ζ,−ζ) with ζ = (+,+,+, . . . ,+) ∈ {−1, 1}N . Note that Σ3 is the cycle (4.13) discussed

in detail in Example 5.2.1. Bifurcation curves for these cycles in networks with delay (τ = 2.0ms)

are shown in Figure 5.4. A nonlinear local bifucation analysis near these bifurcations using center

manifold and normal theory has not been pursued yet and will be presented elsewhere.

If N is even, only Hopf bifurcations occur at the trivial equilibrium. For networks without

delay, only N/2 Hopf bifurcations occur, and the one corresponding to ni = 1 and p− 1 creates the

attracting limit cycle corresponding to the prescribed cycle. For networks with delay, corresponding

to each pair of ni’s, there are infinitely many Hopf bifurcations at the trivial equilibrium solution,

and among those corresponding to ni = 1 and p − 1, the first that occurs when β increases from

β = 1 creates the attracting limit cycle corresponding to the prescribed cycle.

If N is odd, both Hopf bifurcations and a pitchfork bifurcation occur at the trivial equilibrium.

For networks without delay, only (N − 1)/2 Hopf bifurcations occur, and the one corresponding

to ni = 1 and p − 1 creates the attracting limit cycle corresponding to the prescribed cycle. For

networks with delay, there are again infinitely many Hopf bifurcations at the trivial equilibrium, and

among those corresponding to ni = 1 and p− 1, the first that occurs when β increases creates the

attracting limit cycle corresponding to the prescribed cycle. In networks both with and without

delay, a pitchfork bifurcation occurs when parameters move accross the curve (5.15), which is

independent of the transmission delay τ . For networks with delay, corresponding to N = p/2, in

addition to the pitchfork bifurcation, infinitely many “extra” Hopf bifurcations occur too. The first

(for increasing β) of these “extra” Hopf bifurcations terminates at a Bogdanov-Takens point on the

pitchfork curve, depicted in Figure 5.1E for Σ3.

5.2.2 Bifurcations in Networks Constructed from Simple MC-Cycles with N = p

In addition to networks constructed from anti-symmetric simple MC-cycles with N = p/2,

there is another type of networks which are rings of unidirectionally coupled neurons, which are

constructed from simple MC-cycles with N = p. The only difference in terms of the network

connections is that while every network constructed from an anti-symmetric simple MC-cycle with
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N = p/2 has one inhibitory connection, all connections in networks constructed from simple MC-

cycles with N = p are excitatory.

This type of excitatory unidirectional ring networks have been extensively investigated recently

(see for example [37,41,42,84] etc.). Pakdaman et al. [37] showed that the long lasting oscillations

shown by such networks, referred to as transient oscillations, can not be explained by the analysis

of the asymptotic behavior of the system. They considered the system of difference equations de-

rived from the original system of delay differential equations. Such a system of difference equations

can be used to approximate the original system of delay differential equations when the time scale

under consideration is much larger than the characteristic charge-discharge time of the network.

Pakdaman et al. showed that the long lasting oscillations presented in the original network corre-

spond to attracting periodic orbits in the descretized system of difference equations. Accordingly,

they argued that the long lasting transient behavior observed in the original system of delay dif-

ferential equations is due to the competition between the antagonistic asymptotic behavior of the

original system and that of its descretized system. Both the properties of the transient oscillations

and the bifurcation structures of excitatory unidirectional ring networks were investigated by many

other authors in the past few years too (see for example [41,42,84] etc.).

Here, we consider the networks investigated by Pakdaman et al [37] and others as a special

case of our networks constructed from simple MC-cycles with N = p and C0 = 0. We claim

that the cycles retrieved in such networks corresponding to the prescribed cycles are the transient

oscillations described by Pakdaman et al [37]. Next, we briefly discuss how the prescribed cycles

determine the local bifurcation structures of the trivial equilibrium in such networks.

Since the networks here are constructed from simple MC-cycles with N = p, all integers from 0

to p− 1 are indices appearing in the characteristic equations (5.7) and (5.8) of networks both with

and without delay. As we have shown in Section 5.1, pitchfork bifurcation, Hopf bifurcations, and

Bogdanov-Takens bifurcation may occur in such networks. From the characteristic equations (5.7)

and (5.8), one can see by setting ni = 0, that the characteristic root σ = 0 can occur only when

β = 1, but since β = arctanh(β1)/β1 and β1 ∈ (0, 1), we have that β > 1 [26]. It follows naturally

that for ni = 0, throughout the whole parameter space, there is always one characteristic root with

positive real part. Therefore, all the solutions bifurcating from the trivial equilibrium, including
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the trivial equilibrium itself, are unstable [61]. Accordingly, the periodic solutions bifurcating from

the trivial equilibrium are unstable as well.

Next, we prove two useful results.

Lemma 5.2.1. Any network constructed from a simple MC-cycle with N = p has at least three

equilibrium solutions.

Proof: Any network constructed from a simple MC-cycle has the following general form

dui
dt

(t) = −ui(t) + C0βK tanh(λui(t)) + C1βK tanh(λui+1(t− τ)) (5.16)

where τ = 0 for networks without delay, and following [37], the index i is taken modulo N + 1, i.e.

uN+1 = u1. We show that this network has at least the following three equilibria, u∗ = ±(u∗, u∗,

. . . , u∗)T ∈ RN and 0 ∈ RN . Since obviously 0 is an equilibrium, we only need to consider the

non-trivial equilibrium. Substituting then u(t) = u∗ into the network (5.16) gives a scalar equation

0 = −u∗ + βK tanh(λu∗).

Setting f(x) = x − βK tanh(λx), we have that lim
x→−∞

f(x) = −∞, lim
x→∞

f(x) = ∞, and f(0) = 0.

Also, since df(x)/dx = 1− β(1− tanh2(λx)), df/dx = 0 leads to

tanh2(λx) =
β − 1

β
.

Since β > 1, f(x) has two distinct critical points x+ > 0 and x− = −x+. Since f(0) = 0,

df(0)/dx < 0, and lim
x→±∞

df(x)/dx = 1 > 0, it follows from the intermediate value theorem that

f(x−) > 0 and f(x+) < 0, and this implies that f(x) has three roots. This proves the assertion.

For the convenience of discussion, we denote the two non-trivial equilibrium solutions by u− and

u+ respectively. Next, we prove that these two non-trivial equilibrium solutions are asymptotically

stable.

Lemma 5.2.2. Let u∗ > 0 be the positive solution of the equation x− βK tanh(λx) = 0. Then the

non-trivial equilibrium solutions u− = −(u∗, u∗, . . . , u∗)T ∈ RN and u+ = (u∗, u∗, . . . , u∗)T ∈

RN are asymptotically stable for β < 1/(1− tanh2(λu∗)).
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Proof: Here we only analyze the local stability of the equilibrium u+, because the local

stability analysis for u− is exactly the same.

Linearizing the system (5.16) around the equilibrium u+ gives

u̇(t) = A1(u+)u(t) + A2(u+)u(t− τ)

where A1(u+) = (C0β(1− tanh2(λu∗))−1)I and A2(u+) = C1β(1− tanh2(λu∗)). Substituting the

ansatz u = φeσt with φ ∈ RN into the above linearized equation leads to the following characteristic

equation

det(∆(σ)) =

N∏
i=1

(σ + 1− C0β(1− tanh2(λu∗))− C1β(1− tanh2(λu∗))e2niπi/p−στ ) = 0.

The factor with ni = 0 in this equation reduces to

σ + 1− C0β(1− tanh2(λu∗))− C1β(1− tanh2(λu∗))e−στ = 0.

Letting σ = α+ iω, this equation becomes
α = (C0 + C1e

−ατ cos(ωτ))β(1− tanh2(λu∗))− 1

ω = C1β(1− tanh2(λu∗))e−ατ sin(ωτ)

If α = 0, then β = 1/((C0+C1 cos(ωτ))(1−tanh2(λu∗))). It follows that for β < 1/(1−tanh2(λu∗)),

<(σ) = α < 0.

Thus, for networks constructed from simple MC-cycles, the situation is very similar to that

Pakdaman et al described in [37], and the unstable limit cycles bifurcating from the trivial equi-

lbrium solution will stay in the boundary between the respective basins of attraction of the two

non-trivial equilibrium points u− and u+, which has been proved to be a codimension one locally

Lipschitz manifold containing the unstable equilibrium point u = 0 and its stable manifold [37].

5.2.3 Bifurcations in Networks Constructed from More Complicated Admissible Cy-
cles

In the above two different cases, we have discussed the local bifurcations of the trivial solution of

the two types of ring networks of unidirectionally coupled neurons. We showed that the prescribed

cycles in the two different types of networks are retrieved as different objects. In the networks with
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one inhibitory connection, i.e., in those constructed from anti-symmetric simple MC-cycles with

N = p/2, the prescribed cycles are retrieved as attracting limit cycles bifurcating from the trivial

equilibrium via Hopf bifurcations. In the networks without inhibitory connection, i.e., in those

constructed from simple MC-cycles with N = p, the prescribed cycles are retrieved as so called

long lasting transient oscillations. In this subsection, we continue to discuss the local bifurcations of

the trivial solution of the networks constructed from more general and complicated cycles, and show

that, in more general cases, both the prescribed cycles and the derived cycles stored in the same

networks may be retrieved as either attracting limit cycles or long lasting transient oscillations.

Although in general, the network constructed from a generic simple cycle may have complicated

network topology, the way the prescribed cycle determines the structures of local bifurcations of

the trivial equilibrium solution of the network by its structural features remains exactly the same.

We illustrate this for two examples. The first example is a network constructed from a simple cycle

for which an anti-symmetric derived cycle is retrieved as attracting limit cycle, and the prescribed

cycle is retrieved as long lasting transient oscillations.

Example 5.2.2. Consider the cycle Σ3 from Example 4.1.2. Figure 5.5 illustrates the evolution

of the attracting limit cycle bifurcating from the trivial equilibrium. Since Σ3 only annihilates the

first eigenvector v(0) = (1, 1, . . . , 1)T ∈ C6 of the cyclic permutation matrix P, it follows that the

indices ni in the characteristic equation (5.7) are 1, 2, . . . , 5. Therefore, both Hopf bifurcations,

and pitchfork bifurcation may occur. In Figure 5.5E, the curves on which these bifurcations are

located are shown as gray curves and the black curve on the left. On the black curve on the left, the

complex conjugate characteristic roots pair with the largest real part moves across the imaginary

axis transversely. Therefore, when parameters move across this curve, an attracting limit cycle may

bifurcate from the trivial solution. In panels A and B, we numerically compute solution trajec-

tories starting from randomly chosen constant initial data ϕ(θ) ∈ C([−1.0, 0],R5), and in panel F

we track both the periodic solution and the non-trivial equilibrium solutions corresponding to the

binary patterns in the derived admissible cycle Σ1 from Example 4.1.2 with DDE-BIFTOOL. Both

the simulations (A-D) and the numerical continuations (F) confirm the appearance of the attract-

ing limit cycle, and illustrate that the attracting limit cycle corresponds to the anti-symmetric,
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Figure 5.5: The attracting limit cycle bifurcating from the trivial equilibrium solution of the
network constructed from Σ3 in Example 4.1.2. In the four panels on the left, simulated solution
trajectories starting from randomly chosen constant initial data with different (β,C0) parameter
values (A: (1.1, 0.2), B: (1.2, 0.2), C: (2.0, 0.2), and D: (2.0, 0.9)) are displayed. The blue, red,
black solid circles and the open circle in panel E indicate the locations of the (β,C0) parameter
values for the simulations shown in the four panels on the left. The black curve on the left in
E and the gray curves are curves on which conjugate complex and real characteristic roots move
across the imaginary axis indicating possible Hopf and pitchfork bifurcations. The black curve on
the top of E is the curve corresponding to the multiple saddle-nodes on limit cycle bifurcation [77],
which destroys the attracting limit cycle bifurcating from the trivial solution. Panel F shows the
numerical continuations of the equilibrium solutions and the periodic solution bifurcating from the
trivial solution. The little red dots on the green curves mark where the multiple saddle-nodes on
limit cycle bifurcation occurs, and the green curves are branches of the saddles and nodes created
from the destroyed limit cycle. The red line in the middle are the two branches of the symmetric
equilibria (u,−u, u,−u, u) and (−u, u,−u, u,−u) respectively, and these two equilibria arise from
the trivial equilibrium via the pitchfork bifurcation. Both the simulations (A-D) and the numerical
continuations (F) confirm the occurence of the predicted bifurcations (E). The parameters are set
as follows: τ = 1.0ms, and λ = 10.
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Figure 5.6: Retrieving an inseparable composite cycle and the local bifurcation structures. The
curves in A are simulated solution trajectories with parameter values C0 = 0.71, β = 2 and
different delay values: τ = 0ms (red curve), τ = 2ms (gray curve), τ = 5ms (blue curve). Panel B
illustrates the numerical continuations (along C0 = 0.71, see dotted line in C) of both the periodic
solution (blue curves) bifurcating from the trivial equilibrium and the two pairs of saddles and nodes
(green curves) bifurcating from the periodic solution via the multiple saddle-nodes on limit cycle
bifurcation. The two saddle-nodes are plotted as the two small solid red circles on the two green
curves. We note that all curves are actually on the plane u3(t) = 0. Panel C illustrates curves of all
possible local bifurcations of the trivial solution. All but the top dashed curve, which is that of the
pitchfork bifurcation, are Hopf bifurcation curves. The numerical continuation computations and
the bifurcation curves are implemented and obtained in Matlab with the package DDE-BIFTOOL
2.03.

simple, and consecutive but not minimal cycle [26] Σ1 in Example 4.1.2. Meanwhile (see also Ex-

ample 5.2.1), as the Hopf bifurcation corresponding to n3 = 5 = p/2 does occur in this network,

the cycle Σ4 shown in Figure 4.3A is retrieved successfully in this network too, and it is retrieved

as the unstable periodic solution along the symmetric diagonal line {u ∈ R5|u = (u,−u, u,−u, u)}.

In Chapter 2 and [26], we have seen that networks constructed from separable cycles consist of

isolated clusters, and each cluster corresponds to a simple cycle component. Accordingly, not only

the local bifurcation structures of the trivial equilibrium solution, but also the dynamics of the

networks are completely determined by its simple cycle components. Therefore, we complete our

discussions of the local bifurcation structures of the trivial equilibrium with a network constructed

from an inseparable admissible cycle.
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Example 5.2.3. Consider the network constructed from the following cycle

Σ =


1 1 −1 −1 −1 1

1 −1 −1 −1 1 1

−1 1 −1 1 −1 1

 . (5.17)

Since the vector space spanned by the set of all cyclic permutations of the third row η3, which is

called the loop generated by η3 (see Chapter 2 and [26]), is contained in the vector space spanned

by the set of all cyclic permutations of the first two rows η1 and η2, and η3 is linearly independent

of η1 and η2, it follows that Σ is an inseparable composite cycle [26].

Direct computations show that the prescribed cycle is the only cycle satisfying the transition

conditions imposed by the prescribed cycle itself. Figure 5.6 illustrates the simulated solutions

(A), continuation of the limit cycle bifurcating from the trivial solution via the “principal” Hopf

bifurcation (B), and the curves of all possible local bifurcations of the trivial solution (C). For

C0 = 0.71, β = 2.0, and without delay, τ = 0, the solution trajectory approaches the attracting

limit cycle created by the “principal” Hopf bifurcation. When τ increases, the solution trajectory

starts deviating from the attracting limit cycle (gray curve in panel A for example), and becomes

more and more close to the prescribed cycle (see the blue curve in panel A). However, during

this process, only one “extra” Hopf bifurcation occurs, which creats one unstable limit cycle, and

four non-trivial equilibria are created via one pair of saddle-node bifurcations. We compared the

successfully retrieved cycle, which corresponds to the prescribed cycle Σ, with both the attracting

limit cycle created via the “principal” Hopf bifurcation corresponding to n1 = 1 and n3 = 5, and

the unstable limit cycle created via the “extra” Hopf bifurcation corresponding to n2 = 3. The

retrieved cycle corresponds to none of them. We argue that this retrieved cycle may be the transient

oscillation described by Pakdaman et al and others [37,42,84], and it may be the consequence of the

competition among the attracting limit cycle, the unstable limit cycle and the saddles and nodes.
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CHAPTER 6

CONCLUSIONS AND DISCUSSIONS

In this dissertation, we have systematically studied the storage and retrieval of cyclic patterns

in Hopfield-type neural networks. In this chapter, we summarize and discuss our main methods

and results developed and obtained in Hopfield-type neural networks on three topics: admissibility

of cyclic patterns and topology of the networks constructed from admissible cycles; relaxation

dynamics of the networks constructed from simple MC-cycles; retrievability of admissible cycles

and bifurcations of the networks constructed from admissible cycles.

6.1 Admissibility and Network Topology

In this part, we studied the structural features of admissible cycles and their relation to the

topology of the corresponding networks. While our main motivation in this part was the storage

of cycles in continuous-time Hopfield-type networks, the results apply to other networks as well,

including the discrete networks considered by [56] and [1] and networks of spiking neurons exhibiting

up-down states. In particular, we have formulated and proved conditions on binary cyclic patterns

that guarantee the existence of a network with connectivity satisfying the transition conditions

imposed by the cycle, independent of the specific dynamics of the individual neurons.

We showed that if and only if the discrete Fourier transform Σ̂ = ΣV of a cycle matrix Σ

contains exactly r nonzero columns, where r = rank(Σ), then a network can be constructed from

Σ with the pseudoinverse learning rule. Based on the structural analysis of the invariant subspaces

of the row space of Σ, the admissible cycles have been classified into simple cycles, and separable

and inseparable composite cycles. This classification was based on the decomposition of the row

space of Σ into subsets corresponding to disjoint loops. The admissibility of a cycle implied that all

vectors of a loop are in the row space of Σ if Σ contains some of these loop vectors. If no loop-space

associated with Σ is a subspace of another loop-space (the generators are essential generators),

we have identified for each loop the neurons associated with the loop vectors contained in Σ with
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a cluster. For general admissible cycles the clusters are connected, and the connectivity of the

clusters depends on the intersections of their loop-spaces. Two clusters are directly connected if

their indecomposable invariant subspaces intersect non-trivially. They are “indirectly” connected

if they are part of a chain of directly connected clusters.

If an admissible cycle is separable, the clusters are completely isolated. In this case each cluster

corresponds to a simple cycle associated with a generator of Σ. If the simple cycle is minimal and

consecutive, the cluster has the form of a feedforward chain from the last neuron to the first neuron

with feedbacks to the last neuron from the other neurons. If in addition the length of the cycle, p,

is even and the rank of the generator is p/2, we generically find a ring structure with excitatory or

inhibitory connection from the first neuron to the last neuron, but we cannot exclude that special

loops with these properties exist for which no ring-structure occurs. If the simple cycle is minimal

but non-consecutive, we find more than one feedforward chains.

Regarding non-minimal simple as well as composite cycles, it would be interesting to find

equivalence relations similar to those of [85], and [86], relating networks constructed from non-

minimal cycles to networks constructed from minimal cycles. For example, similar to the linear-

threshold (LT) networks [87,88], we may consider the Hopfield-type network (1.10) with delay in a

different but closely related form,

u̇ = −u + tanh
(
β
(
C0J

0u + C1Juτ
))
, (6.1)

where β = βKλ and uτ = u(t − τ). While (1.10) is invariant under arbitrary permutations of

the neurons, it can be shown that (6.1) is invariant under a larger class of linear transformations

that allows to define broad equivalence relations among admissible cycles. In comparison to (1.10),

the only disadvantage (6.1) may have is that it is less biologically plausible, because in biological

neural networks neurons usually are coupled with each other through chemical synapses, which

means that the firing rates instead of the membrane potentials of the presynaptic neurons change

the membrane potential of the postsynaptic neuron.

In networks constructed from composite cycles, the complete isolation of the clusters of separable

cycles means that each cluster has its own subcycle. The issue is that we cannot expect the different

subcycles to synchronize, preventing the network to traverse the cycle states in the order prescribed
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by the cycle matrix. In this case an additional synchronization mechanism must be introduced to

enforce synchrony. Such a mechanism can be in the form of a small coupling among the clusters or

through an external periodic input acting as pacemaker.

The generation of cyclic patterns in animal nervous systems is associated with CPG networks,

and the storage and retrieval of cyclic patterns in such networks are fundamentally important.

Recent experimental observations [8, 22, 23] suggested that CPGs may be highly flexible. As some

animal movements, such as swallowing, gastrointestinal motility etc., often require the coordination

of several functional groups of muscles, different CPGs controlling these muscles subsequently form

during different phases of the movements. Such CPG networks consist of pools of neurons that can

function in several CPGs involved in the organization of various motor behavior.

Recently, in order to account for the flexibility of memory representation observed in neuro-

physiological experiments, [88] studied the effect of saliency weights on the memory dynamics in LT

neural networks. They showed that the saliency distribution determines the retrieval process of the

stored patterns, and that a nonuniform saliency distribution can contribute to the disappearance

of spurious states. Using our results on the relation between the structural features of a cycle and

the network topology, a mechanism similar to the variable saliency factor introduced by [88] into

LT networks may be used to combine different CPGs in one network, and to study how a sequence

of several cycles determines a changing network structure.

6.2 Relaxation Dyanmics

Motivated by a simple observation of the asynchronous sign-changes during the network-state

transitions for retrieving the cycles prescribed in the network, we developed a novel method, which

we referred to as the Misalignment Length Analysis (MLA), for analyzing the relaxation oscilla-

tions corresponding to most admissible cycles. The method consists of two parts, a qualitative

theory of binary patterns dynamics, and a quantitative method for misalignment length dynamics.

The method was developed in the networks constructed from simple MC-cycles with intermediate

patterns satisfying the transition conditions imposed by the cycles prescribed in the networks.

Directly starting from the cycle itself, we constructed a backward-sequence matrix (MS-matrix ),

and with the entries of the MS-matrix, we obtained a backward sequence bi,n for every neuron in
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the network during the time interval for retrieving the n-th pattern, where the index i labels the

neuron to which the sequence bi,n is associated, and defined the order between any two backward

sequences. We showed that sign-changes of different neurons occur completely asynchronously

during every network state transition, i.e., one at a time. Thus, if the Hamming distance between

two consecutive patterns in the prescribed is greater than one, then the sign-changes occur in

the order of the backward sequences {bi,n : i = 1, . . . , N , n is fixed}. During each network state

transition, we defined the sign (column) vector of the membrane potentials u(t) of the network

between two sign-changes to be an intermediate pattern. We showed in examples in Chapter 3 that

the long term behavior of the network constructed from admissible cycles is determined by these

intermediate patterns and the cycles starting from them.

Based on the qualitative theory of binary patterns dynamics, we constructed a recurrence

equation for every simple MC-cycle. By inductively solving the recurrence equation, a lower bound

for the total number n̂ of the prescribed patterns that can be successfully retrieved was obtained.

Although the motivation for our quantitative MLA method is similar to that of the kinematical

model for traveling waves in excitatory ring networks proposed by Horikawa and Kitajima [42],

our method is fundamentally different from their model in two aspects. First, our method has

a qualitative theory part, which uses the information from cycles prescribed in networks, and

a complete qualitative description of the relaxation binary pattern dynamics can be obtained.

Second, while Horikawa and Kitajima considered spatial blocks in their kinematical model, we

consider temporal blocks in our MLA method. Using the qualitative description, we can construct

a recurrence equation for every network constructed from a simple MC-cycle with intermediate

patterns satisfying the transition conditions imposed by the prescribed cycle. By iteratively solving

the recurrence equation, the exact number n̂ of binary patterns from the prescribed cycle can be

calculated. Moreover, based on our theory about the order relation of the backward sequences

associated to binary row vectors, for any network constructed from an admissible cycle, we may

find a lower bound for the number of the binary patterns from the prescribed cycle that can be

successfully retrieved. Therefore our method is applicable to a much broader class of networks than

the unidirectionally coupled ring networks to which the kinematical model is applicable. Also, as

the time interval for retrieving a binary prescribed pattern is larger than but close to τ , the value
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n̂τ can be taken as a lower bound for the duration of the transient oscillations relaxing to either a

stable equilibrium or a stable periodic solution.

6.3 Retrievability and Bifurcations

In Chapter 4, we studied retrieval of admissible cycles in Hopfield-type networks with and

without delay. For networks with C0 = 0, and λ = β → ∞, we proved that for any given positive

integer n, there exists a finite delay time τ > 0, such that the quantitative MLA method provides a

lower bound n̂ > n for pattern retrieval. Hence more than n successive patterns from the prescribed

cycle Σ can be retrieved, which implied that every simple MC-cycle with intermediate patterns

satisfying the transition condition imposed by the prescribed cycle Σ is weakly retrievable. In

terms of the linear stability analysis, we decomposed each of the characteristic equations (5.7) and

(5.8) into a product of N factors, each corresponding to an ni index in the characteristic equation,

which turns out to be an integer between 0 and p − 1. Based on this decomposition, we obtained

a scenario of all possible local bifurcations of the trivial solution for every network constructed

from an admissible cycle. Clearly, the scenario is determined by the prescribed admissible cycle in

terms of its structural features by selecting the ni indices appearing in the characteristic equations

(5.7) and (5.8). In [26], we have explained how an admissible cycle determines which N integers

among those from 0 to p− 1 are chosen to be the ni indices. Since these ni indices determine the

arrangement of the curves of characteristic roots with zero real part, which provides a scenario of

all possible local bifurcations of the trivial solution, the prescribed cycle determines the structure of

the local bifurcations of the trivial solution with its structural features by “selecting” the ni indices.

In the context of networks of coupled oscillators, a similar idea has been used for determining the

stability of synchronized oscillations [89–92]. In [26], we have demonstrated a possible extension of

our study to networks of coupled oscillators to a network of spiking neurons with bistable membrane

behavior and postinhibitory rebound.

Using the MatLab packages, MatCont 3.1 and DDE-BIFTOOL 2.03, for numerical continua-

tions and bifurcation analysis, we showed that addmissible cycles are stored and retrieved in the

networks as different objects. Anti-symmetric simple MC-cycles with N = p/2 are stored and

retrieved as attracting limit cycles bifurcating from the trivial solution via the “principal” Hopf
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bifurcation. Anti-symmetric cycles of period two are stored and retrieved as unstable periodic

solution bifurcating from the trivial solution via the “extra” Hopf bifurcation corresponding to the

index ni = p/2, and the unstable periodic solution stays in the one-dimensional subspace corre-

sponding to the symmetric diagonal {u ∈ RN | u = (u, −u, u, . . . , u)T , if N is odd; and u = (u, −u,

u, . . . , −u)T , if N is even, with u ∈ R } in the phase space of the network. The other admissible

cycles for the same network are stored and retrieved as long lasting transient oscillations. For τ

sufficiently large, the transient oscillation practically lasts forever.

While theoretical investigations [37,41,44] suggest that solution trajectories of excitatory unidi-

rectional ring networks should in general eventually converge to stable equilibria, numerical simula-

tions usually show long lasting oscillatory patterns [37]. Pakdaman et al and many others [37,42,84]

have studied such long lasting transient oscillations and their properties in details. It has been

shown that such long lasting transient oscillations do not exist in networks without delay, and can

not be explained by the asymptotic dynamics of the networks with delay. In this dissertation, we

illustrated that many admissible cycles are stored and retrieved in networks with delay as transient

oscillations, and based on the observations from the bifurcation analysis and numerical continuation

computations of both the stable/unstable equilibrium solutions and periodic solutions, we conjec-

ture that the transient oscillations are a consequence of the interactions among the attracting limit

cycle, unstable periodic solutions and equilibrium solutions. To clarify how the interactions among

these dynamical objects shape the long lasting transient oscillations would be a very interesting

future direction to extend our study on the storage and retrieval of the cyclic patterns representing

phase-locked oscillations.

Cyclic patterns of neuronal activity in animal nervous systems are partially responsible for

generating and controlling rhythmic movements from locomotion to gastrointestinal musculature

activities. Neural networks of relatively small sizes that can produce cyclic patterned outputs

without rhythmic sensory or central input are called central pattern generators (CPGs). So far,

different models have been proposed to account for the mechanisms underlying the generation of

rhythmic activities [22,25,93,94]. Among them, the “half-center oscillator” is one of the most widely

used models for studying CPGs [94–97], and the ring network model is another one [81,82,94]. It has

been shown that the classical half-center oscillator can be viewed as a limit cycle oscillator [98], and

106



so are the ring networks. During the past few decades, limit-cycle oscillators have played key roles

in understanding the rhythmogenesis in animal CPG networks [24,25,99–101]. Recently, transient

dynamics has been suggested to take important roles in generating cyclic patterns [102], and stable

heteroclinic channels [103,104], or stable heteroclinic sequences [105]. In this dissertation, we have

illustrated that cyclic patterns except for those with special symmetric structures are stored and

retrieved as transient oscillations, and those long lasting transient oscillations may be shaped by

the interactions among the attracting limit cycle, unstable periodic solutions, saddles and nodes.

Since heteroclinic connections may be constructed between a saddle or hyperbolic periodic orbit and

another saddle or hyperbolic periodic orbit by identifying the stable submanifold of the previous

one with the unstable submanifold of the latter one, some of the long lasting transient oscillations

may correspond to such heteroclinic channels.

6.4 Storing Cycles in Networks of Spiking Neurons

The results presented in this dissertation were developed in the framework of Hopfield-type

networks. However, these results may also be extended to the storage and retrieval of cyclic

patterns in other neural networks. In this section, we introduce a network model of identical spiking

neurons with bistable membrane behavior and postinhibitory rebound, and show an example of a

successfully retrieved cycle in a network constructed using the pseudoinverse method.

We consider the simplest single-compartment neuron model, the passive integrate-and-fire (PIF)

model [73, 106]. The model is described by the following first-order nonlinear ordinary differential

equation,

cm
dVi
dt

= −I(i)
L (t)− I(i)

nl (t) + I(i)
synE

(t) + I(i)
synI

(t), (6.2)

where Vi(t) is the membrane potential of the i-th neuron in the network, and if Vi(t) ≥ θ where θ =

−45mV is the threshold for the firing action potentials, then Vi(t+dt) = 0, and Vi(t+2dt) = Vreset

with dt = 0.005ms and Vreset = −55mV. After each action potential, an absolute refractory period

tRefr = 1ms is imposed, and during the refractory period the membrane potential Vi(t) is fixed at

Vreset. The parameter cm, chosen as cm = 20nF/mm2, is the specific membrane capacitance. The

membrane and synaptic currents of the i-th neuron are respectively given as follows.
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Leakage membrane current:

I
(i)
L (t) = gL(Vi(t)− EL), (6.3)

where gL = 1µS/mm2 and EL = −68mV.

Nonlinear membrane current:

I
(i)
nl (t) = gnl(Vi(t)− E1)(Vi(t)− E2)(Vi(t)− E3)− δ, (6.4)

where gnl = 0.03mV−2, E1 = −72mV, E2 = −58mV, E3 = −44mV and δ is a parameter for

shifting the nonlinear membrane current to control the stability of the up state. In the simulation

shown in this section, we chose δ = −31.685.

Excitatory synaptic current:

I(i)
synE

(t) = ḡsynEsi(t)(Vi(t)− EsynE ), (6.5)

where ḡsynE = 68µS/mm2, EsynE = −120mV, and the activation variable si(t) satisfies the following

first order differential equation,

dsi
dt

= αE

(
si − 10

N∑
j=1

Θ(Jij)JijΘ(Vj(t− τ)− Vthr)
)
, (6.6)

where αE = 1, Vthr = −45mV, τ = 10ms, Θ(x) is the Heaviside step function, and the Jij are the

components of the connectivity matrix J.

Inhibitory synaptic current:

I(i)
synI

(t) = ḡsynIzi(t)(Vi(t)− EsynI ), (6.7)

where ḡsynI = 118µS/mm2, EsynI = −120mV, and the activation variable is given by zi(t) =

(xi(t) + yi(t))/2, with xi(t) and yi(t) satisfying the following first order differential equations,

dxi
dt

= αI

(
xi − 10

N∑
j=1

Θ(−Jij)JijΘ(Vj(t− τ)− Vthr)
)
,

dyi
dt

= βI

(
yi + 10

N∑
j=1

Θ(−Jij)JijΘ(Vj(t− τ)− Vthr)
)
,

(6.8)

with αI = 2, βI = 0.08, and τ = 10ms.

With the parameters of a single neuron fixed as above, the dynamics of a network of N PIF-

neurons is fully determined by the connectivity matrix J. We constructed J from prescribed cycles
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using the pseudoinverse learning rule J = ΣPΣ+, i.e. without invoking a fixed point condition.

Figure 6.1 illustrates a successfully retrieved 6 × 8 cycle Σ. The first four rows of Σ are σ1P
j−1,

j = 1, 2, 3, 4, and the last two rows are σ2 and σ2P, where σ1 = (+,+,+,+,−,−,−,−) and

σ2 = (+,+,−,−,+,+,−,−).

Figure 6.1A shows the retrieved traces of the membrane potentials Vi(t) of the six neurons

in the network. Since the firing rates are not included as variables in the model, they have to

be extracted from the time series. Following [73], we counted for given t the number of times

t′ within the time window t − ∆t/2 ≤ t′ ≤ t + ∆t/2 at which neuron i fired, and divided this

number by ∆t. The resulting function, Ri(t), is considered as an approximation of the firing

rate of the i-th neuron. For ∆t we chose ∆t = 5ms. We also introduce the normalized firing

rates, vi(t) = 2Ri(t)/maxRi(t) − 1 (so that −1 ≤ vi(t) ≤ 1, analogous to the firing rates used in

continuous-time Hopfield-type networks), and define the overlaps m(ν)(t) as in equation (1.11).

To compare the membrane potentials with the prescribed cycle, we extracted the time spans

between the first spike and the last spike in each up-state, and identified their average divided

by 4 as the time span for each binary state. The resulting time span is 11.3ms and is slightly

larger than the time-delay τ = 10ms in the synaptic couplings. In Figure 6.1A, the gray strips in

the background indicate these time spans, and the dark gray +’s and −’s label the corresponding

binary states in the prescribed cycle. The firing rates Ri(t) and the overlaps m(ν)(t) are displayed

in Figure 6.1B and C, respectively. The black arrows in A, B, and C indicate the time span when

the first binary pattern, ξ(1) = (+,+,+,+,+,+)T , in the prescribed cycle is retrieved for the first

time in the displayed time range. The plots in Figure 6.1 clearly demonstrate that the cycle is

retrieved successfully.

Other cycles were retrieved successfully as well, but in contrast to continuous time Hopfield-

type networks, especially with delayed couplings, we observed in simulations that some prescribed

cycles are difficult to be retrieved in networks of the spiking neurons introduced in this subsection.

This is likely because of the complicated dynamics of the individual neurons, which makes the

appropriate choice of parameter values more difficult. In general, especially in physiologically

based neural network models, the neuronal dynamics may take key roles in shaping the dynamics

of the networks, and reinforce or weaken the contribution of the network structure in reproducing
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Figure 6.1: Successful retrieval of a cycle Σ with eight states prescribed in a network of six spiking
neurons with the pseudoinverse learning rule. A: membrane potential, B: Firing rates, and C:
Overlaps (see text for details).

prescribed cycles. In this case, it is important to find out whether a cyclic patterned output in a

system arises from a network-based mechanism or not, and if it does, then to which extent and

how the cyclic patterned output is determined by the network architecture.

6.5 Future Work

The work presented in this dissertation can be extended in the following three directions.

Storing and Retrieving Cycles in Other Neural Networks Although our main methods

and results were developed and obtained in continuous-time Hopfield-type neural networks, our

results about admissibility of cyclic patterns are applicable to discrete-time Hopfield-type neural

networks, and in the preceding section, we have seen that using the pseudoinverse learning rule,

cyclic patterns can be stored and retrieved in the biologically more realistic spiking neuronal network

(6.2). As cyclic patterns are special complex sequences [1–3], and storage and retrieval of complex

sequences in discrete-time neural networks can be related to sequential memory in animal neural

systems [107], it would be both important and interesting to extend our results about admissibility

and retrievability of cyclic patterns to neural networks with more complicated and biologically

plausible neuronal dynamics, such as Hodgkin-Huxley neurons, multiple compartment neurons,

and so on. As in the network (6.2), we introduced a virtual ion current (6.4) to account for the

bistability of the CPG/cortical neurons with up and down states. Therefore, to find the real ion

current, or a combination of ion currents, which can be approximated by the virtual current (6.4)
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would be a good starting point. After the realistic ion current or a combination of ion currents

are identified, we would continue to find an appropriate representation of the admissibility and

retrievability of cycles in networks of such neurons, and study the corresponding delay induced

dynamics.

It was recently suggested that heteroclinic cycles may take key roles in memory formation and

other advanced neural functions [102, 108]. As we have seen in Chapters 3 and 5, many cyclic

patterns we studied are stored and retrieved in Hopfield-type networks as long-lasting transient

oscillations, and some of them may even correspond to heteroclinic cycles. Therefore another

extension of our research presented in this dissertation is to seek a proper form for the biologically

more plausible spiking neuron networks such that robust heteroclinic cycles can be constructed in

them and our results for Hopfield-type networks can be extended. To this end, summarizing the

identified CPG networks in invertebrate animals and seeking the conditions under which robust

heteroclinic cycles may exist would be a good starting point. The main goal of this extension

would be to explore the underlying mechanisms for generating multiple cyclic/sequential patterns in

CPG networks with robust heteroclinic cycles, and study transitions among these cyclic/sequential

patterns.

Delay-Induced Bifurcations in Hopfield-type Networks The (codimension two) Bogdanov-

Takens bifurcation [79] has been recently observed and extensively investigated in Hopfield-type

networks with ring topology and single or multiple discrete delays [58, 59, 109]. In Chapter 5, we

have seen that the Bogdanov-Takens bifurcation occurs not only in networks with ring topology

but also in other networks with more complicated topology. To fully understand the dynamics

of the networks constructed from simple MC-cycles, or even more general admissible cycles, it is

necessary to elucidate the general mechanism of the Bogdanov-Takens bifurcation, and clarify its

role in creating and shaping both persistent and transient oscillations in the networks.

Other aspects of the extension of our results include bifurcations in Hopfield-type networks

with multiple discrete delays, state-dependent delay(s), and distributed delay(s). Although these

aspects have attracted much attentions during the past few years [110–113], a systematical study

of networks constructed from admissible cycles with multiple discrete delays, state-dependent de-

lays(s), and distributed delay(s) is still lacking. Therefore, it would be both theoretically and
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practically important to extend our admissibility and retrievability studies to these networks, and

study bifurcations in these networks.

MLA Method for Networks with Multiple Discrete Delays In Chapter 3, we developed a

novel method for analyzing the relaxation dynamics of networks with single delay and constructed

from simple MC-cycles. However, in both analog electronic circuits modeling neural networks or real

animal neural networks, delays coming from both finite switching time and inter-unit transmission

delays are not uniform, they may be even distributed or state-dependent [114,115]. Therefore, as a

first step of the extension of our MLA method, we would consider networks with multiple discrete

delays first, and then distributed and state-dependent delays.

In this dissertation, the MLA method was developed under the condition λ → ∞, the gain

scaling parameter λ, which can be related to the membrane constant of the neurons in the network,

is usually finite. Therefore, another extension of our results is to study the case of finite but

still large λ. Recently, Glyzin et al [76] studied a single Hopfield neuron and a Hopfield-type

neural network of three unidirectionally coupled neurons. They investigated the network under the

condition ε→ 0, where ε = 1/λ, and then extended the results from ε→ 0 to finite but small ε using

a perturbation analysis. In this second extension of our MLA method, we will use a perturbation

method which is similar to that of Glyzin et al [76], but for more general and complicated networks

constructed from simple MC-cycles.
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APPENDIX A

CYCLOTOMIC POLYNOMIALS

We summarize here the basic properties of the cyclotomic polynomials used in Chapter 2, for
details see [72].

The cyclotomic polynomial of order p is defined by Φp(x) =
∏
r(x − xr), x ∈ C, where the

xr encompass all primitive p-th roots of unity, that is, xpr = 1 and xnr 6= 1 if 1 ≤ n < p. The
total number of such primitive roots is given by Euler’s totient function, ϕ(p). If p =

∏
j p

mj
j with

distinct primes pj is the prime factorization of p, then ϕ(p) =
∏
j p

mj−1
j (pj − 1). The important

property of the cyclotomic polynomial is that they have integer coefficients and are irreducible over
the rationals. Moreover, Φp(x) is the minimal polynomial for each root xr, and the product of all
Φd(x) for which d is a factor of p and 1 ≤ d ≤ p is xp − 1. The only cyclotomic polynomials of
odd degree are Φ1(x) = 1 − x and Φ2(x) = 1 + x, all Φp(x) for p > 2 have even degrees as their
primitive roots are all complex. Some basic properties of Φp(x) are:

1. Φp(x) =

p∑
i=1

xi−1, if p is prime;

2. Φ2p(x) = Φp(−x), if p is odd;

3. Φp(x) = Φq(x
p/q), where q is the radical of p, i.e. the product of all distinct prime numbers

occurring in the prime factorization of p.

The last property implies in particular Φp(x) = 1 + xn if p = 2n = 2k, k ≥ 1. The third

cyclotomic polynomial is Φ3(x) = 1 + x+ x2 and has the roots e±2πi/3.
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