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ABSTRACT

The design engineer is always faced with the problem of taking a particular action and making decisions
under uncertainty. This report explains and applies a statistical decision approach which produces an expected
minimum cost decision, together with a measure in monetary terms of the value of the given data sample used for
design purpose. This latter concept is introduced as decrease in expected opportunity loss (EOL).

In the study it is shown how information is increased in the decision process by incorporating more data in
the sample, either (1) through the use of more existing data, (2) by a postponement of the project to collect
additional data, or (3) by the use of a regression model. The investigation defines the term "expected economic
optimum record length" and the regression related term "equivalent length of secondary data," found inthe frame-
work of the probabilistic method.

The hydrologic parameters treated as uncertain are the mean and variance of an annual sediment load series.
The investigation also deals with the question of cconomic uncertainty; for example, the consequences in the de-
cision analysis of not knowing the exact value of . a discount rate and/or a unit cost figure,

The theory and procedures are applied in a case study in the Rio (irande Basin, with the considered design
alternative being the storage allocated for sediment deposition in a reservoir. It is shown how the use of extra
data reduces the uncertainty in connection with a particular design alternative; however, the more information
included, the less incremental value is gained from these additional data. The decrease in LEOL using secondary
data via a regression model is not as pronounced as in the case when the given data sample is augmented by means
of extra primary data, due to the prediction crror inherent in the regression model. This information transfer
depends on the value of the cross-correlation coefficient.

In the sediment storapge case an ceonomiv analysis shows that if the observed data sample is less that 12
years, further data collection s recommended. The pain in information expressed in monetary terms as a  roesult
of a more cconomically ¢fficiont design will in that case offset the cost of data collection plus the loss of
benefits which occurs with a delay in the construction of the project. This recommendation ismade assuming that
a five-year sample already is available: the ceonomic record lenpth is dependent on the existing data at the time
of decision.

The study points out that uncertainty related 1o ceonomic parameters should have as equal a role within the
decision process as uncertainty in the hydeoloaie parameters.  Certain types of a beta distribution are found
appropriate to rolare to uncertainty in the discount prate, and o normal distribution is found to be applicable
for a unit cost figure, like vost of cediment removal per ton or per acre-feet.

The decision concerning the allocation ot wediment storape @8 made based on an economic ef ficieney criterion;
objectives like envirommental quality sl sovial benefits are disreparded in this analysis.



CHAPTER |
INTRODUCTION

1.1 Background

It has always been the case that engineers in the
design phase of a project have been forced to make
decisions based on the data that are at hand or might
be readily obtained. The decision-maker continually
asks, '"Is there enough information in the data I
possess, or should I collect more data in order to
reduce the uncertainty of the decision?"

Inherent in every decision process is an amount
of uncertainty about the 'true" state of nature (the
population characteristics). If every population pa-
rameter in the decision process were known, there
would be no need for decision-makers under the uncer-
tainties, though the basic risk would remain as an in-
put to decisions.

The value of additional data has sometimes been
evaluated by examining long historic records to deter-
mine when parameter estimates '"settle down." Dawdy
et al. (1970) use a rather quantitative approach which
involves generating synthetic traces based on the
historic record, and evaluating the increase in bene-
fit of a designed project with an increase in record
length. This type of analysis assumes that the param-
eters used are known with certainty; i.e., the value
of additional data is only known for the assumed true
parameters.

Tschannerl (1971) uses the concept of opportunity
loss to evaluate the worth of additional data, and in
the data generation he also assumes the true values of
the parameters being represented by estimates from
historic records. Opportunity loss is defined as money
"lost" associated with not making the best choice of
action possible in light of the '"true" state of nature.

Several methods are available to the engineer to
make a decision under uncertainty. The most commonly
used is the well known Minimax Principle. One form of
this states that the investigator must choose the de-
cision minimizing the highest cost which the state of
nature can inflict. A severe objection against this
method is that is does not introduce a probability for
the different states of nature to occur.
cerned solely with their consequences
the various possible decisions, and takes no account
of the greater or lesser likelihood (i.e. the uncer-
tainty) of the events that might happen. Therefore,
such course of action might often cause excessive con-
servatism in the design alternative.

in relation to

The Bayesian decision approach is a method for
choosing and evaluating design alternatives for a pro-
ject, when the "true" state of nature or other factors
arc not known. The effect of uncertainties is taken
into consideration through the use of probability den-
sity functions. This type of decision theory focuses
on the decision to be made and not on the hydrologic
paramcters as an end result; from that point of view
the statistical decision analysis is appealing to the
* design engincer. Also, such analysis makes it possible
to estimatc the dollar value of the uncertainties con-
sidered in the problem. The Bayesian decision is used
throughout this study.

The variance of a parameter estimate or of a goal
function is often used as a measure of uncertainty.

It is con-.

There are objections to this use of variance as a mea-
sure of risk; first, it may be an oversimplification
and second, it is not brought together with the eco-
nomics of the project. Use of variance implies an MSE
(mean square error) type of loss function, which means
that such a risk evaluation is nonobjective in an eco-
nomic sense.

Statistical decision theory has been developed
over the past two decades to help in making decisions
with uncertain information. The term Bayesian decision
theory is frequently met in the literature, due to the
fact that the more than two hundred years old Bayes
Theorem often is introduced in such type of analysis.

Statistical decision theory primarily has bheen
used in connection with business and industrial deci-
sions. Very little work invelving Bayesian decision
theory has been done in the field of hydrology with
the exception of the comprehensive study by Davis
(1971). He concludes that decision theory isa rational
method for making decisions necessary for the design
of hydrologic projects. The decision takes into account
the economics of the project, the risks involved, and
the uncertainty in some of the parameters used. Deci-
sion theory is not developed thoroughly enough tou be
routinely used as a tool by the project engineer, and
research is needed in the computational aspects of
applied decision theory, for instance, by new types of
case studies. The few studies published in that field,
with the exception of Gates (1972) and Davis et al.
(1972b), all use peak streamflow data to make decisions
about flood protection levels.

1.2 Purpose and Scope of Study

This study considers river sediment load data in
connection with allocation and design of storage for
sediment in a reservoir. River sediment load is de-
fined as the amount of solid inorganic material being
transported by the water either in suspension or along
the bed. Sediment trapping in reservoirs is one method
used to cope with siltation problems. Economic losses
as a result of sedimentation are considerable. As
early as in the late 1940's Brown (1948) estimated for
the United States that the value of damage and storage
lost in reservoirs used for power, water supply, irri-
gation, and flood control amounted to $50 million an-
nually. This figure is indeed comparable with losses
due to annual flood damages in the States. These latter
economic losses are reported by the Task Committee for
Preparation of Manual on Sedimentation (1969, p. 193)
to be approximately $200 million per year. Further-
more, it should be mentioned that suspended load is an
important factor to take into consideration during the
design of nearly all types of hydraulic structures in
natural waterways.

Sediment load data is of vital importance in order
to make judgement about future sedimentation condi-
tions; but extensive collection of sediment load data
is a costly operation. This naturally forces the
engineer to face the problem of answering questions
like: Is it at all worthwhile to continue sampling?
What is the value in monetary terms of a given sample?
What is the economical optimum record length when sed-
iment data are used to design a specific project?
Questions like these are treated in this investigation.



Bayesian decision analysis is a way to evaluate
the economic gain obtained by extending the data record
cither by postponing a proposed project and collecting
additional data or by the use of generated data through
a regression model. In this study a primary data set
is defined as the data series which is used directly
for design purposes and whose population characteris-
tics are treated as uncertain. A secondary data set is
related in some manner to the primary data, and there-
fore, it can be used to extend the primary data set.
The logarithms of annual river flows and annual sedi-
ment loads can be assumed linearly related, and this
feature is used to find the worth of augmenting a pri-
mary set of data by a secondary set, taking into ac-
count the uncertainty embedded in the regression model.
This type of analysis actually makes it possible to
redefine the classical concept of the equivalent length
of a set of secondary data, as being the length of a
set of primary data which provides us with the same
economic gain (increased information content} as the
use of the secondary data set does., As a sidelight a
comparison of such type of equivalent length with the
concept introduced by Roche (1963) is done, because the
equivalent length is affected by the degree of cross-
correlation.

Tschannerl (1970) studied the problem of using
secondary data (tree rings and mud varves) to extend a
primary set (streamflow data). Different approaches
are used in his study in order to find an optimal
estimate of a particular streamflow parameter, for
instance, minimization of expected opportunity loss
and method of least squares. Comparison is made uti-
lizing the historical record alone and the historical
record plus data obtained through the application of a
regression model. An optimal estimate of the parameter
might thereby be found for use in a generating model
for streamflows. Again it should be noted that the data
simulation which is an important basis in Tschannerl's
investipations is carried out with a particular pre-
scribed value for the population parameters.

In Chapter 1I, Bayesian decision theory isoutlined
in the context of scdiment load data series. Chapter
[1T discusses the value of cxtending a given Jata base
with additional data. Information is therchy gained
concerning the unknown parameters of the time series -
but for a certain price. Concepts like the expected
value of the expected opportunity loss, called LEVEOL,
und the cconomic optimal record length are explained
and investigated in Chapter I1I.  Furthermore, the
regression model in connection with the statistical
decision theory is taken up for consideration. Chapter
IV treats in detail the goal function., presents an

extensive application of the theory, and discusses the
different results. The U. S. Army Corps of Engineers
Cochiti Lake project on the Rio Grande in New Mexico
is used as a case study to test the feasibility of
using the methods developed.

Besides uncertainty in the hydrologic parameters
(the mean and variance of the sediment load series),
uncertainties in the Jecision process might also arise
because of the estimation of the cost figures used in
the goal function. Hydrologic decision problems up to
now have treated economic factors as being fixed or at
least "stepwise' fixed in a sensitivity type of analy-
sis. In Chapter V a procedure is outlined for treating
those factors - unit cost factor and discount rate - as
variables, and for adopting ''subjective" uncertainty
distributions for them. The procedure is applied to
enable us to find the consequences in the decision
process of not knowing the exact future value of money
(rate of inflation, technological advances, etc.),
taking into account the unpredictable fluctuations of
the future interest and discount rates.

In Chapter VI, conclusions from the worth of data

study are drawn, and a summary of the investigation is

presented.

The U. S. Army Corps of Engineers design of the
sediment storage part of Cochiti Lakeon the Rio (rande
in Appendix A is taken up for comparigon with the de-
sign obtained in the present study. However, it should
be kept in mind that decision making in water resources
planning is often a more complex process than this
investigation might indicate where only part of an
economic efficiency criterion is applied. According to
the Water Resources Council (1973) the following main
objectives should be considered by federal, state, and
local governments for planning the use of the nations
water resources and related land:

1) Economic efficiency,
2) Quality of environment, and
3) Social benefits.

In a realistic decision process with regard to alloca-
tion of reservoir storage for different purposes, all
three objectives have to be vonsidered. In the pre-
sented  study only a portion of the first objective
about an economically efficient project has been used
as the determining factor in the different decisions
reported in the following. Omitted is, for example,
the economic consequences of taking the flood control
purposc of the reservoir into consideration.



CHAPTER I
THE STATISTICAL DECISION APPROACH

The statistical - or Bayesian - decision approach
is simply a procedure for applying logical thinking and
cannot be called a strict method. Howard (1966) did
formalize the thought processes to reach a decision.
The following decision analysis procedure, outlined by
Davis (1971) is in idea and principle Howard's but to
a certain extent changed to fit the case study problem
treated in this paper. An explanation of the different
concepts introduced in the following outline is given
in the further text.

A. Define the decision to be made and
the alternatives.

identify

B, Form the goal function

1. Select the variables which describe the
"state of nature" (arguments in goal func-
tion}

2. Establish possible time preference (dis-
count or interest rate)

C. Derive stochastic properties of state variables
(probability density functions)

D. Select best alternative

1. Calculate the expected value of the goal
function for each alternative

2. Choose alternative which minimizes the
expected value of the goal function
(Bayesian Risk)

E. Evaluate uncertainties and find the worth of
additional data

1. Determine expected opportunity loss, EOL
(due to uncertainty)
2. Determine the reduction in EOL either by
(a) including more existing primary data
(b) collecting more data, or
(¢) transmitting information from a scc-
ondary set of data by a regression
model ,

EOL results with additional data included
in the sample is found by going back and
performing the calculations outlined in
step C through E.1. The reduction in EOL
is the difference between the EOL values
obtained before and after the addition of
cxtra data.

Increased information concerning the unknown
population parameters is measured as this reduction in
expected opportunity loss. The net worth of additional
information is defined in monetary terms as the positive
decreasc in EOL minus the cost of obtaining these extra
data. Raiffa and Schlaifer (1961) treat some theoret-
ical aspects of additional information in a comprehen-
sive way. The following presents an explanation of the
above outline applied to river sediment load data.

According to Nordin and Sabol (1973) a two-parameter
lognormal distribution is very often adaptable to de-
scribe the variable of annual sediment loads. If the
random variables are the natural logarithms, log to
base e, of the annual sediment data, a Gaussian dis-
tribution can be employed on the transformed data.

This feature will be used throughout this study. The

true population parameters, mean ju_ and variance cz,

t t

of the normal distribution of logarithms constitute
the state parameters, which describe the '"state of
nature' and are not known with certainty. The assumed

2 .
and o_, can be considered

a
to be a set of random variables having a joint proba-
bility distribution. To simplify the use of symbols in

population parameters, vy

the following text, Ha and c: will be designated

from now on as u and cz, by understanding that they
are not the population constants but the random vari-
ables of assumed parameters. The alternatives consid-
ered in the decision process are the possible design
sizes of the sediment storage part of a, reservoir, large
enough to store the deposited material accumulated over
a prescribed lifetime of the project.

Raiffa and Schlaifer (1961, p. 300) and Benjamin
and Cornell (1970, p. 628) derive the joint distribu-

tion of the random variables u and 02. It is shown
that the distribution, given a set of sample statis-
tics, takes the form of a so-called normal chi-square
density function,

£(u,0%|n,%,5%) =

-2 .......n”l n-1 4
- ] b o
. -n!u X (%) & : 2 ] 'HS
p ] 2z
see 20 . 1.__.(_7_) . &2,
2%0 rh 2\
(2.1)

Equation 2.1 is derived assuming that the underlying
series is independent, in this case the annual sediment

loads. The f(u,02|n,§]sz) distribution is in principle
an aposteriori distribution, because a sample (length n)
is given and incorporated in the functional form ap-

and sample vairance sz.
found as a product of
distribu-

pearing as the sample mean X
The aposteriori distribution is
a sample likelihood function and an apriori

tion of yu and 02. The source of data for this con-

jugate prior is the longest available data sample. The
posterior has the same form as the prior, because the
normal chi-square distributionbelongs to a group called
natural conjugate density functions. This character-
istic makes significant computational savings, mainly
because the functional form of the prior and posterior
is preserved and the parameters are related to simple
statistics of a sample. All that must be done to reach
an aposteriori distribution from an apriori is to re-

vise the sample statistics x and s~ in Eq. 2.1.
For further explanation of such conjugate relationship,
consult Benjamin and Cornell (1970, pp. 625-631). This
is an important feature in the present study, because
the results of the following calculations (Bayesian
Risk, EOL, etc.) are functionsof the particular sample
of data used in the analysis. Furthermore, this depen-
dency on the given sample allows us to find the rela-
tionship between Bayesian Risk, EOL, etc., and the
sample length, as will be shown in the next chapter.



For Convenience, the statistics X and s2 are omit-
ted in the notation - when not subject to misunder-
standing - and the joint probability density function

is simply called f(u.pzj.

The goal function, G(Q ,62], is in this study

a so-called penalty function. It indicates the excess
cost that has to be paid because of either a realized
overdesign or underdesign of the sediment storage part
of a reservoir. The explicit functional formis defined
in Section 4.2. Taking the expectation of this goal
function with respect to the probability distribution

f(u,azj yields the Bayesian Risk. The decision is
made by choosing the alternative Q; that minimizes

31‘:'
s u

the Bayesian Risk:

R[Q;J - Mi?.
alt

Q

H 6@ |u,0%) + £(u,0%) - du + do?

' (2.2)

Q; is often called the Bayesian solution.

The concept of opportunity loss is introduced to
represent a measure of the value of perfect information
on the population parameters. If the true values

(”t'G:} of the state variables were known, this in-
formation would yield Q;, the alternative that gives

the minimum variable cost:

6(Q%|uy,02) = Min. [G(Qzltlut,ogl] (2.3)
i

Having wused Q; instead of Q:, an opportunity

loss has resulted because the economic optimum design
alternative for the Bayesian Risk will differ from the
optimal alternative if the parameters were known with
certainty.

The suffered opportunity loss (OL) is

i B ca 2 t 2
OL(OL(Q¥|u,,0%) = 6(QFlu,,0) - 6(Qlu,,00),  (2.4)

which represents the extra costs which have to be paid
because our decision was made on the basis of imperfect
knowledge about the state variables. Obviously the
"true" values of the state variables are never known,

but the probability density function f(u,cz) makes
it possible to calculate an expected opportunity loss
(EOL):

oL = [[ {6(Qzlu0%) - 6@} lua®) - £01,0%) - d + ao?,

I{2.5)

where Q; indicates the design alternative, which
minimizes the goal function for each particular set of

the parameters u and 02, as they show up in the
integration. The integration is over all "possible"
values of the state variables. The EOL represents the
expected value in monetary terms which we are willing
to pay to obtain perfect information, and may be used

2
t and 9,
with respect to a specific project. It should be kept
in mind that the Bayesian Risk and EOL values are func-
tions of a set of sample statistics as they appear in

to judge the effect of uncertainty about u

the density function f(u.oz).

In the outline of the decision analysis procedure,
step A through step E point 1 have been covered.
Explanation concerning the last and very important part
of the analysis, which treats the worth of additional
data is given in the next chapter.



CHAPTER 11
WORTH OF ADDITIONAL DATA

The current chapter with Sections 5.1 through 3.3
corresponds to the outline of the decision analysis
step E point 2(a), (b), and (c), respectively. Dif-
ferent types of additional data might be used to gain
inforamtion about the state variables. The decrease in
EOL is a measure of the reduction in uncertainty. The
most common ways to get more information are described
in the following sections.

5.1 Usc of all Existing Primary Data

It is not surprising that the design engineer
should use the longest available and reliable record
of the primary data; after all, that is his only real
guide to judge the '"true" state of nature, The present
section is included merely to support that fact. In
this case the primary data consist of a sample of
annual sediment loads. Many investigations have found
quantitatively how the marginal worthof data decreases
with the increasing number of data points in the sample,
see as cxamples Dawdy et al, (1970), Davis (1971), and
Tschannerl (1970). Their results for streamflow data
show that this decrease is quite rapid as the sample
size approaches 40 to 50 years, after which the EOL is
rather insensitive to the incorporation of additional
data. Herfindahl (1969) makes a comparison with other
areas and states that the added information is similar
to the economy-related concept "law of diminishing
returns," such that the more information one includes,
the less incremental vatue is gained from this addi-
tional information.

Because sediment load data rarely exceed 25 to 30
vears, and most often is of a length as short as 5 to
10 years, it is of interest to establish the marginal
worth of that type of data as a function of the number
of historic observations. In that way it is possible
to evaluate the importance of using all the available
data and not just parts of the observed record.

3.2 Alternatives of Project Postponement to Obtain

Additional Data

The most common practice among design engineers
has been to use available data for design purpose.
However, they have often failed to take into consider-
ation the possibility that further data collection
might result in an economically more efficient design.
It is always desirable to improve the decision-making
process, and one way to achieve that goal is to obtain
the financially optimal amount of data on which to base
decisions.

In the paper by Moss (1972), the concepts of
expected optimum record length are discussed. Contained
therein is a graph which shows the general trend of the
marginal worth of additional data that are collected
as a function of record length, and a curve which de-
fines the total marginal cost of obtaining those data
versus record length. The intersection of these two
curves defines the optimal record length.

Figure 3.1 shows that data should be collected as
long as their marginal worth exceeds its expected mar-
ginal cost. These expenditures must include the costs
of operating the data-collection facilities and the
cost of delaying the design which shows up as benefits
foregone.

w
e
£
©
[a]
I}
1
1
i
1
| Y ' 10'
t in years
Fig. 3.1 Marginal worth and cost versus record length:

(1) marginal worth of additional data; and
(2) marginal cost of collecting data and of

benefits foregone. t, = present time, and
top = optimal length of additional data col-
lection.

Needless to say, no one can predict the actual
sediment load for future years. Davis (1971) was the
first who took up the problem in the hydrological field
of including future data with the underlying population
characteristics not known. He introduces the concepts
of expected expected opportunity Iloss (EEOL) as an
average of the EOL's taken over all possible values
for the next datum. However, in the present paper this
concept will be referred to as the expected value of
the expected opportunity loss, EVEOL. The classical
Bayes' Theorem enables himto get a revised (aposteriori)

distribution of the state variables given a new data
point, Q:
5 2y 2
f(u,cr'|QJ - f[u,d ) N(QIU:‘T ) (3.1)
J £(u,0%) + N(Q|u,0%) + dude?
where f[u.uz) is a normal-gamma distribution, which

2

depends on a set of statistics x and s°.

N(Q|u,02] is the 1likelihood of the data point Q,

given a set of values of p and 02, which in his case
were assumed as coming froma normal distribution after
a logarithmic transformation of the data is performed.
The predictive distribution of Q can now be found as

sample

2

g(Q = ” N(QIu.uz) . f(u,on - dude®.  (3.2)

It is seen that this expression is identical to the
denominator in Bayes' Theorem, Eq. 3.1. By means of
the predictive distribution Davis' expected value of
the expected opportunity loss may be calculated,

EVEOL(1) = [ EOL(Q;) - g(Q;) - dQ;, (3.3)

Q1
where the subscript of Q indicates the subsequent
period of the additional observation being considercd



(in this case the first period). It is seen that for
all possible wvalues of the next period, the EOL has
been weighted by the probability of obtaining that
particular figure.

This is a statistically elegant method. An ob-
jection to Davis' presentation is that he talks about
the integration even though the functional form of EOL
is not defined. Furthermore, the method often requires
very complex mathematics - or extensive computer use
for numerical integrations - in order to achieve an
answer. However, in Davis' study the calculations to
find g(Q) were simplified considerably because the
distributions involved belong to a certain type called
natural conjugate distributions. As explained earlier
in Chapter II, this characteristic implies that the
distribution has the property that parameters have
apriori and aposteriori distributions belonging to the
same family. Using this particular distribution fea-
ture Bayes' Theorem yields directly an explicit expres-
sion for g(Q):

n-1
2

n

, s & ; o0
n-1

e

=

]

n
w{n+1}] n/2

Ln+1}-s§

the number of original data points, 52

8(Q) = [ , (3.8

where n 1is

; ; 2 .
is the sample variance, and sr is the revised sample

variance with the 'new data" included. With the con-
jugate relationship and considering only one additional
vear of data, as Davis did, the procedure seems usable
with a reasonable consumption of computer time.

The procedure introduced by Davis can now be
extended in order to evaluate the expected worth of
more than one year of additional data. By including
two new observations, the expected EOL might bhe calcu-
lated as

EVEOL(2) = J [
q, Q

EOL (Q;,Q,) = 8(Q)) » 8(Q,) - dQq - dQ,,
177 1 2 1 2

& (.5)

in case the observations from year to year are assumed
independent of each other. Using the same scheme, N
years of future observations will have the following
expected EOL associated with them:

EVEOL(N) = J f S f EOL(Qy,Qy, Q) * 8(Qy)
QY
©oglQy)rra(Qy) ¢ dQy - dQyeeedQy,  (3.6)

which theoretically is a
lHowever, as the

satisfactory expression.
formula demonstrates, multiple, N,
integrations have to be carried out over an expected
EOL value. 1If it is assumed in the numerical integra-
tion that it takes m calculations of EOL to get one

year's EVEOL, actually mN different EOL computations
must be made in order to find EVEOL(N). Even with a
very powerful numerical integration technique it 1is

virtually impossible to find EVEOL(N) by strictly em-
ploying Eq. 3.6, because of the exponential increase
of EOL computations with respect to the number of future
years. The investigator is therefore forced to approach
the problem by means of other methods.

Moss and Dawdy (1973) recommended in their paper
a combination of a data simulation method and the sta-
tistical decision approach. By combining the two meth-
odologies a technique has heen achieved which elimi-
nates some of the shortcomings because none of them are
common to both methods. The combination approach can
be employed in many different ways depending on the
investigator's particular case. The Monte Carlo ap-
proach has the serious restriction that the hydrologic
parameters must be known or assumed prior to the anal-
ysis. This deficiency can be avoided as will be ex-
plained in the following.

For a particular set of assigned values of the

population parameters yp and 02 it is possible to
generate synthetic annual sediment loads Si using the
model recommended by Matalas (1967):

Sipp =u * o) ¢ [8;-u] + V1o (M)2 ¢ o -

14%] (3.7

Bi#1e
which is the general equation for simulation of data
which are normally distributed and possess autocorrel-
ative dependency represented by the lag-one serial
correlation coefficient o(l). Si are annual sediment

loads in logarithmic form. This model is valid under
the condition of stationarity, i.e., the distribution

of Si is identical to S]._+k for all integer wvalues
of k. 441 is a random normal component with zero
mean and unit variance, and independent of 8. Ac-

cording to Nordin and Sabol (1973) annual sediment load
series generally possess a very small degree of auto-
correlation (an assumption used in the derivation of
Eq. 2.1). Nevertheless, this small dependency is taken
into consideration here in order to make the generated
data sample as realistic as possible.

Through the application of Eq. 3.7 a sequence of
n, future events can be generated. This sample of

data pooled with the observed sample of length n

1

yvields a new sample mean and variance, which are used

to develop a revised distribution of u and 02 ac-
cording to the comments related to Eq. 2.1. Bayesian
Risk and EOL calculations can now be carried out in
the regular manner as described in Chapter I1. What
has been obtained is a value of EOL given the synthetic

2
record, or [EOLn1+n |u,e“).

2
sufficient number of times for

By repeating the above

procedure a many dif-

ferent values of u and 02 (covering the "possible
range' of these parameters in accordance with the apriori
distribution) a set of EOL's can be defined. The
average over this set is an estimate of the expected
value of the expected opportunity loss (EVEOL). The
average value is found as a weighted average of the

EOL's using the original distribution of u and 02,

f(u,03) derived from the observed sample, to weight
the different synthesized values. It is seen that this
method is a blend of aMonte Carlo simulation technique
and an expected-value criterion. That means,
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EVEOL = S 005 ¢ Bl as
ny e, [IOLn1+n7|u1,cJ; £(uy 93)
2 $=T b= 2
o fsds (5.8)
where np and n.z are the number of intervals into

which the ranges of the mean and variance respectively
are divided, and ﬂi and aj are <zrespectively the

sizes of the i-th interval of the mean and the
j-th interval of the variance. Following the same
scheme expected Bayesian Risk (EBR) can be defined as

n n.a
u a
a 2
IZBR],}]M2 = z Z (EBRnl+nE||.'i,0j]- f[ui,cj} . ei‘.l.-ﬂj.
i=1 j=1
(3.9)
The above analysis can now be Tepeated for each

consecutive year of data or groups of data added beyond
the available observed sediment load series (for ex-
ample n,=1, n,=5, nzzlﬂ, n,=25, etc.). The worth-of-

data curve 1is hereby defined, and the optimum record
length can be found if the cost of collecting the data
and the cost of project postponement can be specified,
as will be shown in Section 4.3.2.

The merit of the described combination approach
is that it keeps the mathematical considerations and
computational efforts down to a reasonable level, and
at the same time takes advantage of the statistical
validity of the Bavesian method.

3.3 Use of a Regression Model

A third way to gain information about the distri-
but iom' of the annual scediment load is to augment this
primary data with a set of secondary data, which are
related to ecach other. In hydrology one of the most
commonly used relationship between two types of data is
a regression model. In this section linear regression
for a short and a long sequence of hydrologic cvents is
used to increase the information of the short scquence.

Some users of regression models directly cextend
the primary set of data without taking into account tho
uncertainty inherent in  the prediction given by the
regresslion equation. Gray and Davis (1972) outline o
procedure in the framework of Bayesian decision analy-
sis  which copes with the problem of introducing re-
gression error. Given a sccondary data point X, they

obtain the regression estimate of v

+ h.ox, +h

v L W b 2 .10
¥ hD 15 »%5 hﬂxn (5.10)

From the classical regression analysis it is known that
the difference between the actual value of v and the
predicted value v follows a Student-t distribution,
for the statistic written in the following form:

In this expression s is the
residual variance, ib

square  root of  the
isavector of secondary observa-

tions Xis and ¢ is a constant matrix whose clements

are functions of the data used to cstablishthe regres-
sion equation. The above expression is truc under the

assumption that the variable (y-y) is distributed nor-
3
mally with mean zero and estimated variance s-. By

means of this distribution Gray and Davis (1972) form
a posterior distribution of the state parameters 0

2
(v and ¢~ in the
possible values of y
hood:

present study), considering all
in proportion to their likeli-

F(olx,) = %5 F(O) » £(r[0) » tly[X)-dy, (5.11)

where k is a standardization constant. There are ob-
jections to this procedure: (a) no new information is
added to the primary set of data, only uncertainty
stemming from the regression model is considered,
(b) the numerical computations involved are wery ex-
tensive, even with the use of only one year of second-
ary data, and (c¢) the proper use of the t wvariable
is for one prediction of y. For several predictions,
which is the case in the integration over y, the re-
gression coefficients and s should be reestimated
each time a prediction on vy 1s made (sece Mood, 1950,
p. 299).

In the present study the 1ideas introduced by
Matalas and Jacobs (1964) are applied. Using their
results makes it possible to add information to the
uncertainty distribution of the state parameters in
question, and at the same time take the regression
error into account.

It is recalled from Chapter II that in order to
make a decision, Bayesian Risk calculations must he
made. In those computations an important feature is
the probability distribution of the state parameters
given a set of sample statistics:

2 - ol
£(u,07[n), 8, s5 )
1
After the augmentation of the primary set of data, Si'

the distribution can he revised by the use of estimates
of the mean and variance for the lengthened serics.

As pointed out by Nordin and Sabol (1973), the
logarithm of annual sediment load in a river is lin-
carly related to the logarithm of annual water dis-
charge. Furthermore, they show how these two trans-
formed serics both follow a normal distribution. Often
a  short series of sediment load data and a lenger
series of water discharge data are available with n

concurrent yoars:
Logarithms of annual sediment load:

S g ot 8

1 S
logarithms of annual water discharge:

" n +1""Wn +n.,"
1 1 12

It should be noted that the emphasis in  the following
is only on the logarithmic transformed scries.



The correlative
series

interdependency between the two
is expressed in a linear regression equation:

E[silwi] =a B W, (3.12)

where o and 8 are the population values of the
intercept and the slope of the regression line, E[-]
denotes the expected value of Si for a particular

value of wi.

S.1 can be considered normally distributed around

the regression line with constant variance independent
of W.: the regression system of §; on wi is thus

homoscedastic. As reported by Matalas and Jacobs (1964)
this variance around the regression line is equal to
a 2
(1-p7) = cg, where p denotes the true correlation
2.
coefficient, and ag is the population variance of the
sediment load series. Considering this term for the
residual variance, it is possible to express Si as:

A2, . =
Si =q+ 8 “i + /l-p Ug * £, (3.13)
where £, is a random normal variable with zero mean

=
and unit variance, and the term vl1-p~ » Ug * &y Tepre-

sents the prediction error, or noise as it is often

called in the literature.

In the following text subscripts 1" and "2" indi-
cate that an estimate is based on the sample period n

"1+2" is used when

and ny, respectively; subscript

estimates are hased on the total period {n1+n,].

Using the method of least-squares on the n

1
concurrent data, estimates of the regression coeffi-
cients and the correlation coefficient canbe found as,

|
* § (8;-5)) = (W,-W))
5 o , (3.14)
n
, w12
1
a= Sl - B - Wl, (5.15)
and
" B B
4 % (5,-5,) + (V,-W))
o - - Yo - (3.16)
1 i COb _
{ B3yl = E ¥z
If the population parameters are replaced by their
sample estimates, Eq. 3.13 may be expressed in the

following way:

= - - -A2 - -
S, =a+ B W, o+ C 1-p ssl €

i (3.17)

where C 1is a constant which is defined below.

2
For a particular value of the secondary data Wy

and the use of a normal random number generator, Eq.
3.17 yields an estimate of Si outside the concurrent

period. These estimates are now pooled with the ob-
served data to form the augmented series,

S !s‘)l sew, 8 S jo e, + B

172 n nlbl g +n,
For this lengthened sequence of the sediment load, the
estimate for the mean can be calculated as

n;s n
171 2 - ey o s =
= T + e (a-l-ﬂ N2+C- 1-p 55 E_}
1 2 T2 1
(3.18)
Substituting a = § -8 W vyields
n
s - 2 5 G
Speg " Sy fEE (N5-¥y)
1 72
P2 2 = .
*a n, 4G = k=g sS1 T Eyo (5:19)
M,
where £, = #L- ) e;. Because E(e,) asymptotically
2 5 2

will approach zero, Eq. 3.19 in the limit (fer n, » o)

simplifies to

n,

S

teg ™ B A n,

< B (W) (5.20)

Matalas and Jacobs (1964) have derived the following
approximate estimate for the variance of the lengthened
series:

2 1 [( 1) 2 ti =10 52 2
5 = .-.....__.... . n, - g + “7' . LR
Sl*z nl+n2 1 1 5] 2 W:

N e S T 2 B A
* n]+ﬁ:' B - [Wz—wl} + Enz-l]- C™« (1-p7) 551] ,
(3.21)
5 n,{n1-4)(n1-l]
They found C° to be cqual to =

(n,-1) (n;-3) (n-2)"
in the limit (n, = =) will

.
which implies that sq

51*2 By
be an unbiased estimator of Og-

The addition of regression noise is reflceted by
the last term in brackets in Eq. 3.21. Nonstationarity



in the secondary series also has a strong effect as it
shows up in the term (wz-wlj. More about the inter-

play between these different effects will be explained
in Section 4.3.5.

The new sample mean and variance for the augmented
sediment load series enable us to get a revised normal-
chi-square distribution for the state parameters,

2 = 2
f(u,o lnltnz, 51*2. Sg J.

1+2

A condition for this being true is that the extended
Si series still follows a normal distribution. Going

back to Eq. 3.17 it is seen to be the case, because Si

is assumed to be a linear function of the normal vari-

ables Wi and £y However, it should he noted that

this statement is only valid when the normality of the
long Hi series is preserved and not distorted by some

type of nonhomogeneities.

With a revised probahility function as indicated
in the above term Bayesian Risk and EOL ccmputations
can be pursued. A measurc of the value of using a
regression model to extend a primary set of data - the
annual sediment load - has thereby been obtained. It
should be noted that the uncertainty inherent in the
prediction given by the regression equation has been
accounted for by this method, if the regression model
is, in fact, correct. The worth of the secondary data
set is equal to the difference between the EOL values
before and after the incorporation of those data in the
statistical decision analysis.



CHAPTER IV
CASE STUDY IN THE RIO GRANDE BASIN

4.1 Problem Description

One of the best known sediment-oriented problem
areas in the world is the Rio Grande river bhasin,
especially in the New Mexico region.  The consumptive
use of water for irrigation and the heavy sediment
contribution from tributaries have resulted in consid-
erable and harmful aggradation of major reaches along
the rivers in the system. In that connection Woodson
and Martin (1963) reported that during a 20-year period
about 17,500,000 cubic yards of sediment was deposited
on the channel and floodplain of the Rio Grande be-
tween Cochiti and San Antonio, respectively about 50
miles above and 100 miles below Albuquerque. The U. S.
Army Corps of Engineers was authorized to investigate
and control the situation, and it resulted inaproject
including four major reservoirs to store sediment;
Cochiti on the Rioc Grande, Abiquiu on the Rio Chama,
Jemez on the Rio Jemez, and Galisteo on the Rio Galisteo.
It is estimated that these reservoirs will reduce the
sediment load in the Rio Grande near Albuquerque by
70 percent after 20 years. With the exception of
Cochiti Dam, all of the reservoirs are at present com-
pleted and in operation.

In order to design such a sediment control program,
the required information is usually obtained from pub-
lished records of these data. But what is the value of
such a set of data? llow representative are they? It
is necessary to look at a specific project todetermine
and answer that type of question. It was Jecided
to concentrate on the data for the vet uncompleted
Cochiti Dam project where the Corps of Engineers could
make realistic cost figures available, and the U. §.
Geological Survey's sediment and water discharge sam-
pling station upstream of Cochiti on the Rio Grande
could provide a long record of water discharge and a
fairly long record of concurrent discharge and sediment
load data.

In order to investigate the effect of the correla-
tive dependency botween water discharge and sediment
load another gaging sitewas selected in the Rio Grande

Basin. The U. 3. Geological Survey sampling station at
the Pecos River near Artesia, New Mexico, was found
appropriate for that purpose. The reason for this

selection was the fact that it was desirable to in-
vestigate data from rivers draining the same type of
climatic and geological regions, i.e. with equivalent
natural features. Furthermore, the water discharge and
sediment load records for both stations had the same
length and were gaged over the same time period. An-
other reason, why those two stations were suitable for
comparison, was that the two sets of concurrent data of
water discharge and sediment load showed a pronounced
Jdifference in cross-correlation cocfficients. More
about this matter is explained in Section 4.3.3,

Because there is no "true'" or exact knowledge of
the annual sediment load series (the characteristics
of the population are never known), an overdesign or
underdesign of the long-term reservoir storage for
sediment deposition might be the case. The lack of
information about the "true' population characteristics
is especiallydistinct dealing with sediment load series,
because they normally have been gaged for amuch shorter
period of time compared to other hydrologic variables,
such as precipitarion and runoff.
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4.2

An important feature in applying the statistical
decision analysis is the use of a goal or objective
function, often called also the benefit or cost func-
tion, dependent on the study case. The problem is to
determine the design alternative (the size of the sed-
iment storage), which minimizes the cost due to either
building the reservoir too large or constructingit too
small. An overdesign results in an increased cost
measured in dollars per acre-foot of excess storage;
an underdesign causes either a need for a removal of
sediment from the reservoir or a loss of reservoir
storage allocated for other purposes (flood control,
water supply, etc.). It is the trade-off between these
two types of costs which are the basis for the economic
minimization problem.

The Goal Function

The goal function in this study is an "opportunity
cost" function, often called in the literature, a pen-
alty function. It indicates the ecxcess cost that has
to be paid because of either an overdesign or an under-
design during the lifetime of the reservoir. 1f the
future amount of deposited sediment exactly matches the
alternative chosen for design, this cost will be zero.

llowever, the more the realized sediment load diverges
from the design value the greater is the opportunity
cost.

The variable which will be of concern here is the
mean sediment leoad over a time period equal to design
lifetime. If the probability of outcomes of this vari-
able can be described by means of a density function,
it is feasible to calculate the expected value of the
future cost. The integration will then be over all
"possible™ values of the mean sediment load during the
design lifetime as shown in Fig, 4.1.

2
b
B —
" o
c —
&) |
=min alt max
Qg B Qg N
Qs
Fig. 4.1 Penalty and density functions:

(1) Overdesign cost (C);

(2) Underdesign cost (C);

(3) Probability density curve of mean annual
sediment inflow into the reservoir;

alt o ;
=Decision variable.

%



In Fig. 4.1, curve 1 represents costs
of sediment storage. Curve 2 represents costs for
underdesign; these costs would show up either as
(a) removal of sediment, (b) additional construction,
or (c) loss in expected benefits (say in decrease of

for overdesign

flood damage). Curve 3 represents the probability
density curve which the future mean sediment load
Q. follows. The estimate of this density curve and

s
the definition of Q:in and ﬁ:ax are given in the

following text. The density function of ﬁ; is des-

ignated Q(Q;]u,cz), which indicates the obvious fact
that the sample mean of the annual sediment load is a

and  o° (the pop-
assumed lognormal distribu-

function of the state parameters u
ulation parameters of the

tion). In Aitchison and Brown (1957) the explicit
relationship between the mean and varianceof a series
in logarithmic transformation and the mean & and
el
variance n" of the original series, is given as
2
2
g u Qe (4.1)
and
2 L= i
2 -
n = ezu‘u lfec -1). (4.2)
The random variable is the mean sediment Iload in N

years, where N is the design lifetime of the reser-
voir. Because N 1is large (say about 50), the Central
Limit Theorem justifies the use of a normal probability
distribution for the average 50-year sediment load in-
flow, or

— 2
- N@,-5)
2 nel
Nl =\ e T . @)
2nn
With the relationships of Egs. 4.1 and 4.2, it is

now possible to express the desired probability density
function as,

S w 2
p(@u,0") = N8, (4.4)

The goal function is dependent on the alternative
chosen for design and on the values of the state pa-
rameters in question., The functional form is:

wmax
QS

6@ uad) = |
ﬁmin

Cost (@,Q2")+ o (@, lu,0%) T,

s
(4.5)
. b 4
where, ¢(Q |u,07) is defined above by Eqgs. 4.3
¥ and 4.4,
in g n
QP eg-350-2, (4.6)
. N
—max . "
it W . (4.7)
. A
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§ and n are determined using FRITe

4.2, and

Lgs. 4.1

N = design lifetime of rescrvoir (50 years in
this study).

The limits of the integration arc chosen on the basis
that over 99 percent of the possible data points are
included in this range.

The cost function, Cost (Qq.Qi’tl. has  to  be
divided into two cases in the integration (sce Fig. 4.1),
dependent upon whether the future mcan load is less
than or greater than the alternative chosen

. . = alt,
Case 1: Overdesign, QS < Q
alt ; alt =..u n
Cost [G‘S.Q5 ) = PeFeNe(Qr - Q) Kol # 1), (4.8)
where
P = proportionality factor between total sedi-
ment load and suspended load (P = 1.2, sec
Section 4.3);

F = factor which converts the sediment load data
from tons per year to acre-feet per year;
F = 0.00061, equivalent to a unit weight of
the deposited sediment of 75 pounds per fts.
which is the average density used by the
U. S. Army Corps of Engineers in their de-
signs;

N = design life of reservoir (50 years);

ﬁ; = mean annual sediment load (in tons per year);

Kl = unit cost of construction (in dollar per

acre-feet); Through written communication
withU.S. Army Corps of Lngincers, Albuquerque
District, the figure K, = $150 per acre-feet
was used;

i = the interest rate of borrowed moncy to

finance construction costs;

n = number of years between the commencement of

the loan and the start of reservoir operation.
Case 2: Underdesign, ﬁg > Q:lt:
If an underestimation of the sediment load is

recalized in the future, one approach would be to remove
the excess deposited sediment a certain number of times
during the "1ife" of the reservoir. According to the
Task Committee for Preparation of Manual on Sedimenta-
tion (1969, p. 195) this approach will be adopted more
and more as a gencral practice whereas the traditional
use of additional storage as a means of solving sedi-
ment problems will not be feasible in the future. This
is caused not only by growing construction costs, but
more importantly by the fact that sites for low-cost
dams are disappearing.

Let us assume constant time intervals between two
successive removals, say each M years. Let N be a
multiple of M. For every time money is spent in the
future, these costs have to be discounted back to get
the equivalent-time cost figure. If the interest rate
for discounting is 1, we then have:



= _alt - 1t
Cost (Q,Q; ) = P+F-M-(@-Q% )-K,
. 1 1 1 1
.\ + SRR = + 3 3
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(4.9)
where K, = unit cost factor for removal of sediment

(in dollars per acre-feet); estimated to
be §1700 per acre-feet. (See Chapter 5.2
for explanation of this figure).

The other terms in Eq. 4.9 are explained above.
During every M-year period there will be a minor loss
of storage; for simplification this cost is not in-
cluded in the analysis as Eq. 4.9 indicates. In the
computations throughout this chapter the interest rate
i and the rate r used for discounting have simply
been selected to take the same value of six percent.

4.5 Application of the Method
The procedures described in Chapter III to achieve
sediment storage design criteria, to find worth of

sediment load data, optimum record length and so forth,
are now applied in an actual case study. The river
subject for investigation is the Rio Grande upstream of
the Cochiti Dam site in New Mexico. The U. S. Geolog-
ical Survey station (number 8.3130) at Otowi Bridge
near San Ildefonso has been recording suspended sedi-
ment load for more than 20 consecutive years. The
sediment load data are compiled from thelU. S. Geological
Survey annual reports on quality of surface waters in
the United States.

Table 4.1 presents 20 years of observed sediment
load used, together with the concurrent water discharge

data. Figures 4.2 and 4.5 show a cumulative plot of

the annual sediment load and annual runoff, respec-

tively. It is seen that the two single mass curves are

Table 4.1 Annual Sediment Load and Water Discharge as
Recorded at Otowi Bridge, Rio Grande, New
Mexico. Data taken from U. 5. Geological
Survey, Water-Supply Papers, Part 8, Western
Gulf of Mexico Basins.

Year Annual Sediment Load Annual Water Discharge

in Tons in Acre-feet

1948 4,306,000 1,359,500

1949 3,681,000 1,501,300

1950 1,733,000 662,300

1951 900,700 394,600

1952 4,473,400 1,375,700

1953 732,000 547,700

1954 1,329,500 749,900

1955 2,430,700 431,200

1956 714,300 376,400

1957 455,700 1,295,300

1958 7,562,200 1,522,800

1959 1,424,500 508,900

1960 2,074,500 819,700

1961 1,971,900 674,400

1962 3,253,000 1,037,700

1963 862,100 559,400

1964 946,600 382,900

1965 3,377,900 1,175,900

1966 2,255,600 942,000

1967 2,651,000 578,500

N 2,367,000 $35,000
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Fig. 4.2 Mass curve for annual sediment load, Rio

Grande at Otowi Bridge, N.M.
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Fig. 4.3 Mass curve for annual water discharge, Rio

Grande at Otowi Bridge, N.M.

approximately linear without any marked change in
slopes. The graphs indicate in a qualitative way that
nonstationarity cannot be detected in these observed

annual data. In the sampling period apparently no
large-scale factors have heen introduced into the
drainage basin that would significantly affect the

annual sediment
site.

vield conditions at the Cochiti Lake
The probability density function of the state



parameters of Chapter 1l is based on the assumption
that the logarithms of the annual sediment load follow
a normal distribution. To test this assumption a plot
of the frequency curve is given on logarithmic-
probability graph paper, as shown in Fig. 4.4. The
Kolmogorov-Smirnov A-statistic is wused to test the
goodness of the graphical fit of a straight line.

10"

Plx)
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Annyol sediment lood, X, in tons
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Kolmogorov-Smirnov test for” normal distribu-
tion of logarithms of annual sediment load.

Fig. 4.4

A = max|F(x) - P(x)| = 0.10 (4.10)

Froma table over critical values ao of the Kolmogorov-
Smirnov statistic (see for instance Yevjevich, 1972,

p. 229) one reads for n = 20 and a = 0.05:

b, = 0.29 (4.11)

Because A = 0.10 < ao = 0.29, the fit of Fig. 4.4 is

acceptable by the Kolmogorov-Smirnov test on a five per-
cent significance level, which further implies that the
Gaussian assumption after a logarithmic transformation
of the data should be accepted. Therefore, the input
data in form of natural logarithms of the observed
annual sediment load will be used in all computations.

The drainage area above the gaging site is about
14,300 square miles in which the Rio Grande runs mainly
in deep canyons or relatively narrow alluvial valleys.
According to a report by the U. S. Corps of Engineers
(1971), the Colorado portion of the Rio Grande watershed
is mostly mountainous and contributes relatively little
sediment to the Rio Grande in proportion to the area
and volume of runoff. In the upper New Mexico part of
the watershed the sediment load is increased heavily,
mainly due to tributary contributions, especially by
the Rio Chama which flows through highly erosive mate-
rials. The Abiquiu Dam was placed in operation across
the Rio Chama 30 miles upstream of the junction with
the Rio Grande in 1963. However, Figs. 4.2 and 4.3
indicate that the dam does not yet significantly affect
the sediment load of the Rio Grande. This implies
further that a degradation of the 30 miles reach along
the Rio Chama has resulted since 1963.

Nordin and Beverage (1965) report on investiga-
tions of many aspects of thc sediment transport in the
Middle Rio Grande in New Mexico. This report describes
among other things hydraulic data, observed and com-

puted sediment concentrations, and size distributions
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of bed-material samples for ncarly

The ratio between the total amount of
the suspended load is introduced in the poal function
in Section 4.2. This ratio reflects a complex inter-
dependence between many different types of factors such
as hydrodynamic variables and geophysical features of
the basin. In this study the value of the ratio is
estimated to be 1.2. This figure can be derived from
Table 1, of the report by Nordin and Beverape (1965).

300 shservations,
sediment  Towd and

4.5.1 Analysis of the Obscerved Sample

Design alternatives, expected cost as related to
the chosen alternative (Bavesian Risk), and EOL were
computed on the CDC 6400 computer at Colorado State
University applying Eqs. 2.1 through 2.5. The computer
program is given and explained in the study by Jacobi
(1974, Appendix C).

Table 4.2 shows the results for the use of various
periods of annual sediment data, and Figs. 4.5 and 4.6
present some of these results in graphical form, with

Table 4,2 Worth of Data and Sediment Storage Results.
The Rio Grande, 20 Years of Observed Data,

and Design Lifetime of 50 Years

Design | Bavesian
Alternative Risk EOL
Time Period Acre-feet 10 § 106 §
1948-52 178,000 28.83 15.84
5-year | 1953-57 60,000 8.22 4.70
period 1958-62 153,000 27.95 14.535
1963-67 105,000 13.30 6.96
10-year -| 1948-57 89,000 11.82 5.96
period 1958-67 110,000 8.65 4.92
20-year
period 1948-67 90,000 5.97 2.69
Average 5 years 125,000 19.56 9.94
for
different| 10 years 100,000 10.23 5.44
periods
of record| 20 years 90,000 5.97 2.69
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4.5 Bayesian Risk design for various periods of

data.
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Fig. 4.6 Expected opportunity loss forvarious periods
of data

Fig. 4.5 pertaining to the design and Fig. 4.6 to the
worth of data. The goal function involves the cost
figures, design lifetime, etc., which were obtained
through personal communicationwith the U. §. Army Corps
of Engineers, Albuquerque, New Mexico District. Thus,
the minimum Bayesian Risk design achieved in this study
is comparable with the storage the Corps of Engineers
has allocated for the sediment deposition in the design
of Cochiti Reservoir. This storage is 110,000 acre-feet
for a 50 years design lifetime (U. S. Corps of Engi-
neers, 1971, p. 16J, In Appendix A are the two types
of design criteria and results further taken up for
comparison and discussion. i

Figure 4.5 shows the variation in storage design
using the four five-year periods and the two 10-year
periods. The design recommended using the 1948-52
sample is nearly three times greater than the design
based on the 1953-57 sample. For the two l0-year samples
the variation is only a little greater than 1.2. This
sharp drop in the spread of design results indicates
how uncertain it is to base a design decision on a
short (5-vear) record. The variation in the spread
might also be due somewhat to the fact that there is a
difference in sample sizes because the investigation is
over four samples from the five-year periods and only
two samples representing the 10-year periods. The
average design curve in Fig. 4.5 shows a downward trend
from 125,000 acre-feet to 90,000 acre-feet. This is
explained by the probability density function contain-
ing more uncertainty when based ona five-year sample than
on a 20-year sample. With a higher degree of uncer-
tainty there will be a tendency in the decision process
to favor anoverdesign rather than underdesign, because
the cost of overdesignis smaller than that of building
the storage capacity too small.

Figure 4.6 shows as anticipated a decrease in the
expected opportunity loss going from five-year sample,
to k0-year sample, and ending up with the observed re-
cord of 20 vears length. EOL is the reduction expected
in the Bayesian Risk due to a better information. It
is seen that the average [OL curve still has a marked
negative slope after the incorporation of all 20 data
points; that 1is a longer observed record should
decrease further the uncertainty about the state pa-
rameters. The slope of the LOL curve determines the
relative importance of the gain in information by in-
cluding additional data points. Since the computed EOL
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figures are nothing but an estimate of an unknown
"population'" EOL curve, fluctuations around a smooth
decreasing curve should be expected. In other words,
the sampling wvariability from the expected curve is
anticipated, a fact which the sample points in Fig. 4.6
indicate.
4.5.2 EVEOL, Expected Bayesian Risk, and Optimum

Record Length

In Section 3.2 a procedure was outlined to achieve
the expected Bayesian Risk and EVEOL through simula-
tion. In the generation procedure the first-order
autocorrelation coefficient (1) for the sediment
load data is used in Eq. 3.7 and is estimated from the
given 20 vears sample to be p(l) = -0,19. Inthis case
a negative p(1) might be explained Dby a type of
"cleaning-out" action where in one year if a large sed-
iment yield has occurred the next year there will be a
deficiency of material readily available to be trans-
ported by the water. The values associated with the
extended samples are calculated by incorporating the in-
formation with that of the observed sample. This in-
formation is reflected in the apriori probability density
function used to find the expected Bayesian Risk and
EVEOL. Table 4.3 shows results for the extension of
the observed data by the application of the expected EOL
concept as defined in this study. Computations are

Table 4.3 Expected Bayesian Risk and EVEOL Results.

The Rio Grande, Design Lifetime 50 Years.
Design Bayesian EOL(5)-
Sample|Alternatives| Risk |EVEOL|EVEOL(n)
Size | Acre-feet | 106 § |106 §| 106 §
gZi:rved 5 125,000 | 19.56 [9.94 | —---
- o 10 100,000 10.23 |5.44 | 4.50
i 20 90,000 5.97 [2.69 | 7.25
_ 30 90,000 4.27 |1.582 | 8.32
EZ:Z§:§Cd 40 90,000 4.19 |1.35 | 8.59
ncladad 50 90,000 AT 107 | BBy
60 90,000 3.71 |0.93 | 9.01

carried out for an ascending number of additional years
up to a total record length of 60 years. It should be
noted that no new information has been introduced by
this procedure and therefore, as seen in Table 4.3, no
change in storage design is realized using the genera-
ted data compared to the result obtained by utilizing
the entire observed record. The last column in Table 4.3
is included for use later in this Section. In Fig. 4.7
the EOL curve is plotted as a combination of the values
obtained from the given 20 ycars sample and the expected
EOL values from 20 to 60 years. In Fig. 4.7 it is seen
that the curve appears to have a shape similar to a
decreasing power function. It is further noted from
the graph that practically speaking there is no decrease
in EOL after incorporation of roughly 30 additional data
points. Beyond a sample size of approximately 50,
relatively there is no noticeable gain in information,
which is in agreement with the findings reported in
Section 3.1.

Records of suspended sediment load samples are
generally short compared to other related hydrological
records. Most likely a design using sediment data
must be based on only five to ten years of observed data
or less. Only 10 stationsout of the 900U.S. Geological
Survey stations which take sediment measurements have
a record length of 25 years or more as of 1972.  This
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points out the importance of using every bit of data
available in order to extract as much information as
possible about the characteristics of the sediment load
series.

The above mentioned feature of the EOL curve can
be presented quantitatively in the following way.
Figure 4.8 shows a plot on log-log scale paper of the
EOL values versus the number of years in the underlying
sample. A straight line is seen to fit well the points,
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Fig. 4.8 Straight line fit to log-log plot of EOL

versus n.
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therefore the expected opportunity loss as a
of sample length, EOL(n),

+ nPl

function
is assumed to be a power
function: EOL(n) = a , where the constants arc

found as the intercept and slope of the straight line

in Fig. 4.8:
7
a, = 5.0 - 10", (4.12)
bl = =-1.0, (4.13)
which implies
6
EOL(n) = _sonm ) (4.14)

with EOL in dollars and n 1in years. In this particu-
lar case the EOL-curve is seen to be an equilateral
hyperbola since bl = -1.0. With the explicit func-

tional relationship established in Eq. 4.14, it is now
possible to compute in quantitative terms the expected
marginal worth of one increment of data (one additional
data point). This is obtained as the absolute value of
the first derivative of the EOL-function with respect
to n.

6
& - 2
e }‘ . '106‘50-(-1.0)4 20 Al ;O (4.15)
n

For different number of years
lowing values are obtained:

in the sample the fol-

n 5 Y. 20 yr. 50 yr.
}“EOL “]}I 2,000,000 § 125,000 § 20,000 §

dn

It is of interest to note that the worth of one extra
data point added to a sample, already consisting of 50
points is one percent of the worth of an extra point when
added to a five-year sample. From a statistical point of
view--and without any cost considerations taken into
account--it might be concluded that sampling should
continue as long as possible since a decrease of EOL is
continuously realized. However, it should be kept in
mind, as the above table shows, that the value of one
additional data point is highly dependent on the length
of the available sample.

From an economical viewpoint unlimited data col-
lection is naturally never acceptable when the data are
used for design purpose in a proposed project. The
question therefore arises: What is the expected eco-
nomical optimum record length of the sample to be used
in the decision making process? The decrease in ex-
pected opportunity loss (EOL) with the incorporation of
more data represents in monetary terms the reduction of
uncertainty about the state parameters in the decision
process. Furthermore, a smaller EOL figure implics a
smaller anticipated cost because of realizing either an
overdesign or underdesign of the sediment storage. The
decrease in EOL with the addition of more data to the
sample can therefore be considered as actual benefits
caused by those extra data points. But there are two
costs of getting the additional data: (1) the cest of
continued data collection, and (2) the cost of delaying



the construction of the project which shows up as mis-
sing benefits. With the benefits and costs defined an
economic analysis can produce the optimum record length.

Assume that the given data base consits of five years
of observed sediment loads. How many additional years
of data - if any - would be economically worthwhile to
include in the given data base with respect to the
Cochiti sediment storage project?

In order to make such an economic analysis the
total benefit and cost curves have to be found explic-
itly. The estimated values for the benefit curve are
computed and given in Table 4.3, where the decrease in
expected opportunity loss is calculated going from
five yearsof data to any additional number of years. The
analytical expression for the benefit function is es-
tahlished because the functional form of EOLasa func-
tion of the number of years, n, already is found by

Eq. 4.14,
That means, the total benefit function in this
analysis is:
B(n) = EOL(5) - EVEOL(n), (4.16)
or substituting from Eq. 4.14 yields,
_ 5 7
Bm) = (1 -3) - 10°, (4.17)

where, n is

dollars.

in years (>5)}, and B(n) is expressed in

cost curve is a
the annual expenditures of operating
load sampling facilities, and the

The functional form of the total
sum of two terms:
the sediment Cys
benefits foregone, ¢,, of not having the project in

operation. A detailed explanation of how an estimate
of the benefits foregone is obtained is given in
Appendix A. In this case it is the annual net benefit -
based on 19735 figures - provided by the trapping of
sediment in Cochiti Lake.

The annual cost of data collection and project
postponement (benefits foregone) changes with the num-
ber of years of delay as an interplay between these
factors: (1) an increasing trend because of continued
development of the middle Rio Grande flood plain, and
(2) the discount factor used to bring the future costs
back to present time (including the inflation allow-
ance). For the benefits foregone part of the total
cost function, it is often important to take a third
factor into account. It reflects the fact that bene-
fits from a project normally improve witha larger data
sample used in the design of the project. In the
present analysis this increasing tendency can be
neglected. The reason is that the sediment trapping
efficiency (and therefore the benefits) is not affected
to any noticeable degree of either an underdesign or
an overdesign of the sediment storage. After all, the
storage allocated for sediment constitutes only 15
percent of the total capacity of the reservoir.

If the two described trends are represented by the
annual percentages T and Toys respectively, the
functional form of the total cost curve is,
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where,

n"=n-5, since n>5 n' and n

pressed in years.

are ex-

512,000. ¢y

of having a fully equipped
pling station in operation.

is the average annual cost

sediment sam-

$275,000. This estimated value of ¢, is

found in Appendix A through written commu-
nication with the U. §. Army Corps of
Engineers, Albuquerque District, N. M.

four percent. This figure is achieved assum-
ing that the increase in benefits foregone
is proportional to the population growth
in the region. U. S. Census Reports show
approximately a four percent annual in-
crease in the population of the Rio Grande
Valley taken as an average of rural, farm,
and urban areas.

two percent. Discount rate including infla-
tion allowance; obtained as a combination
of the same unadjusted discount rate of
six percent as used in the goal function
(Section 4.2) and an assumed inflation rate
of four percent.

Using the standard formula for the sum of a geometric
progression series, Eq. 4.18 reduces to,

1 n' l*r1 n
(1+r2) =2 (1+r2) =

13 =] el ' Cz . I+r1
s I+1 -1

2

C(n) = ¢, » . (4.19)

For the given values of Ty and r,, and when

(n-5) at the same time is substituted for n', Eq. 4.19
can be written as,

c

c
1 -5 2
C) =553+ A - 0.98"7%) + 57

. (1.02"73

« 1)a
(4.20)

Inserting the cost factors yields the final form of the
total cost function as,

Cln) = 0.6:10% (1-0.98"%) + 13.75-10%-(1.02°75 - 1),

(4.21)
with

n expressed in years (25),and C(n) indollars.



In Fig. 4.9 the total benefit function, Eq. 4.17,
and the total cost function, Eq. 4.21, are plotted
versus the number of data points in the sample.
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Fig. 4.9 Total benefit and total cost curves plotted
against length of data sample:
(1) Total benefits, Eq. 4.17
{2) Total costs, Eq. 4.21
The economic optimal point is defined as that

point where
costs is as

the difference between total benefits and
large as possible., That means, the function

D(n) = B(n) - C(n) is subject to maximization with
respect to n. D(n) is drawn in Fig. 4.9. In order
to find the point the derivative dDr?1 is set equal
to zero, or
dB(n) dC(n
e ™ dn} (4.22)
Substituting Eqs. 4.17 and 4.21 for B(n) and C(n)
in Eq. 4.22, and taking the derivatives yields,
5.0-107 6 n-5
— = -0.6 + 10" + 0,98 + 1n(0.98)
=
n‘-
6 n-5 Py
+ 13.73 ¢« 107 v 1,02 * In{1.02) (4.23)
Rearranging the terms results in,
2.72 « 1.02"5 + 0.12 + 0.98"% - soo/n® = 0. (4.24)

Eq. 4,24 cannot be solved explicitly. By the "trial
and error' method the equation is found to be satisfied

for n = 12.4. Left side of Eq. 4.24 is equal to
<0.24 for n = 12, and equal to 0.33 for n = 13. There-
fore, the conclusion can be drawn that the economic

optimal length of the sample used in the decision pro-

cess is approximately 12 years.
In economic terminology that point is reached
where the marginal benefit curve intersects the mar-

ginal cost curve as explained in Section 3.2. Figure 4.10
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shows those curves and gives the graphical solution to
the problem.

10% Dollors per year

O i 1 A 1
o 5 10 ny 15 20
Number of years in sample, n

Fig. 4.10 Marginal benefits and marginal costs curves
plotted against length of data sample:
(1) Marginal benefits 50-year design lifetime;
(2) Marginal costs:
(3) Marginal benefits 100-year design life-
time; and
optimal record length for 50-year design
lifetime.

n-=

The number of data points were assumed to be five.
That means, from an economic point of view, it would be
worthwhile to delay the construction of the reservoir

for seven years and thereby collect seven more data
points to form the desired 12 years sediment load
sample. Said in another way, if more than 12 years of

annual sediment
actual case for
of construction
calculated and
inherent in the

load data are available, which is the
the Rio Grande at Otowi, no postponement
is recommended, The design should be
decided with the given information
already available sample.

This analysis shows how the design engineer, after
a political decision has been made to build a project,
might be forced to suggest a postponement of the con-
struction for economic reasons. However, if the po-
litical decision-makers want the project immediately,
it is possibly because they consider its intangible
benefits (for instance, regional development, recrea-
tion, environmental quality) as more important than the
extra costs created by an economic suboptimal design.

The expected optimal record length is a result of
a complex interrelationship between statistical, eco-
nomic, and hydrologic characteristics. As an example,
a sensitivity analysis was performed with respect to
one of the factors involved, namely the design lifetime
of the project. Up to this point the entire decision
process and the investigation of data value have been
carried out with a lifetime of the sediment reservoir
of 50 years. The analysis is now repeated with a
100-year lifetime of the deposition storage. The numer-
ical results of the computer calculations of design
alternative and EOL are shown in Table 4.4.



Table 4.4 100-Year Design and EOL Results. The Rio
Grande.
Design EOL(5)-
Sample Alternative EOL EOL(n)
Size Acre-feet 106 § 106 §
5 180,000 13.90 | ==-e-
10 172,000 7.40 6.50
20 175,000 4.01 9.89
30 175,000 2.85 11.05
50 175,000 1.70 12.20
The total benefit curve, similar to Eq. 4.17 is in
this case found to be,
B(n) = 1.39 » 107 - 6.0 » 107 - n~0:85 (4.25)
with n expressed in years (»5), and B(n) in dol-
lars. Accordingly the marginal benefit function is,

dB(n) _ 5.1 - 107

dn n1.85

(4.26)

Eq. 4.26 is plotted in Fig. 4.10, and shown as a dashed
curve. The marginal cost curve in this graph is valid
also in the case where a 100-year lifetime design is
considered. The annual benefits foregone and the cost
of data collection are both independent of the physical
life of the reservoir according to the definition of
the cost function in this study.

The location of the two intersection points in
Fig. 4.10 indicates that the economical optimum length
of the sampleused in the design phase can be considered
rather insensitive to the design lifetime, at least
. when dealing with the long-term projects like reser-
voirs. Mathematically the optimum record lengthin this
case is found to be n = 15.0. Only an increase of
three years from 12 to 15 years of recommended data is
needed when the lifetime is extended from 50 to 100
years. By comparing the two marginal benefit curves in
Fig. 4.10 it is found - which also should be expected -
that additional data have a highest value when used for
design of the most expensive of the projects, in this
case the 100-year sediment storage reservoir. However,
it should also be noted that this difference in the
worth of data depends on the length of record as a
relative decrease with an increase in the sample used
for design purposes.

As recalled from Section 4.2, the design lifetime
appears inthe goal function asa proportionality factor
in the formula for the future costs. Nevertheless, a
comparison of the chosen 50 and 100 years design al-
ternatives, respectively given in Table 4.3 and 4.4,
demonstrates that a relative smaller design is suggested
for the long lifetime case. This can be explained by
the fact that the future cost of underdesign receives
less and less weight as the reservoir lifetime in-
creases, due to the discounting of future sediment
removal costs. This tendency towards a more conserva-
tive design in connection with the shorter project
lifetimes is more noticeable when the sample used for
design is short. It was pointed out earlier (Section
4.3.1) how the degree of wuncertainty in the decision
process affects the choice of alternatives. If, at the
same time, it is kept in mind that the cost of under-
design now plays a smaller role, the observed charac-
teristic concerning the changes in design alternatives
with respect to sample length and 1lifetimes can be
explained.
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4.3.3"g§e of Secondary Data and Equivalent Length
of Record

In the investigations and results reported, the
emphasis has been on the observed annual sediment load
data. The information used to find the expected opti-
mum length was extracted fromthe given sediment sample.
Section 3.3 describes a method to take the advantage
of another information source through a linear regres-
sion model and to use it in the statistical decision
approach. As the application of this method will show,
the investigator must be very cautious when he uses
long-term hydrologic samples for information augmenta-
tion purposes. It is sometimes the case that hydrologic
data when gaged for more than 50 to 60 years indicate’
nonstationarities in the time series. That means that
in a regression process there are two types of uncer-
tainties with overlapping effects, namely a nonstation-
arity in the long-term water discharge series, and an
uncertainty embedded in the regression model; the latter
described by the cross-correlation coefficient. Con-
cerning the long-term sample, the design-engineer has
to decide in one way or another how much, ifat all, to
adjust that set of data before it is wused for augmen-
tation. This in itself is a complex question which
involves considerations like (a) wet versus dry spells
in the climate, (b) lower groundwater table (increased
rate of infiltration), (c¢) irrigation development, (d)

construction of upstream reserveoirs, etc. The points
under (a) and (b) cannot be classified as permanent
changes in the hydrologic system, while (c¢) and (d)
might be so.

For comparison to the gaging station on the Rio

Grande, data were used from the U.S. Geological Survey
discharge and sediment measurement stationon the Pecos
River near Artesia, New Mexico, Station no. 8-3965.
The Pecos River is a tributary to the Rio Grande with
the confluence at the Texas-Mexico border. The drainage
area at Artesia is approximately the same as the area
above the Otowi Bridge station on the Rio Grande. The
upper part of the Pecos River watershed has natural
features similar to the Rio Grande arca; in the lower
parts of the basin the Pecos River runs out from the
mountains and onto the plains. A sediment storage
construction similar to the Cochiti Lake project is
assumed to be designed on the Pecos River. That means
the goal function is the same as for the Rio Grande
with preservation of unit cost figures, interest rates,
design lifetime of 50 years, etc. Both gaging stations
provide more than 20 years of suspended sediment load
data and more than 60 years of water discharge data,
with both series rated as reliable. Figures 4.11 and
4.12 present time series plots of the annual water
discharge for the Rio Grande and the Pecos River,
respectively.

These two graphs show a typical runoff character-
istic in the Southwest of the United States, namely a
declining trend in annual strcamflow has been recorded
in the last decades. This is due partly to the in-
creasing depletion of water for supply and irrigation

purposes, and partly to a change to somewhat dryer
weather in the last decades. This nonstationary trend
can be simplified with a step-function with a single

negative jump in the mean, located in the middle of the
sampling time period as indicated in Figs. 4.11 and
4.12. In that way, it is possible to obtain an idea
about the percentage decrease in the mean annual
streamflow. A similar analysis is done for the precip-
itation data in the region. Table 4.5 shows the results
for the Rio Grande station at Otowi, and at two loca-
tions along the Pecos River upstream and downstream of
Alamogordo Reservoir. The precipitation column in
Table 4.5 shows that the long term climatic fluctuation
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Fig. 4.11 Time series of annual water discharge of the Rio Grande at Otowi Bridge, N.M.
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Fig. 4.12 Time series of annual water discharge of the Pecos River near Artesia, N.M.

Table 4.5 Decline in Annual Averages from Period 1910-1940 to Period 1940-1970

Location Water Discharge* Precipitation**

[

Rio Grande at Otowi 24% 11%

Pecos River at Artesia
(downstream of Alamogordo

Reservoir) 37% 15%
Pecos River at Pecos

(upstream of Alamogordo

Reservoir) 20% 13%

* Data from U. S. Geological Survey Water-Supply Papers.
** Data from the National Weather Service.
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appears to be a dry spell in the last half of the
investigated time period. In addition to natural
fluctuations, the Pecos River watershed also has been
subject to significant man-made changes, in the form of
the Alamogordo irrigation reservoir which was completed
in the late 1930's. This explains the introduction of
the negative jump in the annual means around 1940 in
order to compare the man-made nonstationarity with the
natural fluctuations.

With a certain negative adjustment in the annual
discharges recorded before 1940 in the Pecos River at
Artesia, this data series can be made comparable with
the data series from the Rio Grande. The purpose of
the adjustment is to obtain relatively the same de-
creasing trend, which, in both series, would result
mainly from natural changes in the Rio Grande basin.
But how much should the first half of the Pecos River
data be diminished? Following the Bayesian approach
the value of such an adjustment parameter (called AP)
must be considered uncertain. However, the information
reported in Table 4.5 yields some helpful background
in the assessment of certain values of AP. Because of
the 37 percent change in the mean discharge in the
Pecos River at Artesia in relation to the changes en-
countered at the two other locations in the basin, an
AP in the neighborhood of minus 17 percent seems rea-
sonable. The jump in the mean annual precipitation
appears to be somewhat higher in the Pecos River area
compared to the Rio Grande region. This is the reason
for weighing the small values of the adjustment param-
eter heavier than the higher values in Table 4.6, which
gives a "subjective" discrete probability function for
the possible values of AP.

Table 4.6 Discrete Probability Function for the Value
of the Adjustment Parameter (AP)

i AP, p(AP,)
1 -25% 0.05
2 -21% 0.10
3 -17% 0.40
4 -13% 0.30
5 - 9% 0.15
[ I =1.00

It is recalled that the design alternatives and
EOL are functions of a given sample, in this case, the
augmented series. Because the augmented record is
dependent on the adjustment parameter used to reduce
the measured water discharges, EOL can be written as

2
EOL(n,+n,, S, ., S5 |AP),
172 1+2 Sl+2

with the symbols of Section 3.3 used.

In the spirit of Bayesian approach, the EOL for a
given augmented data sample would then be,

- 2
EOL(n,+n,, S 5 52 )
I 2 1+2 Sl+2

5
= } EOL (ny+ny, S

A |AP;) - p(AP).

2
» 5
12" %8,

(4,277

20

The same typé of equation is also valid for finding the
appropriate design alternative. It is seen how the
consequences of not knowing the exact value of the
adjustment parameter in the decision process is incor-
porated by the application of this expected-value cri-
terion.

A computer program was developed to calculate
design alternative and EOL in accordance with the method
and formulas described in Section 3.3. The input data
now consist of the sediment series and the adjusted
longer water discharge sample. In order to investigate
the sensitivity on the value of AP and to apply
Eq. 4.27, one set of test runs was performed for a
total record length of 60 years. The results are given
in Table 4.7 with the values of APi and p[APi) taken

from Table 4.6.

Table 4.7 Expected-value Criterion to find EOL and
Design Alternative for Different Adjustment
Parameters. The Pecos River at Artesia

(EOL|APi} (Design Alt]APi) Design

i in § in Acre-feet EOL-p(AP{) | -p(AP;)

1| 319,275 34,800 15,960 1,740

2| 302,611 35,300 30,260 3,500

3| 322,723 36,000 129,090 14,400

4] 342,998 38,000 102,900 11,500

5| 354,858 39,000 53,230 5,860

I = §331,440 37,000
acre-feet

Columns 2 and 3 in Table 4.7 show that the value
of the adjustment parameter is not a crucial factor
with regard to the EOL results and design alternatives.
However, it should be noted that the design alternative
increases almost 15 percent going fromthe minimum case
(AP = -25 percent) to maximum design (AP =-9 percent).
As a result of this analysis, and mainly in order to
keep the computational effort down to a reasonable level,
it was decided that the computations throughout this
section be made with one fixed value of the adjustment
parameter. Consideration of the summation results in
Table 4.7 justifies the adoption of a 15 percent reduc-
tion factor in order to decrease the water discharge
data recorded before 1940 in the Pecos River at Artesia.

The Alamogordo Reservoir is built for the purpose
of irrigation. The resulting depletion of water from
the river causes the change in the annual mean dis-
charge, which is accounted for above. Another common
result from a reservoir is a reduction in the variance
of the water discharge series downstream of the dam.
As seen from Eq. 3.21, the variance of the long-term
sample appears in this formula. Therefore, the ques-
tion arises as to what effect a nonstationarity in the
variance might have in the decision process. Because
the design in this study is concerned with sediment
accumulation over a long time span, the variance should
not be a determining factor compared to the mean of the
series. To illustrate this fact, the consequence in
the decision analysis of introducing a reduction of
the variance in the streamflow data is investigated.
In order to make a reasonable adjustment, a comparison
between sample standard deviations for the period
1910-39 and 1940-69 is carried out as shown in Table 4.8.
When the Pecos River and the Rio Grande data are com-
pared, it seems that the Alamogordo Reservoir causes
roughly a 15 percent reduction in the standard devia-
tion of the annual discharge series. According to this



difference in the percentage decline, the standard
deviation was lowered for the period before the res-
ervoir was put into operation, as shown in the last
column in Table 4.8. Two decision calculations using

Table 4.8 Comparison of Standard Deviations for Dif-
ferent Time Periods. Rio Grande and Pecos
River Water Discharge Data Used.

Adjusted
s in Rio Grande Pecos River std. dev.
Acre-feet Data Data Pecos Riv.
1910-39 5.2?-105 1.18-105 1.00-10°
1940-69 5.17-105 0.98-105 0.98-105

% Decline 2% 17% 2%

the long-term Pecos River streamflow sample through the
regression analysis are presented: the first without
any adjustment of recorded data, the second with the
reduction incorporated. Results are given in Table 4.9.
It should be emphasized that the standard deviation is
reduced so that the sample mean remains constant.

Table 4.9 Design Alternatives and EOL for Varying
Values of the Sample Variance. Pecos River
at Artesia. 20 Years of Sediment Data Plus
40 Years of Streamflow Data

Design Alternative EOL

in Acre-Feet in §
Data as recorded 42,100 403,922
Adjustment made 41,200 406,184

Table 4.9 shows how little the decision process is
affected by a nonstationarity in the variance of the
long-term water discharge series. Therefore, no ad-
justment of this sample statistic is considered neces-
sary in the present analysis.

With the above mentioned type of adjustment con-
siderations of man-made and other changes in the hy-
drologic system, the regression technique can provide
us with valuable information about the short sediment
load series in the framework of statistical decision
theory.

In the following, identical computer runs are
presented for both the Rio Grande and the Pecos River.
Annual water discharge data (secondary data) are uti-
lized to extend the 20-year long sediment load sample
with 10, 25, and finally 40 extra data points. The
decision analysis is then performed with these aug-
mented primary data samples. In order to compare the
results, it was necessary to find the expected EOL
curve for the Pecos River data by using primary data,
as already done for the Rio Grande in Section 4.3.2.

The cross-correlation coefficient between the
logarithm of the 20 years of concurrent sediment load

and discharge data was estimated to be:
Riv Grande at Otowi Bridge: p = 0.62 (4.28)
Pecos River at Artesia: p = 0.92 (4.29)
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These two values of the correlation coefficient more or
less give the lower and upper limits for the range in
which the value of ¢ normally is found. Nordin and
Sabol (1973) report in their investigationof 24 rivers
of the United States that the correlation coefficients
are found in the range between 0.56 and 0.96, with an
average value of 0.79.

In the framework of Fisher's well-known information
concept, criteria for information transfer via regres-
sion were found in the early 1960's. Criteria for
obtaining more reliable estimates of the mean as well
as the variance were reported with the value of the
cross-correlation coefficient being the determining
parameter. Matalas and Langbein (1962) found that the
condition for the cross-correlation to provide addi-

tional information of the mean is p~ > for a

N-2
random series. In this case we have 20 concurrent data

(i.e. N = 20) and the inequality implies, p > 0.24.
Matalas and Jacobs (1964, Table 2) give the critical
minimum values of ¢ for various values of sample

lengths in order to obtain an improved estimator of the
variance. In the present study, where the noise term
is included in Eq. 3.21, the condition p > 0.52 has
to be satisfied. Therefore, additional information
about both the mean and variance of the primary series
can be extracted form the secondary data via cross-
correlation according to these tests.

Everytime cross-correlation is applied, the inves-
tigator has to see whether spurious correlation is
present or not. If the scatter graph showsa clustering
of points in two or more groups, a seemingly large
correlation may result, due merely to the heterogeneity
in data. Such correlations are called spurious. The
scattered plot in Fig. 4.13 of sediment load versus
water discharge data in the Rio Grande case does not
indicate any marked spurious correlation in the data.
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Fig. 4.13 Scattered diagramin log-log scales of annual
sediment load versus annual water discharge
for the Rio Grande data.



The results of the above mentioned
are presented in the following text, with Table 4.10
and Fig. 4.14 related to the Rio Grande data, and
Table 4.11 and Fig. 4.15 pertaining to the Pecos River
data. All designs are for a 50-year reservoir lifetime.

computer runs

Table 4.10 Primary Data and Regression Results. Rio
Grande, New Mexico
: No. of Design
| Years in Alternative EOL
| Sample Acre-feet 106 §
Primary data
observed | 20 90,000 2.69
sample i
Primary data | 30 90,000 1.62
generated 1 45 90,000 1.14
values | 60 90,000 0.93
I
Secondary data 30 100,000 2.20
via regression 45 108,000 1.51
p = 0.62 ‘ 60 120,000 1.34
A
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Fig. 4.14 EOL values using primary data and secondary
data via regression. Rio Grande, § = 0.62.

Table 4.11 Primary Data and Regression Results. Pecos
River, New Mexico
No. of Design
Years in Alternative EOL
Sample Acre-feet 105 §

Primary data
observed 20 25,000 5.46
sample
Primary data 30 25,000 3.95
generated 45 25,000 2.74
values 60 25,000 2.18
Secondary data 30 31,000 5.25
via regression 45 34,000 3:71
p=0.92 60 37,000 2.78
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Fig. 4.15 EOL values using primary data and secondary
data via regression. Pecos River p = 0.92

Tables 4.10 and 4.11 clearly show how the new
information affects the decision process. The design
alternative in the Rio Grande case has increased from
90,000 acre-feet to 120,000 acre-feet, approximately a
33 percent increase, in the Pecos River case the in-
crease is nearly 50 percent. What causes this marked
difference in the change of design? After all, the
percentages of nonhomogeneities in water discharge series
are the same. The difference is due to the fact that
the Pecos River data set has a much higher cross-
correlation coefficient between runoff and sediment
load than the Rio Grande data. A high correlation
coefficient further indicates a high regression coef-
ficient because the relationship between the two coef-
e

¥

over s

ficients is This statement is correct

when the ratio Sy is considered constant;

Sy and sy are the standard deviations for the inde-

pendent and
ling Eqs. 3.

dependent variables, respectively. Recal-
20 and 3.21, it is seen that the higher the

regression coefficient B, the more weight is put on
nonstationarity in the secondary data series. This
influences the mean of the augmented sediment load

sample, and finally the chosen storage design.

Figures 4.14 and 4.15 show how a decrease in EOL is
realized when more and more water discharge data are
used to extend the given 20 years sample of sediment
load. However, it is also noted that the decrease is
not nearly as pronounced as it is for the curve based
on the primary data alone. The secondary data curves
are drawn as straight lines between the computed EOL
points contrary to the smooth primary data curve. This
is to indicate that the points found to be the means of
secondary data can be considered one set of sample
points of a "population" curve, while the primary data
points estimate the "population" curve directly, be-
cause they are found by using an expected EOL procedure.

The reason for the higher EOL values using a
secondary data set results from uncertainty introduced
in the decision processas part of the regression model
represented by the noise term described in Section 3.3.
The EOL curves can now be employed to obtain a measure
of how much this prediction error counts as a function
of the correlation coefficient. According to the nota-
tion used in Figs. 4.14 and 4.15, the following can be



stated. Extending the 20 yvears of observed sediment
load data with 40 years of the same type of data re-

sults in an expected EOL decrease of size A-C. Using
40 years of water discharge data through regression
yields a decrease of magnitude A-B. Because of the

uncertainty associated with the regressed values they
do not provide as much information as the same number
of primary data points. A horizontal line through B
intersects the primary EOL curve at a point D, where
the same decrease in EOL has been realized using either
of the additional data. In the Rio Grande case
(Fig. 4.14), point D corresponds to n = 37 years.

What has been achieved through this analysis is a
definition of the equivalent length of a secondary set
of data when used for regression in the framework of
statistical decision theory. For the Rio Grande case
with p = 0.62 the result is: 40 years of water dis-
charge data are equivalent to 17 years of sediment load
data. One obtains these values by subtracting the
number of concurrent years (in this study 20) from the
numbers obtained in Fig. 4.14. The same type of anal-
ysis (Fig. 4.15) for the Pecos River with p = 0.92
leads to the result: 40 years of water discharge data
are equivalent to 24 years of sediment load data. Be-
cause the analytical expression for the EOL function in
the Rio Grande case is defined (see Eq. 4.14), the
equivalent record length can alse be found by solving
the equation,

6
23 1110 =1.34 + 106, (4.30)
where the right side of this equation is taken from
Table 4.10. Equation4.30 yields the solution n = 37.3,

a result which is in agreement with the
lution in Fig. 4.14.

graphical so-

Expected opportunity loss (EOL) is the average
loss to be anticipated form incorrect design and is
comparable in principle to the variance of an estimate
in classical statistics as used in Fisher's information
concept. As reported by M. Roche (1963, p. 48),
R. Véron was one of the first to use the Fisherian
concept in order to define equivalent length of record
when secondary data are used to augment a primary set
of data.

R. Véron gives the ratio, R, of the variances for

the mean of the given sample (s% ) and for the mean
n

of the lengthened sample after augmentation (s% } as,
N

2
S; P
R=—ruls(-p -+ 5 I (4.31)
.
n
The two variances can be expressed by means of the

variance for the individual members of the series, ag,

in the following way, which yield a formula for the

equivalent record length Ne:

2 2
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This derivation is correct under the assumptionof time
independence in the series. Numerical examples:

(i) Rio Grandecascewith n = 241, N = 60, n=0.62
= R = (.60, Fquation 4,30 wiclds  the
equivalent length, N, = 33 years.

(ii) Pecos River cuse with no=20, N = 60,
p =0.92 = R =0.38, ECquation 4.32 yields
the equivalent length, Ne = 52 years.

Subtracting the 20 years of
the two Ne

concurrent data from
values provide us with comparable figures

between equivalent length using the EOL concept and
Véron's variance method.

Table 4.12 sums up the results from the two ways
of achieving a measure of equivalent length of record.

Table 4.12 Results Using Different
Equivalent Record Length

Methods to Find

Véron's Variance

EOL Analysis Concept
f=0.62|p=0.92|p6 =0.62|p = 0.92

Length of
j:i:“f::y 40 40 40 40

C »
in years
Length of
equivalent 17 24 13 32
primary data
set, years

The EOL method results in a considerable smaller
variation of the equivalent length as a function of the
correlation coefficient compared to the classical
Fisherian concept. Many studies in the past of cor-
relation, information content, effective length, etc.,
by Matalas and Langbein (1962) and Fiering (1963) and
others, all use the same type of concepts as Veron
introduced. The numbers presented in Table 4.12 indi-
cate that the strength of the correlative dependence
represented by the value of § 1is mot as important as
previous studies might suggest. However, it should be
kept in mind in connection with the results reported in
Table 4.12 that there is a basic difference between the
two approaches for finding the equivalent record length.
While Véron's variance concept operates solely in the
"log space' of the data series, the LEOL method uses an
"economic space," i.e. as part of the latter method,
the nontransformed form of the series is used. Never-
theless, for the design-engineer, the decrease of EOL
as a measure of gained information makes sense, because
worth of data can be assessed only when the purpose for
which the data are to be used is defined. The statis-
tical decision (EOL) approach for defining the equiva-
lent length involves the incorporation of many dif-
ferent factors, such as, (1) length of primary and
secondary samples, (2) cross-correlation coefficient,
(3) hydrologic characteristics of the basin, and (4)
economic factors. Because only factors (1) and (2) are
used to define the equivalent length in the Véron's
variance approach, it seems that the engineering rc-
lated factors (3) and (4) tend to 'smooth out"™ the
effect caused by the statistical factors (1) and (2).
That further indicates a dependence of the equivalent
length on the particular type of project under inves-
tigation.



The above results can be interpreted in another
way. The EOL method shows that for ¢ = 0.62, the 40
vears of secondary data provide the decision process
with as much information as 17 years of primary data.
It can be asked, which value of § 1is required by
using the Véron's method to obtain the same amount of

information transfer. By setting Ne = 20 + 17 = 37
years in Eq. 4.32 and substituting for R inEq. 4.31,
this equation 1is solved for 4 with n = 20 and

N = 60. The result is 5 = 0.71. It is seen that the
requirement on the value of ¢ is stricter in the
Fisherian concept than in the EOL concept.

It can be concluded from this analysis that the
value of the cross-correlation coefficient when the
regression analysis is used in a statistical decision
process is not a critical factor concerning the amount
of information transfer as defined by the equivalent
length of record. Important, however, for the choice of
design alternative is the question of nonstationarity
in the long-term record used for augmentation purpose,
as recalled from the adjustment considerations earlier
in this Chapter. Questions like man-made versus natural
changes in the hydrologic regime, permanent versus
temporary trends and jumps in time series, etc., have
to be considered carefully by the design-engineer be-
fore a secondary set of data is wused in a regression
procedure to increase information in comparison with
the information contained in the primary data. The
design is dependent on the value of cross-correlation
coefficient and the amount and type of nonstationarity.

4.4 Results of Case Study

A recapitulation of investigations and results
reported in Chapter IV is given in this section. The
Rio Grande basin in the southwest United States is one
of the most distinct sediment problem areas in the
world. The study of data worth is carried out by using
observed samples from two locations in the basin, with
the watersheds wupstream of the two gaging sites pos-
sessing similar natural features. Furthermore, stream-
flow data and sediment 1load data at the two stations
have been gaged over the same time period.

The form of the goal function is a penalty func-

tion, which indicates the loss of money the designer
might expect because of a realized overdesign or
underdesign. The decision variable 1is the sediment
storage part of a reservoir, intended to trap the

transported solid material in the Rio Grande.

Section 4.3.1 shows an evident fact, namely that
design sizes generally have a marked variability when
extremely short samples are used to make decisions
about design alternatives. The amount of uncertainty
inherent in the decision process, represented by an
EOL figure, reduces sharply in the case a five-year sample
is compared to a 10-year sample. The decrease in EOL
gets smaller and smaller withan increase of the length
of record used. An explicit functional expression for
the EOL curve is found in Section 4.3.2 (in this par-
ticular case a hyperbola). The worth of one extra

point of data added to a given sample already con-
sisting of S0 data, is only one percent of the worth when
added toa five-year record. However, the EOL curve con-
tinuously decreases which is the same as saying that
information is gained on the unknown parameters for
every new additional data point. This very often implies
that a fundamental difference of interest exists be-
tween the data gatherer and the engineer. While the data
expert wishes to improve the reliability and accuracy
of his product, which will require more years of data
collection, the engineer generally wants to or has to
get on with his work.

In order to satisfy both interest groups, the
concept of expected economic optimal record length is
introduced. It is found as the point in time where the
marginal cost of data (cost of sampling plus cost of
project postponement) is equal to the marginal benefits
provided by additional data. For annual sediment load
data in connection with the allocation of storage for
sediment deposition in a reservoir, it is shown that
the expected economic optimal sample has a length of
12 years, under the condition that five years of data al-
ready exist. That is, a project delay of seven years is
recommended so that the remaining data canbe obtained.
It should be kept in mind that this record length is
what the decision-maker anticipates to be economically
optimal, given the information already available in
the observed five-year sample. This implies further that
there is no guarantee for the additional data collec-
tion to change the recommended econmomic optimal record
length. The result of such an analysis is reasonably
conditioned, on the available information at the time
of decision. Also the sensitivity to the selected
lifetime of the reservoir is investigated. The result
indicates that the expected optimal record length only
increases from 12 to 15 years while the physical life-
time increases from 50 to 100 years.

A regression model is included in the statistical
decision analysis in Section 4.3.3. The purpose was to
extract information from a long-term streamflow series
and to transfer it to the short sediment load sample.
Investigation of nonstationarity (type and amount) in
the long secondary data sample is made in order to
perform a reasonable adjustment of the data. In this
case a 15 percent decrease in the mean of the first
half of water discharge data in the Pecos River was
justified, due to the completion of Alamogordo irriga-
tion reservoir in the late 1930's. The consequences in
the decision analysis of different values of cross-
correlation coefficient, p, are studied. This led to
a definition of the equivalent length of the secondary
set of data. It is found that the EOL method results
in a considerable smaller variation of equivalent
length as a function of p compared to figures ob-
tained (Table 4.12) when the classical Fisherian defi-
nition is used.

Up to this point the economic factors have been
treated as constant. Therefore, in the following
Chapter the statistical decision analysis is extended
by incorporating the uncertainty in economical param-
eters.



CHAPTER V
EFFECTS OF ECONOMIC UNCERTAINTY

The purpose of this Chapter is to
need for incorporating economic uncertainty in the
decision process of hydrologic related designs. The
expected opportunity loss concept is used. It is shown
how the mathematical considerations might be an aid in
the development of "subjective'" probability density
functions of economic parameters.

illustrate the

5.1 General Remarks

Projects havemany associated uncertainties. Such
uncertainties are: construction may be more or less
difficult than projected, the values of inputs and
outputs may differ from expectations, just to name a
few. Some risks result fromengineering uncertainties,
others from the stochastic nature of hydrologic
variables, and many from economic and political factors
on which the project success or failuresomuch depend.

In previous chapters only uncertainties in hydro-
logic parameters have bheen investigated, while other
factors affecting the decision process have been re-
garded as constants. Sensitivity analysis, such as
Moss (1970) and Davis et al. (1972a), indicates that
the lack of perfect knowledge of economic parameters
of a project may affect significantly the decision
reached. This result is in good agreement with the
findings by James, Bower, and Matalas (1969), who dem-
onstrate that the relative importance of planning vari-
ables in their descending order of effect is: (1) the
economic variable, (2) the political wvariable, and
(3) the hydrologic variable. Because it is recognized
that uncertainty in economic factors plays a signifi-
cant role, the next step is to find the consequence of
this uncertainty in the decision process and to compare
it with the effects of uncertainties in hydrologic
variables.

The expected opportunity loss (EOL) concept as
outlined in Chapter II can be used to cover uncertain-
ties in the economic as well as the hydrologic param-
eters. As demonstrated in the chapter treating the
goal function, the economic parameters involved in the

1t
: y, The

cost figure

cost function, Cost [ﬁ;,Q are K and r.

parameter K is an estimate of a unit
(dollars per acre-feet), and might, as indicated by
Kazonowski (1972), wvary by 10 to 50 percent of the
estimated mean within the United States. The parameter
K is expressed as a current value; however, it is also
used as a cost factor for future works (removal of
sediment), which obviously increases the uncertainty
in the evaluation of K. This additional uncertainty
is caused by the fact that the value of money changes
from one time period to another, either by inflation
or deflation; the first is more common than the latter.
Another reason is possible technological advances,
which in the future might decrease the expected expen-
diture.

The other fiscal parameter introduced in the cost
function is the rate, r, which appears in the discount

J
factor lK{l+r]h The selection of particular value
for this rate is a controversial subject among econ-
omists, who have even created different 'schools of
thought," see for example James and Lee (1971, pp. 126-
131). Furthermore, the discount rate cannot be ex-

pected to stay constant in the coming years, especially
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when dealing with rescrvoirs of designed project lives
between 50 and 100 years.

The most widely used approaches in economic apal-
ysis in treating uncertainty of this kind include:
(1) applying preselected percentages to increasc or
reduce costs and benefits, (2) limiting the period of
analysis (the time horizon), or (3) adding a risk in-
crement to the discount rate, so the discount factor

becomes
___J__ﬁﬁ, (5.1)
(1+r+Ar)

where r represents the riskless discount rate and

Ar  represents an additional fraction to the discount
rate (positive or negative), to account for what is
likely to be the expected variability in the rate, .
However, these approaches require the use of a numerical
factor, and the estimation of such a specific value
often turns out to be more or lessan arbitrary choice.
A more satisfactory approach, instead of using single
fixed values of the economic parameters, isto represent
the potential values by probability distributions to be
introduced in a probabilistic decision making process.

The concept of expected cost (and benefit) in eco-
nomic analysis is used, but it should be emphasized that
most often the expectations are found by means of prob-
ability functions describing the occurrence of physical
events, say floods greater than a certain size. One of
the better known earlier studies, which treats proba-
bility functions connected to economic measures, was
done by Altouney (1963). Using past data of construc-
tion costs for more than one hundred water resources
projects and population growth records, probability
density functions for construction cost and benefit
were developed. To accomplish the latter, Altouney
assumed benefits to be proportional to the size of
population. However, he did not show the use of these
density functions, as should have been done in an ex-
pectation calculation. He makes an important conclu-
sion, namely that the longer the project lifetime and
the lower the discount rate, r, used for planning pur-
poses, the larger should be the minimum acceptable
estimated benefit-cost ratio.

Considering a benefit-cost ratio as a variable
implies a very "bulky' economic parameter to work with.
In the present study the uncertainty analysis is car-
ried out directly with the factors which convey non-
perfect knowledge into the present value of future costs
(or benefits).

The economic uncertainty is taken into account and
quantified by assigning u and o2 (the hydrologic
variables), and K and r (economic variables) as the
state variables. The decision variable is the same as
previously, the design size of the sediment storage
part of a reservoir. Using the same notation as in
Chapter Il then the Bayesian Risk becomes,

O [[]] st lu,o2. k.- 00067 £
5

-f[r)-du-dcz-dK-dr (5.2)



with 0Q* the alternative chosen as the Bayesian solu-
tion. The "loss" in monetary terms of not knowing both
the exact fiscal figures and hydrologic parameters in
the cost functien is

EOL = H” (6% 4,07, K1) -6 (Q) 1,57, K, ) }- £ (1, 02)

<£(K)+ £ (r) ~dy-do®-dK-dr. (5.3)

fiuiosl; B(K), and E(x] ave the probability density
functions of the mean and variance of the sediment load
(in log transformed form), theunit cost factor K, and
the discount rate r, respectively.

The problem now focuses on the selection of these
probability functions which characterize the stochastic
properties of the parameters. Probability functions
can be determined either theoretically or experimen-
tally. The theoretical approach uses the mathematical
statistics in deriving the density functions given a
certain state of nature. The joint probability func-
tion - discussed in Chapter II - for the mean and
variance of the annual sediment load belongs to that
category. The experimentally determined distributions
can be subdivided into two groups. It is often the
case that useful information about an uncertain param-
eter is contained in samples of past data, in the way
that a "solid" frequency distribution of past parameter
values is available. It would then be reasonable to
assign a probability distribution which as closely
as possible match the frequency distribution of the
actual historical values. There exists a substantial
amount of objectivity in such a selection of density
function which in the 1literature often 1is called a
"data-based'" distribution. This method was used by
Altouney (1963) in his derivation of the benefit-cost
ratio density funetion as mentioned earlier.

In other cases the prior information may arise
from sources other than currently available samples of
past data - "nondata-based'" distributions. This is a
debatable and crucial point in the Bayesian decision
theory, which often is a subject of relevant criticism
from opponents of such type of probabilistic analysis.
In these situations the distribution represents simply
the investigator's personal viewand belief, which also
reflects his work experience and knowledge of the sub-
ject in question. Needless to say, one person's
"nondata-based" distribution can greatly differ from
that of another. Because of psychological difficulties
involved in this assessment, it is usually recommended
that the decision-maker does not specify his subjec-
tively derived distribution in more details than by a
few summary measures such as the mean, standard devia-
tion, a few percentiles, or just the shape. For a
thorough treatment of the controversy about objectively
versus subjectively based probability functions a book
by L. J. Savage (1972) is recommended, especially its
Chapter 4. 1In the following determination of proba-
bility distributions f(K) and f(r), it is shown how
the mathematical tools might be used in the process of
estimating a distribution subjectively.

5.2 The Unit Cost Density Function, f(K)

As mentioned earlier K is a total unit cost
figure which can be considered composed of subactivity
costs like (1) equipment, (2) manpower, and (3) dis-
posal sites; all expressed in dollars per acre-feet of
removed sediment. Moder and Phillips (1970) describe

the PERT statistical approach which has been widely
used in managerial engineering to determine time sched-
ules of technically oriented programs. However, the
employment of that technique to find probability dis-
tributions of cost figures, which can be broken down
into subcosts, has not been recognized among water-
resource engineers and planners.

In this method, three estimates are made of each
of the subactivity costs involved. A natural choice
is to choose a most likely cost, Ml, and a range from

a low estimate, A, to a high estimate, B,
Fig: 6.1

as shown in

Probability density, f(-)

|
i

A M,

Subactivity cost, in dollars per acre-feet

Fig. 5.1 Choice of cost estimates:

A = low cost estimate,
B = high cost estimate,
Ml= most likely value,.

If the limits A and B are assumed to be the 5 and
95 percentiles of the distribution, then it is common
that the difference, (B-A), often varies from around
3.1 to approximately 3.3 (average 3.2) of the standard
deviation. This is true for a wide variety of distri-
butions, ranging from the exponential distribution to
the normal distribution, including rectangular, trian-
gular, and beta-type functions. The estimator of the
standard deviation is robust to variations in the shape
of the distribution of the cost. Therefore, without
knowing the exact form of the distribution the stan-
dard deviation can roughly be estimated as

5, = {B-A) (5.4)

i .

with subscript 1
sidered.

indicating one of the subcosts con-

A simple formula for estimating the mean, Ei‘ has

also been suggested (Moder and Phillips, 1970) as being
the weighted average of the mode, M and the midrange,

A+B
5— !

e ol A+By 1 -
Ci =5(My +=57) = oA + M, + B). (5.5)
This formula for the mean is only valid with the as-

sumption of some functional form for the unknown dis-
tribution, such as indicated in Fig. 5.1. It could for



example be a gamma distribution, beta distribution or
normal distribution; that is single peak distributions
skewed or symmetrical.

Following this scheme, values for Eﬁ and §1
can be obtained for each of the variable subcosts.
Although it is realized that the well known Central
Limit Theorem has its limitations, it is used under
"very general conditions,'" as described by Benjamin and
Cornell (1970, pp. 251-253), to presume that the total
cost factor, K, follows a normal distribution. That

means,
£(K) = N(K,s2)., (5.6)
If the total cost consists of n subcosts, the dis-
tribution characteristics can be found as,
K = Ei + Eé + Es ¥ e E; (5.7)
3 ] 2 2 .2
5K = 51 + 52 + 53 + sees 4 sn, (S,B)

Equation 5.8 is valid only when the subcosts are
statistically independent, 1i.e., if they can be con-
sidered as uncorrelated variables. This is an assump-
tion which might appear too strict because economic
factors generally are dependent. This is a point the
investigator has to keep in mind when such type of

subcost method is used. However, in this particular
case, the assumption is considered adoptable: prices
of equipment for sediment removal, manpower, and dis-

posal sites will find their own level without refer-
ence to each other, so that the assumption of indepen-
dence has been met and the use of Eq. 5.8 «can be jus-
tified.

By the described procedure, a probability distri-
bution of K is obtained reflecting a quantitative
measure of the cost uncertainty. In the case of sedi-
ment removal from a reservoir it was mentioned above
that it would be relevant to consider only three sub-
costs, namely expenses for equipment and machinery,
labor, and compensation for sites to be used for dis-
posal of the removed sediment. The Task Committee for
Preparation of Manual on Sedimentation (1969, Ch. IV)
reports a study by Ferrell and Barr (1965), who give
an estimation of the cost of excavating sediment and
debris from reservoirs in the southern California
region. They found a price of approximately $1.00 per
cu. yd. ($1630 per acre-fect), which includes the dis-
posal site costs. Using the Task Committee's manual it
is possible to deduce illustrative figures for the
subcosts., Those estimates are presented in  Table 5.1
together with the probability distribution parameters
calculated by Eqs. 5.4 and 5.5.

By applying Eys. 5.7 and 5.8 with n =3 we then
get:

K = 800 + 600 + 300 = 1700 § per acre-feet, (5.9)

and

Y k!
s = 125 + 3?52 + 2507 = 470 § per acre-feet. (5.10)

Thus, onc form of an uncertainty distribution for the

total cost factor is then symbolized by

£1K) = N(1700, 470%). (5.11)

Table 5.1 Subcost Estimates for Sediment Removal, All
Figures are in Dollars per Acre-feet.  The
Rio Grande Casc Study
Subcost LEstimates
Equipment Manpower Disposal
b ] 3 *
5% - 95% Range: (1) (2) Site (3)
Low Cost A = 600 200 100
Most Likely M) = 800 500 200
High Cost B = 1000 1400 900
Distribution 5 .
Parameters: M @) (3)
Mean C; 800 600 300
Standard i
Dev. S5 125 375 250

5.3 The Discount Rate Density Function, f(r)

The probability distribution for the interest rate
also belongs to the '"nondata-based'" group. The possible
values of future interest rates are strongly related
to a nation's general financial and economic situation,
which further is very dependent on political decisions
concerning price levels, wages, and so forth. According
to the fluctuations of interest rate in the past it
seems reasonable to expect the future rates to be con-
tained inside certain limits say two percent and ten
percent when public (either state or federal) discount
factors are considered.

‘Because of reasons stated above, the value of the
future rates are difficult to predict. Therefore, the
situation is that a distribution representing the state
of "knowing little" is desired, under the assumption
that the rates can be in a certain range from a to
b. It seems agreeable to depict such vague or diffuse

information about a parameter by taking f(r) constant,
which implies,
1
f(r) = FE’f“ a<reh, (5.12)

The question about whether the choice of a rectangular
function really represents '"very little” information
about the value of a parameter is discussed in Appendix
B, where it is found that the rectangular probability
function indeed is a so-called 'minimal information"
density function.

Because sometimes the investigator knows more about
a particular parameter than "minimal information,"
he must weigh the chances of getting the values in the
middle of the range to be higher than at the lower and
upper portions of the range. A suitable model which
covers all cases mentioned ubove i1s the beta distribu-

tion. It has the desirable propertics of being con-
taincd inside a finite interval (a to b), and can be
either rectangular, symmetrical or skewed.  The beta

therefore selected for the wvariahle

r as

(Z-1)! . 1
(SSLIC 2 TV LA

distribution is
discount rate

f(r) =

1

o fra)® L (hupyt R (5.13)



where a <r<b, and ! and k are distribution
parameters which have to be fixed according to the
shape wanted. The most common cases the investigator
will meet are,

(i) rectangular, I=2 and k=1,
F(r) = (5.14)
b-a ’ ’
(ii) symmetrical with "flat" peak, Z=4 and k=2,
6
f(r) = R (r-a) +« (b-r), (B
(b-a)
(iii) symmetrical with "marked" peak (high kurtosis),
1=12 and k=6,
1) = oy — 0t () ¢ (1), (5.16)
(b-a)

(iv) skewed right, =6 and k=2,

20

f(r) = m. (r-a) *

(b-1)> . (5.17)

As the beta distribution is flexible and adjust-
able, a sensitivity analysis on the choice of the
underlying distribution can be carried out. This anal-
vsis goes from a "complete'" uncertainty in the discount
rate over ''some'" information ("flat" peak case), and
end up with essentially no uncertainty which means a
rectangular distribution is used with an extremely
narrow range for the value of r. The degree of sen-
sitivity in the distribution selection is measured as
the change in the expected opportunity loss (EOL).

5.4 Applications

With the probability density functions selected
in the previous two sections, the statistical decision

analysis can be pursued. The computer program was
extended to cope with the required number of multiple
integrations over both the hydrologic and economic

parameters. A maximum of four uncertain parameters is
considered in this investigation.

Table 5.2 presents results of the economic uncer-
tainty analysis, carried out on the Rio Grande data.

The hydrologic parameters, mean u and variance uz.
follow the data-based normal chi-square distribution of
Eq. 2.1, where the sample statistics are determined
from the observed 20 years of sediment load data. As
described in Sections 5.2 and 5.3, the uncertainty
distributions for the unit cost factor and discount
rate are, respectively,

2
YKy = 1 ] (K-17002) ] (5.18)
4?UU2ﬂ 2.470
ana
= 1 i % 5.19
£(r) = g0y @ for2b<r<lo ( )
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As Table 5.2 indicates, the uncertainty analysis is
done with a varying number of uncertainty factors in
the decision process. The different cases are arranged
according to the increasing values of the EOL figures
obtained. In cases where one or both of the hydrologic
parameters are considered certain (constants), they are
assumed equal to the sample mean and variance, respec-
tively, computed from the longest available data series.

Table 5.2 Economic Uncertainty Analysis. The Rio
Grande Data
Uncertainty Parameters Design
Alternative EOL
Case | Hydrologic Economic Acre-Feet 106 §
1 ——-- r,K 91,000 0.31
2 - g2 S 89,000 0.90
3 - g2 T,K 93,000 1.36
4 TR - 90,000 1.72
5 - 1K 92,000 2.22
6 u,02 - 90,000 2.69
‘7 u,0? - K 93,000 2.91
8 u,02 T - 98,000 3.42
9 u,02 r,K 99,000 3.50

The expected opportunity loss expresses the cost
the designer may anticipate because of either an over-
design or underdesign. Therefore, it is a measure of
the uncertainty inherent in the decision process in
monetary terms in connection with a particular design
alternative. The last column in Table 5.2 shows how
the different types of parameters introduce uncertainty
in relation to each other. For instance, case 1 and
case 2 indicate that it is more important to have per-
fect knowledge about the variance of the sediment load
series than about the two economic parameters. The
consideration of the EOL values leads to the following
ranking of relative importance of design variables (in
descending order): (1) mean of annual sediment load,
u, (2) variance of sediment load series, 02, (3) dis-
count rate, v, and (4) unit cost factor, K. This is
an interesting result in the sense that it has reversed
the order in the relative importance of parameters
compared with the findings reported in Section 5.1.
This result might be due to the fact that the study by
James, Bower, and Matalas was carried out in the plan-
ning stage of a water resource project, while the pres-
ent analysis is concerned with the design phase of a
proposed project.

Furthermore, Table 5.2 shows a strong dependence
of EOL on the type and number of uncertain parameters
involved in the analysis. As expected, incorporating
all four parameters (case 9) results in the highest

EOL value, namely 3.50 - 106$. This figure is more
than 25 percent higher than the value shown in case 6,
which is taken from the analysis presented in Chapter
IV. This indicates further that taking the economic
uncertainties into account affect the result concerning
the optimum record length, as found in Section 4.3.2.

It is also interesting to note, as Table 5.2
shows, that the expected opportunity loss 1is super-
additive. If the terminology EOL(p) is used, which

means that this particular EOL value is found by treat-
ing p parameter(s) as uncertain, it is seen that,

.
EOL(u) + EOL(¢”) + EOL(r,K) < EOL(y,02) + EOL(r,K)

”
< EOL(u,07,r,K)



Such superadditivity indicates an interaction between
all four parameters as they appear interrelated in the
goal function. Unfortunately, this property makes it
impossible for the investigator to find the EOL values
"piecewise," which otherwise could have resulted in
considerable savings in computational efforts and com-
puter time.

In order to find the sensitivity in the choice of
the shape of probability distributions, another set of
runs was performed with three types of the beta dis-
tribution function of the discount rate r:

(a)

""complete' uncertainty - wide rectangular distri-

bution,
1
PR OUUSRTN 10% 5.20
£(r) R R ,  (5.20)
(b) "some" uncertainty-symmetric peaked distribution,
6
f(r) = 3 (r-0.04) (0.08-r), for 4% < r < 8%,
(0.08-0.04)
(5.21)
and
(¢) nearly no uncertainty - narrow rectangular dis-
tribution,
1 2
f(r) 0. 0650-0.0550 ° for 5%% < r < 64%% . (5.22)
It should be mentioned that the unit cost factor
K is kept constant in these runs. This means that

the run (a) corresponds to case 8 of Table 5.2. Table 5.3

gives the results of this analysis.

Table 5.3 Sensitivity in the Shapes of Probability
Distribution Functions for the Discount Rate

Design Alternative| EOL

Run Description of r Acre-Feet 106 §
(a) | "compliete" uncertainty 98,000 3.42
(b) | "some'" uncertainty 93,000 2.98
(c) { "little" uncertainty 91,000 2.81

As expected, we find these EOL values inside the
limits determined by case 6 and 8 in Table 5.2, with
run (c) - "little" uncertainty - nearly matching the
case where both economic parameters are fixed.

Although the degree of information on economic
parameters influences the uncertainty analysis in the
decision process, the decision reached 1is rather in-
sensitive. However, as seen in Table 5.3, a slightly
increasing trend in the design alternative occurs as
knowledge about the discount rate grows smaller. This
is explained by the fact that the economic uncertainty
tend to favor an overdesign, because a certain over-
design is less expensive than the same size of under-
design.

All the calculations reported in this Section are
characterized by a common mean discount rate of six
percent, the value used in all previous chapters,
Table 5.2 shows that the discount rate plays a more
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significant role in the uncertainty
other economic factor, at least

storage case study. Conscequently, o third series of
computér runs was carricd out  to investigate the jne
fluence of a change in the mean discount rate, heeping
the amount of uncertainty attiached to that rate in ac-
cordance with Eq. 5.22, i.eoo % v S50 The runs are
performed for both o S0-ycar and o 100-year desipn
lifetime of the reservoir. The results are presented
in Table 5.4.

ana by
i thas

< than the
sediment

Table 5.4 Sensitivity to Chnﬂﬂv

in Mean Discount Rate

50 \Laru

Design Lifetime 100 Years

Discount rate, r 3% ¢

1

_i
-
=

Design alternatives

in acre-feet 108, 000

T

3.83 25

EOL in
106 §

81 O 64 1

By considering the EOL values which represent the ex-
pected costs, it is seen that the future costs re-
ceive less weight with a higher discount rate and more
weight with a lower. The relative difference in EOL is
larger in the 100 ycars casc compared to the shorter
lifetime. The longer a proposed project lifetime, the
more crucial is the selection of a proper discount rate
in testing of economic feasibility. This is a manifest
of the economical principle that high discount rates
favor projects with little initial investment, while
low discount rates favor capital intensive projects.

Perhaps of more interest for the design-engineer
is the apparent jump in decision value witha change in
the mean discount rate. In regard to the 50-year life-
time case, it is seen that the rccommended sediment
storage has increcased from 91,000 acre-fect to 108,000
acre-feet, or nearly 20 percent, by decreasing the mean
discount from a six percent rate to a threc percent
rate. Again, that is explained by the fact that future
costs are more importont when the discount rate is low,
and therefore, an immediate cost at  the time of con-
struction in form of an overdesign is preferable.

To recapitulate, it can be stated, that lack of
perfect information on economic paramcters docs have
an important effect ina statistical decision analysis.
For the type of goal function used in this study con-
cerning design of sediment deposition storage, it is
found that uncertainty in the selection of a value of
the discount rate is more crucial than the uncertainty
in the unit cost factor, like the price of removal of
sediment per acre-feet. The choice of the shape of the
probability density function (different types of beta
distribution) and the choice of the mean of the dis-
count rate result in marked changes in the uncertainty
analysis represented by the EOL, which in turn, will
effect the length of an cconomic optimum sample. Fur-
thermore, the selection of the mean discount rate has
a strong influence on the design decision reached.

Investigations presented in this Chapter point out
the inseparable interrelationship between the param-
eters involved in a decision process. Lconomic uncer-
tainty should be considered carefully on equal terms
with uncertainty in the hydrelogic paramecters in order
to achieve a realistic economic optimum design. The
design alternative and worth of a particular data
sample, as found by the statistical decision approach,
show a high degree of dependence on both types of in-
adequate information.



CHAPTER VI
SUMMARY AND CONCLUSIONS

6.1 Summary

The design engineer is always faced with the
problem of taking a particular action and making deci-
sion under uncertainty. This study uses a probabilis-
tic method making it possible to choose a design al-
ternative that minimizes the future costsof a project.
The applied statistical decision approach produces an
expected minimum cost decision, together with a mea-
sure in monetary terms of the value of the given data
sample used for design purpose. This latter concept is
introduced as the decrease in expected opportunity
loss, (EOL).

Information can be increased in the decision pro-
cess by incorporating more data in the sample, either
(1) through the use of more existing data. (2) by a
postponement of the project to collect additional data,
or (3) by the use of a regression model with secondary
data. TItem (2) leads automatically to a definition of
economic optimum record length. This is an important
concept for the design engineer and data collection
manager to keep in mind, since data cannot be treated
as a "free resource."

In the process of finding the expected opportunity
loss when future '"unknown' data are incorporated in the
observed sample, a special data generation technique
was introduced. In brief, it synthesizes new realiza-
tions (traces, samples) for various randomly selected
population parameters, with a weighted average proce-
dure used to achieve an estimate of the cxpected value
of the expected opportunity loss (EVEOL). Furthermore,
definitions of the regression related term "equivalent
length of secondary data," found in the framework of
both the statistical decision theory and the classical
Fisherian concept, are compared in this study.

Uncertainty in the decision process may stem from
sources other than hydrology related uncertainties.
The investigation also deals with the question of eco-
nomic uncertainty.  For example, consequences in the
decision analysis of not knowing the exact value of a
discount rate and/or a unit cost figure are found. For
that purpose the expected opportunity loss concept is
used. It is shown how mathematical considerations
might be an aid in developing the subjective probabil-
ity density functions of uncertain economic parameters.

The theory and procedures are applied in a case
study of the Rio Grande Basin. Annual sediment load
data are subject to investigation, with the considered
design (decision variable) being the storage allocated
for sediment deposition in the not yet completed Cochiti
Lake projeet on the Rio Grande in New Mexico. Deci-
sions concerning design alternatives are made on the
basis of an cconomic efficiency criterion; planning
objectives like yuality of environment, social bene-
fits, and similar are not taken into consideration.
The goal function in this study is nonlinear and con-
sists of a linear penalty function (for either a real-
ized overdesign or underdesign), and a normal proba-
bility distribution, which the sample mean of annual
sediment  load follows, taken over a period equal to
the design lifetime. The decision variable (or design
alternative) is the sediment trapping part of a reser-
voir, and the state variables in the problem arc the
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uncertain population parameters, the mean and the vari-
ance, which characterize the assumed lognormal proba-
bility distribution used in this study to describe the
outcome of annual sediment loads.

6.2 Conclusions

One of the advantages of the statistical decision
theory is the fact that it takes the uncertainty in the
determining parameters and the economics of the project
into account. It focuses on the engineering problem
of having to decide, with the available information,
which design alternative to recommend. The realistic
Rio Grande case study shows how the statistical deci-
sion method provides a rational and practicable tool in
a decision-making process.

Conclusions reached from this study are the fol-
Towing:

(1) The EOL curve follows a decreasing power
function, when more and more data are included in the
sample. The curve levels off fast and tends to be

horizontal, especially after incorporating 40 to 50
data points into the sample. This indicates that the
incremental worth of data in connection with such long
samples is negligible from a practical point of view.

(2) From an economic point of view it might be
worthwhile for the decision-maker to request a post-
ponement of a proposed project inorder to collect more
data, particularly if this sample is small, say five to
ten points. A longer sample increases the information
about the uncertain parameters. The gain in informa-
tion expressed in monetary terms as a result of a more
economic and efficient design might offset the cost of
data collection plus the loss of benefits which occur
by a delay in the construction of a project. For annual
sediment load data in the Rio Grande Cochiti Lake pro-
ject case, it was found that it would be an economic
optimum decision to delay the construction of the dam
for seven years if a five-year sample was available at the
time of design, in order to obtain seven more years of
data. The ultimate goal should always be to obtain
the expected economic optimum record length for design
purpose. It should be noted that only one purpose of
the Cochiti Lake has been considered; the consequence
of taking benefits from flood protection into account
in the economic analysis was disregarded.

(3) Seccondary data can be incorporated via a re-
gression model to extend the length of primary sect of
data. The decrease of uncertainty, i.e., the decrcase
in the expected opportunity loss, depends on many fuc-
tors among which the most important are the value of
the cross-correlation coefficient and any nonstation-
arity in the secondary series. The decrease in [OL
using the secondary data is not as pronounced as in the
case when the given sample is augmented by means of
additional primary data. due to the prediction error
inherent in the regression model.

(4) The equivalent record length of secondary set
of data is less sensitive to the degree of the correl-

ative dependency, represented by p, when defined by
means of the EOL concept compared to the classical
definition by wusing Fisher information concept. A

smaller variation of equivalent length as a function

of p is found.



(5) The long-term secondary data have to be
examined carefully in regard to any nonstationarity
before being used for the transfer of information to
the primary series. Man-made versus natural changes in
the hydrologic regime should be considered and adjusted
for, if necessary. Such a consideration is a crucial
point in regression analysis. The design alternative
and EOL values obtained in this study emphasize this
aspect.

(6) Uncertainty related to economic parameters
should have as equal a role within the decision process
as uncertainty in physical (hydrologic) parameters. A
circumspect selection of a subjective probability den-
sity function for economic parameters makes it possible
to incorporate that type of uncertainty in the statis-
tical decision process. Certain types of a beta dis-
tribution were found appropriate to relate to uncer-
tainty in the discount rate, and a normal distribution
to be applicable for a unit cost figure, like the cost
of sediment removal per acre-feet. It was found that
hydrology related parameters introducemore uncertainty
into the decision process than the economic variables.
The mean value of the discount rate distribution has a
strong effect on the chosen design alternative. A low
discount rate, in the case of a sediment storage pro-
ject, results in an increased reservoir space; the
lower this rate is, the more an overdesign is favored
compared to an underdesign.

(7) The design alternative found in the Cochiti
Lake case study, using the sediment load data alone, is
smaller than the design by the U.S. Corps of Engineers.
The inclusion of uncertainty distributions through the
application of the statistical decision approach seems
to result in a more economical optimal design compared
to the classical design methods. The possibility of a
costly overdesign is reduced by the use of some degree
of mathematical censiderations and statistical sophis-
tication in the design phase of a project.

6.3 Recommendations for Further Studies

During the conduct of this study the following
items showed up as being worthwhile for further inves-
tigations:

(1) The underlying assumptions for the proper use
of a normal chi-square distribution to describe the un-
known mean and variance of the data series are (i) in-
dependence in time, and (ii) normality. Further study
should be undertaken in order to develep a joint dis-
tribution where the autocorrelation is considered. As in
the present investigation, a complete independent series
often seems to be a rough simplification of reality.

31

In order to meet the condition of normality, a loga-
rithmic transformation of input data was necessary.
The validity of treating the state parameters in a form
of their logarithms, when used in  the context of a
design problem, might be questioned, although the proper
conversion between '"log space' and ‘“economic space"
are incorporated in the goal function. This controversy
can be avoided, if it is possible to describe the sto-
chastic properties of the state parameters by proba-
bility distributions not based only on normality, That
means. that one should find an alternative to the normal-
chi-square density function, which will describe the
unknown state parameters in ''real space.'" Attention
should also be paid to the common case where the re-
guired probability distributions are completely unknown
and have to be found through "experimentation' by means
of special Monte Carlo simulation techniques. A step
in extending the traditional synthesizing procedure in
that sense is done in the present study.

(2) The worth of data was found for one particular
use, i.e., only one objective was considered. The rea-
son is that the data worth was obtained in comnection
with a design problem and not in the planning phase of
a proposed project. The latter case very often forces
the engineer to consider multiple uses of hydrologic
data which will require economic studies of tradeoffs
among various objectives. Under such, more general
conditions, the applicationof the statistical decision
approach as a tool for the engineer has to be investi-
gated to determine whether it is tractable or not.

(3) The study may be exténded to incorporate into
the economic analysis, all types of benefits foregone
from the reservoir. Taking the consequences of flood
control into account will undoubtedly decrease the
economic optimal record length.

(4) In connection with the use of secondary data,
the question arose of how to cope with nonstationarity
in a long term hydrologic series. More research should
be carried out in order to make proper adjustment for
such series. In those considerations, knowledge from
disciplines like geology, climatology, population move-
ment, and regional development, must be used by the
hydrologist.

(5) The study points out the need for a thorough
analysis of uncertainties in economic parameters. The
value and the reliability of economic parameters have
a noticeable impact on the project feasibility and on
the sclected design alternative. Economic uncertainties
should not be ignored in any type of engineering pro-
ject, and therefore, should be investigated with the
same attention as given to uncertainties in hydrology
related parameters.



APPENDIX A,
FACTS ABOUT THE COCHITI LAKE PROJECT IN NEW MEXICO

The information reported in this Appendix is
mainly obtained through written communication with the
U. 5. Army Corps of Engineers, Albuquerque District in
New Mexico.

Cochiti Lake was authorized by the 1960 Flood
Control Act as a flood and sediment control dam on the
main stemof the Rio Grande. The Cochiti Dam is located
near the Pueblo Indian village of Cochiti about 50
miles upstream from Albuquerque. When completed the
dam will be among the largest earthfill dams in the
world, with its 5.4 miles long embankment rising 251
feet above the river.

A.1 Comparison of Sediment Storage Design

Storage allocations to spillway crest are 110,000
acre-feet for sediment reserve and 492,000 acre-feet
for flood control, An additional 188,000 acre-feet of
storage will be between spillway crest and the top of
dam making a total of 790,000 acre-feet.

The Corps of Engineers designof 110,000 acre-feet
for sediment storage is based on fairly old sediment
flow records which indicate an average of 2,200 acre-
feet of sediment flow annually into Cochiti Lake. The
sediment storage is designed to hold the inflows for 50
years or 110,000 acre-feet. That means, the value of
the sample mean is used to represent the future annual
inflow without taking any probability concepts into
considerations.

The statistical decision approach using primary
data only results in a 50 years lifetime design of
90,000 acre-feet as found in Section 4.3.1. That is
nearly 20 percent smaller than the design by the Corps
of Engineers.

It is not the purpose of this Appendix to state
what design is '"right or wrong," because other consid-
erations than strictly economic related factors go into
the decision process as pointed out in Section 1.2.
However, a few facts concerning this matter is appro-
priate to mention. The Corps of Engineers uses an
average annual flow without relating the sediment load
series to any probability distribution. The statistical
decision approach accounts for that; in this case the
annual sediment loads are found to follow a lognormal
distribution. This feature gives one reason why the
present study might result ina smaller storage alloca-
tion compared to the old design procedure. By taking
the logarithm of a set a data more 'weight" is put on
the lower values in the sample in comparison with the
higher numbers, and a smaller average value is the
result. In light of the present study the Corps of
Engineers seems to have made a conservative design based
on the sediment load data. The "overdesign'" for the
sediment storage alone is 20,000 acre-feet, which in
construction cost amounts to approximately $3,000,000.
It should be emphasized that this investigation only
covers the sediment storage part of the entire project,
or 15 percent of the total capacity of the reservoir.

In Section 4.3.3 is the information increased
about the unknown mean sediment load by the incorpora-
tion of a long water discharge series. Hereby the
statistical decision approach ends up with a design
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alternative of 120,000 acre-feet. These extra consid-
erations consequently result ina fairly good agreement
between the Corps of Engineers design of 110,000 acre-
feet and the design obtained in the present study.
Therefore, in this particular case, it can be stated
that the amount the Corps of Engineers allocated of
extra storage as a type of safety margin, paradoxically
enough, turned out to make their design alternative an
economic optimal choice from a Bayesian Risk analysis
point of view with a regression model included.

A.2 Project Benefits

The benefit foregone for the project is used
(Section 4.3.2) in order to find an expected optimum
record length. As recalled, the factor ¢, appears

in the total cost function (Eq. 4.18). An estimate of
¢, can be determined in the following way.

Trapping sediment in Cochiti Lake is expected to
provide the listed benefits:

Reduce the cost of raising 170 miles of the
present leveed system three feet to offset
streambed aggradation and maintain the exist-
ing flood protection.

(a)

(b) Reduce the cost of extending drains to main-
tain their effectiveness with streambed ag-
gradation and reduce the cost of repairing

drains damaged by seepage from the river.

Maintain the present cost of disposal of
effluent by preventing the streambed aggra-
dation that would block the outlets and in-
crease the cost of operation and maintenance
of sanitary and storm sewer outlets.

(c)

Reduce the removing of sediment from irriga-
tion canals and lessen crop losses caused by
fine sediment deposited on the land.

(d)

No standard method exists to evaluate sediment
benefits, but the Corpsof Engineers did make estimates
in order to determine project feasibility. Table A.l
presents those estimates of damages and benefits for
the Cochiti Lake project, updated to the July 1973
price level.

Table A.1 Estimates of Annual Sediment Damages and
Benefits in Dollars
Average Annual Damages | Average
Existing | With Cochiti| Annual
Item Conditions Lake Benefits
Levee raising 101,000 0 101,000
Extending drains 25,000 1} 25,000
Drain bank
sloughing 25,000 0 25,000
Sediment in Irri-
gation water 177,000 78,000 99,000
Storm and sewer
outlets 25,000 0 25,000
TOTAL: 353,000 78,000 275,000




The benefits foregone factor has hereby been which acts as sediment trapping pool (approximately
found as ¢, = 275,000 dollars based on 1973 figures. 15 percent of the total storage) and considered not to

It should be kept in mind that the above calculated have connection with the other purposes (and benefits)
benefits are provided only by the part of the reservoir of the reservoir.
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APPENDIX B.
THE “MINIMAL INFORMATION" DENSITY FUNCTION

The purpose of this Appendix is to find a
probability density function, which represents the
state of having minimum information about a parameter,
r, where r in this case represents a discount rate.
In order to cope with that problem, a measure of infor-
mation has to be introduced. Shannon's information con-
tent, as described by Shannon (1948), was selected as
being appropriate for that purpose:

b
J f(r) = log {f(r)} - dr.
a

I = (B.1)

The information content, I, in the probability density
function f(r), is going to be minimized, subject to
the constraint:

b
J f(r)dr = 1.

a

(B.2)

Minimum I is the same as maximum uncertainty asso-
ciated with f(r). For convenience f(r) is called
F in the following derivations. The Lagrangian ex-
pression is formed:

b

I+ x- Frdr -1/, (B.3)

B

The differential
is equal to zero

a Lagrange multiplier.
L with respect to F
point:

where A is
of the term
at a minimum
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b b
J (1 #log F) » dr + X * [ dr = 0. (B.4)
a a
Eq. B.4 yields
l1+logF+Aa=20. (B.5)
The solution is,
B ow o WU EAR (B.6)
The constraint has to be satisfied:
b
f AW g o o1, (8.7)
a
or
(s @ye g v R g, (B.8)
Combining Eqs. B.6 and B.8 yields: F = o which is
identical to f(r) = — for a <r <b., Thus, the

b-a
rectangular probability function has been shown to be
a "minimal information" density function, for the dis-
count rate v, when it is contained inside a specified
range.
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APPENDIX C.

LIST OF SYMBOLS

Definition Symbol
Low estimate of subactivity cost F(X)
Adjustment parameter, used in the
regression analysis £ (K)
Lower limit for the range of the
possible values of the discount f(r)
rate
A constant which defines the EOL f(u,az}

curve
High estimate of subactivity cost

Total benefits in economic analy-
sis as a function of sample size

Upper limit for the range of the

possible values of the discount
rate

A constant which defines the EOL
curve

A constant which makes 5; an

1+2

unbiased estimator, used in
Eq. 3.21

Estimate of mean subactivity cost

(i)

Total costs in economic analysis
as a function of sample size

Cost function, dependent on the
annual mean of sediment load given
a design alternative

A constant matrix whose elements
are functions of two sets of con-
current data used to establish a
regression equation

Annual cost of having a sediment
sampling station in operation

Benefits foregone parameter

lefines difference between total
benefits and costs as a function
of sample size (net worth of data)

Expected opportunity loss as a
function of sample size

Expected Bayesian Risk fora total
record length of n; +n, years

given a particular set of values
of the population parameters

Expected value of the expected op-
portunity loss as a function of
sample size

A factor which converts sediment
load data from tons per year to
acre-feet per year
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1t 2
6(Q5 " |u,0%)

g(@Q
I

2
Min[6(Q2'% [u, ,00))
alt
Q%

2

OL(Q} |ug,02)

Definition

Theoretical distribution wused in
Kolmogorov-Smirnov test

Unit cost
function

probability density

Discount rate probability density
function

Density function for the
parameters

state

Goal function dependent on the
design alternative and the state
parameters

Predictive distribution of Q
Shannon's information content
Interest rate

Estimated mean of unit cost factor

Unit cost of reservoir construc-
tion (dollars per acre-feet)

Unit cost for removal of sediment
(dollars per acre-feet)

Shape parameter for the beta dis-
tribution

Shape parameter for the beta dis-
tribution

Number of years between two suc-
cessive removals of sediment

Most likely value
cost

of subactivity

Minimum value of goal function for
different design alternatives
Design lifetime of reservoir

Equivalent rccord length of
ondary data

sec-

Size of observed data sample

Size of concurrent water discharge
and sediment load data samples

Size of water discharge sample ex-
cluding the concurrent data

Opportunity loss due tothe selec-
tion of the minimum Bayesian Risk
solution as design alternative

Proportionality factor bctween
total sediment load and suspended
load



Symbol

P(X)

P(AP)

Definition

Sample  distribution wused in
Kolmogorov-Smirnov test

Discrete probability function for
the possible values of the adjust-
ment parameter

Data point in Davis' derivation
(Eqs. 3.1 through 3.6)

Annual mean sediment load taken
over a period equal to the design
lifetime of the reservoir

Design alternative for the size of
the sediment storage expressed in
tons per year

Design alternative which yields
minimum value of the goal function
when the true values of the state
variables are known

Minimum Bayesian Risk solution
Ratio of the variance for the mean
of a given sample and for the mean
of the lengthened sample after
augmentation with secondary data
Minimum Bayesian Risk

Discount rate

Logarithm of annual sediment load
used in regression analysis

Sample mean of Si after augmen-
tation with water discharge data

Sample variance of sediment load
data in logarithmic transformation

Estimate of standard deviation of
subactivity cost (i)

Estimated variance of unit cost
factor

Sample variance of Si after aug-
mentation with water discharge data

Logarithm of annual water discharge
used in regression analysis

Sample mean of sediment load data
in logarithmic transformation

Vector of secondary observations
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Symbol

b1 ]

™

r(n)

p(l)

6 (1)

¢(55|u-021

Definition

Actual value of primary data

Predicted value of y by means of
a regression equation

True values of the intercept of
the regression line

Estimate of a

True value of the regression co-
efficient

Estimate of g

Gamma function as a function of
sample size

Kolmogorov-Smirnov statistic

Population mean of annual sediment
load (Eq. 4.1)

Normal random component with zero
mean and unit variance

Population variance of annual
sediment load (Eq. 4.2)

Represents the uncertain param-
cters in a Bayesian decision anal-
ysis

Lagrange multiplier

Assuined value of population mean
of annual sediment load in loga-
rithmic form

True value of

Correlation coefficient

Estimate of »p

First order autocorrelation coef-
ficient

Estimate of p(1)

Assumed value of population vari-
ance of annual sediment load in
logarithmic form

True value of 02

Probability density distribution
for Q5 given a set of values of

u and az
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ABSTRACT; Statistical decision approach produces a minimum
cost decision with regard to a specific design, and yields

a measure in monetary terms, called expected opportunity
loss, EOL, of the uncertainty inherent in the decision
process. The uncertainty stems from the fact that the '"true"
state of nature (the population parameters) is unknown. Ad-
ditional information can be obtained either by collecting
extra primary data or by incorporating a long-term secondary
data set by means of a regression model. The value of ad-
ditional information is measured by decrease in EOL. The
investigation defines the term''expected economic optimum re-
cord secondary data,'" found in the framework of the proba-
bilistic method. The hydrologic parameters treated as un-
certain are the mean and variance of an annual sediment load
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series. The study also deals with the question of economic
uncertainty; for example, the consequences in the decision
analysis of not knowing the exact value of a discount rate
and/or a unit cost figure. The theory and procedures are
applied in a case study in the Rio Grande Basin, with sedi-
ment deposition in a reservoir. The EOL curve is found to
follow a decreasing power function as the size of the ob-
served sample increases. The study points out that uncer-
tainty related to economic parameters should have as equal
a role within the decision process as uncertainty in the
hydrologic parameters.
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