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ABSTRACT OF THESIS 

SOME O-IARACTERISTICS OF TURBULENCE IN TIlE 
LOWER 200 FEET OF THE AnIOSPlIERE 

The small scale structure of turbulence and the variation of the 

longitudinal turbulent component with stability are discussed. The 

analog computing technique used in the calculations is presented. It 

is shown that the spectrum distribution of the turbulent fluctuations 

follows the -5/3 law of Kolmogorov. The intermittency factor, y , 

defined by TOlffisend is computed for different frequencies of the 

original signal. The flatness factor for the present data sho\vs good 

agreement with the previous investigations. The Richardson number is 

computed in the layer between 200 and 20 feet for each fifteen minutes 

during a 24 hour period. TurbulenL macro-scales during the same period 

of time were computed and discussed in relation to stability. 
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INTRODUCTION 

In order to understand the structure of physical processes in the 

layer of air nearest to the ground, it is necessary to examine and 

interpret highly accurate observations made in this layer. This implies 

a detailed knowledge about the air motion and temperature changes near 

the ground. The flow in the boundary layer is usually turbulent and 

as a consequence many of the characteristic properties on which much 

of life depends arc due to turbulence. Processes such as heat transfer 

from ground to air, the exchange of carbon dioxide between plant and 

animal life, the scattering of pollen, the cycle of water from the 

earth, seas and rivers to the air and back again, propagation of waves 

and diffusion are all strongly affected by turbulence. 

The most frequently used theory in describing turbulent motion is 

based on a statistical approach. Very important characteristics which 

describe the turbulent motion, such as correlation functions, spectrum, 

and scale of turbulence, can be inferred using statistical description. 

The theory is based on the concept of isotropy, or at least local iso­

tropy (Taylor, 1921; Richardson, 1920; Kolmogorov, 1941). In the 

atmospheric boundary layer isotropy is not achieved. Still, it is 

possible to use the concepts of the statistical theory of turbulence 

in the atmosphere, provided that the scale of motion is less than the 

height above the ground or less than the distance to the nearest 

inversion (Lumley and Panofsky, 1964). In general anisotropy decreases 

with increasing frequency, but the decrease is very gradual. Stewart 

(1969) discussed the \'lays of separating \'laves (the large scale motion) 

from turbulence and concludes that isotropy is not a good enough 

criterion. 
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Another property of small scale turhulence is its intcrnittcnt 

nature. It has received a great deal of attention in rccent years for 

atmospheric problems. The phenomenon of intermittency is not a nCl\' 

concept to fluid dynaInicists. Corrsin (1943) noted that a hot-liil."e 

probe placed near the sharp interface bet\\een turbulent and non-

turbulent regions showed a characteristically intermittent signal. 

TOwllsend (1948) verified Kolmogorov's (1941) theory of local isotropy 

in the turbulent wake behhld a cylinder, but also found that the flow 

was intermittent. He proposed the intermittency factor y 

Batchelor (1953) states that thel"e is an uneven spatial distribution 

of energy associated with large wave number components of turbulence. 

This energy has a great tendency to occur in confined regions of space. 

Sandborn (1959), Finn a.nd Sandborn (1964), Bald\I/in and Sandborn (1968), 

Kuo (1970) and others have pursued laboratol"Y investigation. Bean, 

et al. (1969)* gave a report on the intermittent nature of turbulence 

in the atmosphere. They identified two different types of intermittency. 

In the first one the phenomenon occurs sporadically in time or space 

and in the second case the boundaries separating different flow regimes 

are irregular thereby producing local intermittency. 

The present study attempts to describe some of the turbulence 

characteristics mentioned above in the atmospheric boundary layer. 

Using high response hot-wire anemometers, two sets of wind data were 

obtained at different levels in the lowest 200 feet of the atmosphere. 

Turbulence characteristics, such as spectra correlations, scales, and 

* Proceedings on Spectra of Meteorological Variables, Stockholm, 
June 9-19, 1969. 
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intermittency factor obtained from the wind fluctuation measurements 

with the high response anemometers are of great importance in under­

standing the problems of atmospheric turbulence. These characteristics 

were computed based on the statistical theory of turbulence and using 

the concept of local isotropy. 
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EXPERlMEl~AL STUDY 

Field Station 

The Colorado State University Meteorological Tower was erected in 

a shallow valley formed by the St. Vrain Creek and the South Platte 

River (Figures 1 and 2). The tower was equipped with Climet's cup 

anemometers mounted at a height of approximately 10 ft, 110 ft, and 

200 ft above the ground, and with temperature sensors manufactured by 

the l'iinsco Company, and mounted at 205 ft, 22 ft, and -.95 ft. The 

Colorado State University hot-wire anemometers were mounted at different 

levels according to the purpose of the experiment. For the present 

study two sets of data were collected. On May 13, 1967 four hot-wire 

anemometers were mounted at 20 ft, 65 ft, 110 ft and 155 ft above the 

ground. The second set of data was taken on May 9-10, 1968 and the 

four hot-wire anemometers were mounted on a 6 meter boom at the 200 

ft level. As the direction of wind changed the boom was rotated so 

that it faced into the wind. 

Measurements 

A cup anemometer is a transducer that employs fluid drag as a 

means of measuring flow velocity (Sandborn, ~fetrology of Fluid Mechanics) . 

The instrument makes use of the fact that drag is a function of Reynolds 

number. The inside of the hemisphere gives a drag roughly that of a 

flat surface perpendicular to the flow. The drag of the flat plate or 

disk is greater than that of the outside hemisphere. Thus, the cup 

anemometer will rotate in a wind. The linear speed of the cup centers, 

Y ,is related to the wind speed, U , by a series relation 

U = a + bV + cy2 + •••••• (1) 
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in which a, band c are constants.. With Climet t s instrw;lCnt c 

and higher coefficients are zero, so the speed of cup rotation is a 

linear relation lv-ith the l.;ind speed over the total range. This instru-

ment is used to measure the mean \\'ind speed since it does not have a 

fast enough response to measure the wind fluctuations.. :Vlean wind 

speeds were recorded inside the instrumentation van (Figure 3), for 

each level. 

In order to measure the turbulent fluctuations of the flo\v it is 

desirable to choose a measuring device with little or no bulk to change 

as the velocity changes. Thus, the hot wire which is extremely small, 

of the order of 10-4 in. in diameter, is the best device. The hot-wire 

anemometer is a temperature-resistance transducer. The wire is heated 

electrically by Joulean heating and when put in the fluid flow it's 

temperature varies (Sandborn, ?4easurements in Fluid Mechanics). A 

measure of heat transfer from the wire to the flow can then be related 

to fluid properties such as temperature, density and fluid velocity. 

The hot wire measures the instantaneous variations of turbulent fIOlV'. 

Both experimental and analytical results verify that the step 

response of a hot wire under constant current operation is very closely 

approxjmated by a single exponential function with a time constant of 

TO (C. L. Finn and V. A. Sandborn, 1967, The Design of a Constant 

Temperature Hot-Wire Anemometer). 

As shOl'l'fi in Figure 4a, the hot wire is heated to somc resistance 

K times its resistance at ambient temperature CRe) .. The voltage 

across the heated element is 

e :; I KR o 0 c (2) 
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At some time t, a step input of heat or cooling is applied to the 

element. SometinlC later with the input still applied, the system is 

in a steady condition and a ne\i value of voltage measured across it is 

e = I (KR - R __ ) o 0 c -l{ 
(3) 

where RH is the resistance change caused by the applied input. From 

time t , to the time when steady state can be assured, the output 

voltage decreases exponentially. The model considered consists of 

two series resistors, fixed, and having a nonlinear function. 

In the model used at Colorado State University Meteorological 

Tower the voltage output as a function of time starting from time t 

is given by 

eo(t) = 1 KRc - 10 TH (I - e- T: ) (4) 

The hot \'lire is placed in a bridge circuit which is balanced when 

the wire is heated to KR c As air passes the heated element, it 

causes the element to cool. The cooled element has a 10lier resistance 

which causes an unbalance in the bridge, thus, an error in signal e1 

(Figure 4b). This error signal is in turn amplified by a D.C. amplifier 

with gain -A, and again by a voltage-controlled current source. In 

essence, the error signal causes a corresponding change in the heater 

current, such that the resistance of the hot wire is returned to its 

original value KR c This system is a constant temperature anemometer. 

The two resistors R2 and R3 function only to balance the bridge 

current (I) as it passes through the hot wire. o 

The temperature sensors gave the absolute tenperature reading at 

22 ft and -.95 in., and the temperature difference bct\.;ccn the upper 

(205 ft) and the middle level. 
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Data Analyses 

In order to give a detailed picture of the small scale structure 

of atmospheric motion, a detailed evaluation of spectra was performed. 

The hot-wire signal was recorded on magnetic tape at the speed of 

I 7/8 inches per second. For analysis of the signal the magnetic tape 

was played back at 60 inches per second. This increase in tape speed 

increases the actual atmospheric frequency variations by a factor of 

32. It also reduces an hour of recorded data to less than 2 minutes 

of play-back time. A wave analyzer with a band width of one cycle and 

the ability to read do~~ to two cycles per second in frequency was 

employed. This technique produces information dOlffl to 0.062 cycles 

per second. To read further dOlfll in frequency, the original data 

record was played back at tape speed of 30 inches per second and 

re-recorded at I 7/8 inches per second. The-second recording was then 

played back at 60 inches per second. This frequency upgrading produced 

an increase in the actual atmospheric frequency variation by a factor 

of 512. Thus, it is possible to obtain the information do~~ to 0.0039 

cycles per second. An hour of atmospheric recording is in this way 

reduced to about 10 sec play-back. The wave analyzer produces an 

output voltage proportional to the amount of energy at a given fre­

quency. This output voltage fluctuates rapidly as the turbulent signal 

varies. In order to obtain a usable reading the output voltage must 

be integrated over a period of the signal. Therefore, the output at 

the wave analyzer is fed into an operational amplifier circuit integra­

tor, and from there to a digital voltmeter. The frequency at which 

the measurement was made was indicated on an electronic counter. The 

output of tho ,.,ave analyzer is proportional to the mean square voltage 
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and the output recorded by the integrator digital voltmeter is also 

proportional to this mean square. 

The original signal was also decomposed into nine different wave 

numbers. The intermittency was calculated for each wave number and a 

flatness factor determined from the intermittency. To decompose the 

original signal into different frequencies four SKL variable electronic 

filters (Figure 5) and a GRC filter were used. High and low pass Kere 

set at the desired frequency. Playing the magnetic tape back at 1 7/8 

inches per second .2 Hz, .7 Hz, 2.5 Hz, 12.0 Hz, and 50.0 Hz fre-

quencies were obtained. After speeding up the magnetic tape by a 

factor of 32 frequencies 0.006 Hz, 0.02 Hz, 0.07 Hz, 0.3 Hz and 

0.7 Hz were obtained. The output from the filters were recorded on an 

eight channel chart recorder. 

To obtain scales of turbulence the autocorrelation function of 

the signals were computed 

1 T 
R(T) = T J u(t)u(t+T)dt (5) 

o 

where T is the total integration time and u(t) is the output of a 

hot wire (Bendat and Piersol, 1966). The autocorrelation is estimated 

by 

1. Delaying u(t) by a lag time T • 

2. Multiplying u(t) at any instant by the U(t-T) that 

occurred T seconds before. 

3. Averaging the instantaneous products over the sampling time. 

The above operations are accomplished by the use of a Princeton 

Applied Research l-Iodel 1#101 correlation function COf.lputcr (Figure 6). 

The total delay time of the computer ranges from 100 Jililliscconds 
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to 10 seconds. One hundred points of the correlation function were 

CODlputed and stored for readout. 

Since the autocorrelation function is a Fourier transform of the 

power spectra density function it is also possible to detennine scales 

of turbulence spectrum measurements. For a quick look at the turbu-

lent scales, just as a comparison to the scales obtained by autocorre-

1ation functions, a sound and vibration analyzer was used.. The analyzer 

consists of a preamplifier, filter and an output amplifier. The pre-

amplifier section contains the amplification and attenuation necessary 

to change the input signal to the level convenient for filtering. 

Band widths of the filter are either 1/3 octave or 1/10 octave. The 

signal from the filter is amplified and recorded. The analyzer is 

continuously tunable from 2.5 Hz to 25 KHz in four decade ranges. The 

analyzer does not give the integration of a signal. The output is 

plotted in DB's. 

In using the hot-wire data one must recognize that the signal is 

a function of fluid velocity and fluid temperature (Sandborn, Hot-Wire 

Anemometer Measurements in Large Scale Boundary Layers, 1967) 

e = aE u + ~ t' 
au aT 

(6) 

Thus, the ~fS of the signal is 

(7) 

The temperature term can be neglected compared to the velocity term 

provided that l\T is 2.reater than 800 0 F. w ..... So, under conditions \\here 

ut' = 0 it is possible to measure RHS of the longitudinal fluid 
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velocity in the p1'esence of teIJperature fluctuations. In the boundary 

layer ut 1 is of the order of J u2 x tT. Thus, this term cannot 

be dismissed lightly and the equation becomes 

( 
aE)2 - ( aE ) (aE )-e2 ~ au u2 

+ 2 au aT utI (8) 

The temperature sensitivity, (aE/aT) is rougllly equal to 0.1 (aE/aU) 

for AT = 8000 F. Thus, if ut' is of the same order as u2 then w 

an error of 20% is made by neglecting the velocity-temperature term. 

For the present study the relation 

e2 ~ -- (aE)2 
au (9) 

has been employed. 



11 

SMALL SCALE STRUCTURE 

Spectrum 

A very important problem in describing turbulent motion is the 

distribution of energy of fluctuations among the motions of different 

length scales. l'hen placed in a turbulent flolY', the hot wire has a 

very sensitive and quick response and gives an irregular curve of 

velocity vs. time without any apparent evidence of periodic components. 

Using Fourier analyses any fUllction can be resolved into a series of 

harmonic components of different wave lengths. The mean value u2 

will be made up of contributions of all frequencies, but, depending 

on the character of the field, fluctuations of certain frequencies 

will make important contributions and will thus largely determine the 

value of u2 while the effect of fluctuations of other frequencies 

will be negligible. Taylor has defined a spectrum function F(f) to 

measure the fraction of total energy which is associated with a par-

ticular frequency f, so that u2 F(f)df is the contribution to u2 

from frequencies lying between f and f + df (Sutton, 1953) 

00 

u2 == f u2 F(f)df 
o 

or 
00 

J F(f)d£ == 1 
o 

(10) 

The spectrum function F(f) is thought of as the energy density at a 

given frequency. For turbulence that is convected along the local 

mean velocity U a \-lave nurllber k may be defined as 

k == 
211£ 
U (11) 

and a spectral function F' (k) may be written as 

00 

J Fl(k)dk == 1 (12) 
0 
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Thus, the following relation must exist between F(f) and F'(k) 

F(f) (13) 

Both F'(k) and F(f) are energ}~ densities. The wave number repre-

sentation removes the mean velocity variation and is useful in spectrum 

comparison (Sandborn, 1969). 

The spectrum function given in Figure 7 is the energy density 

function defined as 

CD 

f 
o 

F(k)dk __ 1_ 

BufoT 

CD 

f u2 F(k)dk (14) 
o 

where B is the analyzer band width, u2 is the energy at k , and 

uiOT is the mean square of the total fluctuation. Figure 8 shows a 

linear plot of digital voltmeter output versus wave nwnber. The area 

under the curve was measured by a planimeter and was used in obtaining 

the value of F(k) • This technique requires only that the band width 

of the analyzer does not change with frequency. 

The major point of interest in the spectrum on Figure 7 is the 

amount of energy in the extreme low frequencies. Classic spectra by 

Van der Hoven (1957) and Oort and A. Taylor (1969) sholV' a decrease 

-4 energy density at low frequencies such as one cycle per hour (10 cps) 

(dashed line in Figure 7). In order to obtain this decrease in energy 

it is necessary to have larger period recordings. 

There is nOlV' over\<1helrning evidence that Kolmogorov's relation for 

the inertial subrange fits well the spectra of horizontal velocity 

components in neutral and unstable air provided that the height above 
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the ground is equal to or larger than the Kave length considered 

(Panofsky, 1969). The relation is then 

F(k) = b £2/3 k-5/ 3 
(IS) 

where £ 

constant. 

is the dissipation rate, k is the wave nucber and b is a 

-5/3 Indeed the spectrum in Figure 7 sho\\"s F' (k) ak for the 

higher wave numbers. 

Filtered Inte1~ittency 

lbe small scale structure of a random velocity field in a fully 

developed turbulent flOlt tends to be spatially localized. Since the 

viscous dissipation of turbulent kinetic energy occurs in the small 

scale structure, this inlplies that the region in which most of the 

dissipation occurs may be scattered through a fluid in a rather 

"spotty" way. As a measure of the intermittent nature of the small 

scale structure of turbulence, y is defined as a fraction of time 

the detection probe sees the variable at a high amplitude state 

(Townsend, 1948). An indirect visualization of the intermittency of 

the small scale structure may be achieved by electronically examining 

narrow-band frequency components of the overall turbulent signal. 

Figures 9, 10, 11 and 12 show the original hot-wire anemometer signal 

and the same signal decomposed at nine different frequencies. It 

appears that all the signals are intermittent in time. By Taylor's 

hypothesis, frequency is proportional to wave number so the high 

frequency signals correspond to the velocity fluctuations associated 

with the small scale component of the motion. Also the temporal 

variation of a si gnal from a fixed hot , .. -ire corresponds to the space 

variation of the turbulent pattern. Therefore the intermittency of a 
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high frequency signal in the time domain implies the localizatioll of 

the small scale structure in the space domain. The time interval \\'hen 

energy of high frequency is zero corresponds to the time when the hot 

wire is in the spatial region in which the small scale component is 

negligible. Figure 13 shows a plot of the intermittency factor y 

versus wave number for different levels. The curves have only a slight 

increase at high wave numbers, mId the value of y does not change 

much with height with the exception, perhaps, of the 65 foot level at 

high wave numbers. The noise spectrum of the hot wire is constant with 

frequency, ,,,hile the energy spectrum of turbulence decreases sharply 

with increasing frequency. Thus, the signal to noise ratio is small 

for high frequencies. In order to calculate the intermittency factor 

y from the signal at different wave numbers, it was necessary to 

eliminate instrument noise. Figure 14 gives the intermittency factor 

y plotted against signal amplitude ! shown on chart, Figure 9, for 

wave number 6.2. The curve drops off very rapidly from 1 = 0 to 

1 = 3 nun when it becomes almost constant. So, for the signal of 

k =: 6.2 the instrument noise has an ainplitude of 3 nun. Similar plots 

of y versus ! were plotted for each k in order to eliminate 

instrument noise. Intermittency of the small scale structure implies 

that the energy dissipation will appear intermittent, since the viscous 

dissipation of turbulent kinetic energy occurs primarily' in the small 

scale structure. 

An inherent characteristic of the SKL and GRC filters is their 

"ringing". It takes 3 cps for the SKL filter to damp out and 12-13 cps 

for a GRC filter. The amplitude-to-frequency response plotted around 

the set frequency f o ' gives, for the SKI.. filter, a ,..ride peak and 
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straight sides on the curve, while the GRC filter has a very narro\..; 

peak and the sides have an inflection point. That is \~hy a GRC fi 1 tel' 

firings" more than a SKL filter. A GRC filter \~as used for high fre-

quencics only_ 

Another Dleasure of intermittency is the flatness factor or 

kurtosis 

f e4 P(e)dc 
-(1) 

F .F. - (16) = 
[ 

(1)2 

f e'l p(e)de] 
-(1) 

where e is a random variable and Pee) is a probability density 

fWIction. An intermittent signal of large amplitude will affect the 

"tails" and the center of the probability curve greatly. A random 

variable with normal density has a flatness factor equal to 3.0 and 

(P.P. - 3.0) for an arbitrary random variable is termed "coefficient 

of excess". The flatness factor can be used to indicate a degree of 

intermittency of a random variable only if it is inOMl from other 

observations that the variable is intermittent, since a large flatness 

factor does not necessarily imply intermittency. To\~send (1948) 

suggested that the intermittency of a signal should be related to the 

flatness factor by 

y = 3.0 
F.F. (x 100) (17) 

Equation (16) leads to values greater than one for non-random signals. 

Thus, if y > 1 there is a tendency tmvard periodic motion. Figure 15 

shows the flatness factor plotted versus ReynOlds number for the first 

derivative of velocity as computed by different authors. The present 
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investigation gives the flatness factor calculated from Figure 13 using 

Equation 16 for the velocity signal u at high frequencies.* Figure 15 

shotts reasonably good agrecment of the present data \vith previous cor.l-

put at ions • The present data fall some\,'hat belol\" the solid curve. These 

lower valucs may bc due to filter ring ~rrors. 

The intennittency of the small scale structure implies that the 

energy dissipation, ~ , is intcrmittent. It is possible to assume 

that only these intennittcnt regions where the turbulence occurs, con-

tributes to the -5/3 variation of the spectrum the internti ttency 

coefficient y enters the constant b. It is evident then that the 

computation of ~ is of particular interest. The general expression 

for £ is (Taylor, 1935) 

£ = v [2(~~r + 2(~ + 2(~:r + (~+ ~~r 

+ (;; + ~~ r + (~~ + ~~ r ] (18) 

where v is the kincmatic viscosity of the fluid. The restriction to 

isotropic turbulence leads to the simple form 

(19) 

*It is possible to compare present data \"ith the flatness factor of 
au/at. Suppose that thc signal is 

then 

u = A sin ft 

au 
- = Af cos ft at 

Thus the derivative of a signal is multiplied by frequency \·:hich does 
not change the F.F. very much, except for very high frequencies. 
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Sandborn and Braum (1956) have experimentally measured, in a wind 

tunnel, the rate of dissipation of turbulent kinetic energy (E) given 

by isotropic relation (20) as a function of distance from the wall. 

In the same paper they present the calculation of E from Klebanoff's 

data (1954). He obtained E using Equations (18) and (19). The con-

elusion was that local isotropy was not found and the possible reason 

was the low value of Reynolds number. 

The rate of turbulent energy per unit mass in isotropic turbulence 

is given by 
co 

£ = 2v J k2 E(k)dk 
o 

(20) 

where k is the wave number and E(k) is the three-dimensional spectrum 

function. Using the theory of isotropic turbulence the three-dimensional 

spectrum function can be related to the measurable one-dimensional spec-

trum function Ff(k) by 

! k elF' (k) 
2 elk 

, (21) 

(Hinze, 1959). In terms of the longitudihal one-dimensional spectrum, 

F'(k) the expression for £ becomes 

co 

£ = l5v f k2 Ft(k)dk 
o 

Using Taylor's definition of microscale 

= 

or 

co 

f k2 P'(k)dk 
o 

(22) 

(23) 

(24) 



Equation (20) then bcco:iies 

and 

E = 15v f k2 F'(k)dk 
o 

18 

(25) 

(26) 

Table 1 shows the calculation of E for different levels. The 

value of the kinematic viscosity, v -4 2 , is 2 x 10 ft /sec. In order 

to obtain the value of the nlicroscale of turbulence, A , the data 

from Figure 7 were plotted on Figure 16. The integral under the curve 

gives the microscale of turbulence. In order to extrapolate the curve 

to the high frequencies, wind tunnel data were used. 

TABLE 1 

CALCULATION OF THE RATE OF DISSIPATION 

Height U(s:c) 
E JUE 

A(m) u2 m2 
-- £ (--) 

u2 U (ft) loc sec3 

20 8.7 .256 .081 .0354 .495 .127 

65 8.0 .274 .067 .0342 .286 .077 

110 11.0 .148 .075 .0466 .692 .103 

155 11.9 .118 .051 .0522 .368 .043 

Table 2 shO\-;s the cal culation of the constant b in Equation (14). 

The assumption "as that the constant b = Ay , lv-here A is a constant. 

Thus, the variation in y would compensate for the variation in band 

produce A as a constant value. lne results in Table 2 show that y 

docs not vary very much, neither with hcj ght nor \vi th \,'ave nW:iber. The 
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rate of dissipation, € , varies with height in a random way. As a 

result constant the A varies very much for the different levels. 

Thus, one can conclude that the intermittency factor y enters the rate 

of dissipation, € ,and not the constant b. The average value for 

b is 0.1 which agrees very well with the value obtained by Russian 

authors (Lumley and Panofsky, 1964). 

TABLE 2 

CALCULATION OF CONSTANT b IN TIm SPECfRA 

h k € Y F' (k) Ay= b A 

20' 3.0 .121 .38 .021 0.28 .73 
10.0 .40 .0031 0.21 .66 
50.0 .42 .00022 0.027 .65 

65' 3.0 .017 .55 .021 0.015 1.36 
10.0 .59 .0031 0.18 1.32 
50.0 .65 .00022 0.18 1.2 

100.0 .68 .00001 0.18 1.1 

110' 3.0 .103 .26 .021 0.6 2.3 
10.0 .28 .0031 0.65 2.32 
50.0 .30 .00022 0.65 2.16 

100.0 .31 .00007 0.67 2.16 

155' 3.0 .043 .36 .021 1.04 2.80 
10.0 .38 .0031 1.12 2.9 
50.0 .40 .00022 1.2 3.0 

100.0 .42 .00001 1.2 2.75 
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STABILITY EFFECTS 

Richardson Number 

Considering the balance between turbulence generating forces 

caused by shearing stress and alleviating forces produced by a stable 

stratification of the atmosphere, Richardson (1920) has developed a 

turbulence criterion. If the Richardson number, the ratio of these 

two forces, is smaller than a certain critical value, laminar flow will 

break into turbulence .. 

.JL (aT + r) 'u T 3z 
R. =~ (27) 

1 

(:~t 

where 'u is the eddy diffusivity of heat, ~ is the eddy viscosity, 

g the acceleration of gravity, T the mean temperature, 3T/3z the 

observed vertical temperature lapse rate, r the dry adiabatic lapse 

rate, and 3u/3z the vertical wind shear. Thus, the critical Richardson 

number determines the state of "just no turbulence", the condition 

between laminar and turbulent flow (Bunt, 1952; Sutton, 1953; Hess, 1959) .. 

In his original work Richardson assumed Ku/'M = 1.. He asserted that 

if the motion is slightly turbulent it will remain turbulent if R. < 1 
1. 

and wi 11 subside into a laminar flow if Ri > 1.. The value of ~/KM = 

1 has been found in laboratory measurements (Lumley and Panofsky, 1964) .. 

In the free atmosphere this value depends on stability and values as 

large as 3 have been found in unstable air. The viscous dissipation of 

kinetic energy has been neglected in the original derivation (Calder, 

1949). This could reduce the critical Ri number but its effect is 

hard to evaluate. 
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As can be seen from Equation (27), in order to calculate the value 

of the Richardson number it is necessary to know only the vertical wind 

profile and the temperature lapse rate. Figures 7, 8 and 9 show the 

mean wind velocity taken during the 24 hour period on May 9 and 10, 

1968 at three different levels. Figure 20 is a plot of temperature 

lapse rate between 200 and 20 feet over the same period of time. Wind 

data had to be interpolated at the 20 ft level in order to obtain Ri . 

In the early afternoon hours the vertical wind shear is very low and 

the Richardson number has a very large value, R» 1 , which would 

indicate that turbulent conditions would not remain. In the early 

evening hours and during the night the wind was very strong and the wind 

shear quite large. The resulting RiChardson number is very close to 

zero and certainly Ri < 1 , which means that the flow was turbulent. 

About 7 a.m. on May 10 the Richardson number increased again to a value 

higher than 1. 

Scales of Turbulence 

A statistical description of turbulent motion includes a detailed 

look at the correlation between the velocities at two or more points in 

the flow and the "scales" of motion contributing to the signal. The 

correlation between two points in the flow in a turbulent field was 

suggested by Taylor (1935) as a means of looking at eddy sizes in a 

turbulent field. The turbulent velocities at two points will be corre~ 

lated if they are related to the same eddy_ The expectation is that the 

correlation will diminish as the distance between the points increase. 

If R(x) is a space correlation coefficient between points separated 

by distance x, that is 
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R(x) 
u

l
u2 = 

Jui Juf 
(28) 

Taylor defines two lengths 

GO 

L - J R(x)dx (29) 
0 

and 

1 lim Il-:~X) ) 12 -
x-+o 

(30) 

provided that R(x) is zero for x greater than some finite length 

(meaning that the integral converges). The length L , called the 

integral or macroscale of turbulence, represents the average size of 

the eddies without implying any definite model of an eddy_ The length 

1 is called the microscale of turbulence and is the measure of the 

average "diameter" of the smallest eddies, or the length scale of the 

fluctuations which are mainly responsible for the dissipation of energy. 

1 is the intercept at the x axis of the parabola drawn to touch the 

(R(x), x) curve at its vertex. It is questionable whether or not tur-

bulence in the boundary layer should be described in terms of eddies. 

Thus, the lengths L and A are characteristic lengths associated 

with the scale of turbulent motion in a turbulent boundary layer, but 

the identification of eddies is not necessary in this definition of 

"scale". 

According to Taylor's hypothesis (1938), if the mean wind speed is 

high enough the turbulence will not have time to change as it is con-

vected past a point. The only requirement for homogeneous f10\v in a 

boundary layer is that the scales of motion are smaller than the height 

at which the measurement is taken. This hypothesis then allO\\"s the tiITIe 
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correlations and spectra to be interpreted in terms of the space 

variables. The transformation of coordinates used is x = Ut The 

length scales L and A can be calculated by using the time autocorre-

lation function 

L = u J R(t)dt 
o 

(31) 

(32) 

Figure 21 shows the autocorrelation function obtained by taking a product 

of two values of u(t) at time t and t + l and averaging over D = 

45 min period» using the Princeton Correlator. Both autocorrelation 

curves on Figure 21 were obtained using the same signal u(t); the only 

difference is in the time delays. The top one has T = 6.4 sec delay 

and the bottom one has T = 32 sec. L was calculated from the area 

under the curve. Figures 23, 24, 25, and 26 give the integral scales 

of turbulence over the 24 hour period. The hot-wire anemometers were 

rotated always to face into the wind and they were measuring the longi-

tudinal component of wind. The scales obtained from all four of the 

anemometers are of the same order of magnitude. Figure 27 is the 24 

hour variation of mean of the four length scales. This figure compared 

with Figure 21 shm..rs tt4at the length scale L had the smallest value 

for very large Reynolds numbers. 

Taylor has shmffl in his original paper on "spectrum of turbulence" 

that the spectral function can be related to the correlation flmction 

R(t) 
co 

F' (k) = 2 f R(t) cos ktdt 
1f 

(33) 
o 

or 



R(t) c f F'(k) cos ktdt 
o 

24 

(34) 

Since the correlation function in time is a Fourier transform of the 

spectrum function in time. Using Taylor's hypothesis again, x = Ut 

GO 

F(£) 4 J R(x) 
21[f = cos Udx U 

0 

(36) 

The scale L is then given by 

4 
CD 

4L I R(x)dx F(o) -:: - = U U 
0 

(37) 

The integral scale defined by Equation (30) is related to the spectral 

fooction at zero frequency 

L = U F(o) 
4 

the microscale is defined in terms of spectra as 

f2 F(£)df 

(38) 

(39) 

A depends on f2 which indicates that it depends mainly on high fre-

quencies, or on small scale turbulence. 

Figures 28 and 29 give the length scale L calculated from the 

spectra during the 24 hour period. The order of magnitude and the 

variation of L in time agrees very well with the results in Figures 

24 and 25. 



25 

CONCLUSIONS 

The purpose of the present investigation was to compute turbulence 

characteristics using highly accurate measurements of wind fluctuations 

obtained by hot-wire anemometers. All the characteristics were computed 

using analog computing techniques. Two separate runs were conducted 

with a different distribution of the hot-wire anemometers. During the 

first run four of the anemometers were distributed vertically along the 

tower. The spectrum and tIle filtered intermittency were studied using 

this data. The second run had four anemometers in a horizontal line at 

the top of the tower. Integral scales of turbulence were computed out 

of autocorrelation functions and spectra were calcu1ated with these data. 

The results show that the spectra follow the -5/3 law of Kolmogorov 

but the decrease in energy density for the 101" wave numbers -3 (k<IO in.) 

did not show. In order to obtain this "gap" in the spectra it would be 

necessary to take observations over longer periods. 

It is ShOl,rn that the velocity signal is intermittent. The inter-

mittency factor y ~ was calculated for each of the nine frequencies 

into which the original signal was decomposed and plotted versus wave 

number. It is shown that y does not vary much with the wave number 

or the height above the ground. As a measure of intermittency the 

flatness factor of the signal u(t) was calculated and compared with 

the flatness factor of the first derivative of the signal computed by 

Batchelor and TOl,rnscnd, Kuo~ Wygnansky and Wyngaard. The present data 

fit the curve very well for high Reynolds numbers. The Richardson 

number was computed for a 24 hour period. As a measure of stability 

conditions during this period the scales of turbulence were obtained. 
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It is sho~n that the conditions were rather stable during the afternoon 

when the scales of turbulence have their minimum value. During the night 

the wind increased, the conditions became unstable and the scale of 

turbulence increased. 
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STATUTE MILE 

Fig. 1 Detailed map of the meteorological tower_ Height 
contours are given in feet. The straight line 
indicates the plane of the cross section in Fig. 2. 
(Reiter, 1967, Meteorological Conditions at the 
Fort St. Vrain Nuclear Generating Station). 
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Fig. 2 Terrain cross section as indicated in Fig. 1, with meteorological tower 
and the position of hot wire and cup anemometer. (Reiter, 1967, Meteorological 
Conditions at the Fort St. Vrain Nuclear Generating Station.) 
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Figure 3. Inside of instrumentation and analog computation van. 
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Fig. 4 Schematic diagram of hot-wire anemometry used at the CSU meteorological 
tower (C. L. Finn and V. A. Sandborn: The design of a constant temperature 
hot-wire anemometer, 1967). 
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Figure 5. Variable electronic filter. 
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Fig. 9 20 foot level signal and the same signal 
decomposed on the different frequencies 
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Fig. 10 65 foot level hot-wire signal and the same 
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Fig. 11 110 foot level hot-wire signal and the same signal 
decomposed on L;Le different frequencies 
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decomposed on the different frequencies 
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Fig. 20 Temperature variation. 
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Fig. 21 Variation of Richardson number between 200 and 20 feet. 
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Fig. 23 Scale of turbulence given by hot wire anemometer no 1 on the mast at 200 feet 
height. Scales calculated by using autocorrelation function. 
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Fig. 24 Scale of turbulence given by hot wire anemOmeter no. 2 on the mast at 200 
feet height. Scales calculated by autocorrelation functions. 
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Fig. 2S Scale of turbulence given by hot wire anemometer no. 3 on the mast at 200 feet 
height. Scales calculated by autocorrelation function. 
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Fig. 26 Scale of turbulence given by hot wire no 4 on the 
mast at 200 feet height. Scales calculated by 
autocorrelation functions. 
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Fig. 27 Scale of turbulence calculated as a mean of four hot wire anemometers at 200 
feet height. Scales calculated by autocorrelation functions. 
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Fig. 28 Scale of turbulence given by hot wire anemometer no. 2. 
Scale calculated from spectrum. 
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Fig. 29 Scale of turbulence given by hot wire no. 3. 
Scale calculated from spectra. 
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