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ABSTRACT 
 
 
 

CUT IT OUT: A NOVEL, QUANTIFIABLE APPROACH TO KERF MARK ANALYSIS 
 

USING 3D CONFOCAL MICROSCOPY AND MACHINE LEARNING 
 
 
 

Forensic methods must adhere to the Daubert standard to be deemed as admissible 

evidence in court. Current critiques regarding how well this standard is upheld have also 

challenged whether current forensic practices truly meet the Daubert standard. For example, kerf 

mark analyses can reveal trace evidence in sharp force trauma cases but a lack of quantitative 

studies and standardized analytical methods leave the field open to potential scrutiny.  

While previous research frequently classifies marks as either the product of serrated or 

non-serrated blades, further identifications are rarely made confidently. The goal of this project 

is to determine whether variations in 3D micromorphological variables can be used to 

quantitatively discriminate between kerf marks made by different knife types and blade classes.  

Here, kerf marks were produced using five different knives on bovid diaphyses, 3D 

scanned using profilometric microscopy, measured for both volumetric and profile variables, 

then analyzed using quadratic discriminant analysis. Results show individual knives were 

classified correctly in only 52% of attempts. However, blade class – serrated vs. non-serrated vs. 

partially serrated – was successfully identified in 97% of attempts. Significantly, our results 

differentiate between kerfs produced by serrated blades, non-serrated blades, and partially 

serrated blades, not only allowing for more specific blade identifications but also producing a 

quantifiable and replicable method meeting the Daubert criteria. 
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CHAPTER ONE: INTRODUCTION 
 
 
 

1.1: Background and Research Problem  

 In court, all forensic practices must meet a certain standard to be deemed as admissible 

evidence in a case. Currently, those criteria are delineated by the Daubert standard (1993), 

stating expert witnesses and all forensic science must only be accepted by a judge if they meet 

specific scientific standards. Although the Daubert standard helped strengthen forensics as it led 

to more critical critiques of certain analyses – such as hair, fingerprints, bite mark, shoeprint, 

firearm, handwriting analysis, etc. – it is important to note these critiques are not directly 

translating over to practice (Giannelli, 2006; Garrett and Neufeld, 2009; NAS, 2009; Seaman, 

2012; Cates et al., 2015; Lander and PCAST, 2016; Lander, 2018). Currently, the Daubert 

standard is not evenly upheld in courtrooms across America, with issues stemming from judges 

not effectively knowing whether forensic practices are scientifically valid to differences 

regarding forensic acceptance in civil vs criminal courts (Risinger, 2000; Moreno, 2003; Hans, 

2007; Bernstein, 2009; Saks, 2009; Moriarty, 2010; Giannelli, 2013; Epstein, 2018; Hilbert, 

2018; Garrett et al., 2021). Because current forensic standards are not being consistently upheld 

across courtrooms, forensic analysts must therefore become more critical of their respective 

fields and determine whether their practices and methods truly meet the standard outlined by 

Daubert (Grivas and Komar, 2008).  

 While more uncommon in the United States due to the accessibility of firearms, sharp 

force trauma (SFT) cases are highly relevant, with around 10% of all homicides in the United 

States (7,721) being the result of stabbings from 2015-2019 (Bohnert et al., 2006; DOJ, 2020). 

Similarly, stabbings are one of the most frequent forms of homicide in Europe, with 97,183 
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individuals being stabbed to death worldwide in 2017 (UNDOC, 2019). SFT can be best defined 

as “narrowly focused, dynamic, slow-loaded, compressive force with a sharp object that 

produces damage to hard tissue in the form of an incision (broad or narrow)” (Symes et al., 

2002). When also taking Locard’s Exchange Principle (1910) into account – or the assumption 

that trace evidence will always be transferred between the suspect, victim, and crime scene – it 

can be presumed there will always be evidence left behind at scenes involving SFT. Therefore, 

kerf marks (cut marks in forensic contexts) are one of the most important forms of evidence in 

SFT cases as they may be the only trace evidence left behind to help identify a murder weapon 

and seal a conviction.  

 Kerf mark analysis (KMA) is extremely important for identifying the agent used in SFT 

cases; however, studies of bone surface modifications (BSM) originated in paleoanthropology 

wherein researchers began studying marks left behind on bones and fossils to better interpret 

hominin behaviors and separate them from naturally occurring taphonomic processes (Bunn, 

1981; Potts and Shipman, 1981; Shipman and Rose, 1983; Blumenschine and Selvaggio, 1988; 

Fisher, 1995; Blumenschine et al., 1996; Bartelink et al., 2001; Lupo and O’Connell, 2002; Bello 

and Soligo, 2008; Bello, 2011). Since the origination of BSM studies in paleoanthropology, 

numerous forensic analysts have reframed the ways researchers use BSM and taphonomy to 

better identify SFT in the courtroom, with results often distinguishing between kerf marks made 

by serrated and non-serrated blades (Bonte, 1975; Vao and Hart, 1983; Lewis, 2008; Thompson 

and Inglis, 2009; Love et al., 2012; Tegtmeyer, 2012; Tennick, 2012; Crowder et al., 2013; 

Cerutti et al., 2014; Smith, 2014; Norman et al., 2018; Sandras et al., 2018; Giraudo et al., 2019).  

 Even though individual kerf studies may succeed in making proper identifications of 

marks made by serrated vs. non-serrated knives, the field as a whole is riddled with issues 
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including the relative absence of quantitative analyses, contradictory error rates, and a major lack 

of standardization across studies (Bartelink et al., 2001; Love et al., 2012; Crowder et al., 2013; 

Smith, 2014;  Love, 2019). Because KMAs are not standardized and the results of individual 

studies often contradict one another, a universal error rate cannot be generated, methodologies 

and hypotheses cannot be retested, results are not replicable, and there is no maintenance of 

standards. The issues with KMAs emphasize there is no “widespread acceptance” of the methods 

used within this scientific community, meaning KMAs currently do not meet the criteria listed in 

Daubert and should not be used in court until new methods are developed which meet this 

standard of acceptance. However, as KMAs have been influenced by paleoanthropological BSM 

studies before, novel approaches for mark identification in paleoanthropology which use 3D 

optical profilometry and machine learning may be the key to solving the issues currently existing 

in KMA.  

 This thesis presents a novel approach to KMA using the protocol outlined by Pante et al. 

(2017) to develop a new, more replicable, quantifiable, and standardized method that researchers 

can easily use when analyzing kerf marks while still adhering to the Daubert standard. To do so, 

this study uses 3D optical profilometry to quantify the variation in micromorphological 

measurements of kerf marks made by four different knives: a chef’s knife, boning knife, steak 

knife, and bread knife. Once marks were scanned and measured, quadratic discriminant analysis 

(QDA) was used to generate a model which determines whether knife type or blade class can be 

identified based on a marks’ micromorphology. 

1.2: Goal of this Study 

 As noted above, there are currently issues with the application of forensic standards and 

their translation over to forensic fields like KMA. Because of this disconnect, KMAs currently 
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do not meet the Daubert standard and should therefore not be used in court until the necessary 

adjustments are made. Hence, the main goal of this study is to develop and test a new 

methodology for KMAs that meets all the criteria listed in Daubert. This thesis uses the method 

presented by Pante et al. (2017) as this protocol and subsequent research using this protocol have 

demonstrated the method produces results with minimal error rates which are consistently 

quantifiable, replicable, and retestable (Muttart et al., 2017; Gümrükçü et al., 2018; Gümrükçü 

and Pante, 2018; Keevil, 2018; Mwakyoma, 2021). Testing this new method is also crucial as it 

will not only alleviate the problems afflicting KMAs – in terms of Daubert – but may also lead 

to novel research using the same method, resulting in a standardized approach to KMA which 

can be maintained over time and used to produce a universal error rate. Moreover, identifying 

kerf marks using this new method can help kerf mark analysts asses the quality and reputability 

of prior research, further progressing KMAs forward.  

1.3: Objectives of this Study 

 There are two primary objectives within this thesis. The first objective is to determine 

whether optical profilometry and the protocol outlined by Pante et al. (2017) can translate over 

from paleoanthropology to forensics. In other words, this thesis is testing whether variations in 

3D micromorphological measurements can be used to identify the knife type or blade class 

responsible for producing certain kerf marks. Knife type refers to a specific kind of knife: chef’s, 

boning, steak, bread, etc. Blade class refers to the type of blade: non-serrated, partially serrated, 

and fully serrated. To address this objective, marks were made by four different knives – chef, 

boning, steak, and bread – then scanned using the Sensofar non-contact 3D surface metrology 

scanner and its associated Sensoview® software. Once the 3D scans were captured, 

micromorphometric features of each mark were measured using Sensomap® software then 
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analyzed using QDA to determine whether knife type or blade class could be surmised from the 

measurements taken on each mark. By doing so, this thesis not only tests the accuracy of each 

classification but also whether it is possible to identify the type of knife used or just blade class. 

 The second objective of this study is to identify which mircomorphometric variables are 

the most useful when making mark identifications. In total, 12 variables were measured; these 

include measurements from the 3D rendering such as surface area, volume, maximum depth, 

mean depth, maximum length, and maximum width as well as profile measurements like area, 

maximum width, maximum depth, roughness, opening angle, and floor radius. The value of each 

variable was assessed in two different ways. First, predictor screening was used to see which 

variables carried the most weight on the statistical model. Second, QDA models were run again 

omitting any variables deemed insignificant by predictor screening. The importance of each 

variable was then evaluated on whether the removal of certain variables strengthened or 

weakened the QDA model(s).   

 Current KMAs have demonstrated only blade class can be readily identified based 

predominately on qualitative analyses of mark morphology (Thompson and Inglis, 2009; 

Tegtmeyer, 2012; Crowder et al., 2013; Sandras et al., 2018). Additionally, while the consensus 

is knife identifications can typically only be made to the level of blade class, KMAs tend to use 

vastly different criteria and variables for analysis, making it difficult to compare the results of 

one study to those of another. Therefore, results from this study can help forensic analysts 

determine if more accurate identifications can be made beyond blade class as well as offer 

insight as to which quantified variables are the most useful when determining the knife 

responsible for producing kerf marks.  
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1.4: Hypothesis 

 Based on the proposed research questions, the null hypothesis (H0) states there will be no 

significant differences between kerf marks made by different knife types of classes based on the 

micromorphometric variables measured in the 3D scans. In other words, we will fail to reject the 

null hypothesis if the QDA model cannot make correct mark classifications consistently. 

However, in order to reject the null hypothesis, we must fail to reject the alternative hypothesis 

(HA) which states the QDA model can consistently classify marks accurately, meaning kerf 

marks are frequently attributed to the proper knife type or class.  

1.5: Chapter Summaries 

 In order to answer the aforementioned research questions and efficiently achieve the 

goals and objectives of this research, this thesis is split into six chapters. Chapter One (the 

current chapter) outlines the research problems as well as the goals, objectives, questions, and 

hypotheses being tested through this research. Chapter Two summarizes all the literature 

necessary to understanding the problematic history of forensic admissibility, the origins and 

current state of KMA in relation to Daubert, and how current approaches using 3D profilometric 

microcopy in paleoanthropology may help alleviate the concerns afflicting KMA. Chapter Three 

defines the experimental procedures and protocol used in this study for data collection as well as 

the statistical analyses employed to interpret the data. Chapter Four provides an overview of the 

statistical analysis. Finally, Chapters Five and Six explain and summarize the results of this 

experiment and their overall implications for KMA. 
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CHAPTER TWO: BACKGROUND 
 
 
 

The main goal of this study is to develop a new, standardized, and quantifiable approach 

for kerf mark analysis (KMA). While taphonomic and bone surface modification (BSM) studies 

originally rose to prominence in paleoanthropology, the analyses and methods used have also 

gained traction in forensics. Based on Locard’s Exchange Principle (1910), KMA is vital in 

sharp force trauma (SFT) cases as kerf marks left behind on bone may be the necessary evidence 

for identifying the tool used to produce the marks and ensuring a conviction. However, it is 

important to be skeptical of the validity of KMA studies as there are currently discrepancies 

about what is considered admissible scientific evidence in court. Put differently, because there 

are issues with how judges and juries interpret the Daubert standard to determine what forensic 

evidence can and cannot be used in court, there are also problems regarding the reliability of 

KMA studies and whether they truly meet the standard for forensic admissibility. Nevertheless, 

there is the potential that new approaches which use profilometric microscopy and 3D analysis to 

better identify cut marks in the fossil record could also become commonplace in KMA.  

 This chapter begins by providing a background of the theoretical framework upon which 

all forensic practices are built, Locard’s Exchange Principle. This chapter then outlines the 

history of forensic admissibility in court, detailing the Frye and Daubert standards as well as the 

problems with each standard through time to present day. Next, this chapter discusses the history 

of taphonomic and BSM studies, from their origin in paleoanthropology to more recent 

developments of KMA in forensics. Finally, this chapter explains the current issues regarding 

KMA and how novel approaches in paleoanthropology which use profilometric microscopy, 3D 
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imaging, and machine learning are potentially the answer to resolving the problems defining 

KMA.  

2.1: Locard’s Exchange Principle: A Theoretical Framework  

 Although forensic science has existed for centuries, the current state of forensic evidence 

and analysis stems from Edmund Locard’s Exchange Principle (1910), or the theory that “every 

contact leaves a trace.” Trace evidence can be further defined as any evidence found at a crime 

scene, on a suspect, or on a victim (Mistek et al., 2018). In other words, Locard’s Exchange 

Principle stresses when two objects – for example, a suspect and victim/crime scene – come into 

contact with one another, each will take something from the other object or leave something 

behind. More eloquently, Kirk and Kirk (1953, p. 4) explained this theory as follows:  

“Wherever he steps, whatever he touches, whatever he leaves, even unconsciously, will 
serve as a silent witness against him. Not only his fingerprints or his footprints, but his 
hair, the fibers from his clothes, the glass he breaks, the tool mark he leaves, the paint he 
scratches, the blood or semen he deposits or collects. All of these and more, bear mute 
witness against him. This is evidence that does not forget. It is not confused by the 
excitement of the moment. It is not absent because human witnesses are. It is factual 
evidence. Physical evidence cannot be wrong, it cannot perjure itself, it cannot be wholly 
absent. Only human failure to find it, study and understand it, can diminish its value.” 

 
According to this aforementioned quote, Locard’s Exchange Principle is crucial to any 

forensic study as it emphasizes the assumption that some form of evidence will always be left 

behind, regardless of the crime committed. Moreover, this theory is important as it accentuates 

the forensic analysts’ job to uncover any trace evidence; since this principle assumes evidence is 

always present, it becomes the analysts’ job to uncover said evidence (Kirk and Kirk, 1953). 

Therefore, Locard’s Exchange Principle is a vital theoretical framework for numerous fields in 

forensics – including KMA – as it demarcates the argument that trace evidence can always be 

found at a crime scene, further warranting the need for reliable, reputable forensic methods.   
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2.2: Frye v Daubert: A History of Forensic Admissibility 

 While Locard’s Exchange Principle set the foundation for the discovery of forensic 

evidence, it is mandatory to also address the history of forensic admissibility in court. From the 

mid-late 1800s to present-day, forensic admissibility has undergone numerous transitions, further 

delineating the standards forensic methods must meet to be used by a prosecutor or defense 

(Frye v United States, 1923; Daubert v Merrell Dow Pharmaceuticals Inc., 1993). Even though 

these standards have become stricter over the years, the current state of forensic admissibility is 

still plagued with concerns and conflicts regarding how the legislation is interpreted and 

practiced (Risinger, 2000; Giannelli, 2006; Hans, 2007; Bernstein, 2009; Garrett and Neufeld, 

2009; Moriarty, 2010; Seaman, 2012; Giannelli, 2013; Cates et al., 2015; Epstein, 2018; Lander, 

2018; Garrett et al., 2021). The following sections will provide context and outline the history of 

forensic admissibility from the time before the Frye standard, between the Frye standard and 

Daubert standard, and present day during the Daubert era. Additionally, the following sections 

will outline the critiques and conflicts which have influenced the development of these different 

forensic standards.  

2.2.1: A Time Before Frye 

 In the mid-late 1800s, standards for forensic admissibility were relatively lacking in 

terms of scientific influence, as most of the criteria for acceptance were based on the judge’s 

perception of the expert as an individual, but not the true value of the method (Dillon, 2017). For 

instance, expert witness in the late 1800s was frequently based on whether the findings of the 

expert went beyond the range of knowledge for an average juror (Faigman et al., 1993). 

Similarly, at this time forensic evidence was oftentimes allowed in court if the expert witness 

was “commercially successful” in their field, demonstrating a level of professional excellence 
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that was profitable (Saks, 2009). Thus, the earliest forms of forensic admissibility are best 

summarized as placing more emphasis on the success of the expert witness rather than the 

validity of the science being practiced.  

 By the beginning of the 20th Century, the legal community was calling for stricter 

guidelines for the admission of scientific evidence and expert testimony because these early 

forensic standards were highly subjective and focused more on the expert rather than the 

scientific method employed. By this time, judges, state supreme courts, and even the public 

demonstrated a lack of confidence in forensic admissibility based on an experts’ “success,” as 

these experts oftentimes disguised pseudoscience as scientific fact by obscuring the truth and 

using jargon-laden rhetoric to confuse and influence juries (Hilbert, 2018). Therefore, because 

there were contradictions between the perception of expert “success” and the public’s 

understanding of forensic evidence, the legal community began calling for a legalized standard 

for forensic admissibility which placed more emphasis on the validity of evidence presented. 

2.2.2: The Frye Standard 

 Since legal constituents and policymakers were expressing concerns over the 

admissibility of forensic evidence at the beginning of the 20th Century, the legal community was 

searching for a way to implement a new, stricter standard. In Frye v United States (1923), Joseph 

Alphonzo Frye was on appeal for second degree murder, in which he attempted to present an 

expert witness who would testify on behalf of Frye recanting his guilt. However, the trial judge 

denied the expert’s testimony because there was not enough data to support the use of a systolic 

blood pressure test – an early version of a lie detector test – within the physiological and 

psychological scientific communities, resulting in the dismissal of Frye’s appeal. In turn, this 

court case led to the first standardized legal criteria for the admissibility of forensic evidence. 
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The Frye standard was then created, stating “scientific evidence presented to the court must be 

interpreted by the court as ‘generally accepted’ by a meaningful segment of the associated 

scientific community” (Frye v United States, 1923). In other words, if a forensic method was 

“generally accepted” amongst those in the respective scientific community, that method was 

deemed admissible in court.  

2.2.3: The Caveats of Frye 

 While pivotal for its time, the Frye standard was also deemed problematic as judges 

frequently ignored or overlooked the standard until the 1970s-1980s (Gottesman, 1998; Saks, 

2009). Even though the Frye standard did not take hold until the late 1900s, some courts were 

rejecting the “general acceptance” test as they saw the criteria as antiquated and outdated 

(Giannelli, 1993). Juries were also skeptical of the court or judges’ abilities to make an informed 

decision on whether a forensic method was “generally accepted” within their scientific circles 

(Bernstein, 2000; Mnookin, 2008). As a result of these conflicts, it became apparent some courts 

offered contradictory rulings in different jurisdictions based on the variable interpretations of 

“general acceptance,” resulting in a lack of standardized forensic admissibility (Bernstein, 2000). 

Hence, because different jurisdictions were interpreting the Frye standard in various ways, the 

new standard was unsuccessful in effectively creating a universal approach to assessing the 

validity of forensic methods in court.  

 The Frye standard underwent further scrutiny resulting from parties taking advantage of 

the standard’s loopholes. In the 1980s, “toxic tort” cases – cases involving injuries to plaintiffs 

by toxic substances – appeared more and more frequently in civil courts, with prosecutors calling 

upon expert witnesses who presented “junk science” to help plaintiffs win lawsuits and make 

large profits (Eggen, 1993; Posin, 1995; Billauer, 2016). Since the scientific methods used in 



12 
 

“toxic tort” cases were complex, judges and juries had a difficult time assessing whether these 

intricate, novel studies should be deemed admissible, resulting in forensic evidence being taken 

at face value (Hilbert, 2018). Due to discrepancies in the application of the Frye standard and the 

increasing complexity of scientific studies in the late 1900s, judges and juries had a difficult time 

determining what forensic studies should be deemed “generally accepted,” resulting in 

individuals profiting off the flaws defining forensic admissibility.  

2.2.4:The Daubert Standard and its Application 

 With the Frye standard being taken advantage of in civil courts, the legal community 

once again called for a review of forensic admissibility in the late 1980s, early 1990s to combat 

the inclusion of questionable science in courtrooms. In Daubert v Merrell Dow Pharmaceuticals 

Inc. (1993), Merrell Dow – a pharmaceutical company manufacturing a morning sickness drug 

called Benedictin – was sued by a mother who argued the use of Benedictin during her 

pregnancy resulted in her two sons being born with birth defects. The Ninth Court stated the 

plaintiff’s experts had not submitted their reanalysis to peer review, nor were the methods 

published or accepted by their peers, meaning the forensic evidence was insufficient and did not 

meet the scientific standard to be used in court (Daubert v Merrell Dow Pharmaceuticals, 1993).  

 The implications stemming from this case were pivotal as this court case demonstrated 

the need for further delineation and discrimination in the admissibility of forensic evidence. In 

this case, the plaintiff’s argument was deemed inadmissible because their expert failed to present 

a method which had been peer reviewed, published, or accepted by any of their colleagues, 

demonstrating beyond a reasonable doubt the methodology used was not scientific or “generally 

accepted”. Because of these more rigorous criteria used specifically in this case, the Daubert 
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standard was created, ushering in a new era of scientific standards in court. Under this new 

standard, all forensic evidence was only deemed admissible if it met the following criteria:  

“(1) The theory/methodology used can be and had been tested, (2) it has to have been 
subjected to peer review and publication, (3) there must be a known potential error rate, 
(4) there should be an existence and maintenance of standards, and (5) the method/theory 
must demonstrate widespread acceptance within a relevant scientific community” 
(Daubert v Merrell Dow Pharmaceuticals, 1993).  
 

Therefore, while the Daubert standard did echo the Frye standard in terms of “widespread” or 

“general” acceptance, this new standard provided clearer criteria for judges and juries to consider 

when assessing whether a method was truly accepted by its scientific community.   

2.2.5: Current Issues with the Daubert Standard 

 Although the Daubert standard generated new, more rigorous standards for judges and 

juries to follow when assessing the admissibility of forensic evidence, there are still numerous 

problems with how the standard is employed. To begin, there are inconsistencies in how often 

the Daubert standard is applied in practice, with judges oftentimes varying in their interpretation 

of the legislation. It is argued this lack of consistency stems from a widespread lack of scientific 

competency, wherein judges either receive little to no instruction about general scientific 

methods or principles, the training they do receive is oftentimes outdated, and many judges have 

little to no training in mathematical or statistical analysis (Moreno, 2003; Hans, 2007; Epstein, 

2018; Garrett et al., 2021). Moreover, considering how complex some cases can be and the time 

it would take to fully assess the method’s admissibility, some judges may be incentivized to 

bypass the time-consuming analysis required in cases with hard science expert testimony 

(Hilbert, 2018). Since judges are often inadequately trained in forensic methods and cannot 

spend the necessary time to fully assess every forensic method presented to them, it can be 
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argued judges are unequipped to truly assess whether a forensic method meets the Daubert 

standard’s criteria.    

2.2.6: The Fallout of a Faulty Daubert 

 Although it is important to address where the Daubert standard is failing, it is also crucial 

to see the consequences arising from not critiquing the standard sooner. For instance, in 2009 the 

National Academy of Science (NAS) stated besides DNA analysis, all other forensic methods 

have not been able to “rigorously and consistently demonstrate a connection between evidence 

and a specific individual or source” (NAS, 2009). The President’s Council of Advisors on 

Science and Technology (PCAST) reported similar findings, stating bite mark comparison 

evidence, shoeprint, and firearm evidence were not valid forensic methods with too high of error 

rates (Lander and PCAST, 2016). Various other forensic methods have faced even further 

scrutiny since the passing of Daubert such as hair, fingerprint, and handwriting analysis, but the 

issue is these methods are still used in the court of law (Giannelli, 2006; Garett and Neufeld, 

2009; Seaman, 2012; Cates et al., 2015). Therefore, even though the Daubert standard had led 

researchers to further critique their respective fields, the critiques are not directly translating over 

to judges and juries, with many faulty forensic methods still being used and upheld in court cases 

throughout the country. 

 Finally, since the Daubert standard had been implemented, hundreds of people have been 

exonerated for their crimes, with nearly half of these cases involving faulty forensic science that 

was never excluded by the courts (Lander, 2018). In other words, even though Daubert is 

supposed to help catch faulty forensic practice in the courtroom, cases keep slipping through the 

cracks with any sort of solutions or reconciliations occurring post-hoc. In summation, there are 

numerous disparities in how the Daubert standard is assessed and upheld in both civil and 
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criminal courts, with these discrepancies stemming from systemic issues as well as naivety on 

the judges’ behalf; even though the standard itself is useful, its implementation in the courts has 

been inconsistent. Thus, if the system cannot reliably enforce and uphold this forensic standard, 

it is up to each respective scientific field to be critical of themselves and assess whether the 

current state of their field truly meets the requirements outlined by Daubert.   

2.3: From Paleoanthropology to Forensics: A History of KMA 

 Sharp force trauma (SFT) can be defined as “narrowly focused, dynamic, slow-loaded, 

compressive force with a sharp object that produces damage to hard tissue in the form of an 

incision (broad or narrow)” (Symes et al., 2002). While SFT is not as common in the United 

States – due to the accessibility of firearms – it is one of the most frequent methods of homicide 

throughout countries in Europe, with over 97,183 individuals being killed worldwide by SFT in 

2017 while a total of 7,721 individuals were murdered by sharp instruments in the US from 

2015-2019 (Bohnert et al., 2006; UNDOC, 2019; DOJ, 2020). When taking into account 

Locard’s Exchange Principle and the relatively high frequency of SFT in homicide cases, it has 

become apparent SFT often impacts bone or cartilage, leaving behind trace evidence (Banasr et 

al., 2003). Therefore, because SFT is common in homicide cases, it becomes the responsibility of 

forensic anthropologists to identify the kerf marks, the tool used to produce the marks, and how 

that tool was used (Crowder et al., 2013; Rainwater, 2015).  

 Due to the increased prevalence of SFT, KMA has become more common in the 

courtroom, but the field has a more extensive history going beyond forensics into the field of 

paleoanthropology. Early taphonomic studies of BSM in paleoanthropological contexts focused 

on identifying marks left behind by ancestral hominins to better understand human evolution and 

behavior (Bunn, 1981; Potts and Shipman, 1981; Shipman and Rose, 1983; Blumenschine and 
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Selvaggio, 1988; Blumenschine et al., 1996; Bartelink et al., 2001; Lupo and O’Connell, 2002; 

Bello and Soligo, 2008; Bello, 2011). Since the value of BSM studies has been highlighted 

within paleoanthropology, numerous forensic studies have reframed the way researchers use 

taphonomy and BSM to better identify evidence of SFT in court (Bonte, 1975; Vao and Hart, 

1983; Lewis, 2008; Thompson and Inglis, 2009; Love et al., 2012; Tegtmeyer, 2012; Tennick, 

2012; Crowder et al., 2013; Cerutti et al., 2014; Smith, 2014; Norman et al., 2018; Sandras et al., 

2018; Giraudo et al., 2019). The following sections explain the history of taphonomic and BSM 

studies in both paleoanthropology and forensics. Additionally, the following sections highlight 

the current issues afflicting the field of KMA and present potential solutions to these concerns.  

2.3.1: Taphonomy and BSM Within Paleoanthropology 

 Taphonomy can first be defined as everything that happens to an organism from when it 

dies to when it is found, or all the transitions an organism undergoes from the biosphere to the 

lithosphere (Efremov, 1940; Lyman and Lyman, 1994). While taphonomic studies apply to a 

wide variety of fields, they first rose to prominence in paleoanthropology, or the sub-field of 

anthropology focused on human evolution. Within paleoanthropology, taphonomic studies 

concentrated on distinguishing human-produced marks on bone from those produced by 

naturally occurring processes to better identify and understand human hunting and scavenging 

behaviors. In the beginning, BSM studies used macroscopic, qualitative descriptions of length, 

width, and mark profile shape to differentiate between naturally occurring marks – these include 

tooth marks from carnivores, rodent gnawing, root etching, trampling, bioerosion, rockfall, etc. – 

from human-produced marks like cut marks and percussion pits at East African sites like Olduvai 

Gorge and Koobi Fora (Bunn, 1981; Blumenschine and Selvaggio, 1988; Blumenschine et al., 

1996).  
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 While these seminal works helped lay the foundation of BSM studies in 

paleoanthropology, they were critiqued because the morphological criteria used for proper mark 

identification were macroscopic and qualitative, resulting in a lack of standardized approaches to 

BSM studies (Lupo and O’Connell, 2002). Even though Blumenschine et al. (1996) determined 

experts could correctly differentiate cut marks from tooth marks 97% to 99% of the time while 

novices with several hours of training could make correct identifications 86% to 95% of the time, 

the lack of standardization across research teams severely limited comparisons across studies and 

made it impossible to retest each other’s work. 

 Since there were concerns over the use of macroscopic BSM studies, 

paleoanthropologists began implementing scanning electron microscopy (SEM) and digital 

microscopy to aid in the identification of cut marks from the fossil record (Potts and Shipman, 

1981; Shipman and Rose, 1983). However, like macroscopic analyses, SEM and digital 

microscopy studies were also criticized because the technology only generates 2D images, 

meaning quantitative, volumetric measurements cannot be taken (Bartelink et al., 2001; Bello 

and Soligo, 2008; Bello, 2011). Advancements have recently been made within 

paleoanthropology to implement 3D imaging and quantitative analyses to create more reputable 

and replicable approaches for interpreting and detecting human-produced BSM; these 

approaches will be discussed at length later in this chapter (Bello and Soligo, 2008; Bello, 2011; 

Maté-González et al., 2015; Pante et al., 2017; Keevil, 2018; Mwakyoma, 2021).  

2.3.2: The Origin of KMA Within Forensic Taphonomy 

 While taphonomic studies rose to prominence within paleoanthropology and archaeology, 

they were also deemed crucial to forensic studies. Ubelaker (1997) recognized taphonomic 

studies assisted forensic anthropologists with estimating the postmortem interval, reconstructing 
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the environment in which a crime was committed, and determining if trauma was caused by a 

perimortem event related to the crime or naturally occurring post-mortem events. Likewise, even 

though the value of BSM studies was uncovered by paleoanthropologists, forensic analysts were 

interested in similar information.  

 Although KMAs did not gain traction until the mid-late 1980s, following the success of 

BSM research in paleoanthropology, kerf mark studies originated as early as 1942 when 

researchers noted marks produced by different metal instruments would leave behind certain 

morphological characteristics useful for tool identification on mediums like wood and metal 

(Burd and Kirk, 1942). Comparably, Bonte (1975) argued SFT patterns on human bone 

paralleled those found on inanimate mediums like wood and metal, emphasizing qualitative 

patterns could be documented to assist in weapon identification. Finally, Rao and Hart (1983) 

stated when comparing crime marks in human costal cartilage to marks made by the same knife 

in experimental settings on cellulose acetate butyrate, the crime marks and test marks matched. 

Though these seminal works were beneficial for helping lay the foundation for KMA, the 

macroscopic, morphological variables used for making the identifications were rarely listed or 

explained, meaning the results could be replicated or retested. Like seminal BSM work in 

paleoanthropology, early kerf mark studies were also considered problematic due to the reliance 

on macroscopic variables (Bartelink et al., 2001).  

2.3.3: KMA and Qualitative Data  

 Since these early seminal works regarding kerf marks were relatively lacking in terms of 

methodology and transparency, researchers began documenting the different qualitative variables 

in hopes of generating stronger, more reputable methodologies. Lewis (2008) argued kerf marks 

created by different swords and other bladed weapons could be identified based on the presence 
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or absence of variables such as cut length, shape, feathering, flaking, cracking, breakage, shards, 

and aspect. Additionally, this work helped standardize the terminology used for kerf marks 

(Figure 2.1) (Lewis, 2008). Researchers also began implementing other technological approaches 

to their work, as seen in Thompson and Inglis’s (2009) research which used SEM to differentiate 

non-serrated blades from serrated blades on porcine bone. The conclusions of this work stated 

serrated blades leave a “y-shaped” mark whereas non-serrated blades leave a “t-shaped” mark 

(Thompson and Inglis, 2009). Similarly, Sandras et al. (2018) used epifluorescence microscopy 

to study marks made by 3 non-serrated and 2 serrated knives and learned correct identifications 

could be made 74-94% of the time, with more accurate identifications being made for serrated 

knives than non-serrated.  

 
Figure 2.1: Profile of kerf mark demonstrating mark anatomy: base is known as the “floor,” 
walls of the mark are known as “cutmark wall,” and unmodified bone surface is known as the 
“side.” Image taken from Lewis (2008). 
 
 While the aforementioned studies emphasize the use of different forms of microcopy to 

better identify kerf marks, the principal trend in KMA was to classify marks made by serrated 

knives from those made by non-serrated knives (Thompson and Inglis, 2009; Tegtmeyer, 2012; 

Tennick, 2012; Crowder et al., 2013; Sandras et al., 2018). However, these numerous studies 

frequently contradict one another, leading to a variety of conclusions. On one hand, some 

research teams have noted, through macroscopic and microscopic analyses, kerf marks produced 

by non-serrated and serrated blades are completely distinguishable from one another based on 
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variables like kerf width, shape, and the presence/absence of striations (Tegtmeyer, 2012). 

Crowder et al. (2013) argued in a collection of 504 kerf marks produced by serrated, partially 

serrated, and non-serrated blades, marks were easily identified for non-serrated vs serrated 

blades, however, it was difficult to differentiate marks made by serrated blades from those made 

by partially serrated blades. Conversely, other research states marks made on bone by the same 

knife have too much variation in appearance to be accurately identified (Tennick, 2012). 

Therefore, even though the goals of many KMAs are to identify differences in mark morphology 

from marks made by serrated and non-serrated knives, there are inconsistencies in the accuracy 

of these classifications. 

 As seen above, the history of KMA can be best summarized as the macroscopic and 

microscopic analysis of qualitative, morphological differences in marks made by non-serrated, 

partially serrated, and serrated knives. However, one of the principal issues with the 

aforementioned examples is they all use qualitative methods which have varying error rates. For 

instance, in a study conducted by Love et al. (2012), blind testing was used to identify 90 cut 

marks made by a non-serrated blade, a serrated blade with a coarse serration pattern, and a 

serrated blade with a fine serration pattern. While the researchers were told to document the 

presence of striations and whether striations followed a “regular” or “irregular” pattern, 

misclassifications were made at a rate over 65% (Love et al., 2012). When Crowder et al. (2013) 

evaluated the accuracy of KMA, they studied marks made by 14 knives with a range of non-

serrated, partially serrated, and serrated blades. Similar to Love et al. (2012), Crowder’s team 

employed qualitative variables which described the striation patterns, but their error rate was less 

than 5% (Crowder et al., 2013). Because these error rates – based on qualitative criteria – are so 

different from one another, and because qualitative identifications are not as replicable, kerf 
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mark analysts have called for studies to implement approaches which favor quantitative data, 

allowing for more acceptable and replicable results which could be better substantiated in court 

(Smith, 2014).  

2.3.4: KMA and Quantitative Data 

 Due to the call for more reliable, replicable methods, researchers have begun to 

implement more quantitative approaches to KMA (Smith, 2014). Although qualitative methods 

dominated the field into the mid-2010s, the first quantitative KMA began as early as 2001, 

wherein Bartelink et al. (2001) used SEM to differentiate marks made by three different non-

serrated blades (a scalpel, paring knife, and kitchen utility knife). Each kerf mark was produced 

using a mechanical device that accounted for angle, direction, and force, and results from the 

study stated kerf mark width was significantly different for all three blades; however there was 

overlap between knife types (Bartelink et al., 2001). Other quantitative KMAs yielded similar 

results, such as Cerutti et al. (2014) who noted marks made by different knives in a controlled, 

mechanical device all exhibited wide overlaps in terms of kerf width, angle, and depth. However, 

the analysts argue these overlaps were due to measurements being taken from a 

stereomicroscope (Cerutti et al., 2014). Hence, early quantitative studies took necessary steps 

toward strengthening the field, but the results oftentimes yielded too much overlap and not 

enough discriminatory power to be used effectively.  

 Nevertheless, there has recently been an increase in the number of KMAs which use 

micro-CT scans as this produces a 3D model which can then be quantified through various 

measurements. However, there are discrepancies on how valuable the method is at making 

proper identifications. For example, Norman et al. (2018) used micro-CT to analyze 270 kerf 

marks made by 8 different tool classes in a controlled environment. The variables measured 
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included minimum toolmark width at floor, wall angle, trough height, trough angle deep, and 

trough angle shallow. Based on these variables, the research team concluded they made proper 

identifications 94% of the time, meaning micro-CT was the most appropriate technology for 

analyzing and identifying kerf marks (Norman et al., 2018). Conversely, micro-CT studies done 

by Giraudo et al. (2019) – which measured top kerf width, depth, bottom kerf width, angles 

degrees, and floor width – stated the technology produced high positive predictive values for 

inter-class analyses whereas intra-class analyses were lacking, concluding the technology should 

only be used alongside other forms of analysis. Thus, even though KMAs are beginning to 

transition into incorporating more quantitative approaches, there are still inconsistencies in how 

effective these approaches are for making proper identifications.  

2.3.5:Do KMAs Meet the Daubert Standard?  

 Although the field of KMA has expanded over the past decade, there are still numerous 

issues with the current state of the field, particularly with the accuracy of the methods currently 

being employed. In qualitative studies, some researchers state that qualitative variables are 

sufficient enough to classify various weapons and toolmarks consistently (Lewis, 2008). Other 

analysts have stated qualitative methods are only valuable for distinguishing marks made by 

serrated vs non-serrated blades while others state there is more variation in marks made by the 

same knife, meaning qualitative assessments are severely lacking (Thompson and Inglis, 2009; 

Tegtmeyer, 2012; Tennick, 2012; Crowder et al., 2013; Sandras et al., 2018). Moreover, while 

there have been movements to implement more quantitative approaches, the current state of these 

studies is also concerning as studies either present contradictory results on the usefulness of the 

methods or there is too much overlap between measurements (Bartelink et al., 2001; Cerutti et 

al., 2014; Norman et al., 2018; Giraudo et al., 2019). Finally, different studies have produced 
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severely contradictory error rates, with some research teams stating incorrect identifications were 

made 65% of the time whereas others say incorrect kerf identifications were made at rates less 

than 5% (Love et al., 2012; Crowder et al., 2013). While these differences may be due to the 

experience levels of different research teams, having such contradictory error rates demonstrates 

there is not an accepted rate within the field, meaning KMAs do not effectively meet the 

standards outlined by Daubert (Love, 2019). 

 Another issue currently plaguing the field of KMA is the lack of standardization across 

studies. Some studies state there is more value in qualitative variables whereas others emphasize 

the use of quantitative data, resulting in a wide variety of approaches that use either qualitative 

data or quantitative data. Furthermore, when comparing the various kerf mark studies presented 

in this chapter, almost every research team measured or documented different variables, had 

different names for the same variables, or did not efficiently explain or present the variables they 

were measuring (Table 2.1). In terms of qualitative variables, the only ones which appear 

consistently are kerf shape, striation type, and striation pattern (Lewis, 2008; Thompson and 

Inglis, 2009; Love et al., 2012; Tegtmeyer, 2012; Crowder et al., 2013; Sandras et al., 2018).  

Quantitatively, the only consistent variables measured were length and width; profile depth and 

angle were also measured, but the names for these variables often varied (Bartelink et al., 2001; 

Lewis, 2008; Thompson and Inglis, 2009; Tegtmeyer, 2012; Love et al., 2012; Cerutti et al., 

2014; Norman et al., 2018; Giraudo et al., 2019). Because of the lack of consistency in the 

variables measured across studies, researchers cannot replicate each other’s results, nor can they 

compare results and error rates (Love, 2019). Therefore, because a known error rate cannot be 

effectively obtained due to the lack of standardization, KMAs once again do not meet the 
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Daubert standard, meaning these analyses fall victim to the same scrutiny as numerous other 

forensic methods (NAS, 2009; Lander and PCAST, 2016).  

Table 2.1: List of Qualitative and Quantitative Variables from Numerous KMAs 
Research 

Team 

Qualitative Variables Quantitative 

Variables 

Classification 

Success Rates 

Bonte 
(1975) 

NA NA NA 

Rao and 
Hart (1983) 

NA NA NA 

Bartelink et 
al. (2001) 

NA Maximum cut 
mark width 

NA 

Lewis 
(2008) 

Shape, feathering, flaking, 
cracking, breakage, shards, aspect 

Length NA 

Thompson 
and Inglis 

(2009) 

Shape, kerf damage, 
fragmentation/fractures 

Length, width NA 

Love et al. 
(2012) 

Striations, striation type, striation 
pattern, cut type 

Interstriation 
distance, mean 
interstriation 
distance, width, 
length, area 

45% classification 
success between 
serrated and non-
serrated blades 

Tegtmeyer 
(2012) 

Kerf shape, presence of striations Width “100%” classification 
success between 
serrated and non-
serrated blades 

Tennick 
(2012) 

Tip shape, bifurcation, cross-
section profile, wall gradient, wall 
projections, margin regularity, 
margin definition, margin splitting, 
lateral ridging, floor definition, 
floor width, floor splitting, 
crushing, flaking, size of debris 
fragment, type of debris 

NA NA 

Crowder et 
al. (2013) 

Striation type (fine, coarse, 
combination of fine and coarse, or 
none), Striation pattern (patterned, 
unpatterned, combination, 
indeterminate), edge bevel 

NA 79% classification 
accuracy when 
assessing serrated, 
non-serrated, and 
partially serrated 
blades. 
96% classification 
accuracy when only 
assessing serrated vs. 
non-serrated blades 
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Cerutti et 
al. (2014) 

NA Depth, width, 
inclination of 
walls/angle of 
lesions 

NA 

Norman et 
al. (2018) 

Edge shape, profile shape Minimum 
toolmark width at 
floor, wall angle, 
trough height, 
trough angle 
deep, trough 
angle shallow 

94% classification 
success for various 
saw and knife marks 
based on toolmark 
width 

Sandras et 
al. (2018) 

Kerf thickness, kerf shape, edges, 
walls, edge vs. wall angle, profile 
shape, flakes 

NA 92% classification 
accuracy for observers 
1 and 3 when 
differentiating serrated 
from non-serrated 
marks. 74% 
classification accuracy 
for observer 2 who 
was less experienced 

Giraudo et 
al. (2019) 

NA Top kerf width, 
depth, bottom 
kerf width, angles 
degrees, floor 
width 

NA 

 

When looking at the current state of KMA, it can be argued each study only meets the 

second criteria of Daubert, as each study has been peer reviewed and published. However, since 

there are discrepancies in the error rates presented between studies, there is no clear potential 

error rate, meaning KMAs do not meet that aspect of the Daubert standard (Love et al., 2012; 

Crowder et al., 2013). Moreover, because various research teams frequently measure different 

variables when assessing kerf marks, there is no existence/maintenance of standards meaning 

KMA once again to not meet the Daubert criteria. Similarly, because kerf mark methodologies 

differ so drastically and cross-study comparisons are impossible, the field will continue to be 

incapable of ever developing a universal error rate (Love, 2019). Additionally, due to the lack of 

standardization across studies, it is nearly impossible for researchers to replicate or test one 
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another’s work, meaning KMA also does not meet the Daubert criteria which states the 

theory/methodology can be tested. Finally, because there are such different, unstandardized 

approaches to analyzing and identifying kerf marks, with different analyses producing vastly 

different results, it can be argued the method/theory does not exhibit widespread acceptance 

within its respective community, meaning KMAs, in their current state should not be deemed 

admissible in court.  

2.4: Potential Solutions in Paleoanthropology: A New Approach to KMA? 

 As noted in the previous section, if KMA is to continue being used in the courtroom, then 

the field must undergo numerous transitions so the methods employed consistently meet the 

Daubert standard. However, current steps within forensics are failing to make the necessary 

adjustments as a result of inconsistencies in how Daubert is applied in the courtroom (Risinger, 

2000; Hans, 2007; Bernstein, 2009; Saks, 2009; Moriarty, 2010; Giannelli, 2013; Epstein, 2018; 

Hilbert, 2018; Garrett et al., 2021). As mentioned earlier, current advancements in 

paleoanthropology have been made to implement 3D imaging and quantitative analysis to 

strengthen analyses in the field. Therefore, this section will outline the current advancements 

with 3D imaging in paleoanthropology and how they could assist kerf mark analysts in 

developing a standardized, objective, replicable approach for kerf mark identification.  

2.4.1: The Beginnings of 3D Analysis in Paleoanthropology 

 The first implementation of a 3D scanning method occurred in 2008 when researchers 

used profilometric microscopy to quantify the differences between cut marks made by metal 

knives and flint blades; the variables measured included cross-sectional shape, shoulder height, 

sharpness, cut inclination, and depth (Bello and Soligo, 2008). Since this seminal work, further 

research using the same methodology has expanded to include marks made by hand axes and 
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marks found on human teeth (Bello et al., 2009; Bello, 2011). Similarly, Boschin and Crezzini 

(2012) used 3D microscopy to take morphometric measurements like depth, breadth, and 

opening angles and used them to develop objective methods for identifying the agent responsible 

for producing different marks. Even as these original 3D analyses helped propel BSM studies 

forward, there was a lack of reproducibility between research teams, meaning the results of each 

project could not be adequately retested (Pante et al., 2017; Keevil, 2018).  

 Other research using 3D approaches in paleoanthropology implemented micro-

photogrammetry which operates by combining multiple photos of a mark taken from different 

angles to create a 3D model of the mark, allowing for quantifiable measurements to be taken like 

opening angle, width, and depth. (Maté-González et al., 2015). Since the development of this 

method, numerous research teams have implemented it to compare marks made by various stone 

tools from different raw materials to marks found in the fossil record (Maté-González et al., 

2015; Yravedra et al., 2017). However, like profilometric microscopy, micro-photogrammetry 

also has issues pertaining to replicability, inter-observer objectivity, and testability. Micro-

photogrammetry is limited by the need to take “approximate” measurements which can increase 

observer bias, plus the method relies on taking central cross-sectional profiles for each 

measurement which is not representative of the entire mark and is also not easily replicable 

between researchers (Pante et al., 2017; Keevil, 2018). This method also only creates a 2D cross-

sectional profile of each mark, restricting the analyst from measuring any volumetric variables 

like volume, surface area, and mean depth (Keevil, 2018). Finally, this approach is too time-

consuming, taking up to 50 minutes to analyze one mark (Keevil, 2018). Although micro-

photogrammetry was a step in the right direction, issues with replicability and inter-observer bias 

have restricted this approach from becoming more commonplace.  
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2.4.2: A New Age of Profilometric Microscopy 

 Because of the need for quantitative analyses and a call for more replicable, testable 

analyses, 3D studies in paleoanthropology – particularly confocal microscopy – have undergone 

major advancements in the past 5 years. For instance, Pante et al. (2017) developed a 

standardized and quantitative protocol for identifying cut marks using 3D reconstruction and 

measurement of micromorphological features. This new method is also favorable as it allows for 

both volumetric and profilometric measurements, producing more holistic data for each 

individual mark. Furthermore, this method has yielded promising results, with cut marks and 

tooth marks being identified correctly 97.5% of the time (Pante et al. 2017). The replicability of 

this method has been tested as well, using an inter-observer approach which produced similar 

results to the original study, demonstrating this current approach produces more accurate results 

which can be adequately retested (Pante et al., 2017; Keevil, 2018).  

 Since the development of this method, the protocol has been applied to various other 

studies. Some of these studies include the classification of tooth marks made by different 

carnivores, the effects of fluvial action on cut mark morphology, and the identification of cut 

marks made by different technology types and raw materials (Muttart et al., 2017; Gümrükçü et 

al., 2018; Gümrükçü and Pante, 2018; Keevil, 2018; Mwakyoma, 2021). Although this new 

protocol developed by Pante et al. (2017) has only been used in paleoanthropological and 

archaeological contexts, the method would also be valuable for KMA as the methodology 

produces results which are objective, quantifiable, standardized, testable, and easily replicable. 

Therefore, the methodology presented by Pante et al. (2017) should be implemented in forensics 

to help develop a new standard for identifying kerf marks while also meeting the criteria listed in 

Daubert. 
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CHAPTER THREE: MATERIALS AND METHODOLOGY 
 
 

 
In this study, the main goals are to determine whether a specific knife type or blade class 

can be identified based solely on a kerf mark’s micromorphological features as well as which of 

those features are most useful for differentiating kerf marks from one another. To achieve these 

end goals, this study follows the 3D optical metrology analysis technique created by Pante et al. 

(2017) to analyze and compare kerf marks produced on various diaphyseal segments of bovid 

long bones. Additionally, since this experiment is exploratory, an emphasis was placed on 

replicability and generality of results at the expense of realism. The following sections outline 

the experimental methodology and how data was processed and collected using 3D kerf mark 

analysis. 

3.1: Experimental Bone Sample 

 Bone samples were sourced by Elle Herner (EH) and Connie Fellmann (CDF) in 2017. 

Pre-cut bovid long bones were acquired from Beaver’s Market in Fort Collins. These 1-2 inch 

segments of bone were pre-packaged in black Styrofoam and saran wrap and stored in a standard 

grocery store freezer. Although prior research states porcine bone is more analogous to human 

osseous tissue, bovine diaphyseal elements were used because of accessibility and cost-

effectiveness; bovid long bones provide the user with more surface area to cut, meaning multiple 

series of kerf marks could be produced on the same bone (Kooi and Fairgrieve, 2013; Miles et 

al., 2020). A total of 15 bone portions were bought and used to create the collection, but only 13 

were recovered for analysis.  
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3.1.1: Bone Cleaning and Specimen Preparation 

While the bovid long bone segments were purchased de-fleshed, the remains still 

included bone marrow as well as remnants of cartilage. Cleaning of the bone was performed in 

two separate trials. During the first trial, EH attempted to clean a total of 6 epiphyseal and 3 

diaphyseal portions by mixing water with ¼ cup of hydrogen peroxide, heating the mixture on a 

low heat setting, and submerging the bones in the mix for 8 hours and 40 minutes. However, the 

process resulted in too much cartilage still attached and some bones were overcooked due to a 

white, bleached appearance rendering them unusable for the experiment.  

 During the second trial, EH used the same water, ¼ cup hydrogen peroxide mixture but 

reduced the time bones were submerged in the mixture to 4 hours and 30 minutes and only used 

15 diaphyseal portions. Remains were checked at the 3 and 4 hour marks to guarantee they were 

not overcooked. Once remains were removed from the water, any additional cartilage was 

removed using plastic forks to avoid inflicting any trauma on the soft tissue. In the end, the 

second trial was successful as no remains were overcooked and cartilage had been removed from 

all cutting surfaces.  

3.2: Experimental Knife Collection 

The knives used to produce the kerf marks analyzed in this study all belonged to a 

collection obtained from Chicago Cutlery ™ and consisted of a carbon steel chef’s knife, boning 

knife, steak knife, and bread knife (Figure 3.1). The knife set was purchased new to control for 

sharpness as a potential confounding factor. Each knife was given its own identification number 

for analysis: the chef’s knife is 1, the boning knife is 2, the steak knife is 3 and 3.5, and the bread 

knife is 4.  
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Figure 3.1: Knives used in experiment. From top to bottom knives are chef’s knife (1), boning 
knife (2), steak knife (3, 3.5), and bread knife (4).  

The chef’s knife was characterized as a large, non-serrated knife, having a blade length of 

200 millimeters and a width of 0.7 mm. The boning knife was classified as a small, non-serrated 

knife with a blade length of 128 mm and a width of 0.8 mm. The steak knife was categorized as a 

partially serrated blade with the serrated portion at the tip of the knife and the non-serrated 

portion continuing down to the handle of the knife. The entire steak knife had a length of 123 

mm, but the serrated portion was 65 mm long while the non-serrated portion was 55 mm long. 

The serrated portion of the knife also was 1.1 mm thick whereas the non-serrated portion was 0.8 

mm thick. Because this knife had two different blades, it was used in two ways; for marks 

labeled 3, the entire length of the steak knife’s blade was used whereas only the serrated portion 
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was used for marks labeled 3.5. Finally, the bread knife was classified as a large, serrated knife 

and had a blade length of 261 mm and a width of 1.2 mm (Table 3.1).  

Table 3.1: General Information on Knives Used in this Study (measurements in mm) 
Knife Type Blade Class Knife Length Blade Length Blade Width 

Chef’s Non-Serrated 329 200 0.7 
Boning Non-Serrated 244 128 0.8 

Steak Knife, Full 
Blade 

Partially 
Serrated 

123 55 0.8 

Steak Knife, Serrated 
Portion 

Partially 
Serrated 

123 65 1.1 

Bread Serrated 385 261 1.2 
 

3.3: Specimen Cutting Process 

 Before cutting began, each bone specimen was analyzed to determine the flattest portions 

of the bone relative to bone curvature to use as the cutting surface. EH was in charge of cutting 

specimens while CDF labeled each kerf mark and positioned the bones in a table clamp. Only 

one individual, EH, produced the kerf marks to control for the amount of force applied with each 

cut and reduce any inter-analyst bias.  

 Each researcher wore downed blade-resistant gloves and CDF affixed the table clamp to 

ensure the stability of the bone while cutting. Each bone was fastened in the table clamp with the 

cutting surface level to the clamp. Once the bone was secured in the table clamp, sets of kerf 

marks were completed from the right side of the bone to the left with the following knife 

progression: 1 (chef’s knife), 2 (boning knife), 3 (steak knife, full blade), 3.5 (steak knife, just 

serrated portion), and 4 (bread knife) (Figure 3.2). The cutting surface was penetrated by each 

knife using a front-to-back motion as perpendicular to the cutting surface as possible rather than 

following the curvature of the bone. Regardless of knife type, each kerf was ideally created 

under the same amount of force while keeping the knife as straight as possible.  
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Figure 3.2: Example of mark series 15DD. Marks were made from right to left following this 
progression: chef’s knife (1), boning knife (2), steak knife full blade (3), steak knife serrated 
blade only (3.5), bread knife (4). 

After each mark was made, CDF labeled the mark with the specific knife label (1, 2, 3 

3.5, 4). This process continued until 35 sets of 5 marks had been created, resulting in a total of 

175 cut marks (35 marks of each knife type). However, since some bones were missing from the 

collection when analysis began in 2022, the current data set consists of 28 sets of each mark type 

for a total of 140 marks. Finally, each set of 5 marks was given an identifying number on the 

bone (A-II). Therefore, if a kerf mark was made by a chef’s knife (knife 1) on bone 1, and was 

made in the first set of 5 marks, it was coded as 1A.1 (bone 1, mark set A, knife 1).  

3.4: Scanning Procedure 

 Following the production of all cut marks, bones were scanned using the Sensofar non-

contact 3D surface metrology scanner and its associated Sensoview® software in the 3D Imaging 

and Analysis Laboratory at Colorado State University. Kerf marks were scanned according to the 
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methodology created by Pante et al. (2017) as this systematic approach allows for the resulting 

database to be replicable and comparable for future studies using similar methodologies.  

 Each bone was manually placed in a position that allowed for the mark to be as level as 

possible on both the x and y axes. Unlevel marks could prevent the collection of data as areas 

which are too high or too low relative to the position of the 5x objective lens will not get 

recorded by the scanner (Pante et al., 2017). Thus, masonry sand was used to create a level 

surface for the bone so that each kerf mark was level with the scanner’s base.  

 Marks were also oriented along their long axis perpendicular to the x-axis of the scanner. 

This is done to ensure each profile that comprised the 3D models truly represented a single cross-

section throughout the entirety of the mark (Pante et al., 2017). Once the kerf marks were 

oriented properly, a rectangular area was drawn around each mark using the camera provided by 

Sensofar, defining the section of the bone to be scanned (Figure 3.3). It was vital to include non-

cut marked surfaces around the mark to make sure each scan encapsulated the entirety of the 

mark for processing and measurement. 

3.5: Data Processing 

 Once the 3D kerf mark models had been completed, they were imported from the 

Sensoview® software into the Sensomap® (standard edition 7.4) software to be cleaned and 

processed before taking measurements. With this software, each new studiable produced is a 2D 

visual representation of the XYZ coordinates for that mark. The first processing step was to 

remove any outliers within the model using the “remove outliers” ‘operator’ studiable. The next 

step was to fill any remaining non-measured points in the 3D models using the “fill in NM”  

‘operator’ studiable; this tool estimates any of the points which were not captured in the scanning 

process based on neighboring points (Figure 3.4A).  
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Figure 3.3: Photograph taken by Sensofar camera to define area of bone to be scanned. Note that 
all marks run perpendicular to the x-axis and within the rectangle there is also non-cut marked 
bone to guarantee the entirety of the kerf mark is scanned. 
 
 After removing outliers and filling non-measured points, the next step was to remove the 

influence of any bone surface irregularities or curvature on the 3D models while preserving the 

marks’ morphology by using the “remove form” ‘operator’ studiable set to a polynomial degree 

of 2 (Figure 3.4B). Although the polynomial degrees can be set from 1-13 depending on the 

severity of bone surface irregularity, a polynomial degree of 2 was sufficient for this study.  

  

   

  

  

  

  

  

 

 

Figures 3.4A and 3.4B: Left image shows 3D kerf mark model (mark 12X.3) after importing 
from Sensoview, removing outliers, and filling in non-measured points. Right image shows 
same kerf mark after removing form. Color scales (on right of images) indicate depth.   
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Following the removal of any bone shape influence on mark shape, the “threshold” 

‘operator’ studiable was used to define the extent of the marks’ profile (Figure 3.5A). 

Additionally, each 3D model that was not perpendicular to the x-axis was rotated using the 

“rotate” ‘operator’ studiable as slanted marks can reduce the accuracy of any measurements 

which require the user to trace the boundaries of the mark (Pante et al., 2017; Mwakyoma, 2021) 

(Figure 3.5B). The final step in processing the 3D kerf mark models was to isolate the mark 

using the “extract area” ‘operator’ studiable. 

3.6: 3D Data Measurement 

 Similar to data processing, the 3D measurement process followed Pante et al. (2017) 

protocol and was completed using the Sensomap® software. A total of 6 3D variables were 

measured including surface area (µm2), volume (µm3), maximum depth (µm), mean depth (µm), 

maximum length (µm), and maximum width (µm).  

 

  

 dfvfdvd 

 

 

 

 

 

 
 
 Surface area, volume, maximum depth, and mean depth were all recorded by using the 

“volume of a hole” function provided by the software. This function operates by allowing users 

to manually outline the boundaries of the kerf mark using a series of interconnected points 

Figures 3.5A and 3.5B: Left image shows 3D kerf mark model (mark 12X3) after setting 
threshold. Right image shows same mark after being rotated to align perpendicular to the x- 
axis. Color scales (on right of images) indicate depth.  
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(Figure 3.6). Once the outline has been established, the function will then implement a least 

squares method to create a level plane for the kerf mark, estimating the pre-cut bone surface and 

allowing for three-dimensional volume measurements to be recorded (Pante et al., 2017).  

 Maximum length and width were recorded using the “distance” function which allows the 

user to manually measure the length and width with line segments (Figure 3.7). Maximum length 

was defined as the maximum distance from each end of the mark and was measured using 

multiple line segments if the mark was not straight. Maximum width was recorded perpendicular 

to the maximum length measurement and was taken along the widest portion of the entire mark.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 3.6 and 3.7: Figure 3.6 (left) depicts the “volume of a hole” function for mark 
12X3. Table underneath image contains measurements for surface area, volume 
maximum depth, and mean depth. Figure 3.7 (right) depicts distance measurements for 
mark 12X3. Table underneath contains measurements for maximum length (A) and 
maximum width (B).  
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3.7: Profile Extraction and Measurement 

 Once again, following Pante et al. (2017) protocol, a 2D profile was extracted from the 

3D kerf mark model using the “extract profile” ‘operator’ studiable. The profile was always 

taken from the lowest point in the mark as this is the easiest to identify, guarantees consistency, 

and reduces observer bias. A total of 6 more variables were measured from the resultant profile: 

these included maximum depth (µm), profile area (µm), maximum width (µm), roughness (Ra), 

opening angle (degrees), and floor radius (µm). 

The “area of a hole” function with the “under the waterline” option was used to measure the 

maximum depth and profile area for each model (Figure 3.8). The “area of a hole” function 

operates by allowing the user to identify the leftmost and rightmost edges of the mark, while the 

“under the waterline” option fills in the mark to the lowermost edges of the kerf, eliminating 

mark shoulders from influencing the area and depth results. 

 
Figure 3.8: Example of “area of a hole” function with “under the waterline” option selected for 
mark 12X3. The table underneath studiable contains measurements for maximum depth and 
profile area.  
 

 The next four measured variables, maximum width, roughness, opening angle, and floor 

radius, were taken solely from the portion of the profile that reflects the kerf mark. To do so, the 

x-coordinates from both edges of the mark taken during the “area of a hole function” were 
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isolated using the “extract area” ‘operator’ studiable, resulting in a new studiable only containing 

the cross-sectional profile of the kerf mark. Then, the length of this new profile provides the user 

with the maximum width measurement. Once this new studiable has been created, roughness was 

measured from the profile by using the “parameters table” function in the software. Roughness 

can be best defined as the mean deviation from the profile, quantifying the surface texture of the 

kef floor and walls (Pante et al., 2017; Keevil, 2018).  

 Finally, the “contour analysis” function was used to obtain the opening angle and floor 

radius measurements for each profile. Opening angle was measured by drawing two best fit lines 

– one from the first measured point to the deepest point of the profile and another from the last 

measured point to the deepest point of the profile – and calculating the angle between them 

(Figure 3.9). Then, floor radius was measured by drawing an arc between the first and last points 

of the profile, with the arc itself representing a best fit for all the points within the profile (Pante 

et al., 2017) (Figure 3.9).  

 
Figure 3.9: Example of opening angle and floor radius measurements for mark 12X3. The blue 
line represents the kerf mark profile.  
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3.8: Statistical Analysis  

 Statistical analyses were performed using PAST – Paleontological Statistics Software 

Package 4.03 (Hammer et al., 2001) and JMP Pro 15.0.0.  

3.8.1: Data Exploration 

 Shapiro-Wilks tests were first used to determine whether each variable was normally 

distributed. These tests were conducted using the JMP Pro 15.0.0 software. Measurements 

indicating the presence of non-normal distributions were then normalized using Box-Cox 

transformations (Box and Cox, 1964). Optimal lambda values for these transformations were 

calculated using preprogrammed functions in the PAST 4.03 software.  

 Following data normalization, predictor screening analysis was conducted to assess the 

contribution of each variable on making proper mark identifications. Using the predictor 

screening test in JMP Pro 15.0.0, the software determines which variables most heavily 

influenced kerf mark classifications as well as which variables carried little weight on mark 

predictions. Subsequently, this information is beneficial because it helps the user decide which 

variables should be used when making kerf mark predictions, potentially strengthening the 

multivariate analyses used in this study and future studies. 

3.8.2: Multivariate Analysis 

 Quadratic discriminate analysis (QDA) was used to assess whether the 

micromorphological variables for each kerf mark could be used to identify which knife produced 

the mark. Although linear discriminant analysis (LDA) was originally used in the Pante et al. 

(2017) protocol, QDA was currently used in this study because the data does not meet the 

assumptions of LDA, particularly the assumption that all covariances are equal (Büyüköztürk 

and Çokluk-Bökeoğlu, 2008). Equality of covariance was assessed using Box’s M Test (1949) 
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and revealed numerous variables exhibited unequal variance. Therefore, because this dataset 

violated some of the assumptions necessary for LDA, QDA was implemented as the assumptions 

for QDA are more relaxed.  

 QDA operates by modeling the likelihood of each knife type/class as a Gaussian 

distribution, then uses the posterior distributions to estimate the class for any given test point 

(Srivastava et al., 2007). However, for QDA to operate properly, all the data must follow a 

normal distribution (McLachlan, 2005). Therefore, all the data was normalized using Box-Cox 

transformations prior to analysis due to some variables not following a normal distribution. In 

total, four QDA models were created using JMP Pro 15.0.0.  

 The first two QDA models were conducted to compare each knife type (chef, boning, 

steak full blade, steak serrated portion, and bread) to one another. The first QDA model used 

every variable whereas the second QDA model only used variables deemed significant by 

predictive screening; the three least influential variables were excluded from the second model. 

The final two QDA models were structured to compare blade class (non-serrated, partially 

serrated, and fully serrated) against one another rather than knife type. Similar to the first two 

models, the third QDA model used all of the variables whereas the fourth only used significant 

variables, excluding the three least influential variables. Finally, in all four QDA models a 75% 

training and 25% testing split with specified priors proportional to occurrence was implemented 

to cross-validate the models’ accuracy. However, marks on one bone will be more similar to 

marks on that same bone than marks on another, presenting a non-independence issue which 

could bias the QDA models. To alleviate this problem, training and testing sets were hand-picked 

so that all marks on an individual bone were either in the testing or training set. Therefore, all the 

testing set marks (35 in total) came from bones 2, 7, and 12.  



42 
 

CHAPTER FOUR: RESULTS 
 
 
 

4.1: Qualitative Description of Results 

 While one of the principal goals of this research is to develop an easily replicable, 

quantifiable method for KMA, a brief, qualitative description of each kerf mark has been 

included to visualize some of the differences between marks made by the four knife types. When 

comparing marks made by the chef, boning, steak knife (full blade), steak knife (just serrated 

portion), and bread knife, there are relatively clear distinctions between the marks in terms of 

width and depth. For instance, marks made by the chef’s knife tended to appear the thinnest and 

shallowest. Marks made by the boning knife were still quite shallow, but deeper than those made 

by the chef’s knife (Figure 4.1A). Marks made by the steak knife – regardless of whether the full 

blade or just the serrated portion was used – were deeper and wider than any of the marks made 

by the two non-serrated knives, but marks made by the bread knife were consistently deeper and 

wider than marks made by any other knife type (Figure 4.1B).  

 

 

 

 

 

 

 

 

  

Figure 4.1A: Kerf marks made by chef’s knife (left) and boning knife (right) from mark series 
13Z. Note how chef’s mark is quite shallow and thin whereas boning knife exhibits a slightly 
greater width and depth (depth denoted by scales to right of images).  
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Additionally, while similar trends relating to width and depth were also visible in profile 

view, the cross-sectional profiles of each mark exhibited additional diagnostic information. For 

the chef and boning knives, both kerf mark walls were angled inward towards the kerf floor 

(Figure 4.2A). However, when observing the mark profiles for kerf marks made by the steak 

Figure 4.1B: Kerf marks made by the steak knife, full blade (top left), steak knife, serrated 
portion only (top right), and bread knife (bottom center) from mark series 13Z. Note how all three 
marks are deeper and wider than those in Figure 4.1A, but kerf marks made by the bread knife are 
the deepest and widest (depth denoted by scale to right of images). 
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knife and bread knife, the right kerf wall is angled towards the kerf floor at a more gradual angle 

whereas the left kerf wall drops more steeply towards the floor. More specifically, marks created 

by the bread knife exhibit an almost 90 degree angle from the left kerf wall to the kerf floor 

(Figure 4.2B). In other words, marks made by serrated and partially serrated blades have a 

steeper kerf wall on one side that is almost cliff-like whereas marks made by non-serrated blades 

angle inwards at both walls. Therefore, when generally assessing the kerf marks in this study 

qualitatively, there appear to be differences in terms of kerf width, depth, and profile 

morphology which could assist in mark identification. However, even though these qualitative 

identifiers may be useful, they cannot stand on their own as they are relatively subjective and 

must be assessed quantitatively to corroborate these distinctions and generate more replicable 

results.  

 

 

 

 

 

 

 

 

 

 

 

  Figure 4.2A: Cross-sectional profiles of kerf marks made by a chef’s knife (top) and 
boning knife (bottom) from mark series 13Z. Note how the left and right kerf walls 
angle in towards the kerf floor. 
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Figure 4.2B: Cross-sectional profiles of kerf marks made by a steak knife, full blade 
(top), steak knife, just serrated portion (middle), and bread knife (bottom) from mark 
series 13Z. Note how besides differences in width and depth, all three marks exhibit a 
sharper angle for the left kerf wall and a more gradual angle for the right kerf wall. 
This differs from marks made by non-serrated blades in Figure 4.2A which exhibit 
more gracile angles for both kerf walls. 
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4.2: Data Exploration Results 

4.2.1: Normalization 

 Shapiro-Wilk tests as well as histograms were produced for each variable to assess 

normality (Appendix A and B). Results from these tests and distributions revealed numerous 

measurements were not normally distributed. Therefore, Box-Cox transformations were 

conducted on each variable to achieve as close to a normal distribution as possible so quadratic 

discriminant analysis (QDA) could be performed. The optimal lambda values for each 

transformation were calculated using Paleontological Statistics Software (PAST) (Table 4.1).  

Table 4.1: Optimal Lambda Values Applied to Each Measurement for Box-Cox Transformations 
Measurement Optimal Lambda Log Likelihood 

Surface Area (3D) 0.38162 -2012.11 

Volume (3D) 0.18434 -2766.90 

Maximum Depth (3D) 0.26272 -713.21 

Mean Depth (3D) 0..29343 -616.14 

Maximum Length (3D) 1.02426 -1136.81 

Maximum Width (3D) 0.15388 -704.79 

Area (Profile) 0.12270 -1447.44 

Maximum Depth (Profile) 0.27091 -682.13 

Maximum Width (Profile) 0.25245 -680.39 

Roughness (Profile) 0.26600 -109.69 

Opening Angle (Profile) -1.06743 -329.44 

Floor Radius (Profile) 0.04817 -600.89 

 

 



47 
 

4.2.2: Descriptive Statistics 

 All comprehensive results including distribution, quantile range, and summary statistics 

for each variable in relation to knife type are attached at the end of this study (Appendix C). 

Similarly, box plots were generated to depict the distributions for each measurement in relation 

to knife type, revealing any outliers in the dataset.  

4.2.3: Predictor Screening Analyses 

 In total, two predictor screening analyses were conducted before beginning multivariate 

analyses. These tests were done to explore the contribution of each measurement on mark 

estimation. When conducting predictor screening for each variable in relation to knife type, the 

last three variables were deemed to be the least influential: these three variables included 

maximum length (3D), opening angle (profile), and roughness (profile). The three most 

influential variables were surface area (3D), volume (3D), and area (profile) (Table 4.2). When 

conducting predictor screening for each variable in relation to blade class, the three least 

influential variables were once again maximum length (3D), roughness (profile), and opening 

angle (profile). The most influential measurements were volume (3D), surface area (3D), and 

area (profile) (Table 4.3).  

Table 4.2: Predictor Screening for Measurements in Relation to Knife Type 
Predictor Contribution Portion  Rank 

Surface Area (3D) 38.5747 0.2379 1 
Volume (3D) 26.2623 0.1619 2 
Area (Profile) 25.5461 0.1575 3 
Maximum Width (3D) 15.8572 0.0978 4 
Maximum Depth (Profile) 14.3485 0.0885 5 
Floor Radius (Profile) 13.4380 0.0829 6 
Maximum Depth (3D) 10.8768 0.0671 7 
Mean Depth (3D) 7.2961 0.0450 8 
Maximum Width (Profile) 6.5958 0.0407 9 
Maximum Length (3D) 1.7429 0.0107 10 
Opening Angle (Profile) 1.0032 0.0062 11 
Roughness (Profile) 0.6255 0.0039 12 
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Table 4.3: Predictor Screening for Measurements in Relation to Blade Class 
Predictor Contribution Portion  Rank 

Volume (3D) 32.7805 0.2263 1 
Surface Area (3D) 31.5797 0.2180 2 
Area (Profile) 17.0415 0.1176 3 
Floor Radius (Profile) 15.5792 0.1075 4 
Maximum Depth (Profile) 14.4711 0.0999 5 
Maximum Width (3D) 10.9486 0.0756 6 
Maximum Depth (3D) 9.9476 0.0687 7 
Maximum Width 
(Profile) 

5.5554 0.0383 8 

Mean Depth (3D) 5.3371 0.0368 9 
Maximum Length (3D) 0.8358 0.0058 10 
Roughness (Profile) 0.4523 0.0031 11 
Opening Angle (Profile) 0.3304 0.0023 12 
 
4.3: Multivariate Analysis: Quadratic Discriminant Analysis (QDA) 

 In total, 4 QDA models were constructed using JMP Pro 15.0.0 to test whether various, 

quantifiable, micromorphological measurements could be used to discriminate between kerf 

marks made by different knife types/classes. Two models were created to test knife type, with 

one model using all the variables while the other model only used variables deemed influential 

by predictor screening; maximum length (3D), opening angle (profile), and roughness (profile) 

were considered the least influential and thus removed for this second QDA model (Table 4.2). 

Two additional models were also generated to test blade class, with one model using all the 

variables and the other using variables deemed useful by predictor screening; the least influential 

variables were once again maximum length (3D), roughness (profile), and opening angle 

(profile) (Table 4.3).  

Furthermore, since there were two variables which measured maximum depth – one from 

the 3D scan and one from the cross-sectional profile – using both variables in the QDA models 

could potentially bias the model due to the use of redundant variables. Therefore, since the 3D 
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measurement for maximum depth was deemed less influential by predictor screening, this 

measurement was omitted from all 4 QDA models to reduce any biases in the models. In the 

following sections, the results from each of the 4 QDA models are presented, including the 

accuracy percentages and discriminant scores for the testing datasets. Discriminant scores for all 

the training sets have also been attached at the end of this study (Appendix D-G). Accuracy 

percentages were presented as they indicate how effective the models are at classifying new data 

in the testing set that was not present in the original dataset (Molinaro et al., 2005).  

4.3.1: QDA for Knife Type Including All Variables 

 When using all the variables and testing knife type (chef, boning, steak full blade, steak 

serrated portion, bread), correct classifications in the testing set were made 51.43% of the time 

(Table 4.4).  Marks made by the bread knife had the highest classification accuracy in the model, 

with these marks being accurately identified 85.7% of the time. However, marks made by the 

boning and chef’s knives were commonly misclassified as one another, with accurate 

identifications only being made for these two knife types in the testing set 42.9% of the time. 

Similarly, marks made by the full steak blade and those made by just the steak knife’s serrated 

portion were misidentified as one another 50% of the time in the testing set (table 4.6).   
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Figure 4.3: QDA Canonical Plot showing classifications and distributions of kerf marks in 
relation to knife type when using all measurements.  
 

Table 4.4: Score Summaries for Knife Type QDA Model Using All Variables 
Source Count Number Misclassified Percent Misclassified Entropy 

RSquare 

-2LogLikelihood 

Training 105 7 6.6667 0.9394 20.4753 
Testing 35 17 48.5714  -2.4822  
 

Table 4.5: Confusion Matrix for Knife Type QDA Model Using All Variables (Training Set)  
Actual Predicted Count 

Knife Type Boning Bread Chef Steak Full Blade Steak Serrated Portion 

Boning 19 0 2 0 0 
Bread 0 21 0 0 0 
Chef 1 0 20 0 0 
Steak Full Blade 0 0 0 20 1 
Steak Serrated Portion 0 0 0 3 18 
 

Table 4.6: Confusion Matrix for Knife Type QDA Model Using All Variables (Testing Set) 
Actual Predicted Count 

Knife Type Boning Bread Chef Steak Full Blade Steak Serrated Portion 

Boning 3 0 4 0 0 
Bread 0 6 0 0 1 
Chef 4 0 3 0 0 
Steak Full Blade 0 1 0 2 4 
Steak Serrated Portion 0 0 0 3 4 
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Table 4.7: Discriminant Scores for Knife Type QDA Model Using All Variables (Testing Set) 
Row Actual Predicted Prob(Pred) Others 

1 Boning Chef 0.9711  
2 Boning Boning 0.6342 Chef 0.37  
3 Boning Boning 0.9661  
4 Boning Chef 1.0000  
5 Boning Boning 0.7587 Chef 0.24  
6 Boning Chef 0.9999  
7 Boning Chef 0.5410  
8 Bread Bread 0.9996  
9 Bread Bread 1.0000  

10 Bread Bread 1.0000  
11 Bread Bread 1.0000  
12 Bread Bread 1.0000  
13 Bread Bread 0.8792 Steak Serrated Portion 0.12  
14 Bread Steak Serrated Portion 0.9988  
15 Chef Boning 0.9501  
16 Chef Chef 0.9855  
17 Chef Boning 0.9959  
18 Chef Chef 0.9977  
19 Chef Chef 0.9977  
20 Chef Boning 0.9912  
21 Chef Boning 1.0000  
22 Steak Full Blade Steak Serrated Portion 0.6049  
23 Steak Full Blade Steak Serrated Portion 0.9746  
24 Steak Full Blade Steak Full Blade 0.9638  
25 Steak Full Blade Steak Serrated Portion 1.0000  
26 Steak Full Blade Bread 0.9956  
27 Steak Full Blade Steak Serrated Portion 0.9955  
28 Steak Full Blade Steak Full Blade 0.5450 Steak Serrated Portion 0.45  
29 Steak Serrated Portion Steak Full Blade 0.9863  
30 Steak Serrated Portion Steak Serrated Portion 1.0000  
31 Steak Serrated Portion Steak Serrated Portion 0.9510  
32 Steak Serrated Portion Steak Serrated Portion 0.9900  
33 Steak Serrated Portion Steak Serrated Portion 0.9959  
34 Steak Serrated Portion Steak Full Blade 0.8760  
35 Steak Serrated Portion Steak Full Blade 0.9397  

 

4.3.2: QDA for Knife Type Excluding Non-Influential Variables 

When excluding the three least influential variables as stated by predictor screening, the 

QDA model worsens, with accurate identifications only being made 45.71% of the time (Table 

4.8). Marks made by the bread knife once again had the most accurate classification rate of 
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85.7%. Kerf marks made by the chef and boning knife were misidentified as one another at a 

higher rate than the first QDA model, with accurate identifications for both knife types only 

being made 21.4% of the time. Likewise, marks made by the full steak knife blade and just the 

serrated portion of the steak knife were misclassified as one another 35.7% of the time, with 

correct classifications only being made 50% of the time (Table 4.10).  

 
Figure 4.4: QDA Canonical Plot showing classification and distribution of kerf marks in relation 
to knife type when only using influential measurements. 
 

Table 4.8: Score Summaries for Knife Type QDA Model Using Influential Variables 
Source Count Number Misclassified Percent Misclassified Entropy 

RSquare 

-2LogLikelihood 

Training 105 10 9.5238 0.8566 48.4587 
Testing 35 19 54.2857  -0.7437  
 
Table 4.9: Confusion Matrix for Knife Type QDA Model Using Influential Variables (Training 
Set)  

Actual Predicted Count 

Knife Type Boning Bread Chef Steak Full Blade Steak Serrated Portion 

Boning 19 0 2 0 0 
Bread 0 21 0 0 0 
Chef 2 0 19 0 0 
Steak Full Blade 0 0 0 19 2 
Steak Serrated Portion 0 0 0 4 17 
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Table 4.10: Confusion Matrix for Knife Type QDA Model Using Influential Variables (Testing 
Set) 

Actual Predicted Count 

Knife Type Boning Bread Chef Steak Full Blade Steak Serrated Portion 

Boning 2 0 5 0 0 
Bread 0 6 0 0 1 
Chef 6 0 1 0 0 
Steak Full Blade 0 2 0 3 2 
Steak Serrated Portion 0 0 0 3 4 
 
Table 4.11: Discriminant Scores for Knife Type QDA Model Using Influential Variables 
(Testing Set) 
Row Actual Predicted Prob(Pred) Others 

1 Boning Chef 0.6296  
2 Boning Chef 0.7841  
3 Boning Boning 0.8159 Chef 0.18  
4 Boning Chef 0.5499  
5 Boning Boning 0.8364 Chef 0.16  
6 Boning Chef 0.9993  
7 Boning Chef 0.9496  
8 Bread Bread 0.9996  
9 Bread Bread 0.9958  

10 Bread Bread 0.9999  
11 Bread Bread 0.9993  
12 Bread Bread 0.9983  
13 Bread Bread 0.9999  
14 Bread Steak Serrated Portion 0.9310  
15 Chef Boning 0.8587  
16 Chef Boning 0.5815  
17 Chef Boning 0.9977  
18 Chef Chef 0.9966  
19 Chef Boning 0.9961  
20 Chef Boning 0.9295  
21 Chef Boning 0.9903  
22 Steak Full Blade Steak Full Blade 0.9216  
23 Steak Full Blade Steak Full Blade 0.5645 Steak Serrated Portion 0.44  
24 Steak Full Blade Steak Serrated Portion 0.5459 Bread 0.11  
25 Steak Full Blade Steak Serrated Portion 0.9386  
26 Steak Full Blade Bread 0.9995  
27 Steak Full Blade Bread 0.9153  
28 Steak Full Blade Steak Full Blade 0.6690 Steak Serrated Portion 0.33  
29 Steak Serrated Portion Steak Full Blade 0.7876  
30 Steak Serrated Portion Steak Serrated Portion 0.9994  
31 Steak Serrated Portion Steak Serrated Portion 0.9906  
32 Steak Serrated Portion Steak Serrated Portion 0.9877  
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Row Actual Predicted Prob(Pred) Others 
33 Steak Serrated Portion Steak Serrated Portion 0.9173  
34 Steak Serrated Portion Steak Full Blade 0.7987  
35 Steak Serrated Portion Steak Full Blade 0.7041 Bread 0.19  

 
4.3.3: QDA for Blade Class Including All Variables 

 
 When using all the variables and testing blade class (non-serrated, partially serrated, 

serrated), correct classifications were made at much higher rates in the testing set at 97.14% 

(Table 4.12). In other words, this model was much more accurate as there was only one 

misclassification in the testing set, with one kerf mark produced by a serrated knife being 

misclassified as partially serrated (table 4.14).  

 
Figure 4.5: QDA Canonical Plot showing classification and distribution of kerf marks in relation 
to blade class when using all measurements. 
 

Table 4.12: Score Summaries for Blade Class QDA Model Using All Variables 
Source Count Number Misclassified Percent Misclassified Entropy 

RSquare 

-2LogLikelihood 

Training 105 0 0.00000 0.9995 0.0913 
Validation 35 1 2.8571  0.8574  
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Table 4.13: Confusion Matrix for Blade Class QDA Model Using All Variables (Training Set)  
Actual Predicted Count 

Blade Class Non-Serrated Partially Serrated Serrated 

Non-Serrated 42 0 0 
Partially Serrated 0 42 0 
Serrated 0 0 21 
 

Table 4.14: Confusion Matrix for Blade Class QDA Model Using All Variables (Testing Set) 
Actual Predicted Count 

Blade Class Non-Serrated Partially Serrated Serrated 

Non-Serrated 14 0 0 
Partially Serrated 0 14 0 
Serrated 0 1 6 
 

Table 4.15: Discriminant Scores for Blade Class QDA Model Using All Variables (Testing Set) 
Row Actual Predicted Prob(Pred) Others 

1 Non-Serrated Non-Serrated 1.0000  
2 Non-Serrated Non-Serrated 1.0000  
3 Non-Serrated Non-Serrated 0.9971  
4 Non-Serrated Non-Serrated 1.0000  
5 Non-Serrated Non-Serrated 1.0000  
6 Non-Serrated Non-Serrated 1.0000  
7 Non-Serrated Non-Serrated 1.0000  
8 Serrated Serrated 0.9964  
9 Serrated Serrated 0.9999  

10 Serrated Serrated 0.9998  
11 Serrated Serrated 1.0000  
12 Serrated Serrated 0.9998  
13 Serrated Serrated 0.9273  
14 Serrated Partially Serrated 0.9944  
15 Non-Serrated Non-Serrated 1.0000  
16 Non-Serrated Non-Serrated 1.0000  
17 Non-Serrated Non-Serrated 1.0000  
18 Non-Serrated Non-Serrated 1.0000  
19 Non-Serrated Non-Serrated 1.0000  
20 Non-Serrated Non-Serrated 1.0000  
21 Non-Serrated Non-Serrated 1.0000  
22 Partially Serrated Partially Serrated 1.0000  
23 Partially Serrated Partially Serrated 1.0000  
24 Partially Serrated Partially Serrated 1.0000  
25 Partially Serrated Partially Serrated 0.9991  
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Row Actual Predicted Prob(Pred) Others 
26 Partially Serrated Partially Serrated 0.9961  
27 Partially Serrated Partially Serrated 1.0000  
28 Partially Serrated Partially Serrated 0.9999  
29 Partially Serrated Partially Serrated 1.0000  
30 Partially Serrated Partially Serrated 1.0000  
31 Partially Serrated Partially Serrated 1.0000  
32 Partially Serrated Partially Serrated 1.0000  
33 Partially Serrated Partially Serrated 1.0000  
34 Partially Serrated Partially Serrated 1.0000  
35 Partially Serrated Partially Serrated 0.9994  

 

4.3.4: QDA for Blade Class Excluding Non-Influential Variables 

 

 When using only the influential variables as dictated by predictor screening and testing 

blade class, the QDA model once again worsens, but less severely with accurate identifications 

being made 91% of the time (Table 4.16). While all non-serrated kerf marks were identified 

accurately by the QDA model, there were a total of 3 misclassifications wherein partially 

serrated and fully serrated marks were misclassified as one another 14.2% of the time (Table 

4.18).  

 
Figure 4.6: QDA Canonical Plot showing classification and distribution of kerf marks in relation 
to blade class when only using influential measurements. 
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Table 4.16: Score Summaries for Blade Class QDA Model Using Influential Variables 
Source Count Number 

Misclassified 

Percent Misclassified Entropy 

RSquare 

-2LogLikelihood 

Training 105 0 0.0000 0.9902 2.1612 
Validation 35 3 8.5714  0.6774  
 
Table 4.17: Confusion Matrix for Blade Class QDA Model Using Influential Variables 
(Training Set)  

Actual Predicted Count 

Blade Class Non-Serrated Partially Serrated Serrated 

Non-Serrated 42 0 0 
Partially Serrated 0 42 0 
Serrated 0 0 21 
 

Table 4.18: Confusion Matrix for Blade Class QDA Model Using Influential Variables (Testing 
Set)  

Actual Predicted Count 

Blade Class Non-Serrated Partially Serrated Serrated 

Non-Serrated 14 0 0 
Partially Serrated 0 12 2 
Serrated 0 1 6 
 

Table 4.19: Discriminant Scores for Blade Class QDA Model Using Influential Variables 
(Testing Set) 
Row Actual Predicted Prob(Pred) Others 

1 Non-Serrated Non-Serrated 0.9999  
2 Non-Serrated Non-Serrated 0.9997  
3 Non-Serrated Non-Serrated 0.9942  
4 Non-Serrated Non-Serrated 1.0000  
5 Non-Serrated Non-Serrated 0.9997  
6 Non-Serrated Non-Serrated 0.9994  
7 Non-Serrated Non-Serrated 0.9999  
8 Serrated Serrated 0.9993  
9 Serrated Serrated 0.9969  

10 Serrated Serrated 0.9999  
11 Serrated Serrated 0.9993  
12 Serrated Serrated 0.9989  
13 Serrated Serrated 0.9999  
14 Serrated Partially Serrated 0.6466  
15 Non-Serrated Non-Serrated 1.0000  
16 Non-Serrated Non-Serrated 0.9997  
17 Non-Serrated Non-Serrated 0.9979  
18 Non-Serrated Non-Serrated 0.9998  
19 Non-Serrated Non-Serrated 0.9919  
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Row Actual Predicted Prob(Pred) Others 
20 Non-Serrated Non-Serrated 0.9980  
21 Non-Serrated Non-Serrated 1.0000  
22 Partially Serrated Partially Serrated 1.0000  
23 Partially Serrated Partially Serrated 1.0000  
24 Partially Serrated Partially Serrated 0.9617  
25 Partially Serrated Partially Serrated 0.7393 Serrated 0.26  
26 Partially Serrated Serrated 0.9997  
27 Partially Serrated Serrated 0.8460  
28 Partially Serrated Partially Serrated 0.9999  
29 Partially Serrated Partially Serrated 0.9998  
30 Partially Serrated Partially Serrated 1.0000  
31 Partially Serrated Partially Serrated 1.0000  
32 Partially Serrated Partially Serrated 1.0000  
33 Partially Serrated Partially Serrated 0.7919 Serrated 0.21  
34 Partially Serrated Partially Serrated 1.0000  
35 Partially Serrated Partially Serrated 0.7077 Serrated 0.29  
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CHAPTER FIVE: DISCUSSION 
 
 
 

5.1: Identifying Knife Type and Blade Class from Kerf Mark Micromorphology 

 The primary objective of this research was to test whether variations in 3D 

micromorphological measurements can be used to identify the knife type or blade class 

responsible for producing certain kerf marks. This research suggests knife type cannot currently 

be classified from kerf marks, but it is possible to identify blade class. The following sections 

will further detail how these distinctions were made and their importance for KMA. 

5.1.1: Qualitative Trends for Mark Identification 

 While not the main focus of this study, qualitative assessments of mark morphology 

yielded some interesting trends in relation to blade class. Generally, the larger and more serrated 

the knife blade, the deeper and wider the cut. However, profile shape exhibited more diagnostic 

trends for differentiating serrated from non-serrated marks. Non-serrated blades – the chef and 

boning knives – displayed both kerf walls being angled inwards towards the kerf floor whereas 

serrated and partially serrated blades – the steak and bread knifes – had a steep left kerf wall and 

a more gradually angled right kerf wall (Figures 4.1A and 4.1B). This trend has been seen 

previously in research conducted by Thompson and Inglis (2009) wherein they realized kerf 

marks made by non-serrated blades produced a “y-shaped” pattern whereas serrated blades 

created a “t-shaped” pattern (Figure 5.1). While Thompson and Inglis (2009) found these 

patterns by stabbing directly into the cortical bone surface, the stab wounds still were 

characteristic of blade profile and matched marks made by the non-serrated, partially serrated 

and  fully serrated blades in this study. Since the cross-sectional profiles in their study and this 

study corroborate one another, it can be argued profile shape helps with identifying serrated from 
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non-serrated blades, but this cannot be used to differentiate serrated from partially serrated 

blades.  

 
Figure 5.1: Stab mark wounds from serrated and non-serrated blades when viewed through low-
power microscopy by Thompson and Inglis (2009). Note how the serrated blades leave a “t-
shaped” profile, matching those in this study where one kerf wall is steep whereas the other is 
more gradual. Similarly, the non-serrated blades leave behind a “y-shaped” profile where each 
kerf wall is angled in towards the kerf floor, matching kerf mark profiles  made by non-serrated 
blades in this study.  
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 However, it could also be argued that this finding based on profile shapes is more 

informative about knife edge than blade class. For instance, in this study both non-serrated 

blades were double edged meaning they were angled on both the left and right sides. On the 

other hand, the partially serrated and fully serrated blades were only angled on the right side 

where the serrations are present. The left side of these knives have no edge, instead dropping 

down at an almost 90-degree angle (Figure 5.2). These patterns – double edged vs. single edged 

– are also consistent with the kerf mark cross-sectional profiles in this study, meaning profile 

shape may be more diagnostic of knife edge than knife type of class. Nevertheless, this is still 

important information as it can tell forensic analysts whether they have a single- or double-edged 

knife and if single-edged, which side is sharpened helping narrow down the characteristics of the 

knife used. 

 
Figure 5.2: Diagram depicting knife edges. In this research, the non-serrated blades – chef and 
boning knives – were defined as double-edged whereas partially and fully serrated blades – steak 
and bread knives – were defined as single-edged. Note now these types of blades roughly match 
the kerf mark profiles in Figures 4.1A and 4.1B.  

 

 

Double-edged blade Single-edged blade 
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5.1.2: Trends and Accuracy of Knife Type Identifications 

 In short, knife type could not be accurately surmised from the data in this study. When 

using the more accurate QDA model that implemented all measurements, accurate identifications 

were only made 51.43% of the time (Table 4.4). In canonical space, marks made by the chef and 

boning knives severely overlapped with one another while marks made by the steak knife – full 

blade and just serrated portion – overlapped as well (Figure 4.3). Similarly, in the testing set 

marks made by the chef and boning knifes were misclassified as one another 57% of the time 

while marks made by the steak knife – full blade and just serrated portion – were misclassified as 

one another 50% of the time (Table 4.6).  

Kerf marks produced by non-serrated blades were likely indiscernible from one another 

because both knives were made by the company, Chicago Cutlery. Because of this, the 

production process for the blades was likely synonymous for both knives, meaning resultant 

mark morphology would be increasingly similar. Thus, there is the possibility that future studies 

of non-serrated knives could exhibit more diagnostic differences if not produced by the same 

company. Additionally, kerf marks created by just the serrated portion of the steak knife as well 

as the full blade were likely comparable to one another because the serrated portion was always 

the final segment of the blade cutting the bone, overshadowing any influence the non-serrated 

portion had on the marks’ morphology. In other words, this QDA model does not effectively 

discriminate mark classifications based on knife type because there is too much overlap between 

certain knives. In turn, this means the level of specificity necessary to identify a singular knife 

cannot be achieved using this model, matching findings of previous KMAs (Bartelink et al., 

2001; Thompson and Inglis, 2009; Love et al., 2012; Tegtmeyer, 2012; Tennick, 2012; Crowder 

et al., 2013; Sandras et al., 2018). 
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5.1.3: Trends and Accuracy of Blade Class Identifications 

 Due to the severe overlap in mark identifications made for knife type, blade class was 

also tested and yielded more promising results. When comparing marks made by non-serrated, 

partially serrated and fully serrated blades, there was minimal to no overlap between blade 

classes in the canonical plot (Figure 4.5). Moreover, correct classifications were made in the 

testing set 97.14% of the time, with only one serrated mark being misidentified as partially 

serrated; the error rate for this QDA was 2.86% (Table 4.14). Hence, blade class was consistently 

classified correctly resulting in the identification of kerf marks made not only by serrated and 

non-serrated blades but also partially serrated blades.  

Previous KMAs frequently struggled with identifying kerf marks made by partially 

serrated vs. fully serrated blades, with conclusions solely differentiating serrated marks from 

non-serrated marks (Thompson and Inglis, 2009; Tegtmeyer, 2012; Crowder et al., 2013; 

Feldman, 2015; Sandras et al., 2018). However, because the technology and methodology used 

in this study produces quantifiable data, slight differences between partially and fully serrated 

blades – which were previously unobservable through qualitative or quantitative methods – could 

be calculated and used to make more accurate classifications. Therefore, even though this study 

was not able to classify the specific knives used, being able to differentiate blade class and 

distinctly classify marks made by partially serrated blades from fully serrated blades is a step in 

the right direction when trying to specify the knife used in SFT cases.  

5.2: Variable Selection for Kerf Mark Identification 

 The second objective of this study was to identify which micromorphometric 

measurements are the most useful when making kerf mark identifications. Although predictor 

screening was implemented to try and assist in variable section, QDA analyses demonstrated the 
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use of all measurements presented in this study, specifically volume (3D), surface area (3D), and 

area (profile), was necessary to make the most accurate mark classifications possible. This 

section will detail which variables were the most useful for kerf mark identification and their 

implications for the field of KMA. 

 5.2.1: Predictor Screening and Variable Selection 

 To reiterate, predictor screening was employed to best estimate which variables were the 

most influential for mark classifications and help determine which measurements should be 

included in the QDA models and which should be removed. For both knife type and blade class, 

the least three influential measurements were maximum length (3D), opening angle (profile), and 

roughness (profile). Similarly, for both knife type and blade class the most influential 

measurements were volume (3D), surface area (3D), and area (profile) (Tables 4.2 and 4.3). 

Interestingly, the three most influential measurements – according to predictor screening 

– were all variables which were not being measured in previous quantified KMAs (Bartelink et 

al., 2001; Thompson and Inglis, 2008; Love et al., 2012; Tegtmeyer, 2012; Cerutti et al., 2014; 

Norman et al., 2018; Sandras et al., 2018; Giraudo et al., 2019). Taking volumetric 

measurements like surface area and volume is crucial to KMA as this study reveals they are the 

most discriminatory variables in terms of mark classification as they allow researchers to 

differentiate between non-serrated, partially serrated, and fully serrated marks. In other words, 

since this research relies on variables not being measured previously and also yields more 

specific identifications than seen in previous works, KMAs should place more emphasis on 

collecting volumetric data.  
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5.2.2: Conflicts Between Predictor Screening and QDA 

 In theory, the removal of non-influential variables like maximum depth (3D), opening 

angle (profile), and roughness (profile) should strengthen the QDA models and yield more 

accurate classification rates. However, the opposite reigned true in this research. For example, 

the QDA model using all measurements in relation to knife type was accurate 51.43% of the 

time, but when omitting “non-influential” variables, the QDA model was only accurate 45.71% 

of the time. Again, even though the QDA models for blade class were significantly more 

accurate than those for knife type, blade class QDA models were weakened when omitting “non-

significant” variables, going from 97.14% accuracy to 91%.  

 Although predictor screening suggests maximum length (3D), opening angle (profile), 

and roughness profile) should not help with mark classification, in practice their inclusion still 

strengthens the QDA models and should be implemented in KMAs. Therefore, by seeing all the 

variables are necessary for making accurate mark identifications, future research should include 

all the measurements used in this study as this will not only allow for better results but also more 

replicable studies as forensic analysts will know which measurements to take. 

5.3: Limitations and Future Research 

 Although this study yielded promising results for KMA, there were numerous limitations 

to the work which should be transparently presented and resolved before ever applying this 

method in a court of law. The following sections will explain the limitations of this study 

regarding a lack realism, sample size concerns, and affordability as well as how these limitations 

could be fixed in the future to produce better research.  
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5.3.1: Lack of Realism  

To begin, there is a prominent lack of realism within this study. In any scientific research, 

there are trade-offs pertaining to how realistic, precise, of general a project will be and no 

experiment can fully embody all three of these goals (Levins and Lewontin, 1985). Therefore, 

researchers must weigh the costs and benefits of favoring one goal over the other. In this case, 

realism was sacrificed for generality and precision in hopes of creating an easily replicable 

method. Furthermore, it is important to note the method used in this analysis has been fruitful in 

paleoanthropology (Muttart et al., 2017; Pante, 2017; Gümrükçü et al., 2018; Gümrükçü and 

Pante, 2018; Keevil, 2018; Mwakyoma, 2021). However, all the aforementioned research was in 

relation to tooth marks and cut marks made by lithic tools; the methodology used in those studies 

was never used to analyze kerf marks made by knives. Thus, prioritizing generality and precision 

in this research was necessary to test and evaluate the method’s value for KMA. Now that it is 

known this method provides researchers with more information than previous KMAs, more 

realistic studies can be conducted to see if the method holds up.  

One of the primary critiques of this study is how bovine bones were used for the analysis. 

When the kerf mark collection was originally created by CF and EH in 2017, the decision to use 

bovid bones was made to increase the number of cutting surfaces and decrease the overall cost. 

However, in forensic analyses porcine bone is typically used as a viable proxy for human 

remains because pigs have a similar body mass to humans, the soft tissue surrounding porcine 

bone breaks down in ways which parallel human remains, and porcine bone is similar in 

hardness to humans (Miles et al., 2020; Bonney and Goodman, 2021; Waltenberger et al., 2021). 

Therefore, since bovid remains are denser and harder than human bone, they should be replaced 
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by porcine bone in future analyses as pig bones better parallel human remains and may produce 

more realistic results to what is found in SFT cases.  

Additionally, while long bones were used in this study, it is important to note the 

majority of fatal SFT occurs to the abdomen and thoracic cavity (Swann et al., 1985; Ormstad et 

al., 1986; Hunt and Cowling, 1991; Rouse, 1994; Webb et al., 1999; Rodge et al., 2000; Banasr 

et al., 2003; Henderson et al., 2005; Schmidt and Pollack, 2006). Because of this, future research 

should also account for mark locality and produce kerf marks on the ribs and sternum to better 

parallel the bones in which fatal SFT is more frequently present.  

Similarly, in this study bones were defleshed by CF and EH prior to kerf mark 

production. While this was done to ensure all kerf marks were readily visible and present for 

analysis, it is relatively unrealistic as flesh and musculature would be present in real world cases 

(Merritt, 2012; Lynn and Fairgrieve, 2009a; Lynn and Fairgrieve, 2009b). Thus, future studies 

should produce kerf marks on fleshed, porcine ribs/bones so that the resultant kerf marks best 

parallel those seen in actual SFT cases.  

Another realism concern related to this analysis pertains to having one individual create 

all the kerf marks. Common in KMAs, the individual producing kerfs is controlled for by either 

having one individual or a machine produce all the kerf marks as to regulate the angle, force, and 

impact applied for each kerf (Bartelink et al., 2001; Thompson and Inglis, 2009; Tegtmeyer, 

2012; Tennick, 2012; Cerutti et al., 2014; Norman et al., 2018; Sandras et al., 2018; Giraudo et 

al., 2019). However, like previous research, this study does not account for real-world variation 

in terms of who made the marks as differing statures and experience levels with knives may 

influence the kerf marks left behind on bone (Puentes and Cardoso, 2013). Hence, future 

experiments should not control for the agent responsible when producing kerf marks and instead 
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test whether differences in kerf marks are truly due to blade class or if they are the result of the 

individual variation between agents.  

Finally, while this study accounts for kerf marks on defleshed, unaltered bone, future 

research can also account for other real-world factors that may influence the morphology of a 

kerf mark. For instance, fabric can change the shape and depth of kerf marks as it directly 

interacts with the knife, altering the force and speed in which a knife will interact with the 

underlying flesh and bone (Kemp et al., 2009; Daroux et al., 2010; Ferllini, 2013; Feldman, 

2015; Miles et al., 2020). Furthermore, since many remains are burned to conceal a crime, some 

studies have examined whether the morphology of kerf marks is altered in response to burning 

(Kooi and Fairgrieve, 2013; Vegh and Rando, 2017; Vachirawongsakorn et al., 2022). Thus, 

future research could implement the same method used in this study but test real-world factors 

like the influence of fabric and burning on kerf mark morphology.  

5.3.2: Sample Size Issues 

 Unfortunately, the overall sample size in this study was reduced because some bones 

went missing between the time of mark creation by CF and EH in 2017 and data collection in 

2022. Moreover, when this project was originally devised by CF and EH the only focus was 

knife type, not blade class, meaning there were an even number of marks made by the 5 knife 

types in this analysis but not an even number for blade class. Because of this, there was an 

imbalance in the number of non-serrated, partially serrated, and serrated marks in the testing set. 

Therefore, future analyses should ensure there is an even number of marks made by each blade 

class.  

Additionally, this study only tested a total of four knifes all from the same Chicago 

Cutlery ™ kitchen set. This set was chosen because it generally accounts for the different knife 
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types one would see in an individual household. However, testing a wider variety of knives from 

various brands may reveal different trends in relation to blade class as knives from different 

sets/companies may exhibit a wider range of variation which could produce kerf marks with 

differing morphologies from those seen in this study. Thus, creating a larger sample size using 

more knives will test for more variability amongst blade classes, either strengthening or 

weakening the findings of this study and helping progress KMAs forward.  

5.3.3: Affordability and Cost-Effectiveness 

 One final limitation to this study’s forensic application is the technology used to conduct 

this research is expensive. A used SENSOFAR® S Neox non-contact 3D optical profilometer 

costs $150,000. Expensive technologies are frequently inaccessible to crime labs because they 

are often underfunded and understaffed (Giannelli, 2013). Even though the results of this study 

are beneficial to KMA as a whole, the implementation of this technology could be problematic 

due to the monetary expenses associated with this scanner.  

 While this technology is expensive, the process of using the scanner can be learned 

quickly as the protocol for scanning, processing, and measuring a mark are clearly delineated in 

this research and previous works (Muttart et al., 2017; Pante, 2017; Gümrükçü et al., 2018; 

Keevil, 2018; Mwakyoma, 2021). Moreover, this scanner works quicker than previous 

technologies with scans only taking minutes to process instead of hours (Keevil, 2018). 

Therefore, even though this scanner is expensive, the results it can produce and the time saved 

through the use of this technology far outweigh the monetary price.  
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CHAPTER SIX: CONCLUSION 
 
 
 

 The implementation of the Daubert standard was meant to help judges and juries 

determine whether certain forensic practices should be considered as evidence in court. While 

Daubert has led to the criticism of most forensic sciences besides DNA, this standard has not 

been consistently upheld in courtrooms across America, with inadmissible forensic evidence still 

finding its way into numerous court cases. Due to the discrepancies regarding Daubert’s 

application, it has now become the job of forensic analysts to be critical of their own fields and 

adjust accordingly so their analyses and methods are scientifically valid.  

 Like many other forensic practices, KMAs suffer from varying criticisms, particularly 

regarding differing error rates, minimal standardization of methods in the field, and a lack of 

general acceptance amongst analysts. Therefore, new approaches to KMA are mandatory to 

ensure the methods used are replicable and that they produce reliable, replicable results that are 

not only scientifically acceptable but also adhere to Daubert.  

 To resolve the issues currently impacting KMA, this research had two primary objectives. 

First, this thesis tested whether variations in 3D micromorphological measurements can be used 

to identify the knife type or blade class responsible for producing certain kerf marks. Through 

the use of 3D, volumetric measurements and QDA modeling it became known that knife type – 

chef, boning, steak, and bread – cannot be identified accurately with consistency. However, 

blade class – non-serrated, partially serrated and serrated – was consistently and accurately 

classified with an error rate of only 2.86%.  

 Second, this research asked which mircomorphometric variables are the most useful 

when making mark identifications. Although predictor screening stated certain measurements 
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like maximum length (3D), opening angle (profile), and roughness (profile) were not useful, 

omittance of any variables weakened the accuracy of QDA models for both knife type and blade 

class, revealing all measurements used in this study are necessary for making the most accurate 

kerf mark identifications possible. Predictor screening also stated the most valuable 

measurements were volume (3D), surface area (3D), and area (profile); these measurements were 

not previously being taken by other quantifiable KMAs. 

 When taking into account the results of this analysis, it becomes apparent the method 

used can considerably benefit the field of KMA. To begin, this study generated novel results 

unseen previously by other KMAs as this research effectively discriminated between non-

serrated, partially serrated, and fully serrated kerf marks whereas other KMAs only differentiate 

marks from serrated and non-serrated knifes. Furthermore, the scanner and method used in this 

analysis were capable of taking volumetric measurements that were previously unmeasurable, 

allowing for more accurate classifications to be made. Finally, since this analysis makes kerf 

mark identifications through machine learning and QDA modeling, any observer biases are 

removed from identifications resulting in more reliable mark classifications. Therefore, taking 

volumetric measurements allows for more accurate, unbiased blade class identifications to be 

made, demonstrating the value of optical profilometry and machine learning for KMA. 

 Additionally, the primary goal of this study was to not only develop and test a new 

method for KMA but also ensure the methodology meets the Daubert standard. While certain 

criteria – like widespread acceptance – can only come with time and further testing, this research 

lays a prominent foundation for a new, more admissible era of KMA. For instance, this research 

demonstrates the Pante et al. (2017) methodology can be tested and generate more promising 

results than previous KMAs. However, further testing is necessary to ensure this method holds 
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up when accounting for more real-world circumstances. Moreover, this method produces an error 

rate for blade class identifications of 2.86%. Although this error rate may fluctuate in future 

studies, the method standardization in this analysis makes future works measuring similar 

variables comparable to one another. Similarly, since this work clearly outlines the protocol used 

and dictates which quantifiable measurements generate the most optimal results, a new easily 

maintainable scientific standard can be created for future analyses. Therefore, this research is a 

step in the right direction for KMA as the method used produces a known error rate and 

constructs a new standard based on quantifiable data that can be easily maintained if this 

protocol becomes more commonplace. While future research must account for more realistic 

factors to test the validity of this study’s results, this research still demonstrates KMAs can 

develop further to better adhere to the Daubert standard and be considered as reliable, admissible 

forensic evidence.  

 

 

 

 

 

 

 

 

 

 

 
 



73 
 

REFERENCES 
 
 
 

Banasr, A., de la Grandmaison, G.L., and Durigon, M. (2003). Frequency of Bone/Cartilage  
Lesions in Stab and Incised Wounds Fatalities. Forensic Science International, 131, 131-
133. 

 
Bartelink, E.J., Wiersema, J.M., and Demaree, R. (2001). Quantitative Analysis of Sharp-Force  

Trauma: An Application of Scanning Electron Microscopy in Forensic Anthropology. 
Journal of Forensic Sciences, 46, 1288-1293. 

 

Bello, S.M. and Soligo, C. (2008). A New Method for the Quantitative Analysis of Cutmark  
Micromorphology. Journal of Archaeological Science, 35, 1542-1552. 
 

Bello, S. M., Parfitt, S. A., and Stringer, C. (2009). Quantitative Micromorphological Analyses  
of Cut Marks Produced by Ancient and Modern Handaxes. Journal of Archaeological 

Science, 36(9), 1869-1880. 
 
Bello, S.M. (2011). New Results from the Examination of Cut-Marks Using Three-Dimensional  

Imaging. Developments in Quaternary Science, 14, 249-262. 
 

Bernstein, D. E. (2000). Frye, Frye, Again: The Past, Present, and Future of the General  
Acceptance Test. Jurimetrics, 41, 385-407. 
 

Bernstein, D.E. (2009). The Unfinished Daubert Revolution. Engage, 10(1), 35-38.  
 
Billauer, B. P. (2016). Daubert Debunked: A History of Legal Retrogression and the Need to  

Reassess Scientific Admissibility. Suffolk Journal of Trial and Appellate 

Advocacy, 21(1), 1-57. 
 

Blumenschine, R.J. and Selvaggio, M.M. (1988). Percussion Marks on Bone Surfaces as a New  
Diagnostic of Hominid Behaviour. Nature, 333, 763-765. 
 

Blumenschine, R.J., Marean, C.W., and Capaldo, S.D. (1996). Blind Tests of Inter-Analyst  
Correspondence and Accuracy in the Identification of Cut Marks, Percussion Marks, and 
Carnivore Tooth Marks on Bone Surfaces. Journal of Archaeological Science, 23, 493-
507. 

 
Bohnert, M., Hüttemann, H., and Schmidt, U. (2006). Homicides by Sharp Force. In M. Tsokos  

(Ed.), Forensic Pathology Reviews (pp. 65-89). Humana Press. 
 
Bonney, H., and Goodman, A. (2021). Validity of the Use of Porcine Bone in Forensic Cut Mark  

Studies. Journal of Forensic Sciences, 66(1), 278-284. 
 

Bonte, W. (1975). Tool Marks in Bone and Cartilage. Journal of Forensic Sciences, 20, 315-325. 
 



74 
 

Boschin, F. and Crezzini, J. (2012). Morphometrical Analysis on Cut Marks Using a 3D Digital  
Microscope. International Journal of Osteoarchaeology, 22(5), 549-562. 

 
Box, G. E. (1949). A General Distribution Theory for a Class of Likelihood  

Criteria. Biometrika, 36(3/4), 317-346. 
 
Box, G.E.P. and Cox, D.R. (1964). An Analysis of Transformations. Journal of the Royal  

Statistical  Society. Series B (Methodological), 26(2), 211-252.  
 
Bunn, H.T. (1981). Archaeological Evidence for Meat-Eating by Plio-Pleistocene Hominids  

from Koobi Fora and Olduvai Gorge. Nature, 291, 574-577. 
 
Burd, D.Q. and Kirk, P.L. (1942). Tool Marks: Factors Involved in their Comparison and Use as  

Evidence. Journal of Criminal Law, Criminology, and Police Science, 32, 679-686. 
 
Büyüköztürk, Ş., and Çokluk-Bökeoğlu, Ö. (2008). Discriminant Function Analysis: Concept  

and Application. Eurasian Journal of Education Research, 33, 73-92. 
 
Cates, P., Dominguez, I., Pierce, E., and Kortan, M. P. (2015). FBI Testimony on Microscopic  

Hair Analysis Contained Errors in at Least 90 Percent of Cases in Ongoing Review. 
[Press release]. 

 

Cerutti, E., Magli, F., Porta, D., Gibelli, D., and Cattaneo, C. (2014). Metrical Assessment of  
Cutmarks on Bone: Is Size Important? Legal Medicine, 16, 208–213  

 

Crowder, C., Rainwater, C.W., and Fridie, J.S. (2013). Microscopic Analysis of Sharp Force  
Trauma in Bone and Cartilage: A Validation Study. Journal of Forensic Sciences, 58, 
1119-1126. 
 

Daubert v. Merrell Dow Pharmaceuticals Inc., 509 U.S. 579 (1993).  
 
Daroux, F.Y., Carr, D.J., Kieser, J., Niven, B.E., Taylor, M.C. (2010). Effect of Laundering on  

Blunt Force Impact Damage in Fabrics. Forensic Science International, 197, 21-29. 
 
Dillon, J. R. (2017). Expertise on Trial. Columbia Science Technology and Law Review, 19, 247- 

312. 
 

Efremov, I.A. (1940). Taphonomy: A New Branch of Paleontology. Pan American Geologist,  
74, 81-93.  

 
Eggen, J. M. (1993). Toxic Torts, Causation, and Scientific Evidence After Daubert. University  

of Pittsburg Law Review, 55, 889-953. 
 

Epstein, J. (2018). The National Commission on Forensic Science: Impactful or  
Ineffectual. Seton Hall Law Review, 48, 743-769. 

 



75 
 

Faigman, D. L., Porter, E., and Saks, M. J. (1993). Check your Crystal Ball at the Courthouse  
Door, Please: Exploring the Past, Understanding the Present, and Worrying About the  
Future of Scientific Evidence. Cardozo Law Review, 15, 1799-1834.  
 

Feldman, A.D. (2015). From Trauma to Trial: Proposing New Methods for Examining the  

Variability of Sharp Force Trauma on Bone [Doctoral dissertation, San Jose State  
University]. ProQuest Dissertations Publishing.  

 
Ferllini, R. (2012). Macroscopic and Microscopic Analysis of Knife Stab Wounds on Fleshed  

and Clothed Ribs. Journal of Forensic Sciences, 57, 683-690. 
 
Fisher, J.W. (1995). Bone Surface Modifications in Zooarchaeology. Journal of  

Archaeological Method and Theory, 2, 7-68.  
 

Frye v United States, 293 F. 1013 (1923).  
 
Garrett, B. L. and Neufeld, P. J. (2009). Invalid Forensic Science Testimony and Wrongful  

Convictions. Virginia Law Review, 95(1), 1-97. 
 
Garrett, B.L., Gardner, B.O., Murphy, E., and Grimes, P. (2021). Judges and Forensic Science  

Education: A National Survey. Forensic Science International, 321, 1-7. 
 
Giannelli, P. C. (1993). Daubert: Interpreting the Federal Rules of Evidence. Cardozo Law   

Review., 15, 1999-2026. 
 
Giannelli, P. C. (2006). Daubert Challenges to Fingerprints. Criminal Law Bulletin  

Boston, 42(5), 624-642.  
 

Giannelli, P. C. (2013). Regulating DNA Laboratories: The New Gold Standard. NYU Annual  

Survey of American Law., 69, 617-637. 
 
Giraudo, C., Montisci, M., Giorgetti, A., Martinuzzo, L., Bisceglia, M., Moschi, S., Fais, P.,  

Weber, M., Quaia, E., Viel, G., and Cecchetto, G. (2019). Intra-Class and Inter-Class 
Tool Discrimination Through Micro-CT Analysis of False Starts on Bone. International 

Journal of  Legal Medicine, 134, 1023-1032.  
 
Gottesman, M. H. (1998). From Barefoot to Daubert to Joiner: Triple Play or Double  

Error. Arizona Law Review, 40, 753-780. 
 
Grivas, C.R. and Komar, D.A. (2008). Kumho, Daubert, and the Nature of Scientific Inquiry:  

Implications for Forensic Anthropology. Journal of Forensic Science, 53(4), 771-776. 
 
Gümrükçü, M. and Pante, M. C. (2018). Assessing the Effects of Fluvial Abrasion on Bone  

Surface Modifications Using High-Resolution 3-D Scanning. Journal of Archaeological 

Science: Reports, 21, 208-221. 
 



76 
 

Gümrükçü, M., Pante, M., Glantz, M., and Lacy, M. (2018). Assessing the Effects of Fluvial  

Abrasion on Bone Surface Modifications Using High-Resolution 3-D Scanning  [Master’s 
thesis, Colorado State University]. ProQuest Dissertations Publishing.  

 
Hammer, Ø., Harper, D.A.T., Ryan, P.D. 2001. PAST: Paleontological Statistics Software  

Package for Education and Data Analysis. Palaeontologia Electronica, 4, 1-9. 
 
Hans, V.P. (2007). Judges, Juries, and Scientific Evidence. Journal of Law and Policy, 16(1), 3- 

27. 
 
Henderson, J.P., Morgan, S.E., Patel, F., and Tiplady, M.E. (2005). Patterns of Non-Firearm  

Homicide. Journal of Clinical Forensic Medicine, 12(3), 128-132.  
 

Hilbert, J. (2018). The Disappointing History of Science in the Courtroom: Frye, Daubert, and  
the Ongoing Crisis of Junk Science in Criminal Trials. Oklahoma Law Review, 71, 759-
804. 

Hunt, A.C. and Cowling, R.J. (1991). Murder by Stabbing. Forensic Science International, 52,  
107-112.  

 
Keevil, T. L. (2018). Inferring Early Stone Age Tool Technology and Raw Material from Cut  

Mark Micromorphology Using High-Resolution 3-D Scanning with Applications to 

Middle Bed II, Olduvai Gorge, Tanzania [Master’s thesis, Colorado State University]. 
ProQuest Dissertations Publishing.  

 

Kemp, S.E., Carr, D.J., Kieser, J., Niven, B.E., and Taylor, M.C. (2009). Forensic Evidence in  
Apparel Fabrics Due to Stab Events. Forensic Science International, 191, 86-96. 

 
Kirk, P. L. and Kirk, P. L. (1953). Crime Investigation: Physical Evidence and the Police  

Laboratory. Interscience Publishers, New York.  
 
Kooi, R. J., and Fairgrieve, S. I. (2013). SEM and Stereomicroscopic Analysis of Cut Marks in 
Fresh and Burned Bone. Journal of Forensic Sciences, 58(2), 452-458. 
 
Lander, E. S. and PCAST Working Group. (2016). Forensic Science in Criminal Courts:  

Ensuring Scientific Validity of Feature-Comparison Methods. Baker Institute for Public 
Policy, Rice University. 

 
Lander, E. S. (2018). Fixing rule 702: The PCAST Report and Steps to Ensure the Reliability of  

Forensic Feature-Comparison Methods in the Criminal Courts. Fordham Law Review, 86, 
1661-1679. 

 
Levins, R. and Lewontin, R.C. (1985). The Dialectical Biologist. Harvard University Press,  

Cambridge.  
 
 
 



77 
 

Lewis, J.E. (2008). Identifying Sword Marks on Bone: Criteria for Distinguishing Between Cut  
Marks Made by Different Classes of Bladed Weapons. Journal of Archaeological 

Sciences, 35, 2001-2008.  
 

Love, J.C., Derrick, S.M., Wiersems, J.M., and Peters, C. (2012). Validation of Tool Mark  
Analysis on Cut Costal Cartilage. Journal of Forensic Science, 57(2), 306-311.  
 

Love, J. C. (2019). Sharp Force Trauma Analysis in Bone and Cartilage: A Literature  
Review. Forensic Science International, 299, 119-127. 

 
Lupo, K.D. and O'Connell, J.F. (2002). Cut and Tooth Mark Distributions on Large Animal  

Bones: Ethnoarchaeological Data from the Hadza and Their Implications for Current 
Ideas About Early Human Carnivory. Journal of Archaeological Science, 29, 85-109. 

 
Lyman, R.L. and Lyman, C. (1994). Vertebrate Taphonomy. Cambridge University Press.  
 
Lynn, K.S. and Fairgreave, S.I. (2009a). Macroscopic Analysis of Axe and Hatchet Trauma in  

Fleshed and Defleshed Mammalian Long Bones. Journal of Forensic Science, 54(4),  
786-792.  

 
Lynn, K.S. and Fairgreave, S.I. (2009b). Microscopic Indicators of Axe and Hatchet Trauma in  

Fleshed and Defleshed Mammalian Long Bones. Journal of Forensic Science, 54(4),  
793-797.  

 

Maté-González, M.Á., Yravedra, J., González-Aguilera, D., Palomeque-González, J.F., and  
Domínguez-Rodrigo, M. (2015). Micro-Photogrammetric Characterization of Cut Marks 
on Bones. Journal of Archaeological Science, 62, 128-142. 

 
McLachlan, G. J. (2005). Discriminant Analysis and Statistical Pattern Recognition. John Wiley  

and Sons. 
 
Merritt, S. R. (2012). Factors Affecting Early Stone Age Cut Mark Cross-Sectional Size:  

Implications from Actualistic Butchery Trials. Journal of Archaeological Science, 39(9), 
2984-2994. 

 
Miles, K.L., Finaughty, D.A., and Gibbon, V.E. (2020). A Review of Experimental Design in  

Forensic Taphonomy: Moving Towards Forensic Realism. Forensic Sciences Research, 
5(3), 249-259.  

 
Mistek, E., Fikiet, M. A., Khandasammy, S. R., and Lednev, I. K. (2018). Toward Locard’s  

Exchange Principle: Recent Developments in Forensic Trace Evidence 
Analysis. Analytical Chemistry, 91(1), 637-654. 

 
Mnookin, J. L. (2008). Expert Evidence, Partisanship, and Epistemic Competence. Brooklyn Law  

Review, 73, 1009-1033. 
 



78 
 

Molinaro, A. M., Simon, R., and Pfeiffer, R. M. (2005). Prediction Error Estimation: A  
Comparison of Resampling Methods. Bioinformatics, 21(15), 3301-3307. 

 
Moreno, J.A. (2003). Einstein on the Bench? Exposing What Judges Do Not Know About  

Science and Using Child Abuse Cases to Improve How Courts Evaluate Scientific 
Evidence. Ohio State Law Journal, 64, 531-584. 

 
Moriarty, J. C. (2010). Will History Be Servitude: The NAS Report of Forensic Science and the  

Role of the Judiciary. Utah Law Review, 299-326. 
 
Muttart, M., Pante, M., Boone, R., and LaBelle, J. (2017). Taxonomic Distinctions in the 3D  

Micromorphology of Tooth Marks with Application to Feeding Traces from Middle Bed 

II, Olduvai Gorge, Tanzania. [Master’s thesis, Colorado State University]. ProQuest 
Dissertations Publishing. 
 

Mwakyoma, I. F. (2021). New Insights into Pleistocene Hominin Butchery and Tool Choice from  

a 0.9 Ma Fossil Assemblage from the Heb Site, Olduvai Gorge, Tanzania [Master’s  
thesis, Colorado State University]. ProQuest Dissertations Publishing.  

 
National Research Council. (2009). Strengthening Forensic Science in the United States: A Path  

Forward. National Academies Press. 
 
Norman, D.G., Baier, W., Watson, D.G., Burnett, B., Painter, M., and Williams, M.A. (2018).  

Micro-CT for  Saw Mark Analysis on Human Bone. Forensic Science International, 293, 
91-100.  
 

Ormstad, K., Karlsson, T., Enkler, L., Law, B., and Rajs, J. (1986). Patterns in Sharp-Force  
Fatalities: A Comprehensive Forensic Study. Journal of Forensic Science, 31(2):529-542.  

 
Pante, M. C., Muttart, M. V., Keevil, T. L., Blumenschine, R. J., Njau, J. K., and Merritt, S. R.  

(2017). A New High-Resolution 3-D Quantitative Method for Identifying Bone Surface  
Modifications with Implications for the Early Stone Age Archaeological Record. Journal 

of Human Evolution, 102, 1-11. 
 
Posin, D. Q. (1995). Silicone Breast Implant Litigation and My Father-in-Law: A Neo-Coasean  

Analysis. Tulane Law Review, 70, 2565-2582.   
 
Potts, R. and Shipman, P. (1981). Cutmarks Made by Stone Tools on Bones from Olduvai  

Gorge, Tanzania. Nature, 291(5816), 577-580. 
 
Puentes, K. and Cardoso, H.F.V. (2013). Reliability of Cut Mark Analysis in Human Costal  

Cartilage: The Effects of Blade Penetration Angle and Intra- and Inter-Individual 
Differences. Forensic Science International, 231, 244-248. 
 
 
 



79 
 

Rainwater, C. (2015).  Three Modes of Dismemberment: Disarticulation Around the Joints,  
Transection of Bone Via Chopping, and Transection of Bone Via Sawing, In N.V. 
Passalacqua, C.W. Rainwater (Eds.), Skeletal Trauma Analysis: Case Studies in Context 
(pp. 222-245)., John Wiley and Sons Ltd.  

 
Rao, V.J. and Hart, R. (1983). Tool Mark Determination in Cartilage of Stabbing Victim.  

Journal of Forensic Science, 28(3), 794-799.  
 
Risinger, D. M. (2000). Navigating expert reliability: Are Criminal Standards of Certainty Being  

Left on the Dock. Albany Law Review, 64, 99-149.  
 
Rodge, S., Hougen, H.P., and Poulsen, K. (2000). Homicide by Sharp Force in Two  

Scandinavian Capitals. Forensic Science International, 109, 135-145.  
 
Rouse, D.A. (1994). Patterns of Stab Wounds: A Six Year Study. Medicine, Science, and the  

Law, 34, 67-71. 
 
Saks, M. J. (2009). Judging admissibility. Journal of Corporation Law, 35, 135-155. 
 
Sandras, A., Guilbeau-Frugier, C., Savall, F., Telmon, N., and Capuani, C. (2018). Sharp Bone  

Trauma Diagnosis: A Validation Study Using Epifluorescence Microscopy. International  

Journal of Legal Medicine, 133(2), 521-528.  
 
Schmidt, U. and Pollak, S. (2006). Sharp Force Injuries in Clinical Forensic Medicine: Findings  

in Victims and Perpetrators. Forensic Science International, 159, 113-118.  
 
Seaman, J. A. (2012). A Tale of Two Dauberts. Georgia Law Review, 47, 889-922.  
 
Shipman, P. and Rose, J. (1983). Early Hominid Hunting, Butchering, and Carcass-Processing  

Behaviors: Approaches to the Fossil Record. Journal of Anthropological Archaeology, 
2(1), 57-98. 

 
Smith, A.C. (2014). The Effects of Sharp-Force Thoracic Trauma on the Rate and Pattern of  

Decomposition. Journal of Forensic Sciences, 49, 319-326. 
 
Srivastava, S., Gupta, M. R., and Frigyik, B. A. (2007). Bayesian Quadratic Discriminant  

Analysis. Journal of Machine Learning Research, 8(6), 1277-1305. 
 
Swann, I. J., MacMillan, R., and Watson, A. A. (1985). A Study of Stab Wounds. Emergency  

Medicine Journal, 2(1), 31-36. 
 
Symes, S. A., Williams, J. A., Murray, E. A., Hoffman, J. M., Holland, T. D., Saul, J. M., ... and  

Pope, E. J. (2002). Taphonomic Context of Sharp-Force Trauma in Suspected Cases of 
Human Mutilation and Dismemberment. In W.D. Haglund and M.H. Sorg 
(Eds.), Advances in Forensic Taphonomy: Method, Theory, and Archaeological 

Perspectives, (pp. 403-436). CRC Press. 



80 
 

Tegtmeyer, C. (2012). A Comparative Analysis of Serrated and Nonserrated Sharp Force  

Trauma to Bone [Unpublished master’s thesis]. Texas State University-San Marcos. 
 
Tennick, C. (2012). The Identification and Classification of Sharp Force Trauma on Bone Using  

Low Power Microscopy [Unpublished doctoral dissertation]. University of Central  
Lancashire.  

 
Thompson, T. J., and Inglis, J. (2009). Differentiation of Serrated and Non-serrated Blades from  

Stab Marks in Bone. International Journal of Legal Medicine, 123(2), 129-135. 
 
Ubelaker, D. H. (1997). Taphonomic Applications in Forensic Anthropology. In M.H. Sorg and  

W.D. Haglund (Eds.), Forensic Taphonomy: The Postmortem Fate of Human 

Remains, (pp. 1-14). CRC Press.  
 
United Nations Office of Drugs and Crime. (2019). Global Study on Homicide: Understanding  

Homicide. United Nations. 
 
United States Department of Justice. (2020). Uniform Crime Report: Crime in the United  

States, 2015. 
 
Vachirawongsakorn, V., Painter, J., and Márquez-Grant, N. (2022). Knife Cut Marks Inflicted by 
Different Blade Types and the Changes Induced by Heat: A Dimensional and Morphological 
Study. International Journal of Legal Medicine, 136(1), 329-342. 
 
Vegh, E.I. and Rando, C. (2017). Effects of Heat as a Taphonomic Agent on Kerf Dimensions.  

Archaeological and Environmental Forensic Science, 1(2), 105-118.  
 
Webb, E., Wyatt, J.P., Henry, J. and Busuttil, A. (1999). A Comparison of Fatal with Non-Fatal  

Knife Injuries in Edinburgh. Forensic Science International, 99(3), 179-187.  
  

 

 

 

 

 

 

 

 



81 
 

APPENDIX A: DISTRIBUTIONS FOR VARIABLES BEFORE BOX-COX 
TRANSFOMRATIONS 

 
 
 

Surface Area (3D) Distribution 

 
 
Surface Area (3D) Quantiles 
100.0% Maximum 7868592.000 
99.5%  7868592.000 
97.5%  6951244.800 
90.0%  5584280.600 
75.0% Quartile 4289931.500 
50.0% Median 3046905.000 
25.0% Quartile 1233808.750 
10.0%  830667.900 
2.5%  578820.000 
0.5%  140366.000 
0.0% Minimum  140366.000 

 
Surface Area (3D) Summary Statistics 
Mean 3035176.100 
Standard Deviation 1896026.600 
Standard Error Mean 160243.490 
Upper 95% Mean 3352006.000 
Lower 95% Mean 2718346.200 
N 140 
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Volume (3D) Distribution 

 
 
Volume (3D) Quantiles 
100.0% Maximum 2542507845.000 
99.5%  2542507845.000 
97.5%  2154601646.775 
90.0%  1424638725.200 
75.0% Quartile 944149578.500 
50.0% Median 432477515.500 
25.0% Quartile 77226160.500 
10.0%  36268608.300 
2.5%  22707163.700 
0.5%  1752288.000 
0.0% Minimum  1752288.000 

 
Volume (3D) Summary Statistics 
Mean 584801732.000 
Standard Deviation 601439735.000 
Standard Error Mean 50830935.000 
Upper 95% Mean 685303524.000 
Lower 95% Mean 484299939.000 
N 140 
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Maximum Depth (3D) Distribution  

 
 
Maximum Depth (3D) Quantiles 
100.0% Maximum 780.775 
99.5%  780.775 
97.5%  686.044 
90.0%  579.546 
75.0% Quartile 442.879 
50.0% Median 302.589 
25.0% Quartile 147.667 
10.0%  109.665 
2.5%  82.550 
0.5%  41.970 
0.0% Minimum  41.970 

 
Maximum Depth (3D) Summary Statistics 
Mean 310.789 
Standard Deviation 178.290 
Standard Error Mean 15.068 
Upper 95% Mean 340.682 
Lower 95% Mean 280.996 
N 140 
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Mean Depth (3D) Distribution 

 
 
Mean Depth (3D) Quantiles 
100.0% Maximum 391.315 
99.5%  391.315 
97.5%  336.733 
90.0%  272.841 
75.0% Quartile 210.855 
50.0% Median 129.830 
25.0% Quartile 61.854 
10.0%  41.505 
2.5%  28.531 
0.5%  12.484 
0.0% Minimum  12.484 

 
Mean Depth (3D) Summary Statistics 
Mean 143.908 
Standard Deviation 90.762 
Standard Error Mean 7.671 
Upper 95% Mean 159.074 
Lower 95% Mean 128.741 
N 140 
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Maximum Length (3D) Distribution  

 
 
Maximum Length (3D) Quantiles 
100.0% Maximum 23372.300 
99.5%  23372.300 
97.5%  20849.301 
90.0%  17849.270 
75.0% Quartile 15653.835 
50.0% Median 13312.000 
25.0% Quartile 11180.075 
10.0%  9745.687 
2.5%  8115.340 
0.5%  1311.500 
0.0% Minimum  1311.500 

 
Maximum Length (3D) Summary Statistics 
Mean 13645.322 
Standard Deviation 3361.469 
Standard Error Mean 284.096 
Upper 95% Mean 14207.030 
Lower 95% Mean 13083.614 
N 140 
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Maximum Width (3D) Distribution  

 
 
Maximum Width (3D) Quantiles 
100.0% Maximum 811.823 
99.5%  811.823 
97.5%  692.171 
90.0%  556.024 
75.0% Quartile 460.678 
50.0% Median 298.284 
25.0% Quartile 172.822 
10.0%  137.922 
2.5%  109.349 
0.5%  94.496 
0.0% Minimum  94.496 

 
Maximum Width (3D) Summary Statistics 
Mean 324.951 
Standard Deviation 167.042 
Standard Error Mean 14.118 
Upper 95% Mean 352.864 
Lower 95% Mean 297.038 
N 140 
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Area (Profile) Distribution 

 
 
Area (Profile) Quantiles 
100.0% Maximum 182484.000 
99.5%  182484.000 
97.5%  156255.500 
90.0%  126989.000 
75.0% Quartile 68372.000 
50.0% Median 33364.350 
25.0% Quartile 9714.735 
10.0%  5542.878 
2.5%  3618.808 
0.5%  1480.140 
0.0% Minimum  1480.140 

 
Area (Profile) Summary Statistics 
Mean 47007.185 
Standard Deviation 44609.234 
Standard Error Mean 3770.168 
Upper 95% Mean 54461.478 
Lower 95% Mean 39552.892 
N 140 
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Maximum Depth (Profile) Distribution  

 
 
Maximum Depth (Profile) Quantiles 
100.0% Maximum 621.850 
99.5%  621.850 
97.5%  575.897 
90.0%  473.335 
75.0% Quartile 339.861 
50.0% Median 232.025 
25.0% Quartile 121.197 
10.0%  87.012 
2.5%  64.269 
0.5%  32.879 
0.0% Minimum  23.879 

 
Maximum Depth (Profile) Summary Statistics 
Mean 247.106 
Standard Deviation 143.898 
Standard Error Mean 12.162 
Upper 95% Mean 271.152 
Lower 95% Mean 223.061 
N 140 
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Maximum Width (Profile) Distribution 

 
 
Maximum Width (Profile) Quantiles 
100.0% Maximum 576.840 
99.5%  576.840 
97.5%  535.164 
90.0%  482.724 
75.0% Quartile 384.330 
50.0% Median 251.160 
25.0% Quartile 146.280 
10.0%  110.400 
2.5%  89.769 
0.5%  69.000 
0.0% Minimum  69.000 

 
Maximum Width (Profile) Summary Statistics 
Mean 272.530 
Standard Deviation 137.326 
Standard Error Mean 11.606 
Upper 95% Mean 295.478 
Lower 95% Mean 249.583 
N 140 
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Roughness (Profile) Distribution  

 
 
Roughness (Profile) Quantiles 
100.0% Maximum 13.917 
99.5%  13.917 
97.5%  11.781 
90.0%  7.478 
75.0% Quartile 4.736 
50.0% Median 3.244 
25.0% Quartile 1.578 
10.0%  0.718 
2.5%  0.447 
0.5%  0.332 
0.0% Minimum  0.332 

 
Roughness (Profile) Summary Statistics 
Mean 3.614 
Standard Deviation 2.681 
Standard Error Mean 0.227 
Upper 95% Mean 4.062 
Lower 95% Mean 3.166 
N 140 
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Opening Angle (Profile) Distribution  

 
 
Opening Angle (Profile) Quantiles 
100.0% Maximum 107.372 
99.5%  107.372 
97.5%  83.193 
90.0%  72.698 
75.0% Quartile 59.872 
50.0% Median 51.454 
25.0% Quartile 46.020 
10.0%  42.056 
2.5%  38.721 
0.5%  32.504 
0.0% Minimum  32.504 

 
Opening Angle (Profile) Summary Statistics 
Mean 54.383 
Standard Deviation 11.887 
Standard Error Mean 1.001 
Upper 95% Mean 56.362 
Lower 95% Mean 52.404 
N 140 
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Floor Radius (Profile) Distribution 

 
 
Floor Radius (Profile) Quantiles 
100.0% Maximum 393.691 
99.5%  393.691 
97.5%  351.874 
90.0%  253.213 
75.0% Quartile 207.067 
50.0% Median 127.423 
25.0% Quartile 64.459 
10.0%  55.003 
2.5%  42.077 
0.5%  30.217 
0.0% Minimum  30.217 

 
Floor Radius (Profile) Summary Statistics 
Mean 141.954 
Standard Deviation 83.981 
Standard Error Mean 7.098 
Upper 95% Mean 155.987 
Lower 95% Mean 127.920 
N 140 
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APPENDIX B: DISTRIBUTIONS FOR VARIABLES AFTER BOX-COX 
TRANSFOMRATIONS 

 
 
 
 

Surface Area (3D) Distribution  

 
 
Surface Area (3D) Quantiles 
100.0% Maximum 1119.345 
99.5%  1119.345 
97.5%  1067.506 
90.0%  981.719 
75.0% Quartile 887.477 
50.0% Median 778.535 
25.0% Quartile 550.580 
10.0%  473.086 
2.5%  411.827 
0.5%  238.740 
0.0% Minimum  238.740 

 
Surface Area (3D) Summary Statistics 
Mean 736.431 
Standard Deviation 199.2127 
Standard Error Mean 16.837 
Upper 95% Mean 769.721 
Lower 95% Mean 703.141 
N 140 
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Volume (3D) Distribution  

 
 
Volume (3D) Quantiles 
100.0% Maximum 288.449 
99.5%  288.449 
97.5%  279.611 
90.0%  258.687 
75.0% Quartile 239.394 
50.0% Median 206.580 
25.0% Quartile 148.890 
10.0%  128.825 
2.5%  117.658 
0.5%  71.371 
0.0% Minimum  71.371 

 
Volume (3D) Summary Statistics 
Mean 195.824 
Standard Deviation 50.725 
Standard Error Mean 4.287 
Upper 95% Mean 204.300 
Lower 95% Mean 187.348 
N 140 
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Maximum Depth (3D) Distribution  

 
 
Maximum Depth (3D) Quantiles 
100.0% Maximum 18.093 
99.5%  18.093 
97.5%  17.361 
90.0%  16.444 
75.0% Quartile 15.062 
50.0% Median 13.265 
25.0% Quartile 10.332 
10.0%  9.269 
2.5%  8.327 
0.5%  6.353 
0.0% Minimum  6.353 

 
Maximum Depth (3D) Summary Statistics 
Mean 12.796 
Standard Deviation 2.717 
Standard Error Mean 0.230 
Upper 95% Mean 13.250 
Lower 95% Mean 12.342 
N 140 
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Mean Depth (3D) Distribution  

 
 
Mean Depth (3D) Quantiles 
100.0% Maximum 16.236 
99.5%  16.236 
97.5%  15.389 
90.0%  14.263 
75.0% Quartile 12.976 
50.0% Median 10.803 
25.0% Quartile 8.024 
10.0%  6.761 
2.5%  5.702 
0.5%  3.740 
0.0% Minimum  3.740 

 
Mean Depth (3D) Summary Statistics 
Mean 10.575 
Standard Deviation 2.872 
Standard Error Mean 0.243 
Upper 95% Mean 11.055 
Lower 95% Mean 10.095 
N 140 
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Maximum Length (3D) Distribution  

 
 
Maximum Length (3D) Quantiles 
100.0% Maximum 29124.695 
99.5%  29124.695 
97.5%  25908.735 
90.0%  22097.107 
75.0% Quartile 19317.464 
50.0% Median 16362.940 
25.0% Quartile 13684.184 
10.0%  11888.722 
2.5%  9855.858 
0.5%  1523.059 
0.0% Minimum  1523.059 

 
Maximum Length (3D) Summary Statistics 
Mean 16796.917 
Standard Deviation 4230.835 
Standard Error Mean 357.571 
Upper 95% Mean 17502.898 
Lower 95% Mean 16088.936 
N 140 
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Maximum Width (3D) Distribution  

 
 
Maximum Width (3D) Quantiles 
100.0% Maximum 11.720 
99.5%  11.720 
97.5%  11.279 
90.0%  10.690 
75.0% Quartile 10.199 
50.0% Median 9.119 
25.0% Quartile 7.861 
10.0%  7.371 
2.5%  6.884 
0.5%  6.587 
0.0% Minimum  6.587 

 
Maximum Width (3D) Summary Statistics 
Mean 9.042 
Standard Deviation 1.296 
Standard Error Mean 0.110 
Upper 95% Mean 9.259 
Lower 95% Mean 8.826 
N 140 
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Area (Profile) Distribution  

 
 
Area (Profile) Quantiles 
100.0% Maximum 27.883 
99.5%  27.883 
97.5%  27.203 
90.0%  26.315 
75.0% Quartile 23.794 
50.0% Median 21.102 
25.0% Quartile 16.993 
10.0%  15.319 
2.5%  14.120 
0.5%  11.809 
0.0% Minimum  11.809 

 
Area (Profile) Summary Statistics 
Mean 20.684 
Standard Deviation 3.945 
Standard Error Mean 0.333 
Upper 95% Mean 21.343 
Lower 95% Mean 20.025 
N 140 
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Maximum Depth (Profile) Distribution 

 
 
Maximum Depth (Profile) Quantiles 
100.0% Maximum 17.396 
99.5%  17.396 
97.5%  16.962 
90.0%  15.893 
75.0% Quartile 12.211 
50.0% Median 12.452 
25.0% Quartile 9.849 
10.0%  8.686 
2.5%  7.710 
0.5%  5.817 
0.0% Minimum  5.817 

 
Maximum Depth (Profile) Summary Statistics 
Mean 12.145 
Standard Deviation 2.700 
Standard Error Mean 0.228 
Upper 95% Mean 12.597 
Lower 95% Mean 11.694 
N 140 
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Maximum Width (Profile) Distribution  

 
 
Maximum Width (Profile) Quantiles 
100.0% Maximum 15.757 
99.5%  15.757 
97.5%  15.387 
90.0%  14.890 
75.0% Quartile 13.835 
50.0% Median 12.023 
25.0% Quartile 9.984 
10.0%  9.028 
2.5%  8.367 
0.5%  7.575 
0.0% Minimum  7.575 

 
Maximum Width (Profile) Summary Statistics 
Mean 11.939 
Standard Deviation 2.165 
Standard Error Mean 0.183 
Upper 95% Mean 12.301 
Lower 95% Mean 11.578 
N 140 
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Roughness (Profile) Distribution  

 
 
Roughness (Profile) Quantiles 
100.0% Maximum 3.816 
99.5%  3.816 
97.5%  3.487 
90.0%  2.662 
75.0% Quartile 1.923 
50.0% Median 1.382 
25.0% Quartile 0.485 
10.0%  -0.317 
2.5%  -0.726 
0.5%  -0.955 
0.0% Minimum  -0.995 

 
Roughness (Profile) Summary Statistics 
Mean 1.244 
Standard Deviation 1.063 
Standard Error Mean 0.090 
Upper 95% Mean 1.422 
Lower 95% Mean 1.067 
N 140 
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Opening Angle (Profile) Distribution  

 
 
Opening Angle (Profile) Quantiles 
100.0% Maximum 0.930 
99.5%  0.930 
97.5%  0.928 
90.0%  0.927 
75.0% Quartile 0.925 
50.0% Median 0.923 
25.0% Quartile 0.921 
10.0%  0.920 
2.5%  0.918 
0.5%  0.914 
0.0% Minimum  0.914 

 
Opening Angle (Profile) Summary Statistics 
Mean 0.923 
Standard Deviation 0.003 
Standard Error Mean 0.0002 
Upper 95% Mean 0.924 
Lower 95% Mean 0.923 
N 140 
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Floor Radius (Profile) Distribution  

 
 
Floor Radius (Profile) Quantiles 
100.0% Maximum 6.924 
99.5%  6.924 
97.5%  6.775 
90.0%  6.342 
75.0% Quartile 6.081 
50.0% Median 5.460 
25.0% Quartile 4.613 
10.0%  4.420 
2.5%  4.097 
0.5%  3.704 
0.0% Minimum  3.704 

 
Floor Radius (Profile) Summary Statistics 
Mean 5.379 
Standard Deviation 0.777 
Standard Error Mean 0.066 
Upper 95% Mean 5.509 
Lower 95% Mean 5.250 
N 140 
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APPENDIX C: BOX PLOTS AND DESCRIPTIVE STATISTICS FOR BOX-COX 
TRANSFORMED DATA IN RELATION TO KNIFE TYPE 

 
 
 

Box Plot for Surface Area (3D)  

 
 
Descriptive Statistics for Surface Area (3D)  

Knife Type Mark 

Count 

Mean Standard 

Deviation 

Standard 

Error Mean 

Lower 

95% 

Upper 

95% 

Chef 28 489.725 79.616 15.046 458.854 520.597 
Boning 28 549.954 43.410 8.204 533.121 566.786 

Steak Non-
Serrated 

28 828.533 100.726 19.035 789.476 867.590 

Steak 
Serrated 

28 854.194 78.739 14.880 823.662 884.726 

Bread 28 959.750 75.311 14.232 930.547 988.952 
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Box Plot for Volume (3D)  

 
 
Descriptive Statistics for Volume (3D)  

Knife Type Mark 

Count 

Mean Standard 

Deviation 

Standard 

Error Mean 

Lower 

95% 

Upper 

95% 

Chef 28 134.347 20.340 3.844 126.460 142.234 
Boning 28 147.815 13.267 2.507 142.671 152.960 

Steak Non-
Serrated 

28 218.639 21.203 4.007 210.417 226.861 

Steak 
Serrated 

28 219.253 19.705 3.724 211.613 226.894 

Bread 28 259.065 15.886 3.002 252.904 265.225 
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Box Plot for Maximum Depth (3D)  

 
 
Descriptive Statistics for Maximum Depth (3D)  

Knife Type Mark 

Count 

Mean Standard 

Deviation 

Standard 

Error Mean 

Lower 

95% 

Upper 

95% 

Chef 28 9.807 1.350 0.255 9.284 10.330 
Boning 28 10.117 0.884 0.167 9.774 10.460 

Steak Non-
Serrated 

28 13.931 1.008 0.190 13.540 14.322 

Steak 
Serrated 

28 13.740 1.157 0.219 13.291 14.188 

Bread 28 16.386 0.845 0.160 16.058 16.714 
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Box Plot for Mean Depth (3D) 

 
 
Descriptive Statistics for Mean Depth (3D)  

Knife Type Mark 

Count 

Mean Standard 

Deviation 

Standard 

Error Mean 

Lower 

95% 

Upper 

95% 

Chef 28 7.322 1.463 0.276 6.755 7.889 
Boning 28 7.958 1.095 0.207 7.533 8.382 

Steak Non-
Serrated 

28 11.806 1.289 0.244 11.307 12.306 

Steak 
Serrated 

28 11.509 1.313 0.248 11.000 12.018 

Bread 28 14.279 0.974 0.184 13.901 14.657 
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Box Plot for Maximum Length (3D) 

 
 
Descriptive Statistics for Maximum Length (3D)  

Knife 

Type 

Mark 

Count 

Mean Standard 

Deviation 

Standard 

Error Mean 

Lower 

95% 

Upper 

95% 

Chef 28 15144.617 5045.781 953.563 13188.067 17101.166 
Boning 28 13444.482 3806.361 719.335 11968.529 14920.435 

Steak Non-
Serrated 

28 19158.553 3496.205 660.721 17802.866 20514.239 

Steak 
Serrated 

28 19305.132 2440.082 461.132 18358.967 20251.297 

Bread 28 16926.802 2685.915 507.590 15885.313 17968.291 
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Box Plot for Maximum Width (3D)  

 
 
Descriptive Statistics for Maximum Width (3D)  

Knife Type Mark 

Count 

Mean Standard 

Deviation 

Standard 

Error Mean 

Lower 

95% 

Upper 

95% 

Chef 28 7.449 0.539 0.102 7.240 7.658 
Boning 28 7.914 0.347 0.066 7.779 8.048 

Steak Non-
Serrated 

28 9.624 0.785 0.128 9.320 9.928 

Steak 
Serrated 

28 9.638 0.565 0.107 9.418 9.857 

Bread 28 10.587 0.539 0.074 10.436 10.740 
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Box Plot for Area (Profile)  

 
 
Descriptive Statistics for Area (Profile)  

Knife Type Mark 

Count 

Mean Standard 

Deviation 

Standard 

Error Mean 

Lower 

95% 

Upper 

95% 

Chef 28 16.022 1.677 0.317 15.372 16.672 
Boning 28 17.083 1.375 0.260 16.550 17.616 

Steak Non-
Serrated 

28 22.218 1.333 0.252 21.702 22.735 

Steak 
Serrated 

28 22.064 1.562 0.295 21.458 22.670 

Bread 28 26.035 1.046 0.198 25.629 26.440 
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Box Plot for Maximum Depth (Profile) 

 
 
Descriptive Statistics for Maximum Depth (Profile) 

Knife Type Mark 

Count 

Mean Standard 

Deviation 

Standard 

Error Mean 

Lower 

95% 

Upper 

95% 

Chef 28 9.145 1.267 0.239 8.654 9.637 
Boning 28 9.598 1.112 0.210 9.167 10.030 

Steak Non-
Serrated 

28 13.199 0.891 0.168 12.853 13.544 

Steak 
Serrated 

28 13.013 1.196 0.226 12.549 13.477 

Bread 28 15.772 0.911 0172 15.418 16.125 
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Box Plot for Maximum Width (Profile) 

 
 
Descriptive Statistics for Maximum Width (Profile) 

Knife Type Mark 

Count 

Mean Standard 

Deviation 

Standard 

Error Mean 

Lower 

95% 

Upper 

95% 

Chef 28 9.311 0.923 0.174 8.953 9.669 
Boning 28 10.051 0.700 0.132 9.780 10.322 

Steak Non-
Serrated 

28 12.751 0.953 0,180 12.381 13.120 

Steak 
Serrated 

28 12.847 0.993 0.188 12.462 13.233 

Bread 28 14.737 0.609 0.115 14.501 14.973 
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Box Plot for Roughness (Profile)  

 
 
Descriptive Statistics for Roughness (Profile)  

Knife Type Mark 

Count 

Mean Standard 

Deviation 

Standard 

Error Mean 

Lower 

95% 

Upper 

95% 

Chef 28 0.180 0.768 0.145 -0.118 0.477 
Boning 28 0.483 0.843 0.159 0.156 0.810 

Steak Non-
Serrated 

28 1.850 0.722 0.136 1.570 2.129 

Steak 
Serrated 

28 1.661 0.645 0.122 1.411 1.911 

Bread 28 2.049 0.755 0.143 1.756 2.342 
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Box Plot for Opening Angle (Profile) 

 
 
Descriptive Statistics for Opening Angle (Profile)  

Knife Type Mark 

Count 

Mean Standard 

Deviation 

Standard 

Error Mean 

Lower 

95% 

Upper 

95% 

Chef 28 0.923 0.004 0.0007 0.922 0.925 
Boning 28 0.925 0.003 0.0005 0.924 0.926 

Steak Non-
Serrated 

28 0.922 0.002 0.0004 0.922 0.923 

Steak 
Serrated 

28 0.923 0.002 0.0005 0.922 0.924 

Bread 28 0.923 0.002 0.0004 0.921 0.923 
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Box Plot for Floor Radius (Profile) 

 
 
Descriptive Statistics for Floor Radius (Profile)  

Knife Type Mark 

Count 

Mean Standard 

Deviation 

Standard 

Error Mean 

Lower 

95% 

Upper 

95% 

Chef 28 4.447 0.291 0.055 4.334 4.559 
Boning 28 4.662 0.213 0.040 4.580 4.745 

Steak Non-
Serrated 

28 5.691 0.335 0.063 5.561 5.821 

Steak 
Serrated 

28 5.734 0.348 0.066 5.599 5.869 

Bread 28 6.363 0.273 0.052 6.257 6.469 
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APPENDIX D: DISCRIMINANT SCORES FOR KNIFE TYPE, ALL VARIABLES, 
TRAINING SET 

 
 
 

Row Actual SqDist(Actual) Prob(Actual) -Log(Prob) Predicted Prob(Pred) Others 

1 Boning 8.9266 1.0000 0.000 Boning 1.0000  
2 Boning 7.0284 0.9999 0.000 Boning 0.9999  
3 Boning 7.2369 1.0000 0.000 Boning 1.0000  
4 Boning 5.3448 0.9022 0.103 Boning 0.9022  
5 Boning 1.1774 0.9998 0.000 Boning 0.9998  
6 Boning 5.4124 0.9904 0.010 Boning 0.9904  
7 Boning 8.5633 1.0000 0.000 Boning 1.0000  
8 Boning 9.3566 0.9990 0.001 Boning 0.9990  
9 Boning 11.6503 0.6277 0.466 Boning 0.6277 Chef 0.37  
10 Boning 5.6479 0.9461 0.055 Boning 0.9461  
11 Boning 7.7139 0.9854 0.015 Boning 0.9854  
12 Boning 14.6250 0.4343 0.834 Chef 0.5657  
13 Boning 4.7000 0.9986 0.001 Boning 0.9986  
14 Boning 11.9963 1.0000 0.000 Boning 1.0000  
15 Boning 12.3960 0.9887 0.011 Boning 0.9887  
16 Boning 4.9385 0.9994 0.001 Boning 0.9994  
17 Boning 7.6860 1.0000 0.000 Boning 1.0000  
18 Boning 9.2952 0.9997 0.000 Boning 0.9997  
19 Boning 9.2301 0.3409 1.076 Chef 0.6591  
20 Boning 3.8595 0.9997 0.000 Boning 0.9997  
21 Boning 8.3773 0.9995 0.001 Boning 0.9995  
22 Bread 10.1328 1.0000 0.000 Bread 1.0000  
23 Bread 8.2137 0.9999 0.000 Bread 0.9999  
24 Bread 2.0355 1.0000 0.000 Bread 1.0000  
25 Bread 2.2365 0.9999 0.000 Bread 0.9999  
26 Bread 11.7309 1.0000 0.000 Bread 1.0000  
27 Bread 7.4963 1.0000 0.000 Bread 1.0000  
28 Bread 12.4666 1.0000 0.000 Bread 1.0000  
29 Bread 3.5634 1.0000 0.000 Bread 1.0000  
30 Bread 7.3196 0.9959 0.004 Bread 0.9959  
31 Bread 6.2937 1.0000 0.000 Bread 1.0000  
32 Bread 9.9113 1.0000 0.000 Bread 1.0000  
33 Bread 2.6691 1.0000 0.000 Bread 1.0000  
34 Bread 6.5273 0.9998 0.000 Bread 0.9998  
34 Bread 5.7711 1.0000 0.000 Bread 1.0000  
36 Bread 12.4008 1.0000 0.000 Bread 1.0000  
37 Bread 9.0030 0.9958 0.004 Bread 0.9958  
36 Bread 3.3450 1.0000 0.000 Bread 1.0000  
39 Bread 4.7814 0.9999 0.000 Bread 0.9999  
40 Bread 13.9950 1.0000 0.000 Bread 1.0000  
41 Bread 2.1124 0.9983 0.002 Bread 0.9983  
42 Bread 3.6502 0.9999 0.000 Bread 0.9999  
43 Chef 13.2688 1.0000 0.000 Chef 1.0000  
44 Chef 18.2038 1.0000 0.000 Chef 1.0000  
45 Chef 9.3284 1.0000 0.000 Chef 1.0000  
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Row Actual SqDist(Actual) Prob(Actual) -Log(Prob) Predicted Prob(Pred) Others 

46 Chef 10.6315 0.9999 0.000 Chef 0.9999  
47 Chef 7.3102 0.9049 0.100 Chef 0.9049  
48 Chef 11.0963 0.9994 0.001 Chef 0.9994  
49 Chef 12.6533 0.9213 0.082 Chef 0.9213  
50 Chef 13.3507 0.7805 0.248 Chef 0.7805 Boning 0.22  
51 Chef 9.2260 0.9815 0.019 Chef 0.9815  
52 Chef 19.6927 0.9508 0.050 Chef 0.9508  
53 Chef 13.3286 1.0000 0.000 Chef 1.0000  
54 Chef 10.0921 0.9977 0.002 Chef 0.9977  
55 Chef 10.6213 1.0000 0.000 Chef 1.0000  
56 Chef 7.6852 0.9267 0.076 Chef 0.9267  
57 Chef 17.6691 1.0000 0.000 Chef 1.0000  
58 Chef 18.0058 1.0000 0.000 Chef 1.0000  
59 Chef 10.3043 0.9995 0.001 Chef 0.9995  
60 Chef 16.9381 1.0000 0.000 Chef 1.0000  
61 Chef 9.0893 1.0000 0.000 Chef 1.0000  
62 Chef 7.3705 0.4947 0.704 Boning 0.5053  
63 Chef 8.8490 0.6985 0.359 Chef 0.6985 Boning 0.30  
64 Steak Full 

Blade 
6.9449 0.7812 0.247 Steak Full 

Blade 
0.7812 Steak Serrated 

Portion 0.22  
65 Steak Full 

Blade 
10.3585 0.9907 0.009 Steak Full 

Blade 
0.9907  

66 Steak Full 
Blade 

7.4995 0.9533 0.048 Steak Full 
Blade 

0.9533  

67 Steak Full 
Blade 

7.3116 0.9969 0.003 Steak Full 
Blade 

0.9969  

68 Steak Full 
Blade 

3.5824 0.9160 0.088 Steak Full 
Blade 

0.9160  

69 Steak Full 
Blade 

5.7336 0.9919 0.008 Steak Full 
Blade 

0.9919  

70 Steak Full 
Blade 

9.7265 0.6321 0.459 Steak Full 
Blade 

0.6321 Steak Serrated 
Portion 0.37  

71 Steak Full 
Blade 

11.1357 0.9966 0.003 Steak Full 
Blade 

0.9966  

72 Steak Full 
Blade 

5.3450 0.9370 0.065 Steak Full 
Blade 

0.9370  

73 Steak Full 
Blade 

8.5884 0.9918 0.008 Steak Full 
Blade 

0.9918  

74 Steak Full 
Blade 

3.3727 0.9492 0.052 Steak Full 
Blade 

0.9492  

75 Steak Full 
Blade 

4.2002 0.9592 0.042 Steak Full 
Blade 

0.9592  

76 Steak Full 
Blade 

14.1304 1.0000 0.000 Steak Full 
Blade 

1.0000  

77 Steak Full 
Blade 

7.7570 0.9978 0.002 Steak Full 
Blade 

0.9978  

78 Steak Full 
Blade 

12.2827 0.4140 0.882 Steak Serrated 
Portion 

0.5860  

79 Steak Full 
Blade 

11.1170 0.9996 0.000 Steak Full 
Blade 

0.9996  

80 Steak Full 
Blade 

6.3850 0.9473 0.054 Steak Full 
Blade 

0.9473  
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Row Actual SqDist(Actual) Prob(Actual) -Log(Prob) Predicted Prob(Pred) Others 

81 Steak Full 
Blade 

6.9025 0.8882 0.119 Steak Full 
Blade 

0.8882 Steak Serrated 
Portion 0.11  

82 Steak Full 
Blade 

3.5707 0.9248 0.078 Steak Full 
Blade 

0.9248  

83 Steak Full 
Blade 

8.9256 0.9983 0.002 Steak Full 
Blade 

0.9983  

84 Steak Full 
Blade 

7.2098 0.9964 0.004 Steak Full 
Blade 

0.9964  

85 Steak Serrated 
Portion 

11.6133 0.9733 0.027 Steak Serrated 
Portion 

0.9733  

86 Steak Serrated 
Portion 

17.2986 1.0000 0.000 Steak Serrated 
Portion 

1.0000  

87 Steak Serrated 
Portion 

6.4094 0.9985 0.001 Steak Serrated 
Portion 

0.9985  

88 Steak Serrated 
Portion 

9.2075 0.2810 1.269 Steak Full 
Blade 

0.7190  

89 Steak Serrated 
Portion 

7.5210 1.0000 0.000 Steak Serrated 
Portion 

1.0000  

90 Steak Serrated 
Portion 

14.3083 0.9996 0.000 Steak Serrated 
Portion 

0.9996  

91 Steak Serrated 
Portion 

6.7271 0.9997 0.000 Steak Serrated 
Portion 

0.9997  

92 Steak Serrated 
Portion 

14.9938 0.9202 0.083 Steak Serrated 
Portion 

0.9202  

93 Steak Serrated 
Portion 

16.8517 1.0000 0.000 Steak Serrated 
Portion 

1.0000  

94 Steak Serrated 
Portion 

9.2218 0.9350 0.067 Steak Serrated 
Portion 

0.9350  

95 Steak Serrated 
Portion 

11.1056 0.9905 0.010 Steak Serrated 
Portion 

0.9905  

96 Steak Serrated 
Portion 

8.1201 0.8564 0.155 Steak Serrated 
Portion 

0.8564 Steak Full Blade 
0.11  

97 Steak Serrated 
Portion 

9.3576 0.9999 0.000 Steak Serrated 
Portion 

0.9999  

98 Steak Serrated 
Portion 

12.7614 1.0000 0.000 Steak Serrated 
Portion 

1.0000  

99 Steak Serrated 
Portion 

12.0182 0.8546 0.157 Steak Serrated 
Portion 

0.8546 Steak Full Blade 
0.15  

100 Steak Serrated 
Portion 

7.6227 0.9992 0.001 Steak Serrated 
Portion 

0.9992  

101 Steak Serrated 
Portion 

6.9106 0.4972 0.699 Steak Full 
Blade 

0.5028  

102 Steak Serrated 
Portion 

13.9885 0.9981 0.002 Steak Serrated 
Portion 

0.9981  

103 Steak Serrated 
Portion 

11.6685 0.3433 1.069 Steak Full 
Blade 

0.6567  

104 Steak Serrated 
Portion 

5.2976 0.7519 0.285 Steak Serrated 
Portion 

0.7519 Steak Full Blade 
0.25  

105 Steak Serrated 
Portion 

7.7536 0.9882 0.012 Steak Serrated 
Portion 

0.9882  
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APPENDIX E: DISCRIMINANT SCORES FOR KNIFE TYPE, EXCLUDING VARIABLES, 
TRAINING SET 

 
 
 

Row Actual SqDist(Actual) Prob(Actual) -Log(Prob) Predicted Prob(Pred) Others 

1 Boning 10.98457 0.6459 0.437 Boning 0.6459 Chef 0.35  
2 Boning 8.81667 0.8882 0.119 Boning 0.8882  
3 Boning 4.76801 0.9089 0.095 Boning 0.9089  
4 Boning 6.18489 0.7693 0.262 Boning 0.7693 Chef 0.23  
5 Boning 2.74359 0.9294 0.073 Boning 0.9294  
6 Boning 3.53858 0.9411 0.061 Boning 0.9411  
7 Boning 9.02905 0.9998 0.000 Boning 0.9998  
8 Boning 10.21780 0.9574 0.044 Boning 0.9574  
9 Boning 8.91572 0.7805 0.248 Boning 0.7805 Chef 0.22  
10 Boning 7.41944 0.7880 0.238 Boning 0.7880 Chef 0.21  
11 Boning 2.58457 0.9752 0.025 Boning 0.9752  
12 Boning 13.88576 0.1620 1.820 Chef 0.8380  
13 Boning 5.98766 0.9927 0.007 Boning 0.9927  
14 Boning 10.44473 1.0000 0.000 Boning 1.0000  
15 Boning 10.65876 0.3394 1.081 Chef 0.6453  
16 Boning 4.95823 0.9327 0.070 Boning 0.9327  
17 Boning 10.04267 1.0000 0.000 Boning 1.0000  
18 Boning 8.24279 0.9984 0.002 Boning 0.9984  
19 Boning 6.96864 0.5070 0.679 Boning 0.5070 Chef 0.49  
20 Boning 5.28672 0.9793 0.021 Boning 0.9793  
21 Boning 5.97934 0.9926 0.007 Boning 0.9926  
22 Bread 5.90373 0.9926 0.007 Bread 0.9926  
23 Bread 7.31722 0.9997 0.000 Bread 0.9997  
24 Bread 4.53993 0.9996 0.000 Bread 0.9996  
25 Bread 3.47020 0.9989 0.001 Bread 0.9989  
26 Bread 6.57947 0.9922 0.008 Bread 0.9922  
27 Bread 3.56101 0.9990 0.001 Bread 0.9990  
28 Bread 13.99775 1.0000 0.000 Bread 1.0000  
29 Bread 4.96233 0.9999 0.000 Bread 0.9999  
30 Bread 6.61245 0.8066 0.215 Bread 0.8066 Steak Serrated 

Portion 0.12  
31 Bread 7.19071 0.9859 0.014 Bread 0.9859  
32 Bread 9.89878 0.9998 0.000 Bread 0.9998  
33 Bread 4.22976 0.9970 0.003 Bread 0.9970  
34 Bread 7.10851 0.9923 0.008 Bread 0.9923  
34 Bread 4.47805 0.9999 0.000 Bread 0.9999  
36 Bread 14.48427 0.9999 0.000 Bread 0.9999  
37 Bread 10.62192 0.8438 0.170 Bread 0.8438 Steak Serrated 

Portion 0.14  
36 Bread 4.56871 0.9977 0.002 Bread 0.9977  
39 Bread 4.63561 0.9936 0.006 Bread 0.9936  
40 Bread 13.41243 1.0000 0.000 Bread 1.0000  
41 Bread 2.34170 0.9812 0.019 Bread 0.9812  
42 Bread 5.79256 0.9663 0.034 Bread 0.9663  
43 Chef 9.59790 0.9479 0.053 Chef 0.9479  
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Row Actual SqDist(Actual) Prob(Actual) -Log(Prob) Predicted Prob(Pred) Others 

44 Chef 11.07173 0.9977 0.002 Chef 0.9977  
45 Chef 8.00451 0.8948 0.111 Chef 0.8948 Boning 0.11  
46 Chef 8.32083 0.9995 0.000 Chef 0.9995  
47 Chef 4.11660 0.8412 0.173 Chef 0.8412 Boning 0.16  
48 Chef 6.31960 0.2993 1.206 Boning 0.7007  
49 Chef 8.50158 0.9176 0.086 Chef 0.9176  
50 Chef 8.78884 0.5544 0.590 Chef 0.5544 Boning 0.45  
51 Chef 7.51335 0.9098 0.095 Chef 0.9098  
52 Chef 17.41265 0.8232 0.195 Chef 0.8232 Boning 0.18  
53 Chef 10.70110 0.9899 0.010 Chef 0.9899  
54 Chef 8.22256 0.9483 0.053 Chef 0.9483  
55 Chef 9.53544 1.0000 0.000 Chef 1.0000  
56 Chef 6.28815 0.9848 0.015 Chef 0.9848  
57 Chef 11.00582 0.1215 2.108 Boning 0.8774  
58 Chef 16.81083 0.9993 0.001 Chef 0.9993  
59 Chef 8.70475 0.9988 0.001 Chef 0.9988  
60 Chef 12.08240 1.0000 0.000 Chef 1.0000  
61 Chef 6.72537 0.9998 0.000 Chef 0.9998  
62 Chef 4.20544 0.6803 0.385 Chef 0.6803 Boning 0.32  
63 Chef 6.93460 0.8259 0.191 Chef 0.8259 Boning 0.17  
64 Steak Full 

Blade 
7.58366 0.8558 0.156 Steak Full 

Blade 
0.8558 Steak Serrated 

Portion 0.14  
65 Steak Full 

Blade 
3.32698 0.9186 0.085 Steak Full 

Blade 
0.9186  

66 Steak Full 
Blade 

8.85600 0.8672 0.142 Steak Full 
Blade 

0.8672 Steak Serrated 
Portion 0.13  

67 Steak Full 
Blade 

8.22886 0.8807 0.127 Steak Full 
Blade 

0.8807 Steak Serrated 
Portion 0.12  

68 Steak Full 
Blade 

4.93481 0.9288 0.074 Steak Full 
Blade 

0.9288  

69 Steak Full 
Blade 

8.76116 0.9437 0.058 Steak Full 
Blade 

0.9437  

70 Steak Full 
Blade 

8.92090 0.7497 0.288 Steak Full 
Blade 

0.7497 Steak Serrated 
Portion 0.25  

71 Steak Full 
Blade 

8.51129 0.9855 0.015 Steak Full 
Blade 

0.9855  

72 Steak Full 
Blade 

6.84181 0.8340 0.181 Steak Full 
Blade 

0.8340 Steak Serrated 
Portion 0.17  

73 Steak Full 
Blade 

10.35827 0.6930 0.367 Steak Full 
Blade 

0.6930 Chef 0.15 Steak 
Serrated Portion 
0.15  

74 Steak Full 
Blade 

6.45995 0.7919 0.233 Steak Full 
Blade 

0.7919 Steak Serrated 
Portion 0.20  

75 Steak Full 
Blade 

5.25455 0.9432 0.058 Steak Full 
Blade 

0.9432  

76 Steak Full 
Blade 

12.34600 0.8444 0.169 Steak Full 
Blade 

0.8444 Steak Serrated 
Portion 0.16  

77 Steak Full 
Blade 

8.69787 0.9574 0.043 Steak Full 
Blade 

0.9574  

78 Steak Full 
Blade 

12.55730 0.0774 2.559 Steak Serrated 
Portion 

0.9226  



122 
 

Row Actual SqDist(Actual) Prob(Actual) -Log(Prob) Predicted Prob(Pred) Others 

79 Steak Full 
Blade 

9.13400 0.2735 1.296 Steak Serrated 
Portion 

0.7265  

80 Steak Full 
Blade 

9.33883 0.6761 0.391 Steak Full 
Blade 

0.6761 Steak Serrated 
Portion 0.32  

81 Steak Full 
Blade 

7.75899 0.8877 0.119 Steak Full 
Blade 

0.8877 Steak Serrated 
Portion 0.11  

82 Steak Full 
Blade 

5.78919 0.7642 0.269 Steak Full 
Blade 

0.7642 Steak Serrated 
Portion 0.24  

83 Steak Full 
Blade 

9.50161 0.9932 0.007 Steak Full 
Blade 

0.9932  

84 Steak Full 
Blade 

7.15186 0.9283 0.074 Steak Full 
Blade 

0.9283  

85 Steak 
Serrated 
Portion 

13.92450 0.4577 0.782 Steak Full 
Blade 

0.5422  

86 Steak 
Serrated 
Portion 

15.74338 1.0000 0.000 Steak Serrated 
Portion 

1.0000  

87 Steak 
Serrated 
Portion 

8.79873 0.9320 0.070 Steak Serrated 
Portion 

0.9320  

88 Steak 
Serrated 
Portion 

8.60807 0.3883 0.946 Steak Full 
Blade 

0.6116  

89 Steak 
Serrated 
Portion 

8.54738 0.9998 0.000 Steak Serrated 
Portion 

0.9998  

90 Steak 
Serrated 
Portion 

10.71958 0.9766 0.024 Steak Serrated 
Portion 

0.9766  

91 Steak 
Serrated 
Portion 

8.05805 0.9961 0.004 Steak Serrated 
Portion 

0.9961  

92 Steak 
Serrated 
Portion 

8.01449 0.9431 0.059 Steak Serrated 
Portion 

0.9431  

93 Steak 
Serrated 
Portion 

18.71483 1.0000 0.000 Steak Serrated 
Portion 

1.0000  

94 Steak 
Serrated 
Portion 

11.40948 0.6636 0.410 Steak Serrated 
Portion 

0.6636 Steak Full Blade 
0.34  

95 Steak 
Serrated 
Portion 

11.82646 0.9894 0.011 Steak Serrated 
Portion 

0.9894  

96 Steak 
Serrated 
Portion 

8.40473 0.2462 1.401 Steak Full 
Blade 

0.7482  

97 Steak 
Serrated 
Portion 

9.82298 0.9376 0.064 Steak Serrated 
Portion 

0.9376  

98 Steak 
Serrated 
Portion 

9.15377 0.8588 0.152 Steak Serrated 
Portion 

0.8588 Steak Full Blade 
0.14  
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Row Actual SqDist(Actual) Prob(Actual) -Log(Prob) Predicted Prob(Pred) Others 

99 Steak 
Serrated 
Portion 

9.93758 0.8971 0.109 Steak Serrated 
Portion 

0.8971 Steak Full Blade 
0.10  

100 Steak 
Serrated 
Portion 

7.60963 0.9077 0.097 Steak Serrated 
Portion 

0.9077  

101 Steak 
Serrated 
Portion 

7.26440 0.5495 0.599 Steak Serrated 
Portion 

0.5495 Steak Full Blade 
0.45  

102 Steak 
Serrated 
Portion 

13.83081 0.5850 0.536 Steak Serrated 
Portion 

0.5850 Steak Full Blade 
0.41  

103 Steak 
Serrated 
Portion 

12.39936 0.3894 0.943 Steak Full 
Blade 

0.6106  

104 Steak 
Serrated 
Portion 

6.27312 0.8288 0.188 Steak Serrated 
Portion 

0.8288 Steak Full Blade 
0.17  

105 Steak 
Serrated 
Portion 

9.08717 0.9365 0.066 Steak Serrated 
Portion 

0.9365  
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APPENDIX F: DISCRIMINANT SCORES FOR BLADE CLASS, ALL VARIABLES, 
TRAINING SET 

 
 
 

Row Actual SqDist(Actual) Prob(Actual) -Log(Prob) Predicted Prob(Pred) Others 

1 Non-Serrated 15.77949 0.9998 0.000 Non-Serrated 0.9998  
2 Non-Serrated 13.41875 1.0000 0.000 Non-Serrated 1.0000  
3 Non-Serrated 16.10493 0.9998 0.000 Non-Serrated 0.9998  
4 Non-Serrated 12.09846 1.0000 0.000 Non-Serrated 1.0000  
5 Non-Serrated 9.18348 1.0000 0.000 Non-Serrated 1.0000  
6 Non-Serrated 10.41672 1.0000 0.000 Non-Serrated 1.0000  
7 Non-Serrated 18.58992 1.0000 0.000 Non-Serrated 1.0000  
8 Non-Serrated 15.24524 0.9987 0.001 Non-Serrated 0.9987  
9 Non-Serrated 12.02374 1.0000 0.000 Non-Serrated 1.0000  
10 Non-Serrated 12.44037 1.0000 0.000 Non-Serrated 1.0000  
11 Non-Serrated 12.68580 1.0000 0.000 Non-Serrated 1.0000  
12 Non-Serrated 15.44276 1.0000 0.000 Non-Serrated 1.0000  
13 Non-Serrated 14.01361 1.0000 0.000 Non-Serrated 1.0000  
14 Non-Serrated 22.70989 1.0000 0.000 Non-Serrated 1.0000  
15 Non-Serrated 18.26971 1.0000 0.000 Non-Serrated 1.0000  
16 Non-Serrated 13.51955 1.0000 0.000 Non-Serrated 1.0000  
17 Non-Serrated 19.22649 1.0000 0.000 Non-Serrated 1.0000  
18 Non-Serrated 17.85254 1.0000 0.000 Non-Serrated 1.0000  
19 Non-Serrated 11.16749 1.0000 0.000 Non-Serrated 1.0000  
20 Non-Serrated 12.77544 1.0000 0.000 Non-Serrated 1.0000  
21 Non-Serrated 15.21177 0.9958 0.004 Non-Serrated 0.9958  
22 Serrated 13.35167 0.9994 0.001 Serrated 0.9994  
23 Serrated 11.43253 1.0000 0.000 Serrated 1.0000  
24 Serrated 5.25434 1.0000 0.000 Serrated 1.0000  
25 Serrated 5.45536 0.9999 0.000 Serrated 0.9999  
26 Serrated 14.94980 0.9999 0.000 Serrated 0.9999  
27 Serrated 10.71517 0.9999 0.000 Serrated 0.9999  
28 Serrated 15.68551 1.0000 0.000 Serrated 1.0000  
29 Serrated 6.78227 1.0000 0.000 Serrated 1.0000  
30 Serrated 10.53851 0.9985 0.002 Serrated 0.9985  
31 Serrated 9.51253 1.0000 0.000 Serrated 1.0000  
32 Serrated 13.13017 1.0000 0.000 Serrated 1.0000  
33 Serrated 5.88798 1.0000 0.000 Serrated 1.0000  
34 Serrated 9.74619 0.9999 0.000 Serrated 0.9999  
34 Serrated 8.98993 1.0000 0.000 Serrated 1.0000  
36 Serrated 15.61970 1.0000 0.000 Serrated 1.0000  
37 Serrated 12.22190 0.9917 0.008 Serrated 0.9917  
36 Serrated 6.56388 0.9999 0.000 Serrated 0.9999  
39 Serrated 8.00031 1.0000 0.000 Serrated 1.0000  
40 Serrated 17.21384 1.0000 0.000 Serrated 1.0000  
41 Serrated 5.33123 0.9988 0.001 Serrated 0.9988  
42 Serrated 6.86903 0.9993 0.001 Serrated 0.9993  
43 Non-Serrated 14.26007 1.0000 0.000 Non-Serrated 1.0000  
44 Non-Serrated 27.85463 1.0000 0.000 Non-Serrated 1.0000  
45 Non-Serrated 15.82389 1.0000 0.000 Non-Serrated 1.0000  
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Row Actual SqDist(Actual) Prob(Actual) -Log(Prob) Predicted Prob(Pred) Others 

46 Non-Serrated 14.14516 1.0000 0.000 Non-Serrated 1.0000  
47 Non-Serrated 9.08067 1.0000 0.000 Non-Serrated 1.0000  
48 Non-Serrated 14.63121 1.0000 0.000 Non-Serrated 1.0000  
49 Non-Serrated 13.44560 1.0000 0.000 Non-Serrated 1.0000  
50 Non-Serrated 11.54352 1.0000 0.000 Non-Serrated 1.0000  
51 Non-Serrated 9.42413 1.0000 0.000 Non-Serrated 1.0000  
52 Non-Serrated 22.54424 1.0000 0.000 Non-Serrated 1.0000  
53 Non-Serrated 21.11403 1.0000 0.000 Non-Serrated 1.0000  
54 Non-Serrated 14.34740 1.0000 0.000 Non-Serrated 1.0000  
55 Non-Serrated 15.81159 1.0000 0.000 Non-Serrated 1.0000  
56 Non-Serrated 12.26409 1.0000 0.000 Non-Serrated 1.0000  
57 Non-Serrated 24.34888 1.0000 0.000 Non-Serrated 1.0000  
58 Non-Serrated 30.86403 1.0000 0.000 Non-Serrated 1.0000  
59 Non-Serrated 12.15307 1.0000 0.000 Non-Serrated 1.0000  
60 Non-Serrated 26.56606 1.0000 0.000 Non-Serrated 1.0000  
61 Non-Serrated 13.21595 1.0000 0.000 Non-Serrated 1.0000  
62 Non-Serrated 9.51973 1.0000 0.000 Non-Serrated 1.0000  
63 Non-Serrated 9.06648 1.0000 0.000 Non-Serrated 1.0000  
64 Partially Serrated 9.14309 1.0000 0.000 Partially Serrated 1.0000  
65 Partially Serrated 13.43069 0.9999 0.000 Partially Serrated 0.9999  
66 Partially Serrated 12.17133 0.9997 0.000 Partially Serrated 0.9997  
67 Partially Serrated 12.44208 1.0000 0.000 Partially Serrated 1.0000  
68 Partially Serrated 8.38480 0.9996 0.000 Partially Serrated 0.9996  
69 Partially Serrated 12.63352 0.9999 0.000 Partially Serrated 0.9999  
70 Partially Serrated 12.50420 1.0000 0.000 Partially Serrated 1.0000  
71 Partially Serrated 16.37895 1.0000 0.000 Partially Serrated 1.0000  
72 Partially Serrated 9.49742 1.0000 0.000 Partially Serrated 1.0000  
73 Partially Serrated 15.31445 0.9913 0.009 Partially Serrated 0.9913  
74 Partially Serrated 8.21956 1.0000 0.000 Partially Serrated 1.0000  
75 Partially Serrated 9.34737 1.0000 0.000 Partially Serrated 1.0000  
76 Partially Serrated 21.10231 1.0000 0.000 Partially Serrated 1.0000  
77 Partially Serrated 13.55115 1.0000 0.000 Partially Serrated 1.0000  
78 Partially Serrated 11.31642 1.0000 0.000 Partially Serrated 1.0000  
79 Partially Serrated 17.17557 1.0000 0.000 Partially Serrated 1.0000  
80 Partially Serrated 9.86178 1.0000 0.000 Partially Serrated 1.0000  
81 Partially Serrated 10.81342 1.0000 0.000 Partially Serrated 1.0000  
82 Partially Serrated 7.92169 1.0000 0.000 Partially Serrated 1.0000  
83 Partially Serrated 15.91700 1.0000 0.000 Partially Serrated 1.0000  
84 Partially Serrated 13.69210 1.0000 0.000 Partially Serrated 1.0000  
85 Partially Serrated 12.76613 0.9999 0.000 Partially Serrated 0.9999  
86 Partially Serrated 26.00296 1.0000 0.000 Partially Serrated 1.0000  
87 Partially Serrated 8.64651 1.0000 0.000 Partially Serrated 1.0000  
88 Partially Serrated 8.74033 1.0000 0.000 Partially Serrated 1.0000  
89 Partially Serrated 12.28476 1.0000 0.000 Partially Serrated 1.0000  
90 Partially Serrated 18.32399 1.0000 0.000 Partially Serrated 1.0000  
91 Partially Serrated 10.69483 1.0000 0.000 Partially Serrated 1.0000  
92 Partially Serrated 16.09342 1.0000 0.000 Partially Serrated 1.0000  
93 Partially Serrated 27.97061 1.0000 0.000 Partially Serrated 1.0000  
94 Partially Serrated 9.91299 1.0000 0.000 Partially Serrated 1.0000  
95 Partially Serrated 13.49425 1.0000 0.000 Partially Serrated 1.0000  
96 Partially Serrated 9.69838 0.9838 0.016 Partially Serrated 0.9838  
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Row Actual SqDist(Actual) Prob(Actual) -Log(Prob) Predicted Prob(Pred) Others 

97 Partially Serrated 15.48457 0.9997 0.000 Partially Serrated 0.9997  
98 Partially Serrated 19.72314 0.9998 0.000 Partially Serrated 0.9998  
99 Partially Serrated 11.84468 1.0000 0.000 Partially Serrated 1.0000  
100 Partially Serrated 11.82658 1.0000 0.000 Partially Serrated 1.0000  
101 Partially Serrated 8.55149 1.0000 0.000 Partially Serrated 1.0000  
102 Partially Serrated 16.87144 1.0000 0.000 Partially Serrated 1.0000  
103 Partially Serrated 13.79888 1.0000 0.000 Partially Serrated 1.0000  
104 Partially Serrated 7.63339 1.0000 0.000 Partially Serrated 1.0000  
105 Partially Serrated 9.81638 1.0000 0.000 Partially Serrated 1.0000  
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APPENDIX G: DISCRIMINANT SCORES FOR BLADE CLASS, EXCLUDING 
VARIABLES, TRAINING SET 

 
 
 

Row Actual SqDist(Actual) Prob(Actual) -Log(Prob) Predicted Prob(Pred) Others 

1 Non-Serrated 9.65777 0.9999 0.000 Non-Serrated 0.9999  
2 Non-Serrated 10.03378 0.9115 0.093 Non-Serrated 0.9115  
3 Non-Serrated 7.40800 1.0000 0.000 Non-Serrated 1.0000  
4 Non-Serrated 8.33074 0.9984 0.002 Non-Serrated 0.9984  
5 Non-Serrated 5.56625 0.9998 0.000 Non-Serrated 0.9998  
6 Non-Serrated 6.70626 1.0000 0.000 Non-Serrated 1.0000  
7 Non-Serrated 14.89968 1.0000 0.000 Non-Serrated 1.0000  
8 Non-Serrated 12.11526 0.9379 0.064 Non-Serrated 0.9379  
9 Non-Serrated 8.35869 1.0000 0.000 Non-Serrated 1.0000  
10 Non-Serrated 9.46642 1.0000 0.000 Non-Serrated 1.0000  
11 Non-Serrated 5.95629 0.9910 0.009 Non-Serrated 0.9910  
12 Non-Serrated 11.43651 1.0000 0.000 Non-Serrated 1.0000  
13 Non-Serrated 8.97809 1.0000 0.000 Non-Serrated 1.0000  
14 Non-Serrated 17.10886 1.0000 0.000 Non-Serrated 1.0000  
15 Non-Serrated 10.36433 0.9897 0.010 Non-Serrated 0.9897  
16 Non-Serrated 6.85507 0.9994 0.001 Non-Serrated 0.9994  
17 Non-Serrated 15.50469 1.0000 0.000 Non-Serrated 1.0000  
18 Non-Serrated 12.66517 1.0000 0.000 Non-Serrated 1.0000  
19 Non-Serrated 7.76045 0.9999 0.000 Non-Serrated 0.9999  
20 Non-Serrated 8.38759 1.0000 0.000 Non-Serrated 1.0000  
21 Non-Serrated 9.00044 0.9998 0.000 Non-Serrated 0.9998  
22 Serrated 5.90373 0.9934 0.007 Serrated 0.9934  
23 Serrated 7.31722 1.0000 0.000 Serrated 1.0000  
24 Serrated 4.53993 0.9989 0.001 Serrated 0.9989  
25 Serrated 3.47020 0.9988 0.001 Serrated 0.9988  
26 Serrated 6.57947 0.9898 0.010 Serrated 0.9898  
27 Serrated 3.56101 0.9983 0.002 Serrated 0.9983  
28 Serrated 13.99775 1.0000 0.000 Serrated 1.0000  
29 Serrated 4.96233 1.0000 0.000 Serrated 1.0000  
30 Serrated 6.61245 0.8608 0.150 Serrated 0.8608 Partially 

Serrated 0.14  
31 Serrated 7.19071 0.9845 0.016 Serrated 0.9845  
32 Serrated 9.89878 0.9999 0.000 Serrated 0.9999  
33 Serrated 4.22976 0.9993 0.001 Serrated 0.9993  
34 Serrated 7.10851 0.9993 0.001 Serrated 0.9993  
34 Serrated 4.47805 1.0000 0.000 Serrated 1.0000  
36 Serrated 14.48427 1.0000 0.000 Serrated 1.0000  
37 Serrated 10.62192 0.8805 0.127 Serrated 0.8805 Partially 

Serrated 0.12  
36 Serrated 4.56871 0.9984 0.002 Serrated 0.9984  
39 Serrated 4.63561 0.9941 0.006 Serrated 0.9941  
40 Serrated 13.41243 1.0000 0.000 Serrated 1.0000  
41 Serrated 2.34170 0.9928 0.007 Serrated 0.9928  
42 Serrated 5.79256 0.9777 0.023 Serrated 0.9777  
43 Non-Serrated 9.02367 1.0000 0.000 Non-Serrated 1.0000  
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Row Actual SqDist(Actual) Prob(Actual) -Log(Prob) Predicted Prob(Pred) Others 

44 Non-Serrated 14.19928 1.0000 0.000 Non-Serrated 1.0000  
45 Non-Serrated 8.60361 1.0000 0.000 Non-Serrated 1.0000  
46 Non-Serrated 9.84693 1.0000 0.000 Non-Serrated 1.0000  
47 Non-Serrated 5.14500 1.0000 0.000 Non-Serrated 1.0000  
48 Non-Serrated 5.97740 1.0000 0.000 Non-Serrated 1.0000  
49 Non-Serrated 8.25318 1.0000 0.000 Non-Serrated 1.0000  
50 Non-Serrated 8.16834 0.9999 0.000 Non-Serrated 0.9999  
51 Non-Serrated 6.56659 1.0000 0.000 Non-Serrated 1.0000  
52 Non-Serrated 17.00448 1.0000 0.000 Non-Serrated 1.0000  
53 Non-Serrated 13.26725 0.9848 0.015 Non-Serrated 0.9848  
54 Non-Serrated 10.17534 1.0000 0.000 Non-Serrated 1.0000  
55 Non-Serrated 10.90017 1.0000 0.000 Non-Serrated 1.0000  
56 Non-Serrated 8.45861 1.0000 0.000 Non-Serrated 1.0000  
57 Non-Serrated 8.91892 0.9930 0.007 Non-Serrated 0.9930  
58 Non-Serrated 20.62586 0.9999 0.000 Non-Serrated 0.9999  
59 Non-Serrated 9.02941 1.0000 0.000 Non-Serrated 1.0000  
60 Non-Serrated 19.36862 1.0000 0.000 Non-Serrated 1.0000  
61 Non-Serrated 7.94769 1.0000 0.000 Non-Serrated 1.0000  
62 Non-Serrated 5.06499 1.0000 0.000 Non-Serrated 1.0000  
63 Non-Serrated 6.08915 1.0000 0.000 Non-Serrated 1.0000  
64 Partially 

Serrated 
8.92537 0.9890 0.011 Partially 

Serrated 
0.9890  

65 Partially 
Serrated 

6.00775 0.9999 0.000 Partially 
Serrated 

0.9999  

66 Partially 
Serrated 

10.10157 0.9909 0.009 Partially 
Serrated 

0.9909  

67 Partially 
Serrated 

9.76054 1.0000 0.000 Partially 
Serrated 

1.0000  

68 Partially 
Serrated 

7.72159 0.9904 0.010 Partially 
Serrated 

0.9904  

69 Partially 
Serrated 

12.00760 0.8473 0.166 Partially 
Serrated 

0.8473 Serrated 0.15  

70 Partially 
Serrated 

9.31688 1.0000 0.000 Partially 
Serrated 

1.0000  

71 Partially 
Serrated 

12.19871 1.0000 0.000 Partially 
Serrated 

1.0000  

72 Partially 
Serrated 

8.29643 0.9990 0.001 Partially 
Serrated 

0.9990  

73 Partially 
Serrated 

11.06412 0.8471 0.166 Partially 
Serrated 

0.8471 Non-Serrated 
0.15  

74 Partially 
Serrated 

8.10403 0.9907 0.009 Partially 
Serrated 

0.9907  

75 Partially 
Serrated 

7.95574 1.0000 0.000 Partially 
Serrated 

1.0000  

76 Partially 
Serrated 

13.73202 1.0000 0.000 Partially 
Serrated 

1.0000  

77 Partially 
Serrated 

11.53094 1.0000 0.000 Partially 
Serrated 

1.0000  

78 Partially 
Serrated 

8.89221 1.0000 0.000 Partially 
Serrated 

1.0000  

79 Partially 
Serrated 

6.91980 1.0000 0.000 Partially 
Serrated 

1.0000  
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Row Actual SqDist(Actual) Prob(Actual) -Log(Prob) Predicted Prob(Pred) Others 

80 Partially 
Serrated 

9.18494 1.0000 0.000 Partially 
Serrated 

1.0000  

81 Partially 
Serrated 

10.32936 0.9891 0.011 Partially 
Serrated 

0.9891  

82 Partially 
Serrated 

7.01726 1.0000 0.000 Partially 
Serrated 

1.0000  

83 Partially 
Serrated 

13.37294 0.9977 0.002 Partially 
Serrated 

0.9977  

84 Partially 
Serrated 

9.86482 0.9925 0.007 Partially 
Serrated 

0.9925  

85 Partially 
Serrated 

11.88449 0.9999 0.000 Partially 
Serrated 

0.9999  

86 Partially 
Serrated 

20.44297 1.0000 0.000 Partially 
Serrated 

1.0000  

87 Partially 
Serrated 

8.69613 1.0000 0.000 Partially 
Serrated 

1.0000  

88 Partially 
Serrated 

7.98570 0.9996 0.000 Partially 
Serrated 

0.9996  

89 Partially 
Serrated 

11.20945 1.0000 0.000 Partially 
Serrated 

1.0000  

90 Partially 
Serrated 

11.83592 1.0000 0.000 Partially 
Serrated 

1.0000  

91 Partially 
Serrated 

9.97340 1.0000 0.000 Partially 
Serrated 

1.0000  

92 Partially 
Serrated 

7.93276 1.0000 0.000 Partially 
Serrated 

1.0000  

93 Partially 
Serrated 

25.64336 1.0000 0.000 Partially 
Serrated 

1.0000  

94 Partially 
Serrated 

9.88840 1.0000 0.000 Partially 
Serrated 

1.0000  

95 Partially 
Serrated 

12.50898 1.0000 0.000 Partially 
Serrated 

1.0000  

96 Partially 
Serrated 

7.30307 0.9871 0.013 Partially 
Serrated 

0.9871  

97 Partially 
Serrated 

11.56245 0.8872 0.120 Partially 
Serrated 

0.8872 Serrated 0.11  

98 Partially 
Serrated 

9.76854 1.0000 0.000 Partially 
Serrated 

1.0000  

99 Partially 
Serrated 

10.66680 1.0000 0.000 Partially 
Serrated 

1.0000  

100 Partially 
Serrated 

7.60346 1.0000 0.000 Partially 
Serrated 

1.0000  

101 Partially 
Serrated 

6.76415 1.0000 0.000 Partially 
Serrated 

1.0000  

102 Partially 
Serrated 

13.68171 1.0000 0.000 Partially 
Serrated 

1.0000  

103 Partially 
Serrated 

11.79969 1.0000 0.000 Partially 
Serrated 

1.0000  

104 Partially 
Serrated 

6.82925 1.0000 0.000 Partially 
Serrated 

1.0000  

105 Partially 
Serrated 

9.27884 0.9999 0.000 Partially 
Serrated 

0.9999  

 


