THESIS

EVALUATING THE EFFECTIVENESS OF VARYING DOSES OF SUPPLEMENTAL TRYPTOPHAN AS A CALMATIVE IN HORSES

Submitted by

Brittany P. Davis

Department of Animal Sciences

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Spring 2016

Master's Committee:

Advisor: Temple Grandin

Terry E. Engle Jason I. Ransom Donald C. Rojas Copyright by Brittany Davis 2016

All Rights Reserved

ABSTRACT

EVALUATING THE EFFECTIVENESS OF VARYING DOSES OF SUPPLEMENTAL TRYPTOPHAN AS A CALMATIVE IN HORSES

Tryptophan (Trp), the amino acid precursor to serotonin, is a common ingredient in many commercial equine calming supplements. However, there is little scientific research to support the efficacy of tryptophan at modifying horse behavior. The objective of this study was to examine how various doses of tryptophan supplementation impacted reactive behavior and physiological stress measurements in the horse. Eleven horses (9 geldings, 2 mares) were given four treatments—0 mg Trp/kg bodyweight (CON), 20 mg Trp/kg bodyweight (LOW), 40 mg Trp/kg bodyweight (MED), and 60 mg Trp/kg bodyweight (HIGH)—in a randomized crossover design. Each treatment lasted three days. On Days 1 and 3 of each treatment, horses underwent a behavior test to measure startle response. Heart rate measurements and the speed at which the horses fled from startling stimuli were recorded. In addition, serum glucose, lactate, and cortisol levels were analyzed both immediately before the startle test and again 15 minutes after the test. Significant sedative effects were seen at LOW Day 1 on heart rate increase during the startle test (P = 0.05) and on change in serum lactate levels (P = 0.03). At MED Day 1, sedative effects were seen on change in serum cortisol levels (P = 0.01). Some excitatory effects were seen at MED Day 3 on the time for heart rate to return to baseline after the startle test (P = 0.03). No significant effects were seen at HIGH Day 1 or Day 3. A subset of blood samples was analyzed for serum free Trp and the ratio of Trp to other large neutral amino acids, which verified treatment effect.

ACKNOWLEDGEMENTS

There are so many people I would like to thank for their help and guidance in completing this project. I learned so much from my advisor, Dr. Temple Grandin. Working with her has been the opportunity of a lifetime. I am so grateful for the help and support of my committee members as well. Dr. Terry Engle, for advising me when I didn't know what to do, for always being willing to meet with me to answer my never-ending stream of questions, and for reassuring me that everything was going ok. Dr. Jason Ransom, for his insights, suggestions, and guidance; his commitment and willingness to help didn't waiver, even when he relocated to Washington. Dr. Don Rojas, for providing new insight on the project.

I appreciate Dr. Tanja Hess' advice and assistance with balancing the horses' diets. I would also like to thank Dr. Karen Sellins for her patience and help with ordering supplies for the project, finding volunteers, and in teaching me the laboratory procedures necessary to analyze the blood samples. I am sincerely grateful to Dr. Ann Hess, who took the time to meet with me on several occasions, and who patiently helped me work through the statistical analysis. I also appreciate Dr. Jerry Black's assistance in finding horses for me to use for the project and Wayne Miller's help with setting everything up at the Equine Teaching and Research Center and making sure we had access to what we needed throughout the project.

I am especially grateful to all the undergraduate and graduate student volunteers for all of their help in the lab and in taking care of the horses over the course of the 40-day experiment. Despite the below freezing temperatures, 5 AM start times, and incessant need for clean stalls, volunteers continued to show up. This project would not have been completed without their help. Last, but certainly not least, I would like to express my heartfelt thanks to my friends and family. To my mom, who was never more than a phone call away and who flew across the country in the middle of winter to help me when the project was first getting started. To my sister, for always being able to make me laugh when I needed it and whose voice reminded me what sanity was. And to Alex Harvey, who despite everything she's done, still managed to support me in more ways than she knows. This project and this degree have been harder in more ways than I imagined but I am so grateful to have met and to have had the support of so many genuine and incredible people throughout the process. I will never forget the things I learned here.

TABLE OF CONTENTS

ABSTRACT	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	v
LIST OF TABLES	vii
LIST OF FIGURES	
CHAPTER I: LITERATURE REVIEW	1
INTRODUCTION	1
TRYPTOPHAN	1
THE BLOOD-BRAIN BARRIER	2
SEROTONIN	4
Location	4
Metabolism	6
FACTORS IMPACTING RATE OF SEROTONIN SYNTHESIS	9
Age	
Breed	9
Sex	10
Social status	11
Level of arousal	11
Other Individual Characteristics	12
Diet	13
Exercise	14
TRYPTOPHAN SUPPLEMENTATION IN HORSES	15
CHAPTER II: EVALUATING THE EFFECTIVENESS OF VARYING DOSES OF	
SUPPLEMENTAL TRYPTOPHAN AS A CALMATIVE IN HORSES	29
INTRODUCTION	
MATERIALS AND METHODS	
Horses and Care	
Study Design	
Behavior Testing	
Blood Sample Collection and Analysis	
Statistical Analysis	
RESULTS	
LOW	
MED	
HIGH	
Amino Acids	
DISCUSSION	
	50
LITERATURE CITED	39

APPENDIX 1	
SAS CODE	
Analyze Treatment Effects on Behavioral and Physiological Response Variables	•
	67
APPENDIX 2	73
SAS CODE	73
Analyze Treatment Effects on Behavioral and Physiological Response Variables	
	73
APPENDIX 3	
SAS CODE	79
Analyze Serum Amino Acids of Group 1 Horses	
APPENDIX 4	
SAS SUMMARY OUTPUT	
Day 1 and Day 3 Results	
APPENDIX 5	
SAS SUMMARY OUTPUT	
Group 1 Amino Acid Data	

LIST OF TABLES

TABLE 1.1. Review of research supplementing tryptophan to various species17
TABLE 1.2. Summary of paste supplements containing tryptophan available to horse owners in
the United States
TABLE 2.1: Description of horses by group 44
TABLE 2.2. Variance between horses
TABLE 2.3. Guaranteed analysis of feedstuffs on as-fed basis
TABLE 2.4. Daily procedures
TABLE 2.5. Serum values in horses 54
TABLE 2.6. Model covariates-correlation to response variables and influence in models55
TABLE 2.7. Effect of tryptophan treatment on physiological and behavioral response variables:
least squares means ±standard error56
TABLE 2.8. Differences of least squares means for serum free tryptophan (µmol/L) Group 1
horses
TABLE 2.9. Differences of least squares means for Trp:LNAA Group 1 horses

LIST OF FIGURES

FIGURE 1.1. The biosynthesis of chorismate	23
FIGURE 1.2. Pathways for the synthesis of tryptophan	24
FIGURE 1.3. Pathways of tryptophan degradation	25
FIGURE 1.4. The subarachnoid space	26
FIGURE 1.5. Brain capillary-glial cell junction	26
FIGURE 1.6. The choroid plexus	27
FIGURE 1.7. Projections of serotonergic neurons	27
FIGURE 1.8. Steps in serotonin biosynthesis	28
FIGURE 1.9. Exercise and diet composition impact the rate of serotonin biosynthesis	28
FIGURE 2.1. Behavior test setup	58
FIGURE 2.2. Differences of least squares means for serum free tryptophan (µmol/L) Gro	oup 1
horses	59
FIGURE 2.3. Differences of least squares means for Trp:LNAA Group 1 horses	59

CHAPTER I: LITERATURE REVIEW

INTRODUCTION

This review will begin by covering some of the biochemical properties and pathways of tryptophan. We will discuss the physiology of the blood-brain barrier and how tryptophan is transported into the central nervous system. From here, we will delve into serotonin biosynthesis and metabolism in the brain. We'll cover some of the physiology and effects this neurotransmitter has on the body, particularly on mood. Finally, we'll review the research on supplemental tryptophan in humans and animals, focusing primarily on the horse. The purpose of this literature review is to provide a general understanding of the biochemistry, neurophysiology, and research that creates the platform which the experiment described in Chapter II is based upon.

TRYPTOPHAN

L-Tryptophan (Trp; L- α -aminoindole-3-propionic acid) is the least abundant amino acid found in tissues and food, occurring in approximately 1.4% of protein (Fernstrom and Wurtman, 1974; Voet and Voet, 1995). Tryptophan was first isolated from casein in 1902 (Yao et al., 2011). It is a nonpolar compound with an indole group and is the largest essential amino acid, with a molar mass of 204.225 g/mol. The carboxyl group on tryptophan has a pK_a value of 2.46 and the amine group has a pK_a of 9.41. (Voet and Voet, 1995) Only plants and microorganisms have the enzymes necessary to synthesize tryptophan, making it one of the essential amino acids for monogastric animals and young ruminants, before weaning (Yao et al., 2011).

The reactions in tryptophan synthesis are shown in Figures 1.1 and 1.2. Aromatic amino acid synthesis begins with the same steps: phosphoenolpyruvate (a glycolytic pathway intermediate) and erythrose-4-phosphate (a pentose phosphate pathway intermediate) combine and undergo seven enzyme-catalyzed reactions. The resulting compound, chorismate, can be utilized

to form tryptophan, tyrosine, or phenylalanine. In the biosynthesis of tryptophan, four more enzyme-catalyzed reactions take place to yield indole-3-glycerol phosphate. The last two steps require tryptophan synthase. The alpha unit of this enzyme first cleaves the compound into indole and glyceraldehyde-3-phosphate. The indole is then channeled through a tunnel in the enzyme to the beta subunit, where it is joined with serine to form tryptophan. The channeling step of tryptophan synthase is unique and important because it prevents the nonpolar indole intermediate from escaping the cell via diffusion and from being degraded (Voet and Voet, 1995).

Understanding the pathways of tryptophan degradation (shown in Figure 1.3) and their products is important in identifying how tryptophan is being metabolized and what it is being used for in the body. There are a few notable products of tryptophan degradation. Kynurenine is one such intermediate in tryptophan degradation. It is further degraded in several steps to yield alanine, which may go on to yield pyruvate. One of these steps is catalyzed by kynureninase, an enzyme dependent upon pyridoxal 5'-phosphate (PLP), the active form of vitamin B6. This is notable because, while many reactions involving amino acids are PLP-dependent, the cofactor usually cleaves different bonds than the ones broken in this reaction. PLP is also necessary in tryptophan biosynthesis and it will be an important cofactor in reactions to be discussed later. Quinolinate, which is an NAD⁺ and NADP⁺ precursor in the liver and kidneys, is another tryptophan metabolite. An alternative degradation pathway concludes with reactions identical to those seen in the breakdown of lysine; acetoacetate is the final metabolite (Voet and Voet, 1995).

THE BLOOD-BRAIN BARRIER

While water, carbon dioxide, oxygen, and lipid-soluble compounds pass through plasma membranes and equate between the blood and brain easily, the blood-brain barrier is almost impermeable to larger compounds like plasma proteins. However, there are some areas of the brain—parts of the hypothalamus, pineal gland, and medulla—where compounds diffuse more easily (Guyton and Hall, 2000). Sites of the blood-brain barrier include the arachnoid membrane, the blood vessels in the subarachnoid space, and the choroid plexus. The arachnoid villus is shown in Figure 1.4. When pressure of the cerebrospinal fluid exceeds that of the sinus blood, the arachnoid villi will open, allowing the bulk movement of metabolic and waste molecules from the CSF into venous sinus blood (Rapoport, 1976). Unlike other capillaries in the body, those found in the brain are connected by tight junctions and, as shown in Figure 1.5, glial cells cover about 85% of the vessel surface (Rapoport, 1976). This serves as a second site of the blood-brain barrier. The choroid plexus is the third site of the blood-brain barrier and is shown in Figure 1.6. The choroid plexus secretes cerebrospinal fluid and is located in the lateral, third, and fourth ventricles (Rapoport, 1976).

Tryptophan, like some other amino acids, binds non-covalently to serum albumin (Yao et al., 2011). Actually, most (80-90%) of circulating tryptophan is bound to albumin (Bosch et al., 2007). Several studies provide evidence that increasing free tryptophan relates to a greater ability of the amino acid to pass the blood brain barrier (Bosch et al., 2007; Davis et al., 2000; Farris et al., 1998; Fernstrom and Wurtman, 1972b; Grimmett and Sillence, 2005). Free tryptophan competes with other large neutral amino acids (LNAA)—including tyrosine, phenylalanine, leucine, isoleucine, and valine—for the same transporter to cross the blood-brain barrier (Fernstrom, 2013). This facilitated transporter is called the L-system. It has little dependence upon pH and no sodium dependence. LNAA, including tryptophan, are transported down their concentration gradients via the L-system (Rapoport, 1976). The concentrations of the amino acids found in plasma are normally much lower than the K_m values and saturation capacity of the transport system (Rapoport, 1976). The facilitated diffusion of tryptophan into the brain is a linear

function of concentration up to many times plasma levels (Rapoport, 1976). Once inside the brain, tryptophan can be used to synthesize serotonin, a biogenic amine with many functions, some of which will be discussed in the following sections.

"An excessive plasma concentration of one of a competing set of amino acids reduces brain uptake of others of the set, thereby modifying synthesis of protein, myelin, and neurotransmitters, and altering cellular respiration and replication" (Rapoport, 1976). A lot of what is known about competition between amino acids for entry into the brain is known because of aminoacidurias, diseases in which an individual lacks critical enzymes necessary in amino acid metabolism. Phenylketonuria, for example, occurs in people with a deficiency of phenylalanine hydroxylase, an enzyme necessary to convert phenylalanine to tyrosine. As a result, phenylalanine and its metabolic byproducts build up in the blood and have neurotoxic effects. All babies born in the United States are now tested for phenylketonuria at birth; if treated with a diet low in phenylalanine and high in the essential amino acids that compete with phenylalanine, detrimental effects such as mental retardation can be prevented. Understanding the etiology of this disease provided researchers with an understanding of the competitive inhibition between amino acids with similar structural and chemical properties for transport across the blood-brain barrier. High blood phenylalanine impairs serotonin synthesis by interfering with tryptophan transport into the brain. Serum serotonin is decreased in phenylketonuric patients and brain serotonin is decreased in phenylalanine-loaded animals. (Rapoport, 1976)

SEROTONIN

Location

Serotonin is an indoleamine found throughout the body and functions in several different systems. Most (80-95%) of serotonin in the body is located within the gastrointestinal tract,

specifically in enterochromaffin cells and in enteric neurons (Kim and Camilleri, 2000). Here, serotonin plays a crucial role in gut secretion, motility, and sensation (Yao et al., 2011). Serotonin is also an important constituent of platelets and contributes to blood coagulation (Kim and Camilleri, 2000). Although serotonin is a hormonally active substance in the blood, it does not have a direct effect on the brain because of the blood-brain barrier (Voet and Voet, 1995). Instead, precursors are transported across the barrier and serotonin is synthesized in the central nervous system, where it influences cognition, sleep, mood, and appetite. Serotonin is also a factor in some neurological conditions including depression, anxiety disorders, schizophrenia, and eating disorders (Yao et al., 2011). Scientists credit the multiple roles of serotonin as a hormone and a neurotransmitter to evolutionary opportunism rather than to related physiological significance (Voet and Voet, 1995).

The cell bodies of serotonergic neurons are located in the dorsal raphe nucleus of the midbrain. However, these neurons have projections extending to many regions of the brain and have different influences on mood and cognition, shown in Figure 1.7.

There are at least thirteen different G protein-coupled receptors that mediate serotonin activity as a neurotransmitter (Hannon and Hoyer, 2008). Some receptors are specific to certain areas of the brain and on the serotonergic neurons themselves. Based on structure, transduction properties, and mode of operation, these receptors are divided into seven types (5-HT₁ through 5-HT₇) (Hannon and Hoyer, 2008). Corr (2006) describes these receptors in more detail: the two main presynaptic receptors are 5-HT_{1A}, which slows neuronal firing, and 5-HT_{1D}, which detects 5-HT in the synapse. When 5-HT_{1D} is occupied, release of 5-HT is inhibited. Postsynaptic receptors include $5-HT_{1A}$, $5-HT_{2A}$, $5-HT_{2C}$, $5-HT_3$, and $4-HT_4$ (Corr, 2006). Serotonergic neurons also contain norepinephrine receptors that modulate 5-HT release (Corr, 2006). In addition,

serotonergic neurons in the dorsal raphe nucleus can be inhibited by GABAergic interneurons from the prefrontal cortex (Robbins, 2005). These examples demonstrate the interconnectedness of neural pathways. Although a lot of research in psychology and pharmacology is devoted to further understanding the complex functions and mechanisms of modification of serotonin receptors, drug effects are oftentimes non-specific and influence more than one transmitter system (Mench and Shea-Moore, 1995). Hannon and Hoyer provide a more detailed review of 5-HT receptors (2008). *Metabolism*

Once tryptophan crosses the blood-brain barrier, brain serotonin biosynthesis occurs in a two-step process, shown in Figure 1.8. First, tryptophan is hydroxylated into 5-hydroxytryptophan (5-HTP) by tryptophan hydroxylase. This is the rate-limiting step. Oxygen and tetrahydrobiopterin also form dihydrobiopterin in this first step. Next, 5-HTP decarboxylase, a PLP-dependent enzyme, cleaves the carboxyl group from 5-HTP to produce 5-hydroxytryptamine (5-HT), also known as serotonin (Voet and Voet, 1995). Serotonin biosynthesis rates are about 20 times higher in neuron cell bodies than in terminals (Boadle-Biber, 1993).

In the central nervous system, serotonin is inactivated primarily by reuptake by serotonergic neurons. Highly selective sodium- and chloride-dependent membrane transporters recycle the neurotransmitter back to terminal buttons (Corr, 2006). A lot of research has been dedicated to understanding the serotonin transporter gene (5-HTT), which is involved in serotonin transmission, early brain development, adult neurogenesis, and plasticity (Corr, 2006). Serotonin can also be destroyed by monoamine oxidase and aldehyde dehydrogenase, yielding 5-hydroxyindole acetic acid (5-HIAA) (Kim and Camilleri, 2000). Melatonin is another potential metabolite of serotonin. Melatonin is a hormone primarily produced in the pineal gland but some biosynthesis also occurs in the retina and gastrointestinal tract (Esteban et al., 2004). Melatonin

synthesis increases in the evening and is critical in the maintenance of the circadian clock (Piccione et al., 2005).

Because the hydroxylation of tryptophan is the rate-limiting step in serotonin biosynthesis, an increase in brain tryptophan can potentially double serotonin synthesis (Bosch et al., 2007). Esteban and others (2004) showed that, under normal conditions, the rate-limiting enzyme tryptophan hydroxylase is far from being saturated by its substrate. The availability of cofactors such as magnesium, vitamin B_3 , and vitamin B_6 may also play a role in the hydroxylation of tryptophan (Alberghina et al., 2010b).

Two-thirds of the tryptophan available for serotonin biosynthesis comes from intracellular degradation. Diet serves as the secondary source but only 1-2% of dietary tryptophan is converted to serotonin (Yao et al., 2011). While these proportions may seem low, the rate of serotonin synthesis has displayed more sensitivity to its dietary precursor than any other any other neurotransmitter (Fernstrom, 2013). Further evidence suggests that the amount of tryptophan available to the brain may influence serotonin biosynthesis. Studies have shown an increase in the main metabolite of serotonin, 5-hydroxyindoleacetic acid (5-HIAA), as a result of large doses of tryptophan (Fernstrom and Wurtman, 1974). Increasing dietary tryptophan stimulates an increase in brain serotonin synthesis in several species (Adeola and Ball, 1992; Laycock and Ball, 1990; Leathwood, 1987; Shea et al., 1990). Conversely, tryptophan depletion can be achieved by providing a tryptophan-free diet. Because tryptophan depletion creates a significant reduction in brain serotonin synthesis and release, it is a valuable tool used to study the brain serotonergic system and pharmacology effecting that system (Bell et al., 2001; Kantak et al., 1980).

In human medicine, drugs that increase serotonergic activity are used to treat a range of psychological and neurological conditions. These compounds act on various serotonin receptors

to stimulate more neurotransmitter release and/or to inhibit reuptake of the neurotransmitter from the synaptic cleft. Other drugs inhibit monoamine oxidase activity, reducing the rate of serotonin degeneration. Additional treatments directly or indirectly effect dopamine, norepinephrine, and GABA pathways.

The serotonin syndrome is a consequence of excess serotonergic agonism in the central nervous system and has been seen across species, including humans, monkeys, rabbits, mice, and rats (Boyer and Shannon, 2005; Gillman, 1999). Serotonin syndrome has been associated with the use of MAOIs, tricyclic antidepressants, SSRIs, opiate analgesics, anti-migraine drugs, herbal products, and other drugs (Boyer and Shannon, 2005). The severity of the condition ranges from barely perceptible to lethal and presents a spectrum of clinical findings in people. Symptoms include: tremor, hyperreflexia, spontaneous muscle spasms, muscle rigidity, hyperthermia, agitation, sweating, shivering, diarrhea, incoordination, and delirium (Boyer and Shannon, 2005). The combination of serotonergic drugs has induced the rapid onset (minutes to hours) and progression of serotonin syndrome (Gillman, 1999). A single dose of an SSRI has also been observed to cause serotonin syndrome (Boyer and Shannon, 2005).

In the past, serotonin syndrome has been misdiagnosed as neuroleptic malignant syndrome, which presents with many of the same symptoms as serotonin syndrome but is caused by dopamine antagonists instead of serotonergic drugs (Sternbach, 1991). There are only a few distinguishing symptoms between the two conditions; namely that patients presenting with serotonin syndrome typically have hyperactive gut sounds and dilated pupils (Boyer and Shannon, 2005). Nonetheless, patient medication history is extremely important in accurate diagnosis and treatment of serotonin syndrome. In mild to moderate cases, supportive care and cessation of proserotonergic agents is effective at alleviating symptoms associated with the syndrome (Boyer and Shannon, 2005).

Sedation, paralysis, intubation, and treatment with 5-HT₂ blockers may be necessary in lifethreatening cases (Boyer and Shannon, 2005; Gillman, 1999). Many cases of serotonin syndrome can be resolved within 24 hours; however, symptoms may persist in patients taking longer acting drugs (Boyer and Shannon, 2005).

FACTORS IMPACTING RATE OF SEROTONIN SYNTHESIS

The rate of brain serotonin synthesis depends on a number of things, including age, sex, breed, social status, level of arousal, and other individual characteristics. External factors such as diet and exercise can also impact the rate of serotonin synthesis.

Age

Some researches have reported that the permeability of the blood-brain barrier decreases with age (Grimmett and Sillence, 2005). In accordance with this line of thought, higher plasma tryptophan and serotonin levels are seen in foals than in adult horses (Ferlazzo et al., 2012). However, one study showed a positive correlation between age and plasma tryptophan throughout the first year in a foal's life (Alberghina et al., 2014). These data suggest that throughout a horse's lifetime, the permeability of the blood-brain barrier stops increasing, stabilizes, and eventually decreases. Farabollini et al. (1988) found that neonatal rats given serotonin antagonists were less anxious and responded more to environmental and social cues as adults. However, brain serotonin levels and turnover are similar in control and animals treated neonatally, suggesting that early effects may change receptor sensitivity (Farabollini et al., 1988).

Breed

While there is some evidence supporting the effect of breed and genetics on tryptophan availability/serotonin biosynthesis, their mechanisms remain unclear. One study noted that Arabian-type horses have higher plasma tryptophan than Anglo-Arabians (Alberghina et al., 2014). In another study, Bagshaw et al. (1994) found that resting serum serotonin is lower in Arabian mares than in Standardbred mares. However, serum tryptophan concentrations were not significantly different between the two breeds. A separate group of researchers saw lower blood serotonin in Arabian mares compared to Swedish Warmblood mares, even though all horses were fed the same diets and housed in the same conditions (as cited in Grimmett and Sillence, 2005). It is unclear whether breed differences relate to differing absorption, transport, metabolism, and/or excretion of tryptophan. Momozawa and others (2006) investigated polymorphisms in the equine serotonin transporter gene, which controls serotonin reuptake from the synaptic gap. However, of the haplotypes identified, none were associated with anxiety scores determined through caretaker questionnaire.

Sex

Research evaluating gender differences in serotonin biosynthesis in the human brain report conflicting results (as cited in Kim and Camilleri, 2000). However, research in animals tends to suggest that females are more sensitive to dietary changes in tryptophan than males. Dickson and Curzon (1986) reported that female rats that were fed tryptophan were more likely to exhibit side effects liked to serotonin syndrome than their male counterparts. Rouvinen et al. (1999) supplemented silver foxes with tryptophan over the course of several months. While females showed reduced fear and increased exploratory behavior, the same response was not seen in males. Henry and others found that female swine have less hypothalamic serotonin and are more sensitive to dietary changes in amino acid ratio than males (Henry et al., 1992; Henry et al., 1996). Not only do female and male (neutered and intact) pigs have different concentrations of serotonin and 5-HT metabolites in the brain, but the areas that seem to have the most serotonergic activity vary (Henry et al., 1996). These studies provide evidence that androgens inhibit serotonergic function in male rats and boars.

Other researchers have noted that female rats are more vulnerable than males in models of depression and show less sensitivity to serotonin receptor agonists (Kennett et al., 1986). In addition, female rats seem less sensitive than males to neonatal manipulation with serotonin receptor agonists or antagonists; possibly because of interaction between the developing serotonin system and testosterone (Albonetti et al., 1994).

Social status

Some studies show that subordinate animals have higher levels of serotonin, yet may be less sensitive to tryptophan supplementation than their dominant counterparts (Mench and Shea-Moore, 1995; Raleigh, 1987). A different study showed that dominant males have twice as much blood serotonin than submissive males (Mench and Shea-Moore, 1995). These researchers hypothesized that the dominant animals were metabolizing more dietary tryptophan to serotonin peripherally instead of in the central nervous system.

Level of arousal

Several researchers have provided evidence that serotonin synthesis and precursor sensitivity are greater at higher states of arousal. This is probably because more neurotransmitter is released when the neurons fire more frequently (Young, 1991). A study by Trulson (1979) provides support for this hypothesis, showing dorsal raphe activity in cats increases with state of arousal. In addition, Chamberlain et al. (1987) concluded that altered tryptophan levels in the diet influence aggression in vervet monkeys more reliably at higher levels of arousal. Firing of action potentials may enhance tryptophan uptake into 5-HT neurons via a carrier specific to these neurons and/or tryptophan hydroxylase activity may be enhanced as a result of neuronal firing. In an *in*

vitro experiment, an increase in serotonin synthesis was only observed in the presence of electrical field stimulation, even though available tryptophan was the same in stimulated and unstimulated tissues. However, *in vivo* studies consistently show that administration of exogenous tryptophan enhances 5-HT formation; this may be reflective of the fact that 5-HT neurons fire tonically *in vivo* (as cited in Boadle-Biber, 1993). Additionally, Schaechter and Wurtman (1990) provide evidence that elevating tryptophan levels in the rat hypothalamus proportionally increases 5-HT levels and release; these data support the hypothesis that serotonin release is proportionate to intracellular serotonin levels.

Other Individual Characteristics

There is some evidence in the literature that tryptophan supplementation is most effective in individuals who exhibit dysregulation of behaviors that may be under control of the serotonergic system. For example, Bell and others (2001) performed a study in humans which showed that healthy individuals experienced some mood lowering, memory impairment, and an increase in aggression due to tryptophan depletion. However, patients who had been treated for depression or panic disorder and responded well to antidepressants (particularly serotonergic agents), experienced a relapse. Interestingly, patients with untreated depression experienced no worsening in mood symptoms. These findings suggest that individual serotonergic systems may vary in sensitivity even when factors such as age and sex are held constant. Further support is provided Weld and others (1998), who saw changes in serotonin turnover (evidenced by concentrations of 5-HIAA in cerebral spinal fluid) as a result of tryptophan supplementation only in animals who displayed self-injurious behavior. We have already discussed how the amount of tryptophan in the diet has an impact on serotonin biosynthesis. As shown in Figure 1.9, the profile of other nutrients in the diet can influence the amount free tryptophan available for transport transport into the central nervous system and for serotonin synthesis.

The release of insulin triggers the uptake of free amino acids into peripheral tissues such as muscle (not the brain). However, because most tryptophan is bound to albumin, the rate of absorption into peripheral tissues is slower. As a result, the ratio Trp:LNAA increases, favoring tryptophan uptake by the brain and, furthermore, serotonin synthesis (Bellisle et al., 1998). Fernstrom and Wurtman (1972b) conducted a study in which insulin was administered to fasted rats. Surprisingly, this increased total plasma tryptophan up to 40% while also decreasing the concentration of other LNAA in the plasma. Two hours after receiving the insulin, brain tryptophan levels were elevated by 36% and brain serotonin levels were elevated by 28%. Research by Noble and others (2007) provides further supporting evidence in the role of insulin in serotonin biosynthesis by showing that plasma tryptophan follows the glycemic response after meal-feeding Thoroughbred horses. Additionally, the Trp:LNAA ratio peaked after horses were fed a "starch and sugar" meal but stayed relatively constant in horses fed a "fat and fiber" meal (Wilson et al., 2007). There is some discrepancy in the literature, however; Alberghina and others (2010b) found that horses kept on a high fiber diet had higher plasma serotonin and tryptophan levels than horses fed a high starch diet. The conflicting results of this study may be because blood samples were taken three and six hours after feeding—at least an hour after the spikes in insulin, serotonin, and tryptophan were reported in previous studies. Also, Kim and Camilleri (2000) claim that plasma measurements of serotonin are often inaccurate, since serotonin is easily released with the agitation

Diet

and lysis of platelets. Wurtman (2011) draws the association that "carbohydrate cravers" may be unknowingly attempting to increase serotonin synthesis using this mechanism in order to compensate for disorders linked with low serotonin.

High fat diets (or lipolysis) may also increase the amount of free tryptophan available to the central nervous system, as non-esterified fatty acids displace tryptophan from its binding site on albumin (Bosch et al., 2007). High protein diets increase plasma tryptophan levels but, because of the corresponding increase in competing LNAA, brain tryptophan and serotonin do not increase. Removing the competing amino acids from the diet has been shown to increase tryptophan and serotonin (Fernstrom and Wurtman, 1972a).

Exercise

There is evidence that exercise increases free tryptophan, the tryptophan to LNAA ratio, and brain serotonin (as cited in Bruschetta et al., 2013; Farris et al., 1998). Exercise may increase free Trp:LNAA by releasing free fatty acids, which displace tryptophan from its binding site on albumin (Grimmett and Sillence, 2005). Additionally, multiple studies have looked at the effects of tryptophan and/or serotonin in central fatigue during exercise but the results are conflicting and range from a negative correlation between serotonin and exercise endurance to the absence of an effect between tryptophan supplementation and time until exercise fatigue (Alberghina et al., 2010a; Bruschetta et al., 2013; Farris et al., 1998; Piccione et al., 2005; Vervuert et al., 2005). Some researchers believe that exercise releases peripheral serotonin from platelets, which is transported in the plasma to neurons or vascular endothelial cells (Alberghina et al., 2010a; Bruschetta et al., 2013). Whether it be through serotonin release from platelets, decreased motivation, or increased survival methods, the mechanisms by which serotonin impacts exercise endurance have yet to be elucidated.

TRYPTOPHAN SUPPLEMENTATION IN HORSES

Research in cattle, poultry, swine, dogs, foxes, humans, mice, fish, and monkeys have shown sedative effects, including decreases in aggression, fear, stress, depression, stereotypic behavior, and/or overall activity level, as a result of various doses of tryptophan (as cited in Grimmett and Sillence, 2005). For a review of these studies, see Table 1.1. However, other than slight effects seen in one study, no research has been able to show a behavioral effect in horses. This suggests that there may be a potential difference in tryptophan doses required to achieve specific behavioral effects in horses.

Bagshaw et al. (1994) conducted the first study assessing the behavioral effects of tryptophan supplementation in horses. However, the doses given to horses were less than 1% of the average amount of tryptophan administered using the commercial supplements available today. These researchers actually found that tryptophan supplementation corresponded with a significant increase in activity both when horses were isolated and when they had visual contact with other horses. However, treatment horses did show some significant decreases in heart rate throughout the behavioral tests and stereotypic behavior in one horse was reduced.

Grimmett and Sillence published a review in 2005 summarizing the current research and evaluating areas of future research in the use of tryptophan as a calmative in horses. Since this time, there has been very little research in supplementing tryptophan to equines. Malmkvist and Christensen (2007) supplemented young horses with a commercial tryptophan product but found no significant differences between treatment and control groups with respect to mean heart rate or behavioral observations taken during a voluntary approach test and handling test. Another study by Noble et al. (2008) looked at the effects of supplementing horses with a commercial dose of L-tryptophan on plasma tryptophan levels and response to approaching a novel object/person. Results

showed that plasma tryptophan levels increased three-fold as a result of supplementation. The ratio of tryptophan to other large neutral amino acids also increased. However, no significant behavioral effects were noted.

Paradis et al. (1991) evaluated toxicity effects of tryptophan supplementation in horses, either via oral administration or intravenous infusion. They found that plasma tryptophan concentrations peak after dosing and return to pre-dosing levels within 48 hours. These researchers also demonstrated that orally administered tryptophan can be metabolized into 3-methylindole or, more commonly, indole. Both of these compounds may have toxic effects, causing hemolytic anemia and/or respiratory distress. These consequences were seen in one of the four ponies receiving 350 mg tryptophan/kg bodyweight and in three of the four ponies receiving 600 mg tryptophan/kg bodyweight.

It is clear from the evidence, or lack thereof, provided by previous research that the safety and efficacy of using tryptophan as a calmative in horses warrants further investigation. However, supplement companies continue to market products containing tryptophan to horse owners, insuring that the ingredient is safe and effective for use in equines. For a review of these products, see Table 1.2. Horse owners find these supplements appealing because they do not require veterinary oversight yet promise a safer, more relaxed, and easy-to-ride horse.

16

Author	uthor Species		Supplement Schedule	Results	
Young et al., 1986	Human males	~129 mg/kg	1x	increase self-reported depression symptoms	
Liebermann et al., 1986	Humans	50 mg/kg	1x	sedative effect	
Nakanishi et al., 1997	Calves	160 mg/kg	7d	calves supplemented with tryptophan showed increased lying time and decreased exploratory behavior in the two-weeks post weaning; feed utilization was not different between treatment and control calves.	
Laycock & Ball, 1990	Chickens	5000 mg/kg	6d	hysteria episodes decreased; feed consumption increased, egg laying increased; plasma Trp increased	
Shea et al., 1990	Male broiler breeders	control, 0.38%, 0.75%, 1.5%	4 - 20 weeks of age	Birds fed supplemental tryptophan showed less aggressive pecking; low levels (0.38%) were as effective as high levels (1.5%)	
DeNapoli et al., 2000	Dogs	Low protein, low Trp; low protein, high Trp; high protein, low Trp; high protein, high Trp	daily, 7d	No differences in fearfulness between diets; dogs on high protein diet supplemented with Trp showed less dominance aggression than dogs feed a high protein diet without Trp; dogs on low protein diet with supplemented Trp showed less territorial aggression than dogs fed a low protein diet without supplemental Trp	
Paradis et al., 1991	Horses	350 mg/kg	1x, feed withheld for 24hrs prior to admin	Four ponies developed hemoglobinuric nephrosis and bronchiolar degeneration; one pony also developed hemolysis, hemoglobinuria, and increased respiratory rate	
Paradis et al., 1991	Horses	100 mg/kg IV	1x, feed withheld for 24hrs prior to admin	Ponies did not show any pathology due to Trp supplementation	

TABLE 1.1: Review of research supplementing tryptophan to various species

Paradis et al., 1991	Horses	600 mg/kg	1x, feed withheld for 24hrs prior to admin	Four out of five ponies showed restlessness, increased respiratory rate, hemolysis, and hemoglobinuria
Bagshaw et al., 1994	Horses	0, 0.05, & 0.1 mg/kg	1x, 2h prior to testing	Horses dosed with 0.1 mg/kg had higher rates of walking/sniffing and heart rate during isolation compared to horses dosed with 0 mg/kg; one horse showed a reduction in sterotypic head twisting after being dosed
Noble et al., 2008	Horses	12.5 mg/kg	1x	plasma Trp increased, with peak 1.5-2 hours post-dosing supplement made no difference in behavior around novel object/person
Malmkvist & Christensen, 2007	Horses	12.9 mg/kg	1x, 2-3h prior to test	No difference in heart rate or novel stimulus approach test
Farris et al., 1998	Horses	100 mg/kg IV: glucose with Trp; no glucose with Trp; glucose without Trp; no glucose, no Trp	1x	Horses dosed with tryptophan immediately before exercise and either glucose or a placebo during exercise had a lower mean time to exhaustion than horses dosed with two rounds of placebos; these horses also had higher plasma prolactin.
O'Reilly, 2006 (Thesis)	Horses	3g 5x/day	21d	Tryptophan had no effect on cribbing behavior
Adeola & Ball, 1992	Pigs	0, 5, 10, 25 g Trp/kg diet	5d	doubled plasma Trp; pigs showing higher stress pre- slaughter had lower hypothalamic serotonin content; ; reduced PSE score; hypothalamic serotonin concentration increased with Trp supplementation but the increase peaks at day 5 and then decreases: researchers suspect an adaptive response
Shen, et al., 2015	Pigs	0.0% & 0.8%	12d	Piglets fed diets with 0.8% Trp had a higher average daily gain and feed efficiency and lower salivary cortisol concentrations after a stressful situation

Shen et al., 2015	Pigs	0.0%, 0.8%, & 0.7% (with the same amino acid ratios as 0.8%)	16d	Pigs fed diets supplemented with Trp had better feed efficiency
Koopmans et al., 2005	Pigs	diets with high and normal Trp:LNAA	7d and 12d	Pigs at the higher level of supplementation showed higher plasma Trp, lower basal plasma cortisol, lower basal plasma noradrenaline, but no difference in plasma adrenaline concentrations compared to controls; during social stress, pigs on the higher tryptophan diet showed less avoidance behavior, but similar amounts of physical activity and aggression; post-stress plasma cortisol, noradrenaline, and adrenaline were less in pigs provided supplement.
Peeters et al., 2004	Pigs	5 g/L in drinking water	3d	Pigs that received tryptophan spent significantly more time lying down during simulated transport
Li et al., 2006	Pigs	Control, 2x recommendation, 4x recommendation	7d, 3d, 3d	Trp-supplemented pigs spent more time laying, less time eating, and less time fighting
Poletto et al., 2014	Pigs (gestating sows)	~66 mg/kg	7d	Trp-supplemented sows showed less aggression and increased exploratory behavior when mixed with other sows
Martinez-Trejo et al., 2009	Weaned piglets	0.23%, 0.27%, 0.31%, 0.35%	3d before and after weaning (6d total)	Highest levels of tryptophan supplementation show less appendage biting and aggression than the two lowest
Hilakivi-Clarke et al., 1990	Male mice	50, 75, 100, 125, 200 mg/kg intraperitoneal	1x, 60 min prior to test	Antidepressant-like effects in Porsolt's Swim Test At 125 and 200 mg/kg injection, response was no different than control
Janczak et al., 2001	Mice	2.08 g/L in drinking water	dialy for 2 weeks before behavior test	Mice treated with tryptophan showed reduced exploratory behavior in resident-intruder test, number of fights, and time spent fighting

Schaechter & Wurtman, 1990	Rat Hypothalamic Slices	2 μM Tryptophan	superfused over 130 min	Superfusing hypothamalic slices with medium containing tryptophan increases total serotonin release by $115.0 \pm 5.9\%$. Superfusing tryptophan in the medium also increases electrically-stimulated total serotonin release by $125.9 \pm 3.9\%$. In slices with reduced tryptophan levels (due to leucine supplemented medium), total serotonin release decreased by $88.7 \pm 2.0\%$.
Esteban et al., 2004	Rats	300 mg	5d	Rats that received tryptophan during the day (8:00), there was an increase in 5-HT and 5-HIAA in the brain; rats that received tryptophan at night (20:00), the 5-HT/5-HIAA did not change but there was a significant increase in circulating melatonin
Basic et al., 2013	Salmon	Control diet, 2x Trp, 3x Trp, 4x Trp	7d	Trp supplemented fish had lower basal levels of cortisol 1 and 10 days after supplementation stopped
Rouvinen et al., 1999	Silver Foxes	1.2 g/MJ ME	4 months	Supplementing Trp increased exploratory behavior in females; Trp did not have a significant effect on fur growth, fur quality, or weight gain
Raleigh, 1987	Vervet monkeys	10, 20, 40 mg/kg	6d	Monkeys showed dose-dependent increases in eating, and decreases in locomotion, vigilance, and aggression
Chamberlain et al., 1986	Vervet monkeys	diets: balanced, Trp- free diet, Trp- supplemented	1x; observed 5 hours after	Male and females on Trp-supplemented diet showed reduced competitive aggression; when males were given a mixture containing no Trp, spontaneous and competitive aggression increased
Weld et al., 1998	Rhesues monkeys (male)	100 mg/kg, twice per day	^r 21d	In monkeys with a history of self-injurious behavior, the supplement reduced the behavior and increased serotonin turnover (measured by concentrations of 5-HIAA in CSF). Serotonin metabolism and behavior were not affected in monkeys with no history of self-injurious behavior.

TABLE 1.2: Summary of paste supplements containing tryptophan available to horse owners in the United States

Product	Dosing Directions	Dose (mg Trp/ kg BW)*	Other Ingredients
Divine Equine (Oralx Corp., Ogden, UT)	administer 4 hours before stressful event	3.4	valerian root, black cohash, passion flower, ginger root, hops, wood betony, cherry extract for flavoring, benzol alcohol .05%, sorbic acid as a preservative, xanthan gum
SmartCalm Ultra Paste (SmartPak Equine, Plymouth, MA)	administer 2-4 hours before stressful event	2	active: magnesium, taurine, inositol, thiamine, vitamin e inactive: ascorbyl palmitate, artificial flavor, citric acid, coconut oil, methylparaben, silicon dioxide, soy lecithin, vegetable oil (cold pressed), vitamin e supplement
B-Kalm (Farnam Companies, Inc., Phoenix, AZ)	administer 1.5-2 hours prior to exercise	20	inactive ingredients: dextrose, ethyl alcohol, ground limestone, potassium sorbate, sodium bentonite, sodium benzoate, sodium saccharin, thiamine hydrochloride with artificial flavor and color, water, and xanthan gum
Vision (VitaFlex Nutrition, Council Bluffs, IA)	administer 2 hours before competition/race/trailering	5	active: thiamine, inositol, riboflavin, magnesium, vitamin b6, valerian root extract inactive: artificial flavoring, corn starch, glucose, glycerin, maltodextrins, methylparaben, propylparaben, silicon dioxide, sorbic acid, sorbitol, sucrose, water
Tryptoplex (Oralx Corp., Ogden, UT)	administer 2 hours prior to event	3.4	water, magnesium amino acid hydrochloride, pyridoxine hydrochloride, ginger glycyrrhiza, juniper berries, cherry extract for flavoring, benzoic acid (a preservative) sorbic acid (a preservative) xanthan gum
Calmex-V (Med-Vet Pharmaceuticals, Eden Prarie, MN)	2-4 hours prior to trailering/riding when needed; may be given 24 and 48 hours prior to trailering/riding	1.5	active: valerian root, thiamine, taurine, inositol inactive: distilled water, glycerin, sodium propionate, xanthan gum
Easy Going (ProFormula Laboratories, Inc., Ft. Lauderdale, FL)	administer 3 hours prior to event	8.08	valerian root, passion flower, kava kava, ginger root, hops, wood betony, ethyl alcohol, aloe vera gel, .05% potassium sorbate as a persvative, acacia gum
Quietex II (Farnam Companies, Inc., Phoenix, AZ)	administer 2 hours before training or competition	5	active: thiamine, inositol, magnesium, vitamin b6, valerian root extract inactive: corn starch, glucose, glycerin, malt syrup, maltodextrins, methylparaben, propylparaben, silicon dioxide, sorbic acid, sorbitol, sucrose, water
EQUI+Calm (Equine Healthcare International, Aberdeen, NC	administer once the night before and once the morning of performance; additional) tubes can be administered at 6-12 hour intervals	not quantified	active: magnesium, melatonin, arginine, leucine, theanine, thiamine, phenylalanine, bismuth inactive: maple flavor, praline flavor, deionized water, vitamin c, glycerine, xanthan gum, methyl paraben, propyl paraben, acesulfame k sweetner
Perfect Prep EQ Extreme Paste (Perfect Products, LLC, Morrow, OH)	feed 90 minutes before increased stress; effects begin within 1 hour and last 6-8 hours	not quantified	active: magnesium, inositol, thiamine proprietary blend: soybean oil, magnesium amino acid chelate, thiamine mononitrate, soy lecithin, inositol, silica gel, vitamin e supplment, citric acid, natural and artificial flavors, polysorbate 80, ascorbyl palmitate, methylparaben, coconut oil

Perfect Prep EQ Supreme Paste (Perfect Products, LLC, Morrow, OH)	administer 90 minutes prior to activity; adjust for desired results; effects begin 1 hour after administration and can last up to 6 hours	not quantified	active: magnesium, inositol, thiamine, l tryptophan, vitamin "behave" (a proprietary blend of b vitamins) proprietary blend: soybean oil, magnesium amino acid chelate, thiamine mononitrate, soy lecithin, inositol, silica gel, vitamin e supplement, citric acid, natural & artificial flavors, pyrodoxine hcl, riboflavin, ascorbyl palmitate, methylparaben, coconut oil
Oxy-Calm (Meal and More, Inc., Morrice, MI)	feed 2 hours before event; can be given again 4 hours later	not quantified	vitamin e supplement, sugars, salt, flavorings, vegetable oil, tryptophan, thiamine mononitrate, guar gum, xanthan gum, wheat germ oil, dried active yeast, lactobacillus acidophilus fermentation product
At-Ease Megadose (Richdel, Inc., Carson City, NV)	administer one dose 1-3 hours before and one dose immediately before desired event	2	soy oil, magnesium oxide, corn starch, thiamine mononitrate, salt, dextrose, pyridoxine hydrochloride, methyl & propyl paraben (a preservative), silicon dioxide, artificial apple flavoring
Calming Oral Gel (Kaeco Group Inc., Savannah, MO)	administer 2-4 hours prior to competition, event, transporting, etc.	3.4	valerian root, black cohosh, passion flower, ginger root, hops, wood betony, apple flavor, benzyl alcohol .05%, sorbic acid as a preservative, xanthan gum
Formula Calm B (dac, Dover, Ohio)	give one to three times daily before and during events	0.5	magnesium sulfate, taurine, thiamine mononitrate, inositol, gylcerin, silica gel, soybean oil, coconut oil, natural & artificial flavors
Tryptophan Plus Gel (Horses Prefer, Menomonie, WI)	feed 1.5 to 2 hours prior to competition, strenuous exercise, racing, or shipping	not quantified	dextrose, cane molasses, propylene glycol, silicon dioxide, polysorbate 80, niacinamide, pork peptone, calcium chloride, magnesium oxide, potassium chloride, thiamine hydrochloride, pyridoxine hydrochloride, riboflavin, lactic acid, apple flavor, methylparaben, propylparaben, and ethoxyquin

*calculations based on 500 kg horse

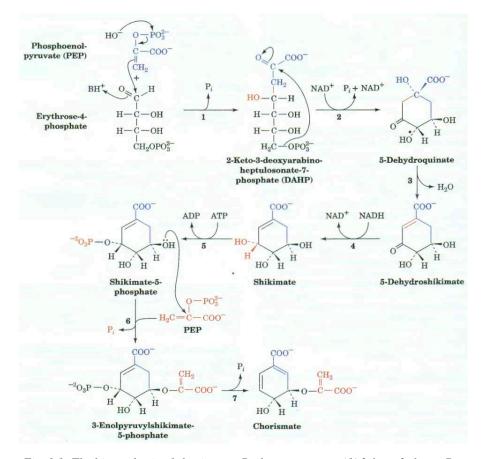


Fig. 1.1: The biosynthesis of chorismate. Pathway enzymes: (1) 2-keto-3-deoxy-Darabinoheptulosonate-7phosphate synthase, (2) dehydroquinate synthase, (3) 5dehydroquinate dehydratase, (4) shikimate dehydrogenase, (5) shikimate kinase, (6) 3-enoylpyruvylshikimate-5-phosphate synthase, (7) chorismate synthase. Reprinted from "Biochemistry" (p. 774), by D. Voet and J.G. Voet, 1995, New York: John Wiley & Sons, Inc. Copyright 1995 by John Wiley & Sons, Inc.. Reproduced with permission.

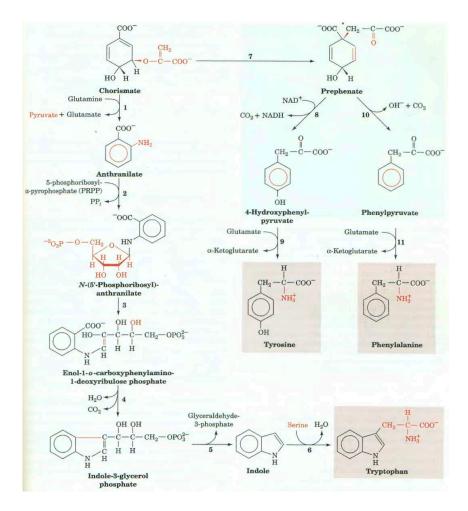


Fig. 1.2: Pathways for the synthesis of tryptophan. Pathway enzymes: (1) anthranilate synthase, (2) anthranilate-phosphoribosyl transferase, (3) N-(5'-phosphoribosyl)-antranilate isomerase, (4) indole-3-glycerol phosphate synthase, (5) tryptophan synthase, α subunit, (6) tryptophan synthase, β subunit. Reprinted from "Biochemistry" (p. 775), by D. Voet and J.G. Voet, 1995, New York: John Wiley & Sons, Inc. Copyright 1995 by John Wiley & Sons, Inc.. Reproduced with permission.

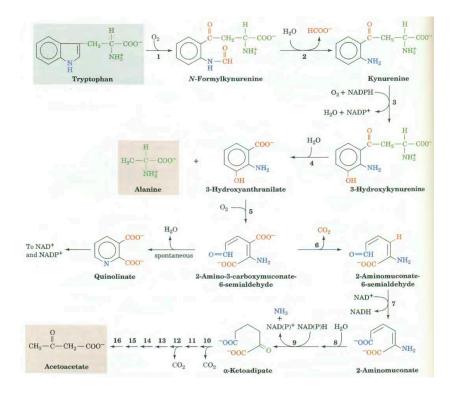


Fig. 1.3: Pathways of tryptophan degradation. Enzymes: (1) tryptophan-2,3-dioxygenase, (2) formamidase, (3) kynurenine-3-monooxygenase, (4) kynureninase, PLP dependent, (5) 3-hydroxyanthranilate-3,4,-dioxygenase, (6) caroxymuconate semialdehyde decarboxylase, amino (7)aminomuconate semialdehyde dehydrogenase, (8) hydratase, (9) dehydrogenase, (10) α -keto acid dehydrogenase, (11) glutaryl-CoA dehydrogenase, (12) decarboxylase, (13) enoyl-CoA hydratase, (14) β hydroxyacyl-CoA dehydrogenase, (15) HMG-CoA synthase, (16) HMG-CoA lyase. Reprinted from "Biochemistry" (p. 744), by D. Voet and J.G. Voet, 1995, New York: John Wiley & Sons, Inc. Copyright 1995 by John Wiley & Sons, Inc.. Reproduced with permission.

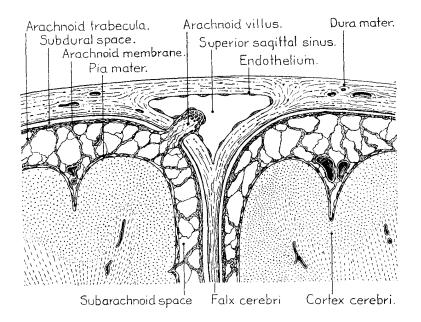


Fig. 1.4: The subarachnoid space. When there is no difference in pressure between the subarachnoid space and the venous blood, there are numerous microvilli made up of layers of overlapping endothelial cells on the arachnoid membrane. Reprinted from "The absorption of cerebrospinal fluid into the venous system," by L.W. Weed, 1923, American Journal of Anatomy, 31(3), 202. Copyright 1923 by Wiley-Liss. Reproduced with permission.

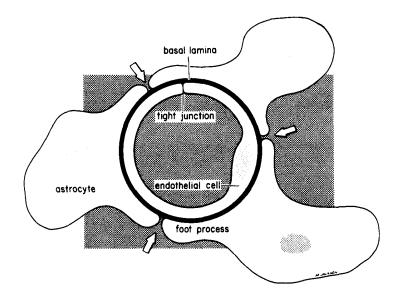


Fig. 1.5: Brain capillary-glial cell junction. The endothelial cells in the brain capillaries are closely associated with astrocytes. Interstitial fluid has access at the locations indicated by the arrows. Reprinted from "Endothelial cell-astrocyte interactions: a cellular model of the blood-brain barrier," by G.W. Goldstein, 1988, Annals of the New York Academy of Sciences, 529(1), 32. Copyright 2006 by John Wiley and Sons. Reproduced with permission.

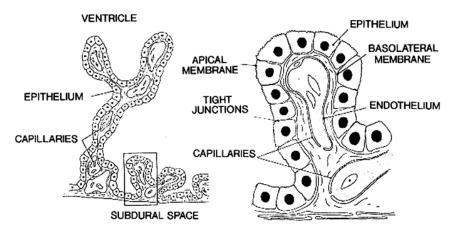


Fig. 1.6: The choroid plexus. The basal lamina of the choroid plexus faces highly vascularized connective tissue. There are microvilli on the apical surface, which face into the cerebrospinal fluid; tight junctions regulate what compounds diffuse from the capillaries into the cerebrospinal fluid. Reprinted from "Mechanisms of CSF secretion by the choroid plexus" by T. Speake, C. Whitwell, H. Kajita, A. Majid, and P.D. Brown, 2001, Microscopy Research and Technique, 52(1), 50. Copyright 2001 by Wiley-Liss. Reproduced with permission.

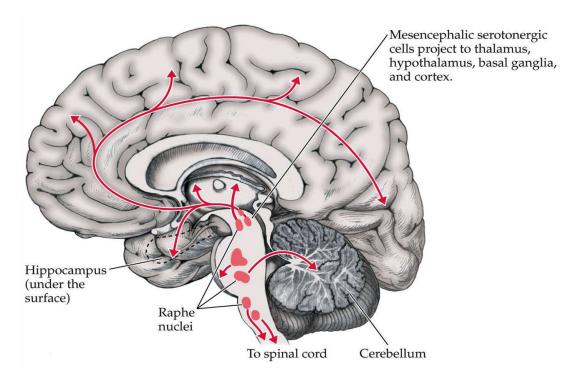


Fig. 1.7: Projections of serotonergic neurons. These neural pathways are involved in various aspects of cognition and behavior: prefrontal cortex (mood), basal ganglia (movement, potentially obsessions and compulsions), limbic area (anxiety and panic), and hypothalamus (appetite and eating behavior) (Corr, 2006). Reprinted from "Biological Psychology: An Introduction to Behavioral, Cognitive, and Clinical Neuroscience" (p. 93), by S.M. Breedlove, N.V. Watson, and M.R. Rosenzweig, 2010, Sunderland, MA: Sinauer Associates. Copyright 2010 by Sinauer Associates, Inc.. Reproduced with permission.

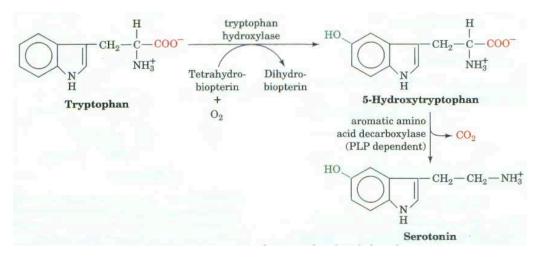


Fig. 1.8: Steps in serotonin biosynthesis. Reprinted from "Biochemistry" (p. 759), by D. Voet and J.G. Voet, 1995, New York: John Wiley & Sons, Inc. Copyright 1995 by John Wiley & Sons, Inc.. Reproduced with permission.

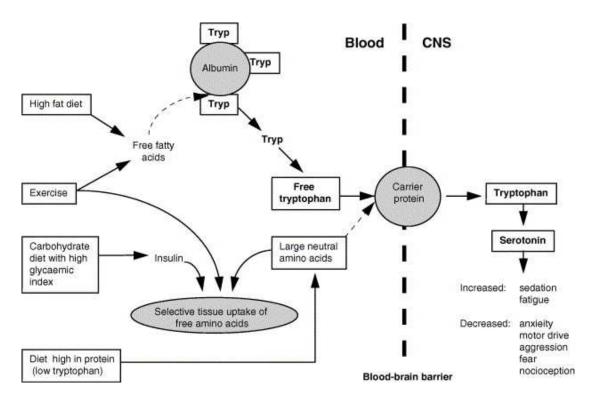


Fig. 1.9: Exercise and diet composition impact the rate of serotonin biosynthesis. Reprinted from "Calmatives for the excitable horse: A review of L-tryptophan," by A. Grimmett and M.N. Sillence, 2005, The Veterinary Journal, 170(1), 26. Copyright 2004 Elsevier Ltd.. Reproduced with permission.

CHAPTER II: EVALUATING THE EFFECTIVENESS OF VARYING DOSES OF SUPPLEMENTAL TRYPTOPHAN AS A CALMATIVE IN HORSES

INTRODUCTION

Tryptophan is often marketed in the horse industry as a calmative supplement, claiming to encourage focus and relaxation while reducing tense, nervous, and spooky behavior. Horse owners frequently utilize calming products in situations including transportation, competition, and other novel training events. Tryptophan is the amino acid precursor to serotonin, a neurotransmitter involved in mood, appetite, sleep, memory, and learning in many species, including humans. Psychiatrists utilize serotonin-enhancing drugs in people to treat conditions such as depression, anxiety, and obsessive-compulsive disorder. Tryptophan supplementation has been shown to increase serotonin production (Fernstrom, 2013). However, while supplementation has been linked to reduced aggression and fearfulness in species other than the horse, there is no current research within the scientific community to support any behavioral effects of tryptophan supplementation in horses (Grimmett and Sillence, 2005). The use of this supplement for calming purposes in horses remains unproven and somewhat controversial among horse owners and professionals. The objective of the following study is to evaluate behavioral and physiological responses resulting from differing dosages of L-tryptophan supplementation in the horse. Identification of a safe and effective dose of tryptophan in horses could give owners a non-prescriptive, non-invasive tool to manage potentially dangerous situations. In addition, feed and supplement companies may benefit from the results of this study, recognizing new dosages or potential additives in products marketed to horse owners.

Because tryptophan competes with other amino acids to bind to transport proteins and cross the blood-brain barrier, scientists are now using the ratio of tryptophan to other large neutral amino acids (LNAA) to estimate serotonin production in the central nervous system (Wilson et al., 2007). Research has shown that serum tryptophan levels increase when horses are supplemented at a dose comparable to those used in commercial supplements but that there are no significant behavioral effects (Malmkvist and Christensen, 2007; Noble et al., 2008). Other studies have noticed a potential effect of diet and time of sampling on serum tryptophan levels in horses (Alberghina et al., 2010b; Wilson et al., 2007). While it is possible that these studies may not have seen behavioral effects when supplementing tryptophan because researchers were administering doses too low, there are also health concerns when supplementing tryptophan at doses too high. High doses of tryptophan may cause hemolytic anemia and symptoms of respiratory distress in horses. Researchers predict that these symptoms are the effect of the toxic indole metabolite produced in the hindgut of horses when large doses of tryptophan are administered orally (Paradis et al., 1991). There is a large range, from approximately 12.9 mg/kg bodyweight (Malmkvist and Christensen, 2007) to 350 mg/kg bodyweight (Paradis et al., 1991), of oral tryptophan supplementation that has not been scientifically tested for behavioral or physiological effects in horses. Nevertheless, horse owners and trainers frequently utilize supplements containing tryptophan and/or ingredients like magnesium, vitamin B₆, and a variety of herbs to promote a calming effect. One benefit to supplementing natural ingredients versus using prescription drugs is that many common dietary components are legal to use in show circuits whereas sedatives are banned substances (USEF, 2015). We hypothesized that, within the untested range of tryptophan supplemented to horses, there is a safe and behaviorally effective dose.

MATERIALS AND METHODS

Horses and Care

The study took place December 2014-January 2015 at Colorado State University's Equine Teaching and Research Center. Ten geldings and two mares were included in the experiment. Three of the horses were Quarter Horse type and the other nine were draft horse crosses. Horses ranged in age from 2.5-16 years (average 9.1 years), height from 150-169 cm (average 158.7 cm), weight from 462-626 kg (average 541.4 kg), and body condition score from 3-8 (average 5.2) (Henneke et al., 1983). Horses were divided into three groups based on bodyweight. One horse from Group 2 was removed from the study during the acclimation period due to handling difficulties. A description of the remaining horses is provided in Table 2.1. Variance between subjects is displayed in Table 2.2. All horses were used for trail riding and leased from a private owner. Informed client consent was obtained prior to the beginning of the experiment. In addition, all animal care and experimental procedures were approved by the Colorado State University Animal Care and Use Committee under protocol #14-5191A.

All horses were dewormed with 1.87% ivermectin (MWI, Boise, ID) and evaluated by a veterinarian prior to being accepted into the study. Throughout the study, horses were allowed ad libitum access to water and salt. Expected body weight at a body condition score of 5 was calculated for each horse (Henneke et al., 1983). NRC (2007) requirements were calculated based on expected body weight. Horses were fed 0.5% of their expected body weight in concentrate, on a dry matter basis, per day. The concentrate provided was a commercially-available senior feed (Purina Animal Nutrition LLC, Shoreview, MN). Each horse's remaining energy requirements were met with grass hay. Horses were housed in stalls and their daily ration divided into two

feedings at approximately 07:00 and 19:00 hours. Grain and hay nutrient profiles are reported in Table 2.2.

In order to monitor horse health status, resting respiratory rates were monitored at feeding and blood collection times (three times daily) to safeguard against any signs of respiratory distress going unnoticed. Resting heart rate and rectal temperature were recorded during the effective dose time for horses receiving treatment.

Study Design

Horses were given a 7-day acclimation period before treatment began. There were four treatment levels: a negative control (CON), in which horses received no supplemental tryptophan; LOW, in which horses were given 20 mg Trp/kg BW; MED, in which horses were given 40 mg Trp/kg BW; and HIGH, in which horses were given 60 mg Trp/kg BW. Pharmaceutical grade L-tryptophan (Ajinomoto North America, Raleigh, NC) was mixed with approximately 50 cc applesauce and water to create a paste-like consistency and administered orally before morning feeding. CON horses received an oral dose of only applesauce and water. Each treatment period lasted three days and there was a four-day washout period between treatments. Each horse received all treatments. Horses were assigned treatments in a random order so that all horses in one group were receiving different treatments. To ensure accurate dosing, each horse was weighed on a scale the morning prior to beginning a new treatment. In order to maintain consistent dose, sample collection, and behavior test timing, groups began the experiment on staggered start dates, spaced one to three days apart. Daily procedures, broken down by group, are described in Table 2.3.

Behavior Testing

Horses underwent a reactivity test similar to one described by Noble et al. (2013). The setup for the behavior test is shown in Figure 2.1. Footing within the chute was raked between

startle tests in order to try to maintain consistency despite weather conditions. Temperature, wind speed, and precipitation were recorded at the time of each test so that the effect of environmental conditions could be quantified. Each horse was individually led into the chute and held at a standstill for 10 seconds at a location 1 meter into the chute. Upon release, a startling sound and movement were made from a constant location behind the horse. A blind was set up to ensure that horses did not see the startling visual cue prior to stimulus presentation. The rate (m/s) at which the horse exited the chute (ExitSpeed) was measured using electronic timers (FarmTek, Wylie, TX) placed 6 meters apart on the sides of the chute. Sensors were placed 1 meter off the ground so that the horses' legs or chest may break the light beam. In order to reduce habituation, the startling stimuli rotated between a whoosh paired with a waving flag, an alarm sound paired with an opening umbrella, and machine gun fire paired with a flapping plastic bag. The auditory stimuli were pre-recorded and consistent in volume and intensity. To minimize habituation to the startle test, null tests, in which there are no startling stimuli, were performed during the acclimation period, on day two of each treatment, and on washout days. Startle tests performed 2-3 hours after morning administration of tryptophan supplement on days one and three of each treatment. Each horse experienced either a startle or null test each day. All tests on treatment days were video recorded.

Heart rate data was collected during the behavior tests using a Polar RS800CX training computer, which received heart rate data from a Polar WearLink W.I.N.D. transmitter attached to a chest strap that fitted around the horses' heart girth (Polar Electro OY, Kempele, Finland). Hair around the location of the electrodes was shaved and water and/or electrode gel were used to improve contact with the horses' skin. Horses remained in the stall until a consistent baseline heart rate was found by the heart rate monitor. After the behavior test, each horse was brought back to

their stall. Handlers waited for heart rate to return to baseline before removing the heart rate monitor.

Heart rate data was uploaded daily via infrared communication to Polar WebLink and transferred to polarpersonaltrainer.com for storage. In addition to the baseline heart rate information, the following measurements were taken: (1) HR30: heart rate (bpm) 30 seconds post-startle stimuli, (3) HR_Diff: HR30 minus baseline heart rate, and (4) TimetoBL: time (sec) from presentation of startle stimuli until baseline heart rate resumed.

Blood Sample Collection and Analysis

Blood samples were collected into evacuated blood collection tubes containing either a clot activator or sodium fluoride (BD Vacutainer evacuated blood collection tube, Fisher Health Care, Chicago, IL). Blood samples were taken before morning feeding or supplementation (BC1), at approximately 0600, and again before horses preformed the behavior test (BC2). This was done on the last day of the acclimation period as well as throughout the treatment periods. Blood obtained from BC1 was analyzed for packed cell volume in order to monitor the health of each individual horse, ensuring that no horses became anemic during the study. On days one and three of each treatment, additional blood samples were taken both before the startle test was performed (BC2) and again approximately 15 minutes after the test (BC3). These samples were analyzed to compare glucose, lactate, and cortisol levels before and after the startle test. Blood samples were allowed to clot at room temperature for 45-60 minutes before being centrifuged at 2,500 rpm for 15 minutes. Serum was then removed and stored in 0.5 mL aliquots in microcentrifuge tubes at - 20°C until further analysis.

BC2 and BC3 samples were analyzed for serum glucose and lactate using a YSI Model 2700 SELECT Biochemistry Analyzer (YSI Life Sciences, Yellow Springs, Ohio). Serum glucose (mg/dL) was analyzed from sodium fluoride vacutainers. Each sample was run 2-4 times, until glucose concentrations read within 1% of each other. The closest two readings were then averaged together to obtain pre- and post-startle test serum glucose values (from BC2 and BC3, respectively). Post-startle serum glucose (GluPostAvg) was considered as a response variable. Additionally, the difference in glucose values (GluDiff) was calculated by subtracting pre-startle (BC2) values from post-startle (BC3) values. Serum lactate (mmol/L) was analyzed from vacutainers containing only a clot activator. Samples were run 2-4 times, until values within 2% of each other were obtained. In the same way glucose response variables were obtained, poststartle serum lactate (LactPostAvg) and the difference between lactate pre- and post-startle values (LactDiff) were calculated response variables. The YSI auto-calibrated every five samples. Standards were analyzed before any samples, after every fifty samples, and once all samples had been analyzed. The date each sample was analyzed was recorded and considered as a covariate in the appropriate model (i.e. glucose sample run date (GluRunDate) was considered as a covariate for GluPostAvg and GluDiff models while lactate sample run date (LactRunDate) was considered as a covariate for LactPostAvg and LactDiff models).

Serum cortisol (mg/dL) was analyzed from BC2 and BC3 red top vacutainers using ELISA kits (Rocky Mountain Diagnostics, Colorado Springs, CO). Samples were analyzed in duplicates. Average post-startle serum cortisol values were calculated from BC3 samples (CortPostAvg). In addition, differences in serum cortisol (CortDiff) were calculated by subtracting BC2 values from those found in BC3 on the startle test days of each treatment. Intra-assay precision averaged an 11.36% coefficient of variation. The ELISA plate that each sample was run on (CortPretestPlate or CortPosttestPlate) were considered as potential significant predictor variables for CortPostAvg and CortDiff models.

A subset of samples (from horses in Group 1) were analyzed for serum amino acid content via gas chromatography using the procedures described by Zhang et al. (2005). This was done in order to verify treatment effect and to compare values with those found in previous studies. Concentrations (mmol/L) of serum free tryptophan (Trp), isoleucine, leucine, tyrosine, phenylalanine, and valine were obtained from pre- and post-supplementation blood draws (BC1 and BC2, respectively) on Day 1 and Day 3 of treatment. Difference in serum free tryptophan (TrpDiff) was calculated by subtracting values in BC1 from those found in BC2. Additionally, the ratio of tryptophan to other large neutral amino acids (Trp:LNAA) was calculated for BC1 and BC2 samples. The difference between the ratio seen in BC1 and BC2 (TrpDiff) was considered as another response variable.

Statistical Analysis

All analyses were carried out using SAS (version 9.4, SAS Inst. Inc., Cary, NC). Significance was set at $p \le 0.05$ while trends were identified at $p \le 0.10$.

Day 1 and Day 3 data were analyzed separately. Correlations were run to identify potential covariates for each response variable (ExitSpeed, HR30, HR_Diff, TimetoBL, GluDiff, GluPostAvg, LactDiff, LactPostAvg, CortDiff, and CortPostAvg) using PROC CORR. Potential covariates included the following: Group (1-3); TimeLag, which was the time (in minutes) from tryptophan supplementation until the behavior test was performed; TrtNum, which was the sequence (1-4) of treatments; as well as Temperature (°C) and WindSpeed (m/s) outside when each behavior test was performed. Correlations between these variables and the response variables were examined; a covariate was included in the models for both Day 1 and Day 3 if a significant correlation to the response variable was found on either day, as long as significance was maintained once added to the model. Additional covariates (GluRunDate, LactRunDate, CortPretestPlate, and

CortPosttestPlate) were considered for response variables requiring lab analysis. ANOVA and ANCOVA models were constructed for each response variable using PROC MIXED. In all models, Horse and Treatment were identified as class variables. If Group, TrtNum, GluRunDate, LactRunDate, CortPretestPlate, or CortPosttestPlate were included in any model, they were also categorized as class variables. Additionally, Horse was treated as random effect. Treatment means, standard errors, and differences between treatments were determined using the PDIFF option in LSMEANS.

The following models were used to evaluate treatment effect on Day 1 and Day 3:

ExitSpeed = Group + Temperature + Treatment HR30 = TrtNum + Treatment HR_Diff = Group + TrtNum + Treatment TimetoBL = Temperature + Treatment GluDiff = GluRunDate + TimeLag + Treatment GluPostAvg = TimeLag + Treatment LactDiff = Treatment LactPostAvg = Treatment CortDiff = Treatment CortPostAvg = CortPosttestPlate + Treatment

The subset of the blood samples ($n \le 4$ samples per treatment, day, and blood collection) analyzed for amino acid content was also examined using PROC MIXED. Data points were excluded from analysis if they were both (1) outside of the range of serum amino acids found in horses based on previous literature and (2) more than three standard deviations away from the sample mean. Time between supplementation and BC2 was considered as a covariate but was not significant and, therefore, not included in the models. Horse, Treatment, and Day were recognized as class variables while Horse and Horse*Treatment were random effects. Day 1 and Day 3 data were considered separately using the SLICEBY=DAY statement. Treatment means were evaluated using the PDIFF option. Effect of treatment number (to evaluate the effectiveness of washout periods) and comparisons between blood collections and days were analyzed in PROC MIXED using the PDIFF option in LSMEANS. In these models, Horse, Treatment, TrtNum, Day, and blood collection were class variables while Horse and Horse*Treatment remained random effects.

The following models were used to evaluate serum amino acid content in Group 1:

TrpDiff = Treatment | Day RatioDiff = Treatment | Day

RESULTS

Horses remained healthy throughout the study; all resting heart rate, respiratory rate, body temperature, and packed cell volume measurements remained within normal limits. Individual horse body weight varied somewhat throughout the study and feed/treatment doses were adjusted accordingly. Serum glucose, lactate, cortisol, and amino acid levels are compared to expected ranges based on previous literature in Table 2.4.

Correlations between model covariates and response variables, along with covariate effects in the models, are presented in Table 2.5. Means and standard deviations for each response variable by treatment and day are displayed in Table 2.6.

LOW

While heart rate was elevated above baseline at 30 seconds post-startle for both the low dose and control on Day 1, heart rate difference was less on Day 1 of the low treatment compared to Day 1 of control (P = 0.05). Day 1 lactate difference was also significantly less on the low dose than on control (P = 0.03). On the low dose Day 1, average serum lactate was less post startle test compared to values before the startle test. On control Day 1, however, lactate increased after the startle test. These results indicate that the low treatment had a sedative effect on Day 1 in terms of changes in heart rate and serum lactate levels.

No significant effects or trends were seen at the low treatment on Day 3.

Day 1 cortisol difference on the medium treatment was less compared to control (P = 0.01). Serum cortisol decreased post-startle test on the medium dose while it increased post-startle on control. This seems to indicate that the medium treatment had a sedative effect on cortisol levels on Day 1.

Time for heart rate to return to baseline post-startle was greater on Day 3 of medium dose than control (P = 0.03). These results show that the medium dose had an excitatory effect on heart rate on Day 3.

HIGH

Cortisol difference before and after the startle test tended to be different on Day 1 of the high dose compared to control (P = 0.10). Numerically, serum cortisol levels were lower post-startle than pre-startle on high treatment Day 1 where levels actually increased after the startle test on control Day 1. This trend implies that the high dose may have had a sedative effect on cortisol levels on Day 1.

Post-startle serum lactate on Day 3 of the high dose showed a trend of being higher than on Day 3 of control (P = 0.10), suggesting somewhat of an excitatory effect on this response variable.

Amino Acids

Mean differences in serum free tryptophan and Trp:LNAA by treatment and day are presented in Figures 2.2 and 2.3, respectively. Significance for pairwise comparisons of means between treatments are shown in Tables 2.7 and 2.8.

On Day 1, serum Trp and Trp:LNAA in BC1 did differ significantly from levels in BC2 (P < 0.0001 and P < 0.0001, respectively). However, on Day 3, neither Trp nor Trp:LNAA differed

39

significantly from BC1 to BC2 (P = 0.98 and P = 0.99, respectively). In addition, Trp and Trp:LNAA on Day 3 BC1 were not significantly different from those seen on Day 1 BC2 (P = 0.93 and P = 0.87, respectively).

The efficacy of the washout periods was analyzed by comparing Trp and TRP:LNAA in BC1 on Day 1 of each treatment. Treatment number was not significant for serum Trp levels (P = 0.54) or Trp:LNAA (P = 0.37).

DISCUSSION

We did see serum cortisol levels higher than those previously reported in horses. Serum free tryptophan was also seen at higher concentrations than those previously reported but we provided oral tryptophan supplement to horses at doses that have not been previously evaluated.

It is interesting to note that on Day 1, all treatments had some sort of sedative effect on at least one of the response variables whereas on Day 3, either no effect was seen (LOW) or some sort of excitatory effect was seen (MED, HIGH) on one of the response variables. The reason for this cannot be determined based on this experiment, but one possibility is that horses started to experience symptoms of serotonin syndrome and became more excitable on Day 3 at the MED and HIGH doses. However, we did not see any of the symptoms of the syndrome as they present in other species (Boyer and Shannon, 2005; Gillman, 1999).

Another potential explanation for the results on Day 3 conflicting with those seen on Day 1 could be that it is the actual change in the Trp:LNAA ratio that produces the desired sedative behavioral effects noted in other species. Some evidence for this may lie in the serum amino acid analysis of Group 1 horses, as treatment on Day 3 had little effect on serum free tryptophan concentration or Trp:LNAA. The lack of significant changes in amino acid profiles on Day 3 and from Day 1 to Day 3 may provide reasoning as to why no significant calming effects were seen in

any of the response variables on Day 3. It is possible that serum amino acids would have dropped between the time of BC1 and BC2 on Day 3, had the horses not received another treatment during that time. Again, we are unsure as to why this is; without further amino acid analysis, we do not know how long free tryptophan or Trp:LNAA remain elevated in the serum. We can see that after the four-day washout period, levels returned to baseline and treatment number had no significant effect.

We were surprised at how little significance treatment had on most of the response variables and how trends did not seem to be reliable between treatments or days. One exception can be seen in the decrease in serum cortisol post-startle on Day 1 of the MED and HIGH treatments. These results agree with the response Koopmans et al. (2005) saw in swine supplemented with tryptophan; although no behavioral effects were seen in that study, tryptophan supplementation reduced plasma cortisol and noradrenaline in pigs exposed to social stress.

There was a lot of variability among individual horses used in this study. Perhaps testing a more homogenous group of horses (in which individuals were of the same breed, sex, and similar age) would generate more clear results. Previous research provides evidence that there are differences in male and female serotonergic systems and responses to changes in dietary Trp:LNAA (Albonetti et al., 1994; Dickinson and Curzon, 1986; Henry et al., 1992; Henry et al., 1996; Kennett et al., 1986; Kim and Camilleri, 2000; Rouvinen et al., 1999). Alberghina et al. (2014) as well as Ferlazzo et al. (2012) saw differences in serum tryptophan in horses of different ages. Other studies have observed breed differences (Alberghina et al., 2014; Bagshaw et al., 1994; Grimmett and Sillence, 2005). While all of these factors may play a role in the permeability of the blood-brain barrier the effectiveness of supplemental tryptophan on serotonin biosynthesis, it is also worth considering that these types of treatments may be most effective in horses with

dysfunctioning serotonergic systems. This would be in line with research in other species, where tryptophan supplements and proserotonergic drugs were most effective in individuals that exhibited symptoms of disorder within the serotonin system (Argyropoulos et al., 2004; Bell et al., 2001; Weld et al., 1998).

The environment was another source of variability. Although researchers aimed to keep the timing of the tests and the footing within the test chute as consistent as possible, variations in temperature, wind, precipitation, and on-farm activities provided uncontrolled stimuli that may have impacted the results of the behavior tests. Performing these tests in a more controlled environment would be desirable and may provide more reliable results.

Including a positive control, with a sedative known to be effective in horses (such as acepromazine), may have helped elucidate treatment effects. It's possible that the startling stimuli were too effective at spooking the horses in this experiment and that any treatment effects were nullified as a result. Comparing treatment effects to that of a positive control could provide support or evidence against this hypothesis.

Supplementing tryptophan to horses at higher doses (40 mg/kg BW and 60 mg/kg BW) may be an effective way to reduce cortisol levels in stressful situations. We also saw some evidence of calming effects of tryptophan at a lower dose (20 mg/kg BW). However, these findings were seen in only a few of the results variables measured in this experiment. The horses we used responded to tryptophan supplementation more favorably on the first day they received the supplement. This finding does not support the directions found on some commercially available products that recommend providing the supplement to the horse 24 hours in advance and again several hours before a stressful event takes place. The subset of blood samples we analyzed for amino acid content provides evidence to refute this recommendation as well. We saw no additional

beneficial effects in terms of increasing serum free tryptophan levels or the ratio of tryptophan to other large neutral amino acids on Day 3 of supplementation versus Day 1. This experiment confirms that supplementing horses with tryptophan is effective at increasing serum free tryptophan and the ratio of tryptophan to certain amino acids. We found little evidence for the behavioral or physiological calmative effects of supplemental tryptophan in horses at the doses tested. However, from the results presented and discussed in this paper, it appears that supplementing horses with tryptophan may produce desired results only a few hours after administration and that longer term use may provide no additional benefit or may even have unwanted effects.

When evaluating the use of calming supplements or drugs, it's important to consider the welfare of the horse. While these compounds may be beneficial in alleviating short-term stress and anxiety (for example, when veterinary care needs to be provided) the cause of such emotions should be evaluated. Horses kept in unnatural environments, managed poorly, or asked to perform beyond their level of training may show signs of stress and anxiety. Chronic health issues such as ulcers or lameness may also be the culprit. Oftentimes, sedative drugs and supplements are utilized to limit unwanted behaviors such as spooking, bolting, rearing, or bucking. Looking into the potential causes of unwanted behaviors should be the first step before owners turn to calming drugs or supplements. Providing more training, turnout time, or treatment for an underlying disease or condition could result in a more sustainable way to reduce a horse's unwanted behaviors and could improve welfare for the animal.

	n	Mean age (years)	Mean body weight (kg)	Mean BCS (1-9)	Mean height (cm)	Number of mares: Number of geldings	Number of Quarter Horse type: Number of draft horse type
Group 1	4	6.5	463.0	4.4	152.8	0:4	3:1
Group 2	3	8.6	493.9	5.7	160.3	0:3	0:3
Group 3	4	11.0	618	5.8	162.8	2:4	0:4

TABLE 2.1: Horse profile by group

TABLE 2.2:	Variance	between	horses
-------------------	----------	---------	--------

		Day 1			Day 3	
Response Variable	Estimate	Standard Error	Ratio (horse : residual)	Estimate	Standard Error	Ratio (horse : residual)
ExitSpeed (m/s)	0.953	0.5521	1.773	0.04921	0.2089	0.03719
HR30 (bpm)	215.49	131.02	0.7418	208.61	144.05	0.5164
HR_Diff (bpm)	190.12	131.37	0.7159	34.1998	81.1269	0.07998
TimetoBL (sec)	732.31	1142.78	0.1449	7143.96	4253.96	0.8022
GluDiff (mg/dL)	8.6686	7.4146	0.4094	0		0
GluPostAvg (mg/dL)	0		0	2.0242	9.4039	0.03188
LactDiff (mmol/L)	0.0113	0.01392	0.1805	0.01986	0.01978	0.2628
LactPostAvg (mmol/L)	0.02363	0.01927	0.4152	0.02802	0.02414	0.3843
CortDiff (μg/dL)	0		0	1.046	3.3003	0.06633
CortPostAvg (µg/dL)	87.7944	41.2961	5.5207	48.3134	24.9931	2.2064

	Hay: Timothy Brome Mix	Concentrate: Purina Equine Senior
Digestible Energy (Mcal/kg)	2.07	2.70
Dry Matter (%)	92.3	90.0
Crude Protein (%)	6.70	min 14
Estimated Lysine (%)	0.23	min 0.70
Acid Detergent Fiber (%)	33.5	*
Neutral Detergent Fiber (%)	55.5	*
Starch (%)	0.2	max 12
Crude Fat (%)	2.2	min 5.5
Ash (%)	4.9	*
Calcium (%)	0.41	0.5-1.00
Phosphorus (%)	0.17	min 0.4
Magnesium (%)	0.17	0.33
Potassium (%)	1.12	min 1.60
Sodium (%)	0.03	min 0.24
Iron (ppm)	64	min 220
Zinc (ppm)	14	min 220
Copper (ppm)	4	min 55
Manganese (ppm)	44	min 220

TABLE 2.3: Guaranteed analysis of feedstuffs on as-fed basis

*Proprietary blend: information unavailable.

TABLE 2.4: Daily procedures

Day	Group A	Group B	Group C
1	Heart rate, temperature, weigh, null reactivity test		
2	Heart rate, temperature, null reactivity test	Heart rate, temperature, weigh, null reactivity test	
3	Heart rate, temperature, weigh, null reactivity test	Heart rate, temperature, null reactivity test	
4	Heart rate, temperature, null reactivity test	Heart rate, temperature, weigh, null reactivity test	
5	Heart rate, temperature, weigh, null reactivity test	Heart rate, temperature, null reactivity test	Heart rate, temperature, weigh, null reactivity test
6	Heart rate, temperature, null reactivity test	Heart rate, temperature, weigh, null reactivity test	Heart rate, temperature, null reactivity test
7	Heart rate, temperature, BC1 (PCV, TRP:LNAA), weigh, BC2 (AA, glucose, lactate, cortisol), null reactivity test, BC3 (glucose, lactate, cortisol)	Heart rate, temperature, null reactivity test	Heart rate, temperature, weigh, null reactivity test
8	BC1 (PCV, AA), weigh, begin first* treatment, heart rate, temperature, BC2 (AA, glucose, lactate, cortisol), startle reactivity test, BC3 (glucose, lactate, cortisol)	Heart rate, temperature, BC1 (PCV, TRP:LNAA), weigh, BC2 (AA, glucose, lactate, cortisol), null reactivity test, BC3 (glucose, lactate, cortisol)	Heart rate, temperature, null reactivity test
9	BC1 (PCV, AA), treatment, heart rate, temperature, BC2 (AA), null reactivity test	BC1 (PCV, AA), weigh, begin first* treatment, heart rate, temperature, BC2 (AA, glucose, lactate, cortisol), startle reactivity test, BC3 (glucose, lactate, cortisol)	Heart rate, temperature, weigh, null reactivity test

10	BC1 (PCV, AA), treatment, heart rate, temperature, BC2 (AA, glucose, lactate, cortisol), startle reactivity test, BC3 (glucose, lactate, cortisol)	BC1 (PCV, AA), treatment, heart rate, temperature, BC2 (AA), null reactivity test	Heart rate, temperature, null reactivity test
11	Washout day: heart rate, temperature, BC1 (PCV), null reactivity test	BC1 (PCV, AA), treatment, heart rate, temperature, BC2 (AA, glucose, lactate, cortisol), startle reactivity test, BC3 (glucose, lactate, cortisol)	Heart rate, temperature, BC1 (PCV, TRP:LNAA), weigh, BC2 (AA, glucose, lactate, cortisol), null reactivity test, BC3 (glucose, lactate, cortisol)
12	Washout day: heart rate, temperature, BC1 (PCV), null reactivity test	Washout day: heart rate, temperature, BC1 (PCV), null reactivity test	BC1 (PCV, AA), weigh, begin first* treatment, heart rate, temperature, BC2 (AA, glucose, lactate, cortisol), startle reactivity test, BC3 (glucose, lactate, cortisol)
13	Washout day: heart rate, temperature, BC1 (PCV), null reactivity test	Washout day: heart rate, temperature, BC1 (PCV), null reactivity test	BC1 (PCV, AA), treatment, heart rate, temperature, BC2 (AA), null reactivity test
14	Washout day: heart rate, temperature, BC1 (PCV), null reactivity test	Washout day: heart rate, temperature, BC1 (PCV), null reactivity test	BC1 (PCV, AA), treatment, heart rate, temperature, BC2 (AA, glucose, lactate, cortisol), startle reactivity test, BC3 (glucose, lactate, cortisol)
15	BC1 (PCV, AA), weigh, begin second* treatment, heart rate, temperature, BC2 (AA, glucose, lactate, cortisol), startle reactivity test, BC3 (glucose, lactate, cortisol)	Washout day: heart rate, temperature, BC1 (PCV), null reactivity test	Washout day: heart rate, temperature, BC1 (PCV), null reactivity test
16	BC1 (PCV, AA), treatment, heart rate, temperature, BC2 (AA), null reactivity test	BC1 (PCV, AA), weigh, begin second* treatment, heart rate, temperature, BC2 (AA, glucose, lactate, cortisol), startle reactivity test, BC3 (glucose, lactate, cortisol)	Washout day: heart rate, temperature, BC1 (PCV), null reactivity test

17	BC1 (PCV, AA), treatment, heart rate, temperature, BC2 (AA, glucose, lactate, cortisol), startle reactivity test, BC3 (glucose, lactate, cortisol)	BC1 (PCV, AA), treatment, heart rate, temperature, BC2 (AA), null reactivity test	Washout day: heart rate, temperature, BC1 (PCV), null reactivity test
18	Washout day: heart rate, temperature, BC1 (PCV), null reactivity test	BC1 (PCV, AA), treatment, heart rate, temperature, BC2 (AA, glucose, lactate, cortisol), startle reactivity test, BC3 (glucose, lactate, cortisol)	Washout day: heart rate, temperature, BC1 (PCV), null reactivity test
19	Washout day: heart rate, temperature, BC1 (PCV), null reactivity test	Washout day: heart rate, temperature, BC1 (PCV), null reactivity test	BC1 (PCV, AA), weigh, begin second* treatment, heart rate, temperature, BC2 (AA, glucose, lactate, cortisol), startle reactivity test, BC3 (glucose, lactate, cortisol)
20	Washout day: heart rate, temperature, BC1 (PCV), null reactivity test	Washout day: heart rate, temperature, BC1 (PCV), null reactivity test	BC1 (PCV, AA), treatment, heart rate, temperature, BC2 (AA), null reactivity test
21	Washout day: heart rate, temperature, BC1 (PCV), null reactivity test	Washout day: heart rate, temperature, BC1 (PCV), null reactivity test	BC1 (PCV, AA), treatment, heart rate, temperature, BC2 (AA, glucose, lactate, cortisol), startle reactivity test, BC3 (glucose, lactate, cortisol)
22	BC1 (PCV, AA), weigh, begin third* treatment, heart rate, temperature, BC2 (AA, glucose, lactate, cortisol), startle reactivity test, BC3 (glucose, lactate, cortisol)	Washout day: heart rate, temperature, BC1 (PCV), null reactivity test	Washout day: heart rate, temperature, BC1 (PCV), null reactivity test

23	BC1 (PCV, AA), treatment, heart rate, temperature, BC2 (AA), null reactivity test	BC1 (PCV, AA), weigh, begin third* treatment, heart rate, temperature, BC2 (AA, glucose, lactate, cortisol), startle reactivity test, BC3 (glucose, lactate, cortisol)	Washout day: heart rate, temperature, BC1 (PCV), null reactivity test
24	BC1 (PCV, AA), treatment, heart rate, temperature, BC2 (AA, glucose, lactate, cortisol), startle reactivity test, BC3 (glucose, lactate, cortisol)	BC1 (PCV, AA), treatment, heart rate, temperature, BC2 (AA), null reactivity test	Washout day: heart rate, temperature, BC1 (PCV), null reactivity test
25	Washout day: heart rate, temperature, BC1 (PCV), null reactivity test	BC1 (PCV, AA), treatment, heart rate, temperature, BC2 (AA, glucose, lactate, cortisol), startle reactivity test, BC3 (glucose, lactate, cortisol)	Washout day: heart rate, temperature, BC1 (PCV), null reactivity test
26	Washout day: heart rate, temperature, BC1 (PCV), null reactivity test	Washout day: heart rate, temperature, BC1 (PCV), null reactivity test	BC1 (PCV, AA), weigh, begin third* treatment, heart rate, temperature, BC2 (AA, glucose, lactate, cortisol), startle reactivity test, BC3 (glucose, lactate, cortisol)

27	Washout day: heart rate, temperature, BC1 (PCV), null reactivity test	Washout day: heart rate, temperature, BC1 (PCV), null reactivity test	BC1 (PCV, AA), treatment, heart rate, temperature, BC2 (AA), null reactivity test
28	Washout day: heart rate, temperature, baseline blood draw (PCV), weigh, null reactivity test	Washout day: heart rate, temperature, BC1 (PCV), null reactivity test	BC1 (PCV, AA), treatment, heart rate, temperature, BC2 (AA, glucose, lactate, cortisol), startle reactivity test, BC3 (glucose, lactate, cortisol)
29	BC1 (PCV, AA), weigh, begin fourth* treatment, heart rate, temperature, BC2 (AA, glucose, lactate, cortisol), startle reactivity test, BC3 (glucose, lactate, cortisol)	Washout day: heart rate, temperature, BC1 (PCV), null reactivity test	Washout day: heart rate, temperature, BC1 (PCV), null reactivity test
30	BC1 (PCV, AA), treatment, heart rate, temperature, BC2 (AA), null reactivity test	BC1 (PCV, AA), weigh, begin fourth* treatment, heart rate, temperature, BC2 (AA, glucose, lactate, cortisol), startle reactivity test, BC3 (glucose, lactate, cortisol)	Washout day: heart rate, temperature, BC1 (PCV), null reactivity test

31	BC1 (PCV, AA), treatment, heart rate, temperature, BC2 (AA, glucose, lactate, cortisol), startle reactivity test, BC3 (glucose, lactate, cortisol)	BC1 (PCV, AA), treatment, heart rate, temperature, BC2 (AA), null reactivity test	Washout day: heart rate, temperature, BC1 (PCV), null reactivity test
32	Washout day: heart rate, temperature, baseline blood draw (PCV), null reactivity test	BC1 (PCV, AA), treatment, heart rate, temperature, BC2 (AA, glucose, lactate, cortisol), startle reactivity test, BC3 (glucose, lactate, cortisol)	Washout day: heart rate, temperature, BC1 (PCV), null reactivity test
33	Washout day: heart rate, temperature, baseline blood draw (PCV), null reactivity test	Washout day: heart rate, temperature, BC1 (PCV), null reactivity test	BC1 (PCV, AA), weigh, begin fourth* treatment, heart rate, temperature, BC2 (AA, glucose, lactate, cortisol), startle reactivity test, BC3 (glucose, lactate, cortisol)
34	Washout day: heart rate, temperature, baseline blood draw (PCV), null reactivity test	Washout day: heart rate, temperature, BC1 (PCV), null reactivity test	BC1 (PCV, AA), treatment, heart rate, temperature, BC2 (AA), null reactivity test

35	Washout day: heart rate, temperature, baseline blood draw (PCV), weigh, null reactivity test	Washout day: heart rate, temperature, BC1 (PCV), null reactivity test	BC1 (PCV, AA), treatment, heart rate, temperature, BC2 (AA, glucose, lactate, cortisol), startle reactivity test, BC3 (glucose, lactate, cortisol)
36		Washout day: heart rate, temperature, BC1 (PCV), null reactivity test	Washout day: heart rate, temperature, BC1 (PCV), null reactivity test
37			Washout day: heart rate, temperature, BC1 (PCV), null reactivity test
38			Washout day: heart rate, temperature, BC1 (PCV), null reactivity test
39			Washout day: heart rate, temperature, BC1 (PCV), null reactivity test

*Fixed treatments (CON, LOW, MED, HIGH) were assigned in a random order so that no horses within a group were receiving the same treatment at the same time

Compound	Ranges found in previous literature	Ranges found in current study
Glucose (mg/dL)	62 ¹ - 134 ¹	67.5 - 112.5
Lactate (mmol/L)	$0.56^2 - 2.32^3$	0.47 - 2.78
Cortisol (µg/dL)	$0.08^4 - 25.5^4$	0.02 - 56.81
Free tryptophan (µmol/L)	8.0 ⁵ - 118.1 ⁶	19.3 - 142.3
Isoleucine (µmol/L)	36.1 ⁵ - 171.8 ⁵	72.3 - 120.1
Leucine (μ mol/L)	60.1 ⁶ - 371.3 ⁵	122.4 - 148.2
Valine (μ mol/L)	115.0 ⁵ - 311.8 ⁵	164.1 - 201.3
Penylalanine (µmol/L)	$14.7^{6} - 103.4^{6}$	31.1 - 57.3
Tyrosine (µmol/L)	22.1 ⁶ - 125.4 ⁶	68.6 - 88.2
Trp:LNAA	$0.09^7 - 0.13^7$	0.04 - 0.28
¹ Kahn and Line, 2010 ² Stull and Rodiek, 2000		

TABLE 2.5: Serum values in horses

¹Kahn and Line, 2010 ²Stull and Rodiek, 2000 ³Nogueira et al., 2002 ⁴Alenka et al., 2008 ⁵Assenza et al., 2004 ⁶Bergero et al., 2005 ⁷Wilson, 2007

D V 11	Covariate in Model	DAY 1			DAY 3		
Response Variable		r*	P** 6	estimate ± SE***	r*	P** 6	estimate ± SE***
ExitSpeed (m/s)							
	Group	-0.42097	0.0068		-0.44902	0.0022	
	Temperature (°C)	0.54964	0.0002	0.080 ± 0.017	0.11043	0.4755	0.002 ± 0.029
HR30 (bpm)							
	TrtNum	0.03286	0.8363		0.31953	0.0391	
HR_Diff (bpm)							
	Group	-0.31893	0.0395		-0.42359	0.0052	
	TrtNum	0.12101	0.4452		0.42941	0.0045	
TimetoBL (sec)							
	Temperature (°C)	0.39175	0.0136	4.114 ± 1.586	0.46337	0.0023	10.950 ± 2.523
GluDiff (mg/dL)							
	GluRunDate	-0.06339	0.7014		-0.38298	0.0161	
	TimeLag (sec)	-0.43873	0.0052	-0.048 ± 0.032	-0.42515	0.0070	-0.105 ± 0.032
GluPostAvg (mg/dL)						
	TimeLag (sec)	-0.38014	0.0142	-0.074 ± 0.029	-0.39329	0.0110	-0.106 ± 0.044
CortPostAvg (µg/dL	.)						
	CortPosttestPlate	0.13747	0.3914		0.31034	0.0483	

TABLE 2.6: Model covariates - correlation to response variables and influence in models

*PROC CORR: Pearson correlation coefficient

**PROC CORR: Prob > lrl under H0: Rho=0

***PROC MIXED: Solution for Fixed Effects

TABLE 2.7: Effect of tryptophan treatment on physiological and behavioral response variables: least squares means ± standard
error

	C	N	LOW MED		HIGH			
Response Variable	Day 1	Day 3	Day 1	Day 3	Day 1	Day 3	Day 1	Day 3
ExitSpeed (m/s)	5.09 ± 0.38	5.19 ± 0.36	4.77 ± 0.38	5.54 ± 0.36	5.16 ± 0.37	5.12 ± 0.36	5.44 ± 0.39	5.59 ± 0.35
HR30 (bpm)	102.83 ± 6.79	108.36 ± 7.48	97.60 ± 7.05	103.66 ± 7.48	104.04 ± 7.06	99.91 ± 7.80	109.78 ± 6.80	99.02 ± 7.80
HR_Diff (bpm)	69.95 ± 6.48	71.87 ± 6.52	55.33 ± 6.72	68.56 ± 6.53	68.79 ± 6.77	68.19 ± 6.94	74.51 ± 6.48	65.29 ± 6.94
TimetoBL (sec)	224.00 ± 24.15	228.69 ± 38.21	213.53 ± 25.51	224.28 ± 39.69	249.62 ± 24.14	325.88 ± 39.58	209.59 ± 24.19	247.11 ± 39.67
GluDiff (mg/dL)	-4.34 ± 1.96	-1.78 ± 1.74	-8.27 ± 1.97	1.79 ± 1.69	-4.96 ± 2.07	1.98 ± 1.76	-0.64 ± 2.03	0.54 ± 1.90
GluPostAvg (mg/dL)	83.36 ± 2.33	85.17 ± 2.57	81.71 ± 2.20	85.41 ± 2.45	83.89 ± 2.25	86.90 ± 2.44	87.88 ± 2.43	87.00 ± 2.73
LactDiff (mmol/L)	0.17 ± 0.09	0.17 ± 0.10	-0.10 ± 0.09	0.30 ± 0.10	0.21 ± 0.08	0.24 ± 0.10	0.22 ± 0.09	0.19 ± 0.11
LactPostAvg (mmol/L)	1.14 ± 0.09	1.09 ± 0.11	0.98 ± 0.09	1.18 ± 0.10	1.25 ± 0.09	1.25 ± 0.11	1.11 ± 0.09	1.35 ± 0.11
CortDiff (μ g/dL)	2.79 ± 1.27	-0.29 ± 1.30	1.09 ± 1.27	0.33 ± 1.24	-1.86 ± 1.22	-0.07 ± 1.30	-0.38 ± 1.34	-0.38 ± 1.38
CortPostAvg (µg/dL)	12.81 ± 3.11	12.65 ± 2.62	11.95 ± 3.08	10.55 ± 2.53	11.87 ± 3.08	13.50 ± 2.55	13.35 ± 3.16	10.73 ± 2.71

DAY 1			DAY 3				
Treatment		<i>P</i> *		Treat	ment	<i>P</i> *	
CON ^a	LOW ^b	0.0011		CON ^a	LOW ^a	0.7150	
CON ^a	MED ^a	<0.0001		CON ^a	MED ^a	0.5878	
CON ^a	HIGH ^a	<0.0001		CON ^a	$\mathrm{HIGH}^{\mathrm{b}}$	0.6035	
LOW^{b}	MED ^a	0.0474		LOW ^a	MED ^a	0.3675	
LOW^{b}	HIGH ^a	<0.0001		LOW ^a	$\mathrm{HIGH}^{\mathrm{b}}$	0.8554	
MED ^a	HIGH ^a	0.0013		MED ^a	$\mathrm{HIGH}^{\mathrm{b}}$	0.3114	

 TABLE 2.8: Differences of least squares means for serum free tryptophan (µmol/L) Group 1 horses

 ${}^{a}_{n=4}$. ${}^{b}_{n=3}$. *Difference of Least Squares Means.

	DAY 1		DAY 3			
Treatment		<i>P</i> *	Treat	ment	<i>P</i> *	
CON ^b	LOW ^b	0.0037	CON ^b	LOW ^a	0.5465	
$\operatorname{CON}^{\mathrm{b}}$	MED ^a	<0.0001	CON ^b	MED ^a	0.6022	
$\operatorname{CON}^{\mathrm{b}}$	$\mathrm{HIGH}^{\mathrm{b}}$	<0.0001	$\operatorname{CON}^{\mathfrak{b}}$	HIGH ^c	0.9097	
LOW^{b}	MED ^a	0.0632	LOW ^a	MED ^a	0.2320	
LOW^{b}	$\mathrm{HIGH}^{\mathrm{b}}$	0.0006	LOW ^a	HIGH ^c	0.6789	
MED ^a	$\mathrm{HIGH}^{\mathrm{b}}$	0.0252	MED ^a	HIGH ^c	0.5631	

^an=4. ^bn=3. ^cn=2. *Difference of Least Squares Means.

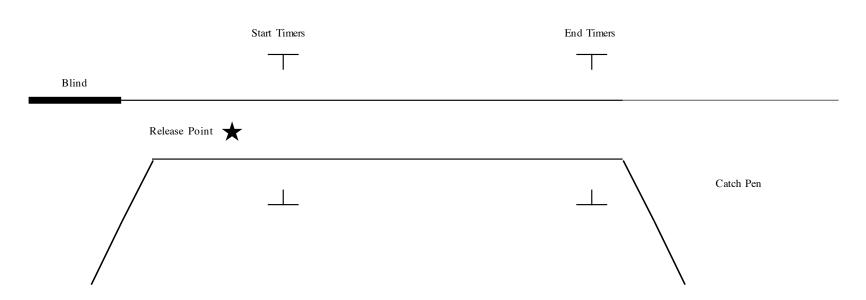
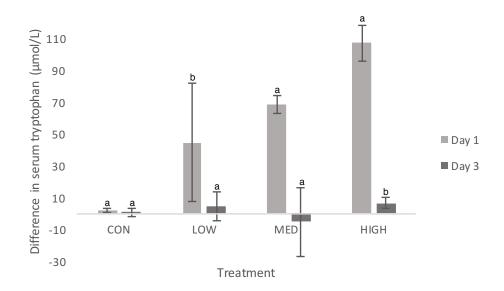
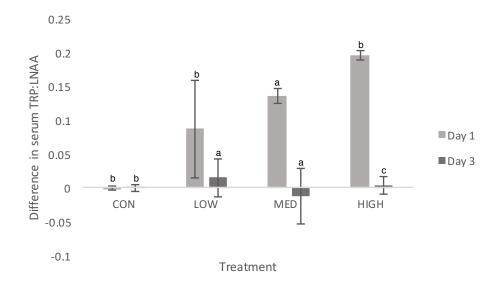




Fig. 2.1: Behavior test setup. The chute measured 1.5 meters wide and 7 meters long; not to scale.

Fig. 2.2: Average (\pm *s.d.*) *difference in serum free tryptophan* (μ *mol/L*) *for Group 1 horses calculated by subtracting levels in BC1 sample from levels BC2 sample.* ^{*a*}*n*=4. ^{*b*}*n*=3.

Fig. 2.3: Average (\pm *s.d.*) *difference in serum Trp:LNAA for Group 1 horses calculated by subtracting ratio in BC1 samples from ratio in BC2 sample.*^{*a*}*n*=4.^{*b*}*n*=3.^{*c*}*n*=2.

LITERATURE CITED

- Adeola, O. & Ball, R. O. 1992. Hypothalamic neurotransmitter concentrations and meat quality in stressed pigs offered excess dietary tryptophan and tyrosine. *Journal of Animal Science*, 70, 1888-1894.
- Alberghina, D., Giannetto, C. & Piccione, G. 2010a. Peripheral serotoninergic response to physical exercise in athletic horses. *Journal of Veterinary Science*, 11, 285-289.
- Alberghina, D., Giannetto, C., Visser, E. K. & Ellis, A. D. 2010b. Effect of diet on plasma tryptophan and serotonin in trained mares and geldings. *Vet Rec*, 166, 133-6.
- Alberghina, D., Panzera, M., Giannetto, C. & Piccione, G. 2014. Developmental changes during the first year of life in plasma tryptophan concentration of the foal. *Journal of Equine Veterinary Science*, 34, 387-390.
- Albonetti, M. E., Gonzalez, M. I., Wilson, C. A. & Farabollini, F. 1994. Effects of neonatal treatment with 1-(2, 5-dimethoxy-4-lodophenyl)-2 aminopropane HCI (DOI) and ritanserin on agonistic behavior in adult male and female rats. *Aggressive Behavior*, 20, 135-242.
- Alenka, N.-S., Nina, C.-K. & P, K. 2008. Influence of a calmative on selected blood parameters in horses under stressful conditions. *Acta veterinaria*, 58, 509-519.
- Argyropoulos, S. V., Hood, S. D., Adrover, M., Bell, C. J., Rich, A. S., Nash, J. R., Rich, N. C., Witchel, H. J. & Nutt, D. J. 2004. Tryptophan depletion reverses the therapeutic effect of selective serotonin reuptake inhibitors in social anxiety disorder. *Biol Psychiatry*, 56, 503-9.
- Assenza, A., Bergero, D., Tarantola, M., Piccione, G. & Caola, G. 2004. Blood serum branched chain amino acids and tryptophan modifications in horses competing in long-distance rides of different length. *Journal of Animal Physiology and Animal Nutrition*, 88, 172-177.
- Bagshaw, C. S., Ralston, S. L. & Fisher, H. 1994. Behavioral and physiological effect of orally administered tryptophan on horses subjected to acute isolation stress. *Applied Animal Behaviour Science*, 40, 1-12.
- Basic, D., Krogdahl, Å., Schjolden, J., Winberg, S., Vindas, M. A., Hillestad, M., Mayer, I., Skjerve, E. & Höglund, E. 2013. Short- and long-term effects of dietary l-tryptophan supplementation on the neuroendocrine stress response in seawater-reared Atlantic salmon (Salmo salar). *Aquaculture*, 388-391, 8-13.
- Bell, C., Abrams, J. & Nutt, D. 2001. Tryptophan depletion and its implications for psychiatry. *The British Journal of Psychiatry*, 178, 399-405.
- Bellisle, F., Blundell, J. E., Dye, L., Fantino, M., Fern, E., Fletcher, R. J., Lambert, J., Roberfroid, M., Specter, S., Westenhofer, J. & Westerterp-Plantenga, M. S. 1998.

Functional food science and behaviour and psychological functions. *British Journal of Nutrition*, 80, S173-S193.

- Bergero, D., Assenza, A., Schiavone, A., Piccione, G., Perona, G. & Caola, G. 2005. Amino acid concentrations in blood serum of horses performing long lasting low-intensity exercise. *Journal of Animal Physiology and Animal Nutrition*, 89, 146-150.
- Boadle-Biber, M. 1993. Regulation of serotonin synthesis. *Progress in Biophysics and Molecular Biology*, 60, 1-15.
- Bosch, G., Beerda, B., Hendriks, W. H., van der Poel, A. F. & Verstegen, M. W. 2007. Impact of nutrition on canine behaviour: current status and possible mechanisms. *Nutr Res Rev*, 20, 180-94.
- Boyer, E. W. & Shannon, M. 2005. The serotonin syndrome. *The New England Journal of Medicine*, 352, 1112-1120.
- Breedlove, S. M., Watson, N. V. & Rosenzweig, M. R. 2010. *Biological Psychology: An Introduction to Behavioral, Cognitive, and Clinical Neuroscience*, 6th edn. Sinauer Associates, Sunderland, MA.
- Bruschetta, G., Di Pietro, P., Miano, M., Zanghi, G., Fazio, E. & Ferlazzo, A. M. 2013. Daily variations of plasma serotonin levels in 2-year-old horses. *Journal of Veterinary Behavior: Clinical Applications and Research*, 8, 95-99.
- Chamberlain, B., Ervin, F. R., Pihl, R. O. & Young, S. N. 1987. The effect of raising or lowering tryptophan levels on aggression in vervet monkeys. *Pharmacology Biochemistry and Behavior*, 28, 503-510.
- Corr, P. J. 2006. Understanding Biological Psychology. Blackwell Publishing, Malden, MA.
- Davis, J. M., Alderson, N. L. & Welsh, R. S. 2000. Serotonin and central nervous system fatigue: nutritional considerations. *American Journal of Clinical Nutrition*, 72, 573s-578s.
- DeNapoli, J. S., Dodman, N. H., Shuster, L., Rand, W. M. & Gross, K. L. 2000. Effect of dietary protein content and tryptophan supplementation on dominance aggression, territorial aggression, and hyperactivity in dogs. *Journal of American Veterinary Association*, 217, 504-508.
- Dickinson, S. L. & Curzon, G. 1986. 5-hydroxytryptamine-mediated behaviour in male and female rats. *Neuropharmacology*, 25, 771-776.
- Esteban, S., Nicolaus, C., Garmundi, A., Rial, R. V., Rodriguez, A. B., Ortega, E. & Ibars, C. B. 2004. Effect of orally administered L-tryptophan on serotonin, melatonin, and the innate immune response in the rat. *Molecular and Cellular Biochemistry*, 267, 39-46.

- Farabollini, F., Hole, D. R. & Wilson, C. A. 1988. Behavioral Effects in Adulthood of Serotonin Depletion by P-Chlorophenylalanine Given Neonatally to Male Rats. *International Journal of Neuroscience*, 41, 187-199.
- Farris, J. W., Hinchcliff, K. W., McKeever, K. H., Lamb, D. R. & Thompson, D. L. 1998. Effect of tryptophan and of glucose on exercise capacity of horses. *Journal of Applied Physiology*, 85, 807-816.
- Ferlazzo, A. M., Bruschetta, G., Di Pietro, P. & Medica, P. 2012. The influence of age on plasma serotonin levels in Thoroughbred horses. *Livestock Science*, 147, 203-207.
- Fernstrom, J. D. 2013. Large neutral amino acids: dietary effects on brain neurochemistry and function. *Amino Acids*, 45, 419-30.
- Fernstrom, J. D. & Wurtman, R. J. 1972a. Brain Serotonin Content: Physiological Regulation by Plasma Neutral Amino Acids. *Science*, 178, 414-416.
- Fernstrom, J. D. & Wurtman, R. J. 1972b. Elevation of plasma tryptophan by insulin in rat. *Metabolism*, 21, 337-342.
- Fernstrom, J. D. & Wurtman, R. J. 1974. Control of brain serotonin levels by the diet. Advances in Biochemical Psychopharmacology, 11, 133-142.
- Gillman, P. K. 1999. The serotonin syndrome and its treatment. *Journal of Psychopharmacology*, 13, 100-109.
- Goldstein, G. W. 1988. Endothelial cell□-astrocyte interactions: a cellular model of the bloodbrain barrier. Annals of the New York Academy of Sciences, 529, 31-39.
- Grimmett, A. & Sillence, M. N. 2005. Calmatives for the excitable horse: a review of Ltryptophan. *Vet J*, 170, 24-32.
- Guyton, A. C. & Hall, J. E. 2000. *Textbook of Medical Physiology*, 10th edn. Saunders Company, Philadelphia, PA.
- Hannon, J. & Hoyer, D. 2008. Molecular biology of 5-HT receptors. *Behav Brain Res*, 195, 198-213.
- Henneke, D. R., Potter, G. D., Kreider, J. L. & Yeates, B. F. 1983. Relationship between condition score, physical measurements and body fat percentage in mares. *Equine Veterinary Journal*, 15, 371-372.
- Henry, Y., Seve, B., Colléaux, Y., Ganier, P., Saligaut, C. & Jégo, P. 1992. Interactive effects of dietary levels of tryptophan and protein on voluntary feed intake and growth in pigs, in relation to plasma free amino acids and hypothalamic serotonin. *Journal of Animal Science*, 70, 1873-1887.

- Henry, Y., Seve, B., Mounier, A. & Ganier, P. 1996. Growth performance and brain neurotransmitters in pigs as affected by tryptophan, protein, and sex. *Journal of Animal Science*, 74, 2700-2710.
- Hilakivi-Clarke, L. A., Durcan, M. J., Lister, R. G. & Linnoila, M. 1990. Effect of tryptophan on the behavior of nonstressed and stressed mice in Porsolt's swim test. *Pharmacology Biochemistry and Behavior*, 37, 273-276.
- Janczak, A. M., Bakken, M. & Braastad, B. O. 2001. A cautionary note regarding the use of nutritional L-tryptophan to alter aversion-related behaviour in mice. *Applied Animal Behaviour Science*, 72, 365-373.
- Kahn, C. M. & Line, S. (eds.) 2010. *The Merck Veterinary Manual*, Whitehouse Station, N.J., Merck & CO., Inc.
- Kantak, K. M., Hegstrand, L. R., Whitman, J. & Eichelman, B. 1980. Effects of dietary supplements and a tryptophan-free diet on aggressive behavior in rats. *Pharmacology Biochemistry and Behavior*, 12, 173-179.
- Kennett, G. A., Chaouloff, F., Marcou, M. & Curzon, G. 1986. Female rats are more vulnerable than males in an animal model of depression: the possible role of serotonin. *Brain Research*, 382, 416-421.
- Kim, D. Y. & Camilleri, M. 2000. Serotonin: A Mediator of the Brain-Gut Connection. *The American Journal of Gastroenterology*, 95, 2698-2709.
- Koopmans, S. J., Ruis, M., Dekker, R., van Diepen, H., Korte, M. & Mroz, Z. 2005. Surplus dietary tryptophan reduces plasma cortisol and noradrenaline concentrations and enhances recovery after social stress in pigs. *Physiol Behav*, 85, 469-78.
- Laycock, S. R. & Ball, R. O. 1990. Alleviation of hysteria in laying hens with dietary tryptophan. *Canadian Journal of Veterinary Research*, 54, 291-295.
- Leathwood, P. D. 1987. Tryptophan availability and serotonin synthesis. *Proceedings of the Nutrition Society*, 46, 143-156.
- Li, Y. Z., Kerr, B. J., Kidd, M. T. & Gonyou, H. W. 2006. Use of supplementary tryptophan to modify the behavior of pigs. *Journal of Animal Science*, 84, 212-220.
- Lieberman, H. R., Caballero, B. & Finer, N. 1986. The composition of lunch determines afternoon plasma tryptophan ratios in humans. *Journal of neural transmission*, 65, 211-217.
- Malmkvist, J. & Christensen, J. W. 2007. A note on the effects of a commercial tryptophan product on horse reactivity. *Applied Animal Behaviour Science*, 107, 361-366.
- Martinez-Trejo, G., Ortega-Cerrilla, M. E., Rodarte-Covarrubias, L. F., Herrera-Haro, J. G., Figueroa-Velasco, J. L., Galindo-Maldonado, F., Sanchez-Martinez, O. & Lara-Bueno,

A. 2009. Aggressiveness and productive performance of piglets supplemented with tryptophan. *Journal of Animal and Verterinary Advances*, 8, 608-611.

- Mench, J. A. & Shea-Moore, M. M. 1995. Moods, minds and molecules: the neurochemistry of social behavior. *Applied Animal Behaviour Science*, 44, 999-118.
- Momozawa, Y., Takeuchi, Y., Tozaki, T., Kikusui, T., Hasegawa, T., Raudsepp, T., Chowdhary, B. P., Kusunose, R. & Mori, Y. 2006. Polymorphism identification, RH mapping, and association analysis with the anxiety trait of the equine serotonin transporter (SLC6A4) gene. *Journal of Veterinary Medical Science*, 68, 619-621.
- Nakanishi, Y., Shigemori, K., Yanagita, K., Mieno, M. & Manda, M. 1998. Behavioral and growth effect of oral administration of rumen protected tryptophan on weanling beef calves. *Memoirs of the Faculty of Agriculture, Kagoshima University*, 34, 89-95.
- Noble, G. K., Blackshaw, K. L., Cowling, A., Harris, P. A. & Sillence, M. N. 2013. An objective measure of reactive behaviour in horses. *Applied Animal Behaviour Science*, 144, 121-129.
- Noble, G. K., Brockwell, Y. M., Munn, K. J., Harris, P. A., Davidson, H. P., Li, X., Zhang, D. & Sillence, M. N. 2008. Effects of a commercial dose of L-tryptophan on plasma tryptophan concentrations and behaviour in horses. *Equine Vet J*, 40, 51-6.
- Noble, G. K., Houghton, E., Roberts, C. J., Faustino-Kemp, J., de Kock, S. S., Swanepoel, B. C. & Sillence, M. N. 2007. Effect of exercise, training, circadian rhythm, age, and sex on insulin-like growth factor-1 in the horse. J Anim Sci, 85, 163-71.
- Nogueira, N. P., Barnabe, R. C., Bedran-De-Castro, J. C., Moreira, A. F., Fernandes, W. R., Mirandola, R. M. S. & Howard, D. L. 2002. Serum cortisol, lactate, and creatinine concentrations in Thoroughbred fillies of different ages and states of training. *Braz. J. vet. Res.anim.Sci.*, 39, 54-57.
- NRC. 2007. Nutrient Requirements of Horses, 6th rev. edn. The National Academies Press, Washington, D.C.
- O'Reilly, B. 2006. Reducing cribbing frequency in horses through dietary supplementation of tryptophan and calcium carbonate. *Animal Science*. Auburn University.
- Paradis, M. R., Breeze, R. G., Bayly, W. M., Counts, D. F. & Laegreid, W. W. 1991. Acute hemolytic anemia after oral administration of L-tryptophan in ponies. *American Journal* of Veterinary Research, 52, 742-747.
- Peeters, E., Driessen, B., Steegmans, R., Henot, D. & Geers, R. 2004. Effect of supplemental tryptophan, vitamin E, and a herbal product on responses by pigs to vibration. *Journal of Animal Science*, 82, 2410-2420.

- Piccione, G., Assenza, A., Fazio, F., Percipalle, M. & Caola, G. 2005. Central fatigue and nycthemeral change of serum tryptophan and serotonin in the athletic horse. *J Circadian Rhythms*, 3, 6.
- Poletto, R., Kretzer, F. C. & Hötzel, M. J. 2014. Minimizing aggression during mixing of gestating sows with supplementation of a tryptophan-enriched diet. *Physiol Behav*, 132, 36-43.
- Raleigh, M. J. 1987. Differential behavioral effects of tryptophan and 5-hydroxytryptophan in vervet monkeys: influence of catecholaminergic systems. *Psychopharmacology*, 93, 44-50.
- Rapoport, S. I. 1976. Blood-brain barrier in physiology and medicine. Raven Press, New York.
- Robbins, T. W. 2005. Controlling stress: how the brain protects itself from depression. *Nature Neuroscience*, 8, 261-262.
- Rouvinen, K., Archbold, S., Laffin, S. & Harri, M. 1999. Long-term effects of tryptophan on behavioral response and growing-furring performance in silver fox (Vulpes vulpes). *Applied Animal Behaviour Science*, 63, 65-77.
- Schaechter, J. D. & Wurtman, R. J. 1990. Serotonin release varies with brain tryptophan levels. *Brain Research*, 532, 203-210.
- Shea, M. M., Mench, J. A. & Thomas, O. P. 1990. The effect of dietary tryptophan on aggressive behavior in developing and mature broiler breeder males. *Poultry Science*, 69, 1664-1669.
- Shen, Y. B., Coffey, M. T. & Kim, S. W. 2015. Effects of short term supplementation of ltryptophan and reducing large neutral amino acid along with l-tryptophan supplementation on growth and stress response in pigs. *Animal Feed Science and Technology*, 207, 245-252.
- Speake, T., Whitwell, C., Kajita, H., Majid, A. & Brown, P. D. 2000. Mechanisms of CSF secretion by the choroid plexus. *Microscopy Research and Technique*, 52, 49-59.
- Sternbach, H. 1991. The serotonin syndrome. American Journal of Psychiatry, 148, 705-713.
- Stull, C. L. & Rodiek, A. V. 2000. Physiological responses of horses to 24 hours of transportation using a commercial van during summer conditions. *Journal of Animal Science*, 78, 1458-1466.
- Trulson, M. E. & Jacobs, B. L. 1979. Raphe unit activity in freely moving cats: correlation with level of behavioral arousal. *Brain Research*, 163, 135-150.
- USEF. 2015. 2015 Guidelines for Drugs and Medications. In: Program, U. S. E. F. E. D. a. M. (ed.). Columbus, Ohio.

- Vervuert, I., Coenen, M. & Watermulder, E. 2005. Metabolic responses to oral tryptophan supplementation before exercise in horses. *Journal of Animal Physiology and Animal Nutrition*, 89, 140-145.
- Voet, D. & Voet, J. G. 1995. Biochemistry, 2nd edn. John Wiley & Sons, Inc., New York.
- Weed, L. W. 1923. The absorption of cerebrospinal fluid into the venous system. *American Journal of Anatomy*, 31, 191-221.
- Weld, K. P., Mench, J. A., Woodward, R. A., Bolesta, M. S., Suomi, S. J. & Higley, J. D. 1998. Effect of tryptophan treatment on self-biting and central nervous system serotonin metabolism in rhesus monkeys (Macaca mulatta). *Neuropsychopharmacology*, 19, 314-321.
- Wilson, A. D., Badnell-Waters, A. J., Bice, R., Kelland, A., Harris, P. A. & Nicol, C. J. 2007. The effects of diet on blood glucose, insulin, gastrin and the serum tryptophan: large neutral amino acid ratio in foals. *Vet J*, 174, 139-46.
- Wurtman, R. J. 2011. Non-nutritional uses of nutrients. Eur J Pharmacol, 668 Suppl 1, S10-5.
- Yao, K., Fang, J., Yin, Y. L., Feng, Z. M., Tang, Z. R. & Wu, G. 2011. Tryptophan metabolism in animals: important roles in nutrition and health. *Frontiers in Bioscience*, 3, 286-297.
- Young, S. N. 1986. The clinical pyschopharmacology of tryptophan. *Nutrition and the brain* (USA).
- Young, S. N. 1991. Some effects of dietary components (amino acids, carbohydrate, folic acid) on brain serotonin synthesis, mood, and behavior. *Canadian Journal of Physiology and Pharmacology*, 69, 893-903.
- Zhang, D., Li, X., Sillence, M. N. & Bryden, W. L. 2005. Serum amino acid analysis by gas chromatography. *Asia Pacific J. Clin. Nutr. Suppl.*, 14, S121.

APPENDIX 1

SAS CODE

Analyze Treatment Effects on Behavioral and Physiological Response Variables on Day 1

```
PROC IMPORT OUT=WORK.AllDay1Data DATAFILE="/home/britdav/AllDay1Data.xlsx"
      DBMS=XLSX REPLACE;
      GETNAMES=YES;
run;
proc sort data=AllDay1Data;
      by Horse;
run;
*Summary Plots;
Proc Means data=AllDay1Data nway noprint;
      class Treatment Day;
      var ExitSpeed HR30 HR_Diff TimetoBL GluDiff GluPostAvg LactDiff LactPostAvg
             CortDiff CortPostAvg;
      output out=SumStats mean=;
run;
Proc Transpose data=SumStats out=SumStatsTr (rename=(Col1=Y));
      by Treatment Day _TYPE_ _FREQ_;
run;
Proc sort data=SumStatsTr;
      by _LABEL_;
*Simple interaction plot for each response variable;
Proc Sgplot ;
      by _LABEL_;
      series X=Treatment Y=Y;
run;
*proc corr data=AllDay1Data plots=scatter;
      var treatment;
*
      with exitspeed;
*run;
*proc corr data=AllDay1Data plots=scatter;
      var treatment;
*
      with HR30;
```

*run;

```
*proc corr data=AllDay1Data plots=scatter;
* var treatment;
* with HR_Diff;
*run;
*proc corr data=AllDay1Data plots=scatter;
```

```
* var treatment;* with TimetoBL;
```

*run;

```
*proc corr data=AllDay1Data plots=scatter;
* var treatment;
* with GluDiff;
```

*run;

```
*proc corr data=AllDay1Data plots=scatter;
* var treatment;
* with GluPostAvg;
```

*run;

```
*proc corr data=AllDay1Data plots=scatter;
```

```
* var treatment;
```

```
* with LactDiff;
```

*run;

```
*proc corr data=AllDay1Data plots=scatter;
* var treatment;
* with LactPostAvg;
```

*run;

```
*proc corr data=AllDay1Data plots=scatter;
```

```
* var treatment;
```

```
* with CortDiff;
```

*run;

*run;

```
*Covariate tests;
```

```
proc corr data=AllDay1Data plots=scatter;
var Age;
```

CortDiff CortPostAvg; run; proc corr data=AllDay1Data plots=scatter; var BCS; with ExitSpeed HR30 HR_Diff TimetoBL GluDiff GluPostAvg LactDiff LactPostAvg CortDiff CortPostAvg; run; proc corr data=AllDay1Data plots=scatter; var Group; with ExitSpeed HR30 HR_Diff TimetoBL GluDiff GluPostAvg LactDiff LactPostAvg CortDiff CortPostAvg; run; proc corr data=AllDay1Data plots=scatter; var TimeLag; with ExitSpeed HR30 HR_Diff TimetoBL GluDiff GluPostAvg LactDiff LactPostAvg CortDiff CortPostAvg; run; proc corr data=AllDay1Data plots=scatter; var TrtNum: with ExitSpeed HR30 HR_Diff TimetoBL GluDiff GluPostAvg LactDiff LactPostAvg CortDiff CortPostAvg; run; proc corr data=AllDay1Data plots=scatter; var Temperature; with ExitSpeed HR30 HR_Diff TimetoBL GluDiff GluPostAvg LactDiff LactPostAvg

with ExitSpeed HR30 HR Diff TimetoBL GluDiff GluPostAvg LactDiff LactPostAvg

run;

```
proc corr data=AllDay1Data plots=scatter;
var WindSpeed;
with ExitSpeed HR30 HR_Diff TimetoBL GluDiff GluPostAvg LactDiff LactPostAvg
CortDiff CortPostAvg;
```

CortDiff CortPostAvg;

run;

```
proc corr data=AllDay1Data plots=scatter;
var Breed;
with ExitSpeed HR30 HR_Diff TimetoBL GluDiff GluPostAvg LactDiff LactPostAvg
CortDiff CortPostAvg;
```

run;

```
proc corr data=AllDay1Data plots=scatter;
       var GluDiff GluPostAvg;
       with GluRunDate:
run;
proc corr data=AllDay1Data plots=scatter;
       var LactDiff LactPostAvg;
       with LactRunDate;
run:
proc corr data=AllDay1Data plots=scatter;
       var CortDiff CortPostAvg;
       with CortPretestPlate CortPosttestPlate;
run;
*Overview Stats;
proc means data=AllDay1Data mean std;
      class treatment;
       var exitspeed HR30 HR Diff TimetoBL GluDiff GluPostAvg LactDiff LactPostAvg
              CortDiff CortPostAvg;
run:
proc univariate data=AllDay1Data plots;
       var ExitSpeed HR30 HR_Diff TimetoBL GluDiff GluPostAvg LactDiff LactPostAvg
              CortDiff CortPostAvg;
run;
title 'Day 1 Exit Speed';
Proc Mixed data=AllDay1Data covtest ratio;
      class Treatment Group Horse;
       model ExitSpeed=Group Temperature Treatment/ ddfm=kr solution residual;
       random Horse;
      lsmeans Treatment / pdiff;
      lsmestimate Treatment 3 -1 -1 -1/ divisor=3;
run;
title 'Day 1 HR 30';
Proc Mixed data=AllDay1Data covtest ratio;
       class Treatment TrtNum Horse;
       model HR30=TrtNum Treatment/ ddfm=kr solution residual;
       random Horse;
```

run;

lsmeans Treatment / pdiff;

lsmestimate Treatment 3 -1 -1 -1/ divisor=3;

title 'Day 1 HR Difference'; Proc Mixed data=AllDay1Data covtest ratio; class Treatment Group TrtNum Horse; model HR_Diff=Group TrtNum Treatment/ ddfm=kr solution residual; random Horse: lsmeans Treatment / pdiff; lsmestimate Treatment 3 -1 -1 -1/ divisor=3; run; title 'Day 1 Time to Return to Baseline'; Proc Mixed data=AllDay1Data covtest ratio; class Treatment Horse; model TimetoBL= Temperature Treatment/ ddfm=kr solution residual; random Horse; lsmeans Treatment / pdiff; lsmestimate Treatment 3 -1 -1 -1/ divisor=3; run; title 'Day 1 Glucose Difference'; Proc Mixed data=AllDay1Data covtest ratio; class Treatment GluRunDate Horse; model GluDiff=GluRunDate TimeLag Treatment/ ddfm=kr solution residual; random Horse; lsmeans Treatment / pdiff; lsmestimate Treatment 3 -1 -1 -1/ divisor=3; run: title 'Day 1 Glucose Post-Startle Average'; Proc Mixed data=AllDay1Data covtest ratio; class Treatment Horse: model GluPostAvg= TimeLag Treatment/ ddfm=kr solution residual; random Horse; lsmeans Treatment / pdiff; lsmestimate Treatment 3 -1 -1 -1/ divisor=3; run; title 'Day 1 Lactate Difference'; Proc Mixed data=AllDay1Data covtest ratio; class Treatment Horse; model LactDiff=Treatment/ ddfm=kr solution residual; random Horse; lsmeans Treatment / pdiff; lsmestimate Treatment 3 -1 -1 -1/ divisor=3; run;

title 'Day 1 Lactate Post-Startle Average';

Proc Mixed data=AllDay1Data covtest ratio; class Treatment Horse; model LactPostAvg=Treatment/ ddfm=kr solution residual; random Horse; lsmeans Treatment / pdiff; lsmestimate Treatment 3 -1 -1 -1/ divisor=3;

run;

title 'Day 1 Cortisol Difference'; Proc Mixed data=AllDay1Data covtest ratio; class Treatment Horse; model CortDiff=Treatment/ ddfm=kr solution residual; random Horse; lsmeans Treatment / pdiff; lsmestimate Treatment 3 -1 -1 -1/ divisor=3;

run;

title 'Day 1 Cortisol Post-Startle Average'; Proc Mixed data=AllDay1Data covtest ratio; class Treatment Horse CortPostTestPlate; model CortPostAvg=CortPosttestPlate Treatment/ ddfm=kr solution residual; random Horse; lsmeans Treatment / pdiff; lsmestimate Treatment 3 -1 -1 -1/ divisor=3;

run;

APPENDIX 2

SAS CODE

Analyze Treatment Effects on Behavioral and Physiological Response Variables on Day 3

```
PROC IMPORT OUT=WORK.AllDay3Data DATAFILE="/home/britdav/AllDay3Data.xlsx"
DBMS=XLSX REPLACE;
      GETNAMES=YES;
run;
proc sort data=AllDay3Data;
      by Horse;
run;
*Summary Plots;
Proc Means data=AllDay3Data nway noprint;
      class Treatment Day;
      var ExitSpeed HR30 HR_Diff TimetoBL GluDiff GluPostAvg LactDiff LactPostAvg
             CortDiff CortPostAvg;
      output out=SumStats mean=;
run;
Proc Transpose data=SumStats out=SumStatsTr (rename=(Col1=Y));
      by Treatment Day _TYPE_ _FREQ_;
run;
Proc sort data=SumStatsTr;
      by _LABEL_;
*Simple interaction plot for each response variable;
Proc Sgplot ;
      by _LABEL_;
      series X=Treatment Y=Y;
run;
*proc corr data=AllDay3Data plots=scatter;
      var treatment;
*
      with exitspeed;
*run;
*proc corr data=AllDay3Data plots=scatter;
      var treatment:
*
      with HR30;
```

*run;

```
*proc corr data=AllDay3Data plots=scatter;
* var treatment;
* with HR_Diff;
*run;
```

```
*proc corr data=AllDay3Data plots=scatter;
* var treatment;
* with TimetoBL;
```

*run;

```
*proc corr data=AllDay3Data plots=scatter;
* var treatment;
* with GluDiff;
```

*run;

```
*proc corr data=AllDay3Data plots=scatter;
* var treatment;
* with GluPostAvg;
```

*run;

```
*proc corr data=AllDay3Data plots=scatter;
```

```
* var treatment;
```

```
* with LactDiff;
```

*run;

```
*proc corr data=AllDay3Data plots=scatter;
* var treatment;
* with LactPostAvg;
```

*run;

```
*proc corr data=AllDay3Data plots=scatter;
```

```
* var treatment;
```

```
* with CortDiff;
```

*run;

```
*proc corr data=AllDay3Data plots=scatter;
* var treatment;
* with CortPostAvg;
*
```

*run;

```
*Covariate tests;
```

```
proc corr data=AllDay3Data plots=scatter;
var Age;
```

with ExitSpeed HR30 HR_Diff TimetoBL GluDiff GluPostAvg LactDiff LactPostAvg CortDiff CortPostAvg;

run;

```
proc corr data=AllDay3Data plots=scatter;
var BCS;
with ExitSpeed HR30 HR_Diff TimetoBL GluDiff GluPostAvg LactDiff LactPostAvg
CortDiff CortPostAvg;
```

run;

```
proc corr data=AllDay3Data plots=scatter;
var Group;
with ExitSpeed HR30 HR_Diff TimetoBL GluDiff GluPostAvg LactDiff LactPostAvg
CortDiff CortPostAvg;
```

run;

proc corr data=AllDay3Data plots=scatter; var TimeLag; with ExitSpeed HR30 HR_Diff TimetoBL GluDiff GluPostAvg LactDiff LactPostAvg CortDiff CortPostAvg TrtNum;

run;

```
proc corr data=AllDay3Data plots=scatter;
var TrtNum;
with ExitSpeed HR30 HR_Diff TimetoBL GluDiff GluPostAvg LactDiff LactPostAvg
CortDiff CortPostAvg TimeLag;
```

run;

```
proc corr data=AllDay3Data plots=scatter;
var Temperature;
with ExitSpeed HR30 HR_Diff TimetoBL GluDiff GluPostAvg LactDiff LactPostAvg
CortDiff CortPostAvg;
```

run;

```
proc corr data=AllDay3Data plots=scatter;
var WindSpeed;
with ExitSpeed HR30 HR_Diff TimetoBL GluDiff GluPostAvg LactDiff LactPostAvg
CortDiff CortPostAvg;
```

run;

```
proc corr data=AllDay3Data plots=scatter;
var Breed;
with ExitSpeed HR30 HR_Diff TimetoBL GluDiff GluPostAvg LactDiff LactPostAvg
CortDiff CortPostAvg;
```

run;

```
proc corr data=AllDay3Data plots=scatter;
       var GluDiff GluPostAvg;
       with GluRunDate:
run;
proc corr data=AllDay3Data plots=scatter;
       var LactDiff LactPostAvg;
       with LactRunDate;
run;
proc corr data=AllDay3Data plots=scatter;
       var CortDiff CortPostAvg;
       with CortPretestPlate CortPosttestPlate;
run;
*Overview Stats;
proc means data=AllDay3Data mean std;
      class treatment;
       var exitspeed HR30 HR_Diff TimetoBL GluDiff GluPostAvg LactDiff LactPostAvg
              CortDiff CortPostAvg;
run:
proc univariate data=AllDay3Data plots;
       var ExitSpeed HR30 HR_Diff TimetoBL GluDiff GluPostAvg LactDiff LactPostAvg
              CortDiff CortPostAvg;
run;
title 'Day 3 Exit Speed';
Proc Mixed data=AllDay3Data covtest ratio;
      class Treatment Group Horse;
       model ExitSpeed=Group Temperature Treatment/ ddfm=kr solution residual;
       random Horse;
      lsmeans Treatment / pdiff;
      lsmestimate Treatment 3 -1 -1 -1/ divisor=3;
run;
title 'Day 3 HR 30';
Proc Mixed data=AllDay3Data covtest ratio;
       class Treatment TrtNum Horse;
       model HR30= TrtNum Treatment/ ddfm=kr solution residual;
```

```
lsmeans Treatment / pdiff;
lsmestimate Treatment 3 -1 -1 -1/ divisor=3;
```

random Horse;

run;

title 'Day 3 HR Difference'; Proc Mixed data=AllDay3Data covtest ratio; class Treatment Group TrtNum Horse; model HR_Diff=Group TrtNum Treatment/ ddfm=kr solution residual; random Horse: lsmeans Treatment / pdiff; lsmestimate Treatment 3 -1 -1 -1/ divisor=3; run; title 'Day 3 Time to Return to Baseline'; Proc Mixed data=AllDay3Data covtest ratio; class Treatment Horse; model TimetoBL= Temperature Treatment/ ddfm=kr solution residual; random Horse; lsmeans Treatment / pdiff; lsmestimate Treatment 3 -1 -1 -1/ divisor=3; run; title 'Day 3 Glucose Difference'; Proc Mixed data=AllDay3Data covtest ratio; class Treatment GluRunDate Horse; model GluDiff=GluRunDate TimeLag Treatment/ ddfm=kr solution residual; random Horse; lsmeans Treatment / pdiff; lsmestimate Treatment 3 -1 -1 -1/ divisor=3; run: title 'Day 3 Glucose Post-Startle Average'; Proc Mixed data=AllDay3Data covtest ratio; class Treatment Horse; model GluPostAvg=TimeLag Treatment/ ddfm=kr solution residual; random Horse; lsmeans Treatment / pdiff; lsmestimate Treatment 3 -1 -1 -1/ divisor=3; run; title 'Day 3 Lactate Difference'; Proc Mixed data=AllDay3Data covtest ratio; class Treatment Horse; model LactDiff=Treatment/ ddfm=kr solution residual; random Horse; lsmeans Treatment / pdiff; lsmestimate Treatment 3 -1 -1 -1/ divisor=3;

run;

title 'Day 3 Lactate Post-Startle Average';

Proc Mixed data=AllDay3Data covtest ratio; class Treatment Horse; model LactPostAvg=Treatment/ ddfm=kr solution residual; random Horse; lsmeans Treatment / pdiff; lsmestimate Treatment 3 -1 -1 -1/ divisor=3;

run;

```
title 'Day 3 Cortisol Difference';

Proc Mixed data=AllDay3Data covtest ratio;

class Treatment Horse;

model CortDiff=Treatment/ ddfm=kr solution residual;

random Horse;

lsmeans Treatment / pdiff;

lsmestimate Treatment 3 -1 -1 -1/ divisor=3;
```

run;

```
title 'Day 3 Cortisol Post-Startle Average';

Proc Mixed data=AllDay3Data covtest ratio;

class Treatment Horse CortPosttestPlate;

model CortPostAvg=CortPosttestPlate Treatment/ ddfm=kr solution residual;

random Horse;

lsmeans Treatment / pdiff;

lsmestimate Treatment 3 -1 -1 -1/ divisor=3;
```

run;

APPENDIX 3

SAS CODE

Analyze Serum Amino Acids of Group 1 Horses

```
PROC IMPORT OUT=WORK.Group1 DATAFILE="/home/britdav/Group1.xlsx"
DBMS=XLSX REPLACE;
      GETNAMES=YES;
RUN;
*Summary Plots;
Proc Means data=Group1 nway;
      class Treatment Day;
      var TRP Diff RatioDiff;
      output out=SumStatsGroup1 mean= ;
run;
Proc Transpose data=SumStatsGroup1 out=SumStatsTrGroup1 (rename=(Col1=Y));
      by Treatment Day TYPE FREQ ;
run;
Proc sort data=SumStatsTrGroup1;
      by LABEL;
*Simple interaction plot for each response variable;
Proc Sgplot;
      by LABEL ;
      series X = Treatment Y = Y / \text{group} = \text{Day};
run;
proc corr data=Group1 plots=scatter;
      var treatment;
      with TRP Diff;
run;
proc corr data=Group1 plots=scatter;
      var treatment:
      with RatioDiff;
run;
title 'Difference in serum free Trp';
Proc Mixed data=Group1;
class Treatment Day Horse;
model TRP Diff = Treatment|Day / ddfm=kr solution residual;
random Horse Horse*Treatment ;
slice Treatment*Day / sliceby = Day pdiff;
run;
```

title 'Difference in TRP:LNAA'; Proc Mixed data=Group1; class Treatment Day Horse; model RatioDiff = Treatment|Day / ddfm=kr solution residual; random Horse Horse*Treatment; slice Treatment*Day / sliceby = Day pdiff; run;

title 'Washout serum free Trp'; Proc Mixed data=Group1; where Day=1; class Treatment TrtNum Day Horse; model PreTRP = TrtNum / ddfm=kr solution residual : random Horse Horse*TrtNum ; lsmeans TrtNum/pdiff; run;

title 'Washout serum TRP:LNAA'; Proc Mixed data=Group1; where Day=1; class Treatment TrtNum Day Horse; model PreRatio = TrtNum/ ddfm=kr solution residual; random Horse Horse*TrtNum ; lsmeans TrtNum/pdiff; run;

PROC IMPORT OUT=WORK.AABCCompare DATAFILE="/home/britdav/AABCCompare.xlsx" DBMS=XLSX REPLACE; GETNAMES=YES; RUN:

Proc Mixed data=AABCCompare; class Treatment DBC Horse; model TRP = DBC / ddfm=kr solution residual : random Horse Horse*Treatment; lsmeans DBC / pdiff; run;

Proc Mixed data=AABCCompare; class Treatment DBC Horse; model Ratio = DBC / ddfm=kr solution residual ; random Horse Horse*Treatment ; lsmeans DBC / pdiff; run;

APPENDIX 4

SAS SUMMARY OUTPUT

Day 1 and Day 3 Results

DAY 1

The MEANS Procedure

Treatment	N Obs	Variable	Label	Mean	Std Dev
0	11	ExitSpeed HR30 HR_Diff TimetoBL GluDiff GluPostAvg LactDiff LactPostAvg CortDiff CortPostAvg	ExitSpeed HR30 HR_Diff TimetoBL GluDiff GluPostAvg LactDiff LactPostAvg CortDiff CortPostAvg	5.1110000 102.6363636 69.5454545 225.7000000 -4.8388889 84.2200000 0.1703850 1.1549550 2.7914811 13.8581452	1.1485880 19.0329857 20.2551901 96.9227069 6.5327434 8.7901207 0.2849126 0.3062569 5.3027572 10.9708711
20	11	ExitSpeed HR30 HR_Diff TimetoBL GluDiff GluPostAvg LactDiff LactPostAvg CortDiff CortPostAvg	ExitSpeed HR30 HR_Diff TimetoBL GluDiff GluPostAvg LactDiff LactPostAvg CortDiff CortPostAvg	4.6540000 98.6000000 56.4000000 206.777778 -6.5900000 -0.1029833 0.9701400 1.0943183 12.1232398	1.7737982 18.8455712 12.2764454 71.4086440 4.3247222 7.6745684 0.2326554 0.2181086 3.3103723 6.6245716
40	11	ExitSpeed HR30 HR_Diff TimetoBL GluDiff GluPostAvg LactDiff LactPostAvg CortDiff CortPostAvg	ExitSpeed HR30 HR_Diff TimetoBL GluDiff GluPostAvg LactDiff LactPostAvg CortDiff CortPostAvg	5.1036364 103.400000 68.300000 246.500000 -4.4318182 82.600000 0.2058545 1.2467318 -1.8589621 11.9115737	1.5033248 26.1074702 26.7168278 89.5547629 7.1485059 6.1487397 0.3562690 0.3483196 3.6007997 10.5414673
60	11	ExitSpeed HR30 HR_Diff TimetoBL GluDiff GluPostAvg LactDiff LactPostAvg CortDiff CortPostAvg	ExitSpeed HR30 HR_Diff TimetoBL GluDiff GluPostAvg LactDiff LactPostAvg CortDiff CortPostAvg	5.6044444 109.9090909 74.3636364 215.000000 -0.3777778 88.0888889 0.2294000 1.1278833 -0.3770851 12.6833565	1.0521420 24.4763337 23.6231781 64.4773862 6.9744673 8.5154557 0.1388055 0.2177054 3.6004427 12.6058338

DAY 3

The MEANS Procedure

Treatment	N Obs	Variable	Label	Mean	Std Dev
		- 10 I		5 2026264	4.3454000
0	11	ExitSpeed	ExitSpeed	5.2036364	1.3454090
		HR30	HR30	109.2727273	24.7390012
		HR_Diff	HR_Diff	72.8181818	29.1952674
		TimetoBL	TimetoBL	233.0000000	84.2531899
		GluDiff	GluDiff	-3.2750000	4.1620808
		GluPostAvg	GluPostAvg	84.7450000	9.6280392
		LactDiff	LactDiff	0.1782167	0.2547027
		LactPostAvg	LactPostAvg	1.1050667	0.3313360
		CortDiff	CortDiff	-0.3263981	6.3440143
		CortPostAvg	CortPostAvg	12.9971851	11.6014889
20	11	ExitSpeed	ExitSpeed	5.5545455	1.3703311
		HR30	HR30	103.8181818	19.4669884
		HR Diff	HR Diff	67.7272727	18.3580550
		TimetoBL	TimetoBL	230.1000000	135.8900291
		GluDiff	GluDiff	1.5050000	8.6916451
		GluPostAvg	GluPostAvg	85.0045455	3.9880104
		LactDiff	LactDiff	0.2972333	0.3745439
		LactPostAvg	LactPostAvg	1.1849250	0.3126254
		CortDiff	CortDiff	0.3276037	3.4494645
		CortPostAvg	CortPostAvg	10.7199882	5.7296725
40	11	ExitSpeed	ExitSpeed	5.1318182	1.2702033
		HR30	HR30	99.7000000	26.8661290
		HR Diff	HR Diff	65.6000000	26.8874196
		TimetoBL	TimetoBL	318,1000000	223.3380348
		GluDiff	GluDiff	-2.5700000	7.5269221
		GluPostAva	GluPostAva	87.1727273	11.7776985
		LactDiff	LactDiff	0.2281667	0.3879192
		LactPostAvg	LactPostAvg	1.2438167	0.3809181
		CortDiff	CortDiff	-0.1416802	3.1823009
		CortPostAvg	CortPostAvg	13.2783739	9.4159948
60	11	ExitSpeed	ExitSpeed	5.7054545	1.0771756
00	''	HR30	HR30	97.9000000	30.2267358
		HR Diff	HR Diff	63.2000000	28.7162362
		TimetoBL	TimetoBL	251.5000000	111.6604476
		GluDiff	GluDiff	-0.9666667	5.3440387
		GluDin GluPostAvg	GluDiff GluPostAvg	87.6055556	6.8875088
		LactDiff	LactDiff	0.1900875	0.1399264
		LactDiff		1.3715437	
			LactPostAvg		0.2088755
		CortDiff	CortDiff	-0.5091321	1.9982001
		CortPostAvg	CortPostAvg	9.7877718	5.1523127

Day 1 Exit Speed

The Mixed Procedure

Type 3 Tests of Fixed Effects							
Effect	Num DF	Den DF	F Value	Pr > F			
Group	2	8.15	0.59	0.5786			
Temperature	1	25.2	21.47	<.0001			
Treatment	3	25.3	1.25	0.3125			

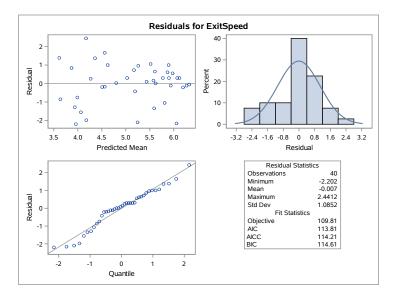
Least Squares Means Estimate								
Effect Label Estimate Standard DF t Value Pr > t								
Treatment Row 1 -0.03741 0.2726 25.3 -0.14 0.8919								

Least Squares Means									
Effect	Treatment	Estimate	Standard Error	DF	t Value	Pr > t			
Treatment	0	5.0861	0.3789	15	13.42	<.0001			
Treatment	20	4.7708	0.3790	15	12.59	<.0001			
Treatment	40	5.1639	0.3710	14	13.92	<.0001			
Treatment	60	5.4357	0.3903	16.4	13.93	<.0001			

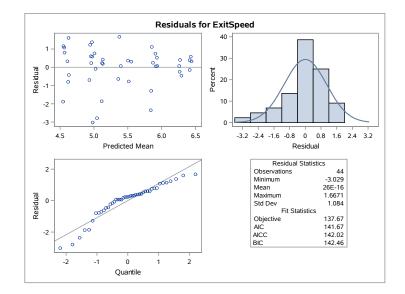
	Differences of Least Squares Means										
Effect	Treatment Treatment Estimate Standard DF t Value F										
Treatment	0	20	0.3153	0.3332	25.3	0.95	0.3530				
Treatment	0	40	-0.07785	0.3230	25.2	-0.24	0.8115				
Treatment	0	60	-0.3496	0.3479	25.4	-1.01	0.3243				
Treatment	20	40	-0.3931	0.3229	25.2	-1.22	0.2347				
Treatment	20	60	-0.6649	0.3484	25.4	-1.91	0.0677				
Treatment	40	60	-0.2718	0.3388	25.3	-0.80	0.4299				

Day 3 Exit Speed

Type 3 Tests of Fixed Effects								
Effect	Pr > F							
Group	2	8.84	4.43	0.0465				
Temperature	1	29.3	0.00	0.9452				
Treatment	3	29	0.62	0.6048				


Least Squares Means Estimate							
Effect Label Estimate Standard DF t Value Pr > t							
Treatment	Row 1	-0.2621	0.4013	29.01	-0.65	0.5189	

Least Squares Means									
Effect	Treatment	Estimate	Standard Error	DF	t Value	Pr > t			
Treatment	0	5.1867	0.3550	36.1	14.61	<.0001			
Treatment	20	5.5371	0.3556	36.2	15.57	<.0001			
Treatment	40	5.1191	0.3559	36.2	14.38	<.0001			
Treatment	60	5.6902	0.3541	36.1	16.07	<.0001			


	Differences of Least Squares Means									
Effect	Treatment Treatment Estimate Standard DF t Value									
Treatment	0	20	-0.3503	0.4905	29	-0.71	0.4808			
Treatment	0	40	0.06762	0.4942	29	0.14	0.8921			
Treatment	0	60	-0.5034	0.4910	29	-1.03	0.3137			
Treatment	20	40	0.4180	0.4953	29	0.84	0.4056			
Treatment	20	60	-0.1531	0.4915	29	-0.31	0.7577			
Treatment	40	60	-0.5711	0.4919	29	-1.16	0.2551			

Day 1 Exit Speed

The Mixed Procedure

Day 3 Exit Speed

Day 1 HR 30

The Mixed Procedure

Type 3 Tests of Fixed Effects							
Effect Num Den DF F Value Pr > F							
TrtNum	3	25.5	0.39	0.7613			
Treatment	3	25.5	0.89	0.4586			

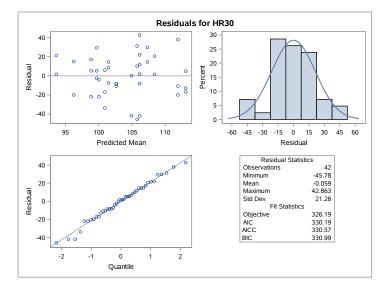
Least Squares Means Estimate								
Effect	Label	Estimate	Standard Error	DF	t Value	Pr > t		
Treatment	Row 1	-0.9792	6.0371	25.33	-0.16	0.8724		

	Least Squares Means								
Effect	Treatment	Estimate	Standard Error	DF	t Value	Pr > t			
Treatment	0	102.83	6.7946	25	15.13	<.0001			
Treatment	20	97.5991	7.0538	26.6	13.84	<.0001			
Treatment	40	104.04	7.0556	26.6	14.75	<.0001			
Treatment	60	109.78	6.7957	25	16.15	<.0001			

	Differences of Least Squares Means										
Effect	Treatment	Treatment	Estimate	Standard Error	DF	t Value	Pr > t				
Treatment	0	20	5.2280	7.5524	25.5	0.69	0.4950				
Treatment	0	40	-1.2107	7.5530	25.5	-0.16	0.8739				
Treatment	0	60	-6.9549	7.2998	25.2	-0.95	0.3497				
Treatment	20	40	-6.4388	7.7839	25.8	-0.83	0.4157				
Treatment	20	60	-12.1830	7.5089	25.5	-1.62	0.1170				
Treatment	40	60	-5.7442	7.5578	25.5	-0.76	0.4542				

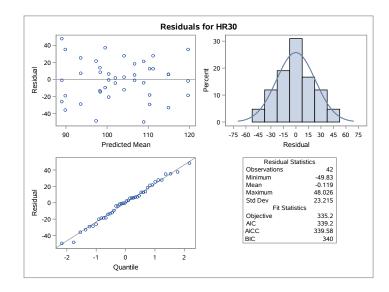
Day 3 HR 30

Type 3 Tests of Fixed Effects								
Effect Num Den DF F Value Pr >								
TrtNum	3	25.4	2.08	0.1283				
Treatment	3	25.4	0.46	0.7112				


Least Squares Means Estimate								
Effect Label Estimate Standard DF t Value Pr > t						Pr > t		
Treatment	Row 1	7.4936	7.1308	25.22	1.05	0.3033		

Least Squares Means									
Effect	Treatment	Estimate	Standard Error	DF	t Value	Pr > t			
Treatment	0	108.36	7.4783	27.9	14.49	<.0001			
Treatment	20	103.66	7.4811	27.9	13.86	<.0001			
Treatment	40	99.9135	7.8013	29.4	12.81	<.0001			
Treatment	60	99.0201	7.8013	29.4	12.69	<.0001			

	Differences of Least Squares Means										
Effect	Treatment	Treatment	Estimate	Standard Error	DF	t Value	Pr > t				
Treatment	0	20	4.6956	8.6112	25.1	0.55	0.5904				
Treatment	0	40	8.4459	8.9035	25.4	0.95	0.3518				
Treatment	0	60	9.3393	8.9035	25.4	1.05	0.3041				
Treatment	20	40	3.7502	8.8516	25.4	0.42	0.6754				
Treatment	20	60	4.6437	8.8516	25.4	0.52	0.6044				
Treatment	40	60	0.8935	9.1519	25.7	0.10	0.9230				


Day 1 HR 30

The Mixed Procedure

Day 3 HR 30

Day 1 HR Difference

The Mixed Procedure

Туре	Type 3 Tests of Fixed Effects								
Effect	Num DF	Den DF	F Value	Pr > F					
Group	2	8.09	0.89	0.4478					
TrtNum	3	25.3	1.17	0.3393					
Treatment	3	25.3	2.57	0.0762					

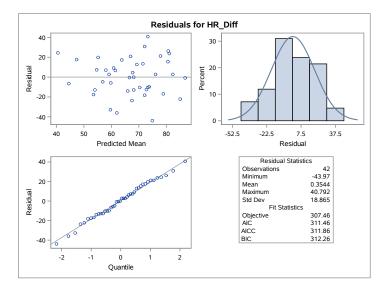
	Least Squares Means Estimate								
Effect Label Estimate Standard Error DF t Value Pr >									
Treatment	Row 1	3.7407	5.7735	25.15	0.65	0.5229			

	Least Squares Means									
Effect	Treatment	Estimate	Standard Error	DF	t Value	Pr > t				
Treatment	0	69.9473	6.4825	20.7	10.79	<.0001				
Treatment	20	55.3262	6.7246	22.3	8.23	<.0001				
Treatment	40	68.7876	6.7672	22.6	10.16	<.0001				
Treatment	60	74.5059	6.4824	20.7	11.49	<.0001				

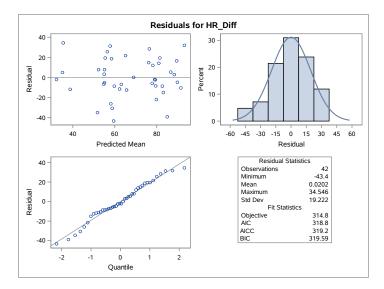
	Differences of Least Squares Means										
Effect	Treatment	Treatment	Estimate	Standard Error	DF	t Value	Pr > t				
Treatment	0	20	14.6211	7.2251	25.3	2.02	0.0537				
Treatment	0	40	1.1597	7.2269	25.3	0.16	0.8738				
Treatment	0	60	-4.5586	6.9800	25.1	-0.65	0.5196				
Treatment	20	40	-13.4613	7.4537	25.5	-1.81	0.0827				
Treatment	20	60	-19.1797	7.1829	25.3	-2.67	0.0131				
Treatment	40	60	-5.7184	7.2319	25.3	-0.79	0.4365				

Day 3 HR Difference

Туре	Type 3 Tests of Fixed Effects									
Effect	Num Den DF DF F Value Pr > F									
Group	2	8.1	4.93	0.0397						
TrtNum	3	25.1	4.03	0.0180						
Treatment	3	25.3	0.17	0.9131						


	Least Squares Means Estimate								
Effect Label Estimate Standard DF t Value Pr > t									
Treatment	Row 1	4.5217	7.3382	24.99	0.62	0.5433			

Least Squares Means									
Effect Treatment Estimate Standard Error DF t Value Pr >									
Treatment	0	71.8709	6.5172	31.9	11.03	<.0001			
Treatment	20	68.5627	6.5299	31.9	10.50	<.0001			
Treatment	40	68.1947	6.9445	32.4	9.82	<.0001			
Treatment	60	65.2902	6.9445	32.4	9.40	<.0001			


	Differences of Least Squares Means										
Effect	Treatment	Treatment	Estimate	Standard Error	DF	t Value	Pr > t				
Treatment	0	20	3.3082	8.8597	24.9	0.37	0.7120				
Treatment	0	40	3.6762	9.1533	25.3	0.40	0.6913				
Treatment	0	60	6.5807	9.1533	25.3	0.72	0.4788				
Treatment	20	40	0.3680	9.0990	25.3	0.04	0.9681				
Treatment	20	60	3.2725	9.0990	25.3	0.36	0.7221				
Treatment	40	60	2.9045	9.3783	26	0.31	0.7593				

Day 1 HR Difference

The Mixed Procedure

Day 3 HR Difference

Day 1 Time to Return to Baseline

The Mixed Procedure

Type 3 Tests of Fixed Effects							
Effect	Num DF	Den DF	F Value	Pr > F			
Temperature	1	27.5	6.73	0.0150			
Treatment	3	24.4	0.62	0.6060			

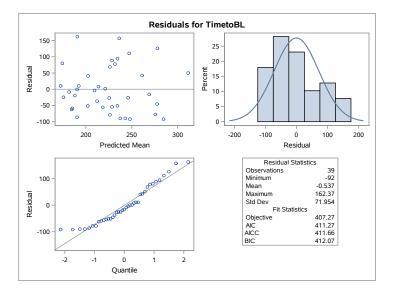
Least Squares Means Estimate									
Effect	Label	Estimate	Standard Error	DF	t Value	Pr > t			
Treatment	Row 1	-0.2434	26.4636	24.65	-0.01	0.9927			

Least Squares Means									
Effect	ffect Treatment Estimate Standard DF tValue								
Treatment	0	224.00	24.1456	33	9.28	<.0001			
Treatment	20	213.53	25.5115	33.4	8.37	<.0001			
Treatment	40	249.62	24.1412	33	10.34	<.0001			
Treatment	60	209.59	24.1871	33	8.67	<.0001			

	Differences of Least Squares Means										
Effect	Treatment	Standard Error	DF	t Value	Pr > t						
Treatment	0	20	10.4741	33.2647	25	0.31	0.7555				
Treatment	0	40	-25.6135	32.1909	24.4	-0.80	0.4339				
Treatment	0	60	14.4093	32.1574	24.2	0.45	0.6581				
Treatment	20	40	-36.0875	32.8550	23.7	-1.10	0.2831				
Treatment	20	60	3.9353	33.3017	25	0.12	0.9069				
Treatment	40	60	40.0228	32.2384	24.4	1.24	0.2262				

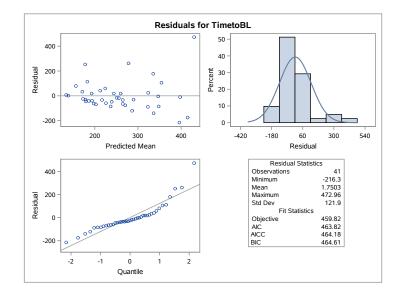
Day 3 Time to Return to Baseline

Type 3 Tests of Fixed Effects							
Effect Num Den DF F Value Pr > F							
Temperature	1	29.7	18.83	0.0002			
Treatment	3	26.9	2.44	0.0858			


Least Squares Means Estimate									
Effect	Effect Label Estimate Standard DF t Value Pr > t								
Treatment Row 1 -37.0710 33.4777 26.77 -1.11 0.2780									

Least Squares Means									
Effect	Treatment	Estimate	Standard Error	DF	t Value	Pr > t			
Treatment	0	228.69	38.2087	24.2	5.99	<.0001			
Treatment	20	224.28	39.6891	25.7	5.65	<.0001			
Treatment	40	325.88	39.5782	25.9	8.23	<.0001			
Treatment	60	247.11	39.6722	25.7	6.23	<.0001			

	Differences of Least Squares Means											
Effect	Treatment	Standard Error	DF	t Value	Pr > t							
Treatment	0	20	4.4029	41.6165	26.9	0.11	0.9165					
Treatment	0	40	-97.1953	41.6093	26.7	-2.34	0.0273					
Treatment	0	60	-18.4206	41.6083	26.9	-0.44	0.6615					
Treatment	20	40	-101.60	43.1177	27.3	-2.36	0.0259					
Treatment	20	60	-22.8235	42.2024	26.5	-0.54	0.5932					
Treatment	40	60	78.7747	43.0877	27.3	1.83	0.0785					


Day 1 Time to Return to Baseline

The Mixed Procedure

Day 3 Time to Return to Baseline

Day 1 Glucose Difference

The Mixed Procedure

Type 3 Tests of Fixed Effects							
Effect	Num DF	Den DF	F Value	Pr > F			
GluRunDate	8	20.6	1.36	0.2695			
TimeLag	1	24.9	2.30	0.1420			
Treatment	3	19	3.81	0.0271			

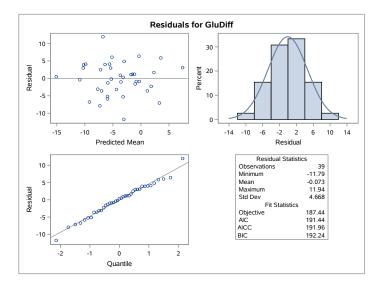
Least Squares Means Estimate								
Effect Label Estimate Standard Error DF t Value Pr >								
Treatment	Row 1	0.2812	2.1279	18.06	0.13	0.8963		

	Least Squares Means								
Effect	Treatment	Estimate	Standard Error	DF	t Value	Pr > t			
Treatment	0	-4.3400	1.9570	25.6	-2.22	0.0357			
Treatment	20	-8.2701	1.9689	25.2	-4.20	0.0003			
Treatment	40	-4.9574	2.0685	25.7	-2.40	0.0241			
Treatment	60	-0.6361	2.0332	25.4	-0.31	0.7569			

	Differences of Least Squares Means									
Effect	Treatment	Treatment	Estimate	Standard Error	DF	t Value	Pr > t			
Treatment	0	20	3.9301	2.4298	18	1.62	0.1232			
Treatment	0	40	0.6174	2.7307	18.8	0.23	0.8236			
Treatment	0	60	-3.7039	2.3985	18.7	-1.54	0.1393			
Treatment	20	40	-3.3127	2.2771	20	-1.45	0.1613			
Treatment	20	60	-7.6340	2.2601	18.1	-3.38	0.0033			
Treatment	40	60	-4.3213	2.5092	20.7	-1.72	0.0999			

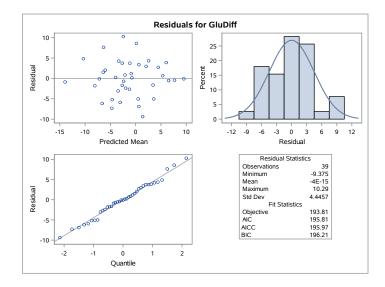
Day 3 Glucose Difference

Туре	Type 3 Tests of Fixed Effects							
Effect	Num DF	Den DF	F Value	Pr > F				
GluRunDate	7	27	2.72	0.0284				
TimeLag	1	27	10.59	0.0031				
Treatment	3	27	1.17	0.3379				


Least Squares Means Estimate							
Effect Label Estimate Standard Error DF t Value Pr > t							
Treatment	Row 1	-1.9010	2.0013	27	-0.95	0.3506	

Least Squares Means								
Effect	Treatment	Estimate	Standard Error	DF	t Value	Pr > t		
Treatment	0	-1.7820	1.7395	27	-1.02	0.3147		
Treatment	20	1.7944	1.6904	27	1.06	0.2979		
Treatment	40	-1.9823	1.7606	27	-1.13	0.2701		
Treatment	60	0.5449	1.9034	27	0.29	0.7769		

	Differences of Least Squares Means									
Effect	Treatment	Treatment	Estimate	Standard Error	DF	t Value	Pr > t			
Treatment	0	20	-3.5764	2.4067	27	-1.49	0.1489			
Treatment	0	40	0.2003	2.4302	27	0.08	0.9349			
Treatment	0	60	-2.3269	2.5239	27	-0.92	0.3647			
Treatment	20	40	3.7766	2.3988	27	1.57	0.1270			
Treatment	20	60	1.2495	2.5131	27	0.50	0.6231			
Treatment	40	60	-2.5272	2.4676	27	-1.02	0.3149			


Day 1 Glucose Difference

The Mixed Procedure

Day 3 Glucose Difference

Day 1 Glucose Post-Startle Average

The Mixed Procedure

Type 3 Tests of Fixed Effects						
Effect Num Den DF F Value Pr > F						
TimeLag	1	36	6.39	0.0160		
Treatment	3	36	1.24	0.3082		

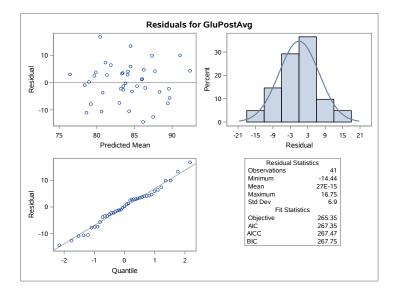
	Least Squares Means Estimate								
Effect	Effect Label Estimate Standard DF t Value Pr > t								
Treatment	Row 1	-1.1391	2.6843	36	-0.42	0.6738			

Least Squares Means							
Effect	Treatment	Estimate	Standard Error	DF	t Value	Pr > t	
Treatment	0	83.3564	2.3252	36	35.85	<.0001	
Treatment	20	81.7106	2.1971	36	37.19	<.0001	
Treatment	40	83.8935	2.2518	36	37.26	<.0001	
Treatment	60	87.8824	2.4258	36	36.23	<.0001	

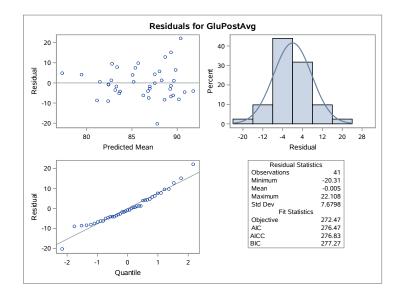
	Differences of Least Squares Means									
Effect	Treatment	Treatment	Estimate	Standard Error	DF	t Value	Pr > t			
Treatment	0	20	1.6458	3.1847	36	0.52	0.6085			
Treatment	0	40	-0.5371	3.2904	36	-0.16	0.8712			
Treatment	0	60	-4.5260	3.3519	36	-1.35	0.1854			
Treatment	20	40	-2.1830	3.1678	36	-0.69	0.4952			
Treatment	20	60	-6.1718	3.2695	36	-1.89	0.0671			
Treatment	40	60	-3.9888	3.3225	36	-1.20	0.2378			

Day 3 Glucose Post-Startle Average

Туре	Type 3 Tests of Fixed Effects							
Effect DF DF F Value Pr > I								
TimeLag	1	34.8	5.86	0.0208				
Treatment	3	27.8	0.15	0.9320				


Least Squares Means Estimate								
Effect Label Estimate Standard Error DF t Value Pr > t								
Treatment	Row 1	-1.2672	2.9182	27.69	-0.43	0.6675		

Least Squares Means									
Effect Treatment Estimate Standard Error DF t Value Pr > t									
Treatment	0	85.1687	2.5740	35.9	33.09	<.0001			
Treatment	20	85.4068	2.4460	35.9	34.92	<.0001			
Treatment	40	86.8982	2.4430	35.9	35.57	<.0001			
Treatment	60	87.0029	2.7334	36	31.83	<.0001			


	Differences of Least Squares Means									
Effect	Treatment Treatment Estimate Standard DF t Value F									
Treatment	0	20	-0.2381	3.4900	27.5	-0.07	0.9461			
Treatment	0	40	-1.7295	3.5024	27.7	-0.49	0.6253			
Treatment	0	60	-1.8341	3.7018	28	-0.50	0.6241			
Treatment	20	40	-1.4914	3.4089	27	-0.44	0.6652			
Treatment	20	60	-1.5960	3.6304	28.5	-0.44	0.6635			
Treatment	40	60	-0.1046	3.6066	28.3	-0.03	0.9771			

Day 1 Glucose Post-Startle Average

The Mixed Procedure

Day 3 Glucose Post-Startle Average

Day 1 Lactate Difference

The Mixed Procedure

Type 3 Tests of Fixed Effects						
Effect DF DF F Value Pr > F						
Treatment	3	26.3	3.25	0.0376		

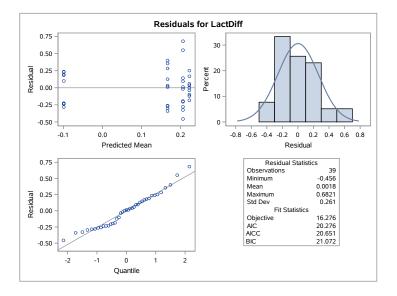
	Least Squares Means Estimate								
Effect	Label	Estimate	Standard Error	DF	t Value	Pr > t			
Treatment	Row 1	0.05637	0.09210	25.7	0.61	0.5459			

Least Squares Means								
Effect	Treatment	Estimate	Standard Error	DF	t Value	Pr > t		
Treatment	0	0.1661	0.08612	33.2	1.93	0.0623		
Treatment	20	-0.09890	0.09090	33.8	-1.09	0.2843		
Treatment	40	0.2059	0.08197	32.9	2.51	0.0171		
Treatment	60	0.2224	0.09090	33.8	2.45	0.0198		

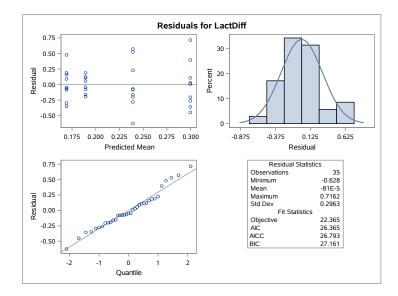
	Differences of Least Squares Means									
Effect	Treatment Treatment Estimate Standard Error DF t Value P									
Treatment	0	20	0.2650	0.1156	25.9	2.29	0.0302			
Treatment	0	40	-0.03972	0.1099	26.2	-0.36	0.7207			
Treatment	0	60	-0.05622	0.1156	25.9	-0.49	0.6309			
Treatment	20	40	-0.3048	0.1137	26.7	-2.68	0.0124			
Treatment	20	60	-0.3213	0.1194	26.5	-2.69	0.0122			
Treatment	40	60	-0.01650	0.1137	26.7	-0.15	0.8857			

Day 3 Lactate Difference

Туре	Type 3 Tests of Fixed Effects						
Effect Num Den DF F Value Pr > F							
Treatment	3	23.8	0.39	0.7643			


Least Squares Means Estimate								
Effect Label Estimate Standard Error DF t Value Pr > t								
Treatment Row 1 -0.07351 0.1079 23.65 -0.68 0.5024								

Least Squares Means									
Effect Treatment Estimate Standard Error DF t Value Pr > t									
Treatment	0	0.1691	0.1029	29.1	1.64	0.1111			
Treatment	20	0.2994	0.1029	29.1	2.91	0.0069			
Treatment	40	0.2391	0.1029	29.1	2.32	0.0273			
Treatment	60	0.1892	0.1090	29.8	1.74	0.0931			


	Differences of Least Squares Means									
Effect	ffect Treatment Treatment Estimate Standard DF t Value									
Treatment	0	20	-0.1304	0.1313	23.6	-0.99	0.3308			
Treatment	0	40	-0.07003	0.1313	23.6	-0.53	0.5988			
Treatment	0	60	-0.02012	0.1364	24.1	-0.15	0.8840			
Treatment	20	40	0.06036	0.1313	23.6	0.46	0.6500			
Treatment	20	60	0.1103	0.1364	24.1	0.81	0.4268			
Treatment	40	60	0.04992	0.1364	24.1	0.37	0.7176			

Day 1 Lactate Difference

The Mixed Procedure

Day 3 Lactate Difference

Day 1 Lactate Post-Startle Average

The Mixed Procedure

Type 3 Tests of Fixed Effects							
Effect Num Den DF DF Value Pr > F							
Treatment	3	26	2.16	0.1167			

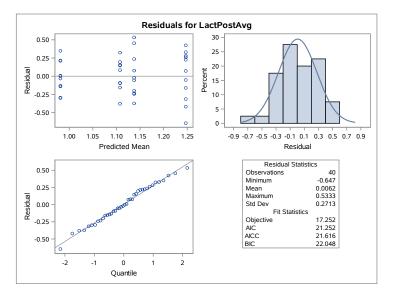
	Least Squares Means Estimate								
Effect	Label	Estimate	Standard Error	DF	t Value	Pr > t			
Treatment	Row 1	0.02538	0.08783	25.73	0.29	0.7749			

Least Squares Means								
Effect	Treatment	Estimate	Standard Error	DF	t Value	Pr > t		
Treatment	0	1.1373	0.08949	30	12.71	<.0001		
Treatment	20	0.9811	0.08932	30.1	10.98	<.0001		
Treatment	40	1.2467	0.08557	28.6	14.57	<.0001		
Treatment	60	1.1079	0.09386	31.5	11.80	<.0001		

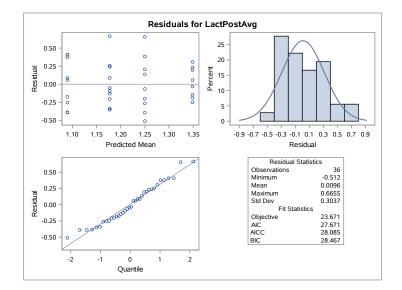
	Differences of Least Squares Means									
Effect	Treatment	Treatment	Estimate	Standard Error	DF	t Value	Pr > t			
Treatment	0	20	0.1562	0.1083	26.2	1.44	0.1611			
Treatment	0	40	-0.1095	0.1050	25.8	-1.04	0.3071			
Treatment	0	60	0.02942	0.1104	25.6	0.27	0.7920			
Treatment	20	40	-0.2656	0.1049	25.6	-2.53	0.0178			
Treatment	20	60	-0.1268	0.1121	26.7	-1.13	0.2683			
Treatment	40	60	0.1389	0.1088	26.2	1.28	0.2130			

Day 3 Lactate Post-Startle Average

Type 3 Tests of Fixed Effects							
Effect DF DF F Value Pr > F							
Treatment	3	23.6	1.35	0.2821			


Least Squares Means Estimate									
Effect Label Estimate Standard Error DF t Value Pr > t									
Treatment Row 1 -0.1690 0.1059 23.16 -1.60 0.1241									

	Least Squares Means								
Effect	t Treatment Estimate Standard Error DF t Value Pr >								
Treatment	0	1.0895	0.1055	28.9	10.33	<.0001			
Treatment	20	1.1771	0.1001	28.1	11.76	<.0001			
Treatment	40	1.2497	0.1055	28.9	11.85	<.0001			
Treatment	60	1.3487	0.1114	30	12.11	<.0001			


	Differences of Least Squares Means									
Effect	Treatment	Treatment	Estimate	Standard Error	DF	t Value	Pr > t			
Treatment	0	20	-0.08764	0.1271	23.8	-0.69	0.4972			
Treatment	0	40	-0.1602	0.1292	22.9	-1.24	0.2275			
Treatment	0	60	-0.2592	0.1343	23.4	-1.93	0.0659			
Treatment	20	40	-0.07256	0.1271	23.8	-0.57	0.5734			
Treatment	20	60	-0.1716	0.1323	24.2	-1.30	0.2069			
Treatment	40	60	-0.09902	0.1343	23.4	-0.74	0.4684			

Day 1 Lactate Post-Startle Average

The Mixed Procedure

Day 3 Lactate Post-Startle Average

Day 1 Cortisol Difference

The Mixed Procedure

Type 3 Tests of Fixed Effects							
Effect Num Den DF F Value Pr > F							
Treatment	3	36	2.53	0.0722			

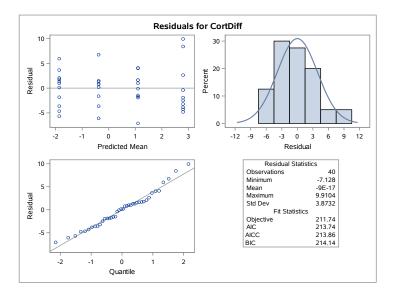
	Least Squares Means Estimate								
Effect	Label	Estimate	Standard Error	DF	t Value	Pr > t			
Treatment	Row 1	3.1721	1.4733	36	2.15	0.0381			

	Least Squares Means							
Effect	Treatment	Estimate	Standard Error	DF	t Value	Pr > t		
Treatment	0	2.7915	1.2748	36	2.19	0.0351		
Treatment	20	1.0943	1.2748	36	0.86	0.3963		
Treatment	40	-1.8590	1.2155	36	-1.53	0.1349		
Treatment	60	-0.3771	1.3438	36	-0.28	0.7806		

	Differences of Least Squares Means									
Effect Treatment Treatment Estimate Standar						t Value	Pr > t			
Treatment	0	20	1.6972	1.8029	36	0.94	0.3528			
Treatment	0	40	4.6504	1.7614	36	2.64	0.0122			
Treatment	0	60	3.1686	1.8523	36	1.71	0.0958			
Treatment	20	40	2.9533	1.7614	36	1.68	0.1023			
Treatment	20	60	1.4714	1.8523	36	0.79	0.4322			
Treatment	40	60	-1.4819	1.8120	36	-0.82	0.4188			

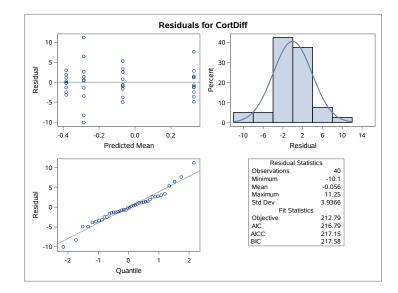
Day 3 Cortisol Difference

Type 3 Tests of Fixed Effects								
Effect Num Den DF DF F Value Pr > F								
Treatment	3	24.1	0.06	0.9783				


	Least Squares Means Estimate								
Effect Label Estimate Standard Error DF t Value Pr > t									
Treatment	Row 1	-0.2446	1.4604	24.17	-0.17	0.8684			

Least Squares Means										
Effect	Treatment Estimate Standard Error DF t Value Pr									
Treatment	0	-0.2864	1.3037	35.6	-0.22	0.8274				
Treatment	20	0.3276	1.2364	35.4	0.26	0.7926				
Treatment	40	-0.06896	1.3037	35.6	-0.05	0.9581				
Treatment	60	-0.3839	1.3820	35.7	-0.28	0.7828				

	Differences of Least Squares Means											
Effect	fect Treatment Treatment Estimate Standard Error DF t Value											
Treatment	0	20	-0.6140	1.7430	23.8	-0.35	0.7278					
Treatment	0	40	-0.2174	1.7926	24.7	-0.12	0.9045					
Treatment	0	60	0.09749	1.8339	23.9	0.05	0.9580					
Treatment	20	40	0.3966	1.7430	23.8	0.23	0.8220					
Treatment	20	60	0.7115	1.8023	24.7	0.39	0.6964					
Treatment	40	60	0.3149	1.8339	23.9	0.17	0.8651					


Day 1 Cortisol Difference

The Mixed Procedure

Day 3 Cortisol Difference

Day 1 Cortisol Post-Startle Average

The Mixed Procedure

Type 3 Tests of Fixed Effects									
Effect	Num DF	Den DF	F Value	Pr > F					
CortPosttestPlate	4	23.5	2.85	0.0465					
Treatment	3	23.2	0.28	0.8367					

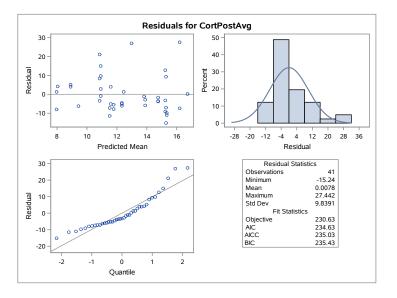
	Least Squares Means Estimate									
Effect Label Estimate Standard DF t Value										
Treatment	Row 1	0.4193	1.5072	23.19	0.28	0.7833				

	Least Squares Means										
Effect	Treatment	Estimate	Standard Error	DF	t Value	Pr > t					
Treatment	0	12.8127	3.1136	13.2	4.12	0.0012					
Treatment	20	11.9544	3.0832	12.7	3.88	0.0020					
Treatment	40	11.8746	3.0795	12.7	3.86	0.0021					
Treatment	60	13.3511	3.1609	13.9	4.22	0.0009					

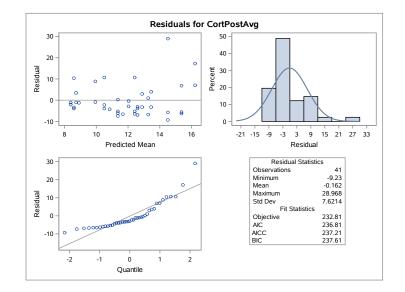
	Differences of Least Squares Means											
Effect	Treatment	Treatment	Estimate	Standard Error	DF	t Value	Pr > t					
Treatment	0	20	0.8583	1.8025	23.1	0.48	0.6384					
Treatment	0	40	0.9381	1.7996	23.1	0.52	0.6071					
Treatment	0	60	-0.5384	1.9102	23.3	-0.28	0.7806					
Treatment	20	40	0.07982	1.7226	23.1	0.05	0.9634					
Treatment	20	60	-1.3967	1.8523	23.2	-0.75	0.4584					
Treatment	40	60	-1.4765	1.8881	23.2	-0.78	0.4421					

Day 3 Cortisol Post-Startle Average

Type 3 Tests of Fixed Effects									
Effect Num Den DF F Value Pr > F									
CortPosttestPlate	4	23.4	1.70	0.1835					
Treatment	3	22.9	0.96	0.4263					


Least Squares Means Estimate									
Effect Label Estimate Standard Error DF t Value Pr > t									
Treatment	Row 1	1.0556	1.7400	22.87	0.61	0.5500			

Least Squares Means										
Effect Treatment Estimate Standard Error DF t Value Pr >										
Treatment	0	12.6517	2.6176	17.2	4.83	0.0001				
Treatment	20	10.5505	2.5295	15.6	4.17	0.0008				
Treatment	40	13.5042	2.5504	16	5.29	<.0001				
Treatment	60	10.7338	2.7088	19.1	3.96	0.0008				


	Differences of Least Squares Means											
Effect	Effect Treatment Treatment Estimate Standard DF t											
Treatment	0	20	2.1013	2.0974	23	1.00	0.3269					
Treatment	0	40	-0.8525	2.0856	22.9	-0.41	0.6865					
Treatment	0	60	1.9180	2.2207	22.8	0.86	0.3968					
Treatment	20	40	-2.9537	2.0272	22.7	-1.46	0.1588					
Treatment	20	60	-0.1833	2.2046	23.1	-0.08	0.9345					
Treatment	40	60	2.7704	2.1962	23	1.26	0.2198					

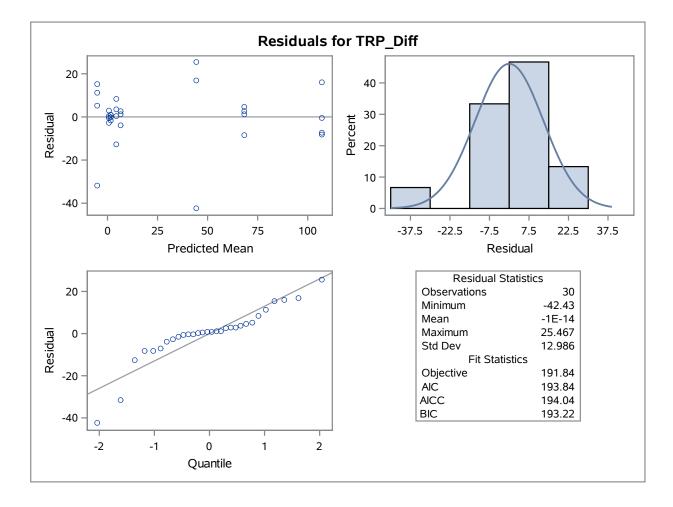
Day 1 Cortisol Post-Startle Average

The Mixed Procedure

Day 3 Cortisol Post-Startle Average

APPENDIX 5

SAS SUMMARY OUTPUT


Group 1 Amino Acid Data

Treatment	Day	N Obs	Variable	Label	N	Mean	Std Dev	Minimum	Maximum
0	1	4	TRP_Diff RatioDiff	TRP_Diff RatioDiff	4 3	1.7750000 -0.000170638	1.1236103 0.0027832	0.3000000 -0.0030187	2.7000000 0.0025429
	3	4	TRP_Diff RatioDiff	TRP_Diff RatioDiff	4 3	0.6000000 0.000430384	2.3122860 0.0048699	-2.1000000 -0.0033927	3.5000000 0.0059132
20	1	4	TRP_Diff RatioDiff	TRP_Diff RatioDiff	3 3	44.4333333 0.0872213	36.9932877 0.0716457	2.0000000 0.0051378	69.9000000 0.1371981
	3	4	TRP_Diff RatioDiff	TRP_Diff RatioDiff	4 4	4.5000000 0.0154875	9.0225643 0.0279486	-8.1000000 -0.0243351	13.0000000 0.0394599
40	1	4	TRP_Diff RatioDiff	TRP_Diff RatioDiff	4 4	68.3500000 0.1357226	5.7494927 0.0112667	60.0000000 0.1193248	73.0000000 0.1448863
	3	4	TRP_Diff RatioDiff	TRP_Diff RatioDiff	4 4	-5.2000000 -0.0125671	21.5364807 0.0415631	-36.9000000 -0.0654264	10.1000000 0.0232422
60	1	4	TRP_Diff RatioDiff	TRP_Diff RatioDiff	4 3	107.0750000 0.1955426	11.1622504 0.0068534	98.8000000 0.1879360	123.0000000 0.2012364
	3	4	TRP_Diff RatioDiff	TRP_Diff RatioDiff	3 2	6.6000000 0.0037982	3.5552778 0.0137460	2.6000000 -0.0059217	9.4000000 0.0135181

The MEANS Procedure

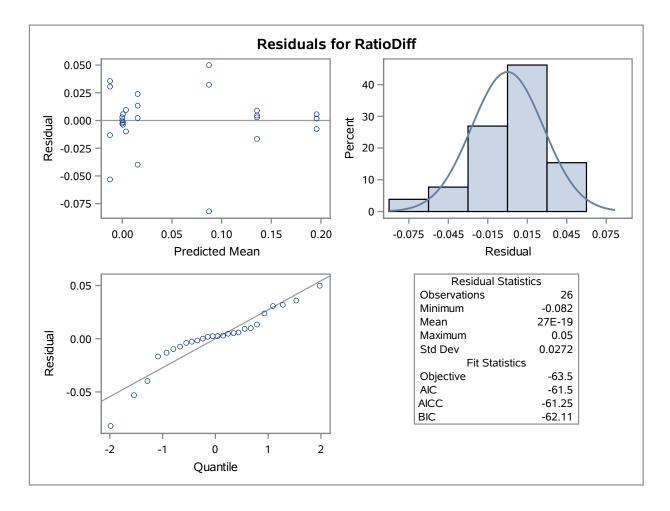
Difference in serum free Trp

Type 3 Tests of Fixed Effects									
Effect	Num DF	Den DF	F Value	Pr > F					
Treatment	3	22	17.45	<.0001					
Day	1	22	96.09	<.0001					
Treatment*Day	3	22	15.55	<.0001					

DAY 1: TRP_DIFF

F Test for Treatment*Day Least Squares Means Slice								
Slice	Slice Num Den DF F Value Pr > F							
Day 1 3 22 34.80 <.0001								

	Simple Differences of Treatment*Day Least Squares Means									
Slice	Treatment	Treatment	Estimate	Standard Error	DF	t Value	Pr > t			
Day 1	0	20	-42.6583	11.3877	22	-3.75	0.0011			
Day 1	0	40	-66.5750	10.5429	22	-6.31	<.0001			
Day 1	0	60	-105.30	10.5429	22	-9.99	<.0001			
Day 1	20	40	-23.9167	11.3877	22	-2.10	0.0474			
Day 1	20	60	-62.6417	11.3877	22	-5.50	<.0001			
Day 1	40	60	-38.7250	10.5429	22	-3.67	0.0013			


DAY 3: TRP_DIFF

F Test for Treatment*Day Least Squares Means Slice							
Slice DF DF F Value Pr > F							
Day 3	3	22	0.44	0.7239			

	Simple Differences of Treatment*Day Least Squares Means									
Slice	Treatment	Treatment	Estimate	Standard Error	DF	t Value	Pr > t			
Day 3	0	20	-3.9000	10.5429	22	-0.37	0.7150			
Day 3	0	40	5.8000	10.5429	22	0.55	0.5878			
Day 3	0	60	-6.0000	11.3877	22	-0.53	0.6035			
Day 3	20	40	9.7000	10.5429	22	0.92	0.3675			
Day 3	20	60	-2.1000	11.3877	22	-0.18	0.8554			
Day 3	40	60	-11.8000	11.3877	22	-1.04	0.3114			

Difference in TRP:LNAA

Type 3 Tests of Fixed Effects									
Effect Num DF Den DF F Value Pr > F									
Treatment	3	18	9.00	0.0007					
Day	1	18	63.61	<.0001					
Treatment*Day	3	18	10.14	0.0004					

DAY 1: RATIO DIFF

_

F Test for Treatment*Day Least Squares Means Slice							
Slice Num Den DF F Value Pr > F							
Day 1	3	18	20.23	<.0001			

	Simple Differences of Treatment*Day Least Squares Means								
Slice	Treatment	Treatment	Estimate	Standard Error	DF	t Value	Pr > t		
Day 1	0	20	-0.08739	0.02619	18	-3.34	0.0037		
Day 1	0	40	-0.1359	0.02450	18	-5.55	<.0001		
Day 1	0	60	-0.1957	0.02619	18	-7.47	<.0001		
Day 1	20	40	-0.04850	0.02450	18	-1.98	0.0632		
Day 1	20	60	-0.1083	0.02619	18	-4.14	0.0006		
Day 1	40	60	-0.05982	0.02450	18	-2.44	0.0252		

DAY 3: RATIO DIFF

1

F Test for Treatment*Day Least Squares Means Slice								
Slice	Slice Num Den DF F Value Pr > F							
Day 3 3 18 0.51 0.6775								

	Simple Differences of Treatment*Day Least Squares Means								
Slice	Treatment	Treatment	Estimate	Standard Error	DF	t Value	Pr > t		
Day 3	0	20	-0.01506	0.02450	18	-0.61	0.5465		
Day 3	0	40	0.01300	0.02450	18	0.53	0.6022		
Day 3	0	60	-0.00337	0.02928	18	-0.12	0.9097		
Day 3	20	40	0.02805	0.02268	18	1.24	0.2320		
Day 3	20	60	0.01169	0.02778	18	0.42	0.6789		
Day 3	40	60	-0.01637	0.02778	18	-0.59	0.5631		

Comparing treatment numbers Washout serum free Trp

	Differences of Least Squares Means									
Effect	Effect TrtNum TrtNum Estimate Standard DF t Value P									
TrtNum	1	2	-0.4500	2.3466	12	-0.19	0.8511			
TrtNum	1	3	0.8500	2.3466	12	0.36	0.7235			
TrtNum	1	4	2.8000	2.3466	12	1.19	0.2558			
TrtNum	2	3	1.3000	2.3466	12	0.55	0.5898			
TrtNum	2	4	3.2500	2.3466	12	1.38	0.1913			
TrtNum	3	4	1.9500	2.3466	12	0.83	0.4222			

The Mixed Procedure

Comparing treatment numbers Washout serum TRP:LNAA

	Differences of Least Squares Means									
Effect	t TrtNum TrtNum Estimate Standard DF t Value Pr									
TrtNum	1	2	-0.00119	0.004447	12	-0.27	0.7938			
TrtNum	1	3	0.002036	0.004447	12	0.46	0.6552			
TrtNum	1	4	0.006502	0.004447	12	1.46	0.1694			
TrtNum	2	3	0.003225	0.004447	12	0.73	0.4823			
TrtNum	2	4	0.007690	0.004447	12	1.73	0.1094			
TrtNum	3	4	0.004466	0.004447	12	1.00	0.3351			

Comparisons between days and blood collections serum free Trp

Differences of Least Squares Means									
Effect	DBC	DBC	Estimate	Standard Error	DF	t Value	Pr > t		
DBC	11	12	-56.2678	7.7451	43.2	-7.26	<.0001		
DBC	11	31	-56.9563	7.5829	43.1	-7.51	<.0001		
DBC	11	32	-57.1518	7.7451	43.2	-7.38	<.0001		
DBC	12	31	-0.6884	7.7451	43.2	-0.09	0.9296		
DBC	12	32	-0.8840	7.9101	43.4	-0.11	0.9115		
DBC	31	32	-0.1956	7.7451	43.2	-0.03	0.9800		

The Mixed Procedure

DBC = DayBC

Comparisons between days and blood collections serum TRP:LNAA

Differences of Least Squares Means							
Effect	DBC	DBC	Estimate	Standard Error	DF	t Value	Pr > t
DBC	11	12	-0.1069	0.01576	40	-6.78	<.0001
DBC	11	31	-0.1094	0.01465	39.2	-7.47	<.0001
DBC	11	32	-0.1091	0.01576	40	-6.93	<.0001
DBC	12	31	-0.00255	0.01576	40	-0.16	0.8720
DBC	12	32	-0.00227	0.01644	39.6	-0.14	0.8911
DBC	31	32	0.000289	0.01576	40	0.02	0.9855

DBC = DayBC