

THESIS

OFFLINE DETECTION OF BROKEN ROTOR BARS IN AC INDUCTION MOTORS

Submitted by

Craig Stephen Powers

Department of Electrical and Computer Engineering

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Fall 2015

Master’s Committee:

 Advisor: George J. Collins

 Steven C. Reising
 Hiroshi Sakurai

Copyright by Craig Stephen Powers 2015

All Rights Reserved

ii

ABSTRACT

OFFLINE DETECTION OF BROKEN ROTOR BARS IN AC INDUCTION MOTORS

The detection of the broken rotor bar defect in medium- and large-sized AC induction

machines is currently one of the most difficult tasks for the motor condition and monitoring

industry. If a broken rotor bar defect goes undetected, it can cause a catastrophic failure of an

expensive machine. If a broken rotor bar defect is falsely determined, it wastes time and money

to physically tear down and inspect the machine only to find an incorrect diagnosis. Previous

work in 2009 at Baker/SKF-USA in collaboration with the Korea University has developed a

prototype instrument that has been highly successful in correctly detecting the broken rotor bar

defect in ACIMs where other methods have failed. Dr. Sang Bin and his students at the Korea

University have been using this prototype instrument to help the industry save money in the

successful detection of the BRB defect.

A review of the current state of motor conditioning and monitoring technology for

detecting the broken rotor bar defect in ACIMs shows improved detection of this fault is still

relevant. An analysis of previous work in the creation of this prototype instrument leads into the

refactoring of the software and hardware into something more deployable, cost effective and

commercially viable.

iii

ACKNOWLEDGMENTS

I thank my wonderful family, who have been ever so patient in my multi-year journey

while seeking my master’s degree and also working full time. They’ve put up with many years of

their dad isolating himself evenings and weekends to study, to finish his assignments, and to

work on his thesis.

I also thank my wonderful professor Dr. George Collins for his wise, witty, and always

inspirational lectures in my undergraduate days. He later took me on as a graduate student and

allowed me to work on the things pertaining to my interests. He teaches that the value of

engineering is not just solving engineering problems, but more importantly on doing things

cheaper, faster and better for the needs of society. I also thank my master’s committee members

who graciously gave their time reviewing this work.

I thank the late Dr. Ernesto Wiedenbrug, who was wonderfully knowledgeable in all

things motors. He was a dear co-worker and friend whom I always looked forward to visiting

each and every day to share his many inspirational ideas on improving condition monitoring

testing. The wonderful memories of him helping me destroy motor bearings for defect testing,

lecturing me on motor torque calculations, horsepower, DQ versus DQZ transforms, etc., will

never be forgotten.

I thank my young co-worker Adam Bierman for graciously loaning me his Textronix

2235 oscilloscope to use at home to see the PWM signals during my thesis project. I thank my

former employer Advanced Energy Inc. for paying for my master’s classes, and my boss Joel

Blackburn for his continued support in furthering my education. Finally, I thank my current

employer SKF USA for providing development kits, motors and a thesis topic.

iv

TABLE OF CONTENTS

ABSTRACT .. ii

ACKNOWLEDGMENTS ... iii

LIST OF FIGURES .. v

Chapter 1 Introduction .. 1

Chapter 2 Literature review .. 4

Chapter 3 Realization of refactored system .. 6

Chapter 4 Performance of system ... 19

Chapter 5 Future work .. 25

Bibliography ... 29

Appendix A Source code for generating PWM signals .. 33

List of Abbreviations .. 56

v

LIST OF FIGURES

Figure 1: IEEE-IAS Percentage of failure by component .. 1

Figure 2: Diagram showing magnetic field vector addition of each coil of a 2-pole motor into a

single magnetic vector of angle 0 degrees .. 6

Figure 3: Resistance and inductance measurements produced by the MB 8

Figure 4: Example medium-voltage motor voltage, current and power levels derived from

PowerFlex 7000 AC drive ratings... 8

Figure 5: Nameplate data for a 5HP AC induction motor .. 9

Figure 6: NEMA locked rotor kVA/hp ... 10

Figure 7: Example drive voltages needed to test medium-voltage motors at ten percent nameplate

current for NEMA code "F" in locked rotor condition ... 11

Figure 8: Schematic of prototype MB tester’s PWM drive .. 12

Figure 9: ST STEVAL-IHM025V1 1kW 3-phase motor control demonstration board 13

Figure 10: The LAUNCHXL-F28069M C2000 microprocessor development kit 15

Figure 11: The LAUNCHXL-F28069M with DRV-8301 booster board attached 16

Figure 12: Adapter card built to interface LAUNCHXL-F28069M to STEVAL-IHM025V1 17

Figure 13: SKF EXP4000 used to make measurements of motor signals 18

Figure 14: Trigger settings for EXP4000 transient analysis tool .. 19

Figure 15: Recording by EXP4000 of 0.5hp 2-pole motor stepped through 36 magnetic angles 0

to 180 degrees ... 20

Figure 16: Voltages and currents after pivot by original MB MATLAB analysis script 21

Figure 17: Data taken with refactored MB ... 22

vi

Figure 18: Data re-taken after rotating motor shaft by 45 degrees ... 23

Figure 19: Re-calculated results with phases A and C swapped in data set showing proper

resistance and inductance measurements on a good motor .. 24

Figure 20: Results for a motor with a single-bar rotor defect ... 24

Figure 21: Generalized ladder impedance network for modeling AC induction motors 26

Figure 22: Matrix representation for ladder network for synthesis of ACIM lumped element

model... 26

Figure 23: Cost for PWM drive, IGBTs and IGBT drivers in prototype MB 27

Figure 24: Cost for PWM drive, IGBTs and IGBT drivers in refactored MB 27

1

Chapter 1 Introduction

AC induction motors (ACIMs) are used throughout the world to perform work by

converting electricity into mechanical power. ACIMs range from very small fractional

horsepower to the very large of thousands of horsepower. They operate in severe and hazardous

conditions and are expected to perform with high reliability. They are used in applications of

pumping, chopping, crushing, machining, centrifuging, and more.

As with most things, failures are unavoidable even for the ACIM. These complex electro-

mechanical devices suffer from bearing, cooling, winding, and rotor failures [1]. According to

published surveys [2] [3], induction motor failures can be grouped by bearing, stator, rotor and

other failures.

Figure 1: IEEE-IAS Percentage of failure by component

One of the most difficult motor faults to diagnose accurately in the AC induction motor is

the broken rotor bar fault. The studies [2] [3] show that approximately 9-10% of induction motor

failures are rotor-related. Broken rotor bars can lead to catastrophic and severe damage to a

41% Bearing-Related

37% Stator-Related

10% Rotor-Related

12% Other

2

motor if not repaired early [4], so accurate diagnosis is a necessity. Tearing down a motor for

physical inspection is a costly and time-consuming affair which takes the motor offline for an

extended period of time and must be avoided unless absolutely necessary. Plant operators need a

simple, inexpensive and reliable method to determine whether the rotor bars in their motors are

‘healthy’ or ‘faulty’.

Previous work [5] created a prototype offline broken bar tester. This previous work also

has successfully shown the merits of this prototype offline tester in detecting broken rotor bars

where other methods have failed.

The goal of this thesis is to improve on the original prototype design in the following areas:

1. Capability to operate off of a standard 15-20A, 110V wall outlet

2. Motor bump capability to allow subtraction of core hysteresis effects

3. Reducing the bill of material cost by replacing National Instrument FPGA test

instruments with an inexpensive microprocessor reference design

4. Replacing MATLAB software for post analysis of data with production C/C++/C# code

to integrate with an existing SKF motor tester

In the summer of 2009, the Korea University and Baker Instruments (now SKF-USA)

collaborated to build a prototype offline broken bar tester. The term ‘Magic Box’ was coined by

a customer for the prototype box which seemed to magically detect broken rotor bars in an AC

induction motor without even spinning or disconnecting the motor from its mechanical load. The

‘Magic Box’ concept is to provide a magnetic angle to the stator and then continually reverse it

at a test frequency from 1 to 60 Hz. These stator signals are influenced by the magnetic coupling

3

to the rotor of the motor. The voltage and current signals from the stator are simultaneously

sampled and recorded. Using the Park transform [5], the reference frame of the voltages and

currents are transformed into the d-q axis. Then using the fast Fourier transform, each of the d-q

axis voltage and current time-domain signals are converted into their frequency-domain spectra.

The impedance versus frequency for the standard motor model can be computed by dividing the

voltage spectrum by the current spectrum. The magnetic stimulus angle is then advanced and

impedance measurements are again made until the complete set of magnetic angles has been

tested. The reversing test frequency affects the probing depth of the magnetic field into the rotor

core. A slower test frequency has a larger skin depth and will probe deeper into the rotor’s

magnetic core. A motor with defective rotor bars shows variations in the impedance versus the

applied magnetic field angle. A motor with good rotors bars shows constant impedance versus

the applied magnetic field angle. The details are covered in US Patent Application

US20110191034.

4

Chapter 2 Literature review

Methods for detecting broken rotor bars can be grouped into the categories of online and

offline testing. Online testing is where the motor is connected to an AC line or VFD drive while

monitoring the running motor to make measurements. Offline testing involves turning off and

disconnecting the power source from the motor before proceeding to make measurements on the

motor.

Online testing offers the benefits of not having to take the motor offline while testing is

taking place. Current online testing drawbacks include problems in separating the electrical drive

signal from the test signals, load variations imposing signals on the stator’s electrical signals and

requirements of a minimum load [30-100%] applied to the motor [1]. In addition, there can be

safety concerns when connecting and sampling running motors due to the high voltages and

currents if provisions have not already been put in place such as potential and current

transformers to step down the voltages and currents to a safe level for measurement. One online

method for detecting broken rotor bars involves detecting the twice-slip frequency components

in the vibration or current spectra on the motor under test. Determination of broken rotor bars

using twice-slip frequency suffers from air-ducted false positive indications [6] where the

number of axial air ducts is an integer multiple of the number of poles in the motor. Several

methods exist to analyze the startup current to test for BRBs [7] [8] [9]. A method using wavelet

analysis of the startup transient currents improves the reliability of detecting BRBs [10] in

situations where the axial air ducts influence the current spectra.

Offline testing for BRBs can be grouped into tests that involve disassembly of the motor

and ones that do not. Offline testing offers advantages that additional tests for insulation quality,

5

resistance and inductance symmetry between phases and other motor health-determining tests

can also be run. The single phase rotation test (SPRT) is an offline method for detecting BRBs

without disassembly of the motor. A single-phase low-voltage AC source is connected to two of

the three phases of the motor. The motor is manually rotated while the current is monitored. As

the rotor is rotated, a change in the AC current will occur due to rotor impedance variations

caused by BRBs. The technique has also been extended to detecting static and dynamic

eccentricity faults [11] . Two additional offline tests that involve the disassembly of the motor

are the growler test and the rated rotor flux test [12].

6

Chapter 3 Realization of refactored system

Three-phase AC induction motors are driven by three sine wave voltages each shifted by

120 degrees from each other. The stimuli from each leg drive coils offset rotationally around the

stator. These sine waves produce a bi-polar magnetic field with an angle defined by the rotational

position of the coil around the rotor. Each stimulus can be represented by a vector with

magnitude and direction proportional to the magnitude and phase of the voltage applied to that

leg. The individual magnetic fields produced by each leg vectorially add together to form a

single rotating magnetic field with a constant magnitude. The graphic below shows the magnetic

field produced in the stator for each of the three phases and how they add together to form a

single rotating field in a two-pole motor.

Figure 2: Diagram showing magnetic field vector addition of each coil of a 2-pole motor

into a single magnetic vector of angle 0 degrees

An animated version of the above figure was prepared by Riaz [13].

If the magnitudes of the three AC phases are frozen in time, a constant magnetic field

will be induced through the stator at a given angle. Simply by multiplying the three magnitudes

by negative one, the magnetic field can be flipped 180 degrees in the stator. Repeating this

process at some frequency produces a (reversing) pulsating magnetic field at the given stator

7

angle. Since the stator’s magnetic field is only reversing but not rotating, no rotational torque is

induced into the rotor to cause the motor’s rotor to rotate.

The pulsating magnetic vector at θ can be produced with pulse width modulation with the

three-phase voltage references set using the mathematical equations below [5]:

Vas(ϕ,ώ)=vcos(ϕ)squ(ώt) (1)

Vbs(ϕ,ώ)=vcos(ϕ+120°)squ(ώt) (2)

Vcs(ϕ,ώ)=vcos(ϕ+240°)squ(ώt) (3)

where V is the excitation voltage magnitude and squ(ώt) represents the square wave pulsating at

the excitation frequency ώ. The pulsating field induces voltage in the rotor bars resulting in rotor

current flow, but the motor does not rotate since the average induced torque is zero.

As the square wave is applied to each leg of the motor, the three voltage and three current

waveforms can be acquired. Using a variant of the Park transform [5], the voltages and the

currents can be transformed into a time-invariant d-q coordinate system. The impedance versus

frequency can be computed by dividing the FFT of Vq by the FFT of Iq. Finding the value at the

fundamental frequency will yield the standard motor model’s equivalent impedance. The real

part represents the resistance of the motor model and the imaginary portion represents the

inductive part of the motor model. The graph data below shows an example of data generated

using the technique described above.

T

Previous

broken ro

following

Figure

Figure 3: R

The ‘magic b

research [5]

otor bar dete

g range of m

4: Example

Resistance a

ox’ target m

] shows that

ection. To ca

medium volta

e medium-vo
Po

and inducta

market is to te

5-20% of m

alculate the c

age class mo

oltage moto
owerFlex 70

8

ance measur

est medium-

motor namepl

corner points

tors will be

or voltage, c
000 AC driv

rements pro

-voltage indu

late current m

s for the volt

considered.

current and
ve ratings

oduced by t

ustrial AC in

must be used

tage and cur

power leve

the MB

nduction mot

d for effectiv

rrent drive th

ls derived fr

tors.

ve

he

fr om

9

If lumped element model data were readily available from the manufacturers of medium-voltage

motors, then it would fairly simple to determine the maximum voltage needed when testing at

10% of name plate current for standstill conditions. Since the lumped element data is not easily

obtainable from most motor manufacturers, another method will be presented to approximate the

voltage at a given current utilizing the nameplate current and NEMA locked rotor code presented

on the nameplate of the motor. The name plate data for an example 5 HP motor to calculate LR

voltage is presented below:

Figure 5: Nameplate data for a 5HP AC induction motor

This motor shows that when wired for 208VAC the full load run current is 14.5 amps;

and that when wired for 460 VAC, the full-load run current is 6.6 amps. The nameplate NEMA

LR kVa code for this motor is “J”. NEMA provides a table (shown below) which shows the ratio

of locked rotor bar current to full load current as indicated by the code letter J.

10

Figure 6: NEMA locked rotor kVA/hp

If an assumption is made that under locked rotor conditions (standstill) the motor behaves as

pure impedance since none of the energy is converted into mechanical energy, then the ratio of

voltage to current must remain constant. Using the pu (per unit) method, then 1*puV would be

460V and 1*puI would be 6.6Amps for the motor above when wired as a 460V motor. Using

code J, the locked rotor current is 7.1 puI at the nominal line voltage of 1*puV. To calculate the

voltage for 10% of current (0.1puI), then following ratio equation can be set up.

7.1puI / 0.1puI = 1puV / xpuV (4)

Re-arranging the equation to solve for ‘x’ yields:

xpuV = 0.1 / 7.1 * 1puV (5)

So xpuV = 0.1 / 7.1 * 460V = 6.47 V to develop 0.1puI (10 percent name plate current). The

calculated voltage and current drive requirements for medium-voltage motor testing (shown

below) drive the requirements for the stimulus and measurement sections of the refactored tester.

Figur

The requ

� A

� L

� S

� IG

� In

� P

� A

The requ

� T

� T

� S

� S

� S

e 7: Examp
namep

uired stimulu

AC-DC sectio

Large 400V e

ix PWM out

GBT driver w

ntelligent po

rogrammabl

A/D with LP

uired measur

Three 50A CT

Three voltage

ix 12-24 bit

ix PGAs if n

ix LP (anti-a

ple drive vol
plate curren

us hardware f

on

electrolytic c

tputs with de

with isolatio

ower module

le interrupt f

filter for rea

ement hardw

Ts

e dividers wi

simultaneou

needed, depe

aliasing) filte

tages neede
nt for NEM A

for medium-

caps for ener

eadband for

on, Vce sat p

e (V>=400V,

for 10-60Hz

adback of BU

ware for med

ith max V of

us A/Ds

ending upon

ers

11

ed to test me
A code "F"

-voltage mot

rgy storage

high and low

protection, cr

, I>=50A)

reversal

US voltage f

dium-voltage

f 400V

A/D resolut

edium-volta
in locked r

tors would b

w side drive

rowbar prote

for PWM ou

e motor mea

tion

age motors a
rotor conditi

be:

 of 3 ½ H sw

ection

utput adjustm

asurements:

at ten perce
ion

witches

ment of BUS

ent

 V

12

The figure below shows a simplified schematic showing the PWM drive portion of the tester

connected to a test motor. The measurement portion of the tester will be implemented by a

separate piece of equipment discussed later in the chapter.

Figure 8: Schematic of prototype MB tester’s PWM drive

For this project, the ST STEVAL-IHM025V1 1kW 3-phase motor control demonstration

board was chosen for its availability and features. The power module can be fed by AC mains of

90-285 VAC which is rectified for a DC bus or can be fed by a separate DC supply voltage of

125-400 VDC. The intelligent power module (IPM) provides +15V and 3.3V auxiliary power

from the DC link voltage derived with a buck converter which can be used to power a

microprocessor. It uses the STGIPL14K60 IPM which provides a 3-phase inverter based on

600V IGBTs. The IPM provides high-side drivers, cross-conduction protection and op amps for

current sensing in one rugged short-circuit IGPT package. The ‘interlocking’ feature prevents

both the high and low switches from ever simultaneously turning on even if both are enabled by

the PWM drive. During initial PWM drive signal development, this feature can prevent

accidental destruction of the demonstration board by preventing cross-conduction when incorrect

PWM signals are applied. When run on 110VAC, the rectified DC bus is approximately

165VDC and 330VDC when powered by 220VAC. It can test a large set of medium-voltage

13

motors with its 6.5A and 330VDC output maximum. Larger modules can be purchased from ST

and numerous other manufacturers to easily scale up the voltage and current drive requirements.

Figure 9: ST STEVAL-IHM025V1 1kW 3-phase motor control demonstration board

To drive the 3-phase intelligent power module, three pairs of PWM drive signals need to

be generated. Each pair of PWM drive signals will drive one of the three ½ H switches in the

IPM. To avoid cross-conduction of each ½ H switch, a programmable dead-band is programmed

in the PWM drive generator or implemented in hardware by the IGBT drivers driving the ½ H

switches. A sine-wave lookup table is used to determine the magnitude for phase U given the test

angle. The magnitude of phase V is calculated from the sine of the test angle plus 120 degrees,

while phase W is calculated from the sine of the test angle plus 240 degrees. A test frequency

ranging from 1 to 60 Hz will drive the magnitude reversals of the U, V and W phases to generate

the reversing stator magnetic field.

Initial PWM drive signal development began with the BeagleBone development kit

which utilizes the 600MHz AM335x system on a chip (SOC) [14] [15]. The TI StarterWare bare

14

metal C library has basic driver support for all of the peripherals on the AM335x processor

including the PWM, LCD, USB and A/D peripherals needed to build a very elegant embedded

motor test system. PWM code was easily written to output three PWM signals with their

complementary signals including deadband generation. Code was also written to interface the

ADS1278 eight-channel 144kHz simultaneously sampling 24-bit ADC chip through the ASP

port of the AM335x processor to allow sampling of three voltage and three current channels of a

motor with high dynamic range. Using an A/D converter with high dynamic range can negate the

need to use a programmable gain amplifier and cumbersome range changes. The AM335x

processor was ideal in many aspects except for the following drawbacks: no motor control

libraries are available, its BGA package is difficult to layout for PCBs and there is no high

voltage isolation on the USB port. An attempt to develop the PWM drive using the DE0-nano

utilizing the Altera Cyclone IV FPGA was successful except that the floating point

multiplication scaling and sine functions consumed substantial amounts of the FPGA resources.

Microprocessors are vastly superior in efficiently implementing floating point operations!

The final selection to provide the PWM stimulus was the inexpensive LAUNCHXL-

F28069M development kit [16] [17] which offered the C2000 series F28069M microprocessor

with floating point arithmetic, a motor control library, and most importantly included voltage

isolation chips between the USB port and the microprocessor. In addition, the F28069M

processor contains a ROM programmed to support TI’s InstaSpin and InstaMotion proprietary

libraries [18] [19]. The libraries allow motor parameter identification as well as supporting

sensorless field-oriented control (FOC) of many motor types. Though the source code is not

currently published, these ROM programmed libraries can be called to immediately spin motors

in speed and torque control applications.

15

Figure 10: The LAUNCHXL -F28069M C2000 microprocessor development kit

The USB voltage isolation feature of the LAUNCHXL-F28069M is very important

because the ST STEVAL-IHM025V1 demonstration kit directly rectifies the input AC and its

ground reference is at half of the rectified bus voltage. When the STEVAL-IHM025V1 is

powered by 110VAC and supplies +3.3V power to the F28069M microprocessor, the

microprocessor is around +70 volts higher than the USB ground coming from the computer used

to program the microprocessor. Jumpers JP1 and JP2 must be removed to enable the USB

voltage isolation on the LAUNCHXL-F28069M development kit when powered from the ST

STEVAL-IHM025V1 demonstration kit. According to published specifications, the ISO7240

and ISO7231 USB isolation chips have a rating of 2500Vrms for 1 minute and provide a working

isolation voltage of 500V for up to 25 years [20]. Powering the STEVAL-IHM025V1 using a

sufficiently sized isolation transformer is another solution that was not tried that could add a

secondary voltage isolation barrier.

The DRV-8301 booster pack board is a compatible add-on to the LAUNCHXL-F28069M

development kit and offers a safe low-voltage (+24V) 3-phase motor driver for ACIM or

brushless DC (BLDC) motors up to 10A [21] [22]. The free MotorWare package from TI offers

16

numerous example motor control labs using the LAUNCHXL-F28069M and DRV-8301 booster

pack combination.

Figure 11: The LAUNCHXL-F28069M with DRV-8301 booster board attached

An adapter board was built to connect the STEVAL-IHM025V1 module to the

LAUNCHXL-F28069M development board using the function pin mapping used by the DRV-

8301 booster pack. With minor modifications to the InstaSpin code for voltage/current scaling

and polarity and PWM polarity, the F28069M development board should be able to spin high-

voltage motors using the STEVAL-IHM025V1 as it does with the low-voltage DRV-8301 motor

drive board.

17

Figure 12: Adapter card built to interface LAUNCHXL-F28069M to STEVAL-IHM025V1

Numerous code examples are included for each of the TI C2000 processors supported in

TI’s control suite library [23]. For this project, code was pulled from the ControlSuite f2806x

examples for PWM deadband, PWM tripzone, CPU timer, A/D and interrupt examples as

detailed in the comments of the software listed in Appendix A. The F28069M code shown in

Appendix A was built to load into the flash memory of the microprocessor but did not run until

the code was modified to copy time-critical functions from the flash memory to RAM.

Though the F28069M processor cannot drive a LCD display, the TI GUI Composer can

be used to build a GUI display running on a host computer to show the target processor values

through the USB interface. In addition, the code composer studio supports an ‘expression’

window which can display the values of variables on the target system in real time.

18

The measurement of the motor signals will be performed by the SKF EXP4000 online motor

tester. The EXP4000 tester uses a National Instruments NI-6212 data acquisition card for

measuring the three voltages and the three currents supplied to the motor under test. The NI-6212

DAQ card can measure 16 channels each with 16 bits of resolution. Individually, each channel

can be set to a voltage range of +/- [0.2, 0.5, 5.0, 10.0] volts. The acquisition rate is set to 25 kHz

for each channel. The channels are sequentially scanned at a 400 kHz rate. Though the NI-6212

acquisition card has limitations in simultaneous sampling, cost and sample continuity during auto

ranging to another voltage range, the easy USB interface and availability of software drivers

makes it better than the lower resolution 12-bit A/Ds available on the LAUNCHXL-F28069M

development board.

Figure 13: SKF EXP4000 used to make measurements of motor signals

19

Chapter 4 Performance of system

For the initial test of the system, a Baldor 2-pole 3-phase 480V 1A 0.5hp motor was

connected. The microprocessor was set to run at 10 percent of its PWM drive with a reversal

frequency of 15Hz. The SKF EXP4000 motor analyzer was attached using its 10A current

clamps and voltage inputs for waveform recording purposes. The EXP4000 transient analyzer

tool was set to record the three voltages and currents when the current went above .05A.

Figure 14: Trigger settings for EXP4000 transient analysis tool

The LAUNCHXL-F28069M/STEVAL-IHM025V1 combination was then plugged in to

start the testing. As programmed, the test ran for approximately 90 seconds as indicated by the

flashing blue and red LEDs on the LAUNCHXL-F28069M for each magnetic angle tested. The

EXP4000 recorded the data (shown below) which shows each magnetic angle test with an off

period followed by the next magnetic angle.

20

Figure 15: Recording by EXP4000 of 0.5hp 2-pole motor stepped through 36 magnetic

angles 0 to 180 degrees

The recorded data was exported and then imported into the MATLAB script that

previously written for the prototype MB built in 2009. The MATLAB script sorts each magnetic

angle test section and then finds a pivot value to center the voltages and currents as shown

below.

21

Figure 16: Voltages and currents after pivot by original MB MATLAB analysis script

The set of voltages and currents are then put through a customized Park transform which

uses the magnetic angle that was used to generate each test section. Then the FFT spectra are

computed for the d-q voltage and current, which are then divided to produce an impedance

spectrum. The real part of the spectrum represents the resistance of the motor and the imaginary

part represents the inductance of the motor. Plotting the peak value for each magnetic angle

yields the impedance versus magnetic angle plots shown below.

22

Figure 17: Data taken with refactored MB

Though the calculated resistance and inductance values looked reasonable for this

particular motor, the data above shows a spike from magnetic angle 75-90 degrees. To determine

if the discontinuity in resistance and inductance between angles 75 and 90 degrees was due to

problems with the PWM generation or a bad motor, the motor shaft was rotated by 45 degrees

and the test run again.

23

Figure 18: Data re-taken after rotating motor shaft by 45 degrees

The data discontinuity did not move by 45 degrees, so there may be a problem in the

PWM generation at those particular angles or with the measured phases not matching up for the

supplied DQ angle. Comparing the peaking of each phase for the data set taken with the

prototype tester built in 2009 to the peaking of each phase for the new data set showing the

discontinuity revealed that phases A and C were swapped on the new data set. After swapping

the A and C voltage and current phase data and re-running the MATLAB script, the discontinuity

went away indicating that the magnetic angle used for the DQ calculations did not line up to the

angle used in the data set.

24

Figure 19: Re-calculated results with phases A and C swapped in data set showing proper

resistance and inductance measurements on a good motor

 Data was then taken on a motor of the same model but with one of the rotor bars drilled

through to induce a single-bar rotor defect. The graph shows a slight dip in the resistance around

60 degrees indicating the presence of the induced single-bar rotor defect.

Figure 20: Results for a motor with a single-bar rotor defect

25

Chapter 5 Future work

The refactored tester has demonstrated that it can successfully measure the resistance and

inductance versus magnetic angle of a motor just as the original prototype built in 2009. By

detecting deviations in the resistance and inductance versus magnetic angle, the refactored tester

should be able to detect the BRB defect in motors. Tests now need to be run on many motors

with and without the BRB defect to ensure the refactored test system can find the BRB defect as

well as the original prototype built in 2009. The refactored tester was wired to work with the TI

InstaSpin libraries to add the new motor bump capability and still needs to be tested. Only minor

modifications of TI’s supplied DRV-8301 software module for voltage and current scaling along

with PWM polarity for the STEVAL-IHM025V1 module should be needed to test if the

refactored tester can bump and spin motors. In addition to testing for the BRB defect in motors,

the refactored tester should also be able to detect missing magnetic wedges in a motor along with

detecting faulty cores in motors [24] [25].

A VFD drive contains all of the hardware needed to implement the MB except possibly

for the reversing-angle PWM drive and analysis algorithms. It would be beneficial for VFD drive

manufacturers to incorporate the algorithms of MB into their drives to provide customers

constant diagnostics of their motor’s health. Whenever a VFD drive is requested to stop, the

VFD drive could perform a broken rotor bar measurement. Previous stored measurements could

be subtracted from the measurement to remove influences from the stator core itself and results

for both the rotor bar health and core health could be determined by the VFD drive. If the motor

is attached to a load which continues to rotate even when the motor is not energized, the VFD

drive could determine the speed of the motor from the electrical signals, and then make rotor bar

measurem

rotating l

T

addition

attached

impedanc

impedanc

synthesiz

could the

motor co

Figur

Figu

ments at give

load.

The MB com

to the detect

load versus

ce for a rang

ce versus fre

ze a realistic

en be incorpo

ontrol librarie

re 21: Gener

ure 22: Matr

en angles wh

mputes the im

tion of broke

frequency. T

ge of frequen

equency is kn

lumped elem

orated by a V

es are alread

ralized ladd

r ix represen

hile adjustin

mpedance of t

en rotor bars

The fundame

ncies much l

nown for a g

ment model

VFD drive to

dy using a sim

der impedan

ntation for l
elem

26

ng for the add

the attached

s, it can be us

ental PWM f

ike a networ

given motor,

of the motor

o improve it

milar techniq

nce network

adder netw
ment model

ditional angl

d load at a giv

sed to measu

frequency ca

rk analyzer.

, the informa

r. The refine

ts motor cont

que to impro

k for modeli

work for syn
l

le movemen

ven frequenc

ure the impe

an be shifted

Once the ch

ation can be

ed lumped el

trol loop. Th

ove motor co

ing AC indu

nthesis of AC

nt due to the

cy. So in

edance of the

d to measure

haracteristic

used to

lement mode

he TI Insta-S

ontrol.

uction moto

CIM lumpe d

e

e the

el

Spin

ors

d

27

 To enable quick PWM drive development, the prototype MB was built using a expensive

National Instruments FPGA module. To provide robust voltage and current drive, it used three

1200V 75A dual IGBT modules with three hybrid IGBT driver modules.

Figure 23: Cost for PWM drive, IGBTs and IGBT drivers in prototype MB

To reduce the cost of the refactored MB tester but keep the same performance, several

key expensive components can be replaced with components more optimized for the final design

requirements. The calculated maximum 165V voltage drive requirement (Figure 7) shows that

the refactored MB could use 600V-rated IGBTs instead of the 1200V-rated IGBTs used in the

prototype MB. A single intelligent power module such as the 600V 75A Mitsubishi PS21A7A

provides all six IGBT drivers and IGBTs in a single package with substantial savings. The easy-

to-program but expensive National Instruments FPGA module providing the PWM drive signals

can now be replaced by the LAUNCHXL-F28069M.

Figure 24: Cost for PWM drive, IGBTs and IGBT drivers in refactored MB

 Making these component changes will reduce the bill of material cost of the refactored

MB tester by $689.85 over the bill of material cost for the prototype MB tester. To cover the

overhead costs of marketing, engineering and sales, a low-volume product must typically be sold

at about 5 times the cost of the bill of material. By reducing the MB bill of materials by $689.85,

28

the sales price of the MB tester can be $3449.25 lower allowing the product to be more

competitive in the condition-monitoring tester market.

29

Bibliography

[1] S. Bindu and V. V. Thomas, "Diagnosis of internal faults of three phase squirrel cage

induction motor - A review," in International Conference on Advances in Energy

Conversion Technologies, 2014, pp. 48-54.

[2] P. F. Albrecht et al., "Assessment of the reliability of motors in utility applications-

Updated," IEEE Trans. on Energy Convers., vol. 1, pp. 39-46, 1986.

[3] P. Donnell, "Report of large motor reliability survey of industrial and commercial

installation, Part I and Part II," IEEE Trans. Ind. Appl., vol. 21, no. 4, pp. 853-872, 1985.

[4] G. B Kilman et al., "Noninvasive detection of broken rotor bars in operating induction

motors," IEEE Trans. Energy Convers., vol. 3, no. 4, pp. 873 - 879, Oct. 1988.

[5] B. Kim et al., "Automated Detection of Rotor Faults for Inverter-fed Induction Machines

under Standstill Conditions," in IEEE Energy Conversion Congress, 2009, pp. 2277 - 2284.

[6] S. Lee et al., "Evaluation of the Influence of Rotor Axial Air Ducts on Condition

Monitoring of Induction Motors," in IEEE Energy Conversion Congress, 2012, pp. 3016 -

3023.

[7] A. Garcia-Perez et al., "Startup Current Analysis of Incipient Broken Rotor Bar in Induction

Motors using High-Resolution Spectral Analysis," in IEEE International Symposium on

Diagnostics for Electric Machines, Powers Electronics and Drives, 2011, pp. 657 - 663.

[8] Y. Wei et al., "Broken Rotor Bar Detection in Induction Motors via Wavelet Ridge," in

International Conference on Measuring Technology and Mechatronics Automation, 2009,

pp. 625 - 628.

30

[9] K. M. Siddiqui and V. K Giri, "Broken rotor bar fault detection in induction motors using

Wavelet Transform," in International Conference on Computing , E-Learning and

Emerging Technology, 2012, pp. 1-6.

[10] C. Yang et al., "Reliable Detection of Induction Motor Rotor Faults Under the Rotor Axial

Air Duct Influence," IEEE Trans. Ind. Appl., vol. 50, no. 4, pp. 2493 - 2502, 2014.

[11] D. Hyun et al., "Detection of airgap eccentricity for induction motors using the single-phase

rotation test," IEEE Trans. Energy Convers., pp. 689 - 696, 2012.

[12] I. Kathir et al., "Detection of rotor fault in an induction motor under standstill condition," in

International Conference on Advances in Engineering, Science and Management, 2012, pp.

547 - 552.

[13] M. Riaz. (2015, October) SIMULATION OF ELECTRIC MACHINE AND DRIVE

SYSTEMS USING MATLAB AND SIMULINK [Online].

http://www.ece.umn.edu/users/riaz/animations/abcvec.html

[14] Texas Instruments. (2011, October) AM335x ARM® Cortex™-A8 Microprocessors

(MPUs) [Online]. http://www.ti.com/lit/ds/sprs717h/sprs717h.pdf

[15] Gerald Coley. (2012, May) BeagleBone System Reference [Online].

http://beagleboard.org/static/beaglebone/latest/Docs/Hardware/BONE_SRM.pdf

[16] Texas Instruments. (2014) Meet the TMS320F28069M LaunchPad Development Kit

[Online]. http://www.ti.com/lit/ml/sprui02/sprui02.pdf

[17] Texas Instruments. (2015, January) LAUNCHXL-F28069M Overview User's Guide

[Online]. http://www.ti.com/lit/ug/sprui11/sprui11.pdf

[18] Texas Instruments. (2013, January) InstaSPIN-FOC™ and InstaSPIN-MOTION™ User's

31

Guide [Online]. http://www.ti.com/lit/ug/spruhj1f/spruhj1f.pdf

[19] Texas Instruments. (2013, April) TMS320F28069M, TMS320F28068M InstaSPIN™-

MOTION Software Technical Reference Manual [Online].

http://www.ti.com/lit/ug/spruhj0b/spruhj0b.pdf

[20] Texas Instruments. (2007, September) ISO724x High-Speed, Quad-Channel Digital

Isolators [Online]. http://www.ti.com/lit/ds/symlink/iso7240m.pdf

[21] Texas Instruments. (2013, October) BOOSTXL-DRV8301 Hardware User's Guide [Online].

http://www.ti.com/lit/ug/slvu974/slvu974.pdf

[22] Texas Instruments. (2013) Motor Drive BoosterPack Quick Start Guide: BOOSTXL-

DRV8301 [Online]. http://www.ti.com/lit/sg/sldc006/sldc006.pdf

[23] Texas Instruments. (2010, January) ControlSUITE™ Getting Started Guide [Online].

http://www.ti.com/lit/ml/sprugu2c/sprugu2c.pdf

[24] K.W. Lee et al., "Detection of stator slot magnetic wedge failure for induction motors

without disassembly," in IEEE International Symposium on Diagnostics for Electric

Machines, Powers Electronics and Drives, 2013, pp. 183-191.

[25] K. Lee et al., "A Stator-Core Quality-Assessment Technique for Inverter-Fed Induction

Machines," IEEE Trans. Ind. Applicat., vol. 46, no. 1, pp. 213 - 221, Jan./Feb. 2010.

[26] M. F. Cabanas et al., "A New Portable, Self-Powered, and Wireless Instrument for the Early

Detection of Broken Rotor Bars in Induction Motors," IEEE Trans. Ind. Electron., vol. 58,

no. 10, Oct. 2011.

[27] C. Demian et al., "Detection of Induction Machines Rotor Faults at Standstill Using Signals

Injection," IEEE Trans. Ind. Applicat., vol. 40, no. 6, Nov./Dec. 2004.

32

[28] B. Mirafzal and N. A. O. Demerdash, "Effects of Load Magnitude on Diagnosing Broken

Bar Faults in Induction Motors Using the Pendulous Oscillation of the Rotor Magnetic Field

Orientation," IEEE Trans. Ind. Appl., vol. 41, pp. 771-783, 2005.

[29] IEEE Recommended Practice: Definition of Basic Per-Unit Quantities for AC Rotating

Machines, IEEE Standard 86, 1987.

[30] A. M. da Silva, "Induction motor fault diagnostic and monitoring methods," M.S. thesis,

Dept. Elect. Comp. Eng., Marquette Unv., Milwaukee, WI, 2006.

[31] M. E. H. Benbouzid, "A review of induction motors signature analysis as a medium for

faults detection," IEEE Trans. Ind. Electron., vol. 47, no. 5, pp. 984-993, 2000.

[32] Texas Instruments. (2011, January) TMS320x2806x Piccolo Technical Reference Manual

[Online]. http://www.ti.com/lit/ug/spruh18e/spruh18e.pdf

[33] Texas Instruments. (2005, November) Programming TMS320x28xx and 28xxx Peripherals

in C/C++ [Online]. http://www.ti.com/lit/an/spraa85d/spraa85d.pdf

[34] K. Sudha, "Implementation of FPGA based controller for induction motor drives," in

International Conference on Computation of Power, Energy, Information and

Communication, 2013, pp. 37 - 42.

33

Appendix A Source code for generating PWM signals

//###
// Description:
//! \addtogroup f2806x_example_list
//! <h1>ePWM Deadband Generation (epwm_deadband)</h1>
//!
//! This example configures ePWM1, ePWM2 and ePWM3 for:
//! - Count up/down
//! - Deadband
//! 3 Examples are included:
//! - ePWM1: Active low PWMs
//! - ePWM2: Active low complementary PWMs
//! - ePWM3: Active high complementary PWMs
//!
//! Each ePWM is configured to interrupt on the 3rd zero event
//! when this happens the deadband is modified such that
//! 0 <= DB <= DB_MAX. That is, the deadband will move up and
//! down between 0 and the maximum value.
//!
//! \b External \b Connections \n
//! - EPWM1A is on GPIO0
//! - EPWM1B is on GPIO1
//! - EPWM2A is on GPIO2
//! - EPWM2B is on GPIO3
//! - EPWM3A is on GPIO4
//! - EPWM3B is on GPIO5
//

//###
// $TI Release: F2806x C/C++ Header Files and Peripheral Examples V150 $
// $Release Date: June 16, 2015 $
// $Copyright: Copyright (C) 2011-2015 Texas Instruments Incorporated -
// http://www.ti.com/ ALL RIGHTS RESERVED $
//###

//###
// Code adapted by Craig S. Powers for providing PWM stimulus to motors to measure broken
rotor bars
//
// Snippets of code were spliced together from the many examples provided by Texas
Instruments
// in their Control Suite library for the F28069 processor
// .\controlSUITE\device_support\f2806x\v150\F2806x_examples_ccsv5

34

//
// Code adapted to drive the ST STEVAL-IHM025V1 IPM module

// Added code from C:\ti\controlSUITE\development_kits\LAUNCHXL-
F28069M\LaunchPadDemo
// to flash Blue and Red LEDs on launchpad
//
// Change all PWMs to Active high mode for STGIPL14K60 IPM drive requirements
// --> Changed EPwm1Regs.DBCTL.bit.POLSEL = /*DB_ACTV_LO*/ DB_ACTV_HI;
//
// Pulled PWM Freq. calc. code from Example_EPwmSetup.c located in project
Example_2806xEqep_freqcal
//
// Pulled code from project Example_2806xAdcSoc to implement ADCs on PWM1 trigger
//
// Pulled code from project Example_2806xLaunchPad to implement CPU timer for magnetic
angle reversals
//
// Removed divide by 16 for PWM clocks, so PWMs go faster and frequency matches
// calculations pulled from Example_EPwmSetup.c
// EPwm1Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1 /*TB_DIV4*/; // Clock ratio to
SYSCLKOUT
// EPwm1Regs.TBCTL.bit.CLKDIV = TB_DIV1 /*TB_DIV4*/;
//
// Added code to calculate magnitudes for each three phase output for a given angle
//
// sin(x) was returning incorrect values
// Deleted linker libraries
// "IQmath_fpu32.lib"
// "rts2800_fpu32_fast_supplement.lib"
// "libc.a"
//
// Added CPU timer2 from Example_2806xCPUTimer.c for test angle on/off state timer
//
// Added Trip Zone 5 & 6 PWM single-shot shutdown based on Example_2806xEPwmTripZone
// and notes from TI's document Spruh18e pg. 244, pg. 293 so PWMs go to safe state
// on debugger 'pause'. Safe PWM state for debugger 'Halt' is not yet working
// So it's best to 'pause', then 'Halt' debugger! to stop PWMs
// Many sad cases on TI's forums of guys blowing up their HV IPMs
//
// Adapting to run from FLASH by adding function to copy key timing sections to RAM
//
//##

#include <stdint.h> //Include new clarified types such as int16_t
#include <math.h>

35

#include "DSP28x_Project.h" // Device Headerfile and Examples Include File

//Prototypes for initializing PWMs
void InitEPwm1Example(void);
void InitEPwm2Example(void);
void InitEPwm3Example(void);

//Prototypes for Interrupt Service Routines to take care of PWMs
__interrupt void epwm1_isr(void);
__interrupt void epwm2_isr(void);
__interrupt void epwm3_isr(void);

// Interrupt Service Routines to take care of PWMs during a Trip Zone event
__interrupt void epwm1_tzint_isr(void);
__interrupt void epwm2_tzint_isr(void);
__interrupt void epwm3_tzint_isr(void);

//Prototypes for the 'magnetic polarity reversing' CPU_Timer0
__interrupt void cpu_timer0_isr(void);

//Prototypes for the 'on/off' CPU_Timer1 for each magnetic angle step
__interrupt void cpu_timer1_isr(void);

//Proto types for ADC
__interrupt void adc_isr(void);
void Adc_Config(void);

void MemCopy(Uint16 *SourceAddr, Uint16* SourceEndAddr, Uint16* DestAddr);

// Global variables used in this example
Uint32 EPwm1TimerIntCount;
Uint32 EPwm2TimerIntCount;
Uint32 EPwm3TimerIntCount;
Uint16 EPwm1_DB_Direction;
Uint16 EPwm2_DB_Direction;
Uint16 EPwm3_DB_Direction;

//May ditch variables below which are only useful if cycle-cycle trip zone counting versus
current on-shot use
Uint32 EPwm1TZIntCount;
Uint32 EPwm2TZIntCount;
Uint32 EPwm3TZIntCount;

// Global A/D variables used in this example:
Uint16 LoopCount;
Uint16 ConversionCount;

36

//ADC channels to sample
Uint16 Vbus[10];
Uint16 Va[10];
Uint16 Vb[10];
Uint16 Vc[10];
Uint16 Ia[10];
Uint16 Ib[10];
Uint16 Ic[10];

// Global Variables for GUI Composer/SCIA(C# interface) to access
int polarity = 1; //The magnetic angle polarity
int onOffCount = 0;
float ReversalTime_Hz = 15.0 /*0.333*/; //The magnetic reversal test frequency
double TestAngle_deg = 0.0; // Magnetic test angle to build from the three phase angle vector
summation

// 2 pole motors test from 0 to 180 degrees, magnetic reversals covers other half
// 4 pole motors test from 0 to 90 degrees
// N pole motors test from 0 to 180/(pole pairs)
double motorPoles = 4;
double numberOfTestAngles = 36.0;
double maxTestAngle;
double angleStepSize;

double sinPHa = 0.0;
double sinPHb = 0.0;
double sinPHc = 0.0;

int TestStart = 0;
int angleOn = 0; //If zero, then all motor terminal PWM voltages equal, otherwise magnetic
angle voltages

double sinZero;
double sinPIover2;
double sinPIover4;

float Current_Pct; //PWM output voltage/current from 0 to 100%
float I_pct;

//uint16_t on_off_Count = 0;

//PWM (Bi-polar) magnitude adjustments to CMPA from midpoint
 int16 PHa_mag;
 int16 PHb_mag;
 int16 PHc_mag;

37

//PWM CMPA values
 Uint16 PWM1_CMPA = 0;
 Uint16 PWM2_CMPA = 0;
 Uint16 PWM3_CMPA = 0;

// Maximum Dead Band values
#define EPWM1_MAX_DB 0x03FF
#define EPWM2_MAX_DB 0x03FF
#define EPWM3_MAX_DB 0x03FF

#define EPWM1_MIN_DB 0
#define EPWM2_MIN_DB 0
#define EPWM3_MIN_DB 0

// To keep track of which way the Dead Band is moving
#define DB_UP 1
#define DB_DOWN 0

//To Calculate the PWM Frequwncy
#define CPU_CLK 90e6
#define PWM_CLK 5e3
#define SP CPU_CLK/(2*PWM_CLK) //TBPRD is set to SP and CMPA is setto SP/2

#define PI 3.1415926
#define HALF_PI 1.57079632
#define DEG_2_RAD 0.01745329251994329576923690768489

#define FLASH //Comment out if running in RAM

void main(void)
{
 //Variables purposely not visible to GUI Composer
 float Timer_uS;

 // Only used if running from FLASH
 // Note that the variable FLASH is defined by the compiler (-d FLASH)
 #ifdef FLASH
 // Copy time critical code and Flash setup code to RAM
 // The RamfuncsLoadStart, RamfuncsLoadEnd, and RamfuncsRunStart
 // symbols are created by the linker. Refer to the linker files.
 MemCopy(&RamfuncsLoadStart, &RamfuncsLoadEnd, &RamfuncsRunStart);

 // Call Flash Initialization to setup flash waitstates
 // This function must reside in RAM
 InitFlash (); // Call the flash wrapper init function

38

 #endif //(FLASH)

 //Global variables visible to GUI Composer
 Current_Pct = 10.0; //PWM output percentage for a motor test
 maxTestAngle = 360/motorPoles;
 angleStepSize = maxTestAngle/numberOfTestAngles;

// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the F2806x_SysCtrl.c file.
 InitSysCtrl ();

// Step 2. Initalize GPIO:
// This example function is found in the F2806x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio(); // Skipped for this example

// For this case just init GPIO pins for ePWM1, ePWM2, ePWM3
// These functions are in the F2806x_EPwm.c file
 InitEPwm1Gpio ();
 InitEPwm2Gpio ();
 InitEPwm3Gpio ();
 //InitTzGpio(); //Call if TZ1 or TZ2 pins are going to be used

// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
 DINT;

// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the F2806x_PieCtrl.c file.
 InitPieCtrl ();

// Disable CPU interrupts and clear all CPU interrupt flags:
 IER = 0x0000;
 IFR = 0x0000;

// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in F2806x_DefaultIsr.c.
// This function is found in F2806x_PieVect.c.
 InitPieVectTable();

39

// Interrupts that are used in this example are re-mapped to
// ISR functions found within this file.
 EALLOW; // This is needed to write to EALLOW protected registers
 PieVectTable.EPWM1_INT = &epwm1_isr;
 PieVectTable.EPWM2_INT = &epwm2_isr;
 PieVectTable.EPWM3_INT = &epwm3_isr;
 PieVectTable.EPWM1_TZINT = &epwm1_tzint_isr; //Setup PWM1's Trip zone ISR
 PieVectTable.EPWM2_TZINT = &epwm2_tzint_isr; //Setup PWM2's Trip zone ISR
 PieVectTable.EPWM3_TZINT = &epwm3_tzint_isr; //Setup PWM3's Trip zone ISR
 PieVectTable.TINT0 = &cpu_timer0_isr; //Initialize the CPU timer0 interrupt
 PieVectTable.TINT1 = &cpu_timer1_isr; //Initialize the CPU timer1 interrupt
 PieVectTable.ADCINT1 = &adc_isr; //Initialize the ADC interrupt
 EDIS; // This is needed to disable write to EALLOW protected registers

// Step 4. Initialize all the Device Peripherals:
// This function is found in F2806x_InitPeripherals.c
// InitPeripherals(); // Not required for this example

 EALLOW;
 SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 0;
 EDIS;

 //Initialize the PWM modules
 InitEPwm1Example();
 InitEPwm2Example();
 InitEPwm3Example();

 EALLOW;
 SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 1;
 EDIS;

 //Initialize GPIOs for the LEDs and turn them off
 EALLOW;
 GpioCtrlRegs.GPBDIR.bit.GPIO34 = 1;
 GpioCtrlRegs.GPBDIR.bit.GPIO39 = 1;
 GpioDataRegs.GPBDAT.bit.GPIO34 = 1;
 GpioDataRegs.GPBDAT.bit.GPIO39 = 1;
 EDIS;

 InitCpuTimers (); // For this example, only initialize the Cpu Timers

 //Set up the CPU timer 0 for the magnetizing vector reversals
 Timer_uS = 1.0/(2.0*ReversalTime_Hz) * 1E6;
 ConfigCpuTimer (&CpuTimer0, 90, Timer_uS /*1000*/);
 CpuTimer0Regs.TCR.all = 0x4010; // Use write-only instruction to set TSS bit = 1

40

 //Set up the CPU timer 1 for on/off time for each test angle
 ConfigCpuTimer (&CpuTimer1, 90 /*uP Clk*/, 1000000 /*uS*/); //Set for 1 second period
 CpuTimer1Regs.TCR.all = 0x4010; // Use write-only instruction to set TSS bit = 1

 //Setup the ADCs
 InitAdc (); // For this example, init the ADC
 AdcOffsetSelfCal();

// Step 5. User specific code, enable interrupts
// Initialize counters:
 EPwm1TimerIntCount = 0;
 EPwm2TimerIntCount = 0;
 EPwm3TimerIntCount = 0;

 EPwm1TZIntCount = 0; //Counters for each trip zone event (only useful in cycle-by-cycle trip
sources)
 EPwm2TZIntCount = 0;
 EPwm3TZIntCount = 0;

// Enable CPU INT3 which is connected to EPWM1-3 INT:
 IER |= M_INT3;
// Enable CPU INT2 which is connected to EPWMX_TZINT: where X = 1-N
 IER |= M_INT2; //Group 2 interrupts for TZ?

// Enable CPU int1 which is connected to CPU-Timer 0, CPU int13
// which is connected to CPU-Timer 1, and CPU int 14, which is connected
// to CPU-Timer 2:
 IER |= M_INT1;
 IER |= M_INT13;
 //IER |= M_INT14; //Not yet using CPU-Timer3

// Enable EPWM INTn in the PIE: Group 3 interrupt 1-3
 PieCtrlRegs.PIEIER3.bit.INTx1 = 1;
 PieCtrlRegs.PIEIER3.bit.INTx2 = 1;
 PieCtrlRegs.PIEIER3.bit.INTx3 = 1;

// Enable EPWM TZ INTn in the PIE: Group 2 interrupt 1-3 (EPWM1_TZINT)
 //PieCtrlRegs.PIEIER2.bit.INTx1 = 1;
 //PieCtrlRegs.PIEIER2.bit.INTx2 = 1;
 //PieCtrlRegs.PIEIER2.bit.INTx3 = 1;

 PieCtrlRegs.PIEIER1.bit.INTx7 = 1; //Enable CPU timer interrupt

// ?? Can both PIEIER1 and PIEIER3 for PWM be set to INTx1 ???
//Apparently Yes

41

 // Enable ADCINT1 in PIE
 PieCtrlRegs.PIEIER1.bit.INTx1 = 1; // Enable INT 1.1 in the PIE

// Enable global Interrupts and higher priority real-time debug events:
 EINT; // Enable Global interrupt INTM
 ERTM; // Enable Global realtime interrupt DBGM

 //ADC count variables
 LoopCount = 0;
 ConversionCount = 0;

 //Setup initial LED state for toggling (Red LED on, blue off)
 GpioDataRegs.GPBDAT.bit.GPIO34 = 0;
 GpioDataRegs.GPBDAT.bit.GPIO39 = 1;

 // Configure ADCs
 EALLOW;
 AdcRegs.ADCCTL2.bit.ADCNONOVERLAP = 1; // Enable non-overlap mode
 AdcRegs.ADCCTL1.bit.INTPULSEPOS = 1; // ADCINT1 trips after AdcResults
latch
 AdcRegs.INTSEL1N2.bit.INT1E = 1; // Enabled ADCINT1
 AdcRegs.INTSEL1N2.bit.INT1CONT = 0; // Disable ADCINT1 Continuous mode
 AdcRegs.INTSEL1N2.bit.INT1SEL = 1; // setup EOC1 to trigger ADCINT1 to fire

 AdcRegs.ADCSOC0CTL.bit.CHSEL = 7; // set SOC0 channel select to ADCINA7 -
Vbus

 AdcRegs.ADCSOC1CTL.bit.CHSEL = 9; // set SOC1 channel select to ADCINB1 - Va
 AdcRegs.ADCSOC2CTL.bit.CHSEL = 2; // set SOC2 channel select to ADCINA2 - Vb
 AdcRegs.ADCSOC3CTL.bit.CHSEL = 10; // set SOC3 channel select to ADCINB2 - Vc

 AdcRegs.ADCSOC4CTL.bit.CHSEL = 0; // set SOC4 channel select to ADCINA0 - Ia
 AdcRegs.ADCSOC5CTL.bit.CHSEL = 8; // set SOC5 channel select to ADCINB0 - Ib
 AdcRegs.ADCSOC6CTL.bit.CHSEL = 1; // set SOC6 channel select to ADCINA1 - Ic
 //May in future add SOC7 to measure heat sink temp readback of STEVAL-IHM025V1
module

 AdcRegs.ADCSOC0CTL.bit.TRIGSEL = 5; // set SOC0 start trigger on
EPWM1A, due to round-robin SOC0 converts first then SOC1
 AdcRegs.ADCSOC1CTL.bit.TRIGSEL = 5; // set SOC1 start trigger on
EPWM1A, due to round-robin SOC0 converts first then SOC1
 AdcRegs.ADCSOC2CTL.bit.TRIGSEL = 5; // set SOC2 start trigger on EPWM1A

 //May in the future switch this to start trigger on EPWM2A

42

 AdcRegs.ADCSOC3CTL.bit.TRIGSEL = 5; // set SOC3 start trigger on EPWM1A
 AdcRegs.ADCSOC4CTL.bit.TRIGSEL = 5; // set SOC4 start trigger on EPWM1A

 //May in the future switch this to start trigger on EPWM3A
 AdcRegs.ADCSOC5CTL.bit.TRIGSEL = 5; // set SOC5 start trigger on EPWM1A
 AdcRegs.ADCSOC6CTL.bit.TRIGSEL = 5; // set SOC6 start trigger on EPWM1A

 AdcRegs.ADCSOC0CTL.bit.ACQPS = 6; // set SOC0 S/H Window to 7 ADC Clock
Cycles, (6 ACQPS plus 1)
 AdcRegs.ADCSOC1CTL.bit.ACQPS = 6; // set SOC1 S/H Window to 7 ADC Clock
Cycles, (6 ACQPS plus 1)
 AdcRegs.ADCSOC2CTL.bit.ACQPS = 6; // set SOC2 S/H Window to 7 ADC Clock
Cycles, (6 ACQPS plus 1)
 AdcRegs.ADCSOC3CTL.bit.ACQPS = 6; // set SOC3 S/H Window to 7 ADC Clock
Cycles, (6 ACQPS plus 1)
 AdcRegs.ADCSOC4CTL.bit.ACQPS = 6; // set SOC4 S/H Window to 7 ADC Clock
Cycles, (6 ACQPS plus 1)
 AdcRegs.ADCSOC5CTL.bit.ACQPS = 6; // set SOC5 S/H Window to 7 ADC Clock
Cycles, (6 ACQPS plus 1)
 AdcRegs.ADCSOC6CTL.bit.ACQPS = 6; // set SOC6 S/H Window to 7 ADC Clock
Cycles, (6 ACQPS plus 1)
 EDIS;

 //Enable CPU timer
 CpuTimer0Regs.TCR.all = 0x4000; // Use write-only instruction to set TSS bit = 1
 CpuTimer1Regs.TCR.all = 0x4000; // Use write-only instruction to set TSS bit = 1

 // Assumes ePWM1 clock is already enabled in InitSysCtrl();
 EPwm1Regs.ETSEL.bit.SOCAEN = 1; // Enable SOC on A group
 EPwm1Regs.ETSEL.bit.SOCASEL = 4; // Select SOC from CMPA on
upcount
 EPwm1Regs.ETPS.bit.SOCAPRD = 1; // Generate pulse on 1st event

 //Check if linker libraries are correct and sin(x) is working properly
 // DO NOT LINK "IQmath_fpu32.lib"
 // DO NOT LINK "rts2800_fpu32_fast_supplement.lib"
 sinZero = sin(0.0); // Result should be 0.0
 sinPIover4 = sin(0.78539816339744830961566084581988); //Result should be
0.7071068
 sinPIover2 = sin(1.5707963267948966192313216916398); //Result should be 1.0

 if (sin(0.0) == 0.0) //Correct linker library check to ensure sin(x) is return correct values
 {

 TestStart = 1; //Start Magic Box test!!!

43

 // Step 6. IDLE loop. Just sit and loop forever (optional):
 for (;;)
 {
 __asm(" NOP");
 }
 }
 //Exit due to bad linker libraries
}

//==
=======
// Main() end. Function definitions follow
//==
=======

__interrupt void adc_isr(void)
{

 Vbus[ConversionCount] = AdcResult.ADCRESULT0;
 Va[ConversionCount] = AdcResult.ADCRESULT1;
 Vb[ConversionCount] = AdcResult.ADCRESULT2;
 Vc[ConversionCount] = AdcResult.ADCRESULT3;
 Ia[ConversionCount] = AdcResult.ADCRESULT4;
 Ib[ConversionCount] = AdcResult.ADCRESULT5;
 Ic[ConversionCount] = AdcResult.ADCRESULT6;

 // If 20 conversions have been logged, start over
 if (ConversionCount == 9)
 {
 ConversionCount = 0;
 }
 else ConversionCount++;

 AdcRegs.ADCINTFLGCLR.bit.ADCINT1 = 1; //Clear ADCINT1 flag reinitialize for
next SOC
 PieCtrlRegs.PIEACK.all = PIEACK_GROUP1; // Acknowledge interrupt to PIE

 return ;
}

__interrupt void epwm1_isr(void)
{

 // Setup PWM level
 EPwm1Regs.CMPA.half.CMPA = PWM1_CMPA;

44

#if 0

 if (EPwm1_DB_Direction == DB_UP)
 {
 if (EPwm1Regs.DBFED < EPWM1_MAX_DB)
 {
 EPwm1Regs.DBFED++;
 EPwm1Regs.DBRED++;
 }
 else
 {
 EPwm1_DB_Direction = DB_DOWN;
 EPwm1Regs.DBFED--;
 EPwm1Regs.DBRED--;
 }
 }
 else
 {
 if (EPwm1Regs.DBFED == EPWM1_MIN_DB)
 {
 EPwm1_DB_Direction = DB_UP;
 EPwm1Regs.DBFED++;
 EPwm1Regs.DBRED++;
 }
 else
 {
 EPwm1Regs.DBFED--;
 EPwm1Regs.DBRED--;
 }
 }
 EPwm1TimerIntCount++;

#endif

 // Clear INT flag for this timer
 EPwm1Regs.ETCLR.bit.INT = 1;

 // Acknowledge this interrupt to receive more interrupts from group 3
 PieCtrlRegs.PIEACK.all = PIEACK_GROUP3;
}

__interrupt void epwm2_isr(void)
{
 // Setup PWM level
 EPwm2Regs.CMPA.half.CMPA = PWM2_CMPA;

45

#if 0

 if (EPwm2_DB_Direction == DB_UP)
 {
 if (EPwm2Regs.DBFED < EPWM2_MAX_DB)
 {
 EPwm2Regs.DBFED++;
 EPwm2Regs.DBRED++;
 }
 else
 {
 EPwm2_DB_Direction = DB_DOWN;
 EPwm2Regs.DBFED--;
 EPwm2Regs.DBRED--;
 }
 }
 else
 {
 if (EPwm2Regs.DBFED == EPWM2_MIN_DB)
 {
 EPwm2_DB_Direction = DB_UP;
 EPwm2Regs.DBFED++;
 EPwm2Regs.DBRED++;
 }
 else
 {
 EPwm2Regs.DBFED--;
 EPwm2Regs.DBRED--;
 }
 }

#endif

 EPwm2TimerIntCount++;

 // Clear INT flag for this timer
 EPwm2Regs.ETCLR.bit.INT = 1;

 // Acknowledge this interrupt to receive more interrupts from group 3
 PieCtrlRegs.PIEACK.all = PIEACK_GROUP3;
}

__interrupt void epwm3_isr(void)
{
 // Setup PWM level
 EPwm3Regs.CMPA.half.CMPA = PWM3_CMPA;

46

#if 0
 if (EPwm3_DB_Direction == DB_UP)
 {
 if (EPwm3Regs.DBFED < EPWM3_MAX_DB)
 {
 EPwm3Regs.DBFED++;
 EPwm3Regs.DBRED++;
 }
 else
 {
 EPwm3_DB_Direction = DB_DOWN;
 EPwm3Regs.DBFED--;
 EPwm3Regs.DBRED--;
 }
 }
 else
 {
 if (EPwm3Regs.DBFED == EPWM3_MIN_DB)
 {
 EPwm3_DB_Direction = DB_UP;
 EPwm3Regs.DBFED++;
 EPwm3Regs.DBRED++;
 }
 else
 {
 EPwm3Regs.DBFED--;
 EPwm3Regs.DBRED--;
 }
 }

#endif

 EPwm3TimerIntCount++;

 // Clear INT flag for this timer
 EPwm3Regs.ETCLR.bit.INT = 1;

 // Acknowledge this interrupt to receive more interrupts from group 3
 PieCtrlRegs.PIEACK.all = PIEACK_GROUP3;
}

void InitEPwm1Example()
{
 //Enable TZ5 and TZ6 as one shot trip sources, so PWMs go to safe state on CPU clock
fail or CPU halt

47

 EALLOW;
 //EPwm1Regs.TZSEL.bit.OSHT1 = 1; // 8 One-shot TZ1 select
 //EPwm1Regs.TZSEL.bit.OSHT2 = 1; // 9 One-shot TZ2 select
 EPwm1Regs.TZSEL.bit.OSHT5 = 1; // 12 One-shot TZ5 select
 EPwm1Regs.TZSEL.bit.OSHT6 = 1; // 13 One-shot TZ6 select
 EPwm1Regs.TZSEL.bit.CBC6 = 1; // 13 One-shot TZ6 select

 // What do we want the trip zones to do?
 // Table 13. of STGIPL14K60 IPM needs HIN=low, LIN=high to set to "logic state 0"
 EPwm1Regs.TZCTL.bit.TZA = TZ_FORCE_LO; //EPWM1A connected to HIN
 EPwm1Regs.TZCTL.bit.TZB = TZ_FORCE_HI; //EPWM1B connected to LIN

 // Enable TZ interrupt
 EPwm1Regs.TZEINT.bit.OST = 1;
 EPwm1Regs.TZEINT.bit.CBC = 1;
 EDIS;

 EPwm1Regs.TBPRD = /*6000*/ SP; // Set timer period (PWM Freq)
 EPwm1Regs.TBPHS.half.TBPHS = 0x0000; // Phase is 0
 EPwm1Regs.TBCTR = 0x0000; // Clear counter

 // Setup TBCLK
 EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; // Count up
 EPwm1Regs.TBCTL.bit.PHSEN = TB_DISABLE; // Disable phase loading
 EPwm1Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1 /*TB_DIV4*/; // Clock ratio to
SYSCLKOUT
 EPwm1Regs.TBCTL.bit.CLKDIV = TB_DIV1 /*TB_DIV4*/;

 EPwm1Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW; // Load registers every ZERO
 EPwm1Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;
 EPwm1Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;
 EPwm1Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;

 // Setup compare
 EPwm1Regs.CMPA.half.CMPA = /*3000*/ SP/2; // Initialize to 50% duty

 // Set actions
 EPwm1Regs.AQCTLA.bit.CAU = AQ_SET; // Set PWM1A on CAU
 EPwm1Regs.AQCTLA.bit.CAD = AQ_CLEAR; // Clear PWM1A on CAD

 EPwm1Regs.AQCTLB.bit.CAU = AQ_CLEAR; // Clear PWM1B on CAU
 EPwm1Regs.AQCTLB.bit.CAD = AQ_SET; // Set PWM1B on CAD

 // Active Low PWMs - Setup Deadband
 EPwm1Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE;
 EPwm1Regs.DBCTL.bit.POLSEL = /*DB_ACTV_LO*/ DB_ACTV_HI;

48

 EPwm1Regs.DBCTL.bit.IN_MODE = DBA_ALL;
 EPwm1Regs.DBRED = EPWM1_MIN_DB;
 EPwm1Regs.DBFED = EPWM1_MIN_DB;
 EPwm1_DB_Direction = DB_UP;

 // Interrupt where we will change the Deadband
 EPwm1Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO; // Select INT on Zero event
 EPwm1Regs.ETSEL.bit.INTEN = 1; // Enable INT
 EPwm1Regs.ETPS.bit.INTPRD = ET_3RD; // Generate INT on 3rd event
}

void InitEPwm2Example()
{
 //Enable TZ5 and TZ6 as one shot trip sources, so PWMs go to safe state on CPU clock
fail or CPU halt
 EALLOW;
 //EPwm2Regs.TZSEL.bit.OSHT1 = 1; // 8 One-shot TZ1 select
 //EPwm2Regs.TZSEL.bit.OSHT2 = 1; // 9 One-shot TZ2 select
 EPwm2Regs.TZSEL.bit.OSHT5 = 1; // 12 One-shot TZ5 select
 EPwm2Regs.TZSEL.bit.OSHT6 = 1; // 13 One-shot TZ6 select

 // What do we want the trip zones to do?
 // Table 13. of STGIPL14K60 IPM needs HIN=low, LIN=high to set to "logic
state 0"
 EPwm2Regs.TZCTL.bit.TZA = TZ_FORCE_LO; //EPWM1A connected to
HIN
 EPwm2Regs.TZCTL.bit.TZB = TZ_FORCE_HI; //EPWM1B connected to LIN

 // Enable TZ interrupt
 EPwm2Regs.TZEINT.bit.OST = 1;
 EDIS;

 EPwm2Regs.TBPRD = /*6000*/ SP; // Set timer period
 EPwm2Regs.TBPHS.half.TBPHS = 0x0000; // Phase is 0
 EPwm2Regs.TBCTR = 0x0000; // Clear counter

 // Setup TBCLK
 EPwm2Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; // Count up
 EPwm2Regs.TBCTL.bit.PHSEN = TB_DISABLE; // Disable phase loading
 EPwm2Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1 /*TB_DIV4*/; // Clock ratio to
SYSCLKOUT
 EPwm2Regs.TBCTL.bit.CLKDIV = TB_DIV1 /*TB_DIV4*/; // Slow just to observe on
the scope

 // Setup compare
 EPwm2Regs.CMPA.half.CMPA = /*3000*/ SP/2; // Initialize to 50% duty

49

 // Set actions
 EPwm2Regs.AQCTLA.bit.CAU = AQ_SET; // Set PWM2A on CAU
 EPwm2Regs.AQCTLA.bit.CAD = AQ_CLEAR; // Clear PWM2A on CAD

 EPwm2Regs.AQCTLB.bit.CAU = AQ_CLEAR; // Clear PWM2B on CAU
 EPwm2Regs.AQCTLB.bit.CAD = AQ_SET; // Set PWM2B on CAD

 // Active Low complementary PWMs - setup the deadband
 EPwm2Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE;
 EPwm2Regs.DBCTL.bit.POLSEL = /*DB_ACTV_LOC*/DB_ACTV_HI;
 EPwm2Regs.DBCTL.bit.IN_MODE = DBA_ALL;
 EPwm2Regs.DBRED = EPWM2_MIN_DB;
 EPwm2Regs.DBFED = EPWM2_MIN_DB;
 EPwm2_DB_Direction = DB_UP;

 // Interrupt where we will modify the deadband
 EPwm2Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO; // Select INT on Zero event
 EPwm2Regs.ETSEL.bit.INTEN = 1; // Enable INT
 EPwm2Regs.ETPS.bit.INTPRD = ET_3RD; // Generate INT on 3rd event
}

void InitEPwm3Example()
{
 //Enable TZ5 and TZ6 as one shot trip sources, so PWMs go to safe state on CPU clock
fail or CPU halt
 EALLOW;
 //EPwm3Regs.TZSEL.bit.OSHT1 = 1; // 8 One-shot TZ1 select
 //EPwm3Regs.TZSEL.bit.OSHT2 = 1; // 9 One-shot TZ2 select
 EPwm3Regs.TZSEL.bit.OSHT5 = 1; // 12 One-shot TZ5 select
 EPwm3Regs.TZSEL.bit.OSHT6 = 1; // 13 One-shot TZ6 select

 // What do we want the trip zones to do?
 // Table 13. of STGIPL14K60 IPM needs HIN=low, LIN=high to set to "logic
state 0"
 EPwm3Regs.TZCTL.bit.TZA = TZ_FORCE_LO; //EPWM1A connected to
HIN
 EPwm3Regs.TZCTL.bit.TZB = TZ_FORCE_HI; //EPWM1B connected to LIN

 // Enable TZ interrupt
 EPwm3Regs.TZEINT.bit.OST = 1;
 EDIS;

 EPwm3Regs.TBPRD = /*6000*/ SP; // Set timer period
 EPwm3Regs.TBPHS.half.TBPHS = 0x0000; // Phase is 0
 EPwm3Regs.TBCTR = 0x0000; // Clear counter

50

 // Setup TBCLK
 EPwm3Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; // Count up
 EPwm3Regs.TBCTL.bit.PHSEN = TB_DISABLE; // Disable phase loading
 EPwm3Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1 /*TB_DIV4*/; // Clock ratio to
SYSCLKOUT
 EPwm3Regs.TBCTL.bit.CLKDIV = TB_DIV1 /*TB_DIV4*/; // Slow so we can observe
on the scope

 // Setup compare
 EPwm3Regs.CMPA.half.CMPA = /*3000*/ SP/2; // Initialize to 50% duty

 // Set actions
 EPwm3Regs.AQCTLA.bit.CAU = AQ_SET; // Set PWM3A on CAU
 EPwm3Regs.AQCTLA.bit.CAD = AQ_CLEAR; // Clear PWM3A on CAD

 EPwm3Regs.AQCTLB.bit.CAU = AQ_CLEAR; // Clear PWM3B on CAU
 EPwm3Regs.AQCTLB.bit.CAD = AQ_SET; // Set PWM3B on CAD

 // Active high complementary PWMs - Setup the deadband
 EPwm3Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE;
 EPwm3Regs.DBCTL.bit.POLSEL = /*DB_ACTV_HIC*/ DB_ACTV_HI;
 EPwm3Regs.DBCTL.bit.IN_MODE = DBA_ALL;
 EPwm3Regs.DBRED = EPWM3_MIN_DB;
 EPwm3Regs.DBFED = EPWM3_MIN_DB;
 EPwm3_DB_Direction = DB_UP;

 // Interrupt where we will change the deadband
 EPwm3Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO; // Select INT on Zero event
 EPwm3Regs.ETSEL.bit.INTEN = 1; // Enable INT
 EPwm3Regs.ETPS.bit.INTPRD = ET_3RD; // Generate INT on 3rd event
}

__interrupt void cpu_timer0_isr(void)
{
 //CpuTimer0.InterruptCount++;
 static uint16_t cycleCount = 0;

 //Flip the magnetic polarity
 polarity *= -1;

 //Bound current drive to between 0-100 [%]
 if (Current_Pct < 0.0)
 Current_Pct = 0.0;
 if (Current_Pct > 100.0)
 Current_Pct = 100.0;

51

 I_pct = Current_Pct / 100.0; //Calculated percent

 // When CMPA is zeroed, PWM mis-behaves. For now give a little headroom, until
problem solved
 I_pct *= 0.95; //limit to 95% max

 //Calculate magnitude and reversal polarity for PWMs for test angle
 sinPHa = sin((double)(TestAngle_deg*DEG_2_RAD)) * polarity * I_pct;
 sinPHb = sin((double)((TestAngle_deg+120)*DEG_2_RAD)) * polarity * I_pct;
 sinPHc = sin((double)((TestAngle_deg+240)*DEG_2_RAD)) * polarity * I_pct;

 //Calculate CMPA offsets to create vector magnitude for each phase
 PHa_mag = (int16)(sinPHa * SP/2);
 PHb_mag = (int16)(sinPHb * SP/2);
 PHc_mag = (int16)(sinPHc * SP/2);

 if (angleOn)
 {
 //Set all PWMs to levels needed for magnetic test angle
 PWM1_CMPA = SP/2 - PHa_mag;
 PWM2_CMPA = SP/2 - PHb_mag;
 PWM3_CMPA = SP/2 - PHc_mag;

 //Toggle the Red and Blue LEDs to show an angle test in progress
 GpioDataRegs.GPBTOGGLE.bit.GPIO34 = 1;
 GpioDataRegs.GPBTOGGLE.bit.GPIO39 = 1;
 }
 else
 {
 //Set all PWMs to 50% which turns off current through motor since all voltages
equal
 PWM1_CMPA = SP/2;
 PWM2_CMPA = SP/2;
 PWM3_CMPA = SP/2;
 }

#if 0
 if (tempDelta > 10){
 //Red LED on, blue off
 GpioDataRegs.GPBDAT.bit.GPIO34 = 0;
 GpioDataRegs.GPBDAT.bit.GPIO39 = 1;
 }else if (tempDelta < -10){

52

 GpioDataRegs.GPBDAT.bit.GPIO34 = 1;
 GpioDataRegs.GPBDAT.bit.GPIO39 = 0;
 }else{
 if (tempDelta > 0){
 GpioDataRegs.GPBDAT.bit.GPIO39 = 1;
 if (tempDelta > cycleCount){
 GpioDataRegs.GPBDAT.bit.GPIO34 = 0;
 }else{
 GpioDataRegs.GPBDAT.bit.GPIO34 = 1;
 }

 }else{
 GpioDataRegs.GPBDAT.bit.GPIO34 = 1;
 if (abs(tempDelta) > cycleCount){
 GpioDataRegs.GPBDAT.bit.GPIO39 = 0;
 }else{
 GpioDataRegs.GPBDAT.bit.GPIO39 = 1;
 }
 }

 }

#endif

 cycleCount++;

 if (cycleCount == 10)
 cycleCount = 0;

 // Acknowledge this interrupt to receive more interrupts from group 1
 PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;
}

// PWM on/off timer and angle advanced
__interrupt void cpu_timer1_isr(void)
{
 CpuTimer1.InterruptCount++;
 // The CPU acknowledges the interrupt.
 EDIS;

 if (TestAngle_deg > maxTestAngle)
 {
 TestStart = 0; //Stop testing
 angleOn = 0; //Turn off test angle

 //Force a software 'Trip Zone' event to put PWM outputs into safe off mode

53

 EALLOW;
 EPwm1Regs.TZFRC.bit.OST = 1;
 EPwm2Regs.TZFRC.bit.OST = 1;
 EPwm3Regs.TZFRC.bit.OST = 1;
 EDIS;
 }
 if (TestStart)
 {
 if (onOffCount%2)
 {
 angleOn = 0; //Turn off motor drive by setting all PWM levels to 50%
 TestAngle_deg += angleStepSize;
 }
 else
 {
 angleOn = 1; //Turn on motor drive for motor angle
 }
 onOffCount++;
 }
}

__interrupt void epwm1_tzint_isr(void)
{
 EPwm1TZIntCount++;

// Leave these flags set so we only take this
// interrupt once
//
// EALLOW;
// EPwm1Regs.TZCLR.bit.OST = 1;
// EPwm1Regs.TZCLR.bit.INT = 1;
// EDIS;

 // Acknowledge this interrupt to receive more interrupts from group 2
 PieCtrlRegs.PIEACK.all = PIEACK_GROUP2;
}

__interrupt void epwm2_tzint_isr(void)
{

 EPwm2TZIntCount++;

// Clear the flags - we will continue to take
// this interrupt until the TZ pin goes high
//
 EALLOW;

54

 EPwm2Regs.TZCLR.bit.CBC = 1;
 EPwm2Regs.TZCLR.bit.INT = 1;
 EDIS;

 // Acknowledge this interrupt to receive more interrupts from group 2
 PieCtrlRegs.PIEACK.all = PIEACK_GROUP2;
}

__interrupt void epwm3_tzint_isr(void)
{

 EPwm3TZIntCount++;

// Clear the flags - we will continue to take
// this interrupt until the TZ pin goes high
//
 EALLOW;
 EPwm3Regs.TZCLR.bit.CBC = 1;
 EPwm3Regs.TZCLR.bit.INT = 1;
 EDIS;

 // Acknowledge this interrupt to receive more interrupts from group 2
 PieCtrlRegs.PIEACK.all = PIEACK_GROUP2;
}

// This function will copy the specified memory contents from
// one location to another.
//
// Uint16 *SourceAddr Pointer to the first word to be moved
// SourceAddr < SourceEndAddr
// Uint16* SourceEndAddr Pointer to the last word to be moved
// Uint16* DestAddr Pointer to the first destination word
//
// No checks are made for invalid memory locations or that the
// end address is > then the first start address.

void MemCopy(Uint16 *SourceAddr, Uint16* SourceEndAddr, Uint16* DestAddr)
{
 while(SourceAddr < SourceEndAddr)
 {
 *DestAddr++ = *SourceAddr++;
 }
 return ;
}

55

//==
=======
// No more.
//==
=======

56

List of Abbreviations

ACIM – AC Induction motor

A/D - Analog to Digital converter

BEMF – Back Electro-Motive Force

BLDC – Brushless DC (motor)

BRBs – Broken Rotor Bars

CTs – Current Transformers

CTFS – Continuous-Time Fourier Series

CTFT – Continuous-Time Fourier Transform

DAQ Card – Data Acquisition Card

DFT – Discrete Fourier Transform

DTFT – Discrete-Time Fourier Transform

DTFS – Discrete-Time Fourier Series

DTFSC – Discrete-Time Fourier Series Coefficients

DQ – Direct-Quadrature

DQZ – Direct-Quadrature-Zero

EHRPWM – Enhanced High Resolution Pulse Width Modulator

FFT – Fast Fourier Transform

FS – Fourier Series

FSC - Fourier Series Coefficients

H - Two sets of high and low side switches (in the shape of the letter H)

IPM – Intelligent Power Module

57

J – Joule

LP – Low Pass

LPF - Low Pass Filter

LR – Locked Rotor

MB – Magic Box, also known as the ‘Offline broken rotor bar tester’

NEMA – National Electrical Manufacturers Association

PCB – Printed Circuit Board

PWM – Pulse Width Modulation

PTs – Potential Transformers

SD Card – Secure Digital Card

SOC – System on a Chip (eg. AM335x)

SPRT – Single-Phase Rotation Test

TEFC – Totally enclosed, fan cooled

TI - Texas Instruments

TRM - Technical Reference Manual

USB - Universal Serial Bus

