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ABSTRACT 
 
 
 

OFFLINE DETECTION OF BROKEN ROTOR BARS IN AC INDUCTION MOTORS 
 
 
 

The detection of the broken rotor bar defect in medium- and large-sized AC induction 

machines is currently one of the most difficult tasks for the motor condition and monitoring 

industry. If a broken rotor bar defect goes undetected, it can cause a catastrophic failure of an 

expensive machine. If a broken rotor bar defect is falsely determined, it wastes time and money 

to physically tear down and inspect the machine only to find an incorrect diagnosis. Previous 

work in 2009 at Baker/SKF-USA in collaboration with the Korea University has developed a 

prototype instrument that has been highly successful in correctly detecting the broken rotor bar 

defect in ACIMs where other methods have failed. Dr. Sang Bin and his students at the Korea 

University have been using this prototype instrument to help the industry save money in the 

successful detection of the BRB defect. 

A review of the current state of motor conditioning and monitoring technology for 

detecting the broken rotor bar defect in ACIMs shows improved detection of this fault is still 

relevant. An analysis of previous work in the creation of this prototype instrument leads into the 

refactoring of the software and hardware into something more deployable, cost effective and 

commercially viable. 
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Chapter 1 Introduction 
 
 
 

AC induction motors (ACIMs) are used throughout the world to perform work by 

converting electricity into mechanical power. ACIMs range from very small fractional 

horsepower to the very large of thousands of horsepower. They operate in severe and hazardous 

conditions and are expected to perform with high reliability. They are used in applications of 

pumping, chopping, crushing, machining, centrifuging, and more. 

As with most things, failures are unavoidable even for the ACIM. These complex electro-

mechanical devices suffer from bearing, cooling, winding, and rotor failures [1]. According to 

published surveys [2] [3], induction motor failures can be grouped by bearing, stator, rotor and 

other failures. 

 
Figure 1: IEEE-IAS Percentage of failure by component 

 

One of the most difficult motor faults to diagnose accurately in the AC induction motor is 

the broken rotor bar fault. The studies [2] [3] show that approximately 9-10% of induction motor 

failures are rotor-related. Broken rotor bars can lead to catastrophic and severe damage to a 

41% Bearing-Related

37% Stator-Related

10% Rotor-Related

12% Other
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motor if not repaired early [4], so accurate diagnosis is a necessity. Tearing down a motor for 

physical inspection is a costly and time-consuming affair which takes the motor offline for an 

extended period of time and must be avoided unless absolutely necessary. Plant operators need a 

simple, inexpensive and reliable method to determine whether the rotor bars in their motors are 

‘healthy’ or ‘faulty’. 

Previous work [5] created a prototype offline broken bar tester. This previous work also 

has successfully shown the merits of this prototype offline tester in detecting broken rotor bars 

where other methods have failed.  

 

The goal of this thesis is to improve on the original prototype design in the following areas: 

1. Capability to operate off of a standard 15-20A, 110V wall outlet 

2. Motor bump capability to allow subtraction of core hysteresis effects 

3. Reducing the bill of material cost by replacing National Instrument FPGA test 

instruments with an inexpensive microprocessor reference design 

4. Replacing MATLAB software for post analysis of data with production C/C++/C# code 

to integrate with an existing SKF motor tester 

 

In the summer of 2009, the Korea University and Baker Instruments (now SKF-USA) 

collaborated to build a prototype offline broken bar tester. The term ‘Magic Box’ was coined by 

a customer for the prototype box which seemed to magically detect broken rotor bars in an AC 

induction motor without even spinning or disconnecting the motor from its mechanical load. The 

‘Magic Box’ concept is to provide a magnetic angle to the stator and then continually reverse it 

at a test frequency from 1 to 60 Hz. These stator signals are influenced by the magnetic coupling 
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to the rotor of the motor. The voltage and current signals from the stator are simultaneously 

sampled and recorded. Using the Park transform [5], the reference frame of the voltages and 

currents are transformed into the d-q axis. Then using the fast Fourier transform, each of the d-q 

axis voltage and current time-domain signals are converted into their frequency-domain spectra. 

The impedance versus frequency for the standard motor model can be computed by dividing the 

voltage spectrum by the current spectrum. The magnetic stimulus angle is then advanced and 

impedance measurements are again made until the complete set of magnetic angles has been 

tested. The reversing test frequency affects the probing depth of the magnetic field into the rotor 

core. A slower test frequency has a larger skin depth and will probe deeper into the rotor’s 

magnetic core. A motor with defective rotor bars shows variations in the impedance versus the 

applied magnetic field angle. A motor with good rotors bars shows constant impedance versus 

the applied magnetic field angle. The details are covered in US Patent Application 

US20110191034. 
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Chapter 2 Literature review 
 
 
 

Methods for detecting broken rotor bars can be grouped into the categories of online and 

offline testing. Online testing is where the motor is connected to an AC line or VFD drive while 

monitoring the running motor to make measurements. Offline testing involves turning off and 

disconnecting the power source from the motor before proceeding to make measurements on the 

motor. 

Online testing offers the benefits of not having to take the motor offline while testing is 

taking place. Current online testing drawbacks include problems in separating the electrical drive 

signal from the test signals, load variations imposing signals on the stator’s electrical signals and 

requirements of a minimum load [30-100%] applied to the motor [1]. In addition, there can be 

safety concerns when connecting and sampling running motors due to the high voltages and 

currents if provisions have not already been put in place such as potential and current 

transformers to step down the voltages and currents to a safe level for measurement. One online 

method for detecting broken rotor bars involves detecting the twice-slip frequency components 

in the vibration or current spectra on the motor under test. Determination of broken rotor bars 

using twice-slip frequency suffers from air-ducted false positive indications [6] where the 

number of axial air ducts is an integer multiple of the number of poles in the motor. Several 

methods exist to analyze the startup current to test for BRBs [7] [8] [9]. A method using wavelet 

analysis of the startup transient currents improves the reliability of detecting BRBs [10] in 

situations where the axial air ducts influence the current spectra. 

Offline testing for BRBs can be grouped into tests that involve disassembly of the motor 

and ones that do not. Offline testing offers advantages that additional tests for insulation quality, 
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resistance and inductance symmetry between phases and other motor health-determining tests 

can also be run. The single phase rotation test (SPRT) is an offline method for detecting BRBs 

without disassembly of the motor. A single-phase low-voltage AC source is connected to two of 

the three phases of the motor. The motor is manually rotated while the current is monitored. As 

the rotor is rotated, a change in the AC current will occur due to rotor impedance variations 

caused by BRBs. The technique has also been extended to detecting static and dynamic 

eccentricity faults [11] . Two additional offline tests that involve the disassembly of the motor 

are the growler test and the rated rotor flux test [12]. 
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Chapter 3 Realization of refactored system 
 
 
 

Three-phase AC induction motors are driven by three sine wave voltages each shifted by 

120 degrees from each other. The stimuli from each leg drive coils offset rotationally around the 

stator. These sine waves produce a bi-polar magnetic field with an angle defined by the rotational 

position of the coil around the rotor. Each stimulus can be represented by a vector with 

magnitude and direction proportional to the magnitude and phase of the voltage applied to that 

leg. The individual magnetic fields produced by each leg vectorially add together to form a 

single rotating magnetic field with a constant magnitude. The graphic below shows the magnetic 

field produced in the stator for each of the three phases and how they add together to form a 

single rotating field in a two-pole motor. 

 
Figure 2: Diagram showing magnetic field vector addition of each coil of a 2-pole motor 

into a single magnetic vector of angle 0 degrees 
 

An animated version of the above figure was prepared by Riaz [13]. 

If the magnitudes of the three AC phases are frozen in time, a constant magnetic field 

will be induced through the stator at a given angle. Simply by multiplying the three magnitudes 

by negative one, the magnetic field can be flipped 180 degrees in the stator. Repeating this 

process at some frequency produces a (reversing) pulsating magnetic field at the given stator 
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angle. Since the stator’s magnetic field is only reversing but not rotating, no rotational torque is 

induced into the rotor to cause the motor’s rotor to rotate. 

The pulsating magnetic vector at θ can be produced with pulse width modulation with the 

three-phase voltage references set using the mathematical equations below [5]: 

 

Vas(ϕ,ώ)=vcos(ϕ)squ(ώt) (1)

Vbs(ϕ,ώ)=vcos(ϕ+120°)squ(ώt) (2)

Vcs(ϕ,ώ)=vcos(ϕ+240°)squ(ώt) (3)

 

where V is the excitation voltage magnitude and squ(ώt) represents the square wave pulsating at 

the excitation frequency ώ. The pulsating field induces voltage in the rotor bars resulting in rotor 

current flow, but the motor does not rotate since the average induced torque is zero.  

As the square wave is applied to each leg of the motor, the three voltage and three current 

waveforms can be acquired. Using a variant of the Park transform [5], the voltages and the 

currents can be transformed into a time-invariant d-q coordinate system. The impedance versus 

frequency can be computed by dividing the FFT of Vq by the FFT of Iq. Finding the value at the 

fundamental frequency will yield the standard motor model’s equivalent impedance. The real 

part represents the resistance of the motor model and the imaginary portion represents the 

inductive part of the motor model.  The graph data below shows an example of data generated 

using the technique described above. 
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If lumped element model data were readily available from the manufacturers of medium-voltage 

motors, then it would fairly simple to determine the maximum voltage needed when testing at 

10% of name plate current for standstill conditions. Since the lumped element data is not easily 

obtainable from most motor manufacturers, another method will be presented to approximate the 

voltage at a given current utilizing the nameplate current and NEMA locked rotor code presented 

on the nameplate of the motor. The name plate data for an example 5 HP motor to calculate LR 

voltage is presented below: 

 
Figure 5: Nameplate data for a 5HP AC induction motor 

 

This motor shows that when wired for 208VAC the full load run current is 14.5 amps; 

and that when wired for 460 VAC, the full-load run current is 6.6 amps. The nameplate NEMA 

LR kVa code for this motor is “J”. NEMA provides a table (shown below) which shows the ratio 

of locked rotor bar current to full load current as indicated by the code letter J. 
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Figure 6: NEMA locked rotor kVA/hp 

 

If an assumption is made that under locked rotor conditions (standstill) the motor behaves as 

pure impedance since none of the energy is converted into mechanical energy, then the ratio of 

voltage to current must remain constant. Using the pu (per unit) method, then 1*puV would be 

460V and 1*puI would be 6.6Amps for the motor above when wired as a 460V motor. Using 

code J, the locked rotor current is 7.1 puI at the nominal line voltage of 1*puV.  To calculate the 

voltage for 10% of current (0.1puI), then following ratio equation can be set up. 

7.1puI / 0.1puI = 1puV / xpuV (4)

Re-arranging the equation to solve for ‘x’ yields: 

xpuV = 0.1 / 7.1 * 1puV (5)

So xpuV = 0.1 / 7.1 * 460V = 6.47 V to develop 0.1puI (10 percent name plate current). The 

calculated voltage and current drive requirements for medium-voltage motor testing (shown 

below) drive the requirements for the stimulus and measurement sections of the refactored tester. 
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The figure below shows a simplified schematic showing the PWM drive portion of the tester 

connected to a test motor. The measurement portion of the tester will be implemented by a 

separate piece of equipment discussed later in the chapter. 

 
Figure 8: Schematic of prototype MB tester’s PWM drive 

 

For this project, the ST STEVAL-IHM025V1 1kW 3-phase motor control demonstration 

board was chosen for its availability and features. The power module can be fed by AC mains of 

90-285 VAC which is rectified for a DC bus or can be fed by a separate DC supply voltage of 

125-400 VDC. The intelligent power module (IPM) provides +15V and 3.3V auxiliary power 

from the DC link voltage derived with a buck converter which can be used to power a 

microprocessor. It uses the STGIPL14K60 IPM which provides a 3-phase inverter based on 

600V IGBTs. The IPM provides high-side drivers, cross-conduction protection and op amps for 

current sensing in one rugged short-circuit IGPT package. The ‘interlocking’ feature prevents 

both the high and low switches from ever simultaneously turning on even if both are enabled by 

the PWM drive. During initial PWM drive signal development, this feature can prevent 

accidental destruction of the demonstration board by preventing cross-conduction when incorrect 

PWM signals are applied. When run on 110VAC, the rectified DC bus is approximately 

165VDC and 330VDC when powered by 220VAC. It can test a large set of medium-voltage 
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motors with its 6.5A and 330VDC output maximum. Larger modules can be purchased from ST 

and numerous other manufacturers to easily scale up the voltage and current drive requirements. 

 
Figure 9: ST STEVAL-IHM025V1 1kW 3-phase motor control demonstration board 

 

To drive the 3-phase intelligent power module, three pairs of PWM drive signals need to 

be generated. Each pair of PWM drive signals will drive one of the three ½ H switches in the 

IPM. To avoid cross-conduction of each ½ H switch, a programmable dead-band is programmed 

in the PWM drive generator or implemented in hardware by the IGBT drivers driving the ½ H 

switches. A sine-wave lookup table is used to determine the magnitude for phase U given the test 

angle. The magnitude of phase V is calculated from the sine of the test angle plus 120 degrees, 

while phase W is calculated from the sine of the test angle plus 240 degrees. A test frequency 

ranging from 1 to 60 Hz will drive the magnitude reversals of the U, V and W phases to generate 

the reversing stator magnetic field. 

Initial PWM drive signal development began with the BeagleBone development kit 

which utilizes the 600MHz AM335x system on a chip (SOC) [14] [15]. The TI StarterWare bare 
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metal C library has basic driver support for all of the peripherals on the AM335x processor 

including the PWM, LCD, USB and A/D peripherals needed to build a very elegant embedded 

motor test system. PWM code was easily written to output three PWM signals with their 

complementary signals including deadband generation. Code was also written to interface the 

ADS1278 eight-channel 144kHz simultaneously sampling 24-bit ADC chip through the ASP 

port of the AM335x processor to allow sampling of three voltage and three current channels of a 

motor with high dynamic range. Using an A/D converter with high dynamic range can negate the 

need to use a programmable gain amplifier and cumbersome range changes. The AM335x 

processor was ideal in many aspects except for the following drawbacks: no motor control 

libraries are available, its BGA package is difficult to layout for PCBs and there is no high 

voltage isolation on the USB port. An attempt to develop the PWM drive using the DE0-nano 

utilizing the Altera Cyclone IV FPGA was successful except that the floating point 

multiplication scaling and sine functions consumed substantial amounts of the FPGA resources. 

Microprocessors are vastly superior in efficiently implementing floating point operations! 

The final selection to provide the PWM stimulus was the inexpensive LAUNCHXL-

F28069M development kit [16] [17] which offered the C2000 series F28069M microprocessor 

with floating point arithmetic, a motor control library, and most importantly included voltage 

isolation chips between the USB port and the microprocessor. In addition, the F28069M 

processor contains a ROM programmed to support TI’s InstaSpin and InstaMotion proprietary 

libraries [18] [19]. The libraries allow motor parameter identification as well as supporting 

sensorless field-oriented control (FOC) of many motor types. Though the source code is not 

currently published, these ROM programmed libraries can be called to immediately spin motors 

in speed and torque control applications. 
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Figure 10: The LAUNCHXL -F28069M C2000 microprocessor development kit 

 

The USB voltage isolation feature of the LAUNCHXL-F28069M is very important 

because the ST STEVAL-IHM025V1 demonstration kit directly rectifies the input AC and its 

ground reference is at half of the rectified bus voltage. When the STEVAL-IHM025V1 is 

powered by 110VAC and supplies +3.3V power to the F28069M microprocessor, the 

microprocessor is around +70 volts higher than the USB ground coming from the computer used 

to program the microprocessor. Jumpers JP1 and JP2 must be removed to enable the USB 

voltage isolation on the LAUNCHXL-F28069M development kit when powered from the ST 

STEVAL-IHM025V1 demonstration kit. According to published specifications, the ISO7240 

and ISO7231 USB isolation chips have a rating of 2500Vrms for 1 minute and provide a working 

isolation voltage of 500V for up to 25 years [20]. Powering the STEVAL-IHM025V1 using a 

sufficiently sized isolation transformer is another solution that was not tried that could add a 

secondary voltage isolation barrier.  

The DRV-8301 booster pack board is a compatible add-on to the LAUNCHXL-F28069M 

development kit and offers a safe low-voltage (+24V) 3-phase motor driver for ACIM or 

brushless DC (BLDC) motors up to 10A [21] [22]. The free MotorWare package from TI offers 
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numerous example motor control labs using the LAUNCHXL-F28069M and DRV-8301 booster 

pack combination. 

 
Figure 11: The LAUNCHXL-F28069M with DRV-8301 booster board attached 

 

An adapter board was built to connect the STEVAL-IHM025V1 module to the 

LAUNCHXL-F28069M development board using the function pin mapping used by the DRV-

8301 booster pack. With minor modifications to the InstaSpin code for voltage/current scaling 

and polarity and PWM polarity, the F28069M development board should be able to spin high-

voltage motors using the STEVAL-IHM025V1 as it does with the low-voltage DRV-8301 motor 

drive board. 
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Figure 12: Adapter card built to interface LAUNCHXL-F28069M to STEVAL-IHM025V1 
 

Numerous code examples are included for each of the TI C2000 processors supported  in 

TI’s control suite library [23]. For this project, code was pulled from the ControlSuite f2806x 

examples for PWM deadband, PWM tripzone, CPU timer, A/D and interrupt examples as 

detailed in the comments of the software listed in Appendix A. The F28069M code shown in 

Appendix A was built to load into the flash memory of the microprocessor but did not run until 

the code was modified to copy time-critical functions from the flash memory to RAM. 

Though the F28069M processor cannot drive a LCD display, the TI GUI Composer can 

be used to build a GUI display running on a host computer to show the target processor values 

through the USB interface. In addition, the code composer studio supports an ‘expression’ 

window which can display the values of variables on the target system in real time. 
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The measurement of the motor signals will be performed by the SKF EXP4000 online motor 

tester. The EXP4000 tester uses a National Instruments NI-6212 data acquisition card for 

measuring the three voltages and the three currents supplied to the motor under test. The NI-6212 

DAQ card can measure 16 channels each with 16 bits of resolution. Individually, each channel 

can be set to a voltage range of +/- [0.2, 0.5, 5.0, 10.0] volts. The acquisition rate is set to 25 kHz 

for each channel. The channels are sequentially scanned at a 400 kHz rate.  Though the NI-6212 

acquisition card has limitations in simultaneous sampling, cost and sample continuity during auto 

ranging to another voltage range, the easy USB interface and availability of software drivers 

makes it better than the lower resolution 12-bit A/Ds available on the LAUNCHXL-F28069M 

development board. 

 
Figure 13: SKF EXP4000 used to make measurements of motor signals 
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Chapter 4 Performance of system 
 
 
 

For the initial test of the system, a Baldor 2-pole 3-phase 480V 1A 0.5hp motor was 

connected. The microprocessor was set to run at 10 percent of its PWM drive with a reversal 

frequency of 15Hz. The SKF EXP4000 motor analyzer was attached using its 10A current 

clamps and voltage inputs for waveform recording purposes. The EXP4000 transient analyzer 

tool was set to record the three voltages and currents when the current went above .05A. 

 
Figure 14: Trigger settings for EXP4000 transient analysis tool 

 

The LAUNCHXL-F28069M/STEVAL-IHM025V1 combination was then plugged in to 

start the testing. As programmed, the test ran for approximately 90 seconds as indicated by the 

flashing blue and red LEDs on the LAUNCHXL-F28069M for each magnetic angle tested. The 

EXP4000 recorded the data (shown below) which shows each magnetic angle test with an off 

period followed by the next magnetic angle. 
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Figure 15: Recording by EXP4000 of 0.5hp 2-pole motor stepped through 36 magnetic 

angles 0 to 180 degrees 
 

The recorded data was exported and then imported into the MATLAB script that 

previously written for the prototype MB built in 2009. The MATLAB script sorts each magnetic 

angle test section and then finds a pivot value to center the voltages and currents as shown 

below. 
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Figure 16: Voltages and currents after pivot by original MB MATLAB analysis script 

 

The set of voltages and currents are then put through a customized Park transform which 

uses the magnetic angle that was used to generate each test section. Then the FFT spectra are 

computed for the d-q voltage and current, which are then divided to produce an impedance 

spectrum. The real part of the spectrum represents the resistance of the motor and the imaginary 

part represents the inductance of the motor. Plotting the peak value for each magnetic angle 

yields the impedance versus magnetic angle plots shown below. 
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Figure 17: Data taken with refactored MB 

 

Though the calculated resistance and inductance values looked reasonable for this 

particular motor, the data above shows a spike from magnetic angle 75-90 degrees. To determine 

if the discontinuity in resistance and inductance between angles 75 and 90 degrees was due to 

problems with the PWM generation or a bad motor, the motor shaft was rotated by 45 degrees 

and the test run again. 
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Figure 18: Data re-taken after rotating motor shaft by 45 degrees 

 

The data discontinuity did not move by 45 degrees, so there may be a problem in the 

PWM generation at those particular angles or with the measured phases not matching up for the 

supplied DQ angle. Comparing the peaking of each phase for the data set taken with the 

prototype tester built in 2009 to the peaking of each phase for the new data set showing the 

discontinuity revealed that phases A and C were swapped on the new data set. After swapping 

the A and C voltage and current phase data and re-running the MATLAB script, the discontinuity 

went away indicating that the magnetic angle used for the DQ calculations did not line up to the 

angle used in the data set. 
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Figure 19: Re-calculated results with phases A and C swapped in data set showing proper 

resistance and inductance measurements on a good motor 
 

 Data was then taken on a motor of the same model but with one of the rotor bars drilled 

through to induce a single-bar rotor defect. The graph shows a slight dip in the resistance around 

60 degrees indicating the presence of the induced single-bar rotor defect. 

 
Figure 20: Results for a motor with a single-bar rotor defect 
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Chapter 5 Future work 
 
 
 

The refactored tester has demonstrated that it can successfully measure the resistance and 

inductance versus magnetic angle of a motor just as the original prototype built in 2009. By 

detecting deviations in the resistance and inductance versus magnetic angle, the refactored tester 

should be able to detect the BRB defect in motors. Tests now need to be run on many motors 

with and without the BRB defect to ensure the refactored test system can find the BRB defect as 

well as the original prototype built in 2009. The refactored tester was wired to work with the TI 

InstaSpin libraries to add the new motor bump capability and still needs to be tested. Only minor 

modifications of TI’s supplied DRV-8301 software module for voltage and current scaling along 

with PWM polarity for the STEVAL-IHM025V1 module should be needed to test if the 

refactored tester can bump and spin motors. In addition to testing for the BRB defect in motors, 

the refactored tester should also be able to detect missing magnetic wedges in a motor along with 

detecting faulty cores in motors [24] [25]. 

A VFD drive contains all of the hardware needed to implement the MB except possibly 

for the reversing-angle PWM drive and analysis algorithms. It would be beneficial for VFD drive 

manufacturers to incorporate the algorithms of MB into their drives to provide customers 

constant diagnostics of their motor’s health. Whenever a VFD drive is requested to stop, the 

VFD drive could perform a broken rotor bar measurement. Previous stored measurements could 

be subtracted from the measurement to remove influences from the stator core itself and results 

for both the rotor bar health and core health could be determined by the VFD drive. If the motor 

is attached to a load which continues to rotate even when the motor is not energized, the VFD 

drive could determine the speed of the motor from the electrical signals, and then make rotor bar 
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 To enable quick PWM drive development, the prototype MB was built using a expensive 

National Instruments FPGA module.  To provide robust voltage and current drive, it used three 

1200V 75A dual IGBT modules with three hybrid IGBT driver modules. 

 
Figure 23: Cost for PWM drive, IGBTs and IGBT drivers in prototype MB 

  

To reduce the cost of the refactored MB tester but keep the same performance, several 

key expensive components can be replaced with components more optimized for the final design 

requirements. The calculated maximum 165V voltage drive requirement (Figure 7) shows that 

the refactored MB could use 600V-rated IGBTs instead of the 1200V-rated IGBTs used in the 

prototype MB. A single intelligent power module such as the 600V 75A Mitsubishi PS21A7A 

provides all six IGBT drivers and IGBTs in a single package with substantial savings. The easy-

to-program but expensive National Instruments FPGA module providing the PWM drive signals 

can now be replaced by the LAUNCHXL-F28069M. 

 
Figure 24: Cost for PWM drive, IGBTs and IGBT drivers in refactored MB 

 

 Making these component changes will reduce the bill of material cost of the refactored 

MB tester by $689.85 over the bill of material cost for the prototype MB tester. To cover the 

overhead costs of marketing, engineering and sales, a low-volume product must typically be sold 

at about 5 times the cost of the bill of material. By reducing the MB bill of materials by $689.85, 
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the sales price of the MB tester can be $3449.25 lower allowing the product to be more 

competitive in the condition-monitoring tester market. 
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Appendix A Source code for generating PWM signals 
 
 
 
//########################################################################### 
// Description: 
//! \addtogroup f2806x_example_list 
//! <h1>ePWM Deadband Generation (epwm_deadband)</h1> 
//! 
//! This example configures ePWM1, ePWM2 and ePWM3 for: 
//!   - Count up/down 
//!   - Deadband 
//! 3 Examples are included: 
//!   - ePWM1: Active low PWMs 
//!   - ePWM2: Active low complementary PWMs 
//!   - ePWM3: Active high complementary PWMs 
//! 
//! Each ePWM is configured to interrupt on the 3rd zero event 
//! when this happens the deadband is modified such that 
//! 0 <= DB <= DB_MAX.  That is, the deadband will move up and 
//! down between 0 and the maximum value.  
//! 
//! \b External \b Connections \n 
//!  - EPWM1A is on GPIO0 
//!  - EPWM1B is on GPIO1 
//!  - EPWM2A is on GPIO2 
//!  - EPWM2B is on GPIO3 
//!  - EPWM3A is on GPIO4 
//!  - EPWM3B is on GPIO5 
// 
 
//########################################################################### 
// $TI Release: F2806x C/C++ Header Files and Peripheral Examples V150 $ 
// $Release Date: June 16, 2015 $ 
// $Copyright: Copyright (C) 2011-2015 Texas Instruments Incorporated - 
//             http://www.ti.com/ ALL RIGHTS RESERVED $ 
//########################################################################### 
 
//########################################################################### 
// Code adapted by Craig S. Powers for providing PWM stimulus to motors to measure broken 
rotor bars 
// 
// Snippets of code were spliced together from the many examples provided by Texas 
Instruments 
// in their Control Suite library for the F28069 processor 
// .\controlSUITE\device_support\f2806x\v150\F2806x_examples_ccsv5 
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// 
// Code adapted to drive the ST STEVAL-IHM025V1 IPM module 
 
// Added code from C:\ti\controlSUITE\development_kits\LAUNCHXL-
F28069M\LaunchPadDemo 
//    to flash Blue and Red LEDs on launchpad 
// 
// Change all PWMs to Active high mode for STGIPL14K60 IPM drive requirements 
// --> Changed EPwm1Regs.DBCTL.bit.POLSEL = /*DB_ACTV_LO*/ DB_ACTV_HI; 
// 
// Pulled PWM Freq. calc. code from Example_EPwmSetup.c located in project 
Example_2806xEqep_freqcal 
// 
// Pulled code from project Example_2806xAdcSoc to implement ADCs on PWM1 trigger 
// 
// Pulled code from project Example_2806xLaunchPad to implement CPU timer for magnetic 
angle reversals 
// 
// Removed divide by 16 for PWM clocks, so PWMs go faster and frequency matches 
// calculations pulled from Example_EPwmSetup.c 
//   EPwm1Regs.TBCTL.bit.HSPCLKDIV  = TB_DIV1 /*TB_DIV4*/;   // Clock ratio to 
SYSCLKOUT 
//   EPwm1Regs.TBCTL.bit.CLKDIV  = TB_DIV1 /*TB_DIV4*/; 
// 
// Added code to calculate magnitudes for each three phase output for a given angle 
// 
// sin(x) was returning incorrect values 
//  Deleted linker libraries 
//   "IQmath_fpu32.lib" 
//   "rts2800_fpu32_fast_supplement.lib" 
//   "libc.a" 
// 
//  Added CPU timer2 from Example_2806xCPUTimer.c for test angle on/off state timer 
// 
//  Added Trip Zone 5 & 6 PWM single-shot shutdown based on Example_2806xEPwmTripZone 
//    and notes from TI's document Spruh18e pg. 244, pg. 293 so PWMs go to safe state 
//    on debugger 'pause'. Safe PWM state for debugger 'Halt' is not yet working 
//   So it's best to 'pause', then 'Halt' debugger! to stop PWMs 
//    Many sad cases on TI's forums of guys blowing up their HV IPMs 
// 
// Adapting to run from FLASH by adding function to copy key timing sections to RAM 
// 
//############################################################################ 
 
#include <stdint.h> //Include new clarified types such as int16_t 
#include <math.h> 
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#include "DSP28x_Project.h"     // Device Headerfile and Examples Include File 
 
//Prototypes for initializing PWMs 
void InitEPwm1Example(void); 
void InitEPwm2Example(void); 
void InitEPwm3Example(void); 
 
//Prototypes for Interrupt Service Routines to take care of PWMs 
__interrupt  void epwm1_isr(void); 
__interrupt  void epwm2_isr(void); 
__interrupt  void epwm3_isr(void); 
 
// Interrupt Service Routines to take care of PWMs during a Trip Zone event 
__interrupt  void epwm1_tzint_isr(void); 
__interrupt  void epwm2_tzint_isr(void); 
__interrupt  void epwm3_tzint_isr(void); 
 
//Prototypes for the 'magnetic polarity reversing' CPU_Timer0 
__interrupt  void cpu_timer0_isr(void); 
 
//Prototypes for the 'on/off' CPU_Timer1 for each magnetic angle step 
__interrupt  void cpu_timer1_isr(void); 
 
//Proto types for ADC 
__interrupt  void adc_isr(void); 
void Adc_Config(void); 
 
void MemCopy(Uint16 *SourceAddr, Uint16* SourceEndAddr, Uint16* DestAddr); 
 
// Global variables used in this example 
Uint32  EPwm1TimerIntCount; 
Uint32  EPwm2TimerIntCount; 
Uint32  EPwm3TimerIntCount; 
Uint16  EPwm1_DB_Direction; 
Uint16  EPwm2_DB_Direction; 
Uint16  EPwm3_DB_Direction; 
 
//May ditch variables below which are only useful if cycle-cycle trip zone counting versus 
current on-shot use 
Uint32  EPwm1TZIntCount; 
Uint32  EPwm2TZIntCount; 
Uint32  EPwm3TZIntCount; 
 
// Global A/D variables used in this example: 
Uint16 LoopCount; 
Uint16 ConversionCount; 
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//ADC channels to sample 
Uint16 Vbus[10]; 
Uint16 Va[10]; 
Uint16 Vb[10]; 
Uint16 Vc[10]; 
Uint16 Ia[10]; 
Uint16 Ib[10]; 
Uint16 Ic[10]; 
 
// Global Variables for GUI Composer/SCIA(C# interface) to access 
int  polarity = 1; //The magnetic angle polarity 
int  onOffCount = 0; 
float ReversalTime_Hz = 15.0 /*0.333*/; //The magnetic reversal test frequency 
double TestAngle_deg = 0.0; // Magnetic test angle to build from the three phase angle vector 
summation 
 
// 2 pole motors test from 0 to 180 degrees, magnetic reversals covers other half 
// 4 pole motors test from 0 to 90 degrees 
// N pole motors test from 0 to 180/(pole pairs) 
double motorPoles = 4; 
double numberOfTestAngles = 36.0; 
double maxTestAngle; 
double angleStepSize; 
 
double sinPHa = 0.0; 
double sinPHb = 0.0; 
double sinPHc = 0.0; 
 
int  TestStart = 0; 
int  angleOn = 0; //If zero, then all motor terminal PWM voltages equal, otherwise magnetic 
angle voltages 
 
double sinZero; 
double sinPIover2; 
double sinPIover4; 
 
float Current_Pct; //PWM output voltage/current from 0 to 100% 
float I_pct; 
 
//uint16_t on_off_Count = 0; 
 
//PWM (Bi-polar) magnitude adjustments to CMPA from midpoint 
 int16 PHa_mag; 
 int16 PHb_mag; 
 int16 PHc_mag; 
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//PWM CMPA values 
 Uint16 PWM1_CMPA = 0; 
 Uint16 PWM2_CMPA = 0; 
 Uint16 PWM3_CMPA = 0; 
 
// Maximum Dead Band values 
#define EPWM1_MAX_DB   0x03FF 
#define EPWM2_MAX_DB   0x03FF 
#define EPWM3_MAX_DB   0x03FF 
 
#define EPWM1_MIN_DB   0 
#define EPWM2_MIN_DB   0 
#define EPWM3_MIN_DB   0 
 
// To keep track of which way the Dead Band is moving 
#define DB_UP   1 
#define DB_DOWN 0 
 
//To Calculate the PWM Frequwncy 
#define CPU_CLK   90e6 
#define PWM_CLK   5e3 
#define SP        CPU_CLK/(2*PWM_CLK) //TBPRD is set to SP and CMPA is setto SP/2 
 
#define PI 3.1415926 
#define HALF_PI 1.57079632 
#define DEG_2_RAD 0.01745329251994329576923690768489 
 
#define FLASH //Comment out if running in RAM 
 
void main(void) 
{ 
 //Variables purposely not visible to GUI Composer 
 float Timer_uS; 
 
 // Only used if running from FLASH 
 // Note that the variable FLASH is defined by the compiler (-d FLASH) 
 #ifdef FLASH 
 // Copy time critical code and Flash setup code to RAM 
 // The  RamfuncsLoadStart, RamfuncsLoadEnd, and RamfuncsRunStart 
 // symbols are created by the linker. Refer to the linker files. 
  MemCopy(&RamfuncsLoadStart, &RamfuncsLoadEnd, &RamfuncsRunStart); 
 
 // Call Flash Initialization to setup flash waitstates 
 // This function must reside in RAM 
  InitFlash (); // Call the flash wrapper init function 
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 #endif //(FLASH) 
 
 //Global variables visible to GUI Composer 
 Current_Pct = 10.0; //PWM output percentage for a motor test 
    maxTestAngle = 360/motorPoles; 
 angleStepSize = maxTestAngle/numberOfTestAngles; 
 
// Step 1. Initialize System Control: 
// PLL, WatchDog, enable Peripheral Clocks 
// This example function is found in the F2806x_SysCtrl.c file. 
   InitSysCtrl (); 
 
// Step 2. Initalize GPIO:  
// This example function is found in the F2806x_Gpio.c file and 
// illustrates how to set the GPIO to it's default state. 
// InitGpio();  // Skipped for this example   
 
// For this case just init GPIO pins for ePWM1, ePWM2, ePWM3 
// These functions are in the F2806x_EPwm.c file 
   InitEPwm1Gpio (); 
   InitEPwm2Gpio (); 
   InitEPwm3Gpio (); 
   //InitTzGpio(); //Call if TZ1 or TZ2 pins are going to be used 
    
// Step 3. Clear all interrupts and initialize PIE vector table: 
// Disable CPU interrupts  
   DINT; 
 
// Initialize the PIE control registers to their default state. 
// The default state is all PIE interrupts disabled and flags 
// are cleared.   
// This function is found in the F2806x_PieCtrl.c file. 
   InitPieCtrl (); 
    
// Disable CPU interrupts and clear all CPU interrupt flags: 
   IER = 0x0000; 
   IFR = 0x0000; 
 
// Initialize the PIE vector table with pointers to the shell Interrupt  
// Service Routines (ISR).   
// This will populate the entire table, even if the interrupt 
// is not used in this example.  This is useful for debug purposes. 
// The shell ISR routines are found in F2806x_DefaultIsr.c. 
// This function is found in F2806x_PieVect.c. 
   InitPieVectTable(); 
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// Interrupts that are used in this example are re-mapped to 
// ISR functions found within this file.   
   EALLOW;  // This is needed to write to EALLOW protected registers 
   PieVectTable.EPWM1_INT = &epwm1_isr; 
   PieVectTable.EPWM2_INT = &epwm2_isr; 
   PieVectTable.EPWM3_INT = &epwm3_isr; 
   PieVectTable.EPWM1_TZINT = &epwm1_tzint_isr; //Setup PWM1's Trip zone ISR 
   PieVectTable.EPWM2_TZINT = &epwm2_tzint_isr; //Setup PWM2's Trip zone ISR 
   PieVectTable.EPWM3_TZINT = &epwm3_tzint_isr; //Setup PWM3's Trip zone ISR 
   PieVectTable.TINT0  = &cpu_timer0_isr; //Initialize the CPU timer0 interrupt 
   PieVectTable.TINT1  = &cpu_timer1_isr; //Initialize the CPU timer1 interrupt 
   PieVectTable.ADCINT1 = &adc_isr; //Initialize the ADC interrupt 
   EDIS;    // This is needed to disable write to EALLOW protected registers 
 
 
// Step 4. Initialize all the Device Peripherals: 
// This function is found in F2806x_InitPeripherals.c 
// InitPeripherals();  // Not required for this example 
 
   EALLOW; 
   SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 0; 
   EDIS; 
    
   //Initialize the PWM modules 
   InitEPwm1Example();     
   InitEPwm2Example(); 
   InitEPwm3Example(); 
 
   EALLOW; 
   SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 1; 
   EDIS; 
    
   //Initialize GPIOs for the LEDs and turn them off 
   EALLOW; 
   GpioCtrlRegs.GPBDIR.bit.GPIO34 = 1; 
   GpioCtrlRegs.GPBDIR.bit.GPIO39 = 1; 
   GpioDataRegs.GPBDAT.bit.GPIO34 = 1; 
   GpioDataRegs.GPBDAT.bit.GPIO39 = 1; 
   EDIS; 
 
   InitCpuTimers ();   // For this example, only initialize the Cpu Timers 
    
   //Set up the CPU timer 0 for the magnetizing vector reversals 
   Timer_uS = 1.0/(2.0*ReversalTime_Hz) * 1E6; 
   ConfigCpuTimer (&CpuTimer0, 90, Timer_uS /*1000*/); 
   CpuTimer0Regs.TCR.all = 0x4010; // Use write-only instruction to set TSS bit = 1 
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   //Set up the CPU timer 1 for on/off time for each test angle 
   ConfigCpuTimer (&CpuTimer1, 90 /*uP Clk*/, 1000000 /*uS*/); //Set for 1 second period 
   CpuTimer1Regs.TCR.all = 0x4010; // Use write-only instruction to set TSS bit = 1 
 
   //Setup the ADCs 
   InitAdc ();  // For this example, init the ADC 
   AdcOffsetSelfCal(); 
 
// Step 5. User specific code, enable interrupts 
// Initialize counters:    
   EPwm1TimerIntCount = 0; 
   EPwm2TimerIntCount = 0; 
   EPwm3TimerIntCount = 0; 
    
   EPwm1TZIntCount = 0; //Counters for each trip zone event (only useful in cycle-by-cycle trip 
sources) 
   EPwm2TZIntCount = 0; 
   EPwm3TZIntCount = 0; 
 
// Enable CPU INT3 which is connected to EPWM1-3 INT: 
   IER |= M_INT3; 
// Enable CPU INT2 which is connected to EPWMX_TZINT: where X = 1-N 
   IER |= M_INT2; //Group 2 interrupts for TZ? 
 
// Enable CPU int1 which is connected to CPU-Timer 0, CPU int13 
// which is connected to CPU-Timer 1, and CPU int 14, which is connected 
// to CPU-Timer 2: 
   IER |= M_INT1; 
   IER |= M_INT13; 
   //IER |= M_INT14; //Not yet using CPU-Timer3 
 
// Enable EPWM INTn in the PIE: Group 3 interrupt 1-3 
   PieCtrlRegs.PIEIER3.bit.INTx1 = 1; 
   PieCtrlRegs.PIEIER3.bit.INTx2 = 1; 
   PieCtrlRegs.PIEIER3.bit.INTx3 = 1; 
 
// Enable EPWM TZ INTn in the PIE: Group 2 interrupt 1-3 (EPWM1_TZINT) 
   //PieCtrlRegs.PIEIER2.bit.INTx1 = 1; 
   //PieCtrlRegs.PIEIER2.bit.INTx2 = 1; 
   //PieCtrlRegs.PIEIER2.bit.INTx3 = 1; 
 
   PieCtrlRegs.PIEIER1.bit.INTx7 = 1; //Enable CPU timer interrupt 
 
// ?? Can both PIEIER1 and PIEIER3 for PWM be set to INTx1 ??? 
//Apparently Yes 
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   // Enable ADCINT1 in PIE 
   PieCtrlRegs.PIEIER1.bit.INTx1 = 1; // Enable INT 1.1 in the PIE 
 
// Enable global Interrupts and higher priority real-time debug events: 
   EINT;   // Enable Global interrupt INTM 
   ERTM;   // Enable Global realtime interrupt DBGM 
 
   //ADC count variables 
   LoopCount = 0; 
   ConversionCount = 0; 
 
   //Setup initial LED state for toggling (Red LED on, blue off) 
   GpioDataRegs.GPBDAT.bit.GPIO34 = 0; 
   GpioDataRegs.GPBDAT.bit.GPIO39 = 1; 
 
   // Configure ADCs 
    EALLOW; 
       AdcRegs.ADCCTL2.bit.ADCNONOVERLAP = 1; // Enable non-overlap mode 
       AdcRegs.ADCCTL1.bit.INTPULSEPOS  = 1; // ADCINT1 trips after AdcResults 
latch 
       AdcRegs.INTSEL1N2.bit.INT1E       = 1; // Enabled ADCINT1 
       AdcRegs.INTSEL1N2.bit.INT1CONT    = 0; // Disable ADCINT1 Continuous mode 
       AdcRegs.INTSEL1N2.bit.INT1SEL   = 1;   // setup EOC1 to trigger ADCINT1 to fire 
 
 
       AdcRegs.ADCSOC0CTL.bit.CHSEL  = 7;    // set SOC0 channel select to ADCINA7 - 
Vbus 
 
       AdcRegs.ADCSOC1CTL.bit.CHSEL  = 9;    // set SOC1 channel select to ADCINB1 - Va 
       AdcRegs.ADCSOC2CTL.bit.CHSEL  = 2;    // set SOC2 channel select to ADCINA2 - Vb 
       AdcRegs.ADCSOC3CTL.bit.CHSEL  = 10;   // set SOC3 channel select to ADCINB2 - Vc 
 
       AdcRegs.ADCSOC4CTL.bit.CHSEL  = 0;    // set SOC4 channel select to ADCINA0 - Ia 
       AdcRegs.ADCSOC5CTL.bit.CHSEL  = 8;    // set SOC5 channel select to ADCINB0 - Ib 
       AdcRegs.ADCSOC6CTL.bit.CHSEL  = 1;    // set SOC6 channel select to ADCINA1 - Ic 
       //May in future add SOC7 to measure heat sink temp readback of STEVAL-IHM025V1 
module 
 
       AdcRegs.ADCSOC0CTL.bit.TRIGSEL  = 5;    // set SOC0 start trigger on 
EPWM1A, due to round-robin SOC0 converts first then SOC1 
       AdcRegs.ADCSOC1CTL.bit.TRIGSEL  = 5;    // set SOC1 start trigger on 
EPWM1A, due to round-robin SOC0 converts first then SOC1 
       AdcRegs.ADCSOC2CTL.bit.TRIGSEL  = 5;    // set SOC2 start trigger on EPWM1A 
 
       //May in the future switch this to start trigger on EPWM2A 
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       AdcRegs.ADCSOC3CTL.bit.TRIGSEL  = 5;    // set SOC3 start trigger on EPWM1A 
       AdcRegs.ADCSOC4CTL.bit.TRIGSEL  = 5;    // set SOC4 start trigger on EPWM1A 
 
       //May in the future switch this to start trigger on EPWM3A 
       AdcRegs.ADCSOC5CTL.bit.TRIGSEL  = 5;    // set SOC5 start trigger on EPWM1A 
       AdcRegs.ADCSOC6CTL.bit.TRIGSEL  = 5;    // set SOC6 start trigger on EPWM1A 
 
       AdcRegs.ADCSOC0CTL.bit.ACQPS  = 6; // set SOC0 S/H Window to 7 ADC Clock 
Cycles, (6 ACQPS plus 1) 
       AdcRegs.ADCSOC1CTL.bit.ACQPS  = 6; // set SOC1 S/H Window to 7 ADC Clock 
Cycles, (6 ACQPS plus 1) 
       AdcRegs.ADCSOC2CTL.bit.ACQPS  = 6; // set SOC2 S/H Window to 7 ADC Clock 
Cycles, (6 ACQPS plus 1) 
       AdcRegs.ADCSOC3CTL.bit.ACQPS  = 6; // set SOC3 S/H Window to 7 ADC Clock 
Cycles, (6 ACQPS plus 1) 
       AdcRegs.ADCSOC4CTL.bit.ACQPS  = 6; // set SOC4 S/H Window to 7 ADC Clock 
Cycles, (6 ACQPS plus 1) 
       AdcRegs.ADCSOC5CTL.bit.ACQPS  = 6; // set SOC5 S/H Window to 7 ADC Clock 
Cycles, (6 ACQPS plus 1) 
       AdcRegs.ADCSOC6CTL.bit.ACQPS  = 6; // set SOC6 S/H Window to 7 ADC Clock 
Cycles, (6 ACQPS plus 1) 
    EDIS; 
 
   //Enable CPU timer 
   CpuTimer0Regs.TCR.all = 0x4000; // Use write-only instruction to set TSS bit = 1 
   CpuTimer1Regs.TCR.all = 0x4000; // Use write-only instruction to set TSS bit = 1 
 
   // Assumes ePWM1 clock is already enabled in InitSysCtrl(); 
      EPwm1Regs.ETSEL.bit.SOCAEN = 1;  // Enable SOC on A group 
      EPwm1Regs.ETSEL.bit.SOCASEL = 4;  // Select SOC from CMPA on 
upcount 
      EPwm1Regs.ETPS.bit.SOCAPRD  = 1;  // Generate pulse on 1st event 
 
      //Check if linker libraries are correct and sin(x) is working properly 
      // DO NOT LINK "IQmath_fpu32.lib" 
      // DO NOT LINK "rts2800_fpu32_fast_supplement.lib" 
    sinZero = sin(0.0); // Result should be 0.0 
    sinPIover4 = sin(0.78539816339744830961566084581988); //Result should be 
0.7071068 
    sinPIover2 = sin(1.5707963267948966192313216916398); //Result should be 1.0 
 
 if  (sin(0.0) == 0.0) //Correct linker library check to ensure sin(x) is return correct values 
   { 
   
  TestStart = 1; //Start Magic Box test!!! 
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   // Step 6. IDLE loop. Just sit and loop forever (optional): 
    for (;;) 
    { 
     __asm("          NOP"); 
    } 
   } 
 //Exit due to bad linker libraries 
} 
 
//====================================================================
======= 
// Main() end. Function definitions follow 
//====================================================================
======= 
 
__interrupt  void  adc_isr(void) 
{ 
 
  Vbus[ConversionCount] = AdcResult.ADCRESULT0; 
    Va[ConversionCount] = AdcResult.ADCRESULT1; 
    Vb[ConversionCount] = AdcResult.ADCRESULT2; 
    Vc[ConversionCount] = AdcResult.ADCRESULT3; 
    Ia[ConversionCount] = AdcResult.ADCRESULT4; 
    Ib[ConversionCount] = AdcResult.ADCRESULT5; 
    Ic[ConversionCount] = AdcResult.ADCRESULT6; 
 
  // If 20 conversions have been logged, start over 
  if (ConversionCount == 9) 
  { 
     ConversionCount = 0; 
  } 
  else ConversionCount++; 
 
  AdcRegs.ADCINTFLGCLR.bit.ADCINT1 = 1;  //Clear ADCINT1 flag reinitialize for 
next SOC 
  PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;   // Acknowledge interrupt to PIE 
 
  return ; 
} 
 
__interrupt  void epwm1_isr(void) 
{ 
 
  // Setup PWM level 
    EPwm1Regs.CMPA.half.CMPA = PWM1_CMPA; 
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#if 0 
 
   if (EPwm1_DB_Direction == DB_UP) 
   { 
       if (EPwm1Regs.DBFED < EPWM1_MAX_DB) 
       { 
          EPwm1Regs.DBFED++; 
          EPwm1Regs.DBRED++; 
       } 
       else 
       { 
          EPwm1_DB_Direction = DB_DOWN; 
          EPwm1Regs.DBFED--; 
          EPwm1Regs.DBRED--; 
       } 
   } 
   else 
   { 
       if (EPwm1Regs.DBFED == EPWM1_MIN_DB) 
       { 
          EPwm1_DB_Direction = DB_UP; 
          EPwm1Regs.DBFED++; 
          EPwm1Regs.DBRED++; 
       } 
       else 
       { 
          EPwm1Regs.DBFED--; 
          EPwm1Regs.DBRED--; 
       } 
   } 
   EPwm1TimerIntCount++; 
 
#endif 
 
   // Clear INT flag for this timer 
   EPwm1Regs.ETCLR.bit.INT = 1; 
    
   // Acknowledge this interrupt to receive more interrupts from group 3 
   PieCtrlRegs.PIEACK.all = PIEACK_GROUP3; 
} 
 
__interrupt  void epwm2_isr(void) 
{ 
    // Setup PWM level 
    EPwm2Regs.CMPA.half.CMPA = PWM2_CMPA; 
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#if 0 
 
   if (EPwm2_DB_Direction == DB_UP) 
   { 
       if (EPwm2Regs.DBFED < EPWM2_MAX_DB) 
       { 
          EPwm2Regs.DBFED++; 
          EPwm2Regs.DBRED++; 
       } 
       else 
       { 
          EPwm2_DB_Direction = DB_DOWN; 
          EPwm2Regs.DBFED--; 
          EPwm2Regs.DBRED--; 
       } 
   } 
   else 
   { 
       if (EPwm2Regs.DBFED == EPWM2_MIN_DB) 
       { 
          EPwm2_DB_Direction = DB_UP; 
          EPwm2Regs.DBFED++; 
          EPwm2Regs.DBRED++; 
       } 
       else 
       { 
          EPwm2Regs.DBFED--; 
          EPwm2Regs.DBRED--; 
       } 
   } 
 
#endif 
 
   EPwm2TimerIntCount++; 
 
   // Clear INT flag for this timer 
   EPwm2Regs.ETCLR.bit.INT = 1; 
    
   // Acknowledge this interrupt to receive more interrupts from group 3 
   PieCtrlRegs.PIEACK.all = PIEACK_GROUP3; 
} 
 
__interrupt  void epwm3_isr(void) 
{ 
    // Setup PWM level 
    EPwm3Regs.CMPA.half.CMPA = PWM3_CMPA; 
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#if 0 
   if (EPwm3_DB_Direction == DB_UP) 
   { 
       if (EPwm3Regs.DBFED < EPWM3_MAX_DB) 
       { 
          EPwm3Regs.DBFED++; 
          EPwm3Regs.DBRED++; 
       } 
       else 
       { 
          EPwm3_DB_Direction = DB_DOWN; 
          EPwm3Regs.DBFED--; 
          EPwm3Regs.DBRED--; 
       } 
   } 
   else 
   { 
       if (EPwm3Regs.DBFED == EPWM3_MIN_DB) 
       { 
          EPwm3_DB_Direction = DB_UP; 
          EPwm3Regs.DBFED++; 
          EPwm3Regs.DBRED++; 
       } 
       else 
       { 
          EPwm3Regs.DBFED--; 
          EPwm3Regs.DBRED--; 
       } 
   } 
 
#endif 
 
   EPwm3TimerIntCount++; 
 
   // Clear INT flag for this timer 
   EPwm3Regs.ETCLR.bit.INT = 1; 
    
   // Acknowledge this interrupt to receive more interrupts from group 3 
   PieCtrlRegs.PIEACK.all = PIEACK_GROUP3; 
} 
 
void InitEPwm1Example() 
{ 
    //Enable TZ5 and TZ6 as one shot trip sources, so PWMs go to safe state on CPU clock 
fail or CPU halt 
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    EALLOW; 
    //EPwm1Regs.TZSEL.bit.OSHT1 = 1; // 8 One-shot TZ1 select 
    //EPwm1Regs.TZSEL.bit.OSHT2 = 1; // 9 One-shot TZ2 select 
    EPwm1Regs.TZSEL.bit.OSHT5 = 1; // 12 One-shot TZ5 select 
    EPwm1Regs.TZSEL.bit.OSHT6 = 1; // 13 One-shot TZ6 select 
    EPwm1Regs.TZSEL.bit.CBC6 = 1; // 13 One-shot TZ6 select 
 
    // What do we want the trip zones to do? 
    // Table 13. of STGIPL14K60 IPM needs HIN=low, LIN=high to set to "logic state 0" 
    EPwm1Regs.TZCTL.bit.TZA = TZ_FORCE_LO; //EPWM1A connected to HIN 
    EPwm1Regs.TZCTL.bit.TZB = TZ_FORCE_HI; //EPWM1B connected to LIN 
 
    // Enable TZ interrupt 
    EPwm1Regs.TZEINT.bit.OST = 1; 
    EPwm1Regs.TZEINT.bit.CBC = 1; 
    EDIS; 
    
   EPwm1Regs.TBPRD = /*6000*/ SP;                 // Set timer period (PWM Freq) 
   EPwm1Regs.TBPHS.half.TBPHS = 0x0000;           // Phase is 0 
   EPwm1Regs.TBCTR = 0x0000;                      // Clear counter 
 
   // Setup TBCLK 
   EPwm1Regs.TBCTL.bit.CTRMODE    = TB_COUNT_UPDOWN;   // Count up 
   EPwm1Regs.TBCTL.bit.PHSEN      = TB_DISABLE;        // Disable phase loading 
   EPwm1Regs.TBCTL.bit.HSPCLKDIV  = TB_DIV1 /*TB_DIV4*/;   // Clock ratio to 
SYSCLKOUT 
   EPwm1Regs.TBCTL.bit.CLKDIV    = TB_DIV1 /*TB_DIV4*/; 
 
   EPwm1Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;    // Load registers every ZERO 
   EPwm1Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW; 
   EPwm1Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO; 
   EPwm1Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;    
 
   // Setup compare  
   EPwm1Regs.CMPA.half.CMPA = /*3000*/ SP/2; // Initialize to 50% duty 
    
   // Set actions 
   EPwm1Regs.AQCTLA.bit.CAU = AQ_SET;             // Set PWM1A on CAU 
   EPwm1Regs.AQCTLA.bit.CAD = AQ_CLEAR;     // Clear PWM1A on CAD 
 
   EPwm1Regs.AQCTLB.bit.CAU = AQ_CLEAR;           // Clear PWM1B on CAU 
   EPwm1Regs.AQCTLB.bit.CAD = AQ_SET;             // Set PWM1B on CAD 
 
   // Active Low PWMs - Setup Deadband 
   EPwm1Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE; 
   EPwm1Regs.DBCTL.bit.POLSEL = /*DB_ACTV_LO*/ DB_ACTV_HI; 
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   EPwm1Regs.DBCTL.bit.IN_MODE = DBA_ALL; 
   EPwm1Regs.DBRED = EPWM1_MIN_DB; 
   EPwm1Regs.DBFED = EPWM1_MIN_DB; 
   EPwm1_DB_Direction = DB_UP; 
    
   // Interrupt where we will change the Deadband 
   EPwm1Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO;     // Select INT on Zero event 
   EPwm1Regs.ETSEL.bit.INTEN = 1;                // Enable INT 
   EPwm1Regs.ETPS.bit.INTPRD = ET_3RD;           // Generate INT on 3rd event 
} 
 
void InitEPwm2Example() 
{ 
 //Enable TZ5 and TZ6 as one shot trip sources, so PWMs go to safe state on CPU clock 
fail or CPU halt 
     EALLOW; 
     //EPwm2Regs.TZSEL.bit.OSHT1 = 1; // 8 One-shot TZ1 select 
     //EPwm2Regs.TZSEL.bit.OSHT2 = 1; // 9 One-shot TZ2 select 
     EPwm2Regs.TZSEL.bit.OSHT5 = 1; // 12 One-shot TZ5 select 
     EPwm2Regs.TZSEL.bit.OSHT6 = 1; // 13 One-shot TZ6 select 
 
     // What do we want the trip zones to do? 
     // Table 13. of STGIPL14K60 IPM needs HIN=low, LIN=high to set to "logic 
state 0" 
     EPwm2Regs.TZCTL.bit.TZA = TZ_FORCE_LO; //EPWM1A connected to 
HIN 
     EPwm2Regs.TZCTL.bit.TZB = TZ_FORCE_HI; //EPWM1B connected to LIN 
 
     // Enable TZ interrupt 
     EPwm2Regs.TZEINT.bit.OST = 1; 
     EDIS; 
 
   EPwm2Regs.TBPRD = /*6000*/ SP;                        // Set timer period 
   EPwm2Regs.TBPHS.half.TBPHS = 0x0000;           // Phase is 0 
   EPwm2Regs.TBCTR = 0x0000;                      // Clear counter 
    
   // Setup TBCLK 
   EPwm2Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; // Count up 
   EPwm2Regs.TBCTL.bit.PHSEN = TB_DISABLE;        // Disable phase loading 
   EPwm2Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1 /*TB_DIV4*/;       // Clock ratio to 
SYSCLKOUT 
   EPwm2Regs.TBCTL.bit.CLKDIV = TB_DIV1 /*TB_DIV4*/;          // Slow just to observe on 
the scope 
 
   // Setup compare  
   EPwm2Regs.CMPA.half.CMPA = /*3000*/ SP/2; // Initialize to 50% duty 
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   // Set actions 
   EPwm2Regs.AQCTLA.bit.CAU = AQ_SET;             // Set PWM2A on CAU 
   EPwm2Regs.AQCTLA.bit.CAD = AQ_CLEAR;           // Clear PWM2A on CAD 
 
   EPwm2Regs.AQCTLB.bit.CAU = AQ_CLEAR;           // Clear PWM2B on CAU 
   EPwm2Regs.AQCTLB.bit.CAD = AQ_SET;             // Set PWM2B on CAD 
 
   // Active Low complementary PWMs - setup the deadband 
   EPwm2Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE; 
   EPwm2Regs.DBCTL.bit.POLSEL = /*DB_ACTV_LOC*/DB_ACTV_HI; 
   EPwm2Regs.DBCTL.bit.IN_MODE = DBA_ALL; 
   EPwm2Regs.DBRED = EPWM2_MIN_DB; 
   EPwm2Regs.DBFED = EPWM2_MIN_DB; 
   EPwm2_DB_Direction = DB_UP; 
 
   // Interrupt where we will modify the deadband 
   EPwm2Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO;      // Select INT on Zero event 
   EPwm2Regs.ETSEL.bit.INTEN = 1;                 // Enable INT 
   EPwm2Regs.ETPS.bit.INTPRD = ET_3RD;            // Generate INT on 3rd event 
} 
 
void InitEPwm3Example() 
{ 
 //Enable TZ5 and TZ6 as one shot trip sources, so PWMs go to safe state on CPU clock 
fail or CPU halt 
     EALLOW; 
     //EPwm3Regs.TZSEL.bit.OSHT1 = 1; // 8 One-shot TZ1 select 
     //EPwm3Regs.TZSEL.bit.OSHT2 = 1; // 9 One-shot TZ2 select 
     EPwm3Regs.TZSEL.bit.OSHT5 = 1; // 12 One-shot TZ5 select 
     EPwm3Regs.TZSEL.bit.OSHT6 = 1; // 13 One-shot TZ6 select 
 
     // What do we want the trip zones to do? 
     // Table 13. of STGIPL14K60 IPM needs HIN=low, LIN=high to set to "logic 
state 0" 
     EPwm3Regs.TZCTL.bit.TZA = TZ_FORCE_LO; //EPWM1A connected to 
HIN 
     EPwm3Regs.TZCTL.bit.TZB = TZ_FORCE_HI; //EPWM1B connected to LIN 
 
     // Enable TZ interrupt 
     EPwm3Regs.TZEINT.bit.OST = 1; 
     EDIS; 
 
   EPwm3Regs.TBPRD = /*6000*/ SP;                  // Set timer period 
   EPwm3Regs.TBPHS.half.TBPHS = 0x0000;            // Phase is 0 
   EPwm3Regs.TBCTR = 0x0000;                       // Clear counter 
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   // Setup TBCLK 
   EPwm3Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; // Count up 
   EPwm3Regs.TBCTL.bit.PHSEN = TB_DISABLE;        // Disable phase loading 
   EPwm3Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1 /*TB_DIV4*/;       // Clock ratio to 
SYSCLKOUT 
   EPwm3Regs.TBCTL.bit.CLKDIV = TB_DIV1 /*TB_DIV4*/;          // Slow so we can observe 
on the scope 
 
   // Setup compare  
   EPwm3Regs.CMPA.half.CMPA = /*3000*/ SP/2; // Initialize to 50% duty 
 
   // Set actions 
   EPwm3Regs.AQCTLA.bit.CAU = AQ_SET;              // Set PWM3A on CAU 
   EPwm3Regs.AQCTLA.bit.CAD = AQ_CLEAR;            // Clear PWM3A on CAD 
 
   EPwm3Regs.AQCTLB.bit.CAU = AQ_CLEAR;            // Clear PWM3B on CAU 
   EPwm3Regs.AQCTLB.bit.CAD = AQ_SET;              // Set PWM3B on CAD 
 
   // Active high complementary PWMs - Setup the deadband 
   EPwm3Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE; 
   EPwm3Regs.DBCTL.bit.POLSEL = /*DB_ACTV_HIC*/ DB_ACTV_HI; 
   EPwm3Regs.DBCTL.bit.IN_MODE = DBA_ALL; 
   EPwm3Regs.DBRED = EPWM3_MIN_DB; 
   EPwm3Regs.DBFED = EPWM3_MIN_DB; 
   EPwm3_DB_Direction = DB_UP; 
    
   // Interrupt where we will change the deadband 
   EPwm3Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO;       // Select INT on Zero event 
   EPwm3Regs.ETSEL.bit.INTEN = 1;                  // Enable INT 
   EPwm3Regs.ETPS.bit.INTPRD = ET_3RD;             // Generate INT on 3rd event    
} 
 
__interrupt  void cpu_timer0_isr(void) 
{ 
 //CpuTimer0.InterruptCount++; 
 static uint16_t cycleCount = 0; 
 
 //Flip the magnetic polarity 
 polarity *= -1; 
 
 //Bound current drive to between 0-100 [%] 
      if  (Current_Pct < 0.0) 
       Current_Pct = 0.0; 
      if  (Current_Pct > 100.0) 
       Current_Pct = 100.0; 
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  I_pct = Current_Pct / 100.0; //Calculated percent 
 
  // When CMPA is zeroed, PWM mis-behaves. For now give a little headroom, until 
problem solved 
  I_pct *= 0.95; //limit to 95% max 
 
  //Calculate magnitude and reversal polarity for PWMs for test angle 
  sinPHa = sin((double)(TestAngle_deg*DEG_2_RAD)) * polarity * I_pct; 
  sinPHb = sin((double)((TestAngle_deg+120)*DEG_2_RAD)) * polarity * I_pct; 
  sinPHc = sin((double)((TestAngle_deg+240)*DEG_2_RAD)) * polarity * I_pct; 
 
  //Calculate CMPA offsets to create vector magnitude for each phase 
  PHa_mag = (int16)(sinPHa * SP/2); 
  PHb_mag = (int16)(sinPHb * SP/2); 
  PHc_mag = (int16)(sinPHc * SP/2); 
 
  if  (angleOn) 
  { 
   //Set all PWMs to levels needed for magnetic test angle 
   PWM1_CMPA = SP/2 - PHa_mag; 
   PWM2_CMPA = SP/2 - PHb_mag; 
   PWM3_CMPA = SP/2 - PHc_mag; 
 
   //Toggle the Red and Blue LEDs to show an angle test in progress 
   GpioDataRegs.GPBTOGGLE.bit.GPIO34 = 1; 
   GpioDataRegs.GPBTOGGLE.bit.GPIO39 = 1; 
  } 
  else 
  { 
   //Set all PWMs to 50% which turns off current through motor since all voltages 
equal 
   PWM1_CMPA = SP/2; 
   PWM2_CMPA = SP/2; 
   PWM3_CMPA = SP/2; 
  } 
 
 
 
#if 0 
 if (tempDelta > 10){ 
  //Red LED on, blue off 
     GpioDataRegs.GPBDAT.bit.GPIO34 = 0; 
     GpioDataRegs.GPBDAT.bit.GPIO39 = 1; 
 }else if (tempDelta < -10){ 
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     GpioDataRegs.GPBDAT.bit.GPIO34 = 1; 
     GpioDataRegs.GPBDAT.bit.GPIO39 = 0; 
 }else{ 
  if (tempDelta > 0){ 
      GpioDataRegs.GPBDAT.bit.GPIO39 = 1; 
      if (tempDelta > cycleCount){ 
      GpioDataRegs.GPBDAT.bit.GPIO34 = 0; 
      }else{ 
       GpioDataRegs.GPBDAT.bit.GPIO34 = 1; 
      } 
 
  }else{ 
      GpioDataRegs.GPBDAT.bit.GPIO34 = 1; 
      if (abs(tempDelta) > cycleCount){ 
      GpioDataRegs.GPBDAT.bit.GPIO39 = 0; 
      }else{ 
       GpioDataRegs.GPBDAT.bit.GPIO39 = 1; 
      } 
  } 
 
 } 
 
#endif 
 
 cycleCount++; 
 
 if (cycleCount == 10) 
  cycleCount = 0; 
 
   // Acknowledge this interrupt to receive more interrupts from group 1 
   PieCtrlRegs.PIEACK.all = PIEACK_GROUP1; 
} 
 
// PWM on/off timer and angle advanced 
__interrupt  void cpu_timer1_isr(void) 
{ 
    CpuTimer1.InterruptCount++; 
    // The CPU acknowledges the interrupt. 
    EDIS; 
 
    if  (TestAngle_deg > maxTestAngle ) 
    { 
     TestStart = 0; //Stop testing 
     angleOn = 0;   //Turn off test angle 
 
     //Force a software 'Trip Zone' event to put PWM outputs into safe off mode 
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     EALLOW; 
     EPwm1Regs.TZFRC.bit.OST = 1; 
     EPwm2Regs.TZFRC.bit.OST = 1; 
     EPwm3Regs.TZFRC.bit.OST = 1; 
     EDIS; 
    } 
    if (TestStart) 
    { 
     if  (onOffCount%2) 
     { 
      angleOn = 0; //Turn off motor drive by setting all PWM levels to 50% 
      TestAngle_deg += angleStepSize; 
     } 
     else 
     { 
      angleOn = 1; //Turn on motor drive for motor angle 
     } 
     onOffCount++; 
    } 
} 
 
__interrupt  void epwm1_tzint_isr(void) 
{ 
   EPwm1TZIntCount++; 
 
// Leave these flags set so we only take this 
// interrupt once 
// 
// EALLOW; 
// EPwm1Regs.TZCLR.bit.OST = 1; 
// EPwm1Regs.TZCLR.bit.INT = 1; 
// EDIS; 
 
   // Acknowledge this interrupt to receive more interrupts from group 2 
   PieCtrlRegs.PIEACK.all = PIEACK_GROUP2; 
} 
 
__interrupt  void epwm2_tzint_isr(void) 
{ 
 
   EPwm2TZIntCount++; 
 
// Clear the flags - we will continue to take 
// this interrupt until the TZ pin goes high 
// 
   EALLOW; 
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   EPwm2Regs.TZCLR.bit.CBC = 1; 
   EPwm2Regs.TZCLR.bit.INT = 1; 
   EDIS; 
 
   // Acknowledge this interrupt to receive more interrupts from group 2 
   PieCtrlRegs.PIEACK.all = PIEACK_GROUP2; 
} 
 
__interrupt  void epwm3_tzint_isr(void) 
{ 
 
   EPwm3TZIntCount++; 
 
// Clear the flags - we will continue to take 
// this interrupt until the TZ pin goes high 
// 
   EALLOW; 
   EPwm3Regs.TZCLR.bit.CBC = 1; 
   EPwm3Regs.TZCLR.bit.INT = 1; 
   EDIS; 
 
   // Acknowledge this interrupt to receive more interrupts from group 2 
   PieCtrlRegs.PIEACK.all = PIEACK_GROUP2; 
} 
 
// This function will copy the specified memory contents from 
// one location to another. 
// 
// Uint16 *SourceAddr        Pointer to the first word to be moved 
//                          SourceAddr < SourceEndAddr 
// Uint16* SourceEndAddr     Pointer to the last word to be moved 
// Uint16* DestAddr          Pointer to the first destination word 
// 
// No checks are made for invalid memory locations or that the 
// end address is > then the first start address. 
 
void MemCopy(Uint16 *SourceAddr, Uint16* SourceEndAddr, Uint16* DestAddr) 
{ 
    while(SourceAddr < SourceEndAddr) 
    { 
       *DestAddr++ = *SourceAddr++; 
    } 
    return ; 
} 
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//====================================================================
======= 
// No more. 
//====================================================================
======= 
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List of Abbreviations 
 
 
 
ACIM – AC Induction motor 

A/D - Analog to Digital converter 

BEMF – Back Electro-Motive Force 

BLDC – Brushless DC (motor) 

BRBs – Broken Rotor Bars 

CTs – Current Transformers 

CTFS – Continuous-Time Fourier Series 

CTFT – Continuous-Time Fourier Transform 

DAQ Card – Data Acquisition Card 

DFT – Discrete Fourier Transform 

DTFT – Discrete-Time Fourier Transform 

DTFS – Discrete-Time Fourier Series 

DTFSC – Discrete-Time Fourier Series Coefficients 

DQ – Direct-Quadrature 

DQZ – Direct-Quadrature-Zero 

EHRPWM – Enhanced High Resolution Pulse Width Modulator 

FFT – Fast Fourier Transform 

FS – Fourier Series 

FSC - Fourier Series Coefficients 

H - Two sets of high and low side switches (in the shape of the letter H) 

IPM – Intelligent Power Module 
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J – Joule 

LP – Low Pass 

LPF - Low Pass Filter 

LR – Locked Rotor 

MB – Magic Box, also known as the ‘Offline broken rotor bar tester’ 

NEMA – National Electrical Manufacturers Association 

PCB – Printed Circuit Board 

PWM – Pulse Width Modulation 

PTs – Potential Transformers 

SD Card – Secure Digital Card 

SOC – System on a Chip (eg. AM335x) 

SPRT – Single-Phase Rotation Test 

TEFC – Totally enclosed, fan cooled 

TI - Texas Instruments 

TRM - Technical Reference Manual 

USB - Universal Serial Bus 

 


