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ABSTRACT OF DISSERTATION 

ESTIMATION AND LINEAR PREDICTION FOR REGRESSION, 

AUTOREGRESSION AND ARMA WITH INFINITE VARIANCE DATA 

This dissertation is divided into four parts, each of which con-

siders random variables from distributions with regularly varying 

tails and/or in a stable domain of attraction. Part I considers the 

existence of infinite series of an independent sequence of such ran-

dom variables and the relationship of the probability of large values 

of the serie·s to the probability of large values of · the first compo-

nent . .Part ·II applies Part I in order to provide a linear predictor 

for ARMA time series (again with regularly varying tails). This pre-

dictor is designed to minimize the probability of large prediction 

errors relative to the tails of the noise distribution. Part III 

investigates the products of independent random variables where one 

has distribution in a stable. domain of attraction and gives conditions 

for whiCh the product distribution is in a s t able domain of attraction. 

Part IV consideres estimation of the r egre s sion pa r ameter i n a model 

where the. independent variables are in a stable domain of a t traction. 

·consistency for certain M-estimators is proved. Utilizing portions 

of Part III this final part gives necessary and sufficient conditions 
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for consistency of least squares estimators and provides the asymptotic 

distribution of least squares estimators. 
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OVERVIEW 

The common theme in the four parts of this dissertation is the 

application to statistical inference of the theory of distributions 

with regularly varying tails. Parts I and III lay the groundwork for 

the specific applications in Parts II and IV and though they are written 

with the applications in mind, they consider problems which are of in-

dependent interest. Our ultimate objective was to study both estimation 

and linear prediction for autoregressive-moving average (ARMA) time 

series with regularly varying tails and as a stepping stone, estimation 

for regression. Time, however, has required us to consider estimation 

for the regression model only. 
00 

Part I studies infinite series of the form Y = . E1p .W. where the 
J= J J 

{W. } is an iid sequence of random variables with regularly varying 
J 

tails. We consider conditions for the existence of Y and relate the 

probability of large values of Y to the tail of w1 . This relationship 

turns out to be similar to a common metric for ~ sequence spaces. 
a 

Capitalizing on this, we define projection operators for the linear 

space generated by {W.}. Part I also shows the ARMA time series can 
J 

be expressed as infinite order moving average sequences. 

The results of the first part are applied in Part II to ARMA pro-

cesses with regularly varying tails. Using the metric defined in Part 

I, we consider linear prediction by minimizing the probability of large 

prediction errors. Prediction for the AR(p) and ARMA (1,1) models is 
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investigated thoroughly. The procedure is similar to least squares 

prediction and comparisons are made. 

Part III presents theory used partially in the final part. In 

Part III we consider conditions for which the distribution of the pro-

duct of independent random variables is in a stable domain of attraction 

when at least one has distribution in a stable domain of attraction. 

The theory is extended to include bivariate distributions of the com-

ponent-wise product of two independent pairs of random variables. 

Estimation of the regression parameter appears in Part IV. Our 

regression model assumes the independent variable is in a stable domain 

of attraction. Using results in the literature, we consider consistency 

of M-estimators. Least squares estimation, however, is given the fullest 

treatment and we provide necessary and sufficient conditions for the 

least squares estimator to be weakly consistent. Limit distributions 

are described for the least squares· estimator and we demonstrate the 

startling result that the limit can be either normal or the ratio of 

two non-normal stables, depending on the distribution of the independent 

variable. 



PART I: INFINITE SERIES OF RANDOM 

VARIABLES WITH REGULARLY VARYING TAILS 

Summary. We give conditions for the convergence of an infinite series 

of independent and identically distributed random variables, whose 

distribution has regularly varying tails. More importantly , we show 

that the distribution of such a series is tail equivalent to the 

distribution of its components. This enables us to define a quantity, 

which we call dispersion, measuring the relative thickness of the tails 

and thereby to compare different infinite series. The dispersion may 

be related to the ~ - metric for sequence spaces and this leads to a a 

notion of linear projection which is useful for prediction of time 

series. Since time _series prediction is our ultimate objective, we 

also discuss the notions of stationarity , causality and invertibility 

for ARMA processes which are driven by random variables with regularly 

varying tails. 

3 
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1. Introduction 
co 

We ~re concerned with random variables of the form Y L P . T..J. 
j=l J J 

where {W.} is a sequence of independent random variables, all from a 
J 

distribution F* with regularly varying tails. Let F be the distribu-

tion of IW. I and define F(t) = 1-F(t) = P[lw. l>t]. We say that F(t) 
. J J 

is regularly varying with exponent -a (Fs RV ) i f for every s >O - a 

lim F (st) 
t-+eo F(t) 

-a s 

In fact, if the limit exists at all, then it will be of the form 

s-a for some a>O and the convergence will be uniform on [s0 ,co) for any 

- -a+s s0>0. Furthermore, for any s>O there exists c>O such that F(t)~ct 

for all t~s0 . (See Feller II for a discussion of more general regularly 

varying functions.) The parameter a we call the tail index of F. 

Distributions with index a have moments up to (and perhaps including) 

order a, but higher moments do not exist. In particular, if a <2 then 

the variance does not exist. More precisely, Feller (1971), p. 283, 

proves the following relationship between F and its truncated moments. 

Lemma 1.1 Suppose lw I has distribution F* with F = P [ 1\.J I >t] s RV . -a 

Define my(t) = EI I wiYl fw l ~t] and, when it exists, uy(t) = E[ lwiYl iWI>t]. 

Then for y~a, t -ym ( t) s RV 
Y -a 

lim uy(t) 
and -

t-+eo t YF ( t) 

1 . m ( t) 
and lm _Y'-----

a 
a-y 

t-+eo t YF ( t) 
a 

= ---, and when u (t)<co, y-a Y 

II 
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Random variables with regularly varying tails exhibit a striking 

relationship between the distributions of sums and of maxima. The 

following is a modification of a theorem in Feller (1971), p. 278. 

Lemma 1.2 Suppose w1 ,w2, ... ,Wn are independent and identically distri-

buted. Let F be the distribution of lw.l and suppose 

P1 , ... ,p , define G(t) = P ~I ~.W.I>j and 

FsRV -a For real 

numbers 

ifCt) 

n . 1 J J J= 

p r sup I p .W .I >tl. Then GERV ' HERV and 
Ll~2_n J J J -a -a 

lim G(t) --= lim ii(t) --= 
t~ F(t) t~ F(t) 

Proof: The result, if true for n=2, extends by induction. We therefore 

consider only the case n=2. First, 

lim H(t) = 1_:: (F( t/ I P1 1 )+F( t/ I P= I )-F(t/ I P1 1 )F(t/ I P2 1 )\ 

t+oo F(t) t F(t) ) 

= IP1 1a+IP 2 1a+O 

by the regular variation principle. 

Second, by an application of the theorem in Feller (1971), p. 278, 

lim G(t) < limP[ IP1Wll+lp2W21>t] 

t~ F(t) - t~ F(t) 

lim 
t~ 

F(t/IP1 i)+F(t/IP 2 i) 

F(t) 

(1.1) 
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However, for any o> 0 

And from this we calculate 

-a. I I a. -a. I Ia. (l+o) p1 +Cl+o) P 2 . (1. 2) 

Since o is arbitrary, then (1.2) combined with (1.1) gives us the result.# 

Lemma 1.2 tells us in particular, how to compare the tail of the 

distribution of a sum with the tail of the distribution of each component. 

We will extend this result to infinite series in Section 2. \fuenever 

two distributions with regularly varying tails (say F1 and F2) satisfy 

lim Fl (t) 
exists and is nonzero, we say that F1 and F2 are tail equiva-

t-+<X> F 2 Ct) 

lent. The limiting ratio gives us a convenient means to compare the 

probability of large values of random variables from the two distribu-

tions. In particular, we may be interested in the probability that 

00 

IY1 1 I L P1 .w .1 is large relative to the probability that 
j=l J J 

00 

IY2 1 = I L p 2 .w.j is large. For example, Y1 and Y2 might be the pre-
j=l J J 

diction errors from alternate methods of predicting a time series and we 

may prefer to choose the predictor which has the least chance of large 

errors (see Part II). 
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The limiting ratio of probabilities for Y 

00 

00 

L P.W. and w1 will 
j=l J J 

turn out to be j~liPjla, a quantity we will call the dispersion of Y. 

When comparing variables on the linear space generated by a given 

sequence {W.}, the dispersion is a useful measure of distance. This 
J 

leads to the concept of minimum dispersion projection for variables in 

this linear space. Section 3 investigates this notion. 

In Section 4, we discuss the existence of a stationary ARMA time 

series driven by regular varying tail noise and conditions for causality 

and invertibility of such a time series. 
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2. Existence and Tail ·Behavior of Infinite Series 

We start with an application of Kolrnogorov's three series theorem 

to series of regularly varying tail variables. 

Theorem 2.1 Suppose {W.} are iid F* and F(t) = P[lw.l>t]sRV . 
J J -a. 

Then Y 

i) 

or 

n 
iim [ p.W. exists almost surely if either 
n-+a> j=l J J 

00 

0 I IP.I <oo for some o<a., o<l 
j=l J 

00 

ii) EWj exists and equals 0, and j~l1Pjl 0 
< 00 

for some o<a.,o~2 (or o=l if a.=l). 

Proof: 
00 

i) The series Y I p.W. is absolutely convergent if and only if 
j=l J J 

for all v>O 

00 00 

I P [ I P . w . I >v J 
j=l J J 

and I E [1 P . W. 11 1 W 1 < J = I I P . I m1 (vI I P . I ) < oo · · . 1 J J p, . v . 1 J J J= J J - J= 

(The third series is not necessary to prove absolute convergence.) 

Since by Lemma 2.1, 



lim F(t) 
-1 t-roo t m

1 
( t) 

9 

[

1-a - if a<l a -

= 0 otherwise 

it suffices to show the second series converges. 

-1 If a<l then t m
1 

(t)sRV_a and so there exists a c>O such that for 

any v -1 -o I I s>supjp. I' s ml (s)~cs ' if o<a. If a>l then ml(t)+E wj and so 
. J 
J 

-1 -8 we can use . the bounds m1 (s)~cs if 8<1. In either case, 

00 00 

I I P . I m1 c vI I P . I) ~ cv -o L: I P . 18 < oo. 

j=l J J j=l J 

Thus, condition i) is sufficient for absolute convergence of Y. 

ii) If EW.=O (in which case a>l), then 
J -

l{wj1 1wj l~t]l = l{-wj1 lw1 1>JI 
~ E[iwj lllwj I>J 

For Y to exist, it suffices to prove that 

00 00 

L P [ I P · W · I >v] = L F (vI I P . I ) < oo 
j=l J J j=l J 

and 

I EGp.W.)211 w I< J ·-1 J J p. . v J- J J -

00 

L p:m2(viiP. I) < oo 
j=l J J 
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From Lemma 2.1 

lim F (t) a-1 = --t-+OO -1 u1 (t) a t 

lim FCt) r-a if a<2 
-2 = a t-+OO m2(t) t 0 otherwise 

Thus if a=l, convergence of the second series is sufficient and if 

a>l, convergence of the third is sufficient. For a=l, since u1 (t)~ 

v -1 -1 there exists c such that for all s > I I , s u1 (s) < cs so that -sup p. 
j J 

00 00 

and hence condition ii) guarantees that Y exists. 

-2 -o For a>l, we can find c such that s m2(s) 2_CS where o<a, 

o.2_2, so that 

00 00 

L I P · 12m2 (vI I P .I) 
j=l Jl J 

2-0 , I I a < cu L p. 
j=l J 

and again condition ii) is sufficient. 
00 

We remark that when L p,W. is absolutely convergent then 
j=l J J 

suplp.W. I exists almost surely, also. 
j J J 

00 

II 

Sometimes the condition ~ I p. I a< oo is sufficient for the existence 
j=l J 

00 

of ~ p.W .. For an example, assume theW. are symmetric about 0 and 
j =1 J J J 

FsRV , O<a<2. In this case it is sufficient to show -a 



1.1 

00 

I F(v/lp. I) < oo for all u>O. 
j=l J 

If F satisfies lim taF(t) < oo, then there exists c such that for 
t-+oo 

-a 
< cs Thus 

00 00 

I F (vI I P . I ) 2. cv-a I I P . I a < oo 
j=l J j=l J 

00 

and hence I p.W. exists almost surely. 
j=l J J 

On the other hand, a counterexample is the following. Suppose 

{W.} are distributed so that for t large enough, P[ lw. l>t] = F(t) 
J J 

-a = t lnt. 
00 

I p~ < oo, but with j 0 chosen large enough, 
j=2 J 

00 

I F(l/p.) 
j=j J 

0 

00 

1 I ln(j(lnj) 2
) 

a j =j 0 j ( lnj) 2 

Therefore I p.W. almost surely does not exist. 
j=2 J J 

Then 

Lemma 2.3 Suppose F* is a probability measure for W with F the 

distribution of I~TI and F(t) = P[ IWI>t]sRV ,a> 0. -a 
00 

{p.} satisfies I IP. 1

8 < oo for some o<a. Then 
J j=l J 

and 

00 

i) lim jLF<tiiPjl) 

ii) 

t-+oo 

lim 
t-+oo 

F(t) 

00 

1- II F(t/lp.l) 
j=l J 

F Ct) 

00 

Suppose also that 
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Proof: 

i) Let m = sup I P. I· 
j J 

There exists c>O, t 0 >0 such that for all 

t>t0 , y > 1/m. 

F(ty) 
F (t) 

1 Therefore --
F(t) 

Since 

-a 
~cy 

00 00 

I F(t/ I P.I)~ I IP.I 8 .:; oo 
j=l J j=l J 

Then by dominated convergence the result i) holds . 

00 

ii) By i) L F(t/lp. I) < oo for all t>O and sup F(t/lp. I)~ as t~ . 
j=l J j J 

We can therefore exchange F with lnF to get 
00 00 r F (t/lp . l) . I F ( t/ I p .I ) 

lim j=l J lim j=l J 
1 -t-+<x> 00 t-+oo 00 

1 ,... 11 F ( t/ I p. I) 
j=l J 

I ln F ( t/ I P . I ) 
j=l J 

With i), this implies ii). 

The main result of this section is next. 

Theorem 2. 4 Suppose {W. } 'V iid F* where F ( t) = P [ lw. I >t] t:RV and suppose 
J J -a 

00 00 

{pJ.} satisfy I IP. l0<oo for some o<a,a~l. 
j=l J 

Let G ( t) = P [ I I p . W • I > t ] and 
j=l J J 

H(t) 

Proof: 

P [sup I p . W. I >t] . 
j J J 

Then lim G ( t) = 1 im H ( t) = ~ I I a. 
t -+oo t-+oo- L p. 

F(t) F(t) j=l J 
oo n oo 

Set Y = I p.W., Y = L p .W., z1 = L lp.W.I and Z = sup iP.W.I. 
j=l J J n j=l J J j=l J J oo j J J 

By Theorem 2.1, z1 exists almost surely and hence Z
00 

and Y do also. 
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00 

Since H(t) IT (1-F(t/IP.I), Lemma 2.3 immediately gives the second 
j=l J 

conclusion. 

To prove the first, we let G be the distribution of Y . Then 
n n 

fo-r any n~ 1, s>O, 

P [ I Y I > t J ~ P [ I Y n I > c1 +s) t , I Y-Y n I < s t J 

= G ( ( 1 +s ) t ) P [ I Y-Y I < s t ] . 
n n 

Thus, 

G ((l+s)t) 
lim G(t) > lim _n ____ P[ IY-Y I <st] 
t~ F(t.) - t~ F(t) n 

where the limit is obtained by using Lemma 1.2 and the fact that FsRV -a 

Since both n and s are arbitrary, 

~: _G_(t_) ~ I IP .Ia 
F(t) j=l J 

The alternate inequality is first proven for a<l. Define 

~(A)= Ee-Aiwjl. When a<l, then by Feller (1971), p. 447, 

lim 1 - <f>(l/t) f(l+a) 
t~ F(T) 

(2.1) 

(2.2) 

This indicates that 1- <t> (1/ t) is a regularly varying distribution tail, 

so that Lemma 2.2 applies. 

1- IT ~CIP.I/t) 
lim j=l J 
t~ 1- <t> (1/t) (2.3) 
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00 

-1-Z Of course, Ee 1 IT ¢(1-IP. ,). Let Hl be the distribution of zl. 
j=l J 

Applying the theorem in Feller again, H1 E RV -a and 
00 

1- IT <t><IP.I/t) 
lim j=l J 
t-+<o 

Hl (t) 
f(l+a) 

Combining (2.2), (2.3) and (2.4) we have 

lim Hl(t) 

t-+<o F c t) 

Since IYI ~ zl' then 

which, together with (2.1), proves the result for a<l. 

00 

When a~ 1, then a = I I P . I < oo ·• 

j=l J 
Let y > a and p . = 1.1 P . I . 

J a J 

Holder's inequality, with fp .} as the probability measure, 
. J 

00 

zl = a I I w. I p. 
j=l J J 

~ a( I I W . I Y P ·) 
1 I Y 

. 1 J J J-

(2.4) 

By 

= al-1/y( I lw.IYIP.I)l/y (2.5) 
j=l J J 

The distribution of lw. ly is F(tl/y) and has index a/y<l. Letting 
J 

00 

V = I IW. IYIP. I and relying on the result for index less than 1, 
j=l J J 



lim P[V>t] 
t-roo F(tl/y) 

15 

From (2.5) and (2.6) we can calculate, 

lim P IV > a l-y s J 
s-roo F(sl/y) 

( 

oo ~ a-a/y oo I 
= L IP.I L IP.Ia Y. 

J'=l J J j=l . 

Since y > a is arbitrary, 

!!: _1 2 I I P • I a . 
-if (t) ( oo ) 

F(t) j=l J 

(2.6) 

( 2. 7) 

This is still not strong enough to prove our result. However, 

with Y = 
n 

n 
L P.W. and 

j=l J J 
E: < ~' 

+ P[IY I> E:t, IY-Y I> E:t]. n n 

G ((1-s)t) + G ((1-s)t) + G (st)G (st) (2.8) n -n n -n 

where G is the distribution of Y-Y which is independent of Y . -n n' n 

By Lemma 1.2 and the inequality (2.7), respectively, 



and 

G (t) lim _n __ 
t-rro F C t) 

16 

_ c (t) _ P[. I /Pjwj/ > tl 
lim -n < lim --= ...... J =_n_+_l _____ J_ 
t-+«> F c t) - t-+«> F C t) 

~( I IP . I)a.· 
j=n+l J 

Using these in (2.8), 

l im G(t) --< t-+«> - -
F (t) 

(1-s)-a. I IP. Ia. + (1-s)- a. ( I IP. ) a. 
j=l J j=n+l J 

Since n and s are arbitrary, then 

--- 00 

1 im ..Q.ill < , I I a. 
t~- - L p, 

F(t) j=l J 

and with (2.1) we have our result for a.>l. II 

00 

The quantity L IP.Ia. we call the dispersion of Y (disp(Y)). This 
j=l J 

theorem indicates that disp(Y) is a measure of the probability of large 

values of Y. If {W,} are symmetric stable (a.) in distribution, then Y 
J 

will also be symmetric stable (a.) and (disp(Y))l/a. will be the ratio of 

Y's scale parameter to W 's scale. Section 3 demonstrates how dispersion 
j 

may be used as a measure of distance between random variables which are 

infinite series in {W.}. 
J 
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Corollary 2.5 Let Z = [ I I P. W .I yll/y for Y ~ o, then 
y j=l J J J 

Proof: lw. ly has distribution tail F (t) = F(tl/y)ERV I . For 
J Y -a Y 

o1 = 0/y, 01 21 and 01 < a/y and I ( fp.fY)
01 

< oo. Thus Z exists 
j=l J 00 y 

almost surely. Let H be the distribution of (Z )y L IP.W. IY. By 
y y j =1 J J 

the theorem, 

Thus 

ii (t) 
lim _Y..___ 

t-+oo F < t) 
y 

P[Z >t] 
lim Y 
t-+oo P r I w I > t J 

00 

If 
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3. Dispersion as ~Metric 

In this section we define a metric for infinite series of regularly 

varying variables and a corresponding projection operator. We also elab-

orate on the nature of the projection operator. As before, the sequence 

{W.} will be independent and identically distributed, F(t) = P[IW.I>t] 
J J 

is the tail of lw.l and regularly varying with exponent -a. Recall that 
J co 

we have defined the dispersion of Y = L p,W. by 
j=l J J 

co 

disp(Y) 

Let o>O satisfy o<q,a~l. Define now the (random) linear space for 

given sequence {W.}, 
J 

co co 

S = {Y L p,W. such that J·=LliPJ.I
0
. < oo}. 

j=l J J 

We remark that in fact we need only work with a space of equivalence 

classes which are well defined by the distribution structure, but S is 
co 00 

a convenient means to express this. 

define 

if a ~ 1 
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Lemma 3.1 d is a metric on S. 

Proof: The only condition not obvious is that d(Y1 ,Y 2) = 0 if and only 

if Y1=Y 2 almost surely. Clearly, if d(Y1 ,Y2) = 0 then plj=p 2j for all 

j and hence 

= lim I p 1 . w. - I P 2 . w. · ( n n ) 
n-+oo j=l J J j=l J J 

00 

0 

On the other hand, if Y1-Y 2 0 almost surely, then by Theorem 2.4, 

0 
limP[ IY1-Y21 > t] 
t ~ p [ I·H 1 I > t] 

00 

Therefore, we see that dispersion is not only a measure of tail 

thickness, but can also be used to define distance between two random 

II 

variables inS. We remark that if, as in the example given in Section 2, 
00 

j~liPjla < oo is sufficient for existence, then the use of 0 <a is not 

required. 

The obvious next question concerns the nature of convergence in this 

metric. We answer this partially. 

Lemma 3.2 Convergence on S with the metric d implies convergence in ~ 0 00 

Proof: . Since o<a. then E lw. I 0 < oo. 
J 

EIYI 0 
2 JI IP .w.l~ 

~=1 J J J 
00 

Ejw 1

8 I IP.I 8 
1 j=l J 

Furthermore, for any Y = I p ,W., 
j=l J J 

since o < 1 (3.1) 
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00 00 

Therefore, for Y 
n 

L p .W., disp(Y )~implies L IP . 1 8~ 
j =l nJ J n j =l n] 

which in turn implies ElY 1 8~. # n 

We recognize that when a=2, S is a subspace of a Hilbert space. In 

this case and when a>2 so that variances are finite, it is usually most 

convenient to consider a Hilbert space setting. However, we are primar-

ily interested in cases where a<2. To consider projection operators in 

S, let xl, ... , xn ES, then for any YsS define the projection operator 

p by 
X 

P Y {Y = a'X such that disp(Y-Y) is minimum}. 
K 

00 

Theorem 3.3 Assume a>l and suppose X. 
l 

L 7T •• W. ES, where for each m~n, 
. 1 lJ J J= 

00 

[n .. ] n m is of full rank n. Suppose also that Y 
l] i=l j=l 

L p .w. ES. 
j=l J J 

Then P Y has a unique element. Furthermore, if X(m) 
X i 

m 
Ln .. W., then 

. 1 l] J 

y p y 
X 

lim 
m~ 

Proof: We start by assuming X. 
l 

is finite. We wish to minimize 

h . h .th 1 f II were n. lS t e J co umn o = 
-J 

full row rank n. Define 

m 
L n .. w., Y 

j=l l] J 

[n .. ] n m 
lJ i=l j=l 

J= 

m 
L P . \~. where n<m and m 

j=l J J 

(3.2) 

We have assumed II has 
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D. n {aER such that a'rr - -j J 

and g. (a) = I P . -a' TI. I a.. J - J - -J 

For aiD. (using lx]y 
- J 

and 

a g. (a) 
1 -
a a 

2 a g. (a) 
J -

aaa' 

a. 'IT. [a' TI. -p.] -] - -J J 
a.-1 

(3.3) 

Since a.>l and rr.rr~ is nonnegative definite then g. is convex off 
JJ J 

of D.. In fact, g. is minimized on D. so that gJ. is everywhere convex. J . J J 
n We can actually go a step further and say that for ~l' ~2 ER, AE(O,l), 

with equality iff a 1'rr. = a 2'rr .. That is,g. is strictly convex except . --] --J J 

along lines orthogonal torr .. Equality cannot hold for every j, since 
-J 

rr is full rank, so that h 
m 
I g. must be strictly convex. Furthermore, 

j=l J 

as max Ia. I+OO, h(~)~. Thus h must have a unique minimum. 
l.s_j .s_n J 

The argument that h has a unique minimum holds even when the series 

00 

are infinite, that is, when Y I p,W., X. 
j=l J J 1. 

00 

L TI •• W. and 
. 1 l.J J J= 
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Let ~ be the unique minimum of h(~) and set (for m~n) 

m 
h (a) = m- . L IP.-~'n. Ia with unique minimum a . 

j=l J J -m 
Suppose for some subse-

quence {a }, max Ia . 1~. Then 
-~ l.::J~n ~J 

lim h (a ) > lim h (a ) oo 

n~ ~ -mk n~ n 111k 

But for any m, 

h (a ) in£ h (a) m -m m-a -
< in£ h(~) 

a 

h(~). (3.4) 

Thus, the sequence {a } must be compact and every subsequence must have -m 

a convergent subsequence. Suppose a +a1 . Then from (3.4) 
~-

But since h th and the functions are all continuous, convergence is m 

locally uniform, by an application of Dini's Theorem. This means 

lim h (a ) = h(a1) 
k~ ~~ -

which implies h(~1 ) = h(~) and hence ~l ~· Thus~ 

a' X -=o lim ~X= lim PX(m)Y. 
m~ m~ 

lim a and -m 
m~ 

II 
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To actually calculate a is not easy unless either m=n 
-m 

(n)' 1 (a = err )- _p) or a=2 (a 
-n -m 

procedure would be 

a -m,l 

-where t ~m) (a) 
J -

Even though the mapping Y~Y PXY is unique it will not be a 

linear mapping (except when a=2 or m=n). (See the example at the end 

of the section.) 

Theorem 3.4 Assume that X andY are as in Theorem 3.3, except assume 

a<l. 

of E 

Proof: 

To minimize disp(Y-~'!), it suffices to consider ~£E, the closure 

n {a£R :a' rr .=p. for at least n values of J· } . - - -J J 

As before, we seek to minimize 

(3.5) 

Define again D. = {a£Rn:a'rr. = P . } and g.(a) = j.a'rr -p. ja. The matrix J - - -J J J - - -j J 
of second derivatives given in (3. 3) indicate that at every aiD., gJ. 

- J 

is concave since a<l. However, g. is minimized on D .. Since 
J J 

h (m) = 
m m L g. is continuous everywhere, concave at all ai u D. and 

j=l J - j=l J 

infinite at infinity, then h(m) must therefore be minimized on ~D .• 
j=l J 

(This is not to say that points of minimum are exclusively in this set.) 



24 

Now consider the set 

E = {asRn:a''TT. = p, for at least n value's of js{l,2, ... ,m}}. 
m- --J J 

Since II (m) ['TT .. ] n m has rank n, then D.(') E is non empty. 
l.J i=l j=l J m 

Suppose a1 sD. and a 2sD ~nE . From (3. 5) we clearly have 
- J - J · m 

h(m)(a) > h(m)(a ). Thus h(m) will be minimized on the set -1 - -2 
m 

U (D. nE ) = E . . 1 J m m 
J= 

Suppose a s E minimizes h (m) 
-m m 

m 
I g.. To minimize h 

j=l J 

00 

I g, we 
j=l J 

consider the sequence {a }. As in Theorem 3.3, this sequence must be 
-m 

compact, and hence there exists a subsequence a +~sE where 
~ 

E lim Em. That ~ will minimize h is also true, and this is argued 
IIt+OO 

as in the previous theorem. 

The point of minimum a for h(m) will not necessarily be unique, 
-m 

except when m=n. (m)' -1 In that case, ; = (IT ) .e_ and the mapping Y+PXY 

is linear. When m=n+l, however, such a linear mapping can still be 

defined, even when there is not a unique minimum. 

Theorem 3.5 Suppose Y 

X. 
1. 

n+l 
I '1T • • W. and II 

. 1 l.J J J= 

00 

I p,W.sS, a~l and suppose, for l~i~n, 
j=l J J 

['TT .. ] has rank n. Then there exists a linear 
l.J 

" 
mapping Y+Y into span {X1 , ... ' X} which minimizes disp(Y-Y). 

n 

II 
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co 

L p.W. so that Y 
j=n+2 J J 

We wish to minimize 

n+l 
disp(Z) + L IP.-~'_2!:..1a.· 

j=l J J 

Since a.~l, then according to Theorem 3.4 a solution is given by~ 

satisfying a'~.= p. for at least n values of j s {1, 2, ... , n+l}. If 
- -J J 

n £ = IT'~ for some ~sR , then Y = Z+~ and Lemma 2.1 applies. In this 

case, Y = ~ is the unique solution and the mapping is linear. 

On the other hand, if £ is not in the row space of IT, then it 

suffices to consider a such that a'~.= p. for exactly n values of j. - - -J J 

Suppose k is the one value for which ~'~k f pk. Define TI_k and2_k 

b TI d . 1 . h kth 1 ( ) d kth 1 to e an £, respectlve y, wlt co umn ~k an e ement 

removed. Then a -1 
(TI~k) .e__k and 

min h(~) 
a 

n+l 
min . I 1 p . -~, ~. 1 a. +dis p c z) 
~ j=l J J 

By inverting Q [TI'£] we can find the (n+l,k) elament of Q-l 

Note that this factors into a part depending only on £. and a part 

depending only on k. 

(3.6) 

(3.7) 
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Define jO = max{k.2_n+l:ldet(II_k)-1
1 is minimum. Then from (3.6) and 

(3.7) wehave 

min h(~) 
a 

I d~~~ci~~ ) I a +disp(Z) 
0 

I P .. -p ' . (II . ) -lii . I a +dis p (Z) • 
J. 0 - - J 0 - J 0 -J 0 

And a point of minimum for h is ~ If we define P to 

-1 be the matrix (II'. ) where a column of zeroes is squeezed in to make -Jo 
. th 1 h a new Jo co umn, t en ~ P£_. 

By this definition, Y = (P£.)'! defines a linear mapping on Sand 

YsPXY, so that it is a minimum dispersion predictor for Y. If 

The following example illustrates that PX is not necessarily linear. 

a 1/2 1 3/2 

PX(Wl) 0 0 2-12 --X 4 

PX(W2) 0 0 1/3 X 

PX(Wl+W2) 1/2 X 1/2 X 1/2 X 
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4. ARMA Processes With Regularly Varying Tails 

We now look specifically at autoregressive - moving average pro-
00 

cesses driven by a sequence {W.} , independent and of identical, 
J j=-oo 

regularly varying distribution F*. As before, let 

F( t) = P [I W .I >t] sRV , cPO. 
J -a. 

Theorem 4.1 There exists a stationary sequence {X } 
n 

00 

satisfying 
n=-oo 

(4.1) x -~ 1x 1- ... -¢pX = w +e 1w 1+ ... +e w n n- n-p n n- q n-q 

for all n, if <P(z) = l-¢ 1z- ... -¢pzpi: 0 for all complex z such that 

00 

I zl 1. Furthermore, suppose the sequence {Tn} 
n=-oo 

and generating 

q n l+e 1 z+ ... +e z 
L T z satisfy T(z) q 

n=-oo n l~z- ... -~zp 
- 4l, -~r 

00 

function T(z) f 0 for 

00 

1-s<lzl<l+s, for some s>O. Then the infinite series ' \ rx ·~ is almost L T nOn 
n=-oo 

surely absolutely convergent and has regularly varying tails equivalent 

to F. 

Proof. Since <P(z) # 0 for I zl 

{a.} such that L(z) 
J 

00 

L a. zj 
j=-oo J 

a.-rp1a. 1- ... - ¢pa. J J- J-p 

1, there exists ssCO,l) and a sequence 

1 ¢(z) for complex z such that 

=Ll 
if j=/:0 

(4.2) 
if j=O 
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co 
By Theorem 2.1, L a .W . is almost surely absolutely c·onvergent for 

j=-co J n-] 

all n. 
co 

Let rr. o1+8 1a. 1+ ... +8 a. and X L rr .W . • Then X exists 
J J- q J-q n j=-co J n-J n 

as well and {X } is stationary. Furthermore 
n 

co 
x = L a . (W . +8 1w 1 . + ... +8 w . ) . n ._ J n-J n- -J q n-q-J ]--co 

Using (4.2), we show that {X} satisfies (4.1). 
n 

cc . 

X -~ 1X 1- ... -~ X n n- p n-p L (o.-~ 1o. 1- ... -~ a. )(W . 
·- J J- p J-p n-J ]--CO 

+81W +l .+ ... +8 W .) n -J q n-q-J 

w +81w 1+ ... +8 w n n- q n-q 

Now suppose T(z) is as in the statement of the theorem. To show 

co 
that L T X is almost surely absolutely convergent, we need to show 

n n n=-co 

that ~ I ~ T 7T ·I 0 
<co for some o<a., o<l. It suffices to show that . L L n n-J -J=-oo n=-oo 

I I T rr ·I decreases at least geometrically as lj 1~. But this is 
n=-oo n n-J 

indeed the case, since 

q 1+81 z+ ... +8 z 
T(z) g # 0 

p 
1-~1 z- ... -~pz 

for any complex z in an annulus containing the unit circle. 

This theorem, of course, is proven almost identically to the 

analogous theorem for finite variance processes. The same is true of 



29 

the next theorem. We first provide a couple of defini.tions. A station-

ary sequence {X } satisfying (4.1) is said to be causal if for some 
n 

co co 
sequence {rr.} and some o<a, o<l, X \ rr.W . almost surely and 

J - n L J n-J co j=O j=O . co 
L lrr.l 0<co. {X} is said to be invertible if for some sequence{~.} 

j=O J n J j=O 
co co 

and some o<a, o~l, w 
n 

8 L ~.X . almost surely and L 1~. I <co. 
j=O J n-J j=O J 

Theorem 4.2 Suppose {X } is a stationary sequence satisfying (4.1) 
n 

where ~(z) = l-¢1z- ... -¢pzp and G(z) = l+S 1z+ ... +Sqzq do not have common 

roots. Then 

i) {X } is causal if and only if ~(z) # 0 for every complex z 
n 

ii) 

such that I z 1~1. 

{X } is invertible if and only if e(z) # 0 for every complex 
n 

z such that lzl~l. 

Proof: Let e =0 for j>q and ¢.=0 for j>p, and e0=¢0=1. 
j J 

co co 
i) Suppose {X } is causal, that is, X 

n n 
\ W d \ I rr . 1° <co L rrj n-j an L 

j=l j=l J 

for some o<a, o<l. Define IT(z) L rr.zj and {o.} so that 
j=O J J 

co co 
L: (z) ~(z)IT(z) Clearly I lo.l 0<co and I lo.-e.l 0<co. 

j=O J j=O J J 

Therefore 

I e.w =X -¢1x 1- ... -¢ x . 0 J n. n n- p n-p I o .w . . 0 J n-J J= J= J 

and hence 0 disp I (o.-S.)W . 
J J n-J j=O 

co 
L I o. -e. 18 • This implies 

j=O J J 

L:(z)=G(z). Since IT(z) has no poles when lzl~l and G(z) has no roots in 

e (z) h common with ~(z), then ~(z) = IT(z) as no roots in lz ~~1. 
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Now suppose 4>(z)#O for lzl_21. Then there exists <;;<1 such that the 

co 
roots of 4>(z) are in lzl><;;-1 . Let IT(z) \ IT.zj G(z) 

L = <P(z)" j=O J 
For some k>O, 

co 
lrr.l<k<;;j for all j and L lrr.l 0<co for any o>O. Therefore, the series 

J - j=O J 

y = 
n 

co 
L rr.W . is almost surely absolutely summable for every n. 

. 0 J n-J J= 
Since 

rr.-¢1rr. 1- .•. -¢ rr. =6. for all j>O, it follows that {Y} satisfies J J- p J-p J n 
co . co 

(4.1). Defining ~(z) L a. zJ = - 1- tJ:len L I a. I 0 <co and 
j=O J 4>(z)' =0 J 

rr. = a .+e1 a. 1+ ... +e a. Thus, J J J- q J-q 

ii) 

co 

co 
X = n 

\ a.(w .+e1w 1 .+ .•. +e w .) 
j~O J n-J n- -J p n-p-J 

co 
L rrJ.Wn_J. 

j=O 

y . 
n 

Suppose {X } is invertible, so that 
n 

w = 
n 

co 
I w.x . 

. 0 J n-J J= 
where 

I lw. 18<co for some o<a, o<l. 
j=O J 

co . 
Define ~(z) L w.zJ and 

j=O J 

E(z) L a. zj 
j=O J 

G(z)'¥(z) .• 
co 

Then L I a .1 ° <co. Us.ing absolute convergence 
j=O J 

to rearrange series, 

co 
w -¢ 1w 1- ... - ¢ w L w . c x . -¢ 1x 1 . - . . . -<P· x . ) n n- p n-p j=O J n-J n- -J p n-p-J 

co 
L w.(W .+elw 1 .+ ... +6 w .) . J n-J n- -J q n-q-J J=O 
co 
I a .w .. . 0 J n-J J= 
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00 

This implies L(z) ¢(z), because 0 disp I (a.-¢.)W . 
. 0 J J n-J J= 

00 

I la.-¢.j 0 • Since lf!(z) has no poles in jzj..::_l and since ¢(z) and 
j=O J J 

8(z) have no common roots, then 8(z) = ¢(z) has no roots in lzl..::_l. 
'¥(z) 

Finally, suppose 8(z)#O in lzl~l, and define L(z) = etz)· The 

coefficients ' {a.} of L(z) will decrease at least as fast as a geometric 
J 

00 

sequence, so I Ia. l 0
<oo for any o>O. Then o.+8la. 1+ ... +8 a. =0, j#O. 

j =0 J J J- q J -q 

So, for any n, 

w = 
n 

00 

I a.(w .+81w 1 .+ ... +8 w .) 
j=O J n-J n- -J q n-q-J 

00 

I a.(X .-¢1x · 1 .- ... -¢ .X .) 
j=O J n-J n- -J p n-p-J 

00 

I l)J.X ., 
j=O J n-J 

where l)J. = a.-¢1a. 1- ... -¢ a . . J J J- p J-p II 

If the sequence {X } satisfies (4.1) and is stationary, causal, then n 

the expression X 
n 

disp(x ) 
n 

00 

I n.W . gives us the dispersion of X . . 0 J n-J n J= 

And in particular, if Xn+l 

00 

xn+l I n . W n+ 1_ . , then 
j=-oo J J 
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00 

disp(Xn+l-Xn+l) 1 + L In +l .-(a1n .+ ... +a n1 .) Ia . n -J n-J n -J J=O 

If a1 , ... , a are chosen so that this error dispersion is minimized, . n 

then Xn+l will be an element in the projection of Xn+l onto span 

... ' X }, as described in Section 2. 
n 

Part II discusses in detail 

the prediction problem for ARMA processes with regularly varying tails. 



PART II: LINEAR PREDICTION OF 

ARMA PROCESSES WITH INFINITE VARIANCES 

Summary To predict unobserved values of a linear process with infinite 

variance, we introduce a linear predictor which minimizes the chance of 

large prediction errors. The procedure corresponds to minimizing, in a 

linear space setting, an ~ (O<a<2) distance between predicted and a 

actual values, and is the natural procedure when the process is driven 

by symmetric stable noise. We derive explicitly the best linear pre-

dictor of Xn+l in terms of x1 , ... , Xn for the process AR¥A (1,1) and 

for the process AR(p). For higher order processes, general analytic 

expressions are cumbersome, but we indicate how predictors can be de-

termined numerically. Numerical comparisons with the least squares 

predictor accompany the report. 

33 
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1. Introduction 
00 

To define the problem we express the ARMA ( p, .q) process {X } as n -oo 

the stationary solution of 

X -<P1X 1- ... -<j> X = W +e1w 1+ ••• +6 W n n- p n-p n n- q n-q 

where {W } are independent and identically distributed and 
n 

00 

(1.1) 

(1.2) 

For purposes of this investigation, the residuals {W } will have 
n n=-00 

distribution which satisfies for all x>O 

P [ lw I >xt] 
lim PTfwn I >t] 
t-+oo n 

x-a a>O. (1. 3) 

Such distributions are said to have regularly varying tails and the 

parameter a is called the tail index. When a<2, the variance does not 

exist. We also assume throughout the main body of this paper that W 
n 

has distribution symmetic about zero. This provides a precise notion 

of location of a distribution. 

Part I of the thesis discusses infinite series of regularly varying 

tailed random variables and demonstrates that a stationary solution to 

(1.1) does exist when (1.2) holds. This solution satisfies 



X 
n 

00 

n 
L: 1T .w. 

n-J J j=-oo 
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where the {n . } . 0 are determined (as in the usual manner for finite 
J J= 

variance ARMA processes) from the coefficients ¢1 , ... , ¢P,e1 , ... ,eq in 

(1.1). 

We desire to predict the future values of the process, Xn+l' 

Xn+2 , ... based on the observed data x1 , x2 , ... ," Xn. Since the process 

is linear, we consider only linear predictors. The predictor for a 

random variable Y will be denoted Y =~'~where a' = (a1 , ... , an) and 

X' (X , X l , . . . , x1 ) . -n n n-

Traditionally, linear prediction for a stationary ARMA (p,q) pro-

cess (satisfying (1.1) and (1.2)) has relied on the least squares pro-

cedure (see e.g. Fuller (1976) and Box and Jenkins (1976)). When the 

process has finite variance, the least squares predictor minimizes the 

mean squared prediction error and when the process is Gaussian the pro-

cedure has maximum concentration. If the variance is infinite, however, 

least squares may be ineffective and perhaps even inappropriate. A 

different measure of prediction error becomes necessary, although we 

may be forced to relinquish the elegant Hilbert space results of the 

least squares predictor. Other possibilities spring to mind, for exam-

ple minimum mean absolute deviation prediction or a pseudo-spectral 

approach as that studied by Cambanis and Soltani (1982). Most such 

measures are extremely unwieldy in practice, however, and require pre-

cise knowledge of the noise distribuiton. One would prefer a predictor 

which can be calculated with only minimal knowledge of the. noise distri-

bution. In addition, infinite variance processes can have quite 
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extraordinary, outlying values and this suggests minimizing the 

probability that a large error occurs in prediction. 

Fortunately just such a predictor exists for symmetric stable pro-

cesses. This predictor is obtained by use of the "natural" criterion -

minimizing the spread of the prediction error distribution. Stuck 

(1978) has quite successfully utilized this criterion, which he calls 

minimum dispersion, for Kalman filtering problems with symmetric stable 

processes. Recognizing that for any sequence {W.} of independent 
J 00 

identically symmetric stable (a) random variables, y = I p .w. 
j=l J J 

symmetric stable (a) with relative scale( I IP.I~l/a, i.e., 

Y ~ ( • I I pl W .)l/a, Stuck defined the di~::rs:on of Y as 
J =-co J 

00 

disp(Y) 

is 

and 

also 

( 1. 4) 

This extends the usual notion of dispersion (variance) for Gaussian 

variables. Regardless of the distribution of W , if it satisfies (1.3) 
n 

co 

then (1.4) will define the dispersion of Y I P . W . for us . 
j=-co J J 

X n 

Writing the ARMA process {X } in its moving average form n 

n 
L n . W. and letting Y 

j=-co n-J J 
co 

error dispersion linear predictor of Y L p .W. to be that Y which 
j =-co J J 

minimizes (over all choices of a
1

, ... ,an) 

00 

disp(Y-Y) \ I P . - ( aln . + ... +a nl . ) I a . 
. L J n-J n -J J=-oo 

(1. 5) 
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In the special case where Y=Xn+k we minimize 

n a 
1+ L In+ .-(a1n .+ ... +a n1 .) I . . n k-J n-J n -J J=-00 

(1.6) 

For a linear process driven by symmetric stable noise, the pre-

diction error for any linear predictor also has symmetric stable distri-

bution. The minimum dispersion prediction error has the distribution 

with the smallest scale and hence is optimal. The procedure is easily 

extended to more general linear processes, since it requires only knowl-

edge of the coefficients of the process and of the tail index a of the 

noise distribution. Furthermore, by use of the next lemma we can 

relate dispersion to the probability of large values. The corollary to 

this is that among linear predictors, the minimum dispersion predictor 

is optimal in the sense that it minimizes the probability of large 

prediction errors. 

Lemma 1.1 Suppose {W.} are independent and identically distributed and 
J 

satisfy (1.3) and suppose 

o<l. Then 

lim P [ Y >t] 
t-+oJ p [ w > t ] 

00 
y I p .w. 

j=-oo J J 

00 
disp(Y) 

Proof: See Part I, Theorem 2.4. 

00 
where I I P. I 

8 
<oo for some o<a, 

j=-00 J 

Since the coefficients {n.} for an ARMA process are geometrically 
J A 

decreasing in magnitude, this lemma indicates that disp(Xn+k-Xn+k) is 

roughly proportional to the probability of a large prediction error. 



We recognize disp(Y-Y) 
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in (1.4) as being related to an ~ type of a 

distance between Y andY on the linear space generated by {W }. In case 
n 

a=2, it is the usual Euclidean squared distance. In that case, y = p y 
n 

where P is a linear projection mapping Y form a Hilbert space into span 
n 

{Xn, ... , X1 }, the space generated by linear combinations of Xn' ... , x1 . 

With a<2, P is still an operator but not necessarily a linear operator 
n 

(See Part I, Section 3 for a discussion of some of the linear space 

properties of P .) 
n 

We shall see in Sections 2 and 3 that minimum dispersion linear pre-

dictors can be found quite explicitly for autoregressive processes and 

for the mixed ARMA (1,1) process. In both cases, the prediction operator, 

Pn is unique and linear on span {X1 ,x2 , ... }. For higher order moving 

average and mixed processes, however, one cannot always give a single 

general expression which is acceptable for all values of the parameters. 

For particular values, determination of the predictor is straightforward. 

Section 4 discusses the higher order processes and in Section 5 we 

compare numerically the minimum dispersion predictor with the least 

squares predictor. 
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2. Minimum Dispersion Prediction for Autoregressive Processes 

For a purely autoregressive process, the difference equation (1.1) 

reduces to 

X 
n 

¢1X 1+ ... +¢ X +W n- p n-p n (2.1) 

where {W } are independent, identically and symmetrically distributed 
n 

and satisfy (1.3). 
00 

Assumption (1.2) guarantees that X n I ~.w . where the~. are 
. 0 J n-J J J= 

uniquely determined by 

(2.2) 

Furthermore (see Part, I, Section 4) the sequence {X } is stationary n 

and has symmetric marginal distributions with regularly varying tails 

with index a and dispersion 

disp(X ) 
n 

00 

+anXl) also has tail index a. We seek to find an a such that 

disp(X +k-a'X ) is minimized. First we establish a useful lemma. n - -n. 

Lemma 2.1 Let s* be the class of random variables of the form 
00 

(2. 3) 

y = Z+m'X for some mER n and Z L p.W. such that Z exists. Then for - -n. j=n+l J J 

{a'X : disp(Y-a'X ) is minimum} consists of 
- n - n 
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exactly one variable. · For Y = Z+~'~, this unique variable is Y 

Furthermore, the mapping Y~Y is linear on S*. 

~· 

Proof: The dispersion of the prediction error Y-~'~ is 

disp(Y-a'X) 
- n 

oo n 
I IPJ. Ia + I j (al-aOl)n .+ ... +(a -aO )nl . Ia . n-J n n -J j=n+l J=-oo 

00 

> I IP .ja. 
j=n+l J 

with equality if and only if~=~· Thus the minimum dispersion linear 

predictor is Y = a'X as asserted. The linearity of the mapping .::o==n 
Y = Z+a'X ~ Y = a'X is apparent from the form of Y. .::o==n -=o=-:n II 

Corollary 2.2 For the process (2.1), provided n~p, there exists a unique 

minimum dispersion linear predictor xn+k for xn+k (k~l) in terms of 

x1 , ... , Xn. This predictor satisfies the recursive relationship 

(2.4) 

with initial conditions X. 
J 

X. for l...:S.j...::.n. 
J 

Proof. We observe that each of x1 ,x2 , ... ,Xn,Xn+l··· belong to the class 

S* defined in Lemma 2.1. Since 
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and Wn+k = 0 by Lemma 2.1, then the linearity of the prediction mapping 

gives the relationship (2.4). 

Remarks 

1. The minimum dispersion predictor is exactly the same as the 
'V 

least squares predictor Xn+k for an autoregressive process. This is 

not the case for more general ARMA processes. 

2. The residuals Hn+l' Wn+2 ' ... are predicted with zeroes, and 

for p<j_2n, then 

w. = x.-*1x. 1- ... -~ x. , J J J- p J-p 

but the linearity principle does not apply to w1 , ... ,Wp. In fact, if 

a_2l, the set P W. = {a'X :disp(W.-a'X) is minimum} may not consist of 
n] --n J--n 

only one element for j_2p. 
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3.0 Prediction of the ARMA(l,l) Process 

In this section we are concerned with the stationary process {X } n 

defined by 

X -¢X n n-1 W +8W l n n- (3.1) 

where l¢1<1 and lel<l and {W }are iid, satisfying (1.3). We find it 
n 

necessary to distinguish between the cases a<l and a>l. For both cases, 

however, we shall need the following lemma. 

Lemma 3.1 If a>O and a>O, then h(x) 

value at x , where m 

X m 

b 

0 

b 
l+al/a-1 

if a.::_l, 

if a.::_l, 

if ci>l 

and x is unique if a#l or a>l. m 

The minimum value of h is 

h(x ) 
m 

a<l 

a>l 

a ,l xl a +I x-b I a has its minimum 

if a<l 

if a>l. 
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Proof: Define the function [x]y sgn(x) lxly· Suppose b>O. Then for 

x#O, x#b 

h' (x) a.-1 a.-1 a(a[x] +(x-b] ) 

h"(x) I I a.-2 I I a.-2 a(a-l)(a x + x-b ). 

So for x<O ' · h' (x) <0 and for x>b, h' (x) >0. Thus h is minimized in [0, b]. 

If a.2_1, then h"(x).2_0, so the minimum must be either at 0 or at b. 

It is easy to see that h(b).2_h(O) if and only if a<l. 

If a>l, then h' is continuous on [O,b] and h" is positive. Thus 

h'(x) = 0 gives us the point of minimum. 
m 

h(x ) m 

ab 

The proof is similar if b<O. 

a-1 On [ 0 , b ] , h ' ( x) = a (ax 

Also 

We make use of this lemma first to deal with the case when a<l. 

Theorem 3.2 For the ARMA(l,l) process (3.1) with a..:_l, :. a minimum disper-

sion linear predictor for Xn+k (k~l) based on~= (Xn, ... ,x1), is 

xn+k = ~·~ where 
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, l~j~n-1 

(3.2) 

If jp+8ja ~ l-j¢ja, the predictor is unique. 

The minimum value of the error dispersion is 

Proof: Since j¢j<l, we have 

00 

\ k-1 X. = W.+(¢+8) L ¢ W. k 
J J ksl J-

for all j. (3.3) 

n k-1 If msR and if we define m0=-¢ , then from (3.3) we can write for 

k-1 . 
m'X -X = -w +k- L (¢+8)¢k-J-~ +. - --n n+k n . 1 n J J= 

n ~ j-1 · · 1] + L m.+(¢+8) L m.¢]-1- W +1-· 
j=l J i=O J n J 

Consequently, the dispersion is 



disp(m'X -X +k) - -n n 
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(3.4) 

where c 
j i j-i 

m.~ , j~O (and m. 
l J 

c.-¢c. ,j>l). 
J J-1 -

It suffices, then, 
i=O 

to minimize 

h(_c) (3.5) 

and this will be done recursively, minimizing first with respect to en' 

then c 1 and so on. n-

Assume first that I~+Sia ~ 1-l~la. By Lemma 3.1, for fixed 

cn-l' ... , c1 , h(~) is minimized by choosing cn=-8cn_1 . Under this 

condition (3.5) becomes 

min h(_£) 
c 

n 

Since lel<l (and hence lelal~+ela < 1-l~la), then h(£) is minimized 

further by choosing c = -ec again using Lemma 3.1. The resul-n-1 n-2' 

ting value for h (£) will have a similar form so that continuing 

recursively, choose c. - Sc. 1 , 1_2_j_2_n. Since k-1 we can co=mo=-~ ' J J-

then c. = -(-S)j~k-l and the minimizing vector m is~' as given in 
J 

(3.2). The minimum value of disp(X +k-a'X) is n - n 
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The second case is where l~+ela > 1-l~la. The argument is the 

same, except that first we choose c =0, according to Lemma 3.1, to 
n 

minimize (3.5). In this case, 

min h(.£) 
c 
n 

(3.6) 

Since lel<l, then (3.5) is further minimized by setting c.= -ec. 1 , 
J J-

l~j~n-1, as done previously. Again using c0 = -~k-l and m. = c.-~c. 1 , 
J J ]-

we have~' as in (3.2), is the minimizing vector m. The minimum error 

dispersion is 

I I aCk-1) 
l+l~+ela l- P +min h(.£) 

1-l~la 

· I I a Ck-1). 
= l+l~+ela 1- p + lelnal~la(k-1). 

1-l ~ Ia 

Finally, the choice of a is unique, according to the lemma, except 

In this case, the final coefficient a may be 
n 

chosen in either of the two ways given in (3.2). 

Remarks 

1. Except possibly for the final term, this predictor is the same 

as the "truncated" version of Xn+k" That is, if we write Xn+k = Wn+k 

+1/J1Xn+k-l+1/J2Xn+k- 2+ ... , for some sequence {1/Jj },. then the truncated 
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predictor presumes all unobserved values are zero, X~+k 

2. The special case 8=0 is the AR(l) process already treated in 

Section 2. We find as before that for n~l, k~l, the minimum dispersion 

predictor of Xn+k is Xn+k = ¢kXn and the error dispersion is 

A more interesting special case is the process MA(l) obtained when 
n . 

¢=0. For this case, Xn+l - L (-8)JX +1 ., xn+k = 0 for k>2. The 
j=O n -J 

error dispersion for Xn+l is 1+ I 8 I (n+ l) a d f X (k 2) · · an or n+k ~ , lt lS 

3. Although the prediction is not necessarily unique, it can be 

defined in such a way as to correspond to a linear mapping Y+Y or span 

{X1 ,x2 , ... }. To see this, we need only to observe that for each j~l 

where W* = 
0 

j-1 . 
X. w .+(¢+8) L ¢l-~ .. + ¢j-l(¢+8)W() 

J J i=l J-l 

00 

L ¢iW ., and apply Theorem 3.5 from Part I. 
i=O -l 

this allows us to write 

and this agrees with Theorem 3.2. 

In particular, 
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4. We can also obtain predictors recursively using Xj(k) = PkXj, 

the predictor for xj, based on~' ... 'xi. The simple formula is 

with 

X n+l(n) ¢X + 8(X C l)-x ), n n n- n 

otherwise 

As we shall see, the linearity property and the recursion formula will 

extend at least partially to the ARMA(l,l) model with a>l. They do not 

extend, however, to more general ARMA models. 

Theorem 3.3 For the ARMA(l,l) process (3.1) with a>l, there is a unique 
"' 

minimum dispersion linear predictor Xn+k = ~·~ for Xn+k" The vector a 

is given by 

a. 
J 

¢k-l(-8)j-l (¢+8) (1-n+~)-~nn-j(n¢+8) 
1-n+~(l-nn) 

(3. 7) 

where n The minimum error dispersion 

is 

disp(X +k-a'X ) n - -n 

Proof: As in the proof of Theorem 3.2, we minimize 

h(c) 
n 
\ lc.+ 8 Ia a-ll Ia L c. 1 + ~ c ' j=l J J- n 

(3.8) 



49 

first with respect to en' then ~~1 and so on, subject to the condition 

_t!-k-1_ co = 't' 

Using Lemma (3.1) (now with a>l), 

with corresponding value for (3.8) 

This is further minimized when 

and then 

min h (s) 
cn'cn-1 

Continuing the stepwise minimization we find that 

Since c0 

c. 
J 

1-n+~(l-nn-j) -ec. 1 1 
J- 1-n+~(l-nn-j+ ) 

k-1 -¢ , we deduce that 

c. 
J 

-¢k-l(-S)j 1-n+~(l-nn-j) 
1-n+~ (1-nn) 

(3.9) 

From this, and the relations aj = cj - ¢cj-l' we get~ satisfying (3. 7) 

as the unique solution to minimizing disp(X +k- a'X ). The minimum n - -n. 



so 

error dispersion, from the expressions (3.4), (3.8) and (3.9), is 

disp(X k-a'X ) n+ - -n 

( )

a-1 
n 

+ ~n (1-n) 
1-n+~(l-nn) 

Remarks 

1. k For the special case of an AR(l) process, S=n=O, a 1=~ and 

a.=O, as found earlier in Corollary 2.2. The minimum error dispersion 
J 

1-l~lak is · 
1-l~la 

2. For the MA(l) case, ~=0 and n=~=lela/a-l. To predict Xn+l' 

a. = 
J 

1 n+l-j 
- (-e)j _-n-'-----

1 n+l -n 

( 

n+l ) a.-l 
1 + n (!-n) 

1-n 

l~j~n, and the minimum error dispersion is 

For k~2, Xn+k=O and the error dispersion is 

II 

3. Here again we get a partial linearity property for the operator, 

namely that for Y 

y 

This can be determined by minimizing h(,£) in (3.8), now subject to 

k-1 co= -(£1+~£2+ ... +~ £k). 

4. As in the a<l case, the minimum dispersion predictor can be 

obtained recursively. Let Xj(k) PkXj. Then by a straightforward 
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v 
calculation, Xn+l(n) 

n-1 " n 
<j>X + 8-- (X ( l)-X ) , where v l+n+~(l-n ) , n \) n n- n n n 

0. 

5. Minimizing (3.8) with a=2 gives the least squares predictor for Xn+k' 

which is ~ k = b 'X where 

:~ = ~k-~-B)j-1(~+B) (1:::::~:-j) , p =~' 1+¢8 

and the error dispersion of this predictor, for any a, is 

'V 
The least squares predictor xn+l(n) is recursively calculated by 

'V 
X n+l(n) 

l-p2 82(n-l) 'V 'V 

<j>Xn + e l-p2
8

2n (Xn(n-1)- Xn)' Xl(O) 0. (See also 

Brockwell and Davis (1983) for a general discussion of least squares 

prediction). 
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4. Prediction for the MA(q) and ARMA(p,q) Models 

Assume the process {X } satisfies X 
n n 

W +e 1w 1+ ... +6 W where n n- q n-q 

(1+6 1z+ ... +6qzq) ~ 0 for complex I zl~l. In order to predict Xn+l' we 

need to minimize 

( 4 .1) 

where a =-1 and a.=O for j<O or j>n. According to Part I, Theorem 3.4, 
0 J 

when a<l it suffices to consider only asRn which satisfy 

a.+a. 18l+ ... +a. e 
J J- J-q q 

0 (4.2) 

for at least n of the n+q equations, l~j~n+q. The set of choices is 

thus limited to ( n+q) 'b '1' · q pOSSl l ltleS. In Theorem 3.2 we have already 

established which choice is optimal for the MA(l) model. Exactly one 

choice was the best for all values of e1 in the parameter space, je 1 j<l . 

If q>l, however, the optimal formula depends on the particular region 

of the parameter space. We look specifically at the MA(2) model. 

Lemma 4.1 Suppose {X } is an MA(2) process with a<l. Define 
n 

zj-zj 
1 2 if zl~z2 zl-z2 

s. 
J 

. j-1 
J zl if zl=z2 



53 

Then the minimum dispersion predictor for Xn+l lies in the set of the 

(n;z) choices for ~·!u where l~j 1 <j 2~n+2 and 

a. 
J 

-sj+l 

j-jl+l 
-8 2 

0 

The dispersion of the prediction error is 

disp(X +1-a'X ) n - -n 1 + (4.3) 

Proof: We recognize that the S. 's can be determined recursively by 
J 

From 

these we can easily verify that (using a0=-l, a_1=an+l=an+2 = 0 and 

fixing j
1
,j 2) 

a.+81a. 1+8 2a. 2 J J- J-

( n+2) Thus for each of the n 

0 

s. . 
J 2-Jl 

j 2-j 1 
-82 

for j=j 1 

for j=j 2 . 

choices of jl and j 2 , ~satisfies n of 

the n+2 equations in (4.2). It follows that a minimum predictor is of 

this form. The error dispersion is 
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disp(X +1-a'X ) n - -n 

1 + + 

To actually determine the predictor, we need to minimize (4.3) 

h ( n+Z) · b 1 h · f · · over t e n poss1 e c o1ces o J 1 ,J 2 . 

For a more general MA(q) process, with a>l, the minimum disper-

sion predictor is obtained by solving for asRn to satisfy (using 

a-1 I 
1
a-l [x] = sgn(x) x ) 

a-1 a-1 [a.+6 1a. 1+ ... +6 a. J +6 1 [a.+1+6 1a.+ ... +6 a. +l] + J J- q J -q J J q J -q 

a-1 ... +6 [a . + + ... +6 a . J q J q q J 0 

This can be accomplished recursively in the following manner: Let 

0 1 

II 

and 

.e..= 

1 

6 
q 

6 
q 

0 . • • 0 

6 . • • o 
q 

0 ... 0] 

6 
q 

(nxn+q) matrix 

(n+q) vector. 

Set~ (II II')-1II.e_. (~is the least squares predictor.) Next 

define .Q,. (a) 
J -

, a-1 Ia II.-p.J --J J 
a-1 [- 6. +al 6. 1+ ..• +a 6. J 1_2j_2n+2. J J- q J-q 

II 
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The recursion is then given by 

The ARMA (l,q) process can be handled similarly to the ~~(q) pro-

cess. Let n. j . j-1 
~ +~ 81+ ... +~8. 1+8 .. The process can be expressed 

by 

where \..J* 

w3 ' -q 

where c. 
J 

X 
n 

J J- J 

'IT 

W + W + + W + n+q-l w* n> 1 'TTl 1 •.. 'IT 2 2 1/ ' n n- n+q- - q ( 1-l ~ I a) . a 

00 

(l-j¢ja)l/a I ¢jW . d W and is independent of w
2 

, 
j=O 1-q-J 1-q -q 

To predict Xn+l we need to minimize 

disp(X +1-a'X ) n - n 

~ ¢kz. k'a. = c.-¢c. 1 , j>O and c.=O, j<O. Except for the 
k=O J- J J J- · - J 

last term this (as a function of~) is similar to (4.1). The minimiza-

tion is thus done with respect to~ and then a is obtained from c. 

The ARMA(l,q) minimization involves a finite sum. This is not true 

for the more general ARMA(p,q) process. By defining the c.'s to satisfy 
J 

a.= c.-¢ c. - ... -¢c. , ' j>O, c =0 for j<O, then to predict Xn+l in an J J 1 J-l p J-p - j 

ARMA(p,q) process, we minimize 



disp(X +1-a'X ) n - -n 
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00 

1 + I lc.+8 1c. 1+ ... +8 c. Ia 
j=l J J- q J-q 

n 
1 + I I c . +8 lc . 1+ ... +8 c . I a 

j=l J J- q J-q 

00 

+ L la.lc + ... +a. ella 
j=l J n Jn 

where a .. are chosen so that c +.+8 1c +' 1+ ... +8 c +' = a. 1c + Jl n J n J- q n J-q J n 

... +a. c 1 (n>max(p,q+l)). The sum can be truncated after an appropriate 
Jn 

number of terms to facilitate the minimization. Alternatively, we write 

X 
n 

* xn+l 

w + 
n 

n 

00 

L ~J.Xn-j for some sequence {~J.}, and predict Xn+l with 
j=l 

I ~.X +l .. This is the so-called truncation predictor which 
. 1 J n -J J= 

is often used in place of least squares when the model is of large 

order. 
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5. Numerical Comparison of Minimum Dispersion and Least Squares 

Predictors 

In this section we compare the minimum dispersion predictor (MDP) 
'V 

Xn+l with the least squares predictor (LSP) Xn+l' in the special case of 

the ARMA(l,l) process. We recall here the error dispersions of these 

predictors. 

For MDP, 
l8lnamin(l , T) if a<l 

={:: 
where 

l 8 I naT ( l-n ) if a>l 1/a-1 n 1-n+T ( 1-rt ) 

T = 

For LSP, y LS 

' n 

1 + 

¢+8 
1+¢8 and T is as above. 

From these expressions it is quite clear that whenever 18/naT is 

small, then y18-yMD will be also. Thus LSP, which has the larger 

dispersion, will be nearly equivalent to MDP when either 

i) I 8 I is small 

ii) I ¢+8 I is small 

iii) n is large 

iv) a is large. 
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Table 5.1 gives a comparison of dispersions for several models and 

we see that for a=l.S there is little difference in the two dispersions 

for these models. With a=O.S, however, the difference y 15-yMD is more 

noticeable, especially for the larger value of e. For a=l.O, the dif-

ference is substantial only for the higher value of 8 and the smaller 

sample size. 

The general conclusion we can make then, is that for ARMA(l,l) 

minimum dispersion is preferable to least squares when a~l and especially 

when there is a large moving average parameter and the number of obser-

vations is relatively small. The fact that for a~l, the minimum 

dispersion predictor is easy to calculate makes it more appealing. 

In order to make a more careful comparison,we provide the results 

of a simulation for three of the models in which y15 was somewhat larger 

than yMD. Tables 5.2, 5.3 and 5.4 provide the coefficients for the 
~ 

predictors, Xn+l = a1Xn+ ... +anXl and Xn+l = blXn+ ... +bnXl, for each of 

these models. In each simulation, 2500 or 1000 independent series were 

generated. The noise terms were simulated by Wj = [tan(n[UjJl/a/2)] a 

where {U.} were independent psuedo-uniform random variables. 
J 

Let FMD and F15 be the empirical distributions for the absolute 

MDP errors (MDE) and the absolute LSP errors (LSE). Each table gives 

the value ~nx vs. -ln(l-FMD(x)) and vs. -ln(l-F15 (x)). If graphed, 
-a these would be approximately straight lines, because 1-FMD(x) ~ YMDx L(x) 

-a and l-F15 Cx) ~ y15x L(x) where FMD and F15 are the true absolute error 

distributions and L(x) is a slowly varying function (in this example 

L(x)+constant). The difference between the two lines estimates 

ln(y15) - ln(yMD). We remark that in the model with a=l.O, the data are 
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Cauchy. For Cauchy data (and whenever the data are symmetric stable), 

1-FHS (x) < l-F18 (x) for all x>O. 

Since both Xn+l and ~n+l were obtained for each series, we can 

make a pairwise comparison. Each of the three tables includes a 

~l xn+l-xn_ 1 1) frequency table for ln A • Also included is the percentage 
I xn+l-xn+ll 

of series for which the least squares error (LSE) exceeded the minimum 

dispersion error (MSE) in absolute value. For these models, at least, 

LSE exceeded MSE more often than not. 
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Table 5.1 A Comparison of Error Dispersion in 

a 

.so 

.so 

.so 

.50 

.50 

.so 

.50 

.50 

.so 

.so 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.50 
1.50 
1.SO 
1.50 
1.50 
1.50 
1.50 
1.SO 
1.SO 
1.50 

.50 

.SQ 

.so 

.50 

.50 

.50 

.so 

.so 

.50 

.50 
1 .00 
1 .00 
1.00 
1.00 
1.00 

Predicting X 1 from an ARMA(l,l) Process n+ 

•¢ e MDP DISP 

.7000 .5000 1.03125 

.3000 .5000 1.03125 
0.0000 .5000 1.02210 
-.3000 .5000 1.03090 
-.7000 .5000 1.03125 

.7000 .8000 1.32768 

.3000 .8000 1.32768 
0.0000 .8000 1.29309 
-.3000 .8000 1.32768 
-.7000 .8000 1.32768 

.7000 .sooo 1.00098 

.3000 .5000 1.00098 
0.0000 .5000 1.00049 
-.3000 .5000 1.00028 
-.7000 .5000 1.00065 

.7000 .8000 1.10737 

.3000 .8000 1.10737 
0.0000 .8000 1.08590 
-.3000 .8000 1.07670 
-.7000 .8000 1.03579 

.7000 .5000 1.00000 

.3000 .5000 1.00001 
0.0000 .5000 1..00001 
-.3000 .5000 1.00000 
-.7000 .5000 1.00001 

.7000 .8000 1.00009 

.3000 .8000 1.00202 
0.0000 .8000 1.00600 
-.3000 .8000 1.00797 
-.7000 .8000 1.00262 

.7000 .5000 1.00017 

.3000 .5000 1.00017 
0.0000 .5000 1.00012 
-.3000 .sooo 1.00017 
-.7000 .5000 1.00017 

.7000 .8000 1.06146 

.3000 .8000 1.06146 
0.0000 .8000 1.05498 
-.3000 .8000 1.06146 
-.7000 .8000 1.06146 

.7000 .5000 1.00000 

.3000 .5000 1.00000 
0.0000 .5000 1.00000 
-.3000 .5000 1.00000 
-.7000 .5000 1.00000 

LSP DISP 

1.17558 
1.10667 
1.06389 
1.05109 
1.10895 
2.88886 
2.46812 
2.18187 
2.21258 
1.90262 
1.00198 
1.00128 
1.00073 
1.00034 
1.00073 
1.20216 
1.17329 
1.14239 
1.11876 
1.04288 
1.00000 
1.00001 
1.00001 
1.00000 
1.00001 
1.00010 
1.00218 
1.006S3 
1.00870 
1.00274 
1.00098 
1.00060 
1.00036 
1.00029 
1.00061 
1.44183 
1.35663 
1.29S27 
1.28806 
1.19039 
1.00000 
1.00000 
1.00000 
1.0000.0 
1 .00000 
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Table 5.1 (Continued) 

Size a ¢ e MDP DISP LSP DISP 

25 1 .00 .7000 .8000 1 .00378 1.00769 
25 1.00 .3000 .8000 1.00378 1.00660 
25 1.00 0.0000 .8000 1.00302 1.00542 
25 1.00 -.3000 .8000 1.00270 1.00446 
25 1.00 -.7000 .8000 1.00126 1.00154 
25 1.50 .7000 .5000 1.00000 1.00000 
25 1.50 .3000 .5000 1.00000 1.00000 
25 1.50 0.0000 . . 5000 1.00000 1.00000 
25 1.50 -.3000 .5000 1.00000 1.00000 
25 1.50 -.7000 .5000 1.00000 1.00000 
25 1.50 .7000 .8000 1.00000 1.00000 
25 1.50 .3000 .8000 1.00001 1.00001 
25 1.50 0.0000 .8000 1.00004 1.00004 
25 1.50 -.3000 .8000 1.00005 1.00006 
25 1.50 -.7000 .8000 1.00002 1.00002 
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Table 5.2 

2500 Series Of Size 10, Predicting Observation 11 
a. = 0.50 ¢ = .000 e = .800 
MDP Error Dispersion Is 1.29309 
LSP Error Dispersion Is 2.18187 

Coefficients MDP LSP 

j a. b. 
J J 

1 .80000 .79665 
2 -.64000 -.63314 
3 .51200 .50129 
4 -.40960 -.39450 
5 .32768 .30743 
6 -.26214 -.23574 
7 .20972 .17583 
8 -.16777 -.12471 
9 .13422 .07983 

10 -.10737 -.03894 

Log Cumulative Tail Distribution For Errors 

lnx -ln(l-FMD(x)) -ln(l-FLS(x)) 

0.00 .1999 .0934 
.20 .2337 .1112 
.40 .2687 .1319 
.60 .3153 .1550 
.80 .3613 .1873 

1.00 .4210 .2226 
1.20 .4 742 .2593 
1.40 .5447 .3054 
1.60 .6221 .3510 
1.80 .6988 .4017 
2.00 .7696 .4532 
2.20 .8468 .5189 
2.40 .9314 .5770 
2.60 1.0217 .6394 
2.80 1.1062 .7060 
3.00 1.2066 .7739 
3.20 1.2845 .8496 
3.40 1.3799 .9153 
3.60 1.4908 .9921 
3.80 1.5896 1.0871 
4.00 1.6671 1.1533 
4.20 1.7373 1.2174 
4 .40 1.8351 1.3034 
4.60 1.9296 1.3847 
4.80 2.0129 1.4490 
5.00 2.1103 1.5437 
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Table 5.2 (Continued) 

Frequency Table for log(LSE/MDE) 

Interval Frequency 

-oo ' -1.00 361 
-1.00 - .60 143 
- .60 - .12 235 
- .12 .00 197 

.oo ' .12 308 

.12 ' .60 274 

.60 ' 1.00 157 
1.00 ' 

CXl 825 

LSE Exceeded MDE 62.56% of the Time 
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Table 5.3 

2500 Series Of Size 10, Predicting Observation 11 
a. = 1.00 ¢ = .700 8 = .800 
MDP Error Dispersion Is 1.10737 
LSP Error Dispersion Is 1.20216 

Coefficients MDP LSP 

j a. b. 
J J 

1 1.50000 1.49515 
2 -1.20000 -1.18667 
3 .96000 .93752 
4 - .76800 - .73524 
5 . 61440 .56973 
6 - .49152 - .43270 
7 .39322 .31731 
8 - .31457 - .21778 
9 .25166 .12914 

10 - .09395 - .04696 

Log Cumulative Tail Distribution For Errors 

lnx 

0.00 
.20 
.40 
.60 
.80 

1.00 
1.20 
1.40 
1.60 
1.80 
2.00 
2.20 
2.40 
2.60 
2.80 
3.00 
3.20 
3.40 
3.60 
3.80 
4.00 
4.20 
4.40 
4.60 
4.80 
5.00 

A 

-ln(l-FMD(x)) 

.6440 

.7722 

.9243 
1.0883 
1.2888 
1.5105 
1.7016 
1.8708 
2.0875 
2.2595 
2.4865 
2.7001 
2.8268 
3.0619 
3.2289 
3.4420 
3.6194 
3.8167 
3.9528 
4.0628 
4.3901 
4.7330 
4.9908 
5.2591 
5.2591 
5.2591 

A 

-ln(l-FLS(x)) 

.5855 

.7248 

.8685 
1.0106 
1.1738 
1.3720 
1.5799 
1.7510 
1.9296 
2.1136 
2.3351 
2.5158 
2.6536 
2.8682 
3.0791 
3. 2702. 
3.5066 
3.6497 
3.7297 
3.9120 
4.2687 
4.5282 
4.7795 
5.0515 
5.0515 
5.0515 
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Table 5.3 (Continued) 

Frequency Table for log(LSE/MDE) 

Interval Frequency 

-= ' -1.00 195 
-1.00 - .60 130 

.60 - .12 421 

.12 ' .00 441 

.00 ' .12 449 

.12 ' .60 456 

.60 ' 1.00 121 
1.00 00 287 

LSE Exceeded MDE 52.52% of the Time 
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Table 5.4 

1000 Series Of Size 25, Predicting Observation 26 
a. = 0.50 <P = .700 8 = .800 
MDP Error Dispersion Is 1 . 06146 
LSP Error Dispersion Is 1.44183 

Coefficients MDP LSP 

j a. b. 
J J 

1 1.50000 1 . 49999 
2 -1.20000 - 1 .19998 
3 . 96000 .95997 
4 - . 768-00 -.767 96 
5 .61440 .61435 
6 -.49152 -.49145 
7 .39322 .39312 
8 -.31457 -.31445 
9 .25166 .25151 

10 -.20133 -.20114 
11 . 16106 .16082 
12 - . 12885 -.12855 . 
13 . 10308 . 10271 
14 -. 08246 -.08200 
15 . 06597 . 06539 
16 - .05278 - .. 05205 
17 . 04222 . 0413i 
18 -. 03378 -.03263 
19 .02702 .02559 
20 -. 02162 - . 01983 
21 .01729 .01506 
22 -.01384 -.01105 
23 .01107 . 00758 
24 - . 00885 - . 00450 
25 . 00331 . 00163 

Log Cumulative Tail Distribution For Errors 
" lnx -ln(l-FMD(x)) -1n(1-FLS(x)) 

0 . 00 .2485 .1744 
. 20 . 3133 . 2046 
.40 .3725 . 2370 
. 60 . 4170 .2758 
.80 .4878 .3313 

1.00 .5516 .3667 
1 . 20 .6070 . 4277 
1 . 40 .6911 .4829 
1 . 60 . 7508 .5534 
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Table 5.4 (Continued) 

Log Cumulative Tail Distribution For Errors (Continued) 

1.80 
2.00 
2.20 
2.40 
2.60 
2.80 
3.00 
3.20 
3.40 
3.60 
3.80 
4.00 
4.20 
4.40 
4.60 
4.80 
5.00 

.8142 

.8892 

.9597 
1.0441 
1.1363 
1.2483 
1.3626 
1.4567 
1.5233 
1.5896 
1.6766 
1.7487 
1.8452 
1.9310 
2.0174 
2.0956 
2.1982 

.6015 

.6655 

.7340 

.8074 

.9039 
1.0189 
1.1270 
1.2174 
1.2874 
1.3704 
1.4355 
1.4917 
1.5654 
1.6766 
1.7487 
1.8202 
1.9173 

Frequency Table for log(LSE/MDE) 

Interval Frequency 

-00 
' -1.00 51 

-1.00 - .60 33 
- .60 - .12 100 
- .12 .00 205 

.00 ' .12 243 

.12 ' .60 108 

.60 ' 1.00 56 
1.00 00 148 

LSE Exceeded MDE 61.10% of the Time 



PART III: PRODUCTS OF INDEPENDENT 

RANDOM VARIABLES AND DOMAINS OF ATTRACTION 

Summary. We consider sufficient conditions for the distribution of the 

product of two independent random variables to be in the domain of at-

traction of a stable law. We also consider conditions for the component 

wise product of two independent pairs of random variables to be in a 

bivariate domain of attraction. Included are two results from the 

literature concerning regular variation of the tail distribution of 

such products. 

68 
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1. Introduction 

In this paper we shall have two settings. For the first, x~F and 

Y~G will be independent random variables. Letting H be the distribution 

of XY, we ask two questions: under what conditions on F and G are the 

tails of H regularly varying and under what conditions is H in the do-

main of attraction of a stable law? In the second setting, (X1 ,x2 )~F 

and (Y1 ,Y2 )~G are independent pairs of random variables. Let H be the 

distribution of (X1Y1 ,x2Y2) and we ask, when will H be in the domain of 

attraction of a bivariate stable law? 

Before we proceed, we recall some definitions. A positive function 

U on (O,co) is regularly varying with exponent p (Ue:RV ) if p 

lim U(xt) 
t+co U( t) xP for all x>O. 

If U is monotone nonincreasing (as in the case of distribution tails), 

the convergence is uniform on (x0 ,co), x0>0. If p=O, U is said to be 

slowly varying. We will occasionally use the fact that if U is non-

decreasing and Ue:RV , then for any S>O there exists K>O such that 
p 

Suppose x1 ,x2 ,x3 , ... are independent, each with distribution F and 

suppose there exists sequences {a },{b } such that 
n n 



n 
1 I (X. -b ) 
an j=l J n 

70 

where F1 is a distribution function. When this holds, F1 is c.alled a 

stable law and F is in the domain of attraction of F1 . Stable laws can 

be characterized nicely (see, e.g., Feller (1971)), but we mention only 

the following characteriza~ion of domains of attraction. Let 

t 2 
~(t) = J u F(du). Then F is in a domain of attraction of a stable 

-t 

law if and only if for some as(0,2], ~ sRV2 , and if (when a< 2, x~F) - a 

lim P[X>t] 
t-+<X> p [ I X I >t] ps[O,l]. 

In this case we write FsV(a). When a <2, the tails ofF are regularly 

varying, e.g. P[IXI>t]sRV . -a. 

We leave the definition of bivariate stable domain of attraction 

until later. 

In Section 2, we present two lemmas from the literature giving con-

ditions for which P[!XYI>t] is regularly varying. These lemmas will be 

used in Section 3 for our domain of attraction results. In Section 3, 

we assume FsV(a.1 ) and then with appropriate conditions on G, we will 

show HsV( a.1). 

Section 4 extends the results of Section 3 to the bivariate case. 

In fact, the results presented here are easily extended to several 

variables. 

The results of Part III will be used in Part IV for limit theo~ems 

concer~ing M-estimators of regression. 
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2. Regular Variation of the Product Distribution 

We assume x~F and Y~G are independent random variables. We also 

assume X and Y ar.e almost surely positive. Let H be the distribution 

of XY. We wish to provide conditions for which P[XY>t]ERV . In the -a. 

following, F(t) = 1-F(t), G(t) = 1-G(t) and H(t) = 1-H(t). The first 

lemma is due to Breiman (1965). Although he states it more narrowly 

than we do here, the two versions are equivalent. 

Lemma 2.1 Suppose FERV and EYS<oo for some S>a.. Then HERV and -a. -a. 

Proof. i) 

lim P[XY>t] 
t-700 P [X>t] 

Let U(t) 

lim Joo F(t/y) 
---'---"-"--~ G ( d y) 

t-700 o :F c t) 

00 

1 =-- By the comment in the introduction, there 
F(t) 

exists K such that U(xt) 2 K max(l,x6)U(t) for all x>O, t>l. Thus 

For y>t, 

F(t/y) 

F(t) 

F(t/y) 

F(t) 

U((t/y)y) _< K max(l,yS) for <t U(t/y) y_ . 

1 <--
- F(t) 

For sufficiently large t, however, t 6F(t) > 1/K. 
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We therefore have for large enough t, 

F(t/y) ~ K max(l,yS) for all y. 
F(t) 

By dominated convergence, 

00 -

lim J F_( t/y) t+oo G(dy) 
0 F(t) 

Joo lim F(t/y) G(dy) 
o t~ F(t) 

00 

That EYa<00 is not sufficient in Lemma 2.1 is illustrated in the 

following example. Suppose, 

F(t) 

G(dt) k 
2 l[e,oo)(t) dt. 

( t lnt) 

We note that 

00 

and e = J t F(dt). 
0 

1 Then, substituting x = ---lny ' 

00 

f tG(dt) 
0 



Therefore 

and 

iiCt) 
00 

J F(t/y)G(dy) 
0 
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t/e 
J 
e 

ey 
2 t(lnt-lny) 

lnt-1 

k ---dy 
(ylny) 2 

2ek 3 [lnt-1+2ln(lnt-l) - ln~-l] 
t(lnt) 

2ek 
'V ----

t(lnt)2 

lim H( t) --= 
t-+<JO F(t) 

00 

2f t G(dt) 
0 

lim H ( t) = 2 J oo t F ( d t) . 
t-+<JO G(t) o 

Another lemma, due to Embrechts and Goldie (1980), gives the regu-

lar variation of H, but we do not get the additional conclusion that 

H(t)/F(t) has a limit. The proof of part ii) has been improved slightly. 

Lemma 2.2 

i) 

or 

ii) 

Suppose FsRV Then HsRV if either -a. -a. 

lim G(t) = 0 
t-+<JO F(t) 

GsRV -a. 



74 

Proof. i) Choose s0 such that G(l/s)>O for all s~s 0 . Since 

lim P [Y>t] 
t~ P[X>t] 0, then 

lim P[XY>t, Y>t/s] < lim P[Y>t/s] 
t~ P[XY>t, Y<t,s] - t+oo P[X>ts]P[l/s<Y<t/s] 

lim P[Y>ts] lim P[Y>t/s] 
t+oo P[X>ts] t~ P[Y>ts]P[l/s<Y<t/s] 

Therefore 

lim Jt/s F(t/y) 
_..:........:.....~~.....;_ G(dy) 

t+oo o R(t) 
lim P[XY>t, Y<t/s] 
t~ P[XY>t] 

Replacing t with xt, s with xs, x>O, s>s 0/x, then 

lim Jt/s F(xt/y) 
t+oo G(dy) 

0 H(xt) 
1. 

Now let ~(s) inf F(xu) 
u>s and MFCx) 

F(u) 
sup F(xu) 
u>s F(u) 

lim 
s+oo ~ (s) 

lim -a. s+oo ~(s) = x and for any y<t/s 

F(xt/y) 
~(s) < ~ MF(s). 

FCt/y) 

Therefore (2.1) and (2.2) give 

1 

Then 

(2.1) 

(2.2) 



~(s) 
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t/s 
J F(xt/y)G(dy) 

< lim _0~-----­
- t--?«1 t/s 

f F(t/y)G(dy) 
0 

lim H(xt) =- _...;_~ 

t~ ii(t) 

< lim H(xt) 
-t~ iiCt) 

t/s 
_ f F(xt/y)G(dy) 
lim 0 -------
t~ t/s 

f F(t/y)G(dy) 
0 

And this implies lim H(xt) 
t~ ii(t) 

-a = X 

ii) Define mG and MG for G, just as ~ and ~ were defined above 

for F. For any s>O, 

H(t) = P[XY>t, Y~t/s] + P[XY>t, X~s] + P[X>s, Y>t/s] 

t/s s 
J F(t/y)G(dy) + J G(t/y)F(dy) + F(s)G(t/s). (2.3) 
0 0 

·Replacing t with xt, s with xs, O<x~l, 

t/s xs 
H(xt) f F(xt/y)G(dy) + f G(xt/y)F(dy) + F(xs)G(t/s) 

0 0 
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t/s s 
~ MFCs)j F(t/y)G(dy) + MG(t/xs)j G(t/y)F(dy) 

0 0 

+ ~(s)F(s)G(t/s) 

Using (2.3) and (2.4) 

lim H(xt) <lim max(M (x), MG(t/xs)) 
~ iiCt) - c+oo -7 

-a. = max(~(s) ,x ) 

and therefore, letting s+oo, 

lim H(xt) -a. 
t~ H(t) <X for XE(O,l]. 

Similarly, 

s 

(2.4) 

(2.5) 

H(xt) ~ min(~(s),mG(t,xs))H(t)- J G(xt/y)F(dy) 
XS 

and since s is arbitrary 

lim H(xt) lim lim ~ . 
~ s+OO t+OO mln(~(s),mG(t/xs)) 

t~ H(t) 

-a. = X 

- s-
lim lim J G(xt/y) F(dy) 
s~ t~ xs H(t) 

To handle the second term, we note that 

s 
J G(xt/y)F(dy) P[XY>xt, xs<X<s] 
XS 

Js G(xt/y) F(dy~ 
xs H(t) J 

(2.6) 
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~ P[X>xs]P[Y>xt/s] 

= F(xs)G(xt/s). 

However, by Fatou's Lemma, 

lim H(t) 
t-+<x> G (xt/ s) 

> Joo lim G(t/y) F(dy) 
0 t-+<x> G (xt/ s) 

oo a 
~ (7) F(dy) 

which may be infinite. a lim a-If EX <oo, s F (xs) s-+<x> 

lim lim G(xt/s)F(xs) 
S-+00 t-+OO H ( t ) 

Using (2.7) and (2.9) in (2.6) 

lim H(xt) 
iiCt) 

and with (2.5) 

-a > X 

0 . 

lim H(xt) 
t-+co 

-a x for xe:(O,l]. 
H(t) 

The case x>l is a simple consequence of this. 

(2.7) 

(2.8) 

0. In either case 

(2.9) 
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3. Stable Attraction of the Product Distribution 

Continuing the nomenclature in Section 2, we now wish to determine 

conditions for which HEV(a) for some a<2. The cases a<2 rely on Lemmas 

2.1 and 2.2 and the case a=2 is handled in a manner similar to the proofs 

of those lemmas. The random variables may now be - negative or positive. 

Theorem 3.1 Suppose FEV(a), a<2 and EIYIS<oo for some S>a. Then HEV(a). 

Proof. Define F* and H* to be the distributions of lxl and IXYI, 
respectively. By Lemma 2.1 we have 

lim P[lxrl>t] =lim H*(t) = EJYJa. 
t+oo PI X >t] t+oo F*(t) 

Since FEV(a), a<2 then F*ERV and hence by (3.1) -a 

lim H*(xt) 
t+oo H*(t) 

lim F*(xt) 
t+oo F*Ct) 

-a 
X 

·(3.1) 

That is, H* is regularly varying with exponent -a. To show that H is in 

lim H(t) a domain of attraction, it remains only to show that exists. 

Let p lim F(t) 
t+oo F*Ct) 

t+oo H*C t) 

which exists since FEV(a), a<2. Define also 

q 

a a 
pE[Y lY>O] + (1-p)E[(-Y) ly<O] 

ElY Ia 
(3.2) 
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A dominated convergence argument like that in the proof of Lemma 

2.1 will work, but we present another argument here. By Fatou's Lemma, 

00 -

> f lim F(t/y) G(dy) 
- o t-+<:o H* c t) 

p E[Ya~2_0J 

EjYja 

Similarly, we have 

and 

lim P[XY>tfY<O] 
t-+<:o p [ I XY > t ] 2. 

lim 
t-+GO 

P[XY<-t,Y>O] 
P[IXYI>t] 

lim P [XY<-t, Y<OJ 
t-+<:o p [ I XY I >t J > 

a (1-p)E[(-Y) lY<O ] 

EjYja 

(l-p)E[Ya~2.0] 
> -----

EIYia 

a p E [ (-Y) ly <O ] 

EjYja 

By adding (3.3a) and (3.3b), we obtain 

lim 
t-+GO 

iic t) 

H*Ct) 
~q 

where q is defined in (3.2). By adding (3.3c) and (3.3d) we have 

---.-- ~ 1-q. 1~ (l- ii_Ct) ) 
t H*(t) 

(3.3a) 

(3.3b) 

(3.3c) 

(3.3d) 

(3.4) 

(3.5) 



Together (3.4) and (3.5) imply 

lim H ( t) 
t~ H*(t) 

Hence H e:V (a.). 

q. 
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Corollary 3.2 Suppose Fe:V(a.), Ge:V(S), S>a.. Then He:V(a.). 

Proof. Use Theorem 3.1 and the fact that EjYj(S+a.)/ 2<00 • 

When F and G are in domains of attraction with the same index a., 

we have 

Theorem 3.3 Suppose Fe:V(a.), Ge:V(a.). Then He:V(a.) provided one of the 

following is true 

i) either F or G is symmetric, 

ii) both F and G concentrate on [O,oo), 

1.'1.'1.') limP( XY >t] = EjYICY.<oo, 2 
t~ P [ X >t] a.< ' 

oo, a.<2' 

or v) a.=2. 

Proof. Define F*, G* and H* to be the distributions of jxj, IYI and 

IXY I, respectively. 

II 

Suppose a.<2. Then by Lemma 2.2 H*e:RV , since F*e:RV and G*e:RV -a. -a. -a. 

lim H(t) To show He:V(a.), therefore, we need only to show that exists. 
t~ H*(t) 

If either For G is symmetric (case i), then certainly His also, so 

that 

lim H(t) = l:_ 
t~ H*C.t) 2 
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If both F and G concentrate on [O,oo) (case ii), then clearly 

Theorem 3.1 is still valid. Hence, 

lim H(t) 
t-+OO H* c t) 

q 

where q is defined in (3.2). 

iv) Suppose EIXIa 

pl 
lim F(t) 
t~ F*Ct) 

and 

lim GC t) 
P2 t-+OO G*(t) 

Now choose t 0>0 such that for 

(1-s)p1F*(t) < F(t) 

and 

(l-s)p2G*(t) < G(t) 

2 Then for any s>t0 , t>s , 

t/s 

t>t 0 (O<sd2) 

< (l+s)p1F*(t) 

< ( 1 +s) p 2 G * ( t) . 

J G(t/u)F(du) P[X>s,Y>t/s]- P[X>t/s,Y>s] +P[XY>t,s<Y<t/s] 
s 

t/s 
F(t/s)G(s) + J F(t/u)G(du) 

s 



This 

And 

implies 
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t/s 
(l+s)p1f G(t/u)F*(du) + 2sp1F*(t/s)G(s) 

s 

2 t/s 
< (l+s) p1p2f G*(t/u)F*(du) + (l+s)F*(t/s). 

s 

s s t/s 
P[XY>t,X~O] J G(t/u)F(du) + J F(t/u)G(du) +J G(t/u)F(du) 

0 0 s 

+ F(t/s)G(s) 

~ (l+s)[p 2G*(t/s) + p1F*(t/s)J 

+ 2 ~t/2 . (l+s) p1p2 ~ G*(t/u)F*(du) + F*(t/s)G*(s)] + F*(t/s) 

(l+s) [G*(t/s) + 2F*(t/s)] + 2 p [I XY I >t]. < (l+s) plp2 -

therefore 

lim P[XY>t,X>O] < 
t-+<x> P[jXY>t] 

2 lim G*(t/s) + 2F*(t/s) (l+s) p1p2 + (l+s) 
t-+<x> H*(t) 

(3.6) 

We recall (2.8) which, slightly revised, says 

Similarly 

lim G*(t/s) 
t-+<x> H*Ct) 

0. 



lim F*(t/s) 
t-+oo H*(t) 

a. s 
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0. 

Since E is arbitrary, (3.6) becomes therefore 

lim P[XY>t,X>O] 
t-+oo p [ I XY I >t] ~ p 1 p 2. 

In a similar manner we can show for t large enough, 

(3.7) 

2 P[XY>t,X>O] > (1-s) p1p2 Pf!XYI>t]- (l+s)(2F*(t/s) + G*(t/s)) 

so that 

With (3.7), this yields· 

lim P [XY>t lX>O] 
t-+oo p [ I XY >t] 

By an identical argument, 

lim PIXY>t,X<O] 
t-+oo p [ I XY I > t J 

and therefore 

lim H(t) 
t-+OO H*(t) 

lim P [XY>t] 
t-+OO p [ I XY I > t] 

(3.8) 

The fact that the limit exists is all that we yet needed to show HsV(a.). 

Note that this is not the same limit obtained in case iii). This 

completes the argument for the cases where a.<2. 
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t . 
v) Suppose finally that a.=2 . Let 1-1 1 (t) = J u2F(du) and 

-t 

t 2 
1-12 Ct) = J u G(du). Also let F* and G* be as above. We are assuming 

-t 

that 1-11 and 1-1 2 are slowly varying and we want to show that 

l-1 ( t) 
t 2 

J u H(du) is also. First note that for any s>O 
-t 

00 00 

l-11 Ct/s)l-12 Cs) + J l-11 Ct/u)u2G*(du) + J l-1 2(t/u)u2F*(du). 
s t/s 

Replacing t with xt, s with ~s, x~l, 

Define 

00 

l-!(xt) = 1-11 Ct/s) 1-1 2Cxs) + J l-11 (xt/u)u2G*(du) 

m. (s) 
1 

M. (s) 
1 

XS 

00 

+ J l-1 2 Cxt/u)u 2F*(du). 
t/s 

in£ }.1. (xu) 
1 

u>s l-1. (u) 
1 

sup 1-1. (xu) 
1 

u>s l-1. ( u) 
1 

Then by (3.9) and (3.10) 

(3.9) 

(3.10) 
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00 

+ M1 (s) J ~l (t/u)u2G*(du) 
s 

Since s is arbitrary, then 

lim tl~ < lim max(M (s) M (s)) 
t~ ~ ( t) - s~ 1 ' 2 

= 1, x:>l. 

On the other hand, 

~(xt) ~ m2 (s)~ 1 (t/s)~ 2 (s) + Joo ~ 2 (t/u)u2F*(du~ L t/s J 
00 

+ m1 (s) J ~ 1 Ct/u)u
2G*(du) 

xs 

xs 

(3.11) 

f 2 J.\ (t/u)u G*(du). 
s 

And thus, since s is arbitrary, 

Since ~l is nondecreasing, 

li:m ~(xt) > 1 
t~ ~(t) 

lim lim ~1 (t/s) xs 2 
s~ ·t~ ~(t) J u G(du). 

s 
(3.12) 
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By Fatou's Lemma, however, 

lim ~(t) 00 lim ~l(t/u) 2 
~ > J - u G(du) 
t-+oo 111 ( t) - t-+oo ll ( t) 0 1 

EY2 
' 

which may be infinite. 
2 lim xs 2 

If EY <00 , then J u G(du) s-+<» 0. In either 
s 

case, we have 

lim [lim ~1 ( t/s)j xs 2 xs 2 
J G(d ) < lim --1-- J u G(du) s-+<» t-+<» l.l(t) u u - s-+oo 2 0 
s EY s 

Thus (3.12) becomes 

lim ~(xt) 
t-+oo ~ ( t) > 1 . 

With (3.11), we have 

lim l.l(xt) 
t-roo ll ( t) 

1, x>l. 

And this holds, in fact, for all x>O as a simple consequence. Therefore, 

11 is slowly varying and HsV(2). II 



87 

4. Joint Attraction of Two Products 

We shall use F., G. ,H. , i=i, 2 
l 1. 1. 

to denote the marginal distributions. In Section 3 we presented condi-

tions for which each marginal distribution H. is in a domain of attrac-
l 

tion. Here we wish to discuss domains of attraction for bivariate 

distributions, and give conditions on F and G for which H is in a 

bivariate domain of attraction. 

We say bivariate distribution F is in a bivariate domain of attrac-

tion if for a sequence {(Xln'x2n)} of independent pairs of random vari-

ables, distributed by F, there exists sequences {a. ,b.}, i=l,2, such 
1.n ln · 

that the normalized partial sums 

n 1 n 
I (X .-bl ), I (X2.-b2) 

j=l lJ n a2n j=l J n 

converge jointly to some bivariate distribution which has nondegenerate 

marginal distributions. (Clearly, the marginals are each univariate 

stable.) The class of such limit distributions is called the class of 

bivariate stable distributions. We shall write FsV(a1 ,a2) to indicate 

that F is in the domain of attraction of a bivariate stable whose margin-

als are stable (a1) and stable (a 2). The condition FsV(a1 , a 2) is 

equivalent to one of the following, depending on the values of a1 and a 2 

(c.£. Resnick and Greenwood (1979) and deHaan, Omey and Resnick (1982)). 
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i) a1 <2,a2 <2. FEV(a1 ,a2) if and only if 

~: nP [:lln ' ax22n) E j= v(A) (4.1) 

2 for some sequence {a1n,a2n} and every Borel set AER -{0} such that the 

boundary of A has v-measure zero. The limiting measure v is called the 

Levv measure of the limiting stable distribution. 

limiting distribution is the joint distribution of independent 

(nonnormal) stable and normal random variables. 

iii) a1=a2=2. FEV(2,2) if and only if each marginal F1 and F2 is in 

V(2) and for the corresponding sequences {ain}, i=l,2, (assume EX
1

=Ex
2

=0) 

lim 
n~ 

nE 

(4.2) 

for any u1 >0,u2 >0. In this case c12 is the asymptotic covariance and 

the asymptotic variances are 

nE x21 
1 im _____ i_l_x_i_l_.2._a...;..i;....n....._ 

c .. 
l.l. ~ 2 a. 

l.n 

To facilitate our use of condition i) we give the following further 

characterization. 

Lemma 4.1 Suppose F.EV(a.),a.<2, and define for XsR 
l. l. l. 

U. (x) 
l. 

sgn(x) 
P[IX.I>IxiJJ 

l. 
' i=l,2 . 
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for some (necessarily continuous) function rr. In this case the conver-

where [x]Y = sgn(x) lxJY for any y>O. 

Proof. We follow a similar argument outlined by Resnick and Greenwood 

(1979). Assume first that FsV(a1 ,a2). Then there exist sequences {a. } 
l.n 

such that (4.1) is true. In fact since each marginal F. is in V(a.), we 
1. 1. 

can choose a. to satisfy 
l.n 

lim nP~~ >~ 1. n-+oo a. 
l.n 

By the regular variation property of the tails of F., 
1. 

lim 
n-+oo = X 

This implies, for O<s<l/2 

lim 
n-+oo 

c.X. 
1. 1. 

a. ln 

-a. 
1. 

a. 

x>O. (4.3) 

< 4a.lc.J 1 s. (4.4) 
- 1. 1. 

Equation (4.4) tells us two things. First, 
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lim nP ~-s < max(clXl 
n-+= a ' ln :~:2) < 1+~ 
< 1 im nP 11_ s < 
- n-+= L < 1+~ + ~: nPG-£ < :22:2/ < 1+£] 

and therefore 

0. 

and obtain 

lim nP~ax(clXl c2X2) > 1] = v(A(cl,c2)). (4.5) 
n+ro L aln ' a2n 

Second, (4.4) tells us that the limit in (:4.5), (A(c1 ,c2)) is a 

continuous function in c1 and c 2 . Because both the sequence and~ the 

limit are monotone functions for c.>O as well, then the convergence is 
l 

locally unifo~. This generalizes, in fact, to the statement that (4.5) 

holds uniformly when lcil2x0 for any x0 >0, since the functions are 

decreasing to zero as lc. 1~. 
l 

The definition of U. and (4.3) give 
l 

lim 1:. U ( ) . a. x 
n~ n l ln 

a.. 
[x] l (4.6) 

Taking inverses (valid by deHaan (1970), p.22 and the antisymmetry of 

u.)' l 



+ 
1

. U. (nx) 
lin l. ---
~ a. 

l.n 

1/a. 
[x] l. 
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(4.7) 

Using (4.6), the uniform convergence in (4.5) and the monotonicity of U. 
l. 

we obtain 

lim n:-roo nP [max ( c 1 U 1 ( x1) , c 2 U 2 (X 2) ) > n] 

~ nPtax (u[ ~~/c1 ) 'uz ~~/c2)) 

Furthermore, the convergence is uniform for lcil~x0 and the limit is 

continuous. This proves the first half of the lemma. 

Now suppose F.sV(a.), a <2 and 
l. l. i 

for some function IT and c.#O, i=l,2. This yields immediately that 
l. 

(4.8) 

IT(c1k,c2k) = kll(c1 ,c2) for any k>O, and hence that IT is continuous. 

Since IT~O as lc. jtoo, then we have that the convergence in (4.8) is 
l. 

Again (4.6) holds because each marginal F. is 
l. 

in V(a.), so that by the uniform convergence 
l. 
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Ctl Ct2 
IT([c1 ] ,[c2] ). Since the class of sets A(c1 ,c2), ci#O form a 

IT-class generating the Borel sets in R2-{0}, the usual class arguments 

show that v can be extended to be a measure on R2-{0} and that 

for A such that the boundary of A has v-measure 0. Hence, FsV(a1 ,~ 2 ). 

The conditions i)-iii), as well as the next theorem, can easily 

be extended to more variables in the obvious manner. If the limiting 

distribution has normal and nonnormal components, then it factors 

accordingly. (This was proved by Sharpe (1969).) 

Theorem 4.2 Suppose (X1 ,x2 )~F where F is in a bivariate domain of 

attraction (FsV(a1 ,a2)) and suppose (X1 ,x2) is independent of (Y1 ,Y2), 

s. 
Y. not degenerate at 0 and ElY. I l<oo for some S.>a. (or S.=2 if a~ ..... ·=2). 

l l l l l 
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Let H be the distribution of (X1Y1 ,x2Y2). Then HEV( a1 ,a2). 
' 

Proof: We consider the cases i) - iii) outlined above. 

If H. is the marginal distribution of X.Y., then 
l. l. l. 

Theorem 3.1 tells us immediately that HiEV(ai). Defining u1 and u2 
as in Lemma 4.1, we have 

(4.10) 

for c. not both zero and some function IT . This holds locally uniformly. 
l. 

Define also 

V. (x) 
l. P[jX.Y.I>IxiJ 

l. l. 

sgn(x) 

we need to show 

for some function Q. 

First, we fix y., not both zero. Since F.EV(a.) then each U. is 
l. l. l. l. 

regularly varying on (O,oo). + The sequences a. = U.(n) are acceptable 
l.n l. 

normalizations. By Lemma 2.1, we also have that V. is regularly varying 
l. 

and 

1 . U.(n) 
l.m l. ---
n~V.(n) 

l. 

a. 
E IY. I l. 

l. 

Taking inverses (deHaan (1970), p. 22) 

+ 
1

. U. (n) 
l.m l. ---

n+oo +( ) V. n 
l. 

a. -1/a. 
CEIY.I ;t) 1 

l. 
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The inverse v+_ is regularly varying with exponent 1/a. on (0 ,oo) (again, 
1 1 

c . f . deHaan) and is antisymmetric about 0, so that for c.fO 
1 

Define m. 
1 

+ 
lim Vi(n) 

---- - = 
~ v+: (n/c.) 

1 1 

[c. J 
1 

1/a. 
1 

1/a . a. -1/a. 
1 I 1 1 y. [c. J (E y. I ) . 

1 1 1 

+ 
l im y. U. (n) 

_1~1 _ _ 

+ V. (n / c . ) 
1 1 

rn. 
1 

Then 

( 4 .11) 

By virtue of (4 . 11) and the fact that (4 . 10) holds locally uniformly , 

+ Relying on (4 . 9) from Lemma 4.1 and the normalizations U. (n), 
1 

II( [m1] 
al a2 

' [m2] ) 

~ al a2 ) [y 1 J [y2] 
= II c ' c2 1 E IY 11 al EIYzlaz 

Of course, the limit is zero for y1=y2=0 . 

( 4 . 12) 



By (4.12) 

lim nP*(n) n-+OO 
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which says that P* is regularly varying with exponent -1. Since it is 

also monotone we make use of a comment made in the introduction and used 

similarly in Lemma 2 .1. That is, choose s > 0. Then there exists K1 

such that for all y>O, n large enough, 

I ll+s P*(n/y) _2 K1 max (1, y )P*(n) . (4 .13) 

We will actually choose s so that y. =B. I (l+s ) >a.., where B. are given in 
1 1 1 1 

the theorem statement. Similarly, since V. is regularly varying with 
1 

exponent a.., then since y.>a.., there exists K2~1 such that for any y>O, 
1 1 1 

x~l, fixed c., 
1 

yi 
If x<l, then lci iVi(xy) _2 K2 max(l,y )Vi(l), since Vi is monotone. 

Therefore using these inequalities and (4.13) 



for n large enough. 

converges, 
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n 

Remembering that Y. 
l 

for some K3 and all n large enough. 

S./(l+s) and that nP*(n) 
l 

By dominated convergence and (4.12), therefore, 

ii) a1<a2=2. This case is the easiest to prove since marginal 

convergence is sufficient. Theorem 3.1 yields that H1 , the distribution 

of x1Y1, is in V(a1 ) and Theorem. 3.3, part v) tells us that H2sV(2). 

Therefore HsV(a1 ,2). 
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a1=a
2
=2. We assume EX. = EY = 0, without loss of generality. 

l i 

2 For each i, since EY <oo then by Theorem 3.3, X.Y. has distribution in i , l l 

the domain of attraction of the normal distribution. In fact, we can 

say more. L t ( t) E [ X2. 1 J e ~i = l lxil~t · Since~. is slowly varying and is 
l 

monotone, then we choose K such that for any t~l, u>O, s fixed in (0,1), 

s 11 . ( tu) < K max (1, u )v . ( t) . 
l - l 

Therefore, letting G. be the marginal distribution of Y., 
l l 

2 
E[(X.Y.) liX y I tJ l l .. < 

l 1. -

It follows by 

lim 
t-+oo 

< K f 

2 
< K Eimax(l,Y.)] 11 .(t) 

1. l 

dominated convergence 

E~Xi Yi) 211 XiYJs_t] 

E~i 11xJs.~ 

that 

J 2 1 . l.l.(t/lyl) 
lffi 1. 

y t-+oo 11 • ( t) G i ( d y) 
-oo l 

(4.14) 

2 EY.. (4.15) 
l 

2 Let a.(t) satisfy t~.(a.(t))~(a.(t)) . Then (4.15) implies 
l l l l 

t-+oo 2 a. ( t) 
l 

2 EY .. 
l 
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This shows that the marginal convergence holds with a. =a.(n). To show 
ln 1. 

that joint convergence holds, we must consider the truncated covariances. 

First, define 

v(t,s) 

By assumption, ( 
a1 (t) a 2(t)) 

1 im t v ul ' u 2 _____ __...;:: __ 
t~ p' 

and therefore, since E<l, 

< K max 

By dominated convergence 

lim tEExlYl)CxzYzlllxlYll~al(tlllxzYzl~azCt~ 
t-+= 
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This proves HEV(2,2). 



PART IV: REGRESSION WITH INFINITE VARIANCE DATA 

Summary. M-estimation is considered for the regression model 

Y. = s0x. + W. where X.'s and W. 's are in stable domains of attraction. 
J J J J J 

Necessary and sufficient conditions are given for the consistency of 

the least squares estimator as well as sufficient conditions for the 

consistency of other M-estimators . The asymptotic distribution is 

derived for the least squares estimator. It is found that, depending 

on the distribution of X., different normalization is used and the limit 
J 

is to a ratio of two jointly distributed stable random variables or to 

a normal random variable. 

100 
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1. Introduction 

We consider M-estimation for the standard linear regression model 

(sans intercept) 

Y. (1.1) 
J 

where x1 , ... ,Xn are independent random variables with distribution F 

and independent of w1 , ... ,Wn which are independent random variables with 
n 

distribution G. The observable data is {Y.,X.} . We assume further-
] J j=l 

more that F (in particular) is in a stable domain of attraction. 

To be in a domain of attraction, of course, means that normalized 

partial sums of the random variables converge in distribution. For ex-

ample let f.l(t) 
t 2 1 . . 1 J u F(du) and choose a such that - 2 p(a ) rv- and let 

n n n 
-t a 

n 
a 

b J nuF(du). We say FsV(a), the domain of attraction of a stable 
n -a 

n n 
law with index as(0,2], if~ L (X.-b) ~ stable(a). For this to be 

a . 1 J n 
n J= 

true, it is necessary and sufficient that 

lim p(xt) 2-a for all x>O (1.2) ll(t) X 
t~ 

and 

lim F(-t) exists when a<2. 
t~ 1-F(t)+F(-t) 
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The first condition in (1.2) is known as regular variation. When 

a<2, F i -tself has regular varying tails, namely, 

lim 1 - F(xt) + F(-xt) 
t+oo 1 - F(t) + F(-t) 

-a x for all x>O. (1.3) 

When a<2, F does not have finite variance and it may not have finite 

variance even when a=2. In general, if x~F, then EjXjS<oo for O<S<a . 

Our primary concern will be with distributions which have regularly 

varying tails and infinite variances. Of particular interest is the 

special case where F and G are tail equivalent (i.e., 

lim 1 - F(t) + F(-t) 
t~ 1 - G(t) + G(-t) exists and is non zero). 

The literature contains much on M-estimation for regression where 

x1 , ... ,Xn are fixed, not random (e.g. Huber (1981)). These papers give 

the motivation for our approach here. Martin and Jong (1977) have con-

sidered M-estimation and generalized M-estimation for time series with 

finite variances. Blattberg and Sargent (1971) and Smith (1973) con-

sidered least squares regression with fixed X. 's but stable errors. 
J 

Kanter and Steiger (1974) investigated least squares and screened ratio 

estimators for both regression and autogregression under conditions 

similar to our (1.3). Although we do not consider autoregression here, 

we view this paper as a stepping stone to that end. 

An M-estimator for the true parameter s0 is Sn satisfying, for 

some loss function p, 

n 
L (S) n - I 

j=l 
p (Y. - f3X.) 

J J 
is minimum. (1. 4) 
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If p is differentiable, we call o/=p' the influence function and Sn 

solves the equation 

n 
K (S) 

n 
L X . \jJ (Y . - sx . ) 

j=l J J J 
0 (1.5) 

The idea behind M-estimation, of course, is to mimic procedures in 

~aximum likelihood and least squares estimation, both of which are 

special cases. Examples of possible loss functions are the following 

(g is the density of G, the distribution of W.). 
J 

1) least squares P ( z) 2 \jJ ( z) 2z z 

2) least absolute deviation P ( z) I z I 1/J ( z) sgn(z) 

3) maximum likelihood p(z) -ln(g(Z)) ljJ(z) =- g' (z) 
g(z) 

4) Cauchy p(z) 2 
\jJ (z) 2z ln(l+z ) 

l+z 2 

-~.Z 
2 

-~.Z 
2 

5) bounded loss p(z) 1-e 1/J (z) ze 

Many others have been suggested by autnors, most notably Huber (1981) 

and Hampel (1971). These authors recommend redescending influence func-

tions, by which they usually mean ljJ(z)=O for lzl~c. This effectively 

trims the outliers. With contaminated distributions this concept makes 

sense. However, with regularly varying tails we feel outliers can con-

tribute additional information. If one considers the maximum likelihood 

estimation when G has regularly varying tails and g' is ultimately mono-

tone, one finds that the influence function \jJ satisfies 
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. _ -g' (z) a+l 
~(z) - () ~ (c.f. Feller, p. 446). This suggests that influence g z z 

functions with a slow rate of descent, such as 1/z, are perhaps more 

appropriate. 

In Section 2, we consider the consistency of M-estimators. We first 

present two results due to Huber (1981), which provide strong consistency 

when certain expectations exist. We also present a theorem giving neces-

sary and sufficient conditions for the least squares estimator to be 

weakly consistent. 

Section 3 discusses the asymptotic distribution of the least squares 

estimator. If FsV(a), then we will find c (S -S0) converges in distribu-
n n · 

tion for normalization en, which is regularly varying (as n+oo) with 

index 1/a. In such cases, if a=2 the limit distribution is normal, but 

if a<2, it is the ratio of two stable random variables, one with index 

a and the other with index a/2. 

The results in Sections 2 and 3 require the joint convergence of 

{ 1 I X.W., 1 I X~) , for which we use Part III. 
~n j=l J J a 2 j=l J 

n 
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2. Consistency of M-Estimators 

Before we look at consistency for the regression problem, we review 

consistency forM-estimation in general, following Huber (1981), pp. 

127-132. Let z1 ,z2, ... be a sequence of independent and identically 

distributed random elements in Z and let p(z,e) be real valued on Zxe . 

We assume 0 is separable and locally compact with norm II· II and has one-

point compactification 0*. 

Lemma 2.1 Define e to be any point of minimum in 0* of the random 
n 

n 
function L (e) 

n 
L p(Z.,e). If p is almost surely continuous in e, 

j=l J 

converges to its maximum as llell+ oo, and if e0 is such that 

oo>E(p(Z. ,e) - p(Z. ,e0)] > 0 for all e:f.e 0 , then . e ~e0 almost surely. 
J J n . 

Proof: We note that e exists almost surely in '0* because of compactness 
n 

and continuity. Furthermore, since p converges to its maximum as 

llell+oo, then e is almost surely finite. It may not be unique, however. 
n 

Choose any sequence of solutions. 

Define R.(A) =in£ p(Z.,e') 
J e'e:J\ J 

For any 9e:0*, i( {A.} is 
1 

a monotone sequence of open sets decreasing to {e},e:f.e 0 , then by domina-

ted convergence ER. (A.) t ER. ( { e}) > 0. Hence there exists an open set 
J 1 J 

Ae for each ee:0* such that ER.(A )> 0. 
J e 
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Choose a covering A1 , ... ,Ak for the regionjje-e
0

ll_:_s, which is 

compact in 8*. For each i=l, ... ,k 

P[e sA . for infinitely many values of n] n 1 

< P{L (e) is minimum for some esA. i.O.] - n 1 

_.::. P[I 
j=l 

0 . 

R.(A.) < 0 
J 1 i.o] 

1 n 
The last equality holds because - L R. (A.)+ ER. (A.) > 0 almost surely. 

n j=l J 1 J 1 

Therefore, we have 

~ k 
p rll en- eo 11.:.. s i. 0 • J < L p [ e sA. i. 0. J 

i=l n 1 

0. II 

Alternatively, the M-estimator can be defined by the use of implicit 

equations and the next lemma can be used to verify consistency. We 

assume that the equation ~(z1 ,e) = 0 has a solution almost surely. 

Lemma 2.2 Let e be a root of the function K (e) n n 

n 
L ~(z.,e) and sup-

j=l J 

pose that Ejp(Z1 ,e) j<oo for all ese and E~(z1 ,e) has a unique root e0 
and is monotone in a neighborhood of e0 . Let 

sup , - - I s . (A, e) = e 1 - A w c z . , e 1 
) - w C z . , e) . 

J s J J 

If, as the sets Ai+{e}, ESj(Ai,e)+O for all 8s8*, then en+e 0 almost 

surely . 
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For the proof of this, see Huber (196.4). We remark that the 

condition ES.(A.,8)+0 is easily satisfied when~ is continuous in 8 and 
J ]_ 

either ~~(Z.;8) I < K(Z.) where EK(Z.)<oo or 8 is real and~ is monotone 
J - J J 

in 8. 
n 

In our regression problem, the data is given by {Z.} 
n J j=l 

{(Y. ,X.)} and p(Y . . , x. ,S) = p(Y .-SX.) where the latter function has 
J J j =1 J J J J 

a real argument. 

exists. 

Corollary 2.3 a) 

We also have ~(Y. ,X., S) 
J J 

X.~(Y.-SX.), when ~=p' 
J J J 

Suppose S satisfies (1.4) where p(z) is continuous 
n 

and converges to its maximum as lzl+oo. Assume E(p(W.-8X.)-p(W.)]<oo for 
J J J 

all 8sR. If E(p(W.-8X.)-p(W.)] has a unique minimum at 8=0, then Sn-+ s0 J J J 

almost surely. 

b) Suppose S satisfies (1.5) where ~ is continuous and either 
n 

monotone or bounded. Assume EIX ~(W.-8X.) l<oo for all 8sR. If 8=0 is 
j J l 

the unique root of EIX. ~(W.-8X.)], then S -+S 0 almost surely. 
J J J n 

Proof: The proof is a direct application of Lemma 2.1 or Lemma 2.2 when 

II 

The crucial condition in Corollary 2.3 is the unique minimum (root). 

When p=-lng so that S is the maximum lokelihood estimator, Jensen's 
n 

inequality assures us this condition is satisfied. We can also satisfy 

the condition by strengthening conditions on the distribution of W and 

on the loss function, but with very little assumption on the distribution 

of X. 
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Lemma 2.4 Suppose W has distribution G which is symmetric about 0 and 

strictly increasing at 0 and suppose X has distribution F, not degenerate 

at 0. 

a) Let p be a continuous function, symmetric about a unique mini-

mum at 0 and nondecreasing on (O,oo). Assume Elp(W.-ex.)-p(W.)I<oo for 
. J J J 

all e. If either p is convex or G is unimodal, then Elp(W.-ex.)-p(W.)I 
J J J 

is continuous, symmetric about a unique minimum at e=O and nondecreasing 

on (O,oo). 

b) Let ~ be a continuous function, antisymmetric about a unique 

root at 0 and nonnegative on (O,oo). Assume EIX.~(w.-ex.)l<oo for all e. 
J J J 

If either ~ is monotone or G is unimodal, then E[X.~(w.-ex.)] is con-
J J J 

tinuous, antisymmetric about a unique root at e=O and nonnegative on 

(0, CX>). 

Proof: We prove only a) since b) has a very similar proof. Clearly if-

G is _degenerate at 0, the condition holds since P[p(eX.)>p(O)]>O when 
J 

e#O. We assume therefore that G is not degenerate at 0. We can also 

assume without loss of generality that p(O)=O. Let 

t(y) E[p(W.-y) - p(W.)J 
J J 

CX> 

J [p(w-y) - p(w)]G(dw) (3.1) 
-ex> 

Clearly, Q, is continuous since p is continuous. By the symmetry in p 

and G, 

CX> 

t(y) J fp(w-y) - p(w) + p(~w-y) - p(-w)]G(dw) 
0 
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00 

= J [p (w+y) + P (w-y) - 2P (w) ]G(dw). 
0 

From this it is apparent that t(y) = t(-y). 

(3.2) 

Suppose p is convex. Then p must be strictly increasing on [O,oo). 

Otherwise, if for some O<y<z, p(y) = p(z) then setting A=y/z we have 

p(y) > Ap(z) + (1-A)p(O) 

~ p (y)' 

a contradiction. (Of course, we also cannot have p(y) p (0) 

0 is p's unique minimum.) Therefore for any y>2w~O 

p(y+w) + p(y-w)- 2p(w)>O. 

On the other hand, since p is convex, 

P(y+w) + P(y-w) - 2p(w) > 0 

for any y~O, w>O. Using (3.2) and the fact that G is strictly 

increasing at zero, 

00 

t(y) f [p(y+w) + p(y-w) - 2p(w.)]G(dw) 
0 

y/2 
..:_ J (p(y+w) + p(y-w)- 2p(w)]G(dw) 

0 

> 0 . 

F h · · 1' f 0 (' -- ~2+2 ) urt ermore, convexlty lmp les or z>y..:_ A 

p(w+z) + p(w-z) - p(w+y) - p(w-y) 

0, since 
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Ap(w+z) + (1-A)p(w-z) - p(w+Az-(1- A)z) 

+ (1-A)p (w+z) + Ap (w-z)- p (w+(l-A) z-Az) 

> 0 . (3.3) 

And since pis increasing on (O,oo), (3.3) is a strict inequality when 

O::_w:::_y. Therefore, from (3. 2), if z>y>O 

t(z)- t (y) 
00 

J fp(w+z)+p(w-z)-p(w+y)-p(w-y)]G(dw) 
0 

y 
> J fp(w+z)+p(w-z)-p(w+y)-p(w-y)]G(dw) 

0 

> 0 . 

Thus t(y) is increasing on (O,oo) and symmetric about a unique minimum 

at 0. 

Suppose instead that G is unimodal. Then (c.f. Feller (1971), 

p. 158) G has a density g and a possible mass p at 0 and the density 

can be characterized by 

g(w) J iu H(du) 
u~ l w l 

for some probability measure H. Since G is increasing at 0, then either 

p>O or H has mass in any neighborhood of 0. 

Since jp(w-y)-p(w) I is integrable with respect to g and g is itself 

an integral with positive integrand, we use Fubini's theorem, 
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00 

i(y) J [p(w-y)-p(w)]G(dw) 
-oo 

00 

J [p(w-y)-p(w)] J --2
1 H(du)dw + pp(y) 

-oo u~/w/ u 

00 u 
J J fp(w-y)-p(w)]dw H(du) + pp(y) 
0 -u 

/XJ [/-y p (w)dw - (up (w) dw] H(du) + pp (y) 
0 -u-y 

Joofj-u p(w)dw - Ju p(w)dwlH(du) + pp(y) 
0 L-u-y u-y J 

00 0 
J J [p(w-u)-p(w+u)]dw H(du) + pp(y). 
0 -y 

By the symmetry of p, 

i(y) 
00 y 

J J [p(w+u)-p(w-u)]dw H(du) + pp(y). 
0 0 

(3.4) 

Since p is nondecreasing on (O,oo) and symmetric about 0, then for 

any w,u~O 

p(w+u) - p(w-u) > 0 

and therefore, if O~y<z, we obtain from (3.4) 

00 z 
i(z)-i(y) = J J [p(w+u)-p(w-u)]dw H(du) + p[p(z)-p(y)] 

0 y 

> 0. 

(3.5) 

Furthermore, p is strictly increasing near zero, so that (3.5) is a 
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strict inequality when O<u~c, O~w~c, for some c>O. Since either p>O or 

H is increasing at 0, then 

00 y 
~(y) I I [p(w+u)-p(w-u)]dw H(du) + pp(y) 

0 0 

c 
~~ 

0 

> 0 . 

y 
J [p(w+u)-p(w-u)]dw H(du) + pp(y) 
0 

Again, therefore, ~ is symmetric about a unique minimum at 0 and 

nondecreasing on (O,oo). 

Finally, we write E(p(W.- 8X.)-p(W.)] = E[~(8X . )] and since 
J J J J 

P[X=O]<l, it is apparent that this is also symmetric about a unique 

minimum at 0 and nondecreasing on (O,oo). 

As a corollary, the conditions of Lemma 2.4 imply that the cor-

responding M-estimator is strongly consistent. The only condition 

placed on F is that it is not degenerate at 0 and that 

E/p(W.-8X.)- p(W.) /<oo (E/X.~(w.-ex.)j<oo). This means that, under the 
J J J J J J 

# 

conditions in Lemma 2.4, Corollary 2.3 can easily be extended to include 

location estimation and multiple regression. 

In addition to the unique minimum (root) condition in Corollary 2.3, 

the other restrictive condition is the expectation. If F has infinite 

variance, for example, we cannot show that the least squares estimator 

is strongly consistent. We shall see below, however, that it can still 

be weakly consistent. Before that, we summarize our results so far for 

distributions with regularly varying tails. 
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a.l a.2 
Theorem 2.5 Suppose X.~F and W ~G such that EjX,j <oo, Ejw.j <oo for 

J j J J 

some a.1>0, a. 2>0. Assume also G is symmetric about 0 and increasing at 

0. ChooseS to satisfy (1.4), where p(w) is continuous, symmetric 
n 

about a unique minimum at 0 and nondecreasing on (O,oo). Assume also 

that p(w) is regularly varying (as w+ro) with exponent ys[O, min(a. 1 ,a. 2)). 

Then Sn+S0 almost surely if either p is convex (which requires y~l) or 

G is unimodal. If in fact p(w) = kwy for w~M, then it is sufficient 

y(j-1) that y<a.1 , j <a.2 where j= integer in [y,y+l). 

Proof: In view of Corollary 2.3 and Lemma 2.4, the only condition 

requiring proof is that Ejp(W.-SX.)-p(W . ) l<oo for all 8, since if that is 
J J J 

true, Lemma 2.4 gives E[p(W.-SX.)-p(W.)] has a unique minimum at 8=0 and 
. J J J 

Corollary 2.3 yields the consistency result. 

Since y<min(a.1 ,a.2), choose 

E jw .I 0 <oo . 
J 

Since p is regularly varying, it has Karamata representation (c.f. 

Feller (1971), p. 282) 

[ 
w (u) l 

p(w) = c(w)exp ~ 7 dj 

where c(w)+constant and y(w)+y, as w+oo. Choose w0 such that:~ Y(w)~o 
-0 

_ sup c (w) P (w 0) 
and let K1 - w~O c(wo) w~ 

p (w) = c (w) expG:O 
0 .:s_ K1w 

Therefore, if w~0 then 
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Using p's symmetry and monotonicity on (O,oo), 

for all WER. Therefore, for any ~ER, xER 

0 p (w+x) _2 IS_ max(l, I w+x I ) 

for some constant K2 . Hence 

E[p(W .-ex.) J < K2Elmax(l, IW .I 0 + IX. I 0)]<oo. 
J J - J J 

This guarantees that Elp(W.+8X.)-p(W.) l<oo. 
J J J 

If we can assume further that p(w)=klwiY, lwi~M for some k,M, then 

we need only show that E[IW.+8X. IY-Iw. IYJ<oo. Let j=integer in [y,y+l). 
J J J 

By Minkowski's inequality, w~l,x~l 

for some constant K. In general, for any ~,x 
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ja 
Therefore E[lw.+ex.IY-Iw.IYJ<oo if y<a. 1 and y<. 2

1 , y<j. 
J J J J- -

If 

Theorem 2.6 Assume F and G are as in Theorem 2.5 (a 1>1) and choose Sn 

to satisfy (1.5) for the model (1.1), where w(w) is continuous, antisym-

metric about 0, monotone and regularly varying as W+oo with exponent 

Proof: Relying on Lemma 2.4 we see that if E[X.W(W.-8X.)] exists, then 
J J J 

it has a unique root at 8=0 and so by Corollary 2.3, Sn+S 0 almost surely. 

However, as in the previous theorem, due to the regular variation of W, 

we can write, for any o>y, some K1>0 

Choosing o=min(a1-l,a2), we have therefore for some K2 , 

E I X . w (W . -eX . ) I < K1E [ I X . I max ( 1 , I w . -eX .I 0) J 
J J J ·- J J J 

< K2E [ I x . I max ( 1 , I w . I 
0 + I ex . I 0) J 

- J J J 

< 00 

We consider now the special example of the least squares estimator, 

where p (w) =v,Z. Since p(W.-SX.)-p(W.) = e2x2 - 28X.W., then by Corollary 
J J . J j JJ 

2 2.3, the estimator will be strongly consistent when EX <oo, EW.X.=O. The 
j J J 

next theorem shows that it is weakly consistent for a great many more 
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cases. We make no assumptions of symmetry. The idea for the theorem 

comes from Kanter and Steiger (1974) who prove a special case. 

Theorem 2.7 Suppose F and G are in domains of attraction (FsV(a1), 
t 2 J x F(dx). For the regression 
-t 

n 
I X.Y. 

J 
model (1.1), define the least squares estimator j=l J s We n n 

I x: 
j=l J 

consideT three cases. 

lim 
t+oo 

lim 
n+oo 

2 Sn+S 0 in probability, except if EW.X.#O and EX.<oo. 
J J J 

sn is not consistent. 

Sn+S0 in probability if and only if 

t2P[ jw .I >t2J 

~ (t) 0 and, when a 1=2, 

Etj llw.l.::_cn 
p(a ) n 

0, where c and a are given in the proof. 
n n 

Proof: Since FsV(a1), then by Feller (1971), p. 577, 11 is regularly 

varying with exponent 2-a1 . Define A(t) 1 + 
~ p(t) and a = A (1/n) 
t n 

inf(x:A(x).2_1/n). lim n We note that -- 1 '(a ) n-+-eo a ~-' - n 1. When a1 <2, then 
n 

2 the distribution of X has a1 /2-varying tails and in fact is in V(a1 /2). 

n 
Thus -~ L x: ~ positive stable (a1 /2) . When a1=2, then ~ is slowly 

a j=l J 
n 
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1 n 2 
varying and so by Feller ( 19 71) , p. 236, 2 I X. + 1 in probability. 

a j=l J 
n n 

Recognizing that S -S 
n 0 

I x.w. 
j=l J J 

n 
I x: 

j=l J 

, we conclude that Sn+s0 in probability 

. 1 n 
if and only J.f 2 I X. W. + 0 in probability. 

a j=l J J 
n 

Let H be the distribution of lxjwj I and let a*=min(a1 ,a2). By 

Corollary 3.2 and Theorem 3.3 of Part III, HsV(a*). This means if we 

1 t 2 
define C(t) = -- J u H(du) and c and b to satisfy 

t2 0 n n 

and 

1 then--
c n 

c n 

b 
n 

n 

+ C (1/n) 

c 
J n u H(du) if a*~l, 
0 

I clx.w. l-b) ~stable (a*). 
j=l J J n 

We note that C(t) is regularly 

varying with exponent -a* and thus, by deHaan (1970) p. 22, c is regu-
n 

larly varying with exponent 1/a*. Similarly, a is regularly varying n 

with exponent l/a1 . The sequence b is either slowly varying (a*~l) or 
n 

identically zero (a*<l). 

i) Suppose a1 <2a2 . 2 Assume first EX =oo j . 

c 
n then 2+ 0. If a1 <2, then either nbn =0 or nbn is regularly varying with 

a 
n 
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nb 
exponent 1. n Since 2/ a.

1
> 1, then - 2- + 0. On the other hand, if a.

1
=2, 

a n 
n 1 1 then -'V----+--
2 J.l (a ) EX2 

0 and b +EjW.x.l (since a. 2>1 in this case). 
a n . n J J 

n J 

nb 
Again --f + 0. 

a 
We therefore have 

1 n 

n 
1 
2 a 
n 

n 1 n 
I x.w. < 2 I jx.w.j 

j =1 J J a j =1 J J 
n 

c ( 1 n ) = -~ - I <lx.w.j-b ) 2 c . 1 J J n 
an n J= 

+ 0 in probability. 

2 

nb 
+ __E_ 

2 a 
n 

2 lim an If a.1 <2a.2 , EX <oo then 
j ' n-+eo n 

lim 2 
l1 (a ) =EX.. Also a.2>1 so that n+oo n J 

1 n EX.W. 
Th \ w JJ 1 1 L X.W. +EX.W. almost surely. 

n j=l J J J J 
us, 2 L X. . + 2 a most sure y 

a j=l J J EX 
n j 

and S is strongly consistent if and only if EX.W. 0. 
n J J 

* ii) a.1 >2a.2 . In this case a. a. 2 < a.
1

/ 2. Therefore 

c 
n 
2 a 
n 

1 n 
It is thus impossible for~ I X.W. to converge to 0, since 

a j=l J J 
n 

n 1 L <lx.w.j-b) converges in distribution. Hence en is not consistent. c . 1 J J n 
n J= 
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c 
n In this case the sequence ~ is slowly 

a 
n 

varying. By Corollary 3.2, Part III, the distribution of X.W. is also 
J J 

in V(a*) with the same normalization c as for IX.W.I. Define 
n J J 

n 
Then (Feller (1971), p. 580), 1 I (X.W.-d) ==>stable (1). It follows, 

c . 1 J J n n J= 

1 n c nd 
therefore, that ~ I X.W. + 0 if and only if ~+ 0 and -f +0. We show 

a j =1 J J a a n n n 

below that the first condition is equivalent to------~----+ 0. When 
).l ( t) 

a*<~ d =0 and the second condition is automatic. Therefore, when 
n 

0. When 

nd 
a*=l, however, the condition---f-+0 must be checked for each case. 

a 

Noting that 

n 
np(a ) 

n 
2 + 1 , we state : 

a 
n 

t 
2

P r I w. I > t 
2 J 

f d l.'f lim i an only ------~----t-+oo 
ll(t) 

E [W. 11 I J J W. <c lim J - n 

c 
ll(a ) 

n 

It remains only to show that ~+ 0 if and only if 
a 

t 2P[!W.I>t2] 
-----------+ 0. Recall that c 

n 

n 

C+(l/n) and a 
n 

0. 

Since . C 

is regularly varying with exponent -a* (by definition of C) and A is 
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regularly varying with exponent -a1 , then we apply the result in deHaan 

c 
(1970), p. 22, which says ~-+0 if and only if C(t{ -+0. (That is, the 

a A ( t-'2) 
n 

inverses converge as one would expect, for monotone, regularly varying 

functions.) Furthermore, by Feller (1971), p. 283, 

lim 1-H(t) 
t-+= C(t) 

2-a* 2-a 2 =--=--a* 

and by Lemma 2.1, Part III, 

Therefore 

lim 1-H(t) 
t-+= P[IW.I>t] 

J 

lim C(t) 
t-+= A( t~) 

en lim t2PI jw .j >t2] 
It follows, then, t .hat - 2 -+ 0 if and only if 

a t-+= ~ (t) 
n 

0. 

EEj llwj l.::cJ 
When a1=2a2=2, the condition -+0 is satisfied when 

}.l(an) 

the numerator vanishes (e.g., G is symmetric about 0 or EW.=O) or when 
J 

the numerator is bounded and J.l(a )-+=(e.g., EjW. j<oo and EX:=oo). The 
n J J 

II 
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t 2P[!w.l>t 2J 
condition -+ 0 holds for case i) and is false for case ii) . 

].1 ( t) 

It is thus the primary condition for least squares consistency; the 

centering conditions are necessary only when a1 =2. 
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3. Asymptotic Distr~bution of Least Squares Estimators 

In this section, we prove a theorem describing the asymptotic 

distribution of the least squares estimator. For simplicity, symmetric 

distributions are assumed. 

Theorem 3.1 Suppose X.~FsV(a) and W.~G where F and G are symmetric 
J J 

about 0. LetS be the least squares estimator for the model (1.1). 
n 

Choose a such that 
n 

and 

lim ~ E[X2 l J _ 
n~ 2 . I X. I <a - 1. Then 

a J J - n 
n 

(Z1 ,z2) is bivariate stable and z1 is symmetric stable 

(a1), z2 is positive stable (a/2). (Their joint distribu-

tion has Levy measure v given by,c1c 2fO , 

ii) if a=2 and EW:<oo,a (S -S0) ~normal (O,EW:). 
J n n J 
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Proof: i) By assumption, FsV(a), a<2 and F is symmetric, so that 

and 

1 . P[IX.I>xt] 
l.ID J 

t-+a> p [ I X . I > t J 
J 

lim P[X.>t] 
----.-"J"'---r--

t-+a> p rl X . I > t] 
J 

(3.1) implies 

2 
lim P [X. >xt] 

t-+a> P [X:> t] 
J 

-a x x>O, 

-a/2 x x>O. 

(3.1) 

(3.2) 

And this in turn implies that the distribution of x: is in the domain of 
J 

attraction of a positive stable (a/2). We therefore have (Feller (1971), 

p. 580) 

n 1 I X. ~ symmetric stable (a) 
an j=l J 

n 
~ I x: ~ positive stable (a/2) 
a j=l J 

n 

(.No centerings are needed by synnnetry and the fact that a/2<1.) 

To check that these in fact converge jointly, we use Lemma 4.1 of 

Part III. Define for xsR, i=l,2, 

U. (x) 
1. 

sgn(x) 

P[ lx~ I >x] 
J 

k 
Clearly u2 (x) = ul (sgn (x) I X I 2 ) ' and therefore for fixed :cl' c2 sR' 

(3. 3) 

(3.4) 
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From (3.2) and (3.3) we calculate 

lim u
1

(s)P[X.>s] 
s~ J 

1 . P[X.>s] 
1m ~ 
s~ PTfx~ l>s] 

J 

= -~ 

lim Similarly t~ tP[-U1 (Xj)>t] = ~. And therefore, for any csR, 

~lei · (3.5) 

Using (3.4) and (3.5), 

lim [ 
t~ tl[max(c1 ,c2 ,o)p1 (x1)>t] 

+ P[min(c1 ,-c 2 ,o)u1 (x1)>t~ 

(3.6) 

And this satisfies the condition required in Lemma 4.1, Part III for 

joint convergence. 
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Since Ejw. IY<oo for some y>a, then by Theorem 4.2 of Part III, the 
J 

distribution of (X.W.,x:) is also in a bivariate domain of attraction. 
J J J 

From the proof of that theorem, it is apparent that the same normaliza-

2 tions, an and an' are appropriate. Again, no centering is required. 

Therefore, we have 

where (Z 1 , z2) is jointly stable and z1 rv symmetric stable (a ) and 

z2 'V positive stable (a/2) 0 

By the continuous mapping theorem (and since z 2>0 almost surely), 

1 n 
- 2: x.w. 

a CB -B0) n n 
= an j~l J J 

n 
~ I x: 
a j=l J 

n 

The joint distribution of (Z1 ,z2) can be expressed in terms of its 

Levy measure v, which from (3.6) and the proof of Theorem 4.2, Part 

III is determined by (letting [x]y = sgn(x) jxjY) 
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ii) 2 
When FEV(2), then E[Xj llxjl~t] is slowly varying as t~oo, so 

that Feller (1971), p. 236, yields 

l 2 ' x2. _,_ 1 · b b ·1 · L --.- 1n pro a 1 1ty. 
a j=l J 

n 

We . also have that the distribution of X.W. is in V(2) ·, by Theorem 3.3, 
J J 

2 Part III, and again the normalization a is appropriate, since EW.<oo. 
n J 

Thus, by Feller (1971), p. 580, 

1 n 2 I X.W. ~normal (0, EW.) 
an j=l J J J 

It follows immediately that 

a (S -S0) 
n n 

1 n - I x.w. 
an j=l J J 2 
--~-------~normal (O,EW.). 
~ ~ x2 . J 

2 L . 
a j=l J 

n 

Based on the work by Resnick (1982) on point processes we can say 

a little more about the limiting distribution z1/z2 for case i). Let 

00 

{E.,W.} be an iid sequence of pairs of independent random variables 
J J j=l 

where E. rv exponential and W. rv G. 
J J 

Then 

-1/a 
r w. , 

j J 

oo -2/a ) I r . 
j=l j 
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