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ABSTRACT 

 

 

 

USING REMOTELY SENSED FLUORESCENCE AND SOIL MOISTURE TO BETTER 

UNDERSTAND THE SEASONAL CYCLE OF TROPICAL GRASSLANDS 

 

 

Seasonal grasslands account for a large area of Earth’s land cover. Annual and seasonal 

changes in these grasslands have profound impacts on Earth’s carbon, energy, and water cycles. 

In tropical grasslands, growth is commonly water-limited and the landscape oscillates between 

highly productive and unproductive. As the monsoon begins, soils moisten providing dry grasses 

the water necessary to photosynthesize. However, along with the rain come clouds that obscure 

satellite products that are commonly used to study productivity in these areas. To navigate this 

issue, we used solar induced fluorescence (SIF) products from OCO-2 along with soil moisture 

products from the Soil Moisture Active Passive satellite (SMAP) to “see through” the clouds to 

monitor grassland productivity. To get a broader understanding of the vegetation dynamics, we 

used the Simple Biosphere Model (SiB4) to simulate the seasonal cycles of vegetation. In 

conjunction with SiB4, the remotely sensed SIF and soil moisture observations were utilized to 

paint a clearer picture of seasonal productivity in tropical grasslands. The remotely sensed data is 

not available for every place at one time or at every time for one place. Thus, the study was 

focused on a large area from 15° E to 35° W and from 8°S to 20°N in the African Sahel. Instead 

of studying productivity relative to time, we studied it relative to soil moisture. Through this 

investigation we found soil moisture thresholds for the emergence of grassland growth, near 

linear grassland growth, and maturity of grassland growth. We also found that SiB4 

overestimates SIF by about a factor of two for nearly every value of soil moisture. On the whole, 
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SiB4 does a surprisingly good job of predicting the response of seasonal growth in tropical 

grasslands to soil moisture. Future work will continue to integrate remotely sensed SIF & soil 

moisture with SiB4 to add to our growing knowledge of carbon, water, and energy cycling in 

tropical grasslands. 
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Introduction 

  

Tropical grasslands and savannas play a critical role in the carbon cycle and climate. The 

strongest land-atmosphere interactions in the climate system occur over grasslands and savannas 

[Koster et al., 2002]. Changes in tropical savannas and grasslands may be an important feedback 

to anthropogenic climate change [Staver et al., 2011]. Tropical grasslands are located in areas 

where growth is seasonally limited by moisture. Over the course of a year, the vegetation within 

these landscapes oscillates between highly productive and dormant. An example of this 

phenomenon exists in West Africa where seasonal rainfall associated with the inter-tropical 

convergence zone (ITCZ) creates a strong, north-to-south precipitation gradient. The timing and 

intensity of this rainfall determines the seasonal “green-up” and “brown-down” (phenology) of 

grasslands. Accurately predicting the timing and intensity of this seasonal cycle is crucial to 

estimating the seasonal carbon fluxes of this ecosystem and of Earth as a whole. Over many 

seasons, this prediction becomes more important as it can have a sizeable impact on global inter-

annual fluxes of carbon.  

Simulation of phenology is especially challenging in tropial grasslands. Unlike their 

temperate counterparts, phenology of these systems does not depend on strong seasonal changes 

in temperature and day length. In the model intercomparison presented by Schwalm et al. (2010), 

skill decreases in savannas and grasslands as compared to forested biomes. Model skill also 

decreased during fall and spring as models poorly handled initial leaf growth and senescence 

(browning). This was the case particularly for biomes with a seasonal cycle of leaf area index 

(LAI, the ratio of leaf area to the area of the underlying surface). One significant difference in 

how models handle this seasonal cycle is whether or not LAI is prescribed via satellite or is 
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prognosed. Overall, models that prescribe LAI have better skill compared to models that 

prognose LAI [Schwalm et al., 2010].  

The use of satellite imagery to prescribe phenology of tropical grasslands is problematic 

because the beginning of the growing season is controlled by the onset of seasonal rains (the 

monsoon). This critical transition between the unproductive dry season and peak growing 

conditions coincides with heavy cloud cover associated with monsoon rains. This problem is 

highlighted in Figure 1 showing the contrast in cloud cover and vegetation over West Africa in 

January and July. Unfortunately, satellite imagery at the beginning of the growing season in 

tropical grasslands is very often missing because it is precisely the onset of rainfall that triggers 

plant growth. Rather than a well-observed and gradual transition from brown to green at the 

onset of the growing season, satellite data in visible wavelengths in this region instead shows a 

sudden transition from brown to white. Only when the clouds clear later in the season are highly 

productive grasslands revealed. 

Vegetation properties derived from visible channels measured by the Moderate 

Resolution Imaging Spectroradiometer (MODIS) include LAI, the fraction of photosynthetically 

active radiation absorbed by vegetation (fPAR), and the Normalized Difference Vegetation Index 

(NDVI). All of these products are impossible to retrieve through heavy cloud cover, and produce 

unrealistically low values if the optical path is obscured by even thin or sub-pixel clouds. To 

compensate for cloud cover, all of these products are composited over eight days by assigning a 

value to each pixel that represents the maximum observed over the compositing period. 

Compositing smears out the brown-to-green transition associated with the first emergence of 

grasses, and may also alias the first appearance of green vegetation toward the end of the 

compositing period. Figure 2 shows a timeseries of LAI retrieved by MODIS along with the 
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number of valid pixels for 2015 across a 1°x1° (latitude x longitude) grid cell centered at 10° N 

and 11° E in Nigeria. Although valid LAI retrievals are available for over 90% of pixels in the 

dry season (days 300 to 75), the frequency of valid data drops dramatically with the onset of 

monsoon rains and there are very few valid data at all during the period of maximum growth 

(days 180 to 250). Worse, retrieved LAI shows strong dropouts during periods of heavy cloud 

cover when data are also sparse. These dropouts are unrealistic: actual grass may grow more or 

less quickly during the greenup period, but does not shed leaves until senescence much later in 

the year [Tan et al, 2011]. Models that use satellite data to prescribe LAI may substantially 

underpredict carbon when they are forced to repeatedly shed and regrow their canopies because 

of unrealistic early-season dropouts resulting from subgrid-scale cloud cover [Kevin Schaefer, 

personal communication]. 

As an alternative to prescribing seasonal and spatial variations of vegetation from satellite 

data, mechanistic models have been developed to predict phenology from local environmental 

conditions and the known behavior of plant physiology [e.g., Jolly and Running, 2004; Krinner 

et al, 2005; Corbin et al, 2016]. Advantages of this approach include the ability to conduct 

simulations during periods of heavy cloud cover, near-real time simulations when fresh imagery 

is not available, and simulations of both the distant past or the future for which there are no 

satellite data. The main disadvantage is that both the timing and magnitude of vegetation growth 

may be incorrectly simulated by prognostic phenology models. It is therefore very important to 

evaluate quantitative predictions of vegetation growth by prognostic models against 

measurements. Detailed multi-year datasets of the seasonal timing of grassland phenology are 

extremely sparse over sub-Saharan Africa.. Many studies [e.g. Prince, 1991; Fensholt et al., 

2013; Dardel et al., 2013; ] have used MODIS LAI and NDVI to describe and model Sahel 
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grasslands due to the absence of in situ measurements. While these studies are important for our 

understanding of this region, most focus on the interannual variability rather than seasonal 

variability. The studies that do focus on seasonality [Pierre et al., 2011; Bobee et al., 2012] 

provide only limited information about the transition from brown to green for the reasons 

outlined above. 

Here we evaluate a new model of grassland phenology [Corbin et al, 2016], focusing on 

the early season greenup over North Africa which has previously been poorly observed. We take 

advantage of new data from NASA satellites which are less affected by cloud cover than visible 

imagery from MODIS. The Orbiting Carbon Observatory 2 (OCO-2) was used to retrieve solar-

induced fluorescence (SIF) of chlorophyll as a proxy for photosynthesis. The Soil Moisture 

Active Passive (SMAP) satellite was used to retrieve surface (0-5cm) soil moisture. Chlorophyll 

fluorescence is retrieved in the near-infrared by the in-filling of solar Fraunhofer lines. Due to 

the nature of this signal, SIF retrievals are only affected by thick clouds that attenuate more than 

90% of visible light [Frankenberg et al., 2012]. Soil moisture retrievals from SMAP are based on 

the dielectric properties of the soil, collected at low microwave frequencies and are almost 

completely insensitive to clouds. The nearly simultaneous retrieval of both surface soil moisture 

and chlorophyll fluorescence in tropical grasslands were used to quantify phenological triggers, 

time lags, and rates of growth as a function of soil moisture for early season grassland 

development over North Africa. 

Retrievals of SIF in the near infrared (from OCO-2) and soil moisture in the microwave 

(from SMAP) are much more robust than retrieval of LAI from visible radiance by MODIS. 

Nevertheless, coverage of SIF on a any given day is quite sparse due to the narrow swath and 

orbital geometry of OCO-2 and heavy clouds still obscure some retrievals. Even using OCO-2 
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and SMAP, these limitations mean it is still impossible to document early season phenology at a 

given location. We therefore focus on analyzing changes in SIF with changes in soil moisture 

across many locations, rather than attempting to reconstruct seasonal timeseries of SIF and soil 

moisture at individual pixels. This approach allows us to quantify soil moisture triggers for 

growing season onset, the rate of early season growth, and the approach to maturity of North 

African grasslands as a function of soil moisture, and to compare these mechanistic relationships 

directly to those simulated by SiB4. 

Hypotheses 

1) The growing season onset in Sahelian grasslands will be defined by a soil moisture 

threshold. Plant growth will not begin until fraction plant available water in the top 18 

centimeters reaches .12. 

2) After reaching this threshold, growth begins as carbon in the roots is allocated to plant 

stem and leaves. As leaves begin to grow, carbon is then fixed from the atmosphere via 

photosynthesis. The rate of photosynthesis is governed by enzyme kinetics as described 

in the methods. During this period, the relationship between SIF and soil moisture will be 

linear. 

3) Observed SIF will be similar in timing and magnitude as described by SiB4. 

Methods 

The area examined in both the model and observations was a box outlined from 8°N to 

20°N and 15°W to 35°E. This area includes a variety of ecosystems from highly productive 

tropical forest to highly unproductive desert. The focus of this study is tropical (C4) grasslands 

that grow and senesce seasonally. Observations were only considered if the location was 

identified as a grassland or barren landcover type in OCO-2 retrievals using the International 
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Geosphere–Biosphere Programme (IGBP) classification based on 1 km MODIS imagery. Model 

output was also only considered for subgrid-scale areas that were identified as C4 grass from the 

same underlying MODIS classifications. These grasslands were analyzed during the growing 

season from May 1st to August 30th of 2015. Specifically, they were examined during the onset 

of growth which we defined separately at each location as the period before the seven day 

average of soil moisture retrieved by SMAP reaches its maximum. 

Observations 

The SMAP satellite was utilized for its passive, level two soil moisture data (SPL2SMP). 

As described in O’Neill et al., (2015), this data is gathered via the passive sensor on SMAP that 

measures the intensity of microwaves emitted by the soil. This microwave intensity is dependent 

on the dielectric properties of the soil, which are directly related to volumetric water content 

(vwc, the ratio of water volume to soil volume, in cm
3
 cm

-3
). This measurement can quantify the 

volumetric water content in the first five centimeters of soil with an accuracy of ±0.04 cm
3
/cm

3
. 

At 6:00 am local overpass time, SMAP collects soil moisture retrievals for 36-km pixels in a 

swath approximately 1,000 km wide. SMAP provides global coverage after three days and 

repeats its track after sixteen days. These data were obtained through the NASA National Snow 

and Ice Data Center Distributed Active Archive Center at www.nsidc.org/data/smap. 

SIF represents one of three outcomes for the energy of photons absorbed by a 

chlorophyll-a molecule: photosynthetic carbon assimiliation; fluorescent emission; and 

dissipation as heat (also known as non-photosynthetic quenching). As sunlight is absorbed, a 

chlorophyll molecule is raised to an excited state. Fluorescence occurs when radiation, between 

600 and 800 nm, is re-radiated from the chlorophyll molecule as it returns to its ground state 

[Misra et al., 2012; Krause and Weis, 1984]. SIF is known to be an indicator of plant 
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photosynthesis [Krause & Weis, 1984; Campbell et al., 2007; Baker, 2008] and recent studies 

[Zhang et al., 2014; Guanter et al., 2012; Frankenberg et al., 2011b] have shown that remotely 

sensed SIF can be used as a proxy for Gross Primary Production (photosynthesis, GPP) in 

surface vegetation. SIF has been evaluated in a variety of biomes including croplands [Cheng et 

al., 2014; Gaunter et al., 2014], forests [Yang et al., 2015; Lee et al., 2013], and grasslands 

[Damm et al., 2015]. While the relationship between remotely sense SIF and GPP has been 

found to vary across ecosystems, SIF can still be used a proxy for plant productivity and has 

been found to be related to GPP more consistently than previously used remotely measured 

products, such as LAI, because it is emitted as a direct consequence of chlorophyll 

photochemistry [Damm et al., 2015]. 

We used SIF retrievals acquired from the OCO-2 satellite. OCO-2 takes advantage of 

Fraunhofer lines at wavelengths 758.8 nm and 770.1 nm to retrieve fluorescence [Frankenberg et 

al., 2011a, Joiner et al., 2011]. Fraunhofer lines are produced when particular wavelengths of 

radiation are less intense as they are emitted from a star due to gases in the star’s atmosphere that 

are partially absorptive in those particular wavelengths. Without this effect, it would be 

impossible to identify signals of SIF against the much brighter background of scattered solar 

radiation at these wavelengths [Frankenberg et al., 2011a]. The fluorescence retrieval algorithm 

is outlined in Frankenberg et al. (2011a) and Joiner et al. (2011) with specifics to OCO-2 in 

Frankenberg et al. (2014). It is important to note that OCO-2 passes over at 1:35 pm local time, 

different from SMAP. The maximum OCO-2 swath width is 10.3 km [Frankenberg et al., 2014] 

with measurement resolution of 1.3 x 2.25 km
2
. OCO-2 data were obtained through the NASA 

Goddard Earth Science Data and Information Services Center at www.co2.jpl.nasa.gov. 
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Using remotely measured SIF and soil moisture to diagnose productivity in Sahelian 

grasslands offers several coverage advantages, but spatial and temporal limitations still exist in 

both datasets. OCO-2 has near global data coverage after sixteen days and SMAP has global 

coverage after three days. SIF retrievals from OCO-2 are available along 10 km wide swaths, for 

successive orbits 24° apart in longitude. Precession of the OCO-2 orbit fills in the gaps between 

these narrow swaths over 16 days, but growing season onset is nearly certain to fall between 

successive retrievals at any given location. Retrievals of near-surface soil moisture by SMAP are 

less sparse because of the wider swath, but still average only once every three days for 

successive retrievals at the same location. Neither soil moisture nor GPP can therefore be 

estimated for one day at every location nor at one location for every day. Instead of evaluating 

ecosystem productivity at each pixel over time, we analyzed SIF relative to soil moisture. To 

accurately compare the observations to the model, SiB4 was evaluated in the same fashion.  

The difference in time and location of SMAP and OCO-2 retrieval swaths was 

challenging. There were many days when the OCO-2 and SMAP swaths were completely out of 

sync, producing zero co-located points (Figure 3). Near-surface soil moisture responds to the 

time integral of precipitation minus losses from evapotranspiration, runoff, and percolation to 

deeper layers. It therefore has a memory of several days in the study region. We addressed the 

space-time mismatch between OCO-2 and SMAP swaths by assuming that a given pixel retains 

its soil moisture in the top 5 cm for two days after it’s measured, or until it is measured again, 

whichever comes first. In this way, we produced a fully populated 36-km grid of SMAP 

retrievals for every day during the study period. The SMAP data were composited into a three 

day grid (0.4° by 0.3°) (Figure 4). Pairs of SIF and soil moisture retrievals were constructed by 

sampling the three-day composite soil moisture grid at the time and location of every valid SIF 
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retrieval. Co-locating of SIF and SMAP retrievals was done for every day from May 1st, 2015 to 

August 30th, 2015 across the study area. This co-location was done for each day by locating any 

SIF retrievals within the 0.4° by 0.3° SMAP 3-day composite grid cell. The OCO-2 data has a 

finer resolution than the SMAP data so each soil moisture retrieval was co-located with many 

SIF retrievals. Figure 4 shows the result of co-locating one day’s worth of SIF retrievals within 

the 3-day soil moisture composite. 

Another challenge was the isolation of data that represented early season growth only, 

because we wanted to focus on the relationships among soil moisture and emergence, growth 

rate, and approach to maturity rather than changes in grassland productivity during senescence 

and dormancy. To better identify this period, a weekly running average of soil moisture was 

created for each grid cell in the SMAP 3-day composite. Figure 5 shows the weekly running 

average of soil moisture at a given location over the course of a year. As shown, the shape of the 

soil moisture seasonality is dramatically different depending on the location of the co-located 

retrievals. The length and timing of the growing season varies across the study area. To hone in 

on the onset of growth, co-located retrievals were only considered if they occurred before the 

maximum weekly averaged soil moisture. The dark shaded area in Figure 5 shows which data 

were used at these locations. Using this method, the data are representative of the green-up 

period only, neglecting retrievals representative of the brown-down. This process produced over 

100,000 co-located points. 

The fjeld-of-view (FOV) of a SMAP observation is much larger than the OCO-2 FOV 

which means there can be many SIF retrievals inside one SMAP composite grid cell. All SIF 

retrievals were averaged for each soil moisture retrieval to produce one SIF value for each 

SMAP grid cell. Daily mean SIF averages for each SMAP cell were binned according to their 
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co-located soil moisture value. Soil moisture bins were created for every 0.025 cm
3
/cm

3 
from 0.0 

cm
3
/cm

3
 to 0.30 cm

3
/cm

3
. The average and standard deviation of SIF were determined for each 

bin.  

Model 

The fourth version of the Simple Biosphere Model (SiB4) simulates heterogeneous land-

atmosphere fluxes, environmentally responsive prognostic phenology, dynamic carbon 

allocation, and cascading carbon pools from live biomass to surface litter to soil organic matter.  

Rather than relying on satellite data for the vegetation state, SiB4 fully simulates the terrestrial 

carbon cycle by using the carbon fluxes to determine the above and belowground biomass, which 

in turn feeds back to impact carbon assimilation and respiration.  For every time-step, SiB4 

computes albedo, radiation, temperature, and soil moisture, as well as the resulting energy 

exchanges, moisture fluxes, and carbon fluxes.  Photosynthesis depends directly on 

environmental factors (humidity, moisture, and temperature) and the fraction of absorbed 

photosynthetically active radiation (FPAR, calculated from aboveground biomass); and carbon 

uptake was determined using enzyme kinetics [Farquhar et al., 1980] and stomatal physiology 

[Collatz et al., 1991 and 1992].  Carbon release occurs from both autotrophic and heterotrophic 

respiration.  Both biomass growth and maintenance contribute to autotrophic respiration, and 

heterotrophic respiration depends on moisture, temperature and the amount of dead plant 

material in the surface and soil carbon pools.  

To calculate the carbon pools, carbon fluxes are summed daily, and the net carbon is 

allocated to the live pools.  For grasslands, the carbon fixed during photosynthesis is allocated to 

four live carbon pools (leaf, fine root, stem, and seed).  The allocation of carbon to the separate 

pools is determined from the current phenology stage, which depends on both the benefit of 
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growing new aboveground biomass and the plant stress from day length, soil moisture, and 

temperature.  The phenology stage, combined with temperature and moisture environmental 

adjustments, dictates the fraction of photosynthesized carbon allocated to each live carbon pool.  

Once the carbon is allocated, the pools and related land surface properties are updated and used 

for sub-hourly photosynthetic assimilation as well as sub-hourly autotrophic and heterotrophic 

respiration.  Carbon from the live carbon pools is transferred daily to six dead carbon pools 

(metabolic litter, structural litter, standing dead, soil litter, soil slow, and soil passive).  This 

sequence completes the carbon cycle, providing self-consistent predicted vegetation state, carbon 

pools, and land-atmosphere exchanges.  

Since grasslands are extremely responsive to precipitation, simulations take advantage of 

the stress-based phenological scheme in SiB4.  To start a growing season, growth was stimulated 

once the grassland has sufficient light, temperature and moisture.  Early in the growing season, 

the assimilated carbon is allocated primarily to the stems and leaves to simulate the rapid green-

up.  As the aboveground live biomass increases, the net benefit of adding new leaves decreases 

and the grassland reaches the mature phenological stage where the allocation was more evenly 

distributed amongst the pools.  Once stresses begin increasing due to hot conditions and/or soil 

moisture stress, carbon allocation is shifted to the seed and root pools.  

While phenology controls the addition of new carbon into the appropriate pools, SiB4 

simulates senescence by altering the biomass transfer rates.  The rate of transfer for the roots 

depends on moisture and temperature, and while it can change seasonally, it occurs year-round.  

In contrast, the aboveground live carbon pool transfer is highly varying.  For grasslands, to 

represent both the gradual browning in temperate climates as well as the rapid brown-down in 

stressed desert environments, the transfer of the aboveground live biomass depends on the 
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assimilation rate, daylength, and temperature (both low and high): as these stresses increase, the 

transfer rate increases.  The transfer of the leaf, stem, and seed biomass to the standing dead and 

litter pools turns the grassland from green to brown and eventually ends the growing season once 

the live pools are depleted.  In the case of desert environments as seen across Africa, the high 

temperatures during the dry season rapidly increase the rate of aboveground biomass transfer, 

causing the rapid browning and subsequent end of the growing season. 

An upgrade to SiB4, as compared to SiB3, was its ability to model SIF as part of 

photosynthesis. The three fates of photons absorbed by leaves include SIF, breaking chemical 

bonds in carbon dioxide and water to create sugars in photosystems 1 and 2 (PSI, PSII), or being 

released as heat via nonphotochemical quenching (NPQ) or thermal dissipation (D). The relative 

yields (�x) of these processes accounts for all photons absorbed by chlorophyll [van der Tol et 

al., 2014], so that:  

�!  +  �!   +  �!   +  �!"#   =  1                                            (1) 

 

Fluorescence yield (�f) has been shown to correlate with photosynthetic yield (�p) under 

quiescent conditions [Genty et al., 1988] as well as stressed conditions like drought or extreme 

temperature [Flexas et al., 2002; Daumard et al., 2010]. These stresses are immediately felt as 

changes GPP and/or SIF while canopy-scale physiology (i.e. LAI, fPAR) take longer to react. 

Since �p is calculated by SiB4, SIF can be estimated using the relationship between �p and �f. 

In van der Tol et al., (2014), a detailed canopy-level model is described. While useful, this model 

is cumbersome to simulate globally. Instead, SiB4 contains a streamlined set of equations that 

exploits the enzyme-kinetics features in SiB4 to simulate SIF in an efficient manner. 
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The yields of the photon pathways are determined by nondimensional rate constants, given by:  

�! =
!!

!
                                                                                 (2)       

A maximum quantum yield of photosynthesis, or �pmax, in PSII can be expressed as a function of 

rate constants for fluorescence (kf), thermal deactivation (kD), photosynthesis (kp), as: 

�!"#$ =
!!!

(!!! !!! !!)
                                                                       (3)       

Within SiB4 the values of kf and kp0 are constant (0.05 and 4.0, respectively) and the coefficient 

for thermal dissipation (kD) is 0.95 when canopy temperature is below 300K. Otherwise, kD is 

calculated by:  

�! = 0.95 × ������� − 300  × 0.0236                                                 (4) 

The photochemical yield below the optimum rate can be calculated as:  

�! = �!"#$ [
��� 

��  +2.0�
∗

��  − �
∗

���
 ]                                                                (5) 

where Cc is chloroplast CO2 concentration, �
*
 is CO2 compensation point, and PAR is 

Photosynthetically Active Radiation. An x-factor, relating actual and optimal quantum yield, is 

obtained by:  

� = 1.0 −  
!!

!!"#$

                                                                      (6)       

The relationship between NPQ and photosynthetic yield is not completely understood, therefore 

empirical relationships outlined in van der Tol et al. (2014) will be used. It is shown that there is 

relationship between the rate constant for NPQ (kNPQ) and x is different under conditions of low 

and high stress. At low stress, kNPQ is defined as: 

�!"# = � !"#!  
 1.0−�2  × �

�1

(�2+��1)
                                                              (7) 
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where kNPQ = 2.48, a1 = 2.83, and a2 = 0.114. Under high vegetative stress the equation is the 

same but with coefficients kNPQ = 5.01, a1 = 1.93, and a2 = 10.0. The exact definition of what 

constitutes vegetative stress is uncertain. For this study, we use a value of 0.5 for the waterstress 

parameter as defined by Baker et al. (2008) to decipher between non-stressed and stressed 

conditions. With these terms we can calculate a maximum fluorescence yield (�fmax) as: 

�!"#$ =  
 ��

(��+ ��+ ����)
                                                            (8) 

Actual fluorescence yield (�f) is calculated as:  

�! =  �!"#$ (1.0−  ϕ
�
)                                                          (9) 

 

To approximate SIF at the satellite level, atmospheric scattering is accounted for by multiplying 

canopy-level SIF by the ratio of downwelling shortwave at the surface to top-of-atmosphere 

radiation.  

A regional SiB4 simulation was performed over the study region with hourly output for 

every plant functional type within each .5° by .5° grid box producing over 5,000 grid points. 

Subgrid-scale areas covered by grass, shrubs, forest and bare soil were simulated separately 

using hourly surface weather derived from the NASA Modern Era Reanalysis (Rienecker, et al., 

2011) on a 0.5 x 0.67 grid. The exact same method of co-locating, averaging, and binning as 

described for the observations, was done for model output. To best mirror the observations, soil 

moisture was collected at 6:00 am local time and SIF output was collected at 1:00pm local time.  

A cloud mask was used to exclude output for which less than half of the solar radiation at the top 

of the atmosphere reached the surface.  
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Results 

We compiled a comprehensive data set of co-located contemporaneous SIF and soil 

moisture retrievals during the early growing season across the African Sahel. For a view of the 

spatial coverage of the data set, Figure 6 shows the number of co-location observations in each 

.5° by .5° grid box. Figure 7 shows the number of simulated co-locations from SiB4 output. The 

co-located retrievals are different for the model and observations because the model has ouput 

for every grid cell for every time step whereas the observations are only co-located when the 

satellite swaths overlap. Co-located observations and simulations are most common east of 20°E 

and north of 15°N.  This distribution is a product of both the frequency of clear skies and of 

landcover type. Areas with the highest density of co-located observations are mainly grassland 

and barren while areas with the lowest density of co-located observations are mainly forest and 

savanna which were excluded from this study.  

First, the two datasets were examined on different axes, to better compare the overall 

patterns. In Figure 8, average observed SIF is plotted against binned soil moisture with the 

number of corresponding retrievals for each soil moisture bin plotted as a histogram. Each soil 

moisture bin has at least three thousand co-located retrievals with over five thousand in the 

majority of them. While each SIF versus soil moisture point has a large variance, a clear pattern 

emerges in the data. When the top five centimeters of soil contain less than 0.1 cm
3
/cm

3
 of water, 

grasslands are dormant. From 0.0 to 0.1 cm
3
/cm

3
, SIF is low but fairly constant. Interestingly, 

SIF is still greater than zero in the driest soils. While only barren and grassland landcover pixels 

were choosen, some shrubs or trees may exist on a sub-pixel scale resulting in nonzero SIF. 

Productivty emerges around soil moisture levels of 0.1 cm
3
/cm

3
 with near linear growth to 0.2 
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cm
3
/cm

3
. From 0.1 to 0.2 cm

3
/cm

3
, SIF increases linearly with increasing soil moisture.  Beyond 

soil moisture levels of 0.2 cm
3
/cm

3
, grasslands appear to mature with constant productivity. 

Next, modeled SIF versus binned soil moisture will be examined in Figure 9. More co-

located SIF and soil moisture retrievals were collected for the model as compared to the 

observations. This is due to the requirement that OCO-2 provided in only sampling a small 

portion of the study area every day while SiB4 has fluorescence simulations for every location, 

every day. The variance for each point is noticeably less as compared to the observations. A 

major reason for this is that grasslands are modeled by the same equations and act the same at 

every location. Modeled SIF has a much larger range from minimum to maximum as compared 

to the observations. Most markedly, the model overestimates SIF for nearly every soil moisture 

bin. Several potential reasons for this include: SiB4 overestimating LAI or Vmax, not enough in-

canopy absorption, issues with atmospheric radiative transfer, or excessive fluorescent yield.  

Modeled SIF is dormant up to 0.0525 cm
3
/cm

3
 but begins to grow after 0.055 cm

3
/cm

3
, 

slightly earlier than the observations. SiB4 does not have a required volumetric soil moisture 

requirement before growth but rather a required fraction of total available water in the top three 

soil layers (.12) along with a required number of sustained days (4) with this requirement. 

Similar to the observations, SIF is likely nonzero in SiB4 due to a minimum LAI required by 

SiB4 regardless of soil moisture. As grasslands contiue to grow, SIF responds linearaly to 

increasing soil moisture. SiB4 seems to model the rate of this increase fairly well. Still, SIF is 

overestimated for each soil moisture value. Mature growth occurs around 0.225 cm
3
/cm

3 
but not 

before dipping around 0.200 cm
3
/cm

3
.  

Overall, SiB4 models the response in grassland productivty to soil moisture relatively 

well in Sahelian grasslands. While there are some descrepancies between the model output and 
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observations, they have similar shape and are in good agreement. The biggest descrepancy is 

SiB4’s systematic over estimation of SIF. This is due to either an overestimation of LAI with 

accurate SIF, an overestimation of SIF with accurate LAI, or something in between. 

Figure 9 shows a similar pattern in modeled SIF versus soil moisture compared to the 

observations. Grasslands remain unproductive and dormant with soil moisture values less than 

0.05 m
3
/m

3
. Growth begins near 0.05m

3
/m

3
 and becomes nearly linear until 0.225 m

3
/m

3
. 

Grasslands become mature with near constant fluorscence after 0.225 m
3
/m

3
. Finally, to compare 

the overall shape of both datasets, they will be compared, side-by-side, on the same scale in 

Figure 10. This plot shows that SiB4 does a good job modeling fluorescence versus soil 

moisture, particuarly the overall pattern. As previously noted, the magnitude of fluorescence is 

still drastically higher than the remotely-sensed fluorescence retrievals.  

Evaluation of Hypotheses 

1) The onset of plant growth is characterized by a soil moisture threshold however it was 

predicted too early, occuring around .075 cm
3
/cm

3
 in the model and near .10 cm

3
/cm

3
 in 

the observations. 

2) After the onset of growth, SIF and soil moisture were directed related following a linear 

relationship. The magnitude of SIF was not accurately predicted. 

3) The methods and equations described by SiB4 largely overestimate SIF. The way SIF is 

scaled from leaf to canopy in SiB4 is a likely cause. 

Conclusions 

This study presents a successful analysis of early season phenology in Sahelian 

grasslands. By doing so, this study shines a light on relatively undersampled and less understood 

region. More than one hundred thousand of paired observations of near-surface soil moisture and 
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grassland productiviy obtained via satellites creates a dataset that has never beeen utilized before. 

This data set provides a more robust overview of this region, particularly compared to products 

like LAI retrieved by MODIS.   

This new data set shows three regimes in the response to grassland productivity to soil 

moisture. When soils are driest, grasslands are relatively dorminant with nonzero SIF from 

shrubs and trees. As soil moisture increases, grassland productivity emerges and increases 

linearly. Grasslands then reach a soil moisture threshold for which productivity remains 

relatively constant. SiB4 models does a fairly good modeling these processs with a few 

exceptions. SiB4 begins grassland growth slightly earlier than observations. This is due to SiB4’s 

moisture and day requirement of fraction of total available water. SiB4 also systematically 

overestimates grassland SIF for nearly every soil moisture. Several potential reasons for this are: 

1) an overestimation of LAI; 2) poorly modeled radiative transfer at the canopy level; 3) 

excessive fluorescent yield. 

To build this body of work, these methods can be utilized in other tropical grasslands 

across the world over multiple seasons. The growing seasons of 2016 and 2017 can now be 

analyzed as SMAP and OCO-2 data continue to be collected. The last piece to this body of work 

is to adjust SiB4 based on newfound relationships between fluorescence and soil moisture. 

Extending this to other models, fluorescence could be tested as a replacement for satellite 

derived LAI to prescribe initial plant growth.  

This study is just one small stepping stone in the pursuit of accurately modeling and 

understanding the global carbon cycle. More analysis will be required, particularly on 

understudied and poorly understood regions like Sahelian grasslands, to get closer and closer to 

that goal. 
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