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ABSTRACT 

 

 

 

TEMPERATURE SENSITIVITY IN ABOVEGROUND NET PRIMARY PRODUCTIVITY IN 

 

SEMI-ARID GRASSLANDS 

 

 

  

Although climate models forecast warmer temperatures with a high degree of certainty, 

precipitation is the primary driver of aboveground net primary productivity (ANPP) in most 

grasslands. In contrast, variations in temperature seldom are related to patterns of ANPP. Thus 

forecasting responses to warming is a challenge, and raises the question: how sensitive will 

grassland ANPP be to warming?  I evaluated climate and multi-year ANPP data (67 years) from 

eight western US grasslands arrayed along substantial mean annual temperature (MAT, ~7-14 

oC) and mean annual precipitation (MAP, ~300 – 500 mm) gradients. I used regression and 

analysis of covariance (ANCOVA) to assess relationships between ANPP and temperature, as 

well as precipitation (annual and growing season) to evaluate temperature sensitivity of ANPP. I 

also related ANPP to the Standardized Precipitation Evaporation Index (SPEI), which combines 

precipitation and evapotranspiration estimates. Regression models indicated that variation in 

growing season temperature was negatively related to total and graminoid ANPP, but 

precipitation was a better predictor than temperature. Growing season temperature was also a 

significant parameter in more complex models, but again precipitation was consistently a 

stronger predictor of ANPP.  Surprisingly, neither annual nor growing season SPEI was as 

strongly related to ANPP as was precipitation alone. I conclude that warming will affect ANPP 

in these grasslands, but that predicting temperature effects from natural climatic gradients is 
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difficult. This is because unlike precipitation, warming effects are likely to be complex and site 

specific as well as moderated by regional shifts in the C3/C4 ratios of plant communities.   
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CHAPTER ONE: INTRODUCTION 

 

 

 

Global temperatures have been on the rise and are expected to increase between 1.1-6.4 

°C by 2100 (IPCC 2007) and rate of warming in the United States over the past decade was 

approximately 50% higher than the global average (Hansen et al. 2010). Although it is vital that 

we understand how ecosystem functioning of all biomes will be affected by warming 

temperatures, grasslands are particularly important to study because they comprise 

approximately a third of the earth’s terrestrial surface. One of the most important ecosystem 

functions is the conversion of inorganic carbon to organic forms often measured as aboveground 

net primary productivity (ANPP).  

In grassland ecosystems, precipitation has been shown to be the best predictor of the 

variation in ANPP (Lauenroth 1979, Sala et al. 1988, Harpole et al 2007, Knapp et al. 2008, 

Merbold et al. 2009, Jung et al 2011, Zhang et al. 2014). Other abiotic variables have been 

shown to be important as well, such as soil-texture (Noy-Meir 1973, Sala 1982, Lane et al. 1988, 

Epstein et al. 1997) and temperature. However, temperature sensitivity has only been detected in 

warming experiments (Niu et al. 2008, 2011, Cantarel 2013), but not in observational studies that 

use natural gradients (Sala et al. 1988). One exception is a gradient study conducted by Epstein 

et al. (1997) in which temperature was shown to be negatively correlated to, and a significant 

predictor of ANPP.  

Unlike precipitation, temperature can have both positive and negative effects (Wu et al. 

2011), as well as direct and indirect effects on productivity. Increased temperatures can have a 

negative and indirect effects on plants under low levels of soil moisture by decreasing stomatal 

conductance to avoid water loss (through evapotranspiration), resulting in a reduction in carbon 
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fixation (Ryan et al. 1991, Niu et al. 2008). Alternatively, temperature can have positive effects 

when soil moisture is high in grasslands by escalating microbial activities that make nutrients 

available (an indirect effect) or increasing basic plant growth processes and the length of the 

growing season (direct effects; ( Ryan et al. 1991, Kardol 2010). Therefore, mean annual 

precipitation (MAP) and resulting mean soil moisture content can affect the direction (Xia et al. 

2009, Wu et al. 2011) and magnitude (Epstein et al. 1997) of the effects of temperature in 

grasslands. Soil moisture varies throughout the year, meaning the effects of temperature could 

sometimes be negative (Cantarel et al. 2013) or positive (Bloor et al. 2010), potentially making 

the net effect minimal and difficult to detect. Even if a temperature signal could be found, 

warming experiments indicate that the negative effects of warming often take years to offset the 

positive effects (Cantarel et al. 2013), highlighting the importance of long-term studies.  

There are two primary ways to examine climate-ANPP relationships: site-based 

experimental studies and natural gradient, observational studies. Although site-based 

experimental studies are important for identifying the key drivers and their interactions at a given 

site, such studies are often relatively short (1-5 years) and it is difficult to extrapolate these 

findings to a larger scale due to many other confounding variables that are altered in unexpected 

ways (Dunne et al. 2004). Gradient studies, however, can best serve as ‘natural’ laboratories for 

climate-ANPP studies because they incorporate a range of abiotic and biotic variables (De 

Frenne et al 2013). Also, these studies can be used to substitute “space-for-time” (Rustad 2008), 

meaning researchers could potentially examine the future effects of warming for one region by 

examining similar regions that currently exhibit higher temperatures.   

Epstein et al. (1997) was able to utilize a gradient approach and detected temperature 

sensitivity in ANPP by minimizing the variation in precipitation and maximizing the temperature 
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gradient across grassland types. He did this by analyzing the temperature-ANPP relationship 

within 5-mm bins of MAP. However, even in this tightly constrained analysis, temperature 

sensitivity was only found in more xeric grasslands (MAP <80 cm), but not in mesic grasslands 

(MAP >80 cm). This indicates at lower levels of precipitation, the negative effects of elevated 

temperature outweigh the positive effects (Epstein et al. 1997).   

Epstein et al. (1997) conducted simple regressions and a stepwise-regression within each 

bin of MAP, using ANPP as the dependent variable and soil texture (clay and sand content) and 

mean annual temperature (MAT) as the independent variables. However, the stepwise-regression 

was conducted to determine whether MAT or soil texture were better predictors of ANPP within 

each bin of MAP and did not search for a model that could best explain the variation in 

productivity. It also did not include MAP in the stepwise-regression as an independent variable, 

therefore the relative importance of MAT and soil texture in comparison to MAP is unknown.    

Due to the variety of ecosystem services grasslands provide, it is important to identify 

statistical models that best explain the variation in ANPP in grasslands, as well as the relative 

importance of each parameter in the selected model. Akaike’s Information Criterion (AIC; 

Johnson and Omland 2004) is a common model selection process that examines all potential 

parameters and selects the simplest model with the best fit. If a particular term is included in the 

model, it can be concluded that the parameter is important. The relative importance of each 

model can be found by calculating the Akaike weights (Johnson and Omland 2004) for each 

model by summing the models that included the term of interest and assigning each term a 

weight on a scale of 0-1, with 1 being the most important.  

Although Epstein et al. (1997) was able to identify a negative relationship between 

temperature and productivity in relatively dry grasslands, there has been no independent 
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verification of this relationship. I used the Standardized Precipitation Evaporation Index (SPEI, 

Vicente-Serrano 2010) as a tool to confirm that the primary effects of temperature on ANPP are 

through increased evapotranspiration (a negative indirect effect on soil-moisture content). The 

SPEI destimates the severity of drought, by taking into account the level and timing of 

precipitation events and the corresponding negative effects of temperature on evapotranspiration. 

By regressing SPEI against ANPP and comparing it to precipitation vs. ANPP regressions, one 

could determine if including the evapotranspiration component (built into SPEI) improves the 

model. If SPEI is a significantly better predictor of ANPP than precipitation alone, that would 

indicate the primary effects of temperature on ANPP are the negative effects on the soil moisture 

status.    

The overarching goal of this thesis was to evaluate temperature sensitivity of ANPP in 

semi-arid grasslands. In chapter 2, I present the results of my analysis of 67 years of data from 

eight western US grasslands arrayed along substantial mean annual temperature (MAT, ~7-14 

oC) and mean annual precipitation (MAP, ~300 – 500 mm) gradients. This was done to address 

the prediction that if there were direct effects of variation in temperatures ANPP then either a 

positive or negative effect of higher temperatures on ANPP would be detected. Positive effects 

could result from lengthening the growing season, which would be particularly important along 

the northern end of the gradient. Negative effects could result from exceeding the thermal optima 

of the dominant plants, which would likely be more important at the southern end of the gradient. 

Similarly, if the effects of increasing temperatures were indirect then a negative effect of 

temperature on ANPP would also be detected, but this would be the result of the effects of soil 

drying.  
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CHAPTER TWO: TEMPERATURE SENSITIVITY IN ABOVEGROUND NET PRIMARY 

PRODUCTIVITY IN SEMI-ARID GRASSLANDS 

 

 

 

INTRODUCTION  

Of the predicted climatic changes forecast to occur due to anthropogenic disruption of the 

global climate system, the most certain of these is for increased atmospheric temperatures 

(Stocker et al. 2013).  Moreover, there is abundant evidence that warming is already occurring 

across much of the globe (Rummukainen 2012).  While virtually every biome may be impacted 

by warming, the degree of impact is likely to vary, and it is therefore essential to understand how 

sensitive different ecosystems are to temperature change. For grassland ecosystems, precipitation 

has long been considered the dominant climatic driver of ecosystem function over much of the 

globe (Harpole et al. 2007, Merbold et al. 2009, Jung et al. 2011, Zhang et al. 2014). This has 

been repeatedly demonstrated for aboveground net primary production (ANPP) in site-based 

observational studies (Briggs and Knapp 1995, Jobbágy et al. 2002, Derner et al. 2008) studies 

across broad geographic gradients (Webb et al. 1978, Knapp and Smith 2001, Reed et al. 2009, 

Guo et al. 2012), and in a number of experiments in grassland ecosystems (Yahdjian and Sala 

2006, Sherry et al. 2008, Cherwin and Knapp 2012). Indeed, at large spatial scales, mean annual 

precipitation (MAP) may account for 90% of the variation in ANPP (Sala et al. 1988).   

Temperature on the other hand is seldom statistically related to spatial or temporal variation in 

ANPP in grasslands (Sala et al. 1988, Del Grosso et al. 2008, Guo et al. 2014) except perhaps at 

global scales (e.g., Whittaker 1975, Frank and Inouye 1994, Gang et al. 2013). In experiments 

with warming treatments, results have been mixed with some studies showing positive responses 

(Lin et al. 2010), others negative responses (Niu et al. 2008, 2011, Cantarel et al. 2013), while 
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others found little response (Fay et al. 2011, Xu et al. 2013) to increased temperatures. In one of 

the few studies demonstrating temperature effects on grassland ANPP across natural climatic 

gradients, Epstein et al. (1997) reported negative effects of temperature  

on ANPP in the central US. Although regression coefficients were not strong (average r2 ~ 0.2- 

0.3) temperature effects were greater in drier (< 600 mm MAP) than more mesic grasslands. 

Similarly, Wu et al. (2011) in a meta-analysis of warming experiments reported that warming 

often had a negative effect on productivity unless additional precipitation was added. These and 

other studies suggest that the primary effect of higher temperatures in many grassland 

ecosystems may be direct through negative effects on water balance (Pe ñ uelas et al. 2007, Xu et 

al. 2012, Dulamsuren et al. 2013).  

Grasslands cover approximately a third of the earth’s land surface and provide vital 

ecosystem services that include the sequestration of carbon in the soil, forage production and 

habitat critical for many species (Lal 2004, Chou et al. 2008). Because many of these grassland 

ecosystem services depend on productivity (often measured as ANPP), it is important to better 

understand the drivers of spatial and temporal patterns of productivity. ANPP is an important 

integrative variable of ecosystem function as well as a key component of the global carbon cycle.  

Given the high degree of certainty in forecasted increases in air temperatures, insight into how 

grassland ANPP may be affected is critical. If effects of increasing temperatures are primarily 

manifest through negative impacts on water balance, semi-arid and arid grasslands should be 

among the most sensitive ecosystems to this consequence of warming.  For example, Huxman et 

al. (2004) inferred that ecosystems with low precipitation inputs should be the most responsive to 

changes in water availability, and Knapp and Smith (2001) reported that grasslands were more 

responsive to precipitation variability than most other ecosystem types in North America.   
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Studies on other continents have found similar patterns (Li et al 2011, Sala et al. 2012).   

Recently, De Frenne et al. (2013) advocated the use of natural gradients of climatic variation to 

assess ecological responses to climate change, and I adopted this approach to assess the 

temperature sensitivity of ANPP in semi-arid grasslands. As in past ANPP precipitation studies 

(Sala et al. 1988, Epstein et al 1997, Huxman et al. 2004, Veron et al. 2005), I assessed 

sensitivity from a spatial perspective by relating variation in ANPP to temperature variables 

across a range of sites. The analysis was based on data from eight semi-arid native grasslands 

with collectively 67 years of ANPP data. These sites occurred along a western US climatic 

gradient in which both mean annual temperature (MAT) and MAP varied two-fold. I predicted 

that if there were direct effects of variation in temperatures ANPP then either a positive or 

negative effect of higher temperatures on ANPP would be detected. Positive effects could result 

from lengthening the growing season, which would be particularly important along the northern 

end of the gradient. Negative effects could result from exceeding the thermal optima of the 

dominant plants, which would likely be more important at the southern end of the gradient. 

Similarly, if the effects of increasing temperatures were indirect  then a negative effect of 

temperature on ANPP would also be detected, but this would be the result of the effects of soil 

drying. To further examine this indirect effect, I also incorporated the Standardized Precipitation 

Evaporation Index (SPEI, Vicente-Serrano et al. 2010) into my analysis as an independent 

variable. The SPEI adjusts precipitation inputs by estimates of evapotranspiration (largely driven 

by temperature) and thus explicitly includes the potential negative effects of temperature on 

water balance (Vicente-Serrano et al. 2010).  

METHODS AND MATERIALS 

Annual net primary production (ANPP; g/m2) precipitation and temperature data (annual 

and growing season, April 1st-September30th) were compiled from eight semi-arid grasslands 
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sites located in the Great Plains region of the United States (Fig. 1, Table 1). I defined the 

growing season for all grasslands as April 1st-September 30th even though growing season length 

is variable across this latitudinal gradient. However, analyses with shorter growing seasons in the 

north and longer seasons in the south only marginally altered the results reported below. Thus, I 

opted to maintain a consistent growing season period for all grasslands. Across these sites, 30-yr 

MAT varied ~ 2-fold, from 7.8 ⁰C to 14.2 ⁰C, as did MAP (280 to 500 mm).  Distances between 

sites usually exceeded 100 km except for the two sites at the southern end of the gradient. These 

were located at the Sevilleta LTER site and both were included because the dominant grass 

species differed between sites (Bouteloua gracilis vs. B. eripoda). Data availability for ANPP 

varied from 3 to 16 years at individual sites (Table 4 – Appendix A), and my primary focus was 

on relating patterns of ANPP and temperature across this 1,600 km latitudinal gradient, although 

temporal variation was included, consistent with past studies that have assessed the sensitivity of 

ANPP to precipitation in grasslands (Sala et al. 1988, Huxman et al. 2004, Wu et al. 2011, 

Jobbágy et al. 2002, Peñuelas et al. 2007). Soils varied from sandy loams to clay (Table 1), and 

as expected for the central US, grassland communities were dominated by C3 plants in the 

northern sites grading to C4 dominance in the southern sites (Terri and Stowe 1976, Epstein et al. 

1997, Table 1). Sites were not burned or grazed by livestock during the years that ANPP data 

were collected.  

ANPP ESTIMATES 

Methods used for estimating ANPP differed among sites. In the six northern sites, ANPP 

was estimated by harvesting peak or end of season biomass, sorting by species, then drying and 

weighing. Plot sizes varied from 0.1-0.25 m2 and the number of harvested plots was > 10/yr at 

each site except at Cheyenne, where n=5. ANPP estimates from the two southern sites were 

based on non-destructive allometric methods in which volume estimates were made for 
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individual plants and ANPP was estimated using species-specific equations (Muldavin et al. 

2008). For each site, total ANPP and ANPP of specific functional types including graminoids 

(grasses and sedges), forbs, and C3 and C4 photosynthetic pathways were estimated. Woody 

plants were included when estimating total ANPP, but they were a minor component of ANPP at 

all sites, therefore they were not analyzed as a functional group.   

Climate data (including annual temperature and precipitation, as well as growing season 

temperature and precipitation) were compiled from site weather records or nearby weather 

stations (< 15 km from study site). Further details on each site can be found in Supplementary 

Information.   

DATA ANALYSIS 

I related patterns of ANPP to variation in temperature and precipitation in three ways. 

First, I combined the 67 years of data available from all sites with corresponding climatic data to 

evaluate simple and multiple linear regression models relating temperature and precipitation to 

ANPP. I focused on simple linear and multiple regressions, (procREG, SAS version 9.3, Cary, 

NC, USA) initially in order to more directly compare my results with other regional scale 

analyses. Because the number of years of data varied among sites and those sites with the 

greatest number of years (the most northern and the two southern sites; Table 4 – Appendix A) 

could dominate and bias relationships, I calculated site means for ANPP and climate data. This 

eliminated temporal variability and limited my statistical power to the number of sites (8), but 

allowed us to determine if using all 67 years of data led to qualitatively different relationships 

from those based on site means. Second, the combined data set was analyzed with analysis of 

covariance (ANCOVA, proc MIXED) models that included site as a fixed effect, along with 

temperature and precipitation variables and all interaction terms. Finally, I downloaded SPEI 

values (Vicente-Serrano et al. 2010, from www.sac.csic.es) based on annual and growing season 

http://www.sac.csic.es/
http://www.sac.csic.es/
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periods for each site and related these to patterns of ANPP. SPEI includes an estimate of 

evapostanspiration (ET) driven primarily by temperature, thus by comparing SPEI-ANPP 

relationships to precipitation-ANPP relationships, I could explicitly assess the negative and 

indirect effects of temperature on water balance and consequently ANPP.  My expectation was 

that combining precipitation inputs with the negative effects of temperature on water balance 

would yield a model that explained a greater variation in ANPP than precipitation or temperature 

alone.   

All models were evaluated for total ANPP, graminoid, forb, and the proportion of ANPP 

comprised of C3 species, as dependent variables. The latter dependent variable (which ranged in 

magnitude from ~ 90 to <5 %) was included because relative abundance of photosynthetic types 

was less variable from year to year than absolute ANPP values. This allowed us to focus more on 

broad scale climatic drivers of ANPP by photosynthetic pathway.   

Akaike’s Information Criterion (AIC; Johnson and Omland 2004) was used to select those 

models that best fit the patterns of variation in ANPP (see Table 6 - Appendix A, Supplementary 

Information for all candidate models). The AIC model selection procedure (SAS proc 

GLMselect) compared each candidate model and assigned them an AIC value based on the each 

model’s goodness of fit, taking into account the number of parameters by penalizing each model 

for additional terms. The model with the lowest AIC value was selected as the best model. To 

estimate the relative importance of particular model parameters, Akaike weights (w) were 

summed from those models that included the term of interest (Johnson and Omland 2004). On a 

scale of 0-1, the parameters were assigned a weight based on model comparisons. Parameters in 

which w was near 1 were deemed the most important. I calculated Akaike weights with ‘MuMIn’ 

in R version 3.0.2 (www.r-project.org).  

http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
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Finally, following Epstein et al. (1997), data were parsed into narrow ranges of 

precipitation (100 mm and 200 mm bins) to minimize variation in precipitation and increase the 

potential for temperature sensitivity to be manifest. Simple linear regression analyses were then 

conducted for those subsets of the data (n = 7 to 56 years depending on the particular range of 

precipitation binned).   

RESULTS 

Both annual and growing season precipitation were positively correlated with total ANPP 

in simple regression models (Table 2, Figure 2) and accounted for 39% and 31% of the variance 

in ANPP respectively. In contrast, annual and growing season temperatures were negatively 

correlated with ANPP (Table 2, Figure 2) and explained 8% and 14% of the variance, 

respectively. When site means were used, precipitation-ANPP relationships remained 

statistically significant (p <0.0001; Fig. 2 left inset), whereas temperature-ANPP relationships 

were not significant (although trends were similar; Fig. 2 right set). The addition of temperature 

variables in multiple regression models did not improve the explanatory power of precipitation 

alone.  However, despite temperature’s relatively minimal predictive power in simple and 

multiple regressions, ANCOVA models selected by AIC included growing season temperature 

along with site, annual precipitation and a growing season temperature x annual precipitation 

interaction term (Table 3, Figure 5). Although site and annual precipitation were the most 

influential parameters in the model (w = 1.0), growing season temperature contributed 

substantially (w = 0.81), while the interaction term was the least important variable (w = 0.55; 

Table 3).   

Graminoids comprised a large proportion of total ANPP at all sites and thus both annual 

and growing season precipitation were also strongly correlated with graminoid ANPP; annual 

precipitation again was the best predictor (Figure 3, Table 2). In simple regression models, 
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annual and growing season temperatures were highly correlated with graminoid ANPP, but 

similar to total ANPP, annual and growing season temperatures explained much less of the 

variability (r2= 0.15 and 0.20 respectively, Figure 3, Table 2). Similar to the results for total 

ANPP, when data were combined at the site level, relationships were statistically significant for 

precipitation but not temperature (Figure 3 inset).  

  The best ANCOVA model for graminoid ANPP included the same parameters important 

for total ANPP (site, growing season temperature, annual precipitation, and a temperature x 

annual precipitation interaction term). For graminoids, site and annual precipitation were the 

most important model parameters, both with a weight of 1.0, whereas growing season 

temperature was less important (w = 0.58; Table 3).  In contrast to graminoids, forbs comprised a 

much smaller and more variable proportion of total ANPP among sites and as a result, no simple 

or multiple regression models with temperature or precipitation parameters were significant. The 

best ANCOVA model for forb ANPP included site, annual precipitation, and an interaction 

between these two terms (Table 3).   

  In contrast to absolute ANPP values, the proportion of ANPP from C3 plants was strongly 

correlated with both growing season and annual temperature, but not with precipitation. In 

simple regressions, annual temperature was a better predictor of relative C3 ANPP than growing 

season temperature (r2= 0.43 and 0.27 respectively; Table 2), and was inversely related to C3 

productivity (Figure 4). The best model selected using Akaike weights included site, growing 

season temperature, annual precipitation and the interaction terms annual precipitation x site and 

growing season temperature x annual precipitation (Table 3).  

  Despite the combination of precipitation and temperature effects in SPEI values, simple 

regressions of growing season (r2 = 0.30) and annual SPEI (r2 = 0.28), although highly 
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significant, explained less of the variation in ANPP than precipitation alone. Furthermore, 

parsing the data into 100 mm and 200 mm ranges of precipitation after Epstein et al. (1997) did 

not improve relationships between ANPP and temperature variables along this gradient. 

Discussion  

The goal of this study was to assess the temperature sensitivity of ANPP in semi-arid 

grasslands along a natural climatic gradient where temperature (C °) and precipitation (mm) both 

varied by 2-fold from north to south and west to east in the central US. Although growing season 

temperature was found to be negatively related to both total and graminoid ANPP with simple 

linear regression models. Annual precipitation was a much stronger predictor of patterns of 

ANPP than temperature. Thus, my study was consistent with previous studies (Lauenroth and 

Sala 1992, Li et al. 2011, Knapp and Smith 2002, Vermeire et al. 2009, Sala et al. 1988), but the 

amount of variance explained by precipitation was substantially less along this latitudinal 

gradient than in many of these other studies. Because temperature and precipitation were 

negatively correlated across these sites, inferences regarding temperature sensitivity are limited. 

With models that accounted for site variation and interactions between temperature and 

precipitation, growing season temperature was again identified as a significant model parameter 

explaining variation in ANPP, yet secondary to precipitation.   

Past studies (experimental and observational) have demonstrated negative effects of 

temperature on ANPP, and these have been argued to be indirect due to increased 

evapotranspiration (ET) and reduced water availability to plants with warming (Epstein et al. 

1997, Niu et al. 2007, Engel et al. 2009, Dulamsuren et al. 2013, Xu et al. 2013). I was unable to 

demonstrate such a negative statistical relationship between temperature and ANPP when I 

analyzed subsets of the data in which precipitation variation was restricted to narrow ranges 
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(Epstein et al. 1997). Furthermore, simple linear regression models based on the SPEI explained 

even less variance along this natural climatic gradient than precipitation alone.  This suggests 

that across these eight semi-arid grasslands, the indirect effect of temperature on site water 

balance was not the primary effect of temperature on ANPP.  This result and the inclusion of 

significant precipitation*temperature interaction terms in the best-fit models suggests that the 

relationship between temperature and ANPP may be more complex than the precipitation-ANPP 

relationship.  

Why is ANPP sensitivity to temperature difficult to detect along natural climate gradients?  

The strong interdependency of temperature and precipitation in determining ecosystem 

function is well known ( Rosenzweig 1968, Kardol et al.2010; Frank and Inouye 1994, Rustad et 

al. 2001), yet at local to global scales, ecosystem function and structure are usually much better 

correlated with precipitation patterns than temperature (e.g., Sala et al. 1988,  Del Grosso and 

Parton 2008). The exception to this generalization is in ecosystems with abundant water 

(Huxman et al. 2004, Kirwan et al. 2009). Below I explore several potential reasons why 

temperature sensitivity is difficult to detect and why as a result, predicting responses of ANPP to 

forecast warming is likely to be better informed by experiments than by using natural climatic 

gradients.    

A fundamental difference between plant and ecosystem responses to varying 

temperatures vs. precipitation is that for all but the most hydric ecosystems (Knapp et al. 2008), 

significant reductions in precipitation will always have a negative (or at best neutral) effect on 

ecosystem processes. This includes both leaf level photosynthesis and ANPP (Fig. 4, Sala et al. 

1981, Heitschmidt et al. 2005). In contrast, most C gain processes at both the leaf and ecosystem 
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levels have distinct thermal optima. Thus, alterations in temperature can have negative or 

positive impacts contingent upon temperatures shifting towards or away from thermal optima  

(Fig. 4).  Such contingent positive or negative effects can occur on diurnal as well as seasonal 

time scales. Temperature impacts on C gain can also vary with soil moisture such that warm 

temperatures might positively affect ecosystem processes for several days after a substantial rain 

event, but have negative effects during dry periods when soil water is low (Niu et al. 2008, Zhou 

et al. 2008). Such contingent effects are likely reflected in the temperature*precipitation 

interaction term in the models that explained variation in ANPP the best (Table 3).  

In addition, precipitation tends to vary much more than temperature at interannual time 

scales. Based on long-term (30-yr) climatic records for these eight sites, coefficients of variation 

(CV) for annual temperature ranged from 5-20% whereas CV’s for precipitation varied from 18-

32%. This pattern was also evident in the 67 year data set.  Thus, even if ANPP were equally 

sensitive to alterations in temperature and precipitation, greater interannual variability in 

precipitation would increase the chance of detecting significant precipitation sensitivity relative 

to temperature.   

Less interannual variation in temperature vs. precipitation may also lead to the strong 

correlation of MAT with the distribution of species with C3 and C4 photosynthetic pathways at 

regional to continental scales in grasslands (Terri and Stowe 1976, Tieszen et al. 1979; Wittmer 

et al. 2010).  Indeed in this study, precipitation better explained the variance of ANPP but 

variation in temperature explained more variance in the contribution of C3 species to ANPP. 

Greater stability in temperatures may allow species with different photosynthetic traits to align 

more strongly along temperature than precipitation gradients. This strong sorting of C3/C4 

photosynthetic pathways was clearly evident along the natural climatic gradient in this study 
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(Table 1, Fig. 4). Differences in temperature optima of the dominant C3 and C4 grasses and their 

shift in abundance from north to south along a temperature gradient, combined with variable 

effects of alterations in temperature (Fig 4) all likely contribute to low apparent temperature 

sensitivity of ANPP in this region and perhaps in many others.   

Despite low apparent sensitivity of ANPP to variations in temperature along this natural 

climatic gradient, I am hesitant to conclude that these grasslands will be insensitive to forecasted 

warming. Indeed, because of low interannual variability in temperature, directional shifts in 

MAT by only a few degrees may lead to temperatures that routinely exceed historic levels (Mora 

et al. 2013), particularly for temperature extremes (Smith 2011). Further, because shifts in 

community composition and species distributions (including alterations in C3/C4 composition) to 

directional changes in climate require more time than physiological responses of extant species 

(Smith et al. 2009; Vermeire et al. 2009), sensitivity of ANPP to future warming may lag the 

more immediate responses to changes precipitation. Thus, although using natural climatic 

gradients for ecological climate change research may have many advantages (De Frenne et al. 

2013) and such gradients have been particularly useful for providing insights into precipitation as 

a driver of ANPP, assessing responses to warming may require long-term experimentation to 

better forecast ecosystem responses (Knapp et al. 2012).  
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TABLES 

Table 1: Description of the eight grassland sites along a latitudinal gradient of semi-arid 

grasslands in the western US. Climate data are from NOAA 

(www.ncdc.noaa.gov/cdoweb/datasets).  Mean annual precipitation (MAP), growing season 

precipitation (GS. Precip), mean annual temperature (MAT), and growing season temperature 

(GS. Temp) are based on 30yr of data.  The C3;C4 ratio was determined using ANPP data 

collected from this study, and calculated as the proportion of C3 and C4 biomass (g/m2) relative to 

the total.  More detailed information for each site can be found in the references provided after 

the soil type description.   

SITE CHARACTERISTICS 

    
Heitschmidt et al. 20051, Smith, A.2, Dijkstraet al. 200103, Lauenroth and Burke 20084, Cherwin 

and Knapp 20115, Muldavin et al. 20086      

   

 

  

Site  MAP 

(mm)  

GS.  

Precip  

(mm)  

MAT  

(°C)  

GS.  

Temp  

(°C)  

C3:C4  

  

Soil Type  

 

Fort Keogh 

Wind Cave 

Cheyenne  

SGS  

Sand Creek  

Fort Union  

Sevilleta Blue  

 

Sevilleta Black  

316.0  

499.1  

404.9  

389.7  

393.9  

427.0  

281.4  

 

281.4  

246.1  

378.7  

306.8  

290.6  

312.7  

317.3  

178.8  

 

178.8  

7.83  

8.4  

8.1  

8.4  

10.9  

9.9  

14.2  

 

14.2  

16.86 

15.8 

14.9  

15.2  

19.0  

16.2  

21.6  

 

21.6  

87:13% 

75:25% 

59:41%  

42:58%  

14:86%  

25:75%  

22:78%  

 

20:80%  

Silty clay loam1  

Sandy Loam2  

Fine-loamy3     

Sandy loam4     

Clay5     

Sandy clay loam5   

Sandy loam and sandy 
 

clay loam6  

 

 

Sandy loam and sandy  

clay loam6     

 

http://www.ncdc.noaa.gov/cdo-web/datasets
http://www.ncdc.noaa.gov/cdo-web/datasets
http://www.ncdc.noaa.gov/cdo-web/datasets
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Table 2:  Results for simple linear regression models relating climatic variables to ANPP (total, 

graminoid and the proportion of ANPP from C3 plants). Only significant relationships are shown. 

When temperature and precipitation variables were combined in multiple regression models, 

none were significant, nor were any regression models significant for forb ANPP. Standardized 

Precipitation Evaporation Index (SPEI) measures the severity of droughts by combining 

precipitation inputs with estimates of evapotranspirational losses.     

  
Dependent                                                                 Regression   

 Variable   Parameter                              Coefficient               p-value          r2  
 Total ANPP       

                                                   Annual Temperature                       -5.32                      0.019  0.08  

                                              Annual Precipitation                        0.33                     <.0001  0.39  

                                              Annual SPEI                                   31.86                    <.0001     0.28  

                                                   Growing Season Temperature        -7.67                       0.002  0.14  

                                              Growing Season Precipitation         0.31                      <.0001  0.31  

                                                   Growing Season SPEI                    31.65                     <.0001  0.30  

 Graminoid  

               ANPP      

                                                   Annual Temperature                      -6.38                        0.0002     0.15  

                                              Annual Precipitation                        0.31                      <.0001  0.43  

                                              Growing Season Temperature       -8.30                         0.001  0.20  

                                               Growing Season Precipitation        0.30                       <.0001  0.40  

 Relative C3  

 ANPP      

                                                   Annual Temperature                      -0.07                      <.0001   0.43  

                                              Growing Season Temperature       -0.06                      <.0001  0.27  
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Table 3:  Results from ANCOVA analyses relating climatic variables and site as a fixed effect to 

total ANPP and functional types. Akaike’s Information Criterion (AIC) was used to select 

models with the best fit and the least complexity. Simple and multiple regression models were 

included as candidate models, but none were selected. The weights of the individual parameters 

are denoted as w. Models were selected for each of the functional types: total ANPP, graminoid, 

forb, and relative C3 ANPP. Akaike weights were used to assess how individual parameters 

improved the model selected. GS = growing season, An = annual, Temp = temperature, Precip = 

precipitation. 

Selected Models Using AIC  

Dependent 

Variable  

Model   Parameters        AIC      w      R2  

Overall ANPP  Site GS.Temp An.Precip  

GS.Temp * An.Precip    
  572.35     0.61  

    Site    1.00    

    GS.Temp    0.81    

    An.Precip    1.00    

    GS.Temp * An.Precip      0.55    

Graminoid  Site GS.Temp An.Precip 

GS.Temp*An.Precip  
  544.24    0.63  

    Site    1.00    

    GS.Temp    0.58    

    An.Precip    1.00    

    GS.Temp*An.Precip    0.20    

Forb  Site An.Precip 

An.Precip*Site  
  398.44    0.52  

    Site    1.00    

    An.Precip    1.00    

    An.Precip*Site    0.99    

Relative C3  Site GS.Temp An.Precip  

An.Precip*Site  

GS.Temp*An.Precip  

  -189.96    0.89  

    Site    1.00    

    GS.Temp    0.98    

    An.Precip    1.00    

    An.Precip*Site    0.98    

    GS.Temp*An.Precip    0.96    
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FIGURES 

 

Figure 1: Locations of eight grasslands included in this study. Additional information for each 

site can be found in Tables 1 and 4.      
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Figure 2:  Simple linear regression models that best fit patterns of ANPP. Left: Relationship 

between annual precipitation and aboveground net primary productivity (ANPP) across eight 

grasslands (ANPP=-2.90+0.33*An.Precip; Left inset: ANPP= -7.32+0.35*An.Precip). Inset: 

Relationship based on site means of ANPP and precipitation. Right: Relationship between ANPP 

and growing season temperature across eight grasslands. Inset: Relationship based on site means 

of ANPP and temperature (ANPP=240.87-7.67*GS.Temp).   

 

Figure 3:  Simple linear regression models that best fit patterns of graminoid ANPP. Left: Relationship 

between annual precipitation and graminoid ANPP (Graminoid ANPP =-14.58 +0.31*An.Precip; Left 

inset: Graminoid ANPP=-36.78+0.38*An.Precip ). Right: Relationship between growing season 

temperature and graminoid ANPP. Insets: Relationships based on site means for each of the eight 

grasslands (Graminoid ANPP=233.20-8.30*GS.Temp).   
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Figure 4:  Contrasting responses of leaf-level photosynthesis in two dominant semi-arid 

grassland grasses to alterations in temperature and increasing water stress. Along the north to 

south climatic gradient in this study (Fig. 1), there is a shift in the proportion of ANPP resulting 

from plants with the C3 vs. C4 photosynthetic pathways (inset, relationship from this study, Table 

1).  The two dominant grasses along this gradient, Pascopyrum smithii and Bouteloua gracilis, 

both have broad photosynthetic response surfaces to varying temperatures and their respective 

temperature optima differ by 20 oC (Monson et al. 1983). Shifts in the abundance of C3 and C4 

species along this gradient may moderate apparent temperature sensitivity of ANPP, whereas 

effects of temporal changes in temperature for both C3 and C4 grasses will depend upon whether 

temperatures are shifting towards or away from thermal optima. In contrast to temperature, 

responses of photosynthesis to water stress (dashed line) show a strong threshold response for all 

plant species (example shown is for B. gracilis, Sala et al 1981) and thus ANPP responses to 

changes in precipitation inputs are more likely to be consistently strong along the entire climatic 

gradient (spatially and temporally).  Combined, spatial shifts in species-level traits and 

differences in the nature of physiological responses to change in water vs. temperature are key 

mechanisms explaining why precipitation but not temperature is a strong predictor of latitudinal 

variation in ANPP in western US semi-arid grasslands.   
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CHAPTER THREE:  CONCLUSIONS AND FUTURE WORK 

 

 

 

I examined the relationships between ANPP and temperature, as well as precipitation 

(annual and growing season) across a north-south temperature and precipitation gradient, in the 

semi-arid region of the Great Plains. Consistent with previous observational gradient studies, 

precipitation accounted for the most variation in productivity (Webb et al. 1978, Sala et al. 1988, 

Knapp and Smith 2001, Reed et al. 2009, Guo et al. 2012) while I could only detect a minor 

sensitivity to increases in temperature. In addition, the effects of temperature were found to be 

dependent on the level of precipitation. This is consistent with previous studies which have 

shown the effects of temperature on productivity can be positive, negative, or have no effect, 

depending on soil moisture status (Epstein et al 1997, Wu et al. 2011). In contrast, precipitation 

is consistently positively correlated with productivity (Jobbágy et al. 2002, Yahdjian and Sala 

2006, Cherwin and Knapp 2012), with the exception of the most xeric environments (Knapp et 

al. 2008). This indicates the relationship between temperature and ANPP is more complex than 

that of ANPP and precipitation, and requires further investigation.   

Despite my inability to find a strong temperature-ANPP relationship, it is possible that 

increasing global temperatures will have a significant, indirect effect on productivity in semi-arid 

grasslands by changing the species composition (Cantarel 2011). In my study, temperature was 

the most significant predictor of the distribution of C3 and C4 species. It is possible the effects of 

increased temperatures will alter community compositions to reflect more xeric communities 

(more C4 species) with lower maximum growth potential, resulting in decreased productivity. 

Because changes in community composition takes place over the course of many years, there 

will be a significant need for long-term, site base studies that monitor not only total ANPP, but 
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the productivity of individual species. By doing this, it can also be determined if there is a shift 

in dominance towards species that are better adapted to new climatic conditions, which could 

alter total ecosystem response to changes in the environment over time.  

Precipitation is typically more variable than temperature at interannual time scales, 

making it easier to detect a significant precipitation sensitivity than a temperature sensitivity. 

Despite my efforts to minimize the variation in precipitation by examining these relationships 

along a north-south gradient, the coefficient of variation was still much higher (5-20%) than 

temperature (18-32%). However, many experimental studies have been successful in minimizing 

the variation in precipitation and detecting a significantly negative temperature effect on 

productivity (Niu et al. 2008, 2011, Cantarel 2013). This highlights the need for more site-based, 

experimental studies that can control precipitation and soil moisture to highlight the effects of 

temperature.   

As seen in the models selected using AIC model selection, the effects of temperature on 

ANPP depend on the levels of precipitation, however this relationship is still not fully 

understood. It will be beneficial to have more site-level studies that manipulate temperature and 

soil moisture content to better understand the mechanisms behind the temperature-precipitation 

interaction effect. To further investigate this interaction, it would be informative to monitor the 

physiological responses (such as leaf water potential, leaf temperature, stomatal conductance, 

and photosynthetic yield) to increased temperature, under each soil moisture treatment. By 

varying soil moisture levels and monitoring corresponding plant stress, I could better identify 

when the positive effects of increased temperature are outweighed by the negative effects of 

increasing temperatures. This would be particularly helpful in understanding the underlying 

mechanisms responsible for plant-level response to warming.  
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Physiological plant-based studies should focus on the dominant species because dominant 

species drive ecosystem-level responses to environmental change (Whittaker 1965, Smith et al. 

2009, Engel 2009, Niu et al. 2011). By better understanding how the dominant species respond 

to climatic changes, we can more accurately predict how the overall ecosystem will be affected. 

However, due to numerous abiotic interactions and these interactions changing over time, it will 

difficult to ever predict future effects of climate change with full certainty by studying individual 

plant responses alone (Engel 2009).  

It is also very likely that abiotic factors other than soil moisture will change the severity 

and direction of the effects of temperature on productivity. For instance, CO2 experiments have 

shown that elevated [CO2] decreases stomatal conductance, resulting in a decrease in water loss 

and higher soil moisture content (Morgan et al.2004). Therefore, it is possible that if an increase 

in temperature coincides with an increase in [CO2], as climate models predict (IPCC 2007), an 

increase in temperature may increase productivity. An increase in biomass will lead to a higher 

rate of N intake, a highly limiting nutrient in semi-arid regions, potentially limiting the positive 

effects of increased [CO2] (Morgan et al 2004, Bachman et al 2009, Dijkstra et al. 2010). It is 

clear that there is a need for more factorial experiments to study how different possible 

combinations of abiotic factors alter the effects of temperature on ecosystem functioning. Other 

abiotic factors to consider examining in a factorial design include: soil texture, the timing and 

intensity of rainfall, the timing of temperature extremes, and other limiting nutrients (K and P).  

Climate-productivity studies primarily examine aboveground primary productivity, leaving the 

belowground (BNNP) responses largely understudied (Frank 2007, Li et al. 2011). However, 

studies have shown that the ratio of photosynthates allocated to belowground and aboveground 

shifts, depending on environmental conditions (Tilman 1988, Li et al. 2011). Therefore, it cannot 
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be assumed that BNPP increases or decreases linearly with ANPP. In fact, it is possible that 

while we may see an increase in ANPP in response to a change in climate (such as increased 

warming), there is a total net decrease in net primary productivity due to a loss in belowground 

production. Including belowground productivity in addition to ANPP, will proved a better 

estimate of the true ecosystem response to changes in climate (Wu et al. 2011).  

Grasslands cover approximately 33% of the terrestrial earth and serve an integral role in 

the carbon cycle by storing approximately between 28–37% of the terrestrial soil organic carbon 

(SOC) (Chou et al. 2008). Understanding the drivers of productivity in grasslands will help us 

better understand how anthropogenic changes, such as global warming, will alter grassland 

ecosystem functioning.   
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APPENDIX A:  SUPPLEMENTARY INFORMATION 

 

 

 

Detailed Site Descriptions  

   

Table 4: Additional site data for the eight grasslands. Longitude, latitude and elevation 

estimates were gathered using earth.google.com. Years of data are the number of years of 

data used in the analyses. 

 
 Site  Years of  Longitude  Latitude   Elevation    
 Available  (m)   

Data  

Fort Keogh  16  -105°57' 20 "W   46°22'55 "N  820    

 Wind Cave  4  -103° 25' 16"W   43° 36' 16"  1045    

Cheyenne  7  -104°53' 12" W  41°11' 5.2" N  1920    

 SGS  9  -104°46' 38"W  40°48'46"N  1655    

   
 Sand Creek  3  -102° 30'  22” W  38° 32' 51 " N  1210    

 Fort Union  3  -105° 0' 36"W  35° 54' 35 "N  2060    

 
 Sevilleta Blue  12  -106° 58' 0”W  34° 20' 0"N  1670    

    Sevilleta Black  11  -106° 58' 0"W  34° 20' 0 "N  1615    

 

MIXED GRASS PRAIRIE 

Fort Keogh, MT (46° 22' 55”N -105° 57'20” W) is an upland site in south eastern Montana that is 

dominated by two C3 grasses, Hesperostipa comata and Pascopyrum smithii.  Both climate and 

productivity data collected for the Fort Keogh site were provided by the Fort Keogh United 

States Department of Agriculture (USDA) Agricultural Research Service (ARS) station 

 

Wind Cave, SD (41°11' 5.2" N -103° 25' 16"W) is a lowland site that is dominated by  

Pascopyrum smithii (C3) and Bouteloua gracilis (C4). Climate data were collected from the High  

Plains Regional Climate Center (HPRCC). Biomass data were provided by Anine Smith from  
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Colorado State University and the U.S. Geological Survey (USGS) Northern Prairie Wildlife 

Research Center.   

Cheyenne, WY (41° 6' N -104°53' 12" W) is an upland site. The plant community is 

approximately 55% C3 grasses and 25% C4 grasses (Bachman et al 2010). Pascopyrum smithii is 

the dominant C3 grass, while Bouteloua gracilis is the dominant C4 grass. The Cheyenne United 

States Department of Agriculture (USDA) Agricultural Research Service (ARS) station provided 

multiples years of both productivity data and climate data collected from the Prairie Heating and 

CO2 Enrichment (PHACE) experiment. Additional biomass data were collected by participants 

of The Extreme Drought in Grasslands Experiment (EDGE) project.   

SHORT GRASS STEPPE 

Short Grass Steppe, CO (40°48'46"N -104° 27' W), is an upland site in which the C4 grass  

Bouteloua gracilis accounts for approximately 70% of canopy cover and 90% of total biomass 

(Dalgleish et al. 2006, Cherwin et al. 2011). Short Grass Steppe is located in the north east 

portion of Colorado. It is less than 50 km south east of the Cheyenne site, but it is approximately 

265 meters lower in elevation. Short Grass Steppe Long Term Ecological Research (SGS LTER) 

provided both climate and productivity data for the Short Grass Steppe site. Additional biomass 

data was collected by participants of The Extreme Drought in Grasslands Experiment (EDGE) 

project.  

Sand Creek Massacre Historical Site, CO (38° 32' 51 " N -102° 30' 22” W) and Fort Union, CO 

(35° 54' 35 "N -105° 0' 36"W) are also dominated by Bouteloua gracilis (C4). Karie Cherwin, 

from Colorado State University, provided productivity data and the National Oceanic and 

Atmospheric Administration (NOAA) (www.ncdc.noaa.gov/cdo-web/datasets)provided the 

climate data for both Sand Creek and Fort Union.    

http://www.ncdc.noaa.gov/cdo-web/datasets
http://www.ncdc.noaa.gov/cdo-web/datasets
http://www.ncdc.noaa.gov/cdo-web/datasets
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DESERT GRASSLAND 

Sevilleta Blue and Sevilleta Black (-106° 58' 0”W 34° 20' 29 "N), are both located in central New 

Mexico. Their names are derived from their distinctively different plant community 

compositions. Sevilleta Blue, is dominated by blue grama (Bouteloua gracilis) while Sevilleta 

Black, is dominated by black grama (Bouteloua eriopoda). Both ANPP data and climate data 

were provided by Sevilleta Long Term Ecological Research Site (LTER). Additional biomass 

data were also collected by participants of The Extreme Drought in Grasslands Experiment 

(EDGE) project.  

Table 5:  Coefficient of variation (%) for each of the independent variables in a simple 

regression with ANPP as the dependent variable. Each regression was conducted within 

site using 30-year means.  

Site Characteristic 

Site  MAP 

(mm)  

GS.  

Precip  

(mm)  

MAT  

(°C)  

GS.  

Temp  

(°C)  

Fort Keogh 

Wind Cave 

Cheyenne  

SGS  

Sand Creek  

Fort Union  

Sevilleta Blue  

Sevilleta Black  

26.83 

26.15 

19.64 

18.11 

35.22 

24.47 

31.97 

31.97 

32.51 

30.94 

24.94 

23.43 

36.35 

29.57 

45.88 

45.88 

14.04 

12.13 

9.15 

15.09 

19.64 

5.19 

18.74 

18.74 

5.49 

6.31 

5.87 

5.24 

8.04 

3.71 

10.91 

10.91 
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Table 6:  Dependent variables and candidate models used to assess patterns of ANPP in 

the eight grasslands.    

Dependent Variables   Parameters         

Total ANPP 

 

Simple 

Regression 

  
Multiple Regression 

 Graminoid 

ANPP 

 

Annual Temperature 

 

Annual Temperature 

 Forb ANPP 

 

Annual Precipitation 

 

Annual Precipitation 

 Relative C3 

ANPP 

 

Growing Season Temperature Growing Season Temperature 

   

Growing Season Precipitation Growing Season Precipitation 

   

Annual SPEI 

  

Temperature and Precipitation 

   

Growing Season 

SPEI 

     

          

   
ANCOVA 

      

   

Site 

      

   

Annual Temperature 

     

   

Annual Precipitation 

     

   

Growing Season Temperature 

    

   

Growing Season Precipitation 

    

   

All combinations and interactions 
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