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Abstract

A Numerical Model for the Determination of Biomass Ignition from a

Hotspot

The determination of biomass ignition from an inert spherical hotspot using a fourth-

order finite-volume method is presented. The transient ignition-combustion system is mod-

eled by two coupled reaction-diffusion equations. One equation governs the heating charac-

teristics of the biomass while the other governs the mass loss of the biomass. The combustion

assumes a one-step, 1st-order Arrhenius reaction. This work is motivated and funded by the

Department of Defense Legacy Program to create a munition specific fire danger rating sys-

tem. Improving fire danger rating systems on military lands would minimize the economic

and environmental impact of soldiers training on protected habitats. A better understanding

of these ignition characteristics would also improve current fire spread models. Our result

shows that given the ignition criteria derived from a simplified non-dimensional model and

specifying critical values found by Gol’dshleger et al., an ignition probability can be estab-

lished by varying the biomass properties based on moisture content. Following the procedure

developed in this thesis, the computed ignition probabilities correlate well with experimental

ignition data that was obtained at the Center for Environmental Management of Military

Lands. Moreover, numerically solving the coupled reaction-diffusion system provides addi-

tional insight into more realistic ignition criteria involving mass loss. The numerical solution

suggests more sources of heat loss, in addition to convection, must be considered for a more

realistic ignition model.
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CHAPTER 1

Introduction and Motivation

1.1. Introduction

To understand biomass ignition it is important to first review what is required for combus-

tion to occur. Generally speaking, in order for biomass to combust four primary components,

heat, fuel, oxidizer, and uninhibited chemical reactions must be satisfied simultaneously un-

der some physical and chemical constraints. Depending on what fuel, oxidizer, heat source,

and chemical reactions are present, combustion still may not be possible. Where by com-

bustion we mean a high-temperature exothermic chemical reaction between the fuel and the

oxidizer. To initialize combustion and thus create a possible self-sustaining fire, defined as

a combustion event that produces heat and light, an amount of heat must be added to the

fuel-oxidizer system. For example, in woodlands there is an abundance of biomass that is

dry and full of chemical energy. On Earth, oxygen is also an abundant oxidizer. A wildfire

can start if heat is provided to the system. Often natural events such as lightning strikes

and volcanic activity act as sources of heat capable of initiating a fire. In addition, a range

of unnatural causes including fireworks, cigarettes, arson, industrial accidents, and a wide

variety of other human related causes provides the heat necessary to start fires.

Historically, wildfires have been classified as either ground fires, surface fires, or crown

fires. This classification differentiates the types of biomass being burned. Ground fires

involve the combustion of the organic material on the forest floor above the mineral soil.

Surface fires are made up of fuels less than two meters high and involve most bushes, tall

grasses, and small trees. Crown fires burn through the canopy of larger trees [1]. Often

times crown fires release firebrands, burning particles of organic matter, into the atmosphere.
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These burning particles often travel large distances and start new ground fires away from

the primary fire perimeter. These fires are known as spot fires. A review of numerous

firebrand studies by Eunmo Koo et al. [2] and a numerical study by Sardoy et al. [3]

show that much progress has been made in understanding the behavior of these firebrands.

However, one of the least understood areas in fire science is the mechanisms and conditions

necessary for a firebrand to cause an ignition where it eventually comes to rest. Certainly,

the propensity for a biomass ignition from a firebrand depends on, but is not limited to,

the geometric parameters of the firebrand, the composition of the firebrand, as well as its

thermal characteristics. Similarly, how the firebrand is embedded in the biomass as well

as the geometry, composition, and thermal characteristics of the biomass play an equally

important role in the subsequent ignition or non-ignition. Many environmental factors also

play a part in allowing for biomass ignition from a firebrand such as wind speed, and relative

humidity. In part, due to the complex interaction between the firebrand and the biomass it is

in contact with, very little is actually known about the initial conditions required for biomass

to ignite and ultimately evolve into self-sustained combustion. In the literature, according

to Babrauskas [4] “there have been only limited theoretical attempts to predict ignition

of various substrates upon which a small hot object may fall.” In general, most ignition

studies have been primarily experimental in nature and thus produce results applicable to

only confined conditions. For example, according to McAllister [5], “predicting crown fires

is understanding the ignition of fuel particles, most ignition models are empirically derived

and can only be applied in the conditions in which they were measured.”

If we consider other non-organic firebrands, which we refer to as hotspots, many more

situations can be explored. Previous experimental work by Rowntree [6] and computational
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experiments of Rallis [7] and Tse [8] all attempt to determine the ability for aluminum sparks

from clashing high voltage electrical conductors to cause fires in the grasses beneath them. In

similar work, Hadden et al. [9] allowed hot spherical particles of various diameters and initial

temperatures to fall into a bed of cellulose, and they recorded outcomes of no ignition, smol-

dering ignition, and flaming ignition. In general, the study found a hyperbolic relationship

between particle diameter and temperature. The smaller the particle diameter the larger

the particle temperature was necessary for flaming and smoldering ignitions. Partially due

to concerns in the accuracy of measurement for the particle temperature, Uban et al. [10]

conducted a similar experiment in a different study which resulted in a similar qualitative

relationship. A numerical model by Lautenberger and Fernandez-Pello [11] was developed

in hopes of more accurately correlating with experimental results. In a more recent exper-

imental study, Finney et al. [12] examined the potential of rifle bullets to ignite organic

matter after impacting a hard surface. After a projectile is fired, a certain percentage of

the projectiles kinetic energy is converted into thermal energy upon impact with a target.

Depending on the trajectory of the projectile fragment, some fragments can land in organic

matter at a fairly high temperature. In the experiments conducted, temperatures of about

550 − 800 ◦C were recorded in some cases. Finney et al. found that hot fragments of rifle

bullets did cause ignitions in a fuelbed of peat. Furthermore, the study also concluded that

the moisture content of peat strongly affected ignition potential. However, as Babrauskas

points out, despite many attempts there has been virtually no experimental validation of the

theoretical models and that the thermophysical data for the material being studied is lacking

and the theoretical models that do exist are more qualitative than quantitative [4, 11].
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1.2. Motivation and Objective

In the United States, the economic losses attributed to fire prevention, protection, and

mitigation amounted to about 2.1% of the gross domestic product in 2011, which equates

to about 329 billion dollars as shown in Figure 1.1 [13]. One area where fires contribute to

this economic loss as well as an environmental loss is on military lands. One of the largest

causes of fire on military lands is due to small arms tracer rounds [14]. Tracer bullets are

built with a small charge of magnesium or phosporus that ignites and emits light when

the bullet is fired from the weapon. Figure 1.2 contains a photograph of the trajectories
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Figure 1.1. Cost of fire in the United States of America [13].

of tracer round bullets during a military training exercise. On the right side of the figure,

the irregular trajectories show the bullets with tracers fragmenting and ricocheting off the

target. The Department of Defense Legacy Resource Management Program has taken an

interest in creating a munition specific fire danger rating system to prevent fires caused from

projectiles used during military firearms training. To minimize the risk of starting forest

fires on military lands, while simultaneously maximizing military training, a need for a more

robust fire danger rating system is needed. This fire danger rating system ideally would be

applicable to a wide variety of munitions and biomass characteristics. A method is desired
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that determines how prone a munition is to starting a fire given certain fuel and munition

characteristics. In general, current methods for determining what munition to train with and

when is based largely on “gut instinct”; which often results in a particular munition being

either over or under restricted. Military munitions are highly variable in terms of composition

and fragment size. In addition, the environment and vegetation on military installations is

highly variable. To create a munition specific fire danger rating system, it is not possible to

Figure 1.2. Tracer rounds fired during training. Photo credit: Sgt. Mike
MacLeod.

rely on experiments alone. As a result, a predictive numerical model is needed to allow for a

generalized biomass ignition criteria. As part of the Department of Defense Legacy Resource

Management program, Beavers et al. at the Center for Environmental Management of

Military Lands (CEMML) at Colorado State University obtained data relating the moisture

content found in longleaf pine, cheatgrass, and smooth brome to its probability of ignition.

The focus of this thesis is to develop a numerical model that ultimately correlates with the

data collected by CEMML and is also robust enough to handle different munition fragment

and biomass properties. By developing a numerical, physics-based model, steps can then be

taken to produce a munition and biomass specific fire danger rating system. When training
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in the field, this fire danger rating system can provide a metric that allows soldiers to train

with weapons least likely to start fires under the given environmental conditions.

1.3. Approach and Outline

1.3.1. Approach. In the introduction it is clear that in the study of organic and in-

organic firebrands coming into contact with biomass there are several basic elements that

change under different conditions over a period of time. Namely, the heat transfer from

the hotspot to the biomass, the exothermic heat release of the biomass, the heat diffusion

through the biomass, and the heat losses for the hotspot as well as the biomass. One model

of interest to this thesis work is known as hotspot theory, which characterizes ignitions from

hot objects [6, 7, 15–17]. Hotspot theory has been applied with varying degrees of success to

a variety of ignition problems [9–11]. The theoretical work of Gol’dshleger [18], a pioneer in

hotspot theory, also correlated fairly well with experimental results given by Rowntree and

Stokes as well as Hadden [6, 9].Furthermore, Brindley and Weber [16, 17] cited applications

to situations involving bulk powders that are handled by industrial equipment that can result

in a localized hotspot within the powder due to mechanical friction. Hotspot theory can also

be the basis for analyzing the characteristics of a firebrand and its ability to start spot fires.

Additional physics may also be accounted for in hotspot theory such as mass loss and

oxygen diffusion. To make the problem more tractable, it is useful to first consider mass

loss as the limiting factor for the energy generated by the biomass. Describing this system

requires a solution to a coupled set of reaction-diffusion equations. One equation governs

the heating characteristics of the biomass, while the other equation governs the mass loss. A

spherical geometry is assumed for the hotspot and it is embedded perfectly in a concentric

sphere of biomass. This study relies on the assumptions that the hotspot in contact with
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the biomass is inert and at a higher temperature than the surrounding biomass, the hotspot

is in perfect contact with the surrounding biomass and is transferred via conduction only,

the biomass is able to release heat in an exothermic reaction as long as biomass is present,

and the edge of the biomass away from the hotspot is cooled via convection to ambient air.

The combustion assumes a one-step, 1st-order Arrhenius reaction for simplicity.

To gain insight on the problem of biomass ignition, we performed a numerical investiga-

tion. A computational study is advantageous due to the nature of the problem and the lack

of existing theoretical or empirical biomass ignition models in the literature. Particularly,

the numerical approach would allow for numerical experiments involving any combination of

parameters that are associated with biomass fuel geometry and physical properties. Insight

into how the parameters affect each other is important in developing more complex models

and guiding future experimental work. To do this, first we explored the basic self-heating and

thermal explosion theory that was originally introduced by Frank-Kamenetskii [19]. Next,

we looked at the same explosion theory with the inclusion of a hotspot. By analyzing the

heating characteristics associated with hotspot theory developed by Gol’dshleger, we devel-

oped a procedure to correlate with CEMML ignition data using a dimensionless thermal

explosion model. Finally, a system of two coupled reaction-diffusion equations was solved

using a 4th-order, finite-volume method to account for mass loss and more realistic ignition

criteria.

1.3.2. Outline. In this thesis, the remainder of this first chapter reviews and suggests

parameter values for biomass that are used in this work. Within Chapter 2, the physical

model of biomass ignition is simplified to a mathematical model of self-heating based on the

work of Frank-Kamenetskii and Gol’dshleger. In Chapter 3, with the addition of mass loss
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to the Frank-Kamenetskii model, a 4th-order finite-volume method is applied to solve the

system of reaction-diffusion equations. Chapter 4 discusses the results and findings of this

work. Finally, in Chapter 5 we conclude with the impact of this study on biomass ignition

and propose future work.

1.4. Biomass and Hotspot Characterization

All biomass is primarily composed of three things chemically, cellulose (C6H10O5), hemi-

cellulose, and lignin (C40H44O6). In smaller parts, biomass also contains various amounts

of mineral content, water, and other “extractives” that do not contribute to the overall

structure of the biomass. In general, biomass encompasses all vegetation, alive and dead.

Biomass fuel sources are categorized as either primary, secondary, or tertiary fuel sources. In

established surface and crown fires, woody biomass, such as trees and large shrubs, becomes

an important variable in the propagation of a forest fire. These fuel sources are referred to as

secondary and tertiary fuel sources. Since we are concerned with the initial ignition, primary

fuel sources on the forest floor associated with ground fires, such as grasses and pine needles,

are considered. Fire ignition requires a primary fuel to be burnt first, thus heating up the

surrounding secondary fuels and tertiary fuels. By vaporizing the water in adjacent biomass,

the surroundings are preheated and ignite easier allowing for continued fire propagation. In

general, this cascading process is limited by the fuel that is hardest to ignite. Ignition data

from CEMML focused on three species that represent common biomass types that are found

nationwide. The cheatgrass, longleaf pine, and smooth brome are shown in Figure 1.3 and

all have a different biological structure. Nevertheless, it is important to remember that the

defining characteristics between primary, secondary, and tertiary fuel sources does not differ

greatly chemically. As we will see, the heating value of biomass can be estimated from known
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(a) Cheatgrass (b) Longleaf Pine (c) Smooth Brome

Figure 1.3. Common Biomass Types. Photo Credit: Andrew Beavers.

values for carbon, hydrogen, oxygen, nitrogen, and ash content. Since the proportions of cel-

lulose, hemicellulose, and lignin do not appear to vary greatly for biomass, certain property

values, such as the heating value, are assumed to remain similar between these types of fuel

sources. To give an idea of how similar different types of biomass are, an ultimate analysis

table taken from Ragland [20] is provided. Table 1.1 shows that the primary components of

biomass, carbon, hydrogen, and oxygen, do not differ greatly between biomass species. For

reference, Table 1.3 shows the proportions of cellulose, hemicellulose, and lignin for several

types of biomass.

Table 1.1. Ultimate Analysis (wt %) for Several Biomass Types [20]

Biomass C H O N S Ash
Oak 49.9 5.9 41.8 0.3 0 2.1
Pine 51.4 6.2 42.1 0.1 0.1 0.1
Switchgrass 47.4 5.8 42.4 0.7 0.1 3.6
Sudan grass 45.0 5.5 39.6 1.2 0 8.7

1.4.1. Moisture Content. To begin a study of biomass ignition, an understanding of

how moisture content affects the properties of biomass is needed. Generally, for a biomass

particle undergoing a combustion process there are three stages of mass loss to be considered:

drying, pyrolysis, and char combustion. To observe flaming combustion, pyrolysis must occur

in the presence of oxygen to create a flame. For the purposes of this thesis work it will be
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assumed that pyrolysis occurs after the biomass is dry. Nevertheless, it is suspected that

drying and pyrolysis may actually occur to some degree simultaneously [4, 20]. The drying

process is strongly affected by the heat of vaporization and how water is held within biomass.

Water may exist in biomass as either a vapor, free liquid within the pores of the biomass, or

adsorbed (chemically bound) water within the cellular structure of the biomass. The fiber

saturation point (FSP) is the point at which water is no longer adsorbed into the biomass,

but instead must be taken on as free water in the physical structure of the biomass. For

biomass, the fiber saturation point is typically found to be around a moisture content of

30− 35%. For most fires, it was suggested that the maximum moisture content that would

start a fire for dead grasses is 15− 20% and 25− 30% for pine needles [4]. Moisture content

directly affects the ignitibility of biomass. A hot object capable of vaporizing the moisture

held within the biomass is key to starting an ignition. It is important to determine how much

energy is required to dry the biomass sufficiently to allow for ignitions to occur. Ragland

[21] stated that the “adsorbed water is held with increasing energy as the wood moisture

content decreases.” This relationship is given by,

hsorp = 0.4hfg

(

1−
µb

µFSP

)2

. (1)

Here, hsorp is the heat of sorption, hfg is the latent heat of vaporization for water, µb is

the moisture content of the bound water, and µFSP is the moisture content at the fiber

saturation point. According to Equation (1), as bound water content decreases, the water

is held with increasing energy. As a result, particularly at low moisture contents, the heat

of sorption must be taken into account. In our case, a sustained ignition only occurs if dry

fuel, that is currently burning, releases enough energy to vaporize most of the moisture in
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the adjacent biomass. If there is enough energy to heat the biomass to a critical level where

the reaction becomes exothermic, a combustion wave will continue throughout the fuelbed

if conditions supplying adequate oxygen permit. The moisture content of biomass can be

measured on a wet or dry basis by

µwet =
mwater

mwater +mdryfuel

100 , (2)

µdry =
mwater

mdryfuel

100 . (3)

In these equations, µwet is the moisture content on a wet basis, µdry is the moisture content

on a dry basis, mwater is the mass of the water, and mdryfuel is the mass of the dry biomass.

Equation (3) indicates that in biomass the moisture content can be over 100% when looked

at on a dry basis. Although much is known about the importance of moisture content,

according to Babrauskas [4], “all of the information on moisture contents needed to achieve

a sustained ignition is unfortunately anecdotal and systematic research is absent.”

Andrew Beavers et al. at the Center for Environmental Management of Military Lands

at Colorado State University conducted hundreds of experiments to determine how the prob-

ability of ignition for the biomass varies with moisture content. The previously unpublished

ignition data, reproduced with permission by Andrew Beavers et al., is pictured in Figure

1.3. In the experiments, a nichrome wire was heated to approximately 1000 ◦C and dropped

into a tray with the loosely packed biomass for a duration of one second. If the biomass

burned to the edge of the tray after the timed exposure to the hot spot, then an ignition

was recorded. By doing a statistical analysis on the data collected, Andrew Beavers et al.
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developed the following equations relating moisture content to the probability of ignition.

Longleaf Pine : Pig(µ) = e5.34−0.62µ/(1 + e5.34−0.62µ)

Cheatgrass : Pig(µ) = e7.29−0.42µ/(1 + e7.29−0.42µ)

Smooth Brome : Pig(µ) = e10.45−0.93µ/(1 + e10.45−0.93µ)

Here, Pig denotes the probability of ignition and µ denotes the fuel moisture content. By

plotting the ignition probability equations in Figure 1.4, the effects of moisture content on

the ignition of longleaf pine, cheatgrass, and smoothbrome is clear. As the moisture content

increases the probability of ignition for these biomass species decreases.
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Figure 1.4. CEMML Ignition Data for Longleaf Pine, Cheat Grass, Smooth
Brome.

1.4.2. Heat of Combustion. The heat of combustion is the energy release of a sub-

stance per unit of mass and it varies depending on whether the water in the combustion

products is a liquid or gas. By definition, the higher heating value (HHV) of a substance
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assumes that the water in the combustion products condenses in liquid form. On the other

hand, the lower heating value (LHV) of a substance assumes that the water in the com-

bustion products remains in gaseous form. In general, Ragland [20] found that the HHV of

wood on a dry basis is typically in the range of 19− 22 MJ/kg. Since moisture content will

be accounted for, it is more informative to look at the LHV which assumes that the energy

required to vaporize the water is not released as heat after the combustion event. Several

researchers have found that there is a correlation between the HHV of biomass fuels and the

ultimate analysis of the biomass. Noting that the HHV and LHV are in units of MJ/kg, one

such correlation by Reed [21] is given by

HHV = 0.341C + 1.322H − 0.12(O +N)− 0.153A+ 0.0686 . (4)

Where C,H,O,N,A are the weight percents of carbon, hydrogen, oxygen, nitrogen, and ash.

The average error associated with Equation (4) for biomass was 1.6% [21]. If the percents of

cellulose, hemicellulose and lignin are known for a particular species, Equation (4) may be

used to estimate HHV for the material. The lower heating value for wet biomass is given by,

LHV = HHV(1− µwet)− (hsorp + hfg)µwet . (5)

In order to determine experimentally the heating values for cheat grass, longleaf pine, and

smooth brome, we used an IKA Calorimeter System C200 bomb calorimeter. The samples

were oven dried and kept in a desiccator before being placed in the calorimeter to guarantee

a moisture content close to zero percent. Two experiments were performed and the results

are listed in Table 1.2. The results between the two experiments are in good agreement with

each other, and also agree with the values reported in the literature for similar biomass.
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Table 1.2. Bomb Calorimeter Results-Results should be close to the HHV
of the material as materials were dried to a moisture content close to 0%

Fuel Run 1 Run 2 Units
Longleaf Pine 20639 20461 J/g
Cheat Grass 18043 18334 J/g
Smooth Brome 17517 17272 J/g

1.4.3. Specific Heat. The specific heat of a substance is the energy required for the

temperature of that substance to be raised by one degree. As expected, the moisture content

of a substance has a direct impact on this value for any type of biomass. Ragland [20] cited

a study in which the specific heat of wood was determined by

c =
0.1031 + 0.003867T + 4.19µ

1 + µ
+ (0.02355T − 1.32µ− 6.191)µ . (6)

In the above equation, µ is the moisture content on a dry basis and T is the temperature in

Kelvin. The units for Equation (6) are kJ/kg·K. By plotting Equation (6), Figure 1.5 shows

that as moisture content increases the specific heat increases as well.
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Figure 1.5. Specific Heat vs. Moisture Content at 300 K
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According to a study by Dupont [22], the heat capacity for switchgrass at 313K was

reported to be 1340 J/kg·K at a moisture content close to zero. This value is reasonably

close to the value obtained from Equation (6).

1.4.4. Activation Energy and Pre-Exponential Constant. The activation en-

ergy of a substance is the energy required to bring a material to a reactive state. Ragland

[20] reports that a good initial estimate for most woods is approximately 129.704 KJ/mol,

and suggested a value of 7×107 s−1 as the pre-exponential constant for wood. Jones [23] pro-

posed that a value for the pre-exponential factor for sawdust to be 1.6×105 s−1. In seperate

work, Afzal [24] recorded activation energies of 139.94 kJ/mol, 197.14 kJ/mol, and 262.4

kJ/mol for three different species of pine needles. Thermogravimetric analysis is commonly

used to determine the activation energy experimentally for a wide variety of substances.

At CEMML, a thermogravimetric analysis was done to obtain the activation energy of lon-

gleaf pine, cheatgrass, and smooth brome. In this study, the Flynn-Wall method [25], also

described in ASTM E1641-13 [26], is utilized to determine an approximate activation en-

ergy from experimental results. The Flynn-Wall method is briefly reviewed in the following

analysis that was originally developed by Flynn et al. [25].

Assuming that α represents the degree of conversion from solid → product and f(α)

represents the conversion model, we may write

dα

dt
= κf(α) . (7)

The reaction rate constant, κ, is estimated using the Arrhenius equation,

κ = Ae−E/RT .
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For the purposes of this initial investigation, the degree of conversion may be defined as

α =
mi −mt

mi −mf

,

where mi is the initial mass of the sample used in the experiment, mf is the final mass and

mt is the mass of the sample at time t. Applying the chain rule,

dα

dT
=

dα

dt

dt

dT
, (8)

and defining β ≡ dT
dt
, the constant heating rate used in the experiment, then substituting

Equation (8) into Equation (7), one can arrive at

dα

dT
= κf(α)β−1 .

Further substituting in the value of κ, we have

dα

dT
=

A

β
f(α)e−E/RT . (9)

If f(α) is independent of T , and A and E are independent of both α and T , using separation

of variables, Equation (9) can be integrated as follows,

F (α) =

∫ α

0

1

f(α)
dα =

A

β

∫ T

T0

e−E/RTdT

=
AE

βR

(

e−E/RT

E/RT
+

∫ x

−∞

ex

x
dx

)

. (10)

Introducing

Z(E/RT ) =
e−E/RT

E/RT
+

∫ x

−∞

ex

x
dx
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Equation (10) can be simply written as

F (α) =
AE

βR
Z . (11)

Taking the log10 of Equation (11), the relation becomes

log10F = log10

(

AE

R

)

− log10β + log10Z . (12)

Applying an approximation used by Flynn-Wall [25], Equation (12) may be approximated

as

log10F ∼= log10

(

AE

R

)

− log10β − 2.315− 0.457
E

RT
. (13)

Now, differentiating Equation (13) we arrive at the following relation for E,

dlog10β

d 1
T

∼=
0.457

R
E . (14)

Using Equation (14) and thermogravimetric data from the biomass samples heated at a

constant rate, it is now possible to approximate the activation energy, E.

For the calculations, three conversion levels in the experimental thermogravimetric data

were used at heating rates of 1◦C/min, 3◦C/min, 5◦C/min, 10◦C/min to create the Arrhenius

plot of heating rate versus temperature. As an example, the experimental data gathered by

thermogravimetric analysis for the longleaf pine needles is exhibited in Figure 1.6. It is clear

from the figure that there is a linear relationship between the logarithm of the heating rate

and the inverse temperature. In this case, averaging the slopes of these lines the activation

energy was approximately 176 kJ/mol for longleaf pine.
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Figure 1.6. Thermogravimetric Data for Longleaf Pine.

1.4.5. Thermal Conductivity. The thermal conductivity of a material is a measure

of its ability to transfer heat. For cellulose, Babrauskas [4] cited the following relationship,

which works well as a first approximation

k = e1.45×10−3ρ−3.39 . (15)

Table 1.3 clearly shows that across a variety of biomass species, the amount of cellulose in

biomass is greater than both lignin and hemicellulose. Since cellulose plays a major role in

the biological structure of common biomass, the thermal conductivity Equation (15) will be

used in the present study. Figure 1.7 plots the thermal conductivity over a range of density

values common to most biomass species.
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Figure 1.7. Estimation for the thermal conductivity of cellulose.

Table 1.3. Weight % Cellulose, Hemicellulose, Lignin from McKendry [27]

Biomass Lignin(%) Cellulose(%) Hemicellulose(%)
Softwood 27-30 35-40 25-30
Hardwood 20-25 45-50 20-25
Wheat straw 15-20 33-40 20-25
Switchgrass 5-20 30-50 10-40

1.4.6. Density. The bulk density biomass can be measured as a function of the biomass’s

geometry, composition, orientation, moisture content, and individual biomass particle den-

sity. It has been shown that the loosely packed bulk density ranges from 49− 266 kg/m3 for

wheat and 24− 111 kg/m3 for straw grass. If these biomass types are packed, the bulk den-

sity ranges from 68−288 kg/m3 for wheat and 37−130 kg/m3 for straw grass [28]. Ragland

[20] proposed ranges of bulk density for sawdust and wood shavings ranging from 157− 227

kg/m3. Furthermore, Babraukas [4] tabulated the values of solid wood density ranging from

310− 850 kg/m3. However, tropical hardwood species can have a measured density of 1040

kg/m3 [20]. In addition to all the variability listed above, the preparation used to prepare

the biomass affects the overall bulk density. The fuels of interest in this study are assumed

to be similar to wheat and straw grass. Santoni [29] measured three different pine needle
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species and suggested densities ranging from approximately 446− 808 kg/m3. As a general

rule of thumb Ragland [21] claims that the bulk density is approximately 40% of the particle

density.

To summarize, the properties for biomass are highly variable and depend on the species

and biological structure. Environmental factors, such as the relative moisture content and

time of year, also effect the physical characterisitcs of biomass. Due to the extreme variability

inherent in biomass, approximations for many of the parameter values is necessary. Since

the literature does not report specific values for the biomass as shown in Figure 1.3, we

use approximate values from the literature. Table 1.4 summarizes the parameter values for

biomass that we use in our models.

Table 1.4. Approximate physical values for longleaf pine, cheatgrass, and
smooth brome used in this study.

Fuel Parameter Longleaf Pine Cheatgrass Smoothbrome
ρ [kg/m3] Density (Bulk) 650 115 115
Q [J/kg] Higher Heating Value (HHV) 20.639× 106 18.043× 106 17.517× 106

E [J/mol] Activation Energy 201× 103 65× 103 65× 103

k [W/m·K] Thermal Conductivity 0.09 0.04 0.04

1.4.7. Hotspot. In this work, hotspots originate from military munitions that have

been fired from a weapon. It is common that armed forces practice with weapons including

flares, grenades, tracer munitions and a wide variety of rifle, pistol, and tank rounds. The

different alloys of metal used to create these munitions and the possible geometries for the

munition fragments is vast. For security purposes the military does not typically release this

data. For civilian munitions, it is common that the bullets have cores made of steel or lead.

These cores are then covered by an alloy of copper or steel.

Upon impact, the copper, steel, and lead fragment into many pieces. These pieces can

be at high temperature and have the potential to land in ignitable biomass. Upon impact,
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the kinetic energy of the munition is turned into heat and can cause fragments to reach

temperatures capable of igniting organic material [12]. In military applications, some rifle

rounds known as tracer rounds contain a mix of phosphorous or magnesium that burns at

600− 1000 ◦C allowing the shooter to see the trajectory of the bullet [14]. The inclusion of

this additional heat source causes the bullet and its fragments to reach higher temperatures

upon contact with the biomass. Table 1.5 is a compilation of property values for copper,

steel, and lead that can be used as hotspot parameters.

Table 1.5. Approximate thermal properties for some munitions from Incr-
opera et al. [30].

Thermal Property Conductivity [W/m·K] Specific Heat [J/kg·K] Density [kg/m3]
Copper 401 390 8940
Steel (AISI 304) 14.9 477 7900
Lead 35.3 129 11340
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CHAPTER 2

Theory and Models

2.1. Physical Model

To capture the full complexity of ignition phenomena in biomass, a great variety of

physical considerations must be given. Figure 2.1, based on a more comprehensive solid

and gas phase model proposed by Atreya [31], illustrates a wide range of physics commonly

found in the combustion of solids. In the figure, a partially embedded hotspot heats the

biomass through conduction. Volatile gases produced from heating the biomass then mixes

with surrounding oxygen. If the hotspot is hot enough it can serve as a pilot and ignite the

volatile gases into flaming combustion. The convection serves to cool both the biomass and

the hotspot and also influences the oxygen diffusion into the biomass. Convection also has

an effect on the volatile gas - oxygen ratio. Some physics not included in the figure is the

moisture evaporation, radiation effects, as well as any convection within the biomass due

to the volatile mass flow. Obviously, an ignition problem involving all possible physics can

very quickly become intractable. Consequently, it is important to identify parameters that

are most important in the problem that is presented and make assumptions allowing one to

formulate a basic mathematical model.
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Figure 2.1. Physical considerations for ignition from a partially embedded
hotspot.

2.2. Mathematical Model

The proposed mathematical model assumes drastic simplifications in contrary to the

physical model proposed by Atreya [31]. First, our fuelbed is assumed to be composed of a

homogeneous substance where porosity and other natural variations are neglected. Next, the

combustion process of the fuelbed is assumed to follow one-step, 1st-order Arrhenius kinetics.

Heat is transferred to the fuelbed via an inert, homogeneous particle by conduction only. The

interface between the hotspot and the fuelbed is also assumed to be perfect. Furthermore, the

heat loss to the environment is through convection only at the fuelbed-ambient environment

interface. Restrictions to oxygen diffusion from the ambient environment into the fuelbed

is also ignored. Throughout the combustion process all thermal property values remain

constant.
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2.3. Self-Heating and the Criteria for Thermal Explosion

Before introducing the equations governing a coupled reaction-diffusion model, it is im-

portant to understand a classical approach to ignition theory by the techniques of dimensional

analysis. A simplified, non-dimensional model to analyze the transient, self heating char-

acteristics of a substance that is exposed to an ambient temperature provides an excellent

starting point. Originally studied by the Russian scientist Frank-Kamenetskii [19], several

assumptions were made to understand ignition phenomena at a basic level.

• The geometry of the self heating substance is a slab, cylinder or sphere.

• The surface of the reactive substance is exposed to convection.

• Symmetry is perfect in every direction.

• Zero-order Arrhenius kinetics (No fuel depletion).

• Oxygen diffusion is ignored.

• Temperature gradients only occur in one direction.

In this analysis, the goal is to determine whether the rate at which heat is dissipated at

the boundaries occurs fast enough to keep up with the energy generated within the fuelbed.

The ability of the fuelbed to conduct heat to the boundary plays an important role on

whether the heat generation dominates or not. If the heat generated is not conducted to

the boundary fast enough, the temperature within the fuelbed will increase to infinity due

to self-heating if the heat source does not go away over time. In one dimension, for a slab

geometry, the transient heat diffusion equation with heat generation is described by

ρc
∂T

∂t
= ρQAe−E/RT + k

∂

∂r
(
∂T

∂r
) . (16)
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In this problem we are interested in the system behavior after long periods of time. The goal

is to determine whether, after a long time, a steady state is reached or a thermal explosion

occurs and temperature approaches infinity. For a steady state, we may neglect the transient

term and Equation (16) becomes

ρQAe−E/RT = −k
∂

∂r
(
∂T

∂r
) . (17)

The boundary conditions are given by

−k
dT

dx
= h(Ts − T0), at x = r ,

dT

dx
= 0, at x = 0 .

As outlined in “The Pi-Theorem” by Yarin [32], thermal explosion is classically explored

by considering an ideally stirred reactor that is a closed volume filled with a homogeneous

mixture of fuel and oxidizer (gaseous). Let the characteristic reactor size be r0. If we assume

reactant concentrations are negligible before thermal explosion, the following parameters

determine the local temperature within the reactor,

• Thermal Conductivity: [k] = JL−1T−1Θ−1

• Pre-Exponential: [A] = T−1

• Activation Energy: [E] = Jmol−1

• Universal Gas Constant: [R] = JΘ−1mol−1

• Heat of Reaction (multiplied by ρ): [Q] = JL−3

• Reactor Size: [r0] = L

• Wall Temperature: [T0] = Θ
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For the given parameters, J is the energy unit, L is the length unit, T is the time unit, and

Θ is the temperature unit. From these parameters, the temperature can be written as a

function of these variables

T = f(r, r0, T0, k, A,E,Q,R) . (18)

In order to reduce the number of variables that T is dependent on, Frank-Kamenetskii used

an approximation for E/RT . Starting with the identity

1

T
=

1

T0

[

1−

(

T − T0

T0

)

+

(

T − T0

T0

)2
T0

T

]

, (19)

if we assume E/RT0 >> 1 and (T − T0) << T , multiplying Equation (19) by E/R we have

E

RT
≈

E

RT0

−
E

RT 2
0

(T − T0) . (20)

Using the approximation from Equation (20) the arrhenious equation can be written as

Ae
−E
RT ≈ Ae

−E
RT0 e

−E

RT2
0

(T−T0)
,

and we can define Ã ≡ Ae
−E
RT0 and T̃0 ≡ RT 2

0 /E. From these defined parameters, we can

now remove R and E from Equation (18), and T is now a function of

T = f(r, r0, k, Ã, T̃0, Q) . (21)
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It is now straightforward to apply the Pi-Theorem to Equation (21). By choosing

T̃0, Ã, k, r0 as repeating variables, the Pi-Theorem results in two Pi-groups. The first Pi-

group is

π1 = QT̃0
a
Ãbkcrd0 =

[

J

L3

][

Θ

]a[
1

T

]b[
J

LTΘ

]c[

L

]d

,

where a = −1, b = 1, c = −1, and d = 2. Traditionally, this Pi-group is commonly referred

to as the Frank-Kamenetskii δ parameter and is given by

δ = π1 =
QÃr20
T̃0k

=
QEAr20exp(−E/RT0)

RT 2
0 k

. (22)

Physically, the Frank-Kamenetskii δ parameter is actually part of a larger group of dimen-

sionless numbers known as Damköhler numbers, which are commonly written as Da ≡

ReactionRate/DiffusionRate. The second Pi-group is given by,

z = π2 = r/r0 .

In addition, a non-dimensional temperature is introduced as,

θ =
E

RT 2
0

(T − T0) .

Using these dimensionless numbers, the governing Equation (17) can be written as,

d2θ

dz2
+

κ

z

dθ

dz
= −δeθ (23)
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where κ = 0, 1, 2 for a slab, cylinder, or sphere. The boundary conditions are specified by,

Biθ +
dθ

dz
= 0, z = 1 (24)

dθ

dz
= 0, z = 0 (25)

Here Bi is the Biot number which is the ratio of heat transfer from convection at the surface of

the solid to the internal heat diffusion for the solid. Boddington [33] came up with an analytic

approximation for the critical Frank-Kamenetskii δ parameter under these conditions,

δc(Bi) =

(

1

δc(Bi → ∞)
+

e

(j + 1)Bi

)−1

, (26)

where j = 2, 1, 0 for sphere, cylinder or slab geometries, e = 2.718 is the Euler’s number,

and the critical value δc(Bi → ∞) = 3.32, 2.0, 0.88 for a sphere, cylinder and slab [4, 33, 34].

The critical values for the bifurcation-point between steady and unsteady states, found by

Boddington and given in Equation (26), are plotted in Figure 2.2 as a function of the Biot

number. If the physical parameter values yield a δ value above the critical value, δc, thermal

explosion occurs, temperatures go to infinity. Anything below the critical value allows for a

finite temperature, while any δ equal to the critical value results in temperatures reaching

infinity in an infinite amount of time. To more clearly show the effects of δ on Equation (23),

a solution to the ordinary differential equation is required. By adding the transient term

back into Equation (23), a solution was found using an ordinary differential equation solver

in MATLAB. From the solution, Figure 2.3 shows the maximum temperature achieved as

a function of time. For large biot numbers and a spherical geometry, δc is approximatly

3.32, as predicted by Boddington [33], which is shown as the dashed curve. Any δ above
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this value causes thermal runaway as exhibited by a sudden and large temperature increase.

For the Frank-Kamenetskii model, any δ above δc constitutes an ignition. For a situation

0 1 2 3 4 5

0

2

4

6

3.5 3.4

3.35

3.32

3
2.5

Time [s]

θ m
a
x

Figure 2.3. Affect of δ on maximum temperature for large biot numbers.
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considered in this thesis work, a slightly more complicated analysis is required to account

for the additional heat source – the hotspot.

Gol’dshleger [18] has shown that the thermal properties of the hotspot can also be taken

into account to determine the critical δc parameter by use of the following equation

δc = Z

[

1 +
(θh − 3)2β(j + 1)

30k
2/3
λ (1 + 3β2/3)

]2

, (27)

where, β = ρC
ρhCh

, kλ = kh
k
, ǫ = RTh

E
, δ = E

RT 2

h

r2ρQA
k

e−E/RTh , θh = E
RT 2

h

(Th − T0), and

Z = 0.4(θh+2.25(j−1))2(1+0.5ǫθh)
√

b2 + 0.25j(j + 1)(b+ 0.1b3). Gol’dshleger numerically

determined that this critical δc is only valid for the variables falling within the the range

7.5 ≤ θh ≤ 25, 0.01 ≤ ǫ ≤ 0.9/θh, 1 ≤ kλ ≤ ∞, and 0.05 ≤ β ≤ 10. It is worth noting Linan

and Kindelan [4] came up with an alternative δLK analagous to the Frank-Kamenetskii δ. If

λhρhCh >> λ0ρ0C0,

δLK =
2RT 2

hQAr2ρ0
E(Th − T0)2λ0

e−E/RT0 .

The critical values are then given by,

δLKc = 1.15 + 1.32Λ−0.5 + 3.47Λ−1 + 0.302Λ−2 ,

Λ =
RT 2

h

(Th − T0)(j + 1)E

ρhCh

ρ0C0

, 10−2 < Λ < 103 .

Nevertheless, for the purposes of this work we will focus on the critical value found by

Gol’dshleger. Despite the fact that the critical parameter defined by Gol’dshleger does not

take into account reactant depletion, it is possible to use this value to gain an idea on whether

or not an ignition will occur in the scenario where reactant is plentiful.
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We developed a procedure that correlates with the probability plots shown in Figure 1.4

that were obtained experimentally by Andrew Beavers et al. at CEMML. The results of the

procedure are pictured in Figure 2.4. This procedure consists of

(1) Compute a range of δ values by varying the parameter values dependent on moisture

content. Allow the moisture content to vary based on a Gaussian distribution with

a small standard deviation around an average moisture content value. In this case,

the average moisture content values vary between 0− 30%.

(2) Compare δ to δc. If δ > δc then ignition occurs, if δ < δc no ignition occurs.

(3) Add up the number of δ′s that resulted in an ignition and divide by the total number

of δ′s to get an ignition probability.

(4) After running through average moisture contents up to 30% the pre-exponential

constant was modified to make a better fit to the data. It may also be necessary to

adjust the standard deviation if a correlation is still not found.
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Figure 2.4. Comparison of experimental and numerical data from
Gol’dshleger δc ignition criteria using our correlation procedure.
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To make the correlation, several parameters including the pre-exponential constant and

the standard deviation for the normal probability distribution were adjusted. A normal

distribution with a small standard deviation, σ = .08, was used to reflect the fact that the

fuelbeds are conditioned at a specific moisture content value and the amount of moisture

in the fuelbed does not vary greatly from that conditioned value. Under controlled experi-

mentation, a small standard deviation is a reasonable assumption since the moisture content

in test fuelbeds can be conditioned uniformly. The pre-exponential constant was adjusted

until a reasonable fit with the data was achieved. We found that a better fit to the data

resulted in the pre-exponential constant A ≈ 3.3 × 107 s−1 for longleaf pine, A ≈ 1.55 s−1

for cheatgrass, and A ≈ 1.4 s−1 for smooth brome.

In the next chapters, we find that, if reactant consumption is taken into account, the

criteria for ignition can be defined in a different way. More specifically, if mass loss is

taken into account, an ignition criteria can be based on the amount of reactant left after a

sufficiently “long” time period.
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CHAPTER 3

Numerical Modeling

3.1. Governing Equations

Throughout this thesis, the term hotspot has been used to describe a hot spherical particle

composed of some type of metal. In general, the hotspot may be modeled as having a constant

temperature for a given time, constant heat flux for a given time, or an initial temperature.

Physically, the hotspot is to be completely embedded within a self-reactive medium referred

to as the fuelbed, which is composed of a cellulose based material or biomass, with properties

as described in Section 1.4. Furthermore, the hotspot is said to have perfect contact with the

fuel and thus the only mode of heat transfer considered at the hotspot-fuelbed interface is

through conduction. Several studies by Brindley, Staggs, and Weber [15–17] have suggested

that depending on the power of the hotspot, either a reaction front will be established and

the fuel will be totally consumed or the fuelbed will only be partially consumed. If the fuel

is fully consumed, we refer to the case as an ignition. If instead the fuelbed is only partially

consumed or not consumed at all, the case is referred to as a non-ignition.

Francis-Pello et al. [11] concluded that the hotspot theory as described by Gol’dshleger

is more qualitative than quantitative, because not enough physics is being captured by

Gol’dshlegers simplified model. In an effort to make the ignition model more quantitative,

the additional physics of mass loss is explored. In this thesis work we consider a set of

coupled reaction-diffusion equations. They are given by the following governing equations,

ρc
∂T

∂t
= ρQAMe−E/RT +

∂
∂r
(r2k ∂T

∂r
)

r2
, (28)
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∂M

∂t
= −AMe−E/RT . (29)

Equation (28) governs the transient heating characteristics of the fuelbed, while Equation

(29) governs the transient mass loss of the fuelbed. In these equations, T is the temperature,

M is the mass fraction of the biomass, r is the radial ordinate, and t is the time. The

other parameters include ρ the fuel density, c the specific heat of the fuel, k the thermal

conductivity of the fuel, Q the heat of combustion, A the pre-exponential factor, E the

activation energy, and R the universal gas constant.

3.1.1. Computational Domain. The domain of interest is the fuelbed and the solution

will be for a spherical geometry as shown in Figure 3.1. Figure 3.2 illustrates the hotspot

dθ

dϕ

dr

(r,θ,ϕ)

Figure 3.1. Spherical Coordinates and Control Volume.

and the domain of interest. If the radius of the hotspot is a, then the fuel bed is said to

extend from a ≤ r ≤ b where b is the outermost edge of the fuelbed in contact with the

ambient environment. In the analysis of these coupled nonlinear partial differential equations,

assuming perfect spherical symmetry, the problem may be analyzed as a one-dimensional

problem in the radial direction. If the hotspot is small, temperature variations within the

hotspot can be negligible and the cooling of the hotspot may be analyzed using a lumped

capacitance approach. Furthermore, the center of the hotspot is treated as an adiabatic
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surface. The hotspot is initially at a specified temperature of TH . Note that in equations

that involve parameters of the hotspot, subscripts H and f are used to distinguish between

physical parameters for the hotspot and fuelbed.

0
+r

Hotspot

a

Biomass

b

Figure 3.2. Computational Domain: a ≤ r ≤ b

From Equations (28) and (29), it is clear that several assumptions have been made. The

fuel is self-reactive. In modeling combustion it is important to consider oxidizers since for

all combustion processes Fuel + Oxidizer → Products. However, assuming a self-reactive

medium we ignore the contribution of the oxidizer to the combustion process. Furthermore,

from this assumption we may also infer that during the combustion process one unit mass of

fuel is converted directly to one unit mass of product. The fuel and product are also said to

have the same thermal properties and they remain constant over time. Lastly, the fuelbed

is assumed to be dry. Nevertheless, later iterations on the analysis of Equations (28) and

(29) include the effects of moisture content by varying parameters, such as Q, to reflect the

level of moisture content in the fuelbed. An ignition is said to have occurred if the mass

fraction of the fuel bed M → 0 as t → ∞. On the other hand, an ignition has not occurred

if M → (Nonzero Value) as t → ∞ while the temperature of the fuel bed T → Tambient as

t → ∞. The studies by Brindley and Weber [16, 17] focused on the analysis of a constant

heat flux hotspot and how it affects the mass loss. The hotspot of interest in this work is

one that has an initial temperature and cools as it transfers its heat to the fuelbed. The

hotspot of this type was studied in greater detail by Staggs [15]. A boundary condition of
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this type captures the basic physics of a hot bullet fragment landing in a cooler fuelbed of

biomass.

3.1.2. Boundary Conditions. As stated in the previous section, this thesis work is

primarily concerned with phenomena associated with a hotspot of a specified initial temper-

ature. As a result, the boundary condition at the hotspot-fuelbed interface is governed by

the transfer of heat from the hotspot to the fuelbed by means of conduction only. On the

fuelbed-ambient environment interface a convective boundary condition is assumed,

ρHcH
∂T

∂t

∣

∣

∣

r=a
=

∂
∂r
(r2kf

∂T
∂r
)

r2
, (30)

k
∂T

∂r

∣

∣

∣

r=b
= h(T∞ − T ) . (31)

3.1.3. Initial Conditions. Initially, both the hotspot and the fuelbed are set at spec-

ified initial temperatures. The fuelbed is initialized at a temperature that is equal to that

of the surroundings and the hotspot is set at some temperature greater than ambient tem-

peratures. More explicitly, the initial conditions are presented by,

T (r, 0) =



















TH at r = a

T∞ at a < r ≤ b

M(r, 0) = 1 , (32)

where T∞ is ambient temperature.

3.2. Finite Volume Method

We solve Equations (28) and (29) using the finite-volume method. They are rewritten

in terms of conservative quantities. Since ρ and c are both constants and if we define the
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internal energy to be e = cT we may rewrite Equation (28) as

∂(ρe)

∂t
=

∂
∂r
(r2k ∂T

∂r
)

r2
+ ρQAMe−E/RT (33)

Since M is a mass fraction we may multiply both sides of Equation (29) by the constant ρ

∂(ρM)

∂t
= −ρAMe−E/RT . (34)

In spherical coordinates the del operator is given by,

~∇s = r̂
∂

∂r
+

θ̂

r

∂

∂θ
+

φ̂

rsinθ

∂

∂φ
.

For a given vector ~F = Frr̂ + Fθθ̂ + Fφφ̂, the divergence in spherical coordinates may then

be given by

~∇s · ~F =
1

r2
∂(r2Fr)

∂r
+

1

rsinθ

∂(Fθsinθ)

∂θ
+

1

rsinθ

∂Fφ

∂φ
. (35)

Since we are only concerned with the radial direction and due to spherical symmetry, we

may define Fr = −k ∂T
∂r

while Fθ = Fφ = 0. Therefore, Equation (35) becomes

~∇s · ~F =
−1

r2
∂(r2k ∂T

∂r
)

∂r
.

Defining f(T,M) = ρQAMe−E/RT and g(T,M) = −ρAMe−E/RT the governing equations

are given by,
∂(ρe)

∂t
+ ~∇s · ~F = f(T,M) ,

∂(ρM)

∂t
= g(T,M) .
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Rewriting the governing equations into a vector form as

∂U

∂t
+ ~∇s · F = P . (36)

In Equation (36) the solution vector, U, flux vector, F, and physical source vector, P, are

given by,

U =









ρfcfT

ρfM









, F =









−k ∂T
∂x

0









, P =









ρfQAMe−E/RT

−ρfAMe−E/RT









.

We integrate Equation (36) and use the divergence theorem to arrive at

d

dt

∫

V

UdV +

∮

S

n · FdS =

∫

V

PdV . (37)

For a cell of volume ∆V , the average value of U and P can be expressed as

U =
1

∆V

∫

∆V

UdV , (38)

P =
1

∆V

∫

∆V

PdV . (39)

With the above equation in mind, we will drop “−” for simplicity. By rewriting Equation

(37) using Equations (38) and (39), we have

∆V
dU

dt
+

∮

S

n · FdS = ∆VP ,

dU

dt
=

−1

∆V

∮

S

n · FdS +P .
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Assuming a control volume, (i,j,k),

dUi,j,k

dt
=

−1

∆Vi,j,k

Nf
∑

m=1

ni,j,k,m · Fi,j,k,mAi,j,k,m +Pi,j,k (40)

where ∆Vi,j,k is the cell volume, Nf is the number of distinct faces on the cell volume, and

Ai,j,k,m is the area of the distinct face, and ni,j,k,m is the outward normal vector of face m.

In spherical coordinates dV = r2sin(φ)drdθdφ and dS = r2sin(φ)dθdφ. In our case, since

we are only concerned with spherical coordinates in the radial direction the number of faces

reduces to two. Furthermore, since our probem is one-dimensional, the subscripts j, k may

be neglected. By assuming symmetry in the θ and φ directions ∆V for some cell i can be

expressed as,

∆Vi =

∫∫∫

r2sin(φ)drdθdφ = 4π

∫ rR

rL

r2dr =
4π

3
(r3R − r3L) (41)

Where for simplicity
(

r + ∆r
2

)

= ri+1/2 = rR and
(

r − ∆r
2

)

= ri−1/2 = rL . Similarly, the

surface area on any given face, m, about a cell, i, can be computed from,

Ai,m =

∫∫

r2i,msin(φ)dθdφ = 4πr2i,m . (42)

By expanding the first term on the right hand side of Equation (40) so that,

1

∆Vi

2
∑

m=1

ni,m · Fi,mAi,m =
1

∆Vi

(ni,1 · Fi,1Ai,1 + ni,2 · Fi,2Ai,2) . (43)

For simplicity and consistency, since we are only dealing with two faces where m = 1 cor-

responds to the left face and a subscript L and m = 2 corresponds to the right face and a
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subscript R. By applying the area term we may now write Equation (43) as

1

∆Vi

(ni,L · Fi,LAi,L + ni,R · Fi,RAi,R) =
1

∆Vi

(

−4πFi,Lr
2
L + 4πFi,Rr

2
R

)

.

By combining Equations (41), (42) and (43) and substituting back into Equation (40) we

arrive at

dUi

dt
=

4πFi,Lr
2
L − 4πFi,Rr

2
R

4π
3
(r3R − r3L)

+Pi

=
3

r3R − r3L

(

Fi,Lr
2
L − Fi,Rr

2
R

)

+Pi

=
−1

∆r
(αFi,R − βFi,L) +Pi (44)

Where,

α =
3r2R

r2L + rRrL + r2R
, β =

3r2L
r2L + rRrL + r2R

, ∆r = rR − rL .

We could continue from this point with the physical source term P, but to simplify

the computational analysis it is advantageous to transform the governing equations to the

Cartesian coordinate system so we can make use of the finite-volume method on Cartesian

grids. In order to do this, we will introduce a geometric source term G. To see where the

geometric source term arises, one may rearrange Equation (36) so that,

∂U

∂t
+

1

r2
∂r2F

∂r
= P

∂U

∂t
+

2F

r
+

∂F

∂r
= P

∂U

∂t
+

∂F

∂r
= −

2F

r
+P .
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By defining G = −2F
r
, we have

∂U

∂t
+

∂F

∂r
= G+P , (45)

with

S ≡ G+P =









2k
r

∂T
∂r

0









+









ρQAMe−E/RT

−ρAMe−E/RT









.

The del operator in Cartesian coordinates is given by,

~∇C = î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z
,

so that Equation (45) may be written clearly in divergence form as follows,

∂U

∂t
+ ~∇C · F = S . (46)

We integrate Equation (46) and use the divergence theorem to arrive at

d

dt

∫

V

UdV +

∮

S

n · FdS =

∫

V

SdV . (47)

Again, since we are in one dimension the average values for U and S can be expressed as

U =
1

∆V

∫

∆V

UdV ,

S =
1

∆V

∫

∆V

SdV .
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Now, as before, substituting these average quantities into Equation (47) and dropping “−”

for convenience, we have

∆V
dU

dt
+

∮

S

n · FdS = ∆V S .

Putting the previous equation in semi-discrete form we arrive at

dU

dt
=

−1

∆V

∮

S

n · FdS + S .

As in the previous case, assuming a control volume about node i and having subscript L and

R denote left and right faces while keeping in mind in the Cartesian system Ai,m reduces to

a point value and ∆Vi = ∆x

dUi

dt
=

−1

∆x
(ni · Fi,L + ni · Fi,R) + Si

=
−1

∆x
(Fi,R − Fi,L) + Si . (48)

For the source term Si =









Si

0









where,

Si = 〈
dT

dx
〉i

1

∆x

∫

∆x

2k

xi

dx+
1

∆x

∫

∆x

ρQAMe−E/RTidx

= 〈
dT

dx
〉i

2k

xi∆x

∫

∆x

dx+
1

∆x

∫

∆x

ρQAMe−E/RTidx

= 〈
dT

dx
〉i
2k

xi

+ ρQAMe−E/RTi .

Note that 〈·〉 denotes cell averages.
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3.3. Numerical Algorithm

To numerically express Equation (48) we will adopt the strategies developed by Gao et

al. [35]. A primary goal will be to maintain fourth-order accuracy on the interior as well

as the boundaries. As a result, two layers of ghost cells will be utilized. The values of the

ghost cells are determined by extrapolating temperature information from the fuelbed and

the physical boundary face. For the purposes of the following several equations we let i

denote the location of the first ghost cell we are interested in and the subscript w denote the

physical boundary face. The extrapolated values on the high-side of the domain (convection

side) are given by,

〈T 〉i = 4

(

〈T 〉w −
1

12
〈T 〉i−3 +

5

12
〈T 〉i−2 −

13

12
〈T 〉i−1

)

(49)

〈T 〉i+1 + 〈T 〉i = 4

(

5〈T 〉w −
2

3
〈T 〉i−3 +

37

12
〈T 〉i−2 −

83

12
〈T 〉i−1

)

. (50)

For the low-side of the domain (hotspot side),

〈T 〉i = 4

(

〈T 〉w −
1

12
〈T 〉i+3 +

5

12
〈T 〉i+2 −

13

12
〈T 〉i+1

)

(51)

〈T 〉i−1 + 〈T 〉i = 4

(

5〈T 〉w −
2

3
〈T 〉i+3 +

37

12
〈T 〉i+2 −

83

12
〈T 〉i+1

)

. (52)

With the two ghost cells calculated, it is now possible to calculate fourth-order gradients

near the boundaries as well as the interior using the same fourth-order scheme. In particular,

to compute fourth-order, face-averaged temperature gradients the following centered stencil

is employed,

〈
∂T

∂x
〉i+ 1

2

=
1

12∆x
(−〈T 〉i+2 + 15〈T 〉i+1 − 15〈T 〉i + 〈T 〉i−1) . (53)
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For the source term, a fourth-order approximation for the cell-averaged derivative must be

used and is given by,

〈
∂T

∂x
〉i =

1

12∆x
(−〈T 〉i+2 + 8〈T 〉i+1 − 8〈T 〉i−1 + 〈T 〉i−2) . (54)

3.3.1. Interior Scheme. As seen in the previous section, each interior cell has a source

term and a flux component. Cell-averaged temperature gradients are required for computing

the source term while face-averaged values are required for the flux term. For example, in

our case the source term S contains a cell-averaged temperature gradient which may be

computed directly from Equation (54). We have,

S =









〈2k
r
〉i〈

∂T
∂r
〉i + 〈ρQAMe−E/RT 〉i

〈−ρAMe−E/RT 〉i









=









2k
12xi∆x

(−〈T 〉i+2 + 8〈T 〉i+1 − 8〈T 〉i−1 + 〈T 〉i−2) + ρQAMe−E/R〈T 〉i

−ρAMe−E/R〈T 〉i









=









k
6xi∆x

(−〈T 〉i+2 + 8〈T 〉i+1 − 8〈T 〉i−1 + 〈T 〉i−2) + ρQAMe−E/R〈T 〉i

−ρAMe−E/R〈T 〉i









.

Similarly, the flux terms can be computed directly from the face-averaged values given by

Equation (53) so that,

Fi+1/2 =









−k
12∆x

(−〈T 〉i+2 + 15〈T 〉i+1 − 15〈T 〉i + 〈T 〉i−1)

0









.

Figure 3.3 illustrates the Cartesian grid used in the interior of the computational domain.
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∆ x+x

Figure 3.3. Cartesian grid for the biomass interior.

3.3.2. Boundary Scheme for Left Hand Side. In this model, we simulate a hot

particle coming to rest in a fuelbed. The hotspot is to have an initial high temperature and

will subsequently cool via conduction due to its contact with the low temperature fuelbed.

We are not interested in resolving the temperature gradients in the hotspots domain from 0 ≤

x < a. Instead, the hotspot serves as a boundary condition at x = a for the computational

domain a ≤ x ≤ b. To obtain the temperature gradient on the physical boundary face, we

need to solve a partial differential equation for the hotspot that depends on the thermal

properties of the hotspot as well as the temperature values in the fuelbed. The following

partial differential equation governs the temperature change of the hotspot:

∂(ρHcHTH)

∂t
=

∂
∂x
(kHx

2 ∂TH

∂x
)

x2
,

Boundary Conditions:



















∂TH

∂r
|r=0 = 0

∂TH

∂r
|r=a = −kf

∂T
∂r

,

Initial Conditions: T (r, 0) = TH,Init .
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Since we are not concerned with resolving the temperature gradients within the hotspot

itself, it is advantageous to solve for the hotspot boundary condition by taking a control

volume analysis of the hotspot and using a lumped capacitance approach. For the hotspot-

fuelbed interface for the sphere, the following will be used to justify this approach.

At the boundary between the fuel and the hotspot, heat due to conduction must be

leaving the boundary at the same rate that it is entering thus,

4πkH
1
r1
− 1

r2

(Ts,1 − Ts,2) =
4πkf
1
r2
− 1

r3

(Ts,2 − Ts,3) .

Rearranging the above equation, we can define Bicond by

Bicond ≡
Ts,1 − Ts,2

Ts,2 − Ts,3

=
kf
kH

( 1
r1
− 1

r2
)

( 1
r2
− 1

r3
)
. (55)

Note that subscript (s, 1) corresponds to the center of the hotspot, (s, 2) corresponds to the

solid-solid interface, and (s, 3) corresponds to the fuelbed-ambient boundary. Here the right

hand side of the equation is analogous to the biot number if the hotspot was in contact with a

fluid. We will assume that if this number is sufficiently small, Bicond < 0.1 then the lumped

capacitance approach is an acceptable approximation. If Bicond ≥ 0.1 then temperature

gradients should be accounted for within the hotspot. Note that r1 is approximately zero,

but not equal to zero, to avoid a singularity. As a result, the hotspot at the boundary cools

according to the following,

ρHV cp,H
dTH

dt
= kfA

dT

dr
|r=a . (56)
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For a sphere of radius a, Equation (56) becomes,

dTH

dt
=

3kf
aρHcp,H

dT

dr
|r=a

=
3kf

aρHcp,H

1

12∆r
(−〈T 〉i+2 + 15〈T 〉i+1 − 15〈T 〉i + 〈T 〉i−1) . (57)

In previous studies the constant power hotspot was analyzed [16, 17]. For this study it

serves as a validation case. For this situation, the boundary condition is given as

−k
∂T

∂r
=

P

4πr2a
, (58)

where P is the constant total power in watts and ra is the radius of the hotspot. By using

Equations (53) and (51), one can write Equation (58) in terms of the temperature on the

boundary face Tw,

Tw =
1

60

(

12P∆r

k4πr2a
+ 80Ti+1 + 5Ti+3 − 26Ti+2 + Ti−1

)

. (59)

Figure 3.4 illustrates the Cartesian grid used on the hotspot-biomass boundary.

i-1/2 i+1/2

i-1 i i+1 i+2 i+3

∆ x+x

Figure 3.4. Cartesian grid for the hotspot-biomass boundary.
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3.3.3. Boundary Scheme for Right Hand Side. On the fuelbed-ambient interface

the heat transfer occurs through convection only to an ambient temperature T∞. The con-

vective boundary condition is written as,

k〈
∂T

∂r
〉i+1/2 = h(T∞ − 〈T 〉i+1/2) .

Now through the discretization of this equation using Equation (53) we have,

k

12∆r
(−〈T 〉i+2 + 15〈T 〉i+1 − 15〈T 〉i + 〈T 〉i−1) = h(T∞ − 〈T 〉i+1/2) . (60)

Rearranging and solving for 〈T 〉i+1/2

〈T 〉i+1/2 = −
k

12h∆r
(−〈T 〉i+2 + 15〈T 〉i+1 − 15〈T 〉i + 〈T 〉i−1) + T∞ . (61)

Now substituting Equations (49) and (50), with appropriate indices, into the previous equa-

tion and letting 〈T 〉w = 〈T 〉i+1/2,

〈T 〉w =
k

12h∆r

(

170

3
〈T 〉i −

46

3
〈T 〉i−1 +

8

3
〈T 〉i−2 − 44〈T 〉w

)

+ Ta .

Solving for 〈T 〉w,

〈T 〉w =
k

12h∆r

(

170
3
〈T 〉i −

46
3
〈T 〉i−1 +

8
3
〈T 〉i−2

)

+ T∞

1 + (44k)/(12h∆r)
, .

Figure 3.5 illustrates the Cartesian grid for the biomass-ambient environment boundary.
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Figure 3.5. Cartesian grid for the biomass-ambient environment boundary.
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CHAPTER 4

Results and Discussion

4.1. Numerical Results

4.1.1. Model Verification. By using the parameter values from Staggs and Weber

[15, 17] in Table 4.1, several numerical tests were investigated to verify and validate the

numerical models. The test cases assume no mass loss and no heat generation. A constant

temperature hotspot or a constant heat flux hotspot serves as the boundary condition on

the left hand side while a constant temperature is used on the right hand side. As the

Table 4.1. Parameter values for the coupled reaction-diffusion system.

Fuel Parameter Biomass Hotspot
ρ [kg/m3] 660 7500
c [J/kg·K] 750 434
k [W/m·K] 0.1 52
Q [J/kg] 5.7× 105 -
A [1/s] 105 -
E [J/mol] 8.4× 104 -

first test, we consider constant temperature boundaries with no source, the simplest case.

An exact solution at steady state is known for our numerical model validation. In general,

for spherical coordinates, the exact steady-state temperature profile under these conditions

takes the form of

T (r) =
C1

r
+ C2 , (62)

where the constants C1 and C2 are determined by the temperatures on the boundaries.
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Figure 4.1 shows that the numerical solution approaches the exact steady-state solution.

After long times the numerical solution matches the exact solution, which validates the

numerical model.
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Figure 4.1. Finite-volume solution approaching the exact steady-state solu-
tion for constant temperature boundaries and no source term.

For a constant heat flux hotspot,

−k
∂T

∂r
|ra =

P

4πr2a
, (63)

using Equation (62) and applying the boundary conditions, the steady state solution takes

the form,

T (r) =
P

4πk

(

1

r
−

1

rb

)

+ T (rb) . (64)

Here, P is the power of the hotspot in Watts. Figure 4.2 clearly shows rb = 0.05 and

T (rb) = 300, and the numerical solutions approach the steady state over time, and eventually

reaches the exact solution.
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Figure 4.2. Finite-volume solution approaching the exact steady-state solu-
tion for a constant heat flux hotspot.

For a hotspot such as a bullet fragment coming to rest in a fuelbed of biomass, an initial

temperature boundary condition is presumed to be the most realistic. It has been shown

experimentally, and intuition suggests, that hot particles cool from an initial temperature to

the temperature of the surroundings. Figure 4.3 shows that the system reaches an ambient

temperature steady state after a sufficient amount of time has passed, which is as expected.
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Figure 4.3. Finite-volume solution cooling to ambient temperature.
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Figure 4.4. Grid study for a constant heat flux hotspot with the source term
after 2000s.

Numerically, it is advantageous to use the finite-volume method to solve the coupled

reaction-diffusion equations for several reasons. Since over or under estimating fuelbed tem-

peratures can result in false ignitions or nonignitions, a fourth-order accurate numerical

algorithm is desired. Moreover, the finite-volume method used in this work requires fewer

nodes in contrast to the finite-difference method for the same solution error level. In ad-

dition, it is computationally efficient. For example, Figure 4.4 shows that for the constant

heat flux boundary condition the finite difference approach requires a much finer grid size

to match the finite volume method solution. It is also clear that in Figure 4.4 the finite

difference method exhibits temperature profiles characteristic of ignitions at small grid sizes,

but not at high spatial resolution. As the model is extended by the inclusion of more physics,

the computational speed offered by the finite-volume approach will become important. Fi-

nally, the finite-volume method can be more easily extended to multiple dimensions in the

spherical coordinate system. This would be useful if looking at other situations such as a

partially embedded hotspot.
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Figure 4.5 demonstrates a case that constitutes an ignition. At 10s it is apparent that

enough energy was conducted from the hotspot to the fuelbed to overcome the activation

energy resulting in the initialization of a combustion wave. Through times 30s, 50s, 70s and

90s, one can see the steadily propigating wave moving through the fuelbed until it reaches

the fuelbed-ambient environment interface at around 200s. As the combustion wave moves

through the fuelbed the mass fraction is zero up to current position of the combustion wave.

As a result, after 200s the mass fraction is zero throughout the fuelbed. When the mass

fraction is zero, the source term in the governing equations is zero as well and the fuelbed

is then no longer capable of producing heat. As a result, the temperatures throughout the

fuelbed begins to cool as shown at 300s and 500s. After more time the temperatures in the

fuelbed would continue to decrease until ambient temperatures are reached everywhere. It

is worth noting that the temperature of the fuelbed rises to an adiabatic temperature limit

given by,

Tadiabatic = Tambient +
Q

cp
. (65)

Figure 4.6 demonstrates a non-ignition case. In this figure, after 125s there is some heat

release by the fuelbed which is reflected by a temperature profile with a slight bump. Since

the mass fraction is zero up to this point, some combustion is occuring in the fuelbed.

However, the heat release is not large enough for the initialization of a combustion wave. As

the time goes from 500s to 4000s it is clear that the fuelbed temperature is approaching the

ambient temperature. It is also clear that the mass fraction approaches a finite value over

these times. Because not all of the fuel was consumed, this cannot constitute an ignition. In

order to observe this non-ignition case the parameter Q was decreased. Physically, decreasing

Q is analagous to increasing the moisture content of the fuelbed.
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Figure 4.5. For a hotspot of radius a = 0.011 m and an initial temperature
TH = 1300K, an ignition is observed with Q = 5.7× 105 J/kg.
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Figure 4.6. For a hotspot of radius a = 0.011 m and an initial temperature
TH = 1300K, an ignition does not occur with Q = 4.9× 105 J/kg.

By varying Q while keeping the other parameters fixed, there appears to be a critical Q

value near 5× 105 J/kg where the mass fraction goes to zero after 5000s for Q values greater
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than the critical value. Increasing Q, explosion occurs at around Q = 9.4× 105. Figure 4.7

illustrates the full extent of combustion after 5000s demonstrating the existence of a critical

Q value.
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Figure 4.7. After 5000 s the total extent of combustion shows that an igni-
tion occurs for Q > 5× 105 J/kg.

From the numerical solutions given in the previous section, a clear characteristic of a non-

ignition is the failure to produce a combustion wave. A result of this is the total mass fraction

of the biomass approaches some non-zero value as show in Figure 4.6. By subtracting the

current mass fraction solution from the mass fraction solution at the next time, Figure 4.8

shows that over time the numerical solutions converge. In Figure 4.8, ∆Mt1 is the solution

difference from 125-250s, ∆Mt2 is the solution difference from 250-500s, ∆Mt3 is the solution

difference from 500-1000s, ∆Mt4 is the solution difference from 1000-2000s, and ∆Mt4 is the

solution difference from 2000-4000s. Certainly, convergence of mass fraction solutions alone

is not enough to determine an ignition since, in both ignition and non-ignition cases, ∆M

goes to zero. In order to quantify the extent of the converged solution a strategy proposed

by Staggs [15] is adopted. Using the L2 norm given by

||M ||2 =

√

∫ b

a

M2dr , (66)
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if ||M ||2 approaches a nonzero value as ∆M approaches zero then an ignition did not occur

in the biomass. Following Staggs [15] we may assume that after ten biomass diffusion time

scale if ||M ||2 is less than 10−10, the biomass is fully burnt. Staggs also defined the biomass

diffusion time scale as ρfcfb
2/kf . Allowing the numerical solver to run for ten biomass

diffusion timescale lengths would gaurantee that the solution has converged to its steady-

state solution.
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Figure 4.8. Convergence of mass fraction solutions from Figure 4.6.

4.2. Discussion

By looking at the dimensionless form of the governing equations using the Frank-Kamenetskii

critical δc while ignoring mass loss, two possible states can be defined, namely an ignition

state or a non-ignition state. If the heating parameter, δ, is above the critical value, the

ignition state, temperatures always approach infinity. In the non-ignition state, temper-

atures always approach a finite value as time increases. To include moisture content we

vary the heat release and specific heat based on a probability distribution around average

moisture content values up to 30%. A good correlation can be made to the CEMML ig-

nition data using a simple ignition criteria based on Gol’dshleger’s hotspot theory and the

moisture dependent biomass parameters. However, such a simple model only works by care-

fully calibrating parameters, such as the pre-exponential constant and moisture distribution.
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Nevertheless, this simple model can provide reasonable predictions for the longleaf pine, but

does not for cheatgrass or smoothbrome. This suggests that the Gol’dshleger hotspot ignition

model is more qualitative than quantitative. Therefore, adding additional physics, such as

mass loss, to Gol’dshleger’s hotspot model should improve the predictability. Furthermore,

incorporating additional physics allows for more realistic ignition criteria. For every ignition

observed in this work, a combustion wave propagated throughout the fuelbed at a constant

rate without interruption and results in satisfying a common criteria. This criteria is the

measure of the fuel mass over a characteristic time length given by ρfcfb
2/kf . A more precise

criteria for ignition is, perhaps, the onset of a combustion wave. It also appears that heating

values may be explored as an ignition criteria. It is found that the numerical model requires

reasonable values of the physical and thermodynamic properties of the biomass. Specifically,

if reasonable values are not used, temperatures can approach infinite values. In Figure 4.7

solutions were not obtained if Q was approximately 9.4× 105 J/kg. However, the problem is

that there is a significant uncertainty in property estimations for biomass. In addition, the

convection is not included in the numerical model. Heat release due to combustion is not

being convected out of the system effectively. Furthermore, oxygen diffusion, porosity of the

fuelbed, and radiation effects within the fuelbed have been neglected. It is also observed that

by reducing the radius of the fuelbed, the quick burnout of the fuel results in the convective

boundary condition becomes more effective at earlier times resulting in faster cooling and

more realistic exothermic behaviors exhibited by the biomass.
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CHAPTER 5

Conclusion and Future Work

We have shown that a correlation can be developed between experimental ignition data

using a simplified, non-dimensional model with critical values found by Gol’dshleger et al. It

was established that the bifurcation-point that differentiates thermal explosion and steady-

state solutions provides a basic ignition criteria that can be compared with more complex

ignition models. Next, we have demonstrated that the numerical solution to the coupled

reaction-diffusion equations allows us to use mass loss as an ignition criteria. By including

the effects of mass loss governed by a first-order, Arrhenius reaction, issues arise when

biomass parameter values from Chapter 1 are used. A result of this is unreasonable adiabatic

temperature values, as well as thermal explosion behavior that was also seen in the simplified,

non-dimensional model. It is clear that the uncertainty in these parameter values for longleaf

pine, cheatgrass, and smooth brome results in inaccurate analysis for these specific biomass

species. Moreover, some experimental work is needed to better understand the combustion

properties of the specific biomass being studied with an emphasis on the activation energy

and the pre-exponential constant. Additional experimental work can be done to validate

the coupled reaction-diffusion model. Future work is needed to determine what range of

parameters are possible that allow for a steady-state solution, the onset of a combustion wave,

or thermal explosion for the coupled reaction-diffusion system. Capturing more physics, such

as oxygen diffusion, and taking into account the porosity of the biomass is thought to allow

for more realistic parameters without resulting in thermal explosion. A next step for the

ignition model will be to account for oxygen diffusion so that all of the primary factors

that are necessary for ignition (fuel, heat source, and oxidizer) will be fully accounted for
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in the governing equations. With more accurate biomass parameters, and the inclusion of

oxygen diffusion, the ignition criteria described in Chapter 4 should result in a more accurate

correlation to biomass ignition data.
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