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ABSTRACT 
 
 

INTEGRATIVE GEOSPATIAL MODELING: COMBINING LOCAL AND INDIGENOUS 

KNOWLEDGE WITH GEOSPATIAL APPLICATIONS FOR ADAPTIVE GOVERNANCE 

OF INVASIVE SPECIES AND ECOSYSTEM SERVICES 

 
With an unprecedented rate of global change, diverse anthropogenic disturbances present 

growing challenges for coupled social-ecological systems. Biological invasions are one such 

disturbance known to cause negative impacts on biodiversity, ecosystem functioning and an 

array of other natural processes and human activities. Maps facilitated by advanced geospatial 

applications play a major role in resource management and conservation planning. However, 

local and indigenous knowledge are overwhelmingly left out of these conversations, despite the 

wealth of observational data held by resource-dependent communities and the potential negative 

impacts biological invasions have on local livelihoods.  

My integrative geospatial modeling research applied adaptive governance mechanisms of 

knowledge integration and co-production processes in concert with species distribution modeling 

tools to explore the potential threat of invasive plants to community-defined ecosystem services. 

Knowledge integration at the landscape scale in Alaska provided an important opportunity for re-

framing risk assessment mapping to include Native Alaskan community concerns, and revealed 

the growing potential threat posed by invasive aquatic Elodea spp. to Chinook salmon 

(Oncorhynchus tshawytscha) and whitefish (Coregonus nelsonii) subsistence under current and 

future climate conditions. Knowledge integration and co-production at the local scale in 

northeastern Ethiopia facilitated shared learning between pastoral communities and researchers, 

leading to the discovery of invasive rubber vine (Cryptostegia grandiflora), which was 
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previously unknown to my research team or a number of government and aid organizations 

working in the region, thus providing a potentially robust early detection and monitoring 

approach for an invasive plant that holds acute negative impacts on a number of endemic 

ecosystem service-providing trees.  

This work revealed knowledge integration and co-production processes and species 

distribution modeling tools to be complimentary, with invasive species acting as a useful 

boundary-spanning issue for bringing together diverse knowledge sources. Moreover, bridging 

and boundary-spanning organizations and individuals enhanced this rapid appraisal process by 

providing access to local and indigenous communities and fostered a level of built-in trust and 

legitimacy with them. Challenges to this work still remain, including effectively working at 

broad spatial and governance scales, sustaining iterative processes that involve communities in 

validating and critiquing model outputs, and addressing underlying power disparities between 

stakeholder groups. Top-down, discipline-specific approaches fail to adequately address the 

complexity of ecosystems or the needs of resource-dependent communities. My work lends 

evidence to the power of integrative geospatial modeling as a flexible transdisciplinary 

methodology for addressing conservation efforts in rural regions with mounting anthropogenic 

pressures at different spatial and governance scales. 
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Integrative geospatial modeling: Seeking adaptive and collaborative management of 

invasive species and ecosystem services through an adaptive governance framework 

 

 

 

Invasive Species: A Pressing Social-Ecological Problem 

With an unprecedented rate of global change, diverse anthropogenic and environmental 

disturbance drivers present growing challenges for coupled social-ecological systems (Chapin III 

et al. 2009). Social-ecological systems (SESs) are complex, adaptive systems (Berkes et al. 

2003) comprised of dynamic and interacting ecological, physical, social, cultural, and political 

processes occurring across spatial and temporal scales (Figure 1). Their inherent complexity 

makes for great uncertainties when trying to predict the outcomes of management practices, 

effects of unpredictable disturbances, and values and needs of diverse stakeholders. 

Sustainability of SESs in part involves supporting their resilience, or ecological integrity (Walker 

et al. 2002; Chapin III et al. 2009), which is the capacity of a given system to absorb or recover 

from environmental and anthropogenic perturbations and reorganize, while still maintaining the 

same overall structure and function (Holling 1973; Folke et al. 2004). This structure and function 

can prove critical for fostering human well-being and transformation within social systems 

(Walker et al. 2004; MEA 2005).  

Caution must be taken when attributing “resilience” as always normatively desirable. A 

growing number of critiques point out the extensive use of resilience as a prescriptive concept, 

and one that is universal for social and ecological systems across spatial and governance scales. 

However, resilience is often vaguely defined (e.g. theory versus framework and simultaneously 

resisting change while embracing transformation), and often does a poor job of explaining social 

systems (Davidson 2010; Cote & Nightingale 2011; Berkes & Ross 2013; Olsson et al. 2015). 

Moreover, resilience may not be desirable, as it can pertain to “trapped” systems on “pathologic 
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trajectories” that limit their ability to adapt over time (Gunderson & Light 2006: 324). For this 

reason, when discussing the ecological structure and function of a system that can support human 

well-being and enhance what Crane (2010) describes as “cultural resilience”, or “the ability to 

maintain livelihoods that satisfy both material and moral (normative) needs in the face of major 

stresses and shocks; environmental, political, economic, or otherwise” (pp. 20), I use the term 

“ecological integrity” (Chapin III et al. 2009). 

Figure 1. Conceptual model of dynamic and complex social-ecological systems (SESs), adapted from Collins et al. 
(2011). Social and biophysical domains are connected by a range of materials, processes, and feedbacks occurring 
across spatial and temporal scales. Key features of the social domain, including governance and management shape 
and are shaped by the biophysical domain and external drivers. Knowledge is diffuse across these realms, coming 
out of social processes and influencing interactions with the biophysical domain and ecosystem service that support 
human well-being. 
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These complex, interconnected challenges becomes all the more salient and urgent in 

light of increased global human impacts, with a near 7.2 billion human global population and 

increasingly interconnected activities worldwide, fueled by rapid technological advancements 

and integrated markets. For example, we live in an era of “conservation-reliant” species, with 84 

percent of those listed as threatened or endangered under the U.S. Endangered Species Act 

requiring long-term, concerted management investments (Scott et al. 2010). Moving beyond a 

species-specific focus, which belies many of the complex interactions of SESs and thus limits 

their holistic management, we arguably live in an era of conservation-reliant systems as well, 

with increasingly vulnerable and fragmented ecosystems and habitats needing a similar measure 

of long-term management commitments. This is made apparent by the legacy of a historical fire 

exclusion paradigm in forest management in the United States (Cohen 2008), which has 

undermined the ecological integrity of forest ecosystems and heightened the risk of catastrophic 

fires, especially at the wildland-urban interface. Moreover, we see these effects with extensive 

global habitat alteration and fragmentation that impacts not just individual keystone species but 

entire biotic communities, underlying ecosystem functions, and human livelihoods (MEA 2005). 

The social complexity inherent to anthropogenic disturbances, linked with the innate ecological 

complexity of ecosystems requires flexibility in managing for sustainability and ecological 

integrity, and moving beyond overly simplistic institutional prescriptions (Ostrom & Cox 2010).  

 Non-native invasive species are a critical disturbance driver that increases the 

vulnerability of SESs. Vulnerability refers to a state of susceptibility to harm from exposure and 

lack of capacity to adapt to stresses associated with dynamic, complex, and interacting social and 

ecological variables, based on both internal and external dynamics (Adger & Kelly 1999; Adger 

2006). Invasive species are known to cause negative impacts on biodiversity, ecosystem 
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functioning, and an array of other natural processes and human activities (Vitousek 1990; 

Vitousek et al. 1997; IUCN 2000; White et al. 2008; Hejda et al. 2009). Biological invasions are 

responsible for an estimated $120 billion in damages each year in the United States alone and 

further have direct and indirect costs equaling nearly five percent of the world's annual economy 

(Pimentel 2005).  

Recent studies continue to show the facilitation of invaders by other interacting 

disturbance drivers such as climate change (Springer et al. 2015), habitat alteration and 

fragmentation (Joshi et al. 2015; Liendo et al. 2015), and human development and recreation 

(Dar et al. 2015; Roche et al. 2015). Assessing the risks posed by invasive species to processes 

that support ecosystem functioning and an array of ecosystem services (i.e. the benefits humans 

receive from natural systems and environments), including biodiversity, nutrient cycling, 

disturbance regimes, inter alia, is critical for resource management and conservation (MEA 

2005; Keller et al. 2009; Vilà et al. 2010; Carey et al. 2012), and may provide an important focal 

point for highlighting the connectivity of diverse and detrimental disturbance drivers that impact 

local and indigenous livelihoods and broader SES integrity. Provisioning ecosystem services in 

particular, which are the environmental goods that are directly consumed by society (e.g. food, 

fiber, fuel and water), provide the most direct link between ecological and social systems, and 

are fast variables that often show rapid, non-linear responses to environmental changes (Chapin 

III et al. 2009). Conducting risk assessments for these services necessitate the use of novel, 

transdisciplinary approaches, which are above all community-driven. Transdisciplinary refers to 

research and approaches that involve “coordinated interaction and integration across multiple 

disciplines resulting in the restructuring of disciplinary knowledge and the creation of new 

shared knowledge” (Jakobsen et al. 2004: 17).   
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Within the field of ecology, the study of biological invasion is one of the fastest growing 

areas of research (Pyšek et al. 2004), and a central topic for scholars across a range of other 

disciplines, including biology, environmental policy, geography, and natural resource 

management. The utility of risk assessment procedures for addressing invasive species has also 

grown in recent years (Powell 2004; Buckley 2008; Lindgren 2012), including powerful 

applications of species distribution modeling techniques (Cutler et al. 2007; Evangelista et al. 

2008; Rodda et al. 2009; Elith et al. 2010; Stohlgren et al. 2010; Jarnevich et al. 2014). This 

modeling combines and quantifies species location information with environmental data to 

predict a given species' distribution across a defined geographic space (Franklin 2009), and can 

allow for comparison of various management approaches that can be tested on the ground (Drew 

et al. 2011).  

Despite the growth of this literature, the human dimensions component is predominately 

missing, even though an array of studies have espoused the benefits of integrating local and 

traditional (i.e. indigenous) ecological knowledge for effective conservation planning and 

resource management (Berkes et al. 2000; Fernandez-Gimenez et al. 2006; Gagnon & Berteaux 

2009; Luizza et al. 2013). Recently, a growing body of scholarship has called for the inclusion of 

broader stakeholder knowledge and perceptions in invasive species research (Garcia-Llorente et 

al. 2008; Liu et al. 2011; Kapler et al. 2012). Although this work is rapidly expanding, the views 

of indigenous peoples have been all but absent, and when knowledge and stakeholder 

engagement are mentioned in the broader environmental modeling world, it tends to be limited in 

scope or in some instances mere “lip service” paid to popularized buzz words (Voinov & 

Bosquet 2010: 1268).  
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Furthermore, there is limited assessment of the interactions between invasive species and 

ecosystem services that indigenous and rural communities rely on for their livelihoods.1  

This oversight is important, as invaders can often have detrimental impacts on an array of 

services, posing major threats to local livelihoods (Pejchar & Mooney 2009), yet in some 

instances derived benefits of invasive species can be found (Foster & Sandberg 2004; Garcia-

Llorente et al. 2008; Marshall et al. 2011; Shackleton et al. 2011; Belnap et al. 2012). This 

knowledge can reveal important adaptations of local communities and thus warrants a more 

holistic interpretation of the inherently political term “invasive species” (Sagoff 2005; Evans et 

al. 2008), including an understanding of the array of interactions in a given ecosystem, the 

potentially negative and beneficial impacts that invasive species may have, and the distinct 

knowledge and perceptions different stakeholders maintain. “In general, for every case of 

invasion some sector of society makes a profit” (Garcia-Llorente et al. 2008: 2970). Beyond 

solely economic gains, other less tangible benefits also are present. For instance, many Native 

American tribes hold nuanced views of invasive plants, in some cases describing them as 

“healers” of the Earth, particularly in systems under stress or recent anthropogenic disturbance 

(Parker 2001). As Parker (2001) astutely notes, “While Native American people have themselves 

been the victims of invasions of their homelands by the arrival of immigrants on this continent, 

they have generally not viewed new plant introductions with the same alarm that western 

scientists have” (Parker 2001: 49). Moreover, on the African continent, some invasive plants can 

benefit livelihoods of rural and indigenous communities. For example, non-native prickly pear 

cactus (Opuntia ficus-indica) is used to make jams, syrups, beer, and medicine in South Africa 

                                                 
1) A notable exception is Urgenson et al.’s (2013) study with private landowners in South Africa, which reveals the 
importance of understanding different points of view and unique contexts of different stakeholders for achieving 
insight into the opportunities and constraints faced by ecosystem service conservation attempts and invasive plant 
management at the local level. 
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(Shackleton et al. 2011) and acts as an important livestock fodder, erosion control, fuel, and 

fencing source in Tigray and Ethiopia (Barbera 1995; Musimba & Bariagabre 2003). Still, the 

inherently negative context of the term “invasive species” tends to provoke strong, equally 

negative reactions in people (Gobster 2005; Selge et al. 2011). Therefore, acknowledging, 

engaging, and incorporating local and indigenous knowledge is important, as it can provide not 

only a more nuanced understanding of SESs and invasive species impacts, but may additionally 

offer insight into areas of conflict regarding management approaches, depending on the 

consensus or contestation over how an “invasive species” is perceived.   

In response to such complex challenges like biological invasions, the concept of adaptive 

governance has emerged, addressing the array of interactions inherent in SESs, including the 

structures, rules, processes, and traditions that determine environmental management. In the 

broadest sense, governance denotes forms, structures, and processes of authority that go beyond 

hierarchical state activities (Biermann et al. 2010). “Governance in other words, encompasses the 

activities of governments, but it also includes the many other channels through which 

‘commands’ flow in the form of goals framed, directives issued, and policies pursued” (Rosenau 

1995: 14). Governance sets the vision for the appropriate interactions of stakeholders and the 

formulation of principles to address problems and achieve desired outcomes. Within a 

governance framework, institutions are embedded as a system of rights, rules, and decision-

making procedures that provide regularities, reduce uncertainties, and further shape stakeholder 

interactions (Kooiman et al. 2005). As humans we have a wide range of governance options at 

our disposal when seeking to address global environmental challenges (Dryzek 2012). These 

options entail different scales for exploring and engaging with governance approaches and tools, 

from global environmental governance frameworks (Biermann & Pattberg 2008), to multilevel 
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governance arrangements (Betsill & Bulkeley, 2006), and local and community governance 

practices (Bowles & Gintis 2002).  

Adaptive governance specifically, is defined as “...an evolving research framework for 

analyzing the social, institutional, economical, and ecological foundations of multilevel 

governance modes that are successful in building resilience for the vast challenges posed by 

global change, and coupled complex adaptive social-ecological systems” (SRC 2012). The 

nascence of this concept is noted by Chaffin et al. (2014) to come from the fields of resilience 

scholarship (Walker 2004; Folke et al. 2005) and community-based natural resource 

management (CBNRM) literature (Brunner et al. 2005 provides the first CBNRM-inspired 

approach to adaptive governance). In both conceptualizations, adaptive governance moves 

beyond a single scale of actors and institutions involved, requiring a deep understanding of a 

system's biotic, abiotic and social processes, and thus providing a transdisciplinary framework 

and vision for socially and ecologically desirable outcomes. For a CBNRM-inspired approach, 

adaptive governance embodies a more applied, context-specific management framework where 

local initiatives are not restricted, but rather organized and coordinated into larger scales of 

governance to achieve desired outcomes. In either form, “ideally, the scale of AG [adaptive 

governance] will be adapted to the social and ecological nature of the problem as well as to 

societal goals, through sufficient response flexibility within and between existing political 

boundaries”(Chaffin et al. 2014: 62).  

With such a wide array of ecological and social factors, processes, and actors considered, 

isolating the most important features that support ecological integrity and cultural resilience can 

become extremely difficult. With the potential utility of adaptive governance as a framework for 

addressing environmental issues across scales, scholars have identified a number of important 
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social mechanisms for achieving desirable social and ecological outcomes (Table 1).  

Table 1. Social mechanisms identified within the adaptive governance framework as being important for achieving 
desirable social and ecological outcomes within complex SESs. Selected key references draw from within and 
outside of the adaptive governance literature. 

Mechanism Description Selected Key References  

Knowledge integration  Multiple evidence-based approaches that deal with the 
synthesis and validation of different knowledge systems. 
Different knowledge forms are viewed as distinct, yet 
complimentary and provide new insights to a given 
environmental problem. 

Gadgil et al. 1993; 
Fernandez-Gimenez et al. 
2006; Brown 2009; Blythe 
et al. 2012; Tengo et al. 
2014 

Knowledge co-
production 

The collaborative process of generating new knowledge 
that brings a plurality of knowledge sources and types 
together to address a defined environmental issue. 
Collaborative and participatory processes occur at all 
stages of knowledge generation.  

Pohl et al. 2010; Armitage 
et al. 2011; Dale & 
Armitage 2011; Fazey et 
al. 2012; Tengo et al. 2014 

Deliberation Inclusive process of open debate, communication, 
discussion, and reflection among actors who have 
alternative worldviews, political viewpoints, and/or 
“social memory” (linking past experiences to desired 
future actions), to facilitate shared understanding and 
provide new and useful insight for design and 
implementation of participatory decision-making 
processes. 

McIntosh 2000; Dietz et 
al. 2003; Lebel et al. 2006; 
Rodela 2012  

Social and 
organizational 
learning 

Ongoing dynamic process of knowledge acquisition, 
reflection, and transfer that involves engaging underlying 
assumptions, norms, and objectives (can occur over short 
or long time spans for individuals, communities, or 
organizations), which is highlighted by monitoring, 
experimentation and adaptation. 

Westley 1995; McClain & 
Lee 1996; Epstein & Roy 
1997; Dietz et al. 2003; 
Folke et al. 2005; 
Gunderson & Light 2006 

Collaboration A process where multiple stakeholders engage and 
cooperate with one another with respect to an issue, co-
creating and co-managing that process to define and 
achieve outcomes they could otherwise not achieve alone. 

Ostrom 1990; Wondolleck 
& Yaffee 2000; Daniels & 
Walker 2001; Schusler et 
al. 2003; Plummer & 
Armitage 2007 

Social capital Relations of trust, reciprocity, attitudes, common rules, 
norms, values, and the connected nature of networks 
among individuals and institutions that act as an asset, 
which can be accessed to benefit an individual or group.  

Flora 1998; Pretty & Ward 
2001; Olsson et al. 2004; 
Folke et al. 2005; Titeca & 
Vervisch 2008; Leahy & 
Anderson 2008; Wagner & 
Fernandez-Gimenez 2008 

Leadership  Individuals and/or organizations that have the power and 
vision to guide and motivate others to achieve a goal. 
Important in shaping change and reorganization through 
innovation in agenda-setting, popularizing issues, 
bargaining, brokering deals, garnering support, building 
trust, and developing networks. 

Shannon 1991; Danter et 
al. 2000; Brosius et al. 
2005; Folke et al. 2005; 
Gunderson & Light 2006 

Diversity of actors and 
institutions  

Existence of an array of distinct stakeholders (individuals 
and organizations) across scales (local, regional, and 
global), which can produce important networks of 
collaboration that can help absorb disturbances and spread 
out risks. 

Gunderson & Holling 
2002; Dietz et al. 2003; 
Low et al. 2003; Folke et 
al. 2005; Ostrom 2005 

Monitoring and 
evaluation  

Process and activities undertaken to assess and 
characterize the state and quality of a given system and 

Boyle et al. 2001; Wilhere 
2002; Stem et al. 2005; 
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appraise the merit, legitimacy, and effectiveness of 
defined goals.  

Plummer & Armitage 
2007; Lyons et al. 2008; 
Cundill & Fabricius 2010 

 
Within this framework, a number of applied management approaches can be found that 

act to operationalize adaptive governance. These applied, and to a degree, overlapping concepts 

include co-management, adaptive management, adaptive co-management, and adaptive 

collaborative management (Table 2). Each concept applies a number of the aforementioned 

adaptive governance mechanisms (Table 1), but all four highlight the importance of diverse 

knowledge sources when seeking to understand and address the innate uncertainty and 

stochasticity of SESs and the context-specific nature of many environmental issues.  

Table 2. Key applied management concepts found within the adaptive governance framework. 

Management Concept Definition, Features, and Limitations Selected Key References  

Adaptive management Structured, iterative, multidisciplinary decision-making 
approach that embraces risk and uncertainty as a way to 
build understanding of a system. Learning is achieved 
through deliberate experimentation and flexible 
institutions capable of monitoring, evaluating, and taking 
corrective actions. Participatory processes and social 
learning are viewed as important, but issue definition is 
often focused on ecosystem outcomes and dominated by 
scientists, managers, and policy-makers, with little 
attention paid to social issues like institutions, leadership, 
or social capital.  

Holling 1978; Walters 
1986; McLain & Lee 
1996; Gunderson & Light 
2006; Stringer et al. 2006 

Co-management  Collaborative power-sharing agreement (usually codified) 
among local resource users (often indigenous groups) and 
higher-level organizations (usually a government or 
resource management agency), where each has rights and 
responsibilities in regards to decision-making. Seeks to 
enhance equity, local capacity, and efficiency in 
management and decision-making through deliberation, 
negotiation, and joint learning, but limited 
acknowledgement of historical and latent power 
inequities, distinct value systems, and the potential for 
rigid institutional design can reinforce power imbalances.   

Pinkerton 1994; Jenoft et 
al. 1998; Nadasdy 2003; 
Carlsson & Berkes 2005; 
Natcher et al 2005; 
Armitage et al. 2011  

Adaptive co-
management  

Evolutionary process that merges principles and practices 
of co-management (linkage properties) and adaptive 
management (dynamic learning), with an emphasis on 
collaboration and social learning of heterogeneous actors 
and organizations across scales to address sustainability 
issues in specific locations and contexts. Mix of codified 
and informal agreements. Can have high up-front 
transaction costs due to necessary long-term investments 
of time and resources. Potential limits in dealing with 

Folke et al. 2005; Hahn et 
al. 2006; Plummer & 
Armitage 2007; Armitage 
et al. 2009; Plummer 
2009; Leys & Vanclay 
2011 
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rapidly emerging issues. 

Adaptive collaborative 
management 

Collaborative process of generating, integrating, and 
critically appraising knowledge and interests of local 
communities, conservation authorities, and resource 
managers to develop policy and management approaches. 
Heavily focused on participatory methods and decision-
making, social learning, and testing and re-evaluating 
approaches. Similar to adaptive co-management, but with 
a greater emphasis on social justice and usually not 
codified agreements. Can have high up-front transaction 
costs due to necessary long-term investments of time and 
resources. 

Buck et al. 2001; Colfer 
2005; Fisher et al. 2007; 
Kalibo & Medley 2007 

 

Despite many benefits, key limitations are present within the adaptive governance 

framework. The application and outcomes are often argued to be context-specific and its 

ambitious cross-scale and multi-disciplinary nature can make for a seemingly nebulous approach 

(Brunner et al. 2005). Additionally, distinctions between adaptive governance and some of its 

applied institutional management tools are unclear (Plummer et al. 2013; Chaffin et al. 2014). 

Proponents of adaptive governance and its connected management concepts view 

knowledge as an important component of environmental management and decision-making 

within SESs, seeking to combine conventional scientific and other forms of knowledge into 

applicable policies through open decision-making processes, with the ultimate goal of promoting 

common environmental interests that benefit society and the environment. This comes out of 

broader debates about the role of science and knowledge in environmental politics, with scholars 

pointing out the failure of environmental politics to connect global western scientific knowledge 

with local and indigenous knowledge (Bäckstrand 2008). A proposed remedy is increased public 

participation in scientific assessment processes, and thus providing a more explicit recognition of 

this merged global and local knowledge, or the “glocal level of knowledge production” 

(Bäckstrand 2008: 29). However, merely increasing participation still overlooks power 

imbalances between knowledge holders and perceived differences in knowledge legitimacy 
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(Nadasay 1999; Kofinas 2005; Fernandez-Gimenez et al. 2006).  

Additional challenges to incorporating local and indigenous knowledge exist. Many 

studies focus on direct comparisons of western scientific knowledge and local and indigenous 

knowledge, viewing the latter as needing “validation” from the former or simply as different 

forms of data to be interpreted by “expert scientists” (Gilchrist et al. 2005; Gilchrist & Mallory 

2007). Despite these challenges, knowledge integration and co-production research, which builds 

on decades of CBNRM and participatory action research scholarship, provides evidence for 

important outcomes of these inclusive processes, such as trust building, community 

empowerment, expansion of scientific knowledge, and enhancement of adaptive strategies. 

Exploring specific mechanisms within the adaptive governance framework, through 

applied management concepts (e.g. adaptive management and adaptive co-management) in 

distinct study areas and at different scales can provide important insight into the utility of an 

adaptive governance framework for facilitating SESs ecological integrity and protecting local 

livelihoods. The aforementioned efficacy of local and traditional forms of knowledge and the 

context-specific nature of invasive species environmental impacts (Levine 2000; Pyšek et al. 

2012) provides additional support for including a wide array of stakeholder knowledge and 

perceptions in invasive species assessments and more concerted efforts at community-based 

approaches to invasion management and ecosystem service conservation. This is important for 

SES scholarship as disturbances at one scale can easily impact another (Zurlini et al. 2013). 

Unique observational data from local and indigenous communities can shed light on broader 

landscape changes and vulnerabilities within SESs and provide insights into local adaptive 

practices for fostering their ecological integrity.  
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This is important as “...marginalized forms of knowledge may bring new meanings into 

environmental policy debates and hereby render nature governable in new ways” (Lövbrand 

2013: 1).  

Research Questions and Dissertation Objectives  

My research questions include the following: 1) How does the process of knowledge 

integration and co-production combined with species distribution modeling (i.e. integrative 

geospatial modeling) look when conducted with resource-dependent indigenous communities in 

drastically different ecological, cultural, and political settings at different spatial and governance 

scales? 2) What benefits and drawbacks does this transdisciplinary methodology hold for applied 

management efforts within an adaptive governance framework? 3) What is the current state of 

knowledge integration and co-production research, regarding the necessary conditions for and 

potential outcomes of conducting this participatory research?  

This work constitutes an applied research approach, as I am seeking to contribute 

understanding of a pressing problem and facilitate taking action, with research questions driven 

by the concerns of people but additionally informed by disciplinary theory (Patton 2002). My 

dissertation seeks to develop an integrative geospatial modeling tool for applied management of 

invasive species and provisioning ecosystem services at the local and landscape scale. 

Knowledge diversity is argued to be an important part of adaptive governance and critical for 

addressing complex issues of SESs. Within this framework, there is an assumption that adding 

more diverse forms of knowledge to applied management processes is inherently good and will 

produce better outcomes. Arguably, in the ecological world there are limited avenues for  
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thoroughly documenting and incorporating different forms of knowledge in a sophisticated and 

culturally appropriate manner, particularly in concert with advanced geospatial applications like 

species distribution modeling. 

Participatory mapping and counter-mapping studies provide diverse methods for 

combining local and indigenous knowledge with geospatial analyses. Applications have ranged 

from coupling ethnographic methods with satellite imagery, orthorectified aerial imagery, 

topographic maps, and hand sketched maps to define the distribution and variation in cultural 

landscape assets, spatially relay and quantify community-defined ecosystem services, and 

understand land cover changes (Mapedza et al. 2003; Fagerholm & Kayhko 2009; Klain & Chan 

2012), to combining local and indigenous knowledge with sketched maps, global positioning 

systems (GPS), and geographic information systems (GIS) software, to help tribes make claims 

to traditional territory and understand the distribution and yield patterns of subsistence areas 

(Poole 1995; Smith 2003; Willow 2013). Such work has proven critical for expanding the realm 

of conventional science and affording a higher level of ownership in the research process for 

local and indigenous communities involved. However, to my knowledge it has not employed the 

advanced applications of species distribution modeling. These participatory mapping methods 

and species distribution modeling could greatly enhance one another, by facilitating more 

meaningful stakeholder inclusion in modeling approaches and providing another layer of 

powerful geospatial analyses for participatory and counter mapping efforts when engaging 

critical sustainability and resource management issues that are important to local and indigenous 

communities.  

Motivated by these questions revolving around knowledge and adaptive governance, my 

dissertation builds on local and traditional (i.e. indigenous) ecological knowledge, participatory 
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mapping, and species distribution modeling literatures to highlights the importance of coupling 

the adaptive governance mechanisms of knowledge integration and co-production with existing, 

powerful geospatial tools; an approach that has received limited attention to date. Furthermore, I 

focused my efforts on invasive species, which at times reveal the connectivity of an array of 

other detrimental disturbance drivers that threaten the ecological integrity of SESs and affect 

local livelihoods, including climate change and human development. Additionally, this research 

sought a more nuanced understanding of local observations and responses to changing 

environments by very distinct communities, to further highlight the multifaceted challenges and 

opportunities that are present to engaging in such transdisciplinary work at the community and 

landscape scales. This integrative geospatial modeling approach directly engages key features of 

transdisciplinary scholarship. Such research is problem-focused, spans disciplinary boundaries 

for holistic understanding of issues, and integration of knowledge through collaborative, mutual 

learning (Mattor et al. 2014). 

 Linked with my research questions, the specific objectives of this dissertation research 

are: 1) to catalogue local and indigenous knowledge and perceptions of invasive species in 

Alaska and northeastern Ethiopia, and use this knowledge to create invasive species risk 

assessment maps of the most pressing invaders defined by the community stakeholders, 2) to 

assess the vulnerability of important community-defined ecosystem services to the 

aforementioned invasive species, and 3) to analyze the policy and management implications of 

this collaborative transdisciplinary research framework.  
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Study Areas 

I conducted vulnerability assessments of indigenous livelihoods to invasive species for the state 

of Alaska and the Afar region of Ethiopia (Figure 2). Both locations have distinct ecologies, with 

interconnected marine, subarctic, and tundra ecosystems in Alaska (Nowacki et al. 2002) and 

semi-arid and arid desert ecosystems in Afar (Getachew 2001). Although both study sites are 

states within their respective countries, they encompass drastically different spatial scales, with 

Alaska (approximately 172 million ha) at around 18 times the size of Afar (approximately 9.5 

million ha). Alaska is characterized by hunter-gatherer societies and northeastern Ethiopia by 

pastoral societies, but in both cases these groups are increasingly restricted in their mobility and 

means to engage in subsistence practices, and moreover, both constitute marginalized 

communities within their respective countries (Getachew 2001; McNeeley 2009). With such 

important distinctions but also a shared common thread of large populations of indigenous 

peoples that are highly reliant on the landscape for their livelihoods, this work makes for a 

unique comparison of opportunities and challenges of conducting such integrative and 

transdisciplinary research in different contexts. 
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Methods and Goals 

Ongoing work in Ethiopia has helped refine methods for documenting local and 

traditional ecological knowledge and revealed the importance of gender-inclusive data collection 

(Luizza et al. 2013). Ecological modeling techniques employed have been extensively used in 

other projects directed by my co-advisor Dr. Paul Evangelista and facilitated through the U.S. 

Geological Survey Fort Collins Science Center's Software for Assisted Habitat Modeling 

(SAHM; Morisette et al. 2013). Dr. Evangelista and colleague Tewodros Wakie facilitated my 

Figure 2. Dissertation research study areas: Upper left (1): The state of Alaska (study region 1). Upper right 

(2): Aerial shot of a lake complex representative of much of the subarctic habitat within Interior Alaska’s Yukon 
Flats. Lower left (3): The Afar region of northeastern Ethiopia (study region 2), divided by its five 
administrative zones. Lower right (4): Soemmerring’s gazelle (Nanger soemmerringii) in the semi-arid Aledeghi 
Plains of the Afar Region. Images courtesy of M. Luizza. 
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access to local communities in Ethiopia based on their long-standing relationships and presence 

in the country. Dr. Evangelista’s existing research provided an important avenue to connect with 

an array of resource managers in Alaska. Limited prior engagement with Native Alaskan tribes 

required extensive preliminary outreach with tribal councils and Alaska university researchers, in 

part aided by the Yukon River Intertribal Watershed Council. The necessity of these initial 

networking attempts ultimately limited the depth of indigenous knowledge collected in Alaska 

for this stage of my research.  

Such bridging and boundary-spanning organizations and individuals can provide a 

measure of access and credibility with local communities when navigating these critical issues. 

Berkes (2009) notes the strong similarity of boundary-spanning and bridging organizations, 

which provide translation between science and policy spheres, with the latte having a broader 

scope. Such organizations “…provide a forum for the interaction of these different kinds of 

knowledge, and the coordination of other tasks that enable co-operation: accessing resources, 

bringing together different actors, building trust, resolving conflict, and networking” (Berkes 

2009: 1692). For this study I view boundary-spanning and bridging organizations and individuals 

in a similar fashion, with each fostering the dissemination of knowledge and facilitating 

translation between science, policy and community spheres. This is important to note, as a 

number of challenges exist to gaining access and work with local and indigenous communities, 

especially the latter. Real and perceived perceptions of power and representation can fuel 

problematic “insider/outsider” dynamics among researchers and communities  (Merriam et al. 

2001). Furthermore, indigenous communities have often experienced “research fatigue”, with 

academic scholars conducting numerous and sometimes overlapping studies with the same 

communities, and often producing limited tangible benefits for the participants (Clark 2008; Way 
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2013). This can pose major challenges to accessing and effectively engaging with local and 

indigenous communities. This is illustrated by a Native Alaska saying that states “researchers are 

like mosquitoes; they suck your blood and leave” (Cochran et al. 2008: 22). 

My integrative geospatial modeling methodology (Figure 3) consists of a mixture of 

qualitative and quantitative data collection and is part of a larger collaboration between U.S. 

Geological Survey Fort Collins Science Center and Colorado State University's Natural Resource 

Ecology Laboratory. The stages, which are linked with my dissertation objectives are the 

following: 1) understand and catalogue the nuances of local and indigenous resource user 

perceptions of invasive species and provisioning ecosystem services, 2) model the suitable 

habitat of problematic invasive species across the landscapes of concern, 3) assess the 

vulnerability of important user-defined provisioning ecosystem services to invasive species, and 

4) analyze the policy and management implications of this collaborative transdisciplinary 

research framework.  
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Figure 3. Integrative geospatial modeling methodology workflow. This multi-stage process includes cataloguing local and indigenous knowledge, used to 
define ecosystem service-providing species of interest and problematic invasive species (Stage 1). These data are used in concert with geospatial data 
including remotely sensed vegetation, topographic, climate and anthropogenic variables and species distribution modeling, to assess the threat of problematic 
invasive species to critical ecosystem services defined by local and indigenous communities (Stage 2). The vulnerability of important user-defined 
provisioning ecosystem services to invasive species is assessed (Stage 3). Invasion risk assessment maps are brought back to the communities to validate and 
calibrate and begin a dialogue about community-based conservation planning, and a concerted analysis is conducted on the implications this 
transdisciplinary approach holds for adaptive co-management and governance of invasive species and ecosystem services in Alaska and Ethiopia (Stage 4). 
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Each chapter provides an important engagement with knowledge integration and/or 

knowledge co-production and addresses a facet of the above integrative geospatial modeling 

workflow. Chapter one provides an application of the first three stages of integrative geospatial 

modeling in Alaska, with the integration of knowledge and co-definition of important ecosystem 

service conservation targets and concern around the interconnected threats of climate change and 

invasive species coming from Native Alaskan communities and federal and state land managers. 

From this, I created current and future climate risk assessment maps to assess the 

vulnerability of Chinook salmon (Oncorhynchus tshawytscha) and whitefish species (Coregonus 

nelsonii) to invasive aquatic Elodea spp. Chapter two provides an application of the first three 

stages of integrative geospatial modeling in northeastern Ethiopia, with pastoral communities 

defining ecosystem service conservation targets and the interconnected threats of human 

development and invasive species. From this I created a current risk assessment map to assess 

the vulnerability of pastoral livelihoods to invasive rubber vine (Cryptostegia grandiflora). In 

this case, extensive participatory data collection efforts facilitated additional opportunities for 

shared learning during the knowledge integration process and the beginning stages of knowledge 

co-production. Chapter three reflects on the findings of applying integrative geospatial modeling 

in both locations and the opportunities and challenges encountered in each location for engaging 

in this type of transdisciplinary research. Through this reflection and based on current findings in 

the knowledge integration and co-production literature, it provides a preliminary assessment of 

stage four of integrative geospatial modeling, addressing the utility of this method for engaging 

adaptive governance mechanisms through applied management approaches in Alaska and 

Ethiopia, in addition to discussing the necessary next steps of enacting participatory validation 

and evaluation processes with project stakeholders and future research goals. 
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The ultimate goal of this work is to provide a useful tool for fostering collaboration 

between land management agencies, international aid organizations, and indigenous 

communities in Alaska and Ethiopia regarding adaptive and collaborative management of 

invasive species and ecosystem services. This research will contribute to the growing bodies of 

literature on adaptive governance, local and traditional ecological knowledge, indigenous 

livelihoods, collaborative conservation, species distribution modeling, and invasive species 

management. Species distribution modeling and invasion management literatures to date have 

afforded limited inclusion of indigenous and rural communities in their assessments, despite the 

National Invasive Species Council's 2008-2012 Management Plan having an important strategic 

goal of “Organizational Collaboration”, which emphasizes collaboration not only between 

federal agencies but also tribal governments and private citizens (NISC 2008). Inclusion of 

indigenous knowledge and perceptions in invasive species science and management is arguably 

needed to more adequately address the report's other strategic goals of invasive species 

“Prevention”, “Early Detection”, “Rapid Response”, “Control and Management”, and 

“Restoration” (NISC 2008), and provide a better understanding of potential bridges and barriers 

for effective and collaborative adaptive management in different environmental, political, and 

cultural settings.  

Moreover, this work overlaps with the broad vision and goals of international 

organizations working in Ethiopia and around the world, including the U.S. Agency of 

International Development (USAID) and Ethiopia CARE, both of which seek to reduce 

vulnerabilities and address insecurities that increase poverty and impact the resilience of local 

communities (CARE 2013; USAID 2014). Furthermore, this project contributes greatly towards 

the goals of the broader collaborative conservation community of increasing natural resource 
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sustainability and improving rural livelihoods, through a novel framework for addressing 

conservation efforts in rural regions with mounting anthropogenic pressures. Through my 

dissertation I hope to show the importance of combining local and indigenous ecological 

knowledge with advanced geospatial applications, to actively involve local communities in 

defining ecosystem service conservation targets and threatening invasive species, and provide 

another platform for sharing their important stories. There exists a need for increased stakeholder 

participation in ecosystem services and invasive species decision-making (White et al. 2008; 

Bremner & Park 2007; MA 2005), especially indigenous and rural communities, whose voices 

have been predominately left out of the conversation. More holistic approaches, as proposed by 

my integrative geospatial methodology, are critical if we are to attempt to balance environmental 

conservation and human livelihoods for more effective and adaptive governance in an 

increasingly connected and crowded world.  
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“Water is our life”: Assessing impacts of invasive Elodea spp. on aquatic resources and 

native livelihoods in Alaska2 

 

 

 

Alaska has one of the most rapidly changing climates anywhere on earth and is 

experiencing an accelerated rate of human disturbance. The combination of these factors 

increases the state’s vulnerability to biological invasion, including non-native aquatic plants, 

which can have acute negative impacts on ecological integrity and subsistence practices. In this 

chapter, I assessed the threat posed by Elodea spp. (elodea) to aquatic resources and Native 

Alaskan subsistence livelihoods in the state. I created an elodea risk assessment using an 

ensemble of species distribution model algorithms developed with current observed climate data 

at a 2km spatial resolution. Models were applied to future climate (2040-2059) using five general 

circulation models best suited for Alaska. Based on Native Alaskan and local land manager 

insight and concern, I focused the vulnerability assessment on Chinook salmon (Oncorhynchus 

tshawytscha) and whitefish species (Coregonus nelsonii) spawning and rearing habitat. Model 

evaluations indicated that my results had moderate to strong predictability, with Area Under the 

Receiver Operating Curve (AUC) values of 0.88 (generalized linear model), 0.96 (MaxEnt) and 

0.88 (multivariate adaptive regression splines) and classification accuracies of 82%, 90% and 

85%, respectively. Current and future ensemble results revealed different levels of relative 

invasion risk across the state, based on the interaction of dominant subsistence practices and 

elodea climate suitability. This risk includes current high risk in the Athabascan region of 

Interior Alaska, which to date has no recorded observations of elodea, and future high risk in the 

Yup’ik region of western Alaska by midcentury. Results of this study suggest such integrative 

                                                 
2   Research from this chapter is part of the following manuscript: Luizza, M.W., P. Evangelista, C. Jarnevich, A. 

West, and H. Stewart (In Review). “Water is our life”: Assessing the impacts of invasive Elodea spp. on aquatic 
resources and native livelihoods in Alaska. Environmental Management.  
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modeling approaches can hold great utility for re-framing invasive species risk assessments and 

may provide a useful platform for facilitating the inclusion of Native Alaskan concerns in 

conservation planning and management efforts across the state.  

 

INTRODUCTION: 

Invasive species are one of the most pressing environmental, economic and cultural 

threats of the modern age. Biological invasions are noted to be among the most influential 

proximate causes of biodiversity loss worldwide, in addition to inflicting a range of detrimental 

impacts on local and national economies (IUCN 2000; White et al. 2008; Hejda et al. 2009). 

Concern over the establishment and spread of invasive species in Alaska is growing, with 

management efforts currently costing nearly $6 million each year (Schwörer et al. 2012; ANHP 

2014). The state is also experiencing a rapid increase in anthropogenic disturbances including 

natural resource extraction and development of transportation infrastructure, coupled with acute 

climate change (Rupp & Springsteen 2009; Wilson et al. 2013). For instance, over the past 60 

years, Alaska has warmed at a rate that is twice as fast as the rest of the country, with statewide 

average annual air temperature increasing by 3°F and noticeable inter-annual and regional 

variability (Stewart et al. 2013). These average annual temperatures are projected to rise by an 

additional 2°F to 4°F by 2050 (Markon et al. 2012). These interacting disturbances may 

exacerbate the problem of invasive species, as shifts in seasonality and temperature brought on 

by climate change and human dispersal are known to affect the spread of biological invasions 

across geographic scales (Mooney & Hobbs 2000; Bradley et al. 2012; Banks et al. 2015). This 

trajectory for Alaska is expected to increase the overall area of suitable establishment for a 

growing number of invaders (Jarnevich et al. 2014). These impacts may be especially 
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pronounced for Alaska’s vast amount of freshwater aquatic habitat (Clark et al. 2010), as aquatic 

ecosystems (particularly freshwater) are estimated to be more prone to the effects of invasion 

than terrestrial ecosystems (Sala et al. 2000; Huotari & Korpelainen 2013). Combined, these 

factors pose major challenges for regional biosecurity, local livelihoods and overall ecological 

integrity. 

Native Alaskan communities make up more than twenty distinct cultures across the state. 

Interactions of climate change and development already show negative impacts on hunting and 

harvesting efforts of Native Alaskan communities (McNeeley & Shulski 2011; Brinkman et al. 

2014; Carothers et al. 2014). Subsistence practices (i.e. the customary and traditional uses of 

wild resources; Brinkman et al. 2014) are a major part of Native Alaskan livelihoods (Fall 2012), 

with subsistence fishing being highly important across the state for food security and cultural 

heritage (Fall et al. 2014). Such traditional use of resources is intimately intertwined with 

conservation and management, as many agencies in Alaska are charged with mixed management 

goals including biodiversity conservation, habitat preservation, recreation, and subsistence use. 

Achieving these mixed goals across such a large heterogeneous landscape can be facilitated to 

some degree by geospatial tools that have the ability to fill in certain data and knowledge gaps 

(Blaschke & Hay 2001; Pfeffer et al. 2013). Native Alaskan communities rely heavily on state 

and federal lands for an array of ecosystem services (i.e. the benefits that humans receive from 

natural systems and environments; Daily 1997). With approximately 90% of Alaska’s land under 

state and federal authority (Mekbeb et al. 2009), holistic approaches to management that are 

adaptive and inclusive of local community concerns are greatly needed. Collaboration and social 

learning among scientific researchers, land managers, and local communities can benefit such 

applied management efforts (Berkes 2009, Armitage et al. 2011; Carothers et al. 2014). 
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However, the inter-connected issues of subsistence livelihoods and climate change-driven 

invasion vulnerabilities have not been adequately addressed in geospatial applications of risk 

assessments. This is troubling, because such work often plays a major role in conservation 

planning and resource management.   

 The utility of risk assessment procedures for addressing invasive species has grown in 

recent years (Buckley 2008; Lindgren 2012), including powerful geospatial applications like 

species distribution modeling techniques (Evangelista et al. 2008; Elith et al. 2010; Jarnevich et 

al. 2011). These approaches combine and quantify species location information with 

environmental data to predict a given species' distribution across a defined geographic space 

(Franklin 2009) and can allow for comparison and testing of various management approaches on 

the ground (Drew et al. 2011). Within species distribution modeling, the use of ensemble models 

is growing. This process combines the outputs of different individual models into a single map 

display, allowing areas of high model consensus to be delineated from those of low model 

consensus and thus potentially producing more robust predictions. This assessment is important 

due to the variability among commonly used correlative species distribution models, which are 

sensitive to the species occurrence data used and the specific mathematical algorithms employed 

(Araújo & New 2007; Jiménez-Valverde et al. 2008). The ensemble can highlight areas sensitive 

to choices made in the modeling process (such as model algorithm). Furthermore, ensemble 

models can be useful in instances where the species-environment interactions are not fully 

known, such as recently arrived species that have not spread to all suitable habitats (Stohlgren et 

al. 2010). Limited work has explored the application of ensemble modeling for invasion risk 

assessments or species climate suitability, although existing research provides promising results 

(Stohlgren et al. 2010; Ranjitkar et al. 2014).   
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 Ensemble risk assessments can hold great utility for Alaska, as the state now faces the 

establishment of the first known submerged freshwater aquatic invasive plants within its borders, 

Elodea spp. (ADNR Personal correspondence 2014). Elodea is a genus of freshwater 

macrophytes commonly known as waterweeds. Of the seven Elodea sub-species, three (E. 

canadensis Michx., E. densa, and E. nuttallii (Planch.) H. St. John) are considered invasive to a 

number of continents including Africa, Asia, Australia, Europe, and North America (Huotari & 

Korpelainen 2013; Invasive Species Compendium 2014A). Elodea canadensis Michx. and E. 

nuttallii (herein referred to collectively as elodea) are the only two sub-species currently present 

in Alaska. Both are morphologically and phylogenetically close (Boiché et al. 2010) and like 

many other freshwater aquatic plants are highly plastic species (Di Nino et al. 2007), showing a 

broad distribution range, which is often only limited only by geographical barriers or acute 

changes in climate regions (Hussner 2012). The plant forms submerged, tangled masses and can 

persist in a wide range of trophic states, spanning nutrient-poor (oligo-mesotrophic) to nutrient-

rich (highly eutrophic; Angelstein & Schubert 2008; Grudnik & Germ 2013). Although native to 

North America, elodea are not native to Alaska and are considered to be increasingly 

problematic species with invasive characteristics. First documented in southern Alaska in 1982, 

land managers did not take notice until 2010 when the plants began to rapidly establish in lakes 

and slow-moving streams around Anchorage, Fairbanks, Cordova, and the Kenai Peninsula 

(Fairbanks CWMA 2014). Elodea are believed to pose a major threat to interconnected wetland 

and riparian habitats found throughout Alaska; habitat for which many of the 234 tribes across 

the state are reliant for their livelihoods.Threats include degrading fish habitat, such as seasonal 

spawning grounds of Pacific salmon (Oncorhynchus spp.) and whitefish species (Coregonus  
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nelsonii) displacing native flora and fauna, impeding boat travel and safe float plane operation, 

and decreasing flow rates and increasing sedimentation of water bodies. 

 

Research Questions & Project Goals 

Land managers and local communities often have limited access to or training for 

techniques that assess the risk posed by invasive species. Therefore, determining the potential 

impact of problematic invaders to local subsistence livelihoods is important for holistic and 

adaptive conservation planning and management. To my knowledge, few studies have used 

ensemble modeling for risk assessments of aquatic invasive species, and none have explored the 

potential impacts of elodea on indigenous livelihoods in Alaska. Although the process of 

integrating diverse knowledge sources is a key social mechanism of the adaptive governance 

framework, few studies have coupled this process with advanced geospatial tools. Therefore, this 

research is driven by the following question: How does the process of knowledge integration 

combined with species distribution modeling inform our understanding of potential threats posed 

by invasive species to subsistence livelihoods? Linked with this question, the goals of this study 

included the following: 1) model the current and potential future climatic suitability for elodea 

for Alaska using an ensemble modeling technique, in concert with existing species occurrence 

records and climate data; 2) assess the vulnerability of particular fish subsistence practices to 

elodea invasion across the state based on six broad cultural/geographic regions; and 3) discuss 

the utility of this integrative modeling approach as a decision-support tool for adaptive and 

collaborative management efforts between Native Alaskan communities and land managers 

throughout Alaska. 
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METHODS 

Study Area 

I assessed vulnerability of indigenous livelihoods to elodea invasion in Alaska 

(approximately 64° latitude and 150° longitude).  Alaska is approximately 172 million hectares 

of land and fresh 

water, with elevation 

ranging from sea 

level at the Pacific 

coast to over 6,000m 

at Denali (Mt. 

McKinley). The state 

is home to diverse, 

interconnected 

marine, subarctic and 

tundra ecosystems 

(Nowacki et al. 2002) that an array of plants, animals, and people rely on for their survival. 

Native Alaskans comprise over twenty distinct cultures (Krauss et al. 2011), but for the purpose 

of this study I have grouped them into six broad cultural domains, based on dominant language 

and subsistence practices, including Inupiaq, Athabascan, Yup'ik, Unagan (Aleut), 

Alutiiq/Sugpiaq, and Southeast tribes (Figure 4).  

Project Impetus  

Concerns of the threat of aquatic invasive species to local substance practices were 

highlighted at the Yukon River Intertribal Watershed Council biennial summit in August 2013, 

Figure 4. Study area of Alaska delineated by the six broad Native Alaskan cultures 
(adapted from Krauss et al. 2011) and Location of the 37 elodea occurrence points 

(denoted by red circles) used to develop the current climate ensemble model. 
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attended by co-advisor Dr. Paul 

Evangelista and myself. 

Participant observation and 

informal discussions with Native 

Alaskans and land managers at 

the summit, in addition to follow 

up visits with federal and state 

land managers in Fairbanks and 

Anchorage, AK assisted in 

determining the conservation 

targets of greatest interest (i.e. 

Chinook salmon and whitefish spawning and rearing habitat) and the invasive species of concern 

(i.e. elodea). Attendance at the summit provided an important opportunity to interact with and 

listen to the concerns of men and women from over 70 Alaska tribes and First Nations from 

western Canada, in addition to an array of federal, state and provincial land management 

agencies (Figure 5). Concerns over water and anadromous fish species were clearly shared by all 

parties, as one Native Alaskan delegate emphasized during their opening remarks, “Water is our 

life. It sustains us.” Many summit delegates shared this sentiment, voicing additional concerns 

for Chinook salmon and their aquatic habitat. Moreover, participants expressed growing 

concerns about the connected issues of climate change, pollution, industrial development, and 

invasive species, with a shared desire for alleviating ecological degradation.  

 

 

Figure 5. Attendance at Yukon River Intertribal Watershed Council 
summit workshops, like this collaborative monitoring working group, 
provided important opportunities to hear the concerns of numerous tribal 
representatives and land management agencies across Alaska. Image 
courtesy of M. Luizza. 



32 
 

Data Sources  

Tribal representative and land management agency concerns were catalogued through a 

rapid appraisal approach (Beebee 1995), based on triangulation of ethnographic methods 

including participant observation and informal interviews (Marshall & Rossman 2011), and 

further supplemented by an extensive literature review of traditional ecological knowledge and 

subsistence practices across Alaska. The latter was done to corroborate data collected at the 

summit and fill in data gaps related to concerns of Native Alaskan groups not represented at the 

summit. The summit included tribes within the Yukon Watershed (predominately Athabascan 

but also including some tribes in the Inupiaq and Yup’ik regions), and thus did not include tribal 

representatives within the Unangan (Aleut), Alutiiq/Sugpiaq, and Southeast regions, or large 

extents of the Inupiaq and Yup’ik regions. Although an important caveat when interpreting the 

inclusivity and ability to capture concerns across the state, I argue this knowledge integration 

approach to be useful for expanding the scope of how agencies conduct risk assessments across a 

large landscape. Interview and observational data collection methods conducted at the summit 

were pre-approved by the Social, Behavioral, and Education Research Institutional Review 

Board (IRB) at Colorado State University (Protocol # 13-4436H).   

I conducted rapid appraisal data collection in a flexible manner, including informal 

interviews during a 26-hour round-trip bus ride with Native Alaskan delegates and non-native 

attendees, from Fairbanks, AK to Mayo, Yukon Territory and back, and during meals and social 

activities with different tribal and agency stakeholders. These informal interactions provided a 

relaxed setting with unique opportunities to build rapport that would not have otherwise existed. 

For example, during our bus ride from Fairbanks, AK to Mayo, Yukon Territory, our bus was 

immobilized due to a flat tire. One of my Colorado team members (co-advisor Paul Evangelista) 
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and I changed the extremely large tire, as we otherwise would have been stranded most of the 

day waiting for a replacement bus. At the summit’s opening plenary, a tribal delegate recognized 

our act of “heroism” and this became a light-hearted conversation starter initiated by tribal 

delegates when they encountered the “heroes” or “bus mechanics”. Similarly, on the return bus 

ride, this level of comfort was expanded when my Colorado team members and other riders 

recruited me to serenade our bus driver with my travel guitar. This turned into an impromptu 

concert, culminating with a duet of a popular indie-folk song by the band “The Lumineers”, by a 

female village chief from the Athabascan region and myself. These types of interactions 

seemingly afforded an increased level of comfort and may have facilitated added candor during 

the informal interviews, and absolutely made the research all the more memorable. 

 Additionally, I engaged in participant observation at a number of plenary sessions and 

smaller workshops at the summit. From these interactions, discoveries about the most pressing 

concerns and most important resources were catalogued in my field notebook. I conducted 

additional informal interviews with state and federal land managers over the next year following 

the summit. These activities resulted in feedback and data collection from approximately 30 

Native Alaskan representatives and 8 key resource management individuals spanning U.S. Fish 

and Wildlife Service, Alaska Department of Natural Resources, and Alaska Department of Fish 

and Game.  

Although this rapid appraisal approach conducted at an individual summit offers a limited 

snapshot of unfolding social life, it provided an important setting to hear an array of indigenous 

and land manager voices and engage important facets of ethnographic research, including a 

better understanding of how people feel in the context of their communities and as an outcome of 

the interaction of structure and agency through the practice of everyday life (O’Reilly 2012). 
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Field notes were thoroughly re-read to produce thematic memos to ascertain what 

patterns emerged within the notes. These were subsequently integrated with findings from the 

literature review (Marshall & Rossman 2011) to determine codes that represented the most 

pressing drivers of change stakeholders are concerned about and the most important ecosystem 

services. Pacific salmon (specifically Chinook) came out as the top item, linked with codes 

including “ecosystem services”, “conservation”, “biodiversity”, “livelihoods”, “identity”, and 

“security”. Particularly in the plenary sessions, the importance of protecting salmon habitat, 

mediating environmental and anthropogenic threats to their survival, and ensuring sustainable 

access to salmon for the various tribes was relayed. 

 For example, during the summit opening remarks, a Native Alaskan delegate from the 

interior Athabascan region noted the growing concern for salmon related to local economies and 

food security, stating, “We are hungry for fish too. King [Chinook] salmon was the life line on 

the Yukon [River], but kings have been in a fifteen year decline.” This point was later added to 

during a lunch discussion, with another tribal delegate stating that this issue is not simply about 

harvesting salmon for economic gain and for food security. The problem is not about 

“‘subsistence’. That’s a legal term. It’s livelihood; it’s way of life; it’s our identity”. During a 

plenary session another tribal delegate implored the need for addressing the broader scope of this 

issue and acknowledging the interconnectedness of the land and water, saying, “We need to 

protect the watershed; not poison the water and plants. The spruce is our traditional 

medicine…the grass is our traditional medicine…the salmon is our life-line”. These concerns 

were equally shared by land management agency representatives, but often framed along the 

lines of biodiversity preservation, subsistence access, and ecosystem health and resilience. 
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Whitefish was not as prevalent a topic in the interviews or participant observation 

activities, but the few times it was mentioned, this group of fish was noted to be another resource 

of great importance by both tribal and agency stakeholders. For instance, during a summit 

dinner, which consisted of whitefish, two tribal members relayed the importance of these fish as 

a food source that is often accessible throughout the year. This was further supported by land 

manager views and the background literature review, both of which relayed that where whitefish 

occurs, many sub-species are available year-round and act as an important staple for rural Native 

Alaskan communities as a consistent source of meat for people and their dogs (Andersen 2007; 

Brown et al. 2012). Informal member checking of the most important conservation target of 

concern was done through the informal interviews, by re-stating the major themes identified 

during the summit plenary sessions and workshops and soliciting clarification and additional 

feedback from tribal and land management stakeholders. This revealed consistent agreement 

with the field notes in regards to the importance of Chinook salmon and whitefish.  

 The supplementary literature review, to a great degree, corroborated the growing 

concerns of Native Alaskan community and land managers regarding Pacific salmon 

(particularly Chinook) and whitefish species, in addition to overlapping and distinct ways of 

relaying their importance, from biodiversity, keystone species protection, and subsistence 

framings common with many land managers (Pinkerton 1994; Adams et al. 2010; Fields & 

Reynolds 2011; Vercessi 2013), to access rights, food security, and cultural and spiritual identity 

framings common among many Native Alaskan stakeholders (Moncreiff & Klein 2003; Holen 

2004; Langdon 2006; Carothers et al. 2014). However, it is important to note that these are not 

restrictive framings. Many tribal stakeholders equally engage and embrace the idea of 

biodiversity protection, which is often embedded in views cultural and spiritual identity related 
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to Pacific salmon and other species, and equally resource managers engage in alternative starting 

points to highlight the importance of both species.   

Pressing drivers of change were more diffuse throughout the thematic memos in the 

notes. Linked with codes of “vulnerability”, “disturbance”, “threat”, “decline” and “negative 

impacts”, items ranged from climate change, oil and gas development, and non-native invasive 

species, to the overharvesting of salmon by other tribes, and exploitation of salmon through legal 

loopholes by international commercial fishing interests. With salmon and whitefish highlighted 

as provisioning ecosystem services of great importance to Native Alaskan and land management 

stakeholders, I deemed any drivers of change that specifically threatened them to be appropriate 

topics to explore in the modeling. Invasive elodea and climate change came out of extensive 

discussions with land management agency stakeholders, specifically U.S. Fish and Wildlife 

Service, as this freshwater aquatic plant is a problem of growing concern for land managers 

across the state. Elodea has seen recent expansion of its known range and potentially holds an 

array of cascading negative impacts for aquatic ecosystems and local livelihoods. With the added 

goal of helping re-frame agency risk assessments to better incorporate indigenous concerns, I 

decided to focus my integrative geospatial modeling approach on understanding the potential 

threat of elodea linked with climate change to Chinook salmon and whitefish subsistence. 

I compiled elodea occurrence data from the joint survey efforts of project collaborators at 

Alaska Department of Natural Resources Division of Agriculture and Alaska Natural Heritage 

Program data portal (ADNR Personal correspondence 2014). From this survey database of lake 

and stream ArcGIS shapefiles, 37 occurrence points were created for use in the ensemble 

models. These points were located within three regions where elodea currently exists, including  
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the Kenai Peninsula and Cordova in the south-central part of the state (Alutiiq/Sugpiaq and 

Athabascan cultural regions), and near Fairbanks (Athabascan cultural region) in the central part 

of the state. 

I acquired Chinook salmon and whitefish spawning and rearing site data from the Alaska 

State Geo-spatial Data Clearing House (ASGDC 2014). This database includes spawning, 

rearing, presence, and migration locations for all five species of Pacific salmon, whitefish, and a 

number of other anadromous and non-anadromous fish species across Alaska, with annually 

updated surveys spanning 1982 to 2014. I determined additional whitefish spawning locations 

from Brown et al. (2012), as much less data exists for these species. Chinook salmon and 

whitefish species data were extracted from the database and were then further reduced to only 

spawning and rearing point locations within ArcGIS (v10.2). Each point’s unique identification 

code was then queried within an associated stream layer.  

  Predictor variables consisted of climate data created specifically for Alaska by the 

University of Alaska Fairbanks International Arctic Research Center’s Scenarios Network for 

Alaska Planning (SNAP 2015). SNAP includes historical and projected climate downscaled from 

Climate Research Unit data. SNAP bias corrects and downscales their data using the Delta 

method, to detect spatial patterns of change from general circulation models (GCMs) historic 

modeled climate and future modeled climate. I used future climate projections derived from the 

5th coupled model comparison project (CMIP5), part of the Intergovernmental Panel on Climate 

Change 5th assessment report (AR5; IPCC 2013). I selected five GCMs for the years 2040-2059 

that performed best for Alaska based on actual climate data for the years 1958 – 2000 (Walsh et 

al. 2008), and used the representative concentration pathway 4.5 emission scenario (RCP 4.5; 

Table 3). The RCP 4.5 is a more conservative emission scenario where total radiative forcing is 
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stabilized shortly after 2100, without overshooting the long-run radiative forcing target level 

(Thomson et al. 2011). I used only one RCP as climate change over the next few decades reflects 

past emissions, resulting in little variation across the emission scenarios (Snover et al. 2013). 

 

Table 3. List of the five best performing global circulation models for Alaska used in the future elodea habitat 
suitability ensemble risk assessment. 

GCM Name  Source Institution  

CCSM4 RCP 4.5 National Center for Atmospheric Research  

GFDL-CM3 RCP 4.5 NOAA Geophysical Fluid Dynamics 
Laboratory 

GISS-E2-R RCP 4.5 NASA Goddard Institute for Space Studies 

IPSL-CM5A-LR RCP 4.5 Institut Pierre-Simon Laplace 

MRI-CGCM3 RCP 4.5 Meteorological Research Institute 

 
I acquired qualitative and quantitative data on subsistence practices across the state from 

literature reviews and the Alaska Department of Fish and Game Community Subsistence 

Information System database (ADFG 2015). Villages were grouped by our study’s six broad 

cultural boundaries. Only villages with a majority Native Alaskan population and survey data 

from 1990 and later were included in my analyses. I created a quantitative assessment of 

subsistence harvests across major resource categories by averaging the estimated pounds 

harvested across villages surveyed by Alaska Department of Fish and Game. These categories 

included Pacific salmon, marine mammals, land mammals, whitefish, birds and eggs, and 

berries. Although the total number of villages included varied by cultural region (e.g. N= 5 for 

the Unangan (Aleut) region and N= 33 for the Yup’ik region), a visual assessment of village 

locations across the state revealed an overall well-distributed sample for each cultural region. 

However, these data may not be truly representative of harvest totals, as discrepancies may exist 

between actual harvest totals and reported harvest totals. 
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Data Processing 

All pre-processing and modeling procedures were conducted within the US Geological 

Survey Software for Assisted Habitat Modeling (SAHM v1.2; Morisette et al. 2013). SAHM is 

an open source modeling platform that expedites pre-processing and execution of habitat 

suitability modeling. Using SAHM’s FieldDataAggregateAndWeight module, I distributed 

elodea presence points at a minimum distance of 2 km within stream layers with elodea 

occurrences so only a single presence point existed within the cell size of the predictor variables. 

I used SAHM's BackgroundSurfaceGenerator module to produce a Kernel Density Estimator 

(KDE) probability surface with values between 0 and 100 using the 37 elodea presence locations 

as inputs. I then produced 10,000 background points within SAHM using the KDE surface to 

weight their placement. This method is useful to mimic bias found in presence data in 

background points where an invasive species is spreading from introduction loci (Elith et al. 

2010). This process smooths out the contribution of each occurrence point over the localized 

sampling extent (Hernandez et al. 2006).  

I calculated average precipitation and temperature for the most recent 20-year period 

(1987 to 2006) and 2040 to 2059 from the SNAP data. For all climate data, I created 19 

bioclimatic variables using average monthly temperature instead of minimum and maximum 

temperature, as these data were not available in the R statistical software (v3.1.3) using the R 

“dismo” package (for a full list of predictor variables considered see Appendix 1). 

Modeling and Analyses 

I trained the climate suitability model using existing elodea occurrence points and the 

bioclimatic variables. I employed SAHM’s CovariateCorrelationAndSelection module to 

identify and avoid using redundant variables, removing one of any pair with a Spearman, 
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Pearson or Kendal correlation coefficient of |r| > 0.70, following the recommendation of 

Dormann et al. (2013; see Appendix 3 for final covariate correlation display). The initial set of 

variables assessed was based on my knowledge of the species ecology and included a number of 

terrestrial climate variables known to act as good proxies for aquatic invasive species (Kelly et 

al. 2014).   

 I developed the initial elodea climate suitability risk assessment with five species 

distribution model algorithms, including boosted regression trees (BRT; Elith et al. 2008), 

generalized linear model (GLM; Bolker et al. 2008), MaxEnt (Phillips 2006), multivariate 

adaptive regression splines (MARS; Friedman & Roosen 1995), and random forests (Breiman 

2001). I ran the five models using a 10-fold cross validation approach, which is an effective 

method that utilizes all of the observations for training and testing the model (Refaeilzadeh et al. 

2009). This approach involves partitioning the sampling data randomly into 10 equal sub-

samples. One of the sub-samples is used as a model validation set, while the remaining 9 are 

used to train the model. This process is repeated 10 times (10 folds), with all 10 sub-samples 

used once as a validation data set. The results from the 10 folds are then averaged to produce a 

single estimation.  

 I used the multivariate environmental similarity surface (MESS) areas produced within 

SAHM for each of the current climate models and each of the five GCMs to identify locations 

outside the range of the environmental conditions used to generate each (Elith et al. 2010). An 

ensemble of the MESS outputs for both the current and future models was made to highlight 

where all models agreed on novel environmental conditions, and thus where we have less 

certainty about predictions. 
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 Initial model runs revealed all five to have high statistical evaluation metrics, but 

evaluation of predictor variable response curves showed BRT and random forests models to be 

over-fit. Additionally a visual assessment of model outputs revealed both models predicted high 

habitat suitability above the Arctic Circle north of the Brooks Mountain Range, which was 

viewed as highly suspect and proved to be an area of model extrapolation when looking at the 

MESS maps for each. These algorithms were removed from further consideration leaving GLM, 

MaxEnt, and MARS for the final current elodea climate suitability ensemble.    

 I applied the GLM algorithm from the current ensemble to future modeled and 

downscaled climate data (2 km resolution) for 2040-2059 using the top five performing GCMs 

for Alaska. I chose GLM for the future climate suitability ensemble because it is the most 

simplistic regression-based model of the three algorithms utilized in the current ensemble and 

had the smoothest response curves, providing a broader and more comprehensive climate 

suitability assessment for elodea.  

 Model predictions for each of the three current climate model algorithms and five future 

GCMs were translated into binary classifications (0= low to no suitability, and 1= moderate to 

high suitability) using the default sensitivity equals specificity threshold rule setting in SAHM. 

Individual climate suitability model outputs were added together in ArcGIS raster calculator to 

produce a frequency histogram ensemble forecast (Araújo & New 2007), which shows the 

number of models (1-3 for the current ensemble and 1-5 for the future ensemble) forecasting the 

suitable climate for elodea at any point (i.e. pixel) across the state of Alaska. 

 I assessed model performance with a number of evaluation metrics provided in the 

SAHM model output, including the area under the receiver-operating characteristic curve 

(AUC), percent correctly classified, and sensitivity and specificity metrics. The AUC is a 
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threshold-independent metric that measures the ability of a model to discriminate a true 

occurrence point from an absence or background point. The AUC values range from 0 to 1. A 

value of less than 0.5 shows that model predictions were worse than random, a value of 0.5 no 

better than random, and a value of 1.0 indicating perfect discrimination (Peterson et al. 2011). 

Sensitivity (or true positive rate) and specificity (or true negative rate) metrics provide an 

estimate of the proportion of actual presence and background points from the test data being 

accurately predicted by the model, thus expressing the uncertainty associated with the final map 

predictions (Alatorre et al. 2011). Percent correctly classified reveals the percentage of test data 

correctly classified by the model (Talbert & Talbert 2012).  

 I determined relative invasion vulnerability risk by assessing the intersection of elodea 

climate suitability and dominant subsistence practices across the state. A combined annual 

Chinook salmon and whitefish harvest contribution of greater than or equal to 15 percent was 

deemed to hold moderate to high potential influence on subsistence livelihoods, resulting from a 

potentially significant reduction in total pounds harvested for subsequent caloric intake or 

economic exchange. This was used in concert with the elodea climate suitability ensembles to 

determine relative risk. For example, a region with less than 15 percent combined harvest of 

Chinook salmon and whitefish and low climate suitability predictions (i.e. 0-1 models predicting 

high suitability for the current ensemble and 0-2 for the future ensemble) would have low 

relative risk. A region with less than 15 percent combined harvest of Chinook salmon and 

whitefish but moderate-to-high elodea climate suitability (i.e. 2-3 models predicting high 

suitability for the current ensemble or 3-5 models for the future ensemble), or vice versa, would 

have moderate relative risk. A region with greater than or equal to 15 percent combined harvest 

of Chinook salmon and whitefish and high climate suitability predictions (i.e. all 3 models 
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predicting high suitability for the current ensemble and all 5 for the future ensemble) would have 

high relative risk. Additionally, Chinook and whitefish spawning and rearing streams were 

overlaid on the elodea ensemble models to visually assess the overlap of suitable elodea climate 

and critical spawning and rearing sites. 

 

RESULTS:   

Current Elodea Climate Suitability Ensemble  

The current elodea climate suitability ensemble risk assessment performed well, with all 

three model algorithms employed producing overall high statistical evaluation metrics (Table 4), 

including the following moderate to high AUC values: GLM (AUC = 0.88), MaxEnt (AUC = 

0.95), and MARS (AUC = 0.88). A mixture of temperature and precipitation variables drove the 

models. The most important variables (in order of importance) were mean temperature of the 

warmest quarter (BIO10) and mean temperature of the coldest quarter (BIO11) for GLM, and 

precipitation of the warmest quarter (BIO18), mean temperature of the warmest quarter (BIO10) 

and mean temperature of the coldest quarter (BIO11) for both MaxEnt and MARS (see Appendix 

2 for all model response curves).  

Table 4. Statistical evaluation metrics including area under the receiver-operating characteristic curve (AUC), 
percent correctly classified, sensitivity and specificity, averaged across cross-validation runs for all three species 
distribution model algorithms used in the elodea current climate suitability ensemble. The percent of Alaska having 
novel environmental conditions for each model algorithm is also included. 

Algorithm AUC 

(Train) 

AUC 

(Test) 

% 

Correctly 

Classified  

Sensitivity  Specificity  Percent 

Novel 

GLM 0.87 0.88 82 0.79 0.82 9.2 

Maxent 0.96 0.96 90 0.86 0.91 9.7 

MARS 0.92 0.88 85 0.74 0.85 9.7 
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The current ensemble revealed a range of climate suitability for elodea across Alaska 

with relatively high algorithm consensus (Figure 6). Fifteen percent of all the area predicted to 

have high climate suitability for elodea was agreed upon by all three model algorithms. This 

includes all three predicting high climate suitability across a large expanse of the Yukon Flats in 

the Athabascan region of the state’s Interior, where elodea has not yet been recorded. 

Furthermore, additional suitable climate was predicted in the vicinity of existing elodea 

infestation sites in the interior city of Fairbanks (Athabascan region) and in the south-central 

region of the state in the Kenai Peninsula (Athabascan and Alutiiq/Sugpiaq regions) and Cordova 

(Southeast region).  

I determined the Alutiiq/Sugpiaq region of Alaska (located in the south-central and south-

western parts of the state) to have current low-to-moderate relative risk for elodea impacts on 

Chinook salmon and whitefish subsistence. Although having current elodea infestations and high 

suitability in the Kenai Peninsula, subsistence practices in the region are mostly based on other 

Pacific salmon sub-species, in addition to marine mammals, halibut (Hippoglossus stenolepis), 

mollusks and caribou (Rangifer tarandus granti) (see Appendix 4 for full list of subsistence 

resources by cultural/linguistic region). 
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For this region, Chinook salmon makes up only 7%, with few recorded spawning or rearing sites. 

Sites are limited to Kodiak Island and the Alaskan Peninsula. Moreover, no whitefish spawning 

or rearing sites exist in this region. This level of relative vulnerability could dramatically 

increase if including or focusing explicitly on subsistence of other salmon sub-species, as some 

78% of total annual harvest for this region comes from Pacific salmon, and these other species 

may share suitable habitat for spawning and rearing with elodea. 

 

Figure 6. Current elodea risk ensemble showing the climate suitability of elodea across Alaska within the six 
major Native Alaskan cultural/linguistic groups. Areas in brown show locations where all three SDM 
algorithms agree on highly suitable climate for elodea. Areas in orange denote locations where only two 
models agree there is highly suitable habitat and areas in yellow show locations where only one model predicts 
highly suitable climate for elodea. 
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  The Athabascan region of Alaska has current moderate-to-high relative risk for elodea 

impacts on Chinook salmon and whitefish subsistence. Although recorded Elodea infestations 

are only in the Kenai Peninsula section of this region, there is high climate suitability for elodea 

in a large expanse of the Yukon Flats (Figure 6b). Eleven percent of this predicted high climate 

suitable area was novel environment conditions, outside of those used to train the ensemble 

model. This area of high elodea climate suitability includes a number of Chinook salmon and 

whitefish spawning and rearing sites that run within or adjacent to Koyukon and Gwich’in 

Athabascan native claims lands within the Yukon Flats National Wildlife Refuge.  

Figure 6b. The Yukon Flats within the Athabascan region. High current elodea climate suitability is denoted by 
brown areas and shows their relationship to recorded Chinook salmon and whitefish spawning and rearing sites. 
Village native claims lands within the Yukon Flats National Wildlife Refuge are highlighted by black borders.     
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This area additionally contains a major lake district and the confluence of a number of primary 

rivers that are connected by 40,000 streams, lakes, and wetlands, including the Yukon River, 

which flows westward through the Yup’ik region before emptying into the Bering Sea. 

Furthermore, in addition to having high dependence on moose (Alces alces) caribou and other 

Pacific salmon species, Chinook salmon and whitefish combined make up 24% of annual 

Athabascan subsistence harvest.  

  The Inupiaq region of Alaska has current low relative risk for elodea impacts on Chinook 

salmon and whitefish subsistence. Inupiaq subsistence practices are heavily focused on marine 

resources. Marine mammal and land mammal subsistence represent some 71% of total harvest 

for this region. Pacific salmon are relatively rare, with Chinook salmon making up 0% of the 

annual harvest. Although whitefish make up 11% of annual subsistence harvest, no GCMs 

predicted high climate suitability for elodea in this region. 

The Southeast region of Alaska (consisting of tribes such as the Tlingit, Tsim shian, and 

Haida) has current low-to-moderate relative risk for elodea impacts on Chinook salmon and 

whitefish subsistence. Similar to the Alutiiq/Sugpiaq region, subsistence practices in this region 

are heavily based on other Pacific salmon sub-species, with Chinook salmon making up only 9% 

of annual harvest and whitefish making up 0% of the harvest. Regions of high climate suitability 

for elodea span the Southeast region, but few recorded Chinook salmon spawning and rearing 

sites exist. Like the Alutiiq/Sugpiaq region, this level of vulnerability could dramatically increase 

if including or focusing explicitly on subsistence of other salmon sub-species, as Pacific salmon 

constitutes approximately 54% of total annual harvest.  

The Unangan region of Alaska has current low relative risk for elodea impacts on 

Chinook salmon and whitefish subsistence. Chinook salmon makes up only 4% of subsistence 
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harvest and whitefish 0% of the harvest, and no areas of high climate suitability for elodea exist 

in this region. Moreover, few recorded Chinook salmon spawning and rearing sites are present, 

and these are restricted to the upper part of the region on the Alaska Peninsula. Similar to the 

Southeast and Alutiiq/Sugpiaq regions, this level of vulnerability could dramatically increase if 

including or focusing explicitly on subsistence of other salmon sub-species, as some 52% of 

annual harvest is Pacific salmon. 

I determined the Yup’ik region of Alaska to have current low relative risk for elodea 

impacts on Chinook salmon and whitefish subsistence. Although this region has some of the 

highest concentrations of recorded Chinook salmon spawning and rearing sites, and Chinook 

salmon and whitefish combined make up 26% of subsistence harvest, no areas of high climate 

suitability for elodea were predicted for the region. 

My future ensemble revealed a larger portion of Alaska with climate conditions by 

midcentury matching that of currently occupied elodea sites across most of Alaska (Figure 7). 

All regions experienced increased climate risk except Inupiaq. Thirty percent of all the area 

predicted to have high climate suitability for elodea was agreed upon by all five GCMs. Potential 

future climate suitability for elodea in the Alutiiq/Sugpiaq region increased from low-to-

moderate to moderate relative risk, as high climate suitability was predicted by all five GCMs 

across the entire Alutiiq/Sugpiaq region by 2040-2059. Future elodea climate suitability in the 

Athabascan region increased from moderate-to-high to high relative risk, as increased climate 

suitability for elodea was predicted by all five GCMs, including a near doubling of suitable 

climate habitat in the Interior and additional increased area around the Kenai Peninsula in the 

southern part of the region by 2040-2059. Future climate suitability in the Inupiaq region 

remained at low relative risk. Small, isolated pockets of high climate suitability were predicted. 
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Figure 7. Future elodea risk ensemble (2040-2059) showing the areas with climate similar to that currently occupied 
by elodea across Alaska within the six major Native Alaskan cultural/linguistic groups. Values represent the number 
of future GCMs that agree on a location being climatically suitable. 

 

Although they do not coincide with any recorded Chinook salmon or whitefish spawning 

and rearing sites, changes in future climate may shift this suitability too. For the Southeast 

region, future climate suitability for elodea remained at low-to-moderate relative risk. Although a 

moderate increase in climate suitability was predicted by all five GCMs across the region by 

2040-2059, few recorded Chinook salmon spawning and rearing sites are present. Future climate 

suitability in the Unangan region increased from low, to low-to-moderate relative risk. A 

moderate increase in climate suitability for elodea was predicted by all five GCMs across the 

region by 2040-2059, but few recorded Chinook salmon spawning and rearing sites are present. 
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Future climate suitability in the Yup'ik region increased from low, to moderate-to-high relative 

risk. A dramatic increase in climate suitability for elodea was predicted by all 5 GCMs across 

southern stretches of the region by 2040-2059 and overlap with clusters of recorded Chinook 

salmon spawning and rearing sites (Figure 7b).  

A limited proportion of the landscape was classified as having novel environmental 

conditions according to the ensemble of current and future climate suitability MESS map outputs 

(Figure 8). For the current ensemble, 10 percent of the landscape was deemed novel by all three 

model algorithms. These locations were restricted to the extreme northern extents of the state in 

the Inupiaq region and southeastern extents of the Southeast region, in addition to small pockets 

of novel environmental conditions in the Interior of the state in the Athabascan region. This 

percentage slightly dropped for the future ensemble with 6 percent of the landscape categorized 

as containing novel environmental conditions by all 5 GCMs. The locations of these novel areas 

remained in the extreme northern and south-eastern extents of the state. Ensemble model 

predictions in these locations have reduced certainty and thus should be interpreted with a level 

of caution.  
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Figure 7b. Yup’ik region near Bristol Bay. High future elodea climate suitability is denoted by dark brown areas 
and shown to overlap with a number of Chinook salmon spawning and rearing sites. 

 
 

DISCUSSION:  

Integrative modeling approaches, like those found in this study can hold great utility for invasive 

species risk assessments and may further facilitate adaptive and collaborative monitoring and 

management efforts between indigenous communities and land managers across Alaska. The 

process of talking with tribal and land management stakeholders seemed to reveal common 

concerns related to water and anadromous fish species, but occasionally from distinct, albeit 

potentially complimentary starting points (e.g. food security, economic security, and cultural 

identity vs. biodiversity and keystone species protection and recreation interests). My efforts at 
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triangulating common concerns and important conservation targets among different stakeholders, 

combining diverse qualitative and quantitative datasets from these groups, and utilizing advanced 

geospatial applications 

provided an important 

opportunity for identifying 

regions across a vast 

landscape in need of targeted 

monitoring and surveying, 

which I argue should be 

collaborative and inclusive of 

Native Alaskan communities. 

Invasive species risk 

assessments are critical for 

state and federal land 

managers who require a 

spatially explicit 

understanding of high priority areas, but such assessments that are inclusive of local community 

needs can further enhance effective collaborative monitoring and management. 

A number of challenges exist to this integrative geospatial modeling work. Numerous 

obstacles were faced in regards to indigenous and local knowledge integration and presenting 

mapping results to stakeholders for participatory evaluation and discussion. When attempting to 

document Native Alaskan knowledge in a rapid appraisal manner, a more systematic qualitative 

data collection was initially sought, but I engaged in a less structured ethnographic data 

Figure 8. Ensemble outputs of the Multivariate Environmental Similarity 
Surface (MESS) maps produced in SAHM for both the current climate 
ensemble (above) and future climate ensemble (below). Areas in black show 
points where all models classify a location as having novel environmental 
conditions.    
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collection for two reasons: 1) initially a series of IRB-approved semi-structured survey and 

interview questions were prepared and set to be administered by our collaborating partners at the 

Yukon Intertribal Watershed Council, who have long-standing relationships with a number of the 

villages in attendance. The council canceled this activity the day of the scheduled interviews due 

to limited staff and scheduling conflicts. 2) With this being my first trip engaging face-to-face 

with Native Alaskan community members, I wanted to focus predominately on relationship 

building and gain an understanding shared concerns between Native Alaskan and land 

management agency stakeholders, while avoiding a stark researcher-subject approach. Thus, a 

lack of pre-existing trust and the loss of data collection support from our key boundary-spanning 

organization necessitated a major shift in approaches and limited the depth of qualitative data 

collection. Moreover, an additional IRB renewal was required over the following year. A 

subsequent attempt to connect with Native Alaskan communities through the watershed council 

under a new IRB proposal fell through with the resignation of key staff invested in our project 

coupled with high-turnover of tribal council staff they were working with. Finally, when seeking 

to present the maps to Native Alaskan stakeholders for their feedback, re-connecting with 

individuals from the summit turned out to be a difficult feat, as no names or contact information 

were recorded during the summit data collection. I made an additional attempt to bring 

preliminary maps to tribal communities in Interior Alaska, at a regional summit at Fort Yukon 

village. This meeting, facilitated through U.S. Fish and Wildlife Service, was canceled at the last 

minute due to inclement weather. Funding limitations did not allow me to return for the 

rescheduled summit the following month. Despite these issues, I have begun the process of 

sharing model outputs with and receiving feedback from land management stakeholders from 

U.S. Fish and Wildlife Service, Alaska Department of Natural Resources, and Alaska 
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Department of Fish and Game. On my scheduled trip to Alaska at the end of July 2015, I will 

share updated model outputs with these same agency stakeholders and will attempt to set up 

another meeting with some of the tribal councils in the Yukon Flats to begin a similar, iterative 

participatory validation process. 

 Sustained community involvement is critical for this integrative modeling approach, as 

the relative risk determined by our assessment of overlapping elodea climate suitability and 

subsistence patterns could dramatically change if taking into consideration other salmon sub-

species. Across a majority of the cultural/linguistic groups, Pacific salmon was the largest 

subsistence category (see Appendix 4). The other four sub-species of salmon, including Chinook 

salmon and whitefish, may have a number of spawning and rearing habitat types that overlap 

with potential elodea habitat. This warrants further exploration, and can be driven by our 

ongoing discussions with stakeholders.  

 It is important to note that all of the spawning and rearing river and stream sites identified 

within our climate suitability map are not necessarily suitable habitat for elodea establishment. 

The diversity of spawning and rearing site characteristics for Chinook salmon and whitefish 

include some large, open rivers that are too deep and turbid for elodea. Yet, other locations 

characterized by slow moving, shallow water with gravel substrate are prime elodea habitat. 

Therefore, an important next step involves multi-scale modeling that can assist in refining habitat 

suitability predictions and incorporate important variables not captured in our broad-scale 

climate models. The state-level current and future predictions of potential elodea climate 

suitability provide an important, conservative baseline understanding of potential invasion 

patterns for this problematic species across Alaska. Such broad-scale modeling approaches are 

valuable in that they can relay factors that may limit a species’ distribution over the long term 
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(Jarnevich et al. 2014). Local-scale modeling could incorporate anthropogenic drivers and more 

mechanistic limiting or driving factors that need to be captured with finer resolution models. For 

instance, water turbidity is considered to be a critical variable for elodea, with highly turbid 

waters limiting its establishment (Ellawala et al. 2011; Grudnik & Germ 2013). Recent flood 

mapping research has revealed the utility of the Normalized Difference Surface Water Index, 

derived from 30m resolution Landsat Thematic Mapper, to effectively capture turbidity in flood 

waters (Amarnath et al. 2014), and may prove equally effective in highlighting highly turbid 

waters in large rivers. Moreover, anthropogenic variables, which can act as an important proxy 

for introduction pathways and propagule pressure and disturbance (Simberloff 2009; Jarnevich et 

al. 2014), may further highlight areas in need of immediate monitoring and sampling, including 

variables like distance to roads and docks, as well as float plane accessible lakes.  

 I overlaid a float plane accessible lakes layer acquired from the Yukon Flats National 

Wildlife Refuge (USFWS, personal correspondence 2014) onto the Yukon Flats region of our 

ensemble model predictions, revealing a high overlap in highly suitable climate habitat and 

locations with added vulnerability from human dispersal (Figure 9). Incorporating these 

aforementioned variables into the modeling process would help refine predictions and likely 

capture some of the fast-paced drivers for spreading elodea. I excluded the float plane layer from 

my initial analyses due to its spatial restriction to the Yukon Flats. This would have required the 

creation a similar layer for the entire state, which was not feasible at the time, but is worth 

pursuing in concert with other land management agencies around the state in the future.   



56 
 

 

This process could enhance collaborative and adaptive monitoring and surveying efforts between 

Native Alaskan communities and resource managers by relaying locations in the Yukon Flats 

that have both suitable climate and float plane accessible lakes, and thus potentially heightened 

risk to elodea establishment. Targeted surveying and monitoring could be enacted between 

resource managers and villages, with new observational data being used to update the models. It 

would also likely alleviate under- or over-prediction of elodea climate suitability that may be 

occurring in certain locations, as illustrated by the model extrapolation highlighted by the 

Figure 9. Yukon Flats within the Athabascan region. High current elodea climate suitability is denoted by brown 
areas and further shows the relationship of these areas to float plane accessible lakes and recorded Chinook salmon 
and whitefish spawning and rearing sites. Athabascan village native claims lands within the Yukon Flats National 
Wildlife Refuge are highlighted by black borders. 
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ensemble MESS maps. Under- or over- prediction in species distribution models can be 

attributed to the exclusion of a variable with high relative importance to the species of interest, or 

sampling bias inherent in species occurrence data (Phillips et al. 2009). Occurrence records for 

elodea in our models were clustered in three locations. A histogram of the SAHM covariate 

correlation (Appendix 3) reveals our BIO11 variable (mean temperature of the coldest quarter) to 

have a bimodal distribution pattern, which could be an artifact of sampling bias that is in part 

limiting current predictions in some locations, including the Yup’ik region in the western part of 

the state. 

The potential negative cascading effects of elodea invasion warrant concerted monitoring 

and adaptive and collaborative management between local land managers and Native Alaskan 

communities. Elodea may pose direct negative impacts on local subsistence practices related to 

Chinook salmon and whitefish across Alaska. My current climate ensemble outputs revealed 

high suitability in the Yukon Flats of the Athabascan region and moderate-to-high future 

suitability in the Yup’ik region. This poses immediate concerns to Native Alaskan communities 

in the area and state and federal land managers. This includes the U.S. Fish and Wildlife Service 

Yukon Flats National Wildlife Refuge, which encompasses most of the current high suitability 

locations. Establishment in the lake and stream complexes around the Yukon River could have 

acute negative impacts, as numerous Athabascan and Yup’ik villages, in addition to three other 

U.S. Fish and Wildlife Refuges (Nowitna and Innoko in the Athabascan region and Yukon Delta 

in the Yup’ik region) are downstream of this high climate suitability region. With high potential 

for upstream elodea establishment occurring upstream of these areas in the Yukon Flats and 

Fairbanks areas of the Athabascan region, major flooding events, which frequently occur, could 

rapidly spread elodea. Invasive macrophytes including elodea in other locations have caused 
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significant shifts in lake productivity, species compositions and food web dynamics (Kelly & 

Hawes 2005). Even in Alaska’s Chena Slough where elodea has established, it is believed to 

have displaced an entire population of arctic grayling (Thymallus arcticus; USFWS personal 

correspondence 2014). Although not a species that is heavily relied upon for subsistence, arctic 

grayling here use slower moving water with gravel substrate that is similarly utilized by Chinook 

salmon and whitefish in different regions of the state for spawning and rearing.  

Moreover, different species of fish have different levels of affinity for aquatic plants. 

Depending on this affinity, establishment and spread of elodea could pose potentially important 

benefits or drawbacks for fish species and may additionally have mutualistic interactions with 

other problematic invaders. Mutualism between elodea and other invasive species has already 

been recorded. In Germany, the globally invasive crayfish (Procambarus clarkii) indirectly 

facilitates the dominance of invasive E. nuttallii in lakes by reducing native competitors 

(Chucholl 2013). Such a scenario could pose major negative impacts to local fisheries and their 

connected wetland and riparian ecosystems across Alaska. For instance, invasive northern pike 

(Esox lucius) may pose a growing threat if elodea establishes in the same locations. Considered 

an invasive species to south-central Alaska, northern pike have high affinity for aquatic plants 

throughout all life stages (Casselman & Lewis 1996), whereas salmon and trout species generally 

have low affinity for aquatic plants (Gettys et al. 2009). This could exacerbate detrimental 

impacts on salmon, as elodea may impede suitable spawning and rearing habitat in addition to 

benefitting the opportunistic northern pike that are known to heavily predate juvenile salmonids 

in their invaded range (Sepulveda et al. 2013). Although northern pike are native to other regions 

in the state, including the interior of the Athabascan region, predation facilitation and habitat  
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enhancements afforded by elodea could create a situation where northern pike become “native 

invaders” (Carey et al. 2012), leading to cascading negative effects on the interconnected 

habitats.  

A number of new elodea occurrences were recorded by Alaska Department of Natural 

Resources for summer 2014 (ADNR personal correspondence 2015). Of the 25 new stream and 

lake infestations recorded, 24 were captured within the high suitability areas of our current 

climate ensemble. Many of these new locations were in close proximity to the occurrence 

records used to train the ensemble model, making a stronger case for incorporating dispersal 

variables like distance to current infested sites (Karatayev et al. 2015). One site in particular, 

Alexander Lake (the only new infestation site not captured by the current climate ensemble and 

located west of the Kenai Peninsula in the Athabascan region), is also struggling with invasive 

northern pike. Extensive mitigation efforts have been enacted to eradicate this invasive fish from 

the lake and its connected creek, which has experienced detrimental impacts on what used to be 

one of the most productive Chinook salmon sites (ADNR, personal correspondence 2015). 

Although preliminary, these initial findings warrant further research and reveal the robustness 

and adaptive nature of this integrative modeling process. 

 
 

CONCLUSION: 

Invasive elodea could pose a major challenge to natural resource managers in Alaska, as well as 

Native Alaskan communities that depend on the natural landscape for their livelihoods. These 

species may have equally detrimental impacts for indigenous livelihoods and cultural heritage 

that are centered on the land, water and wildlife. The goals of this study included modeling the 

current climate suitability of elodea across Alaska, which to date has not been done; predicting 
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how future climate conditions match these models; and predicting how elodea habitat suitability 

may spatially and temporally impact salmon and whitefish spawning and rearing habitat that 

local subsistence livelihoods rely on and land management agencies are charged with protecting. 

The current ensemble model had relatively high statistical evaluation metrics and revealed 

different levels of invasive elodea risk across the state of Alaska based on the interaction of 

dominant subsistence practices and elodea habitat suitability. This includes current high risk in 

the Athabascan region of Interior Alaska, which to date has no recorded sightings of elodea, and 

future high risk in the Yup’ik region of western Alaska by 2040-2059. My results suggest such 

an integrative modeling approaches can hold great utility for reframing how land management 

agencies do risk assessments, by incorporating concerns of local indigenous communities in the 

definition of conservation targets and threatening disturbance drivers; a process that can be 

further enhanced by concerted collaborative monitoring and engagement with Native Alaskan 

communities. 
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Integrating local pastoral knowledge, participatory mapping, and species distribution 

modeling for risk assessment of invasive rubber vine (Cryptostegia grandiflora) in 

Ethiopia's Afar region3 

 

 

 

The threats posed by invasive plants span ecosystems and economies worldwide. Local 

knowledge of biological invasions has proven beneficial for invasive species research, but to date 

no work has integrated this knowledge with species distribution modeling for invasion risk 

assessments. In this chapter, I integrated pastoral knowledge with Maxent modeling to assess the 

suitable habitat and potential impacts of invasive Cryptostegia grandiflora Robx. Ex R.Br. 

(rubber vine) in Ethiopia’s Afar region. I conducted focus groups with seven villages across the 

Amibara and Awash-Fentale districts. Pastoral knowledge revealed the growing threat of rubber 

vine, which to date has received limited attention in Ethiopia, and whose presence in Afar was 

previously unknown to my field research team. Rubber vine occurrence points were collected in 

the field with pastoralists and processed in Maxent with MODIS-derived vegetation indices, 

topographic data and anthropogenic variables. I tested model fit using a jackknife procedure and 

validated the final model with an independent occurrence dataset collected through participatory 

mapping activities with pastoralists. A multivariate environmental similarity surface analysis 

revealed areas with novel environmental conditions for future targeted surveys. Model 

performance was evaluated using area under the receiver-operating characteristic curve (AUC) 

and showed good fit across the jackknife models (average AUC = 0.80) and the final model (test 

AUC = 0.96). These results reveal the growing threat rubber vine poses to Afar, with suitable 

habitat extending downstream of its current known location in the middle Awash River basin. 

                                                 
3   Research from this chapter is part of the following manuscript: Luizza, M.W., T. Wakie, P. Evangelista, and C. 

Jarnevich (Accepted). Integrating local pastoral knowledge, participatory mapping, and species distribution 
modeling for risk assessment of invasive rubber vine (Cryptostegia grandiflora) in Ethiopia’s Afar region. 
Ecology and Society. 
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Pastoral knowledge provided important context for its rapid expansion due to acute changes in 

seasonality and habitat alteration, in addition to threats posed to numerous endemic tree species 

that provide critical ecosystem services to local communities. This work demonstrates the 

important benefits of integrating local pastoral knowledge with species distribution modeling for 

early detection and targeted surveying of recently established invasive species.   

 

INTRODUCTION:  

Invasive plants are one of the most serious threats to ecosystems and economies 

worldwide (IUCN 2000; Pimentel 2005; Vilà et al. 2010). These problematic non-native species 

are known to have negative impacts on biodiversity, ecosystem functioning, and an array of other 

natural processes and human activities (Vitousek 1990; Hejda et al. 2009). The increasing threat 

of invasive plants is fueled by a diverse set of fast- and slow-paced human disturbance drivers 

including climate change (Thuiller et al. 2007), habitat alteration and fragmentation (With 2004), 

intentional introductions (Mack & Erneberg 2002) and an increasingly globalized horticulture 

trade (Bradley et al. 2012). Vines (herbaceous and shrubby climbing plants) can prove especially 

problematic upon establishment in novel areas. This is due to their fast growth rates, which 

facilitate their ability to out-compete host vegetation by blocking access to light, ultimately 

reducing host survival and dramatically altering ecosystem structures. A number of vines are 

considered among the 100 worst global invasive alien species, including Hiptage (Hiptage 

benghalensis), kudzu (Pueraria montana var. lobata), and mile-a-minute-vine (Mikania 

micrantha) (Lowe et al. 2000), yet few studies have explored the interconnected threats invasive 

vines pose for sensitive arid ecosystems and local livelihoods.   

 Early detection of invasive plants, facilitated through mapping efforts, is critical for rapid 

response and effective monitoring strategies. The utility of risk assessment procedures for 
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addressing invasive plants has grown in recent years (Powell 2004; Lindgren 2012), including 

powerful applications of species distribution modeling techniques (Evangelista et al. 2008; 

Andrew & Ustin 2009; Evangelista et al. 2009; Stohlgren et al. 2010; Jarnevich et al. 2011). 

These modeling techniques combine and quantify species occurrence location information with 

environmental data to develop relationships to predict a given species' distribution across a 

defined geographic space (Franklin 2009). Collaboration and data sharing in regards to invasive 

species have improved, as evidenced by a number of regional and global species occurrence data 

repositories (e.g. Global Biodiversity Information Facility, Global Invasive Species Information 

Network, Invasive Species Compendium and National Institute of Invasive Species Science). 

However, these species often do not have easily accessible -and perhaps even any available -data 

until they become widespread problems at the national or global scales. Furthermore, field 

surveys can be time- and cost-intensive, thus limiting early detection efforts. Ecological 

knowledge of local communities can provide an important tool for early detection and 

understanding of invasion impacts and the creation of initial risk assessment models for 

subsequent targeted surveying and monitoring. This is critical, as such knowledge integration 

may afford the necessary edge to address invasive species that have not fully established or 

widely dispersed across the landscape. Despite a wide array of research noting the importance of 

local ecological knowledge for resource management and conservation planning (Fernandez-

Gimenez et al. 2006; Ballard et al. 2008; Berkes & Berkes 2009; Gagnon & Berteaux 2009; 

Luizza et al. 2013), and the growing call for broader inclusion of stakeholder knowledge and 

perceptions in invasion research (Garcia-Llorente et al. 2008; Liu et al. 2011; Kapler et al. 2012), 

consideration of local ecological knowledge within risk assessment studies, particularly species 

distribution modeling research, is lacking. Moreover, perceptions of indigenous peoples are all 
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but absent from the conversation and few studies have explored the interactions between 

invasive species and ecosystem services that indigenous and rural communities rely on. This is 

important, as invaders can often have detrimental impacts on an array of services, posing major 

threats to local livelihoods (Pejchar & Mooney 2009; Urgenson et al. 2013). 

 Ethiopia's Afar region is facing the threat of multiple aggressive non-native plants 

including mesquite (Prosopis juliflora), whitetop weed (Parthenium hysterophorous L.), and the 

recently established rubber vine (Cryptostegia grandiflora Roxb. Ex R. Br.) (Yohannes et al. 

2011). Rubber vine is a woody perennial vine of the Asclepiadaceae family that is native to 

Madagascar. Although not yet listed as an invasive alien species in Ethiopia (Invasive Species 

Compendium 2014B), it potentially poses a major threat to biodiversity and local pastoral 

livelihoods in Afar. It is an adaptive species that is stress tolerant and highly competitive in arid 

environments with limited water. The vine is known to rapidly capitalize on small amounts of 

moisture for germination, produce thousands of pappus seeds which can spread by wind or 

water, and develop a deep taproot (Grice 1996; Brown et al. 1998). Rubber vine is highly 

invasive in other semi-arid and arid landscapes where it has been introduced including Australia, 

Mexico, and the United States (Invasive Species Compendium 2014B). In Australia, where the 

species has been established since the late 19th century, it is noted to drastically alter ecosystems 

and fire regimes, promoting a shift from frequent grass-dominant surface fires to infrequent but 

more intense crown fires (Grice 1997; Grice et al. 2008). It can form dense mono-specific stands, 

especially in riparian areas (Kriticos et al. 2003) and tolerate a range of soil conditions including 

sodic and saline. In Mexico, rubber vine is known to outcompete native vegetation, altering 

important habitat for an array of vertebrate and invertebrate species (Rodríguez-Estrella et al. 

2010). Although the origin of rubber vine introduction to Ethiopia is uncertain, it was introduced 
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intentionally in other locations as an ornamental plant (Kriticos et al. 2003; Rodríguez-Estrella et 

al. 2010) and grown during World War II as a natural rubber source (Agustus et al. 2000). 

Pastoralists in Afar tend to agree that the vine first appeared in the middle Awash River basin 

within the past 10 to 20 years, concurrent with increased frequency and magnitude of flooding 

events. To my knowledge no research exists that assesses the suitable habitat of rubber vine and 

its impacts on pastoral communities in Ethiopia, and few studies have explored the benefits of 

cataloguing pastoral knowledge in Afar for conservation planning and management4. This 

research is driven by the following question: How does the process of knowledge integration 

combined with species distribution modeling inform our understanding of potential threats posed 

by invasive species to pastoral livelihoods? Linked with this question, the goals of this study 

include the following: 1) integrate local pastoral knowledge and participatory mapping with 

species distribution modeling to map the suitable habitat of rubber vine in the Afar region, 2) 

catalogue pastoral knowledge and perceptions of rubber vine impacts on local livelihoods and 

the landscape, and 3) assess the utility of integrating local pastoral knowledge with species 

distribution modeling for invasion risk assessment studies. 

 
 

MATERIALS & METHODS:  

Study Site 

The Afar region (Figure 10) is located in northeastern Ethiopia (between 8° 51' and 14° 

34' N and between 39° 47' and 42° 24' E), and is one of the country's nine administrative states. 

This region covers an area of approximately 95,266 km² and is split into five administrative 

zones that are further sub-divided into 29 districts (woredas) and 355 kebeles, the smallest 

                                                 
4 Notable exceptions include Giday and Teklehaymanot (2013) and Tsegaye and colleagues (2010).  
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administrative unit in Ethiopia. The region is topographically diverse, with elevations ranging 

from 125m below sea level to 2,870m a.s.l. (Wakie et al. 2014), and is one of the hottest 

habitable places on earth, with 

temperatures surpassing 50°C 

(122°F) and bimodal rainfall that 

is under 200mm annually across 

large extents of the landscape 

(Davies & Bennett 2007). This 

arid region holds a number of 

unique flora and fauna including 

endangered species such as the 

Abyssinian wild ass (Equus 

africanus asinus) and Grevy's 

zebra (Equus grevyi) (Kebede et 

al. 2012 and 2014). Vegetation in the region is made up of grasses, forbs, shrubs and woody 

plants, well adapted to arid and semi-arid environments including Acacia mellifera, A. nilotica, 

A. senegal, A. tortillis, Cadaba rotundfolia, Chrysopogon, Cymbopogon, Cynodon, and 

Dactyloctenium species, Dombera glabra, Salvadora persica, and Tamarix nilotica (Tikssa et al. 

2009; Bahru et al. 2012; Wakie et al. 2014). The earliest known direct predecessor of humans, 

Ardipithecus ramidus (4.4. million years old) and her slightly younger, but more famous pre-

human sister, Australopithecus afarensis (3.2 million years old) were both discovered in this 

region that many Ethiopians describe as the place “where it all began” (Dalton 2006). Afar is 

home to approximately 1.5 million people of which the majority (nearly 80%) are pastoralist 

Figure 10. Left: Afar region divided by its five administrative zones. 
Upper Right: Afar region in relation to Ethiopia. Lower Right: Close up of 
the two districts (woredas) where we collected focus group and field data.   
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(Sonneveld et al. 2009), meaning they derive more than 50 percent of their income from 

livestock and livestock products (Rota & Sperandini 2009). Starting in the mid-1970s 

government sedentarisation policies and external appropriation of land have dramatically 

transformed pastoral practices in the region (Sonneveld et al. 2009; Tsegaye et al. 2013). Afar is 

also the dominant ethnic group (approximately 90%) and the main language spoken, which in 

addition to Somali and Oromo languages makes up the Lowland East-Cushitic language family 

(Getachew 2001).  

 

Data Acquisition 

My study design was pre-approved by the Social, Behavioral, and Education Research 

Institutional Review Board at Colorado State University (Protocol # 14-5049H). With the 

assistance of my colleague and research team member Tewodros Wakie, I collected field data, 

including rubber vine occurrence points and local pastoral knowledge in April and May 2014. 

We catalogued pastoral knowledge through semi-structured focus groups. This flexible approach 

allowed for the inclusion of different perspectives simultaneously (Morgan 1997) and provided a 

more relaxed and informal setting where unanticipated information could emerge (Huntington 

1998). This proved fruitful, as a communal focus group setting facilitated the participation of 

some women, where otherwise they may not have been included. We deemed this gender-

inclusive approach to be important, as women’s ecological knowledge tends to be distinct from 

men’s (Garibay-Orijel et al. 2012), yet often is overlooked in fields driven by knowledge 

documentation including ethnobiology and ethnobotany (Pfeiffer & Butz 2005; Luizza et al. 

2013). Such distinctions in knowledge are in part driven by culturally defined roles and divisions 

of labor, which are present in Afar, with women being in charge of household sale activities and 
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the processing of dairy products (Getachew 2001; ESAP 2007), in addition to having different 

uses of local plants related to material culture (i.e. construction, traditional arts and handicrafts) 

(Bahru et al. 2012). In general, it is difficult to access Muslim women as study participants in 

Afar due to cultural taboos, especially when attempting individual interviews as a foreign, male 

researcher. Additionally, with greater restrictions on their time due to extended household duties, 

this informal group setting allowed women to bring their children and address domestic 

obligations such as food preparation, while still contributing to the research. Focus groups lasted 

approximately three hours and were conducted in the local Afar dialect and the national language 

Amharic with the assistance of Wakie, who is fluent in Amharic and English, and a local 

translator and research assistant who is fluent in Afar and Amharic and conversant in English. At 

the beginning of each focus group, a formal introduction was made, explaining the project 

objectives before receiving verbal consent by each participant. 

 Thirty-nine men and seven women participated in the focus groups across seven villages 

located within the Amibara and Awash-Fentale districts in Afar's southern Gabi Administrative 

Zone 3. We chose these sites because limited studies have been conducted in this region of Afar 

(Getachew 2001; Abule et al. 2005) and ongoing P. juliflora research led by members of our 

team greatly facilitated accessing the villages involved. The average size of the focus groups was 

seven people. Participants' ages ranged from 18 to 50 years, with over half (approximately 54%) 

being between the ages of 26 and 40. The average household size was nine people. The majority 

(nearly 70%) self-identified as pastoralists, predominately raising cattle, goats and sheep, in 

addition to some camels. The remaining fifteen individuals self-identified as agro-pastoralists, 

raising similar types of livestock, in addition to cultivating some crops including cotton and 

onions. In the interest of concision and the fact that pastoral activities still contribute to the 
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majority of the self-identified agro-pastoralists’ income (over 50 percent), I subsequently refer to 

both groups collectively as pastoralists. Before conducting focus groups, we consulted the 

chairman of each village. In addition to being a local customary requirement, gaining the 

chairman's permission allowed for greater ease in locating and recruiting participants often 

spread out across a large geographic area. Focus group participants were recruited through a 

convenience sampling approach. I informed the village chairman at each of the seven village 

study sites about the project goals and they would designate one or two boys from the village to 

gather available men and women for participation in the focus groups.   

Focus group responses were recorded with pen on printed interview guides for each of the 

seven villages. All attempts were made to capture verbatim responses of focus group participants 

and to anonymously distinguish individual responses when feasible. Focus group topics covered 

three broad areas: 1) Landscape-scale changes, which included questions such as: “Are there 

changes to nature which you have observed in your community during your lifetime, for 

example, changes in plants, water, soils, or wildlife?” 2) Seasonality, which included questions 

such as: “When do the rains come? Is it the same time every year?” 3) Plants and animals, which 

included questions such as: “Are there plants that you consider bad? Are any of these new to the 

region?” (See Appendix 5 for the full interview guide). Hand written notes were typed up on a 

personal laptop and entered into an observation frequency table (see Table 6) to assess the 

consensus and disagreement across villages related to different observations including changes in 

seasonality, ecosystem service-providing plants, and invasive species. Due to the fact that not all 

individual respondents could be anonymously identified in the focus group notes, observations 

were aggregated to the village level (i.e. maximum frequency value = 7).  

 



70 
 

A number of observations were subsequently used to define important variables for the rubber 

vine model, in addition to assessing the impacts of rubber vine on pastoral livelihoods. 

 

Model Training Data 

Through a series of open-ended questions, we interviewed pastoralists at each site about 

changes they have witnessed on the landscape and impacts of invasive plants on local 

livelihoods. The open-ended nature of the focus group interview questions revealed the growing 

presence of rubber vine, whose existence in the Afar region was previously unknown to our 

research team, and thus became the focus of subsequent data collection and analyses. We 

recorded 24 rubber vine observations with geographic coordinates (occurrence points) with a 

Garmin handheld GPS Navigator unit. This was achieved through a targeted sampling approach 

based on local knowledge. Pastoralists who participated in the focus group interviews and who 

had detailed knowledge of the landscape identified and guided our team to locations of invasive 

rubber vine in the field. I reduced the initial 24 points to 18 through the 

FieldDataAggregateAndWeight module located within the USGS Software for Assisted Habitat 

Modeling (SAHM v1.2; Morisette et al. 2013). This pre-processing module removed overlapping 

points within the same 250m-cell. We used SAHM's BackgroundSurfaceGenerator module to 

produce a surface with values between 0 and 100 using the 18 rubber vine locations as inputs, 

and created a Kernel Density Estimator (KDE) surface. I produced 10,000 background points 

within SAHM using this surface to weight their placement. This method is useful to bias 

background points to areas that have been sampled (Elith et al. 2010). This process helped to 

smooth out the contribution of each occurrence point over the localized sampling extent 

(Hernandez et al. 2006).   
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Model Validation Data 

Following the focus group 

interviews, we conducted participatory 

mapping activities with the same 

pastoralists (Figure 11) using mosaicked, 

pan-sharpened (to 15m resolution) Landsat 

8 satellite images from December 2013 

that included the two districts with in our 

study region (Table 5). We overlaid the 

images with clear acetate paper and 

participants used permanent markers to denote the locations of invasive plants and important 

water resources across the landscape. We superimposed villages and towns on the high-

resolution imagery and clearly labeled them. These major landmarks helped participants to 

rapidly familiarize/reorient themselves with the presented maps 

Table 5. List of Landsat 8 cloudless scenes used in participatory mapping activities. 

Available Cloudless Landsat 8 Scenes  

Path Row Scene Date  

167 53 12/10/13 

167 54 12/01/13 

168 53 12/10/13 

 

 

Environmental Variables 

I chose environmental variables based on the most important ecological and 

anthropogenic characteristics that might determine the distribution of rubber vine across the 

study area. I acquired this knowledge of hydrologic and biophysical features and human-induced 

disturbance drivers from a number of sources, including local pastoral knowledge, background 

Figure 11. Afar pastoralists identifying invasive plants with 
the assistance of Landsat 8 satellite imagery during 
participatory mapping activities. Image courtesy of M. 
Luizza. 
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literature reviews and field observations. I derived a single vegetation index, Normalized 

Difference Vegetation Index (NDVI; Tucker 1979) from the National Aeronautics and Space 

Administration (NASA) Moderate Resolution Imaging Spectroradiometer (MODIS) satellite. I 

acquired NDVI from the Land Processes Distributed Active Archive Center5, with all pre-

processing steps, including re-projection, mosaicking and sub-setting conducted with the MODIS 

Reprojection Tool6. I included August and November NDVI from 2012, to capture the two main 

rainy seasons of the Afar region- kerma, which peaks in August, and detrob, which peaks in 

November. These periods should highlight the green-up in the acacia trees, which rubber vine 

often infests. Although the vine can bloom all year with sufficient moisture and grow on its own 

in a shrub form, it tends to thrive in semi-shaded riparian areas, growing into the canopy of trees. 

Although the spectral signature captured by NDVI may include P. juliflora in addition to acacia 

species, rubber vine has been observed growing in concert with P. juliflora (Luizza, personal 

observation), and therefore was deemed to pose limited issues for vegetation spectral signature 

confusion.  

 I also included the following topographic variables: elevation, slope and compound 

topographic index (CTI), all of which we obtained from the digital elevation model (DEM) 

acquired from the Shuttle Radar Topography Mission7. The DEM product had a spatial 

resolution of 90m. We derived slope and CTI from the DEM and resampled them in ArcGIS 

v10.0 (ESRI 2011) to 250m spatial resolution using the nearest neighborhood algorithm to match 

the resolution of the MODIS-derived NDVI predictors. Compound topographic index is a 

calculation that uses slope and flow accumulation to identify drainage depressions and provides a 

                                                 
4 https://lpdaav.usgs.gov/data_access. 
6 Https://lpdaac.usgs.gov/tools/modis_reprojection_tool.  
7 http://srtm.usgs.gov/.  
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representation of soil wetness across a given landscape (Evans et al. 2014). I considered the 

following anthropogenic variables which may provide pathways of rubber vine introduction, thus 

acting as a proxy for propagule pressure and disturbance (Jarnevich et al. 2014): distance to 

roads, derived from a current roads geospatial layer for the Afar region, and distance to water, 

derived from a current rivers and streams geospatial layer for Afar. I acquired both layers from 

the Afar Pastoral Agriculture and Rural Development Bureau. My research team member 

Tewodros Wakie cross-referenced these data for accuracy with additional geospatial datasets and 

sources. This included overlaying the roads layer on the ESRI world 2D base map in ArcGIS 

10.0, and cross-referencing the rivers and streams layers with an independent rivers and streams 

layer created with the ArcHydro 2.0 tool set within ArcGIS 10.0. Both visual validation 

procedures produced strong agreement between the different data sources. Additionally, I created 

a distance to settlements layer using 23 GPS locations of towns and villages we collected within 

the study area. I created distance layers for all three using the Euclidean distance calculation in 

ArcGIS 10.0 with a spatial resolution of 250m. This calculation measures the straight line 

distance of the centroid of each cell in a given raster to the centroid of a given source cell (Hirzel 

& Arlettaz 2003), which in the case of our study included all three of our anthropogenic 

variables.   

 I examined all pairwise combinations of predictors using a correlation matrix generated 

by SAHM's CovariateCorrelationAndSelection module (see Appendix 6 for full matrix). To 

identify and avoid using redundant variables, I removed one of any pair with a Spearman, 

Pearson or Kendal correlation of |r| > 0.70, following the recommendation of Dormann et al. 

(2013). For this study August and November NDVI were the only highly correlated variables.  
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August is part of the longer, primary rainy season kerma, and was therefore deemed to be a more 

robust predictor for the model, resulting in the removal of November NDVI from use in the final 

model runs.   

 

Rubber Vine Modeling 

I conducted all pre-processing and modeling procedures within SAHM, which is freely 

available and designed to expedite habitat suitability modeling procedures in addition to 

documenting a detailed workflow history of the different input data, pre- and post- processing 

steps and modeling options used (Morisette et al. 2013). Within SAHM we used the Maxent 

statistical software package version 3.3.3k to train the model (Phillips et al. 2004). This modeling 

approach is a general-purpose machine learning method that models species distributions from 

presence-only species occurrence records and has high accuracy in predicting plant distributions 

(Evangelista et al. 2009; Stohlgren et al. 2010; Elith et al. 2011), in addition to working well with 

small sample sizes (Pearson et al. 2007; Wisz 2008). The principle of maximum entropy states 

that a probability distribution that is the most spread out, or closest to uniform (i.e. having 

“maximum entropy”), subject to known constraints, is the most appropriate estimation of an 

unknown distribution because it concurs with all that is known and avoids all that is unknown 

(Phillips et al. 2006). The Maxent modeling output creates a surface with a continuous habitat 

suitability gradient with values ranging from 0 (least suitable or dissimilar) to 1 (most suitable or 

most similar to cells with presence points) and provides a calculation of the percent contribution 

of the different environmental variables used in the model.  

 I used a jackknife validation approach to test overall model fitness due to the limited 

number of rubber vine occurrence points. Pearson et al. (2007) provide strong support for 
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Maxent's ability to produce robust model results with small species occurrence datasets (as small 

as 5). With such limited datasets, models are greatly influenced by exactly which observations 

are included. Using their novel jackknife, or “leave one out” procedure, we generated multiple 

models, equaling the total number of occurrence points to test overall model fitness. Each 

occurrence was removed from the data set and the model was built on the remaining points. I 

built 18 separate models for our study by setting the Maxent parameter 'Replicated run type' to 

'cross-validation' and the parameter 'Replicates' to 18. The predictive performance was then 

assessed based on each model's ability to predict the single occurrence point excluded from the 

training data set. A final model trained with all 18 occurrence points was run after determining 

model fitness through the jack knife approach, and produced a continuous probability raster of 

predicted suitable rubber vine habitat across the Afar region. 

 
Independent Modeling Validation and Novel Environment Identification 

Independent validation data to evaluate the final model came from participatory mapping 

with the same focus group participants. Three villages noted rubber vine locations on the satellite 

image for the Amibara district. From this, I collected 52 rubber vine occurrence points. This set 

was later reduced to 50 validation points within SAHM's FieldDataAggregateAndWeight 

module. I digitized rubber vine occurrences from the participatory mapping activities by 

uploading the pan-sharpened and mosaicked Landsat 8 image into ArcGIS 10.0. I created point 

shapefiles for each of the three villages, based on a visual assessment of the acetate paper 

overlay on the satellite image. I created geo-referenced coordinates with the 'calculate geometry' 

function in ArcGIS 10.0 and combined these distinct sets of points to create a comprehensive 

participatory rubber vine validation data set. I projected all geospatial analyses in WGS 1984 

UTM Zone 37 N, and ran all participatory mapping test data through SAHM's ApplyModel 
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module to validate the final rubber vine habitat suitability model. Additionally, I switched model 

occurrence datasets to explore the utility of training and testing the model with more stratified 

participatory field sampling data compared to the more clustered participatory mapping 

occurrence points. Model results were assessed based on the AUC. The area under the receiver-

operating characteristic curve is a threshold-independent metric, with values ranging from 0 to 1 

that measures the ability of a model to discriminate a true occurrence point from an absence or 

background point. An AUC value of less than 0.5 shows that model predictions were worse than 

random, a value of 0.5 no better than random, and a value of 1.0 indicating perfect discrimination 

(Peterson et al. 2011; Khanum et al. 2013).   

One of the outputs of the Maxent model is a Multivariate Environmental Similarity 

Surface (MESS) map, which provides a measurement of the congruence of any given point to a 

set of reference points, with respect to the set of predictor variables used (Elith et al. 2011). This 

surface provides a visualization of where model predictions are extrapolating beyond the 

environmental conditions used to train the model (specifically for each point, the extent to which 

the most dissimilar variable is outside the training range), and thus denotes locations where 

model predictions are less certain due to novel conditions. In line with existing research on the 

utility of “iterative sampling design” (Stohlgren & Schnase 2006; Crall et al. 2013), where 

models based on field observations are used to guide additional field data collection and 

improvement of the overall model, I overlaid results from this study on the MESS map to 

provide additional model assessment and prioritize areas for future targeted surveying and 

monitoring efforts with pastoral communities.  
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RESULTS: 

Impacts of Rubber Vine on Pastoral Livelihoods 

High levels of agreement were found between men and women relating to knowledge and 

perceptions of rubber vine impacts and changes occurring across the landscape. In many 

instances, observations shared by one gender were corroborated and expanded upon by the other. 

Across all seven villages, focus group participants described combined pressures of extensive 

drought, reduced water flow from the Awash River due to large-scale government farms, and the 

influx of invasive species (Table 6). They clearly noted the connections between all three issues, 

with drought facilitating the establishment of invasive plants, and large-scale agriculture 

development disturbing the land and providing novel habitat for these invaders through extensive 

irrigation ditches. “The pastoralist way of life is changing”, one respondent declared. “When 

native species were plentiful”, the respondent added, “We used to have cold air and plenty of 

water. Now it is reversed; invasive plants, hot air and little water.”  

Table 6. Frequency table of pastoralist observations across the 7 village focus groups with illustrative quotes. 

Observation Illustrative quote(s) Frequency 

(max n=7) 

Decrease in rain 
and shift in timing 
of rainy seasons 

“It is not as before. We are currently in Segum [one of the two 
primary rainy seasons] and there is no rain. The weather is 
always hot now.” 
 
“There is less rain generally in recent years. The two main 
rainy seasons kerma and segum are all that is left…we believe 
this is connected to the loss of trees.” 
 

 
 
 

7 

Increase in 
invasive plants 
linked with range 
degradation 

“The rangeland is not the same as before. Exotic species are 
coming in and taking over. The grass and range is 
degraded…there is no grazing land by the village. Our life is 
like this now.” 
 
“Native plant species have disappeared and now we have 
weyane, halemero, and wola howla.” 

 
 

7 

Increase in 
predators due to 
invasive plants 

“It [halemero] has vines that can bind and trap our livestock 
and they are attacked by wild animals like hyena…Lion are 
also moving into the weyane and halemero forests… 

 
5 
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Leopards and python are moving in closer as well due to the 
dense cover provided by halemero and weyane.” 

Rubber vine 
spreads by water 
(facilitated by 
government farms) 

“Halemero is found near the Awash River on both sides. It 
spreads by water…the drainage [irrigation ditch] from sugar 
cane development consumes a lot of water and much flows 
through. Some species grow on this new special habitat, like 
halemero...everything is called ‘development’ but really it is 
destruction. We have not seen the fruits of ‘development’.” 

 
 

5 

Rubber vine 
poisonous to 
livestock 

“The grasses suitable for livestock no longer grow due to 
invasive plants. Halemero is poisonous and if cattle 
accidentally eat the leaves, they die.” 

 
3 

Rubber vine kills 
native vegetation 

“It [halemero] also suppresses important trees like keselto 
(acacia nilotica) and is present along the Awash 
River…halemero is poisonous and can kill other plants.” 

 
4 

Decrease in native 
vegetation and 
wildlife 

“The land is the same, but the resources are different; the 
weather is different. In the past we had cold winds, but now 
they are only hot. There is a shortage of water and a shortage 
of forage for our livestock…there used to be a number of 
useful grass species, but now they are all gone. Most native 
plants are gone.” 
 
“The useful wildlife which grazes alongside our livestock is 
declining in numbers. Zebra used to be here and are now 
entirely gone, as well as hartebeest; all gone.” 

 
 
 

 
7 

Increased travel to 
find livestock 
grazing and water 

“There are major changes occurring. It used to be a clear 
landscape where we could see for long distances; we could 
see to the mountains. It was all grass and we could get grass 
very close to the village. Now, even after traveling long 
distances we don't get grass. There was a natural water area 
that has all dried up. We have to travel far to get water for our 
livestock.” 

 
 
 

4 

Increased livestock 
ailments/mortality 
from lack of rain, 
invasive plants, 
and exotic diseases 

“Our livestock numbers are dropping. The taste of milk has 
changed also because native plants are gone and the animals 
eat many weyane pods and kebraba [native weed]…it has 
other bad effects on the cattle, including tremors and even 
paralysis. The exotic species that are arriving from the river 
[Awash] are causing much of these changes, in addition to a 
lack of rain. Lack of rain is the biggest cause.” 
 

 
 

 
6 

Increased conflict 
(with other clans 
and wildlife) 

“We travel long distances to get grass. This leads to conflict 
with Somali clans, resulting in cattle theft and killings. 
Grazing is the biggest reason for conflict.” 
 
“Wild animals and livestock now congregate at the small 
remaining native patches of forest and this leads to 
conflict…even baboons, who never attacked livestock before 
when native fruits were plentiful, are now attacking goats and 
sheep.” 

 
 

 
 

4 

Loss of mobility  “There is no useful contribution from the government except 
for some agricultural advice from the Ministry of Agriculture. 
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The negative impacts of the government are widespread, 
including forced removal of our villages into compounds and 
the industrial sugar cane production… Flooding used to be 
useful as people could move to the hills during flooding and 
come back after and graze cattle on the new grass. Now we 
are settling here permanently and it is causing problems.” 
 

 
 

3 

 

Acute changes to all four major rainy seasons were additionally noted, with each 

experiencing noticeable reductions in the volume and predictability of rainfall. These factors are 

believed by many pastoralists to be helping spread invasive plants. Kerma, the primary rainy 

season historically spanning four months from June to September, is now limited to the month of 

August. Detrob, the secondary rainy season, which in the recent past spanned October and 

November, now only occurs over a maximum span of five days. Dedaa, which historically 

spanned January and February, and segum, which occurred in April, have disappeared entirely. 

One respondent emphatically relayed that dedaa and detrob had already passed this year with no 

rain. This observation was met with agreeing nods and grunts of other pastoralists, with the same 

person somberly adding, “What is left are only the names of the seasons”.  

 Although pastoralists described two other invasive plants as problematic, including the 

regionally prolific Prosopis juliflora (locally called weyane) and the nationally invasive 

Parthenium hysterophorus (wola howla), all participants noted Cryptostegia grandiflora (rubber 

vine; locally called halemero) to be the newest invasive plant to the region and of great concern. 

A majority of the villages (6 of the 7) relayed that rubber vine has noticeably increased in cover 

and habitat expansion in recent years (Figure 12). Participants noted that rubber vine grows in 

close proximity to the Awash River on both sides and first appeared in Afar in the upper and 
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middle Awash River during the 

communist Derg Regime 

(approximately 25 years ago). All 

respondents agreed that the vine is 

seed-propagated primarily through 

water, although it can also disperse 

its seeds by wind. Major flood events 

including those in 1998 were noted 

to assist in the establishment of the 

vine, but the increased frequency 

and magnitude of these events in recent years has further exacerbated the situation. Respondents 

relayed that when the Awash River would historically flood, native grasses would sprout. In 

recent years when flooding occurs, grass does not grow, only rubber vine and P. hysterophorus. 

A number of respondents argued that this recent phenomenon is due in part to the massive influx 

of large-scale government owned sugar cane farms in the river valley. These huge monoculture 

industrial agriculture operations are water-intensive, requiring extensive irrigation ditch systems 

that follow the adjacent dirt roads. Many pastoralists believe these ditches are creating new 

habitat and seed dispersal systems for rubber vine, which is increasingly present in these recently 

disturbed areas (Luizza and Wakie field observations).  

 Respondents quickly expressed that rubber vine has a number of negative impacts. If 

livestock (especially cattle) unintentionally eat the leaves while browsing other species with 

which it is intermixed, they become sick and can die suddenly. Existing research on rubber vine 

confirms the vine to be poisonous, containing glycosides that have toxic effects on the cardiac 

Figure 12. Mature rubber vine (C. grandiflora) plant growing in 
shrub form (foreground). Other vines growing in tree canopies in 
the background, with the Awash River behind the vehicle. Image 
courtesy of M. Luizza. 
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system if ingested (Cook et al. 1990; Mekonnen 1994). Although some people use the plant's 

milky latex sap as a livestock insecticide, applying it to bugs that are attached to cattle, it is not 

widely used, as a number of participants explained that it is also a skin irritant and will burn a 

person if any sap touches exposed skin. No other beneficial uses of rubber vine were noted, 

although Afar and Oromo people in and around Awash National Park (located in the upper 

Awash River basin to the south of our study region), have confirmed using rubber vine bark, 

branches and stems for house construction and tying material (Bahru et al. 2012). Additionally, 

like P. juliflora, rubber vine produces dense vegetation cover that poses a dual threat of 

restricting the mobility of livestock and providing cover for predators. Respondents noted that 

the vine can quickly bind and trap livestock, making them easy targets for hyena predation. The 

frequency of such attacks were noted to be on the rise, as the dense cover created by rubber vine 

and P. juliflora together has created shelter for a number of problematic wild animals such as 

lions, hyenas, leopards and snakes. A few pastoralists went on to state that snakes and leopards 

particularly take advantage of rubber vine habitat corridors.  

 Rubber vine kills native trees by growing up into their canopy, blocking their access to 

the sun and “choking them”, in addition to inhibiting the establishment of grasses when growing 

in shrub-form. As one respondent exclaimed, “Where halemero grows, nothing else will!” The 

vine was said to have acute negative impacts on a number of native trees around the Awash 

River that are important to pastoral livelihoods. I catalogued eight endemic tree species that 

pastoralists identified as being threatened by rubber vine (alone or in concert with P. juliflora) 

and act as critical sources of firewood and charcoal (see Appendix 7 for a full list of local trees 

and their uses). The three most important species, locally called keselto (Acacia nilotica), adado 

(Acacia senegal) and kilaito (Combretum aculeatum), collectively provide nine distinct 
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ecosystem services including charcoal, construction, cosmetic, firewood, food, livestock fodder 

and forage, wildlife forage, medicinal, and shade services. Respondents emphasized that the 

most detrimental rubber vine impacts are seen with their most important firewood source A. 

nilotica, which is present along the Awash River. One respondent noted that no A. nilotica 

regeneration is occurring. “All we see are the remaining mature native trees; no new seedlings.” 

Moreover, other respondents stated that combined impacts of rubber vine and P. juliflora have 

reduced important supplemental food sources. Pastoralists relayed that in the past there were an 

array of wild edible fruits that have recently disappeared from the landscape and been replaced 

with rubber vine and P. juliflora. One respondent added, “It even used to smell better with all the 

different flowering, fruit-bearing plants. It is different now. Most of these edible fruits have 

disappeared.” The fruit-bearing Cordia spp. (locally called mederto) was stated to have been 

most noticeably affected, with a drastic decline in cover and extent. 

 

Rubber Vine Modeling 

Local pastoral knowledge greatly facilitated modeling the suitable habitat of rubber vine 

across the Afar region. The preliminary jackknife validation approach revealed overall good 

model fit, with the average AUC value across the cross-validation subsets at 0.80 (Table 7). 

Across all 18 cross-validation subsets, distance to water, August NDVI and distance to roads 

were consistently in the top three predictors (see Appendix 8 for a full list of jackknife model 

performance and variable contribution). The final training model, run with all 18 rubber vine 

occurrence points, produced a training AUC value of 0.91 and high classification accuracy 

(82%). The final model had strong discrimination with a test AUC of 0.96 and high classification 

accuracy (93%). For both the train and test models, anthropogenic variables including distance to 

water and distance to roads, in addition to August NDVI were the most influential model 
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predictors, explaining nearly 100% of the model predictions between the three variables (Figure 

13). Upon switching the model occurrence datasets, model AUC values and correct classification 

percentages remained high, but model predictions were restricted to areas with existing rubber 

vine occurrence points, model predictor importance shifted to topographic and different 

anthropogenic variables, and sensitivity (i.e. true positive rate) drastically decreased for the 

validation model. 

Table 7. Maxent statistical accuracy measurements with models produced using field collected training data and 
participatory mapping test data, and switched, using participatory mapping training data and field collected test data. 

Rubber Vine Suitability (Field Collected Training Data) 

AUC % Correctly 
Classified  

Sensitivity Specificity 

0.909 81.9 0.823 0.819 

Rubber Vine Suitability (PGIS Test Data) 

AUC % Correctly 
Classified  

Sensitivity Specificity 

0.959 92.90 0.918 0.929 

Rubber Vine Suitability (PGIS Training Data) 

AUC % Correctly 
Classified  

Sensitivity Specificity 

0.986 93.85 0.939 0.938 

Rubber Vine Suitability (Field Collected Test Data) 

AUC % Correctly 
Classified  

Sensitivity Specificity 

0.993 99.42 0.353 0.995 
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Figure 13. Relative contribution of each environmental predictor variable for the different training data. Higher 
percentage values indicate stronger influence on model response. 
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The final distribution map shows the growing threat rubber vine poses for the Afar region 

(Figure 14). Overlaying the MESS map revealed 88 percent of the landscape to contain novel 

environmental characteristics outside of the range covered by the presence and background 

locations used to train the model (Figure 14; Elith et al. 2010). Hash marks signify locations with 

novel environmental characteristics in need of future targeted surveying. 

 
 
 
 

Figure 14. Rubber vine (C. grandiflora) habitat suitability across the Afar region of Ethiopia. Areas in red denote 
predictions of high habitat suitability. Hash marks signify locations with novel environmental characteristics. 
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DISCUSSION:  

This research reveals the significant benefits gained by integrating local ecological 

knowledge with species distribution modeling for risk assessment studies. Model outputs were 

consistent with ecological knowledge of the species gained from pastoral communities, field 

observations and existing rubber vine studies, revealing high habitat suitability across much of 

the interconnected riparian areas of the Awash River basin. Rubber vine often favors riparian 

areas, climbing trees along river banks with consistent canopy openings (Kriticos et al. 2003; 

Yohannes et al. 2011), but the species can also be found as a sprawling shrub along gullies, 

creeks and disturbed areas like roadside ditches and waterholes where run-off water accumulates. 

Participatory data collection and mapping with pastoralists revealed the detailed and highly 

accurate knowledge of local community members in regards to rubber vine. Model training and 

test data sets were independent, but collected from the same pastoralists. All 24 locations noted 

to have rubber vine by pastoralists across the seven village study sites were verified as having 

rubber vine presence by our research team. Additionally, much agreement existed between the 

three villages that identified rubber vine occurrences during the participatory mapping activities, 

although none of the villages viewed the maps created at the other sites. This provides another 

level of evidence of the utility of local ecological knowledge.  

 Switching the model occurrence datasets resulted in additional high AUC values and 

correct classification percentages, but model predictions were noticeably restricted to areas with 

existing rubber vine occurrence points. Furthermore, model predictor importance shifted to 

topographic variables and different anthropogenic variables (i.e. elevation and distance to 

settlements), both of which had little to no influence in the other model runs. This is likely due to 

the close proximity of rubber vine occurrence points identified in the participatory mapping 
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activities to the respective villages of participating pastoralists. This spatial autocorrelation may 

account for the noticeable drop in the sensitivity value when applying the model trained on these 

data to the field collected occurrence points. Additionally, this may explain why elevation is a 

dominant driver for the model, based on the villages and participatory mapping points existing at 

much lower elevations compared to the field collected data which were much further out from 

the settlements. This process revealed the participatory mapping dataset to have noticeable 

sampling bias. The occurrence points were too spatially autocorrelated to train a model with, but 

provided a useful preliminary validation dataset and further highlights the importance of 

stratifying occurrence point sampling as much as possible, even within a participatory 

convenience sampling framework.  

 I overlaid the rubber vine habitat suitability map with the MESS map produced by 

Maxent to further assess relative confidence in the model output and determine locations for 

future targeted surveying attempts. The MESS output revealed locations with novel 

environmental conditions, e.g. conditions that rest outside the range covered by the presence and 

background locations used to develop the model (Figure 14; Elith et al. 2010). Crall et al. (2013) 

provide strong support for the use of an iterative sampling design facilitated by MESS map 

assessment, finding models trained on targeted sampling data to perform better than those 

generated from non-targeted sampling data. This study used such an approach, with the novel 

application of local pastoral knowledge as the targeted sampling training and test data sets. This 

added visual assessment is illustrative, as the southern Gabi zone where our field data were 

collected, has the highest average annual rainfall for the Afar region at approximately 510-

1032mm (Sonneveld et al. 2010). Distinct environmental characteristics linked with average 

annual precipitation and elevation exist across the Afar region as one moves south to north, with 
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the landscape becoming increasingly arid, with greatly reduced rainfall and dramatically higher 

elevations. Our model effectively relayed rubber vine habitat suitability in relation to consistent 

environmental conditions linked with rivers and stream systems across the study area, with the 

addition of the MESS output highlighting where topographic, environmental, and anthropogenic 

characteristics are novel compared to the sampled region. These distinct environmental changes 

may act as a major limiting factor to rubber vine spread northward, but the species is noted to 

handle a diverse range of environmental conditions (McFadyen & Harvey 1990; Kriticos et al. 

2003). I cannot say definitively that the predictions beyond the initial spatial extent north of the 

model occurrence points are robust, but these results show with great certainty the high 

suitability of rubber vine habitat immediately down-river of the collected occurrence points and 

the great potential for further expansion along the Awash River and its tributaries, thus providing 

an important early warning and monitoring tool for this recently established species and 

highlighting areas in need of additional field assessment.     

 Going into the focus group interviews our research team was well aware of the 

vulnerability of pastoral communities and the Afar landscape to P. juliflora and P. 

hysterophorous. These semi-structured interviews revealed the new and growing threat of rubber 

vine, which is currently not listed as an alien invasive species in Ethiopia, and receiving limited 

attention by local and regional government agencies and non-profit organizations working in the 

area. Early detection of invasive plants is critical, and often the best response time is during the 

early stages of establishment when the least is known about the species-environment interactions 

and overall invasion potential (Kriticos et al. 2003). Local knowledge can act as an important 

early warning system to understand a given species' current distribution, biology and impacts, 

and potentially provide a needed edge to more effectively mitigate and manage invasive species.  
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 Early detection and understanding of invasive species' impacts is of the utmost 

importance and made especially clear when viewing well-established invasive plants in the 

region such as P. juliflora, which will likely never be fully eradicated. Similar to the current 

view of many in Ethiopia in regards to rubber vine, P. juliflora was treated with much 

ambivalence during its early stages of establishment, even upon showing invasive characteristics. 

Prosopis juliflora is now considered the worst invasive species in Afar and one of the most 

harmful invasive plants in Ethiopia, having numerous direct and indirect economic, ecological, 

and local livelihood impacts. Viewing the effects of rubber vine in Australia, where it has long 

been established relays the dire nature of addressing this problematic species. Rubber vine has 

been described as the single biggest threat to natural ecosystems in tropical Australia (McFadyen 

& Harvey 1990). Although the vine is not a weed of agricultural crops, it smothers and out-

competes both wild and pasture grasses in Australia, in addition to invading and disrupting forest 

systems (Tomley 1995). The major economic impact from rubber vine invasion includes direct 

loss of pasture, with some infestations reducing the carrying capacity of livestock by up to 100%, 

coupled with riparian area invasions limiting livestock access to water. This has resulted in 

increased management costs estimated at USD $15 million per year to the northern Queensland 

beef industry alone (Anon 2001). This could prove disastrous for local Afar pastoralists who are 

heavily reliant on livestock. Pastoral livelihoods of the Afar have adapted to cope with 

uncertainty and the vulnerabilities associated with a harsh rangeland environment, but drought, 

collapse of livestock markets and disease are preeminent shocks to which they are especially at 

risk (Davies & Bennett 2007). Moreover, impacts could easily move beyond the local level, as 

seen with P. juliflora in Ethiopia and rubber vine in Australia, potentially reaching the regional 

and national level, as livestock are a major export commodity for Ethiopia (Catley et al. 2013). 
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Furthermore, political and cultural conflicts stemming from poorly designed development 

strategies beginning in the 1950s and the remnants of the Eritrean-Ethiopian War (1998-2000) 

have resulted in ongoing instability in the region. Afar pastoralists have already noted a lack of 

forage and fodder for their livestock and now need to travel further, resulting in increased 

conflicts with predators and Somali clans. Expansion of rubber vine could further exacerbate this 

already unstable situation. Pastoralists here depend on key riparian zones that provide important 

dry season and drought resources for herds, yet major drivers transforming riverine ecosystems 

threaten these assets, including dam construction, invasive species and irrigated plantation 

farming (Behnke & Kerven 2013; Oba 2013). Such disturbances to the Awash River are 

especially prevalent and long-standing, as the basin, which has merely five percent of Ethiopia's 

land area suitable for irrigation, has over one-third of its suitable land already irrigated, 

amounting to fifty percent of all land under irrigation in the entire country (Awulachew et al. 

2007).  

Furthermore, even when geospatial applications are inclusive they can foster social 

exclusion or have unintended consequences when not addressing things like accountability, 

empowerment, control, and use of knowledge (Pfeffer et al. 2013), as “stakeholder participation 

does not take place in a power vacuum: the empowerment of previously marginalized groups 

may have unexpected and potentially negative interactions with existing power structures” (Reed 

2008: 2420). In this case of integrating pastoral knowledge to assess the risks posed by invasive 

rubber vine, local knowledge revealed certain patterns related to environmental and 

anthropogenic drivers, including large scale government farming potentially facilitating and 

rapidly increasing the rate of the plant’s spread. Despite this, spatially relaying the heightened 

risk for rubber vine invasion in the Awash River basin could be used against pastoral 
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communities by existing power structures to further limit their access to this critical landscape. 

This unintended consequence is not unrealistic in light of recent land-grabs by the national 

government last year in the southern Oromo region (while we were conducting this study in 

Afar), resulting in the death of multiple student protesters at the hands of police8, or, the long-

standing history of a number of East African governments and western scientists pointing the 

finger of blame for rangeland degradation at pastoralists (Reid 2012), which has provided ill-

informed justification for further disenfranchisement of these groups. Moreover, Ethiopia, under 

the communist Derg regime, had a common practice of forcibly relocating people that could pose 

civil opposition lasting into the early 1990s (Bussmann et al. 2011). This practice continues 

today under a democratically elected government, but described as “voluntary” relocation when 

resources are depleted in given area. However, a number of pastoralists in Afar noted forced 

relocation still occurs and our field team viewed a number of village sites that were noted to be 

forced sedentization settlements (Luizza, personal correspondence and field observations).   

 Challenges still exist for assessing and addressing rubber vine in the Afar region. 

Understanding the species’ true ecological niche is difficult and the inclusion of additional 

environmental variables may be warranted in future modeling attempts. Rubber vine's native 

range is Madagascar, and this landscape poses certain challenges for fully understanding the 

vine's true habitat niche. For instance, the simple fact that Madagascar is an island quickly limits 

the species' dispersal capabilities. A few studies have explored rubber vine in its native range, 

finding its habitat to be characterized as dry tropical with highly pronounced summer rainfall 

(McFadyen & Harvey 1990), but Madagascar’s small landmass and limited climatic variation, in 

addition to competition between it and its genetically similar sub-species C. madagascariensis 

                                                 
8 Al Jazeera News (2014). Retrieved from: http://stream.aljazeera.com/story/201405021338-0023696. 
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may belie the true suitable climatic gradient that rubber vine can actually inhabit (Kriticos et al. 

2003). This point is corroborated with observational evidence in the Afar region where rubber 

vine is found growing in very different habitat conditions, including as a singular shrub-like form 

in dry, sun-exposed dirt piles near recently disturbed agriculture fields, but also growing as 

extensive networks of vines, climbing up acacia trees in semi-shaded, cooler, wet, riparian areas. 

Therefore, model results should be interpreted with some caution, as Pearson and colleagues 

(2007) aptly stress that such assessments with limited occurrence data sets should be viewed as 

identifying regions with similar environmental conditions to where the species in question is 

known to occur, and not as predicting actual limits to the range of that species. 

 Necessary next steps include validation of the model outputs with pastoralists and 

conducting additional participatory, targeted surveying. Furthermore, having a female translator 

that speaks Afar and Amharic would likely better facilitate the recruitment of women for these 

future activities. Moreover, beginning a dialogue with local and regional government land 

managers and international aid organizations working in Afar around these study results will be 

an important step towards addressing rubber vine. This work further supports the idea that 

invasive species habitat suitability modeling should be an iterative process (Stohlgren & Schnase 

2006; Crall et al. 2013), one that I argue should engage in collaboration and knowledge 

integration at all steps, beyond researchers and land managers, which is the current trend in 

species distribution modeling literature. Moreover, this work reveals the importance of working 

closely with and empowering local communities that have detailed knowledge of the landscapes 

they inhabit and newly established non-native species, to enhance and facilitate more effective 

and holistic risk assessment approaches including early detection and targeted surveying and 

monitoring efforts. 
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CONCLUSION: 

Invasive plants have an array of detrimental impacts on ecosystems and rural livelihoods 

in arid and semi-arid regions around the world. Successful control of invasive species depends 

on early detection and rapid response, which I argue is best achieved through meaningful 

collaboration with local communities that live on the affected landscapes. This chapter 

demonstrated the utility of integrating local pastoral knowledge with species distribution 

modeling for invasion risk assessment studies, highlighting the growing threats posed by 

invasive rubber vine to the Afar region. The model was highly accurate, as evidenced by the 

assessment metrics, and highlights the growing risk rubber vine poses to the Afar region, with 

suitable habitat extending downstream of its current distribution in the middle Awash River 

basin. Local pastoral knowledge provided important context for its rapid expansion due to acute 

changes in seasonality and extensive habitat alteration, and described immediate threats posed to 

a number of native tree species that provide critical ecosystem services to local communities. To 

date, little attention has been paid to rubber vine in Ethiopia by government agencies, academic 

research institutions and non-profit organizations alike. Local pastoral knowledge thus acts as a 

critical early warning system that can enhance existing risk assessment approaches including 

early detection and targeted surveying of recently established invasive species.   
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The importance of knowledge integration and co-production mechanisms for adaptive 

governance: Reflections on integrative geospatial modeling as a tool for adaptive and 

collaborative management9 

 

 

Adaptive governance has emerged as a flexible, multi-dimensional framework that 

addresses the management of social-ecological systems through multiple domains (i.e. 

ecological, social, political and economic). A number of social mechanisms have been identified 

as enhancing adaptive governance processes, including knowledge integration and knowledge 

co-production. Despite a growing number of studies that explore their application in local 

conservation and management efforts, synthesis of their major findings is limited, and no studies 

could be found that apply the same approach across distinct cases at different spatial and 

governance scales. In this chapter, I explore how my integrative geospatial modeling research, 

which incorporates knowledge integration and co-production with advanced geospatial 

applications at the landscape scale in Alaska and the local scale in Ethiopia, compares with the 

broader literature. I synthesize how research over the past twelve years has engaged each 

mechanism and reflect on my transdisciplinary research process while providing future research 

and management recommendations. Current scholarship reveals variability in how knowledge 

integration and knowledge co-production are engaged (i.e. as distinct concepts or interacting 

features), as well as limited incorporation with advanced geospatial applications. This growing 

body of work reveals important conditions for knowledge integration and co-production, 

including genuine power sharing, mutual respect for different knowledge forms, understanding 

power inequities and historical conflict, and co-definition of goals, in addition to potential 

outcomes such as trust building, community empowerment, expansion of scientific knowledge 

                                                 
9   Research from this chapter is part of the following manuscript: Luizza, M.W., X, and A. Lovell (In Preparation). 

Seeking adaptive governance through knowledge integration and co-production: A review of trends and 
approaches. Ecosphere. 
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and enhancement of adaptive strategies. My integrative geospatial modeling work corroborates a 

number of these findings, including the potential enhancement of collaboration and adaptive 

strategies through goal and conservation target co-definition, the critical nature of trust building 

and providing a setting of mutual respect for different knowledge sources, and the ability of local 

and indigenous knowledge to expand the realm of conventional science. This work also raises 

additional questions regarding issues of scale, institutional connectivity, and the potential benefit 

of bridging and boundary-spanning organizations and individuals for facilitating more rapid 

knowledge integration and co-production processes. These findings imply that trandisciplinary 

approaches like integrative geospatial modeling can provide a useful and novel tool for 

understanding the complex and connected issues of local and landscape scale disturbance 

drivers, provisioning ecosystem services and subsistence livelihoods in regions with mounting 

anthropogenic pressures.  

 

INTRODUCTION: 

The inherent complexity of ecosystems necessitates holistic approaches to management 

and stewardship that go beyond compartmentalized disciplinary approaches (Savory 1988; 

Ostrom et al. 2007; Chapin III et al. 2009). Advancements across numerous disciplines, spanning 

the natural and social sciences continue to reveal that physical, ecological, and social processes 

cannot be viewed in isolation of one another, as they are highly inter-connected and constitute 

social-ecological systems (SESs). This requires a “humans-in-nature” outlook when addressing 

complex environmental issues across spatial and governance scales, as a range of biotic, abiotic, 

and institutional variables and processes are at play. Engaging a plurality of knowledge forms is 

increasingly argued to promote effective, collaborative, and adaptive governance outcomes. Yet, 
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traditionally marginalized groups including minorities, indigenous peoples and women tend to be 

at an added disadvantage in many “collaborative conservation” settings where cultural, 

institutional, and language barriers further confound a process already challenged by underlying 

and historically entrenched power disparities. Addressing these issues is critical to effective 

governance as “complex social dynamics, such as trust building and power relations, have often 

been underestimated and the view of social relationships simplified...Consequently, many 

attempts for ecosystem stewardship have failed” (Folke et al. 2005: 462). 

 Agenda 21, the action program coming out of the 1992 United Nations Conference on 

Environment and Development in Rio de Janiero, Brazil, emphasized the importance of 

incorporating traditional and scientific knowledge for sustainable development (UNED Agenda 

21, Chapter 35.5). At the United Nations Environment Programme 2012 Conference on 

Sustainable Development in Nairobi, Kenya, these positions were reinforced with an updated 

agenda stressing the need to strengthen research and education programs aimed at “achieving a 

better understanding of indigenous people's knowledge and management experience related to 

the environment, and applying this to contemporary development challenges”, and the further 

“enhancement of capacity-building for indigenous communities, based on the adaptation and 

exchange of traditional experience, knowledge and resource-management practices, to ensure 

their sustainable development” (UNEP Agenda 21, Chapter 26.3). Scientific research efforts 

have answered this call, with growing literature on the importance of local and traditional 

knowledge for effective management and adaptive governance (Berkes 2009; Leys & Vanclay 

2011), and specifically how this knowledge can be used in concert with conventional science 

(Gratani et al. 2011; Bremer & Glavovic 2013).  
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Research Questions and Goals 

This research is driven by the following question: Under what conditions do the social 

mechanisms of knowledge integration and co-production processes enhance adaptive 

governance? In this chapter, I first situate the discussion of knowledge integration and 

knowledge co-production within the broader literatures on SESs, adaptive governance, and local 

and traditional ecological knowledge studies; highlighting both processes as important social 

mechanisms of adaptive governance. I then relay how each are explored in existing case studies 

through a meta-synthesis spanning the last twelve years. I then reflect on the process of coupling 

knowledge integration and co-production with species distribution modeling (what I call 

integrative geospatial modeling) in Alaska and northeastern Ethiopia, relaying the opportunities 

and challenges faced with this transdisciplinary research in different contexts and providing 

recommendations for future work.  

 

The Importance of Adaptive Governance for Social-Ecological Systems 

Adaptive governance is defined as “...an evolving research framework for analyzing the 

social, institutional, economical and ecological foundations of multilevel governance modes that 

are successful in building resilience for the vast challenges posed by global change, and coupled 

complex adaptive social-ecological systems” (SRC 2012). This framework engages a wide array 

of cross-scale social and ecological interactions, to provide a vision for socially and ecologically 

desirable outcomes. Although sharing many features with other forms of environmental 

governance, what makes adaptive governance novel is a central focus on adaptation and learning. 

This is achieved through integrated vertical and horizontal processes (environmental and social), 

across nested formal and informal institutions and ecological boundaries. Such a unique 
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governance approach necessitates a deep understanding of a system's biotic, abiotic, and social 

processes. Additionally it requires integration of local and traditional management arrangements 

with more formalized practices of state regional and international institutions and markets. The 

idea of adaptive governance developed in concert with the concepts of SESs and resilience, 

resulting in the creation of a novel governance framework, argued to enhance the ecological 

integrity of coupled human and natural systems. Social-ecological systems are complex, adaptive 

systems (Berkes et al. 2003) comprised of dynamic and interacting processes. They are affected 

by an array of environmental and anthropogenic drivers of change, occurring across spatial, 

temporal, and institutional scales. Intimately linked with the concept of SES is resilience and 

ecological integrity, defined as the capacity of a system to absorb or recover from environmental 

and anthropogenic perturbations and reorganize, while still maintaining the same overall 

structure and function (Carpenter & Gunderson 2001; Folke et al. 2004). The ability to adapt to 

and shape change is central for ensuring the ecological integrity of SESs and thus addressing the 

drivers of change in a given system are of the utmost importance. 

Although adaptive governance is inherently desirable, key limitations are present with the 

framework. The application and outcomes are often context-specific and its trans-disciplinary 

and integrative nature can make for a seemingly nebulous approach (Brunner et al. 2005). With 

such a wide array of ecological and social factors and processes and actors considered, isolating 

the most important mechanisms and generalizing broad research trends can become extremely 

difficult. Despite these limitations, this framework arguably provides benefits “...for determining 

better 'fit' between biophysical processes and the prevailing management approaches (Clark & 

Semmahasak 2013: 883), addressing the management of SESs through multiple domains, and 

providing the ability to better adapt to and prepare for current and future crises (Gunderson & 
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Light 2006). Adaptive governance includes pertinent, flexible mechanisms for understanding the 

innate uncertainty and stochasticity of SESs, and addressing the context-specific nature of many 

environmental issues. These mechanisms, engaged through applied management concepts such 

as adaptive management, co-management, adaptive co-management, and adaptive collaborative 

management, include: knowledge integration, knowledge co-production, adaptive learning, 

deliberation, experimentation, monitoring, and evaluation10. These social mechanisms are noted 

to support flexibility within institutions to better adapt to and address uncertainty and surprises 

associated with exogenous shocks to a given system, and thus promote the ecological integrity of 

SESs (Folke et al. 2005). In this study, I focus on the social mechanisms of knowledge 

integration and knowledge co-production. For this research I define knowledge integration as a 

multiple evidence-based approach that deal with the synthesis and validation of different 

knowledge systems, where different knowledge forms are viewed as distinct, yet complimentary 

and provide new insights to a given environmental problem. I define knowledge co-production as 

the collaborative process of generating new knowledge that brings a plurality of knowledge 

sources and types together to address a defined environmental issue, and engaging in 

collaborative and participatory processes at all stages of knowledge generation and a reciprocal 

transfer of knowledge, skills, and capacity. Although a number of scholars deal with each as 

distinct concepts, I view both as complimentary mechanisms, each engaging a facet of 

knowledge documentation and providing diverse opportunities for collaborative and 

participatory learning. 

The genesis of knowledge integration and co-production can arguably be traced to a long 

line of applied and theoretical work on knowledge and participation in the social sciences. Reed 

                                                 
10 Folke et al. (2005) and Brunner et al. (2005) provide useful syntheses of a number of important adaptive 

governance mechanisms. 
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(2008) aptly relays the connections between the growing popularity of stakeholder participation 

in natural resource management and the applied and theoretical work of participatory action 

research (Chambers 1983) and communicative action theory (Habermass 1987). Diverse 

knowledge is deemed important, but how different knowledge holders are engaged through 

participation is critical. Participation ideally should be inclusive and fair, representing the broad 

spectrum of relevant stakeholders and leveling the playing field of power between participants.  

Within this arises an important distinction regarding forms of participation for 

stakeholders, which holds implications for how different forms of knowledge are engaged. 

“Normative participation” is noted to focus on process and the idea that participation in 

environmental decision-making is a democratic right, whereas “pragmatic participation” views 

participation and knowledge as tools for producing good decisions (Reed 2008). This aligns with 

Johnson’s (2001) continuum of power-sharing in participatory research, where “functional 

participation”, much like pragmatic participation, improves research through added knowledge 

and engagement of stakeholders but offers little involvement in decision-making, and 

“empowering participation”, much like normative participation, involves a process of long-term 

local capacity building with equal power-sharing. 

These framings have been incorporated into a great deal of community-based natural 

resource management studies. Reed’s (2008) literature review of stakeholder participation in 

environmental management and Hage et al.’s (2010) assessment of the Stakeholder Participant 

Guidance for the Netherlands Environmental Assessment Agency find stakeholder participation 

to hold great potential for enhancing the quality of environmental decisions through 

consideration of diverse information inputs. However, citing Johnson’s (2001) continuum, 

Arnold and Fernandez-Gimenez (2007) argue that despite the growing adoption of such 
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community-based and participatory approaches, “…there is still a lack of power-sharing in the 

research process, and the majority of self-identified participatory research projects utilize only 

functional participation” (Arnold & Fernandez-Gimenez 2007: 483). Much of this scholarship 

has focused on the local or community scale when engaging in these processes. Scaling up these 

participatory approaches can become a daunting task. Adopting many of the features, goals, and 

processes coming from these earlier works in the social sciences, adaptive governance has sought 

to engage participatory knowledge generation, application, and transmission through the multi-

scalar realm of SESs and resilience. Arguably, knowledge integration tends to engage more in 

pragmatic participation, through efforts focused on synthesizing and validating distinct 

knowledge sources for added insights and enhanced understanding of an issue, whereas 

knowledge co-production, through concerted collaborative and participatory processes of 

knowledge generation, in addition to a focus on reciprocal transfer of knowledge, skills, and 

capacity, engages more directly with normative participation.  

 

Power in Knowing: Knowledge Integration and Co-production; an Outgrowth of Traditional and 

Local Ecological Knowledge Research   

 

Explosive growth has occurred in the realm of traditional (i.e. indigenous) ecological 

knowledge and local ecological knowledge studies over the past two decades. An array of 

scholars argue the inherent value of this different way of knowing the landscape and the 

importance of cataloguing and incorporating this knowledge with conventional western science. 

Examples demonstrate how both forms of knowledge may have meaningful contributions to 

long-term local economic development studies (Sillitoe 1998), provide a complementary 

perspective to adaptive ecosystem management (Berkes et al. 2000; Fernandez-Gimenez & 

Estaque 2012), facilitate effective co-management between resource users and government 
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agencies (Fernandez-Gimenez et al. 2006), promote decision-making authority for community 

stakeholders (Ballard et al. 2008), and afford a more holistic assessment about the environmental 

attributes and processes in question (Gagnon & Berteaux 2009). Such experiential and applied 

knowledge of the environment holds utility for contemporary science, stemming from local 

resource users' physical connection to place, and constituting a rich, deeply rooted “practical 

environmentalism” (Pickering-Sherman et al. 2010). 

Adaptive governance views knowledge as a critical component of environmental 

governance within complex SESs. This purview comes out of broader debates about the role of 

science and knowledge in environmental politics11. It seeks to integrate conventional scientific 

and other forms of knowledge into applicable policies through open decision-making processes, 

with the ultimate goal of promoting common environmental interests that benefit society and the 

environment. Additionally, knowledge integration approaches have been proposed as useful 

ways to leverage diverse forms of knowledge across scales and holding great potential for 

incorporation with geospatial tools like remote sensing (Reed et al. 2011).  

 
 

METHODS 

For this chapter, I catalogued peer-reviewed scientific studies over the last twelve years, 

which engage the adaptive governance mechanisms of knowledge integration and knowledge co-

production. I used a qualitative meta-synthesis analysis approach, which is defined as a “rigorous 

study examining and interpreting the findings (as opposed to the raw data) of a number of 

                                                 
11 Lövbrand (2013) offers an insightful overview of how the connections between science, politics, knowledge and 

power are conceptualized in global environmental politics literature. Two approaches to addressing science and 
knowledge are presented; a rationalist approach, where knowledge is engaged in a hierarchical and bureaucratic 
manner and a constructivist position, which explores the linkages of knowledge and power, and how that in turn 
informs environmental decision-making. 
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qualitative research studies, using qualitative methods” (Finfgeld 2003). This methodology has 

proven useful as an interpretive approach for synthesizing and producing new, integrated 

findings more substantive than those of the individual studies assessed (Thorne et al. 2004; Suich 

et al. 2010). However, this approach is limited by the quality of data and analysis in the studies 

included, and is further limited to studies that have already been conducted (Finfgeld 2003).  

I accessed studies by searching key words “knowledge integration” and “knowledge co-

production”, in addition to related terms including “knowledge management”, “knowledge 

exchange”, and “knowledge transfer” within the Web of Science database. These searches were 

limited to academic journals filtered by the following topics: social sciences interdisciplinary, 

plant sciences, anthropology, remote sensing, water resources, environmental sciences, 

environmental studies, geology, ecology, forestry, sociology, political science, multidisciplinary 

sciences, and biodiversity conservation. This resulted in 2,611 articles. Additional snowball 

sampling of key articles discovered within this search followed. Paper titles and abstracts were 

reviewed to identify appropriate studies for inclusion in my subsequent analyses. Articles 

considered were limited to electronically available manuscripts that explicitly engaged in the 

application or evaluation of knowledge integration and/or knowledge co-production for 

environmental management, conservation and/or sustainable development issues, resulting in 45 

studies.  

A number of articles that were included did not explicitly use the terms “knowledge 

integration” or “knowledge co-production” but used related concepts like “knowledge co-

creation”, “knowledge generation and exchange”, and “social learning”, with definitions that 

overlapped with my interpretation of knowledge integration and co-production. Some of these 

studies consisted of multiple cases, such as Pohl et al. (2010) who examined the role of 
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researchers in knowledge co-production within sustainability projects in Kenya, Switzerland, 

Bolivia and Nepal, and Raymond et al. (2010) who evaluate local ecological knowledge 

integration for environmental management in the United Kingdom, Solomon Islands, and 

Australia. For each of the 45 examples, study location(s), stakeholders, research methods, key 

findings and mechanism(s) explored were catalogued (Table 8 provides select examples. For full 

list of cases see Appendix 9). I conducted the same assessment for my two dissertation case 

studies in Alaska and Ethiopia (Table 9) and compared the context and key findings of my work 

with the broader literature, in an effort to relate my integrative geospatial modeling approaches 

to the existing theory and application of the adaptive governance mechanisms of knowledge 

integration and co-production for adaptive and collaborative management.  

 

RESULTS 

Knowledge Integration and Co-production Over the Past Twelve Years  

Applied efforts of knowledge integration and knowledge co-production exist across local 

resource management, sustainable development, and conservation planning contexts. Studies 

spanned 29 peer-reviewed journals, the majority of which were in Ecology and Society (9 

studies), followed by Journal of Environmental Management (4 studies). The remaining were 

found across a mixture of social and natural science-focused journals including Current 

Anthropology, Ecological Applications, Society and Natural Resources, Human Ecology, and 

Landscape and Urban Planning. Furthermore, the majority of studies (76%) were published in 

the last five years. A number of articles engaged in documentation of local and traditional 

ecological knowledge and facilitated participatory outlets for research framing, data collection, 

and data analysis and reporting. Most dealt with the concepts of knowledge integration and co-
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production separately, with only six explicitly discussing them as connected mechanisms. For 

example, Pohl et al. (2010) argues knowledge integration to be an important piece of the broader 

knowledge co-production process, with sustainability researchers acting as a critical boundary-

spanning organization for knowledge co-production between scientific and non-scientific 

communities.  
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Study Location Mechanism(s) Stakeholders Methods Findings  Citation 

United States Evaluation of 

knowledge 

integration (LEK 
and conventional 
science) for a 
sustainable 
agriculture 
monitoring team 

Farmers, university 
and agency 
researchers, and non-
profit staff 

Interviews, field 
notes, and 
content analysis  

Knowledge integration provided opportunity 
for empowerment through sharing of LEK 
and valuing of alternative knowledge systems 
by scientific researchers. Trust building 
between stakeholders a key result of process. 
Major challenges still existed throughout 
process linked with distinct worldviews and 
epistemologies between scientific researchers 
and farmers. 

Nerbonne et al. 
(2003) 

Russia  Knowledge 

integration (TEK) 
of village elders into 
community 
definitions of 
sustainability  

Local communities 
and research 
scientists 

Focus groups, 
interviews, and 
surveys 

TEK integration of elder community members 
was shown to bolster local sustainability 
definitions and goals, as well as enhance 
inter-generational knowledge transfer 
between community elders and youth. 

Crate (2006) 

United States  Evaluation of 

knowledge 

integration (TEK 
and conventional 
science) for applied 
co-management 
research  

Research scientists, 
land managers and 
Native Alaskan 
hunters 

Interviews, 
participant 
observation, 
document 
analysis and 
workshops 

Various roles of TEK integration. Strong 
dissemination of integrated research findings. 
Genuine power sharing promoted successful 
integration. Inclusion of TEK in all phases of 
research and long-term relationship building 
afforded multiple opportunities for informal 
interactions between stakeholders (enhanced 
trust-building and transparency). Some 
conflicts between different observations of 
conventional science and TEK. Potential for 
co-option of knowledge still exists based on 
underlying power imbalances. 
 

Fernandez-
Gimenez et al. 
(2006) 

Philippines  Knowledge 

integration (LEK 
and conventional 
science) for flood 
risk assessment and 

Community 
members, local and 
municipal 
government, regional 
NGO, research 

Participatory 
mapping  

Participatory mapping facilitated the broad 
understanding of geo-referenced data and the 
incorporation of LEK and scientific 
knowledge about vulnerability through 
collaborative learning. Foundation of trust 

Cadag & 
Gaillard (2012) 

Table 8. Overview of the geographic location, stakeholder arrangement, research methods and key findings of a sample of the 45 knowledge integration and 
knowledge co-production case studies assessed (see Appendix 8 for full list). TEK= traditional ecological knowledge, LEK= local ecological knowledge, 
IK= indigenous knowledge, and NGO= non-governmental organization. 
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disaster risk 
reduction planning  

scientists and communication key for engaging a wide 
array of stakeholders. Process empowered the 
most marginalized people by providing access 
to scientific knowledge and legitimizing their 
LEK.  

Ethiopia Traditional 
ecological 
knowledge 
documentation and 
integration for fire 
management plan 
development  

Local pastoralists and 
research scientists 

Interviews, field 
observations, 
and landscape 
level vegetation 
age structure 
analysis  

TEK of pastoralists revealed high level of 
understanding regarding fire behavior and 
effects. Observations and vegetation analyses 
corroborated sustainable nature of traditional 
burning practices that is based on community 
needs of increasing grazing value, controlling 
a toxic caterpillar, and reducing predator 
attacks, but also provides important firebreaks 
and diverse vegetation mosaic. TEK could 
inform sanctioned government management 
fire planning. 

Johansson et al. 
(2012) 

Arctic Observing 
Summit 
(multiple Arctic 
communities) 

Evaluation of 

knowledge co-

production (TEK 
and conventional 
science) for 
community-based 
monitoring 

Indigenous 
communities, 
resource managers, 
and scientific 
researchers  

Literature 
review and 
observations at 
2013 Arctic 
Observing 
Summit  

The state of community-based monitoring in 
the Arctic shows processes focused on 
community needs and interests where TEK 
and science produce fine-grained local-scale 
data, readily accessible to communities and 
decision-makers. Need for connecting efforts, 
as they are often undocumented and 
disconnected among wider networks. 

Johnson et al. 
(2015) 

South Africa Knowledge 

integration (LEK) 
and comparison 
with remotely 
sensed and field data 
to assess rangeland 
conditions and assist 
in remote rangeland 
monitoring 

Livestock farmers, 
research scientists  

Remote sensing, 
statistical 
variance 
analysis, photo 
elicitation and 
participatory 
field evaluations 
 

Local knowledge explained significant 
differences in field sampled vegetation 
classes. Remote sensing correlated poorly to 
field-measured vegetation classes to do 
spectral noise and high iron oxide content of 
soil, revealing LEK to be highly useful for 
monitoring efforts.  
 

Kong et al. 
(2015) 
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Study Location Mechanism(s) Stakeholders Methods Findings  Citation 

Alaska  Knowledge 

integration (TEK 
and LEK) for risk 
assessment of 
stakeholder-defined 
provisioning 
ecosystem services 
to invasive species 
under current and 
future climate 
conditions 

Native Alaskan tribal 
representatives, 
federal and state land 
managers, research 
scientists  

Integrative 
geospatial 
modeling: 
Species 
distribution 
modeling, 
participant 
observation, 
informal 
interviews  

Knowledge integration provided an important 
rapid appraisal opportunity for the co-
definition of critical conservation targets and 
threatening disturbance drives between LEK 
of land management agencies and TEK of 
Native Alaskan tribal representatives. Diverse 
land manager LEK facilitated access to an 
array of spatial data sets incorporated into 
analyses.  

Luizza et al. (In 
Review) 

Ethiopia  Knowledge 

integration and 

knowledge co-

production (LEK) 
for risk of 
stakeholder-defined 
provisioning 
ecosystem services 
to invasive species 

Afar pastoralists and 
research scientists  

Integrative 
geospatial 
modeling: 
Species 
distribution 
modeling, 
participant 
observation, 
focus group 
interviews, 
participatory 
data collection, 
participatory 
mapping 

Pastoral knowledge revealed a new invasive 
species in the region, unknown to research 
scientist stakeholders and receiving little 
attention from government agencies and 
NGOs. Participatory approaches of 
knowledge co-production empowered 
communities and provided setting of mutual 
respect for different knowledge sources, 
facilitating shared learning and trust building. 
Much congruence between local ecological 
knowledge and conventional scientific 
observations, with the former expanding 
scientific understanding of the invasive 
species in question.  
 

Luizza et al. 
(Accepted) 

Table 9. Overview of the geographic location, stakeholder arrangement, research methods and key findings of my two research cases. 
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Other scholars echo this sentiment, noting knowledge integration to be an important and 

necessary precursor step to knowledge co-production (Armitage et al. 2011; Dale & Armitage 

2011; Gratani et al. 2011; Trimble & Berkes 2013; Jackson et al. 2014). I catalogued studies 

based on their geographic location (Global North versus Global South), if they were evaluations 

or applications of knowledge integration and/or co-production processes, if they involved a 

codified co-management agreement between stakeholders, if they involved indigenous 

communities, and if they utilized geospatial applications (Figure 14). Of the 45 studies 

examined, the majority 

(30 examples) occurred 

in the Global North 

(i.e. the United States, 

Australia, Canada, 

Europe, and Russia), 

with far fewer cases 

occurring in the Global 

South (i.e. Africa, Asia 

or South America). 

Additionally more 

studies involved 

evaluation of 

knowledge integration and/or co-production processes (27 examples), with researchers 

employing a range of qualitative methods to assess the utility and impacts of these approaches, 

compared to application of knowledge integration and/or co-production processes (18 examples). 

Figure 14. Distribution of meta-synthesis cases according to their geographic location 
in either the Global North or South, if they were an evaluation or application of 
knowledge integration and/or co-production processes, if they were a codified co-
management agreement or not, if they involved indigenous stakeholders or not, and if 
they employed geospatial applications or not. A majority of cases occurred in the 
Global North, with a vast majority being non-codified co-management agreements, 
and very few cases using geospatial applications. 
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A more even split was found between studies that involved indigenous stakeholders (20 

examples) and those that did not (25 examples). A vast majority of studies were non-codified 

management arrangements (35 examples), with the remaining being codified co-management 

agreements between a state and a resource-dependent community (usually a land management 

agency and an indigenous community). Finally, very few studies (6 examples) utilized geospatial 

applications such as remote sensing imagery and analyses, geographic information system 

software, global positioning systems, and spatial modeling. From this growing body of work, 

knowledge integration and co-production prove to be important social mechanisms for moving 

towards effective, collaborative and adaptive resource management, development and 

conservation planning. A number of key findings come out of these studies including necessary 

conditions for effective knowledge integration and co-production and important potential 

outcomes, some of which overlap. Important conditions include genuine power sharing, mutual 

respect and equal standing for different knowledge forms, a moderate level of trust between 

stakeholders, understanding of institutionalized power inequities and historical conflict, and co-

definition of goals and issues of concern in an iterative manner. Important potential outcomes 

include community empowerment, expansion of scientific knowledge, facilitating future 

collaboration and co-management, increasing bonds of trust and open communication and 

enhancing adaptive strategies.  

 

Power sharing, Trust Building and Respect for Diverse Knowledge Forms 

Genuine power sharing, mutual respect for different knowledge forms and recognizing 

the equal standing of distinct ways of knowing the landscape proved especially important in 

evaluations of effective knowledge integration and co-production processes. Fernandez-Gimenez 
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et al. (2006) highlight the inclusion of traditional ecological knowledge of Native Alaskan 

hunters throughout all phases of co-management research coupled with long-term relationship 

building, afforded multiple opportunities for informal interactions between stakeholders. This 

fostered a greater level of transparency and in turn enhanced trust building between indigenous 

community members, scientific researchers and land managers. Cadag and Gaillard’s  (2012) 

work on knowledge integration for flood risk assessments and disaster planning in the 

Philippines showed strong foundations of trust and open communication to be critical for 

conducting participatory mapping activities with a wide array of stakeholders ranging from local 

community members and government officials, to regional non-governmental organization staff 

and research scientists. Other studies support these findings, with long-term relationships built on 

trust and frequent communication being important for knowledge integration among diverse 

indigenous and non-indigenous stakeholders (Trimble & Berkes 2013; Weiss et al. 2013; 

Schneider & Rist 2014), and even facilitating the redistribution of power through an array of 

knowledge sources (Ballard et al. 2008).   

 Limited levels of trust between stakeholders can pose major challenges to engaging in 

effective knowledge integration or knowledge co-production, and this can be exacerbated when 

there is limited acknowledgement or understanding of institutionalized power inequities and 

historical conflict, or when different forms of knowledge are not afforded the same level of 

respect. For example, when evaluating water management processes in the Netherlands, 

Edelenbos et al. (2011) discovered inherent challenges for engaging knowledge co-production, 

particularly between local citizens and policy-makers and bureaucrats. Great resistance to 

incorporating citizen knowledge in decision-making by policy-makers was apparent, but was not 

the case with knowledge co-production between policy-makers and bureaucrats due to 
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institutionalized relationships. A lack of respect for different knowledge forms led to less 

inclusive decision-making and skepticism as to the legitimacy of policy decisions among 

community stakeholders. Similarly, when evaluating the knowledge co-production process for 

co-management of a national park in Colombia, Ungar & Strand (2012) discovered no evidence 

of co-produced knowledge informing management decisions. Great distrust existed between 

many of the stakeholders including scientific researchers, park staff and indigenous Tikuna 

community members. In an attempt to respond to crises and long-term social-ecological 

dynamics, park managers engaged in a process of multi-scale social network maintenance and 

mobilization at the expense of open deliberation and collective knowledge creation. Arguably 

such management decisions further exacerbated existing distrust between stakeholders based on 

long-standing power imbalances. 

 

Community Empowerment 

The process of knowledge integration and/or knowledge co-production can often result in 

a level of community empowerment, especially for marginalized stakeholder groups (Gratani et 

al. 2011; Jackson et al. 2014). For example, Shaffer (2014) provides an evaluation of knowledge 

co-production among U.S. and Tanzanian researchers and local communities for local scale 

climate change monitoring in Tanzania. They find not only a high degree of congruence between 

traditional ecological knowledge and conventional scientific observations, but empowerment of 

communities to explore local climate adaptation and policy-making, fostered through extensive 

participatory data collection. Moreover, these locally driven approaches of analyzing scientific 

observations in light of community traditional knowledge further enhanced trust building and 

facilitated sharing of information between districts. Alexander et al. (2011) further reveal the 
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potential for empowering communities by integrating indigenous observations of climate change 

with global climate assessment data. Climate narratives encompassing a number of indigenous 

Arctic communities were documented and collated with peer-reviewed scientific studies. These 

narratives were overlaid on a geographic information systems map of climate change impact 

studies spanning 1970 to 2004. This process revealed both data sources to complement one 

another, provided a needed human dimension to the existing climate change research, and more 

importantly provided a voice to resource dependent communities, whose knowledge has largely 

been excluded from global climate assessment reports. Nerbonne et al.’s (2003) evaluation of 

local farmer knowledge integration with conventional science in Minnesota lends additional 

evidence to the potential of community empowerment coming out of knowledge integration. 

Farmers noted that the process of sharing their knowledge of the landscape and farming practices 

and seeing it embraced by researchers was personally validating and provided a greater level of 

trust between the different stakeholder groups. 

 

Knowledge Congruence and Expanding the Realm of Scientific Knowledge  

A number of studies reveal knowledge integration and co-production to expand the realm 

of scientific knowledge by providing important new insights and filling in gaps in conventional 

scientific observations (Gagnon & Berteaux 2009; Alexander et al. 2011). Moreover, when 

engaging indigenous knowledge, many studies find high levels of knowledge congruence 

between indigenous and conventional western scientific knowledge (Jackson et al. 2014; Shaffer 

2014). Kong et al. (2015) provide an application of local ecological knowledge integration and 

comparison with remote sensing and field data, to assess rangeland conditions and assist in 

remote rangeland monitoring in South Africa. Local knowledge of livestock farmers explained 
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significant differences in field sampled vegetation class data, collected through participatory 

field evaluations. Interestingly, remote sensing correlated poorly to field-measured vegetation 

classes due to spectral noise and high iron oxide content of soil. This validation process revealed 

local ecological knowledge to be highly useful and more accurate for ongoing monitoring efforts. 

Beaudreau and Levin (2014) further these ideas with a synthesis of ecological knowledge of 

local fishers and divers in the northwestern U.S. over a 70-year period. Despite some variation in 

knowledge based of age group and information environments (i.e. the nature of how, when and 

where individuals acquired ecological information), local ecological knowledge proved to be a 

valuable source for detailed ecological information on abundance of and environmental changes 

to over 20 marine species, with the authors arguing that inclusion of diverse knowledge sources 

can overcome some issues of “shifting baseline syndrome” due to lack of long-term ecological 

data. This problem if not addressed may lead to misconceptions about the ecological integrity of 

a given system. This enhancement of conventional science is further seen with Johansson et al.’s 

(2012) study in the Bale Mountains of Ethiopia, where traditional pastoral knowledge was 

documented and integrated with conventional science for fire management planning. They found 

pastoralists to have high levels of understanding regarding fire behavior and effects, with 

scientific field observations and vegetation analyses corroborating the sustainable nature of their 

traditional burning practices, which could greatly enhance existing government management fire 

planning. 

 

Enhancing Collaboration and Adaptive Strategies 

Knowledge integration and co-production are noted by a number of studies to facilitate 

future collaboration and co-management arrangements, and potentially enhance adaptive 
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strategies. This is noted to occur through the combination of increased bonds of trust and open 

communication, and the co-definition of goals and issues of concern in an iterative manner 

(Hahn et al. 2006; Alexander et al. 2011; Trimble & Berkes 2013; Weiss et al. 2013). Butler et 

al. (2012) provide an evaluation of traditional ecological knowledge integration in Australia for 

fisheries co-management between Melanesian local fishers and fishery managers. They reveal 

the importance of co-defined cultural keystone species that provide significant ecosystem 

services for communities and international conservation interests for stimulating cross-cultural 

resource adaptive governance and potential local co-management efforts. Gret-Reganmey et al. 

(2013) and Schneider & Rist (2014) make similar discoveries in distinct knowledge integration 

and co-production studies in Switzerland- mapping forest-based ecosystem services and fostering 

transdisciplinary water governance respectively. In both cases deliberative dialogue, learning and 

trust building were facilitated by the iterative process of bringing knowledge back at multiple 

cycles to diverse stakeholders ranging from community members and recreation managers to 

scientific researchers and environmental economists. Hagemeier-Klose et al. (2014) further 

support these findings with their work on knowledge integration for climate scenario planning in 

Germany. Scenario planning processes facilitated social learning and collaboration through a 

platform of diverse knowledge integration and exchange processes among research scientists and 

agency representatives that were argued to hold great potential for enhancing adaptive capacity. 

 

MY DISSERTATION RESEARCH   

This growing body of literature reveals potentially important and connected conditions 

for and outcomes of knowledge integration and co-production. Much of this work is focused on 

the evaluation of knowledge integration and co-production processes based on stakeholder 

feedback and other qualitative analyses. My dissertation cases are the application of a novel, 
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transdisciplinary knowledge integration and co-production approach for risk assessment mapping 

in distinct ecological and cultural settings spanning different spatial and governance scales. 

Limited work explores the application of knowledge integration and co-production with 

advanced geospatial tools. Select studies relay the great potential this type of work holds, 

through the use of spatially explicit GIS-based Bayesian Networks, process-based modeling, 

global positioning systems, and remote sensing data (Alexander et al. 2011; Cadag & Gaillard 

2012; Gret-Reganmey et al. 2013; Perkins et al. 2013; Herrmann et al. 2014; Kong et al. 2015). 

Despite this, no other studies could be found that utilize advanced geospatial applications, 

specifically powerful species distribution modeling algorithms. This is arguably a critical gap, as 

maps play a major role in conservation and natural resource management planning and policy-

making. Both study sites constitute historic anthropogenic systems, where the landscape is 

shaped by and shapes the inhabitants (Fernandez-Gimenez & Estaque 2012). Hunting, 

harvesting, and herding practices for these groups are essential for sustaining livelihoods 

(Getachew 2001; McNeeley 2009), making them especially vulnerable to the interaction of slow 

and fast disturbance drives like changing climate and invasive species.  

 Similar to Armitage et al. (2011) and others, I view the concepts of knowledge 

integration and knowledge co-production as linked mechanisms, both facilitating collaborative 

and participatory approaches to environmental problem solving and fostering holistic and 

adaptive approaches to resource management and conservation planning. Although, I contend 

that knowledge integration processes engage in pragmatic participation, whereas knowledge co-

production engages more directly with normative participation. In both examples, the integration 

of traditional and local ecological knowledge was done to assess the vulnerability of community-

defined provisioning ecosystem services to invasive species deemed most problematic by these 
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stakeholders. In the case of northeastern Ethiopia, the added engagement of knowledge co-

production occurred through a number of in-depth, participatory processes. Each case 

corroborates a number of aforementioned findings from the broader knowledge integration and 

co-production literature, but also raise additional questions worth further consideration and 

exploration.     

 

Integrative Geospatial Modeling in Alaska  

My Alaska case provides a unique approach to knowledge integration at a larger spatial 

and governance scale (i.e. the entire state of Alaska). A majority of existing studies focus on a 

local landscape or community scale for their research. This is important in facilitating in-depth 

understanding of different and potentially diverse stakeholder knowledge forms, but affords 

limited understanding of the potential for wider application of knowledge integration and co-

production across larger spatial scales with more diverse ecological, social, cultural, and political 

contexts. Alexander et al. (2011) act as one example of a broader application of knowledge 

integration. Their documentation and subsequent collating of indigenous knowledge of numerous 

indigenous representatives of Arctic communities spanning Asia, Europe and North America, 

with peer-reviewed scientific studies on climate change revealed a high degree of congruence 

between these distinct forms of observational data. Additionally, indigenous knowledge filled in 

conventional science gaps by providing important missing information on climate patterns in 

remote regions with few climate instrument records. This reveals the potential utility of such 

approaches at a broader spatial and governance scale, but is still heavily focused on validation of 

indigenous knowledge compared to western scientific knowledge.  
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My Alaska chapter provides an example of knowledge integration for co-defining 

conservation targets and disturbance drivers of concern and re-framing how they are assessed in 

light of local subsistence livelihoods. Observational data and informal interviews with Native 

Alaskan tribal representatives and federal and state land managers at the Yukon Intertribal 

Watershed Council Biennial Summit (2012), afforded a detailed understanding of important 

conservation targets and disturbance drivers of concern. This resulted in my selection of Pacific 

salmon and whitefish as critical conservation targets and invasive elodea and climate change as 

threatening disturbance drivers based on my analysis of stakeholder input. These data, in 

addition to extensive spatial data sets from land management agency stakeholders were used in 

concert with species distribution modeling algorithms to map the vulnerability of important 

provisioning ecosystem services to a threatening invasive species. Although stakeholders 

concerns often came from different framings (e.g. food security and cultural identity, 

biodiversity and keystone species protection and commercial and sport fishing concerns), 

integrating these different stakeholder perceptions revealed the shared view of important 

conservation targets including Chinook salmon (Oncorhynchus tshawytscha) and whitefish 

species (Coregonus nelsonii), and the growing concern of Alaska’s first submerged freshwater 

aquatic invasive plant Elodea spp.  

This corroborates existing studies that argue for the potential enhancement of 

collaboration and adaptive strategies through an iterative process of goal and conservation target 

co-definition (Butler et al. 2012; Trimble & Berkes 2013; Weiss et al. 2013). In my Alaska case, 

the flexible transdisciplinary nature of integrative geospatial modeling shows great potential as a 

robust tool for spatially understanding critical provisioning ecosystem services that can vary for 

different stakeholder groups, and further offer an iterative approach for updating models and 
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engaging stakeholders. This may foster social and institutional learning through reflection on 

management goals and model outputs and provide avenues for adjusting applied management 

strategies. Hahn et al. (2006) similarly show flexibility and reflexivity to enhance social learning 

and subsequent applied collaborative wetlands management efforts in Sweden, in addition to 

assisting with conflict resolution among diverse stakeholders. Knowledge integration provided 

an important rapid appraisal opportunity for the co-definition of critical conservation targets and 

threatening disturbance drives between local ecological knowledge of land management agencies 

and traditional ecological knowledge of Native Alaskan tribal representatives. Limitations to the 

knowledge integration process exist though, as the tribal summit did not include Native Alaskan 

representatives from a number of locations including Inupiaq, Southeast, Alutiiq/Sugpiaq and 

Unangan regions. This information gap was supplemented with literature reviews and a detailed 

subsistence harvest data analysis for each region.  

This case does not provide evidence of true community empowerment, as knowledge 

integration was focused more on pragmatic participation, with Native Alaskan knowledge 

providing important insights but not involving shared decision-making or extensive collaborative 

engagement. This highlights inherent challenges of attempting knowledge integration or co-

production research at broad spatial and governance scales, as the number of knowledge sources 

can exponentially increase, thus limiting the depth of information documented or participatory 

processes engaged. This could change with a continued iterative process of bringing back maps 

to community stakeholders for validation and open dialogue about collaborative and adaptive 

management strategies. This further supports the idea that such knowledge engagement 

processes are long-term investments when seeking adaptive governance outcomes (Fisher et al. 

2007; Armitage et al. 2009).  
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The iterative process in this research was focused more heavily on sustained interaction 

with federal and state land management agency stakeholders, in part due to established 

relationships, but also because my work in this instance sought to provide a rapid appraisal 

approach that leveraged diverse knowledge and data sources to assist in re-framing agency risk 

assessment mapping efforts to include a more holistic understanding of the potential impacts of 

invasive species on local subsistence livelihoods. Therefore, this case did not engage in or reveal 

instances of power sharing related to the overall research design and execution or subsequent 

decision-making, as Native Alaskan knowledge integration was limited to documentation and 

more pragmatic participation to expand the issue scope of resource managers when engaging in 

applied management. This further supports existing arguments of the critical nature of trust 

building (Fernandez-Gimenez et al. 2006; Weiss et al. 2013; Schneider & Rist 2014) and the 

long-term process of knowledge integration and co-production (Armitage et al. 2011; Dale & 

Armitage 2011). For this case, I feel rapport was established and important initial foundations of 

trust building were laid with certain tribal delegates, but overall trust building and the creation of 

social capital, which is “the glue for adaptive capacity and collaboration” (Olsson et al. 2004) 

was neutral. This further highlights the need for sustained and repeated interactions with 

indigenous community and resource management stakeholders. I hope my continued attempts to 

engage in this process (often self-funded) despite multiple instances of projects falling through, 

relays to the stakeholders I am collaborating with some measure of my commitment to this 

process, and to the people and landscapes this work seeks to support. 

 
Integrative Geospatial Modeling in Ethiopia 

My Ethiopia case provides an example of local ecological knowledge integration and 

knowledge co-production, coupled with similar species distribution modeling algorithms to map 
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the vulnerability of important provisioning ecosystem services to threatening invasive species at 

the local scale. This work in the Afar region of northeastern Ethiopia supports a number of broad 

findings in the existing literature including the importance of respect for different forms of 

knowledge enhancing participatory data collection and project design, the critical nature of trust 

building, and the ability of local and traditional ecological knowledge to expand the realm of 

conventional scientific knowledge. With the assistance of my Ethiopian research colleagues, I 

documented indigenous pastoral knowledge about changes witnessed on the landscape, 

important provisioning ecosystem services and threats to pastoral livelihoods.  

Pastoral knowledge from focus group interviews revealed a new invasive species in the 

region- rubber vine (Cryptostegia grandiflora), which was unknown to our research team and 

has received little attention from government agencies and non-governmental organizations. 

Knowledge co-production came out of extensive knowledge integration efforts, including 

participatory field data collection and participatory mapping efforts. A setting of mutual respect 

for different knowledge sources facilitated shared learning and seemingly a measure of trust 

building. A number of studies from the broader literature stress the importance of this. For 

example, Hartley and Robertson’s (2008) evaluation of local fisher knowledge integration with 

conventional science in the United States revealed a high level of agreement among fishers and 

scientists as to the importance of knowledge integration for applied management, but that few 

thought it possible due to long-standing mistrust and lack of communication between these 

distinct stakeholders. However, Hearne and Powell (2014) found knowledge integration of 

diverse stakeholders for water management in the Philippines, facilitated through extensive 

participatory networks, fostered high levels of bonding social capital and trust building.  
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In Afar, focus group participants quickly realized they were in charge of where the 

discussion went and that our team was genuinely interested in helping them address their 

concerns. Approaching the interviews as informal discussions in a social setting, with women 

attending to household duties, children running around, and participants and researchers 

participating in the cultural custom of chewing khat leaves (Catha edulis), seemingly opened 

doors to discuss contentious political issues, discuss culturally meaningful medicinal plants, and 

brainstorm treatment approaches to mitigate rubber vine. Prior long-standing relationship 

building conducted by my Ethiopian colleagues further enhanced the process of shared learning 

and trust building. This supports findings of Fernandez-Gimenez et al. (2006), who through an 

evaluation of knowledge integration in Alaska reveal that the inclusion of traditional ecological 

knowledge throughout all phases of the research coupled with long-term relationship building, 

fostered a greater level of transparency and in turn enhanced trust building between Native 

Alaskan community members, scientific researchers and land managers. 

Much congruence was found between pastoral knowledge and conventional scientific 

observations of invasive rubber vine. Pastoral knowledge provided a deeper understanding of the 

plant’s ecology and biology, where it exists on the landscape, and the threats it poses to arid 

ecosystems and local livelihoods. This corroborates a number of knowledge integration and co-

production studies that espouse the ability of local and traditional ecological knowledge to 

expand the realm of conventional science by providing important new insights and filling in gaps 

in scientific observations. Gagnon & Berteaux’s (2009) evaluation of traditional ecological 

knowledge integration with western science for understanding arctic fox (Vulpes lagopus) and 

greater snow goose (Chen caerulescens atlantica) ecology, revealed great complementarity 

between the two forms of knowledge across spatial and temporal scales and further facilitated in 
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the generation of new insights and new hypotheses. Jackson’s (2014) evaluation of knowledge 

integration of indigenous landowners in Australia for improved water planning and management 

revealed similar knowledge congruence and the enhancement of scientific knowledge of fish 

species, but also provided opportunities for indigenous landowners to share stories about fish, 

including their cultural significance. Moreover, other studies highlight the benefits of knowledge 

integration and co-production for expanding the realm of science and management, revealing 

important connections between landscapes and local livelihoods for enhanced biodiversity 

protection (Kalibo & Medley 2007), increasing scientific understanding of local fire behavior 

linked with the sustainable burning practices of local communities (Johansson et al. 2012), and 

the potential for improving management through wider cultural consensus analyses with 

indigenous communities (Carothers et al. 2014). This was equally the case working with Afar 

pastoralists, who relayed detailed information about the impacts of invasive rubber vine coupled 

with agricultural development and climate change on important plants and animals that provide 

an array of provisioning ecosystem services. 

A level of power-sharing occurred in Afar regarding research execution, with pastoralists 

in the driver’s seat when it came to the process of sharing knowledge, identifying threats to their 

livelihoods, and engaging in participatory data collection. Ballard et al. (2008) note the important 

outcome of redistribution of power through diverse knowledge sources while evaluating 

community forestry monitoring efforts in the United States. However, limited examples of true 

community empowerment regarding decision-making occurred in this case, as government and 

international aid agency stakeholders still tend to hold the majority of this authority and few of 

these stakeholders were involved in this project. As noted with the Alaska case, this could  
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change with a continued iterative process of bringing back maps to community stakeholders for 

validation and open dialogue about collaborative and adaptive management strategies.  

 

CHALLENGES TO KNOWLEDGE INTEGRATION AND CO-PRODUCTION 

Both cases of integrative geospatial modeling in Alaska and northeastern Ethiopia 

support a number of findings in the broader knowledge integration and co-production literature. 

This includes the potential enhancement of collaboration and adaptive strategies through an 

iterative process of goal and conservation target co-definition, the critical nature of trust building 

and providing a setting of mutual respect for different knowledge sources, and the ability of local 

and indigenous knowledge to expand the realm of conventional science by providing important 

new insights and filling in gaps in scientific observations, but this work also raises additional 

important questions. For instance, the issue of scale is a focal topic across a range of disciplines, 

including questions regarding what spatial or governance scale a problem should be addressed, 

or how changes in temporal scale may affect data inference (Danielsen et al. 2010; Zia et al. 

2011; Geijzendorffer et al. 2015). Within the knowledge integration and co-production literature, 

few studies discuss issues of scale in great depth, although there is great need for improving 

knowledge management, dissemination, and integration at the national and international scales 

(Chasek et al. 2011). Gagnon and Berteaux (2009) do argue that determining the scales of the 

observations that form both traditional ecological and conventional scientific knowledge are 

critical when attempting to integrate the two. Understanding differences in spatial and temporal 

scales of observations can provide opportunities to expand knowledge, fill in existing data gaps, 

and stimulate new questions, but may also pose challenges when different knowledge sources 

disagree, potentially raising issues related to knowledge credibility and latent power inequities.  
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 The importance of institutional connectivity is another less discussed topic in much of the 

knowledge integration and co-production literature. Clark & Slocombe (2011) offer an important 

example of institutional connectivity proving to be highly important for facilitating knowledge 

integration. Their evaluation of traditional ecological knowledge integration with conventional 

science for adaptive co-management of grizzly bear-human conflict in Canada revealed 

noticeably different outcomes for seemingly similar cases. The successful case of knowledge 

integration was attributed to strong vertical and horizontal integration of institutions, which 

provided cross scale institutional networks for transferring knowledge. This line of inquiry 

warrants further research, as different institutional arrangements may promote or hinder 

successful knowledge integration and co-production. In the case of my Alaska research, a 

seemingly moderate level of cross-institutional networks exist between tribal, federal, and state 

stakeholders, strengthened by long standing relationships of key land managers with Native 

Alaskan communities. In the Afar region of northeastern Ethiopia this type of horizontal and 

vertical institutional integration is nearly non-existent. This raises another issue in regards to 

adaptive strategies. A number of studies note that the process of knowledge integration and co-

production may lead to more adaptive measures, facilitated through a diversity of knowledge 

sources. Despite a vast majority of the examples explored being evaluations of knowledge 

integration and co-production cases, few relay if actual shifts in adaptive strategies occur. This 

arguably requires longer-term investments in monitoring these processes to identify such 

changes. 

 Another area of research receiving limited attention in the broader literature is the 

potential benefit of bridging and boundary-spanning organizations and individuals for enhancing 

knowledge integration and co-production processes. These individual and organizational actors 
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enable cooperation among distinct stakeholder groups ad foster the dissemination and translation 

of knowledge between science, policy, and community spheres. This is achieved through 

coordination of important tasks such as accessing resources, bringing together different actors, 

building trust, resolving conflict, and networking (Berkes 2009). Other research supports the idea 

of boundary-spanning and bridging organizations and individuals supporting environmental 

governance and adaptive management efforts (Olsson et al. 2004; Sternlieb et al. 2013), but only 

one study assessed in my meta-synthesis explicitly referenced either form of organization or 

individual.  

Pohl et al. (2010) evaluated knowledge integration processes in cases spanning Kenya, 

Switzerland, Bolivia, and Nepal, finding sustainability researchers to act as an important 

boundary-spanning organization for knowledge co-production between scientific and non-

scientific communities. Moreover these researchers took on different roles as “reflective 

scientist” (facilitating common understanding and incorporating local knowledge), 

“intermediary” (bridging different stakeholder concerns and approaches around common issue) 

and “facilitator of a joint learning process” (reconciling different worldviews). Arguably this 

typology proved somewhat true in both my Alaska and Ethiopia cases. My role in Alaska 

constituted to some degree, an “intermediary” researcher, bridging state and federal land 

management agency and Native Alaskan community concerns about anadromous fish species 

and connecting it to the issue of invasive aquatic plants, climate change, and cascading impacts 

on subsistence livelihoods. In Ethiopia, my role was much more of a “reflective scientist” 

working across multiple villages to gain common understanding of issues faced and changes 

witnessed by pastoralists, and incorporating their knowledge into my risk assessment of invasive 

plants. In both examples other bridging and boundary-spanning organizations and individuals 
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facilitated me in conducting more rapid knowledge integration and co-production processes. 

This, coupled with participatory methods that fostered knowledge co-production, produced a 

greater level of investment in the research by pastoralists in northeastern Ethiopia, but due to a 

lack of institutional connectivity, there were limited opportunities for interaction and limited 

investment from agencies and aid organizations in this research. In Alaska, bridging and 

boundary-spanning organizations and individuals provided the setting for interacting with a 

number of Native Alaskan and federal and state agency stakeholders. Knowledge integration at a 

broader landscape scale limited engagement with Native Alaskan communities. Iterative 

engagement was noticeably limited to federal and state agency stakeholders, but stronger 

institutional connectivity may provide better outlets and avenues for continued knowledge 

integration, co-production, and dissemination in the future. In these cases, organizations like the 

Yukon River Intertribal Watershed Council, trusted land managers in Alaska, and American and 

Ethiopian colleagues with an established presence in the Afar region of Ethiopia, provided a 

level of built-in trust and legitimacy by affiliating themselves with my research. Knowledge 

integration and co-production are noted by a number of scholars to be long-term commitments 

(Armitage et al. 2011; Dale & Armitage 2011; Weiss et al. 2013), often with the process 

involving knowledge integration leading to more holistic and participatory knowledge co-

production (Armitage et al. 2011; Dale & Armitage 2011). This long-term approach can avoid 

simple extractive knowledge documentation devoid of meaningful participation, but critical 

boundary-spanning and bridging organizations and people may provide an avenue for more rapid 

application of knowledge integration and co-production processes. However, in both cases, 

difficulties in sustaining repeated interactions with rural communities, due to funding, logistical, 

and technological barriers were present. 
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 The next steps in this research include bringing back the risk assessment maps produced 

through my integrative geospatial modeling approach for participatory evaluation and 

assessment. Furthermore, follow up interviews with all stakeholder groups about the utility of 

this transdisciplinary process will be conducted, in addition to continuing open discussions about 

conservation planning and invasive species management in both locations.12 This is a critical part 

of the iterative goal definition and project re-framing process that other knowledge integration 

and co-production studies highlight. This is an important step in my integrative geospatial 

modeling approach that will directly evaluate the utilization of knowledge integration and co-

production for collaborative and adaptive management of ecosystem services and invasive 

species within an adaptive governance framework. This stage will likely reveal additional 

opportunities and barriers to effective knowledge integration and co-production related to 

distinct worldviews and power relations among different stakeholder groups. Treating 

knowledge integration and co-production as deliberative, iterative processes is argued to be 

important for effective management (Gret-Reganmey et al. 2013; Schneider & Rist 2014). 

However, this raises another challenge in terms of finding resources and availability to engage 

both mechanisms in an iterative manner. Setting the stage for knowledge integration and co-

production requires long-term commitments and great expenditure of time and resources 

(Armitage et al. 2011; Dale & Armitage 2011); something that is true for collaborative 

conservation work more generally speaking.  

 Understanding the opportunities and challenges present for this type of integrative work 

is important for adaptive and collaborative resource management. Even with seemingly 

                                                 
12   I will be conducting follow-up work in July 2015 with tribal, state and federal Alaska project stakeholders, and 

am in the process of organizing similar follow-up work with pastoral, non-governmental organization and 
regional government stakeholders in northeastern Ethiopia for November or December 2015. 
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successful cases of knowledge integration and co-production, understanding and attempting to 

address power imbalances is critical, as traditionally marginalized stakeholders, including 

minorities and indigenous communities may still be under-represented in these processes 

(Ballard et al. 2008), and great potential still exists for knowledge co-option based on underlying 

power imbalances (Fernandez-Gimenez et al. 2006) and long-standing distrust between different 

stakeholder groups (Ungar & Strand 2012). For Alaska and the Afar region of Ethiopia this is 

important for facilitating meaningful stakeholder engagement and power sharing in applied 

management efforts. Alaska’s Native Claims Settlement Act of 1971 has had acute impacts on 

Native Alaskan subsistence practices through the abolishment of both aboriginal title to the land 

and hunting and fishing rights (McNeeley 2009). This puts tribes at an added disadvantage when 

engaging the often conflicting political, economic, social and biological objectives of an array of 

management and use interests, especially revolving around fisheries management (Moncrieff & 

Klein 2003). In the Afar region of Ethiopia, indigenous groups are at an even greater 

disadvantage, with concerted efforts by the national government starting in the 1950s to 

sedentize and restrict customary rights to access resources by mobile pastoral peoples, followed 

by the Land Reform of 1975, which did not recognize any of the Afar’s land rights (Getachew 

2001).  This has led to displacement, added poverty, and overall increased marginalization of the 

Afar people and other pastoralists across the country. Moreover, to this day the government still 

moves people when land is deemed degraded (Bussmann et al. 2011), and talking with local Afar 

communities revealed that forced sedentization processes still continue in the region (Luizza 

personal correspondence). This can pose major challenges to effectively applying knowledge 

integration and co-production processes within the existing resource management institutional  
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structures. Therefore, finding overlap between external (i.e. land management agency, non-

governmental organizations) and internal (i.e. local community) motivation is important.  

 

REFLECTIONS 

We face immense and connected environmental and social challenges today that require 

flexibility and holistic understanding of the abiotic, biotic, and socio-cultural processes. Distinct 

worldviews and observations associated with diverse forms of knowledge can provide nuanced 

and detailed understanding of a landscape and holds the potential to greatly enhance our 

understanding of ecological changes and implications for local adaptation. Thus, knowledge 

integration and co-production are increasing recognized as important adaptive governance 

mechanisms for effective, collaborative, and adaptive management efforts. Exploring this 

literature over the past decade reveals a number of important findings: 1) Knowledge integration 

and knowledge co-production processes receive little attention within the applied realm of 

advanced geospatial applications. 2) A number of important conditions exist for engaging in 

effective knowledge integration and co-production, including genuine power sharing, mutual 

respect and equal standing for different knowledge forms, understanding of institutionalized 

power inequities and historical conflict, and co-definition of goals. 3) Knowledge integration and 

co-production can lead to a number of outcomes such as trust building, community 

empowerment, expansion of scientific knowledge, and enhancement of adaptive strategies.  

My integrative geospatial modeling work in Alaska and Ethiopia supports a number of 

these findings, including the potential enhancement of collaboration and adaptive strategies 

through goal and conservation target co-definition, the critical nature of trust building and 

providing a setting of mutual respect for different knowledge sources, and the ability of local and 
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indigenous knowledge to expand the realm of conventional science. This work also raises 

additional questions regarding issues of scale, institutional connectivity, and the potential benefit 

of bridging and boundary- spanning organizations and individuals for facilitating more rapid 

knowledge integration and co-production processes. Moreover, existing power disparities cannot 

be overlooked when engaging in this process. Even when approaches are inclusive and 

collaborative they can foster social exclusion. For example, similar “participatory spatial 

knowledge management tools”, which are common in urban planning and development, often do 

not adequately account for things like accountability, empowerment, control, and use of 

knowledge, thus detracting from their ultimate goals and beneficial features (Pfeffer et al. 2013). 

If geospatial products of knowledge integration and co-production processes are co-opted by 

illegitimate power sources, these tools could be used against already marginalized and 

disenfranchised stakeholders. This is especially concerning in developing countries that are still 

entrenched in neo-patrimonial political systems, which are often mired in a context of social 

unrest and political upheaval, and greatly depend on self-enrichment from natural resources to 

uphold tenuous political allegiances (Médard 2002).  

When local and indigenous knowledge integration and knowledge co-production are 

viewed as a mechanism for sharing concepts and applying practices for management of natural 

resources, rather than data to be extracted, collected, and repackaged within an existing, 

conventional scientific framework, great potential for increased community engagement, 

empowerment, and effective action on the ground can occur. These processes hold great utility 

for leveling the playing field for stakeholders, promoting access to and dissemination of 

important knowledge relevant to decision-making, and fostering a deeper understanding of 

social-ecological systems.  
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Conclusions: Moving forward with integrative geospatial modeling 

 

This research demonstrates the utility of integrative geospatial modeling as a valuable 

transdisciplinary tool for addressing conservation efforts in rural regions with mounting 

anthropogenic pressures. Limited work explores the application of knowledge integration and co-

production with advanced geospatial tools. This is arguably a critical gap, as maps play a major 

role in resource management and conservation planning and policy-making. Species distribution 

models in particular have become a primary tool for ecological inference, which greatly informs 

and influences this type of decision-making (Guillera-Arroita et al. 2015), yet the importance of 

local and indigenous knowledge has been undervalued and more often than not entirely ignored.  

 My dissertation approach applied the adaptive governance mechanisms of knowledge 

integration and co-production in concert with species distribution modeling in distinct ecological 

and cultural settings that span different spatial and governance scales. The ultimate goal of this 

work was to develop a novel transdisciplinary tool for fostering more holistic, collaborative, and 

adaptive management processes and outcomes with indigenous groups and land managers 

regarding important stakeholder-defined ecosystem services and problematic invasive species. 

From this work, the interconnected nature of knowledge integration and co-production was 

revealed, with each engaging a facet of knowledge documentation and providing diverse 

opportunities for collaborative and participatory learning. Moreover, knowledge integration and 

co-production and species distribution modeling proved complimentary, with each distinct 

disciplinary approach enhancing the other. In line with the views of Armitage et al. (2011) and 

others, I found knowledge integration to be an important mechanism in its own light, but also a  
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critical initial process that can lead to deeper, more collaborative, and increasingly participatory 

knowledge co-production processes. 

 Each chapter speaks to the importance of local and indigenous knowledge for enhancing 

adaptive and collaborative management approaches. In chapter one, my work in Alaska showed 

knowledge integration to provide an important rapid appraisal opportunity for the co-definition 

of critical conservation targets and interacting disturbance drivers of invasive species and climate 

change between local ecological knowledge of land managers and traditional ecological 

knowledge of Native Alaskan tribal representatives. This provided an important opportunity to 

re-frame management approaches to risk assessment mapping, informed by local community 

needs and concerns. Bridging and boundary-spanning organizations and individuals such as the 

Yukon River Intertribal Watershed Council and key U.S. Fish and Wildlife Service staff were 

critical for providing access and an added level of legitimacy to the rapid appraisal process of my 

integrative geospatial modeling methods. Conducting this work at a broader landscape spatial 

and governance scale (i.e. the entire state of Alaska) posed some inherent challenges to 

knowledge integration and moving towards knowledge co-production, specifically in regards to 

feasibility of engaging a much wider and necessary range of stakeholder knowledge sources, thus 

requiring greater time and resource investments.  

 In chapter two, local pastoral knowledge integration in the Afar region of northeastern 

Ethiopia revealed a new invasive species (rubber vine) in the region, unknown to research 

scientist stakeholders and receiving little attention from government agencies and non-

governmental organizations. Extensive participatory methods including participatory mapping 

and field data collection, coupled with knowledge integration efforts such as focus groups and 

interviews, started the process knowledge co-production, which empowered communities and 
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provided setting of mutual respect for different knowledge sources, facilitating shared learning 

and a level of trust building. From this, great congruence between pastoral knowledge and 

conventional scientific observations were found, with the former expanding scientific 

understanding of the biology, ecology, and impacts of invasive rubber vine. Similar to the Alaska 

case, key bridging and boundary-spanning individuals including American and Ethiopian 

colleagues with an established presence in the Afar region were critical for providing access and 

an added level of legitimacy to the rapid appraisal process of my integrative geospatial modeling 

methods. Limited institutional connectivity and capacity, and a high level of contention and 

animosity between pastoral communities and local, regional, and national government entities 

may pose great barriers to enacting collaborative and adaptive management strategies in practice. 

Engaging these stakeholders while understanding and acknowledging the contentious historical, 

political, and cultural backdrop in which these groups reside will be a necessary next step as I 

move forward with this work. 

In chapter three, I provided a synthesis of the growing body of work on knowledge 

integration and co-production as important social mechanisms of adaptive governance, revealing 

a number of necessary conditions for effective knowledge integration and co-production 

processes and important potential outcomes. These conditions include genuine power sharing, 

mutual respect and equal standing for different knowledge forms, a moderate level of trust 

between stakeholders, understanding of institutionalized power inequities and historical conflict, 

and co-definition of goals and issues of concern in an iterative manner. Important potential 

outcomes include community empowerment, expansion of scientific knowledge, facilitating 

future collaboration and co-management, increasing bonds of trust and open communication and 

enhancing adaptive strategies. My research in Alaska and northeastern Ethiopia, corroborates a 
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number of broader findings, including the potential enhancement of collaboration and adaptive 

strategies through goal and conservation target co-definition, the critical nature of trust building 

and providing a setting of mutual respect for different knowledge sources, and the ability of local 

and indigenous knowledge to expand the realm of conventional science. This work also raises 

additional questions for further inquiry along the lines of scale, institutional connectivity, 

measuring the enhancement of adaptive strategies, and especially the role of bridging and 

boundary-spanning organizations and individuals, as they provided in both of my cases a level of 

trust and legitimacy with stakeholders, which proved necessary for facilitating more rapid 

knowledge integration and co-production processes. In addition to this work being facilitated by 

bridging and boundary-spanning organizations and individuals, my role as a bridging and 

boundary-spanning researcher was made equally apparent. As Pohl et al. (2010) discover in their 

multiple case study evaluation of knowledge co-production processes, researchers often take on 

distinct roles as boundary-spanning organizations between scientific and non-scientific 

communities. In both of my cases this seemingly proved true as I began the process of engaging 

as a “reflective scientist”, facilitating common understanding and incorporating local knowledge 

and as an “intermediary”, bridging different stakeholder concerns and approaches around a 

common issue. Moreover, the use of maps, whether for participatory mapping activities or 

evaluation of initial results, provided an equally important platform for engaging in shared 

learning and deliberation. Often ecological modeling approaches are seen as strictly an 

ecological tool. The application of my integrative geospatial modeling method in both cases 

lends evidence to the great potential for not only engaging different knowledge sources and 

providing an enhanced platform for the voices of resource-dependent communities to be better 

heard, but also in bridging social and natural science approaches. These models can act as a 
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boundary-spanning object to bring social and natural scientists together for transdisciplinary 

collaboration and potentially even cross-disciplinary knowledge co-production. The resulting 

maps can act as a “boundary object”; providing a shared space between diverse groups in a 

decision-making context and structured to accommodate diverse informational needs of the 

stakeholders (Star 2010; Mattor et al. 2014). 

It is important to note that my research activities tended to include only one major 

stakeholder group (i.e. local pastoral community members, federal and state land managers). 

Future steps of engaging in more concerted participatory evaluation of the risk assessment maps 

will need to include all major stakeholder groups. In the future, I hope to enact a process of 

participatory knowledge exchange related to the risk assessment maps created through this 

dissertation. This would involve an iterative process of meeting with distinct stakeholder groups 

individually (e.g. tribal, resource management, pastoral, non-governmental organization) and 

then as full stakeholder groups, multiple times. This process would entail critically appraising the 

risk assessment maps and providing a deliberative platform to raise other concerns. Discussion 

about specific threatened regions would also include the use of free list documentation, which is 

a structured interviewing technique to elicit systematic data about a cultural domain (Weller & 

Romney 1988; Quinlan 2005). This would be used to further refine our understanding of 

important ecosystem services and threatening disturbance drivers for all stakeholders involved 

and help determine the cultural salience of specific items listed. We would subsequently conduct 

participatory field surveys of specific locations determined to be high priority validation sites, to 

update the models with new invasive species presence or absence data, but also document 

narrative site descriptions by different stakeholders and begin planning sustained collaborative 

monitoring and management efforts. 
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 Despite the growth in this area of research, a limited number of studies discuss the 

process of applying knowledge integration and co-production and even less utilize these 

mechanisms in concert with advanced geospatial applications. I argue that incorporating the 

adaptive governance mechanisms of knowledge integration and co-production with the advanced 

geospatial application of species distribution modeling, provides a robust toolset for moving 

towards effective, collaborative, and adaptive resource management and conservation planning, 

and provides a methodological avenue that begins to bridge science-policy and social-natural 

science disciplinary boundaries.  

Top-down, discipline-specific approaches tend to fail at adequately addressing the 

complexity of ecosystems or the needs of resource-dependent communities that are directly tied 

to them. Non-native invasive species are a critical global issue and proved to be a useful focal 

point for my integrative geospatial modeling cases. In each instance they showed the 

connectivity of diverse and detrimental disturbance drivers that negatively impact SESs, by 

undermining ecosystem integrity and holding equally detrimental impacts for indigenous 

livelihoods and cultural heritage that are centered on the land, water, and wildlife. An important 

caveat exists with this line of thought though; for this to be truly effective it requires consensus 

across stakeholder groups about the ill effects of a given invasive species, which may not always 

be possible, and something academic researchers, land management, community and other 

stakeholders should be aware of. Non-native species labeled as “invasive” by one stakeholder 

group may hold important benefits for another, as revealed by a number of studies (Foster & 

Sandberg 2004; Garcia-Llorente et al. 2008; Marshall et al. 2011; Shackleton et al. 2011; Belnap 

et al. 2012). If there is a level of consensus in regards to the negative impacts of an invasive 

species of concern, that issue may provide a much easier focal point that all stakeholders can 



138 
 

collaborate around and for 

which local and indigenous 

communities may be more 

inclined to share their 

knowledge about openly, thus 

facilitating knowledge 

integration and co-production 

processes. This dovetails with 

a main point by Gagnon and 

Berteaux (2009). Looking at 

indigenous knowledge 

integration of arctic fox and greater snow goose with conventional science in Canadian Arctic, 

they argue that the level of a local community’s interest in and contact with a given species, in 

addition to the level of political charge associated with it, influences the ease with which it is 

possible to gather traditional ecological knowledge about that species of interest (Figure 15). 

They note that when a community has little interest in or contact with a species, traditional 

ecological knowledge is low and cannot be effectively gathered (left side of curve). When 

community has high interest in a species and issues surrounding it are politically charged, 

traditional ecological knowledge collection can become difficult to collect without bias (right 

side of curve). An ideal context rests in the middle of graph, where species are visible and 

engaged with but do not insight strong reactions. Arguably this can transfers with invasive 

species and even habitat types or distinct ecosystem services. For example, when working with 

pastoralists in my Ethiopia case, community members were happy to share detailed knowledge 

Figure 15. Conceptual graph of the ease of collecting and integrating 
TEK, based on level of interest and contact a community has with a 
given species and the level of political charge associated with it. 

Courtesy of Gagnon and Berteaux (2009). 
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about rubber vine and relay as many locations of the plant as possible. Consensus among villages 

about the detrimental nature of the plant was present, in addition to a high level of interest and 

contact with it, in addition to it not being a controversial political issue, in part because the 

government is not aware of the level of establishment. While simultaneously mapping water 

resources with the same villages and using the same maps, pastoralists would at first only reveal 

locations of government-drilled wells. Further questioning about naturally occurring springs and 

wetlands was met with some discussion among community members, and then brief descriptions 

about general locations of important water features and the map identification of a few prominent 

water features easily distinguished on the satellite imagery. It became clear that sharing sensitive 

information about the exact location and distribution of artisanal springs and small seasonal 

wetland locations that their livestock depend on during drought was not something they were 

willing to openly share, at least not based on our brief interactions. These important habitat types 

are of high interest and high contact with communities, but great political charge exists around 

traditional rights to access water and government appropriation of those resources.  

In the case of rubber vine in Ethiopia, great consensus exists within the local pastoral 

communities about the negative effects of the plant. It is likely that non-governmental 

organization and Ethiopian government institutions would share this sentiment towards rubber 

vine, but limited interaction with these stakeholders due to weak horizontal and vertical 

connectivity of institutions leaves this to conjecture, and an important next line of inquiry in this 

integrative geospatial modeling process. In the case of elodea in Alaska, consensus around the 

problematic nature of this plant was shared by state and federal land managers, but Native 

Alaskan community consensus is still unclear at this time. Native Alaskan tribal representatives 

noted concern for invasive species, but elodea’s existing occurrence sites are limited in 
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geographic scope and therefore not a species that a great number of community members are 

aware of. Determining this will require more extensive documentation of different Native 

Alaskan communities’ awareness and perceptions of elodea. The ability to achieve this 

understanding was especially limited by the broad geographic and governance scale of the 

project and constitutes another important next step for this work. 

Such integrative modeling approaches can hold great utility for re-framing how invasion 

risk assessments and conservation planning is conducted, to more actively address indigenous 

stakeholder concerns and increase the salience of these mapping efforts for resource-dependent 

communities. However, these methods still hold the potential to further alienate and 

disenfranchise local and indigenous stakeholders and should not be understated. When 

knowledge and stakeholder engagement are mentioned in the broader environmental modeling 

literature, it tends to be limited in scope or in some instances mere “lip service” paid to 

popularized buzz words (Voinov & Bosquet 2010: 1268). Yet, even when geospatial applications 

are inclusive they can foster social exclusion when not addressing things like accountability, 

empowerment, control, and use of knowledge (Pfeffer et al. 2013). If communities lack the 

technical skills to conduct and interpret these modeling approaches and are furthermore not using 

the map outputs, this detracts from some of the key benefits of this work including mobilizing 

communities for advocacy, environmental education, and self-determination. If academic 

researchers and resource managers are solely holding the reigns of producing, interpreting, 

disseminating, and taking action based on these map outputs, “…then the project of integration 

actually serves to concentrate power in administrative centers, rather than in the hands of 

aboriginal people” (Nadasdy 1999: 1).  
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Native Alaskan and Ethiopian pastoral communities are at an added disadvantage with a 

legacy of disenfranchisement at the hands of governments, land managers, and scientific 

researchers alike, linked with a string of legal acts that have usurped their rights to the land, 

water, and wildlife. Addressing these power disparities in part rests with researchers and 

managers relinquishing absolute control over decision-making and research approaches, as truly 

participatory work cannot treat communities as “passive beneficiaries” (Mulrennan et al. 2012).  

The idea of knowledge in adaptive governance is much more complicated than often 

shown in the literature and should be critically appraised and problematized. Simply checking a 

box that additional knowledge sources were considered does not address underlying issues of 

power, and “as such, any attempt to consciously catalyze AG [adaptive governance] or create 

windows of opportunity for governance transitions through intervention should be preceded by 

an explicit analysis of relevant power and politics that may be precipitating environmental and 

social injustices stemming from the marginalization of minority cultures, religions, worldviews, 

and environmental ethics” (Chaffin et al. 2014: 63). This is something a growing number of 

scholars, advocates, communities, and resource managers are attempting to address and therefore 

it is critical to continue exploring the use of inclusive and novel tools that seek to bring 

marginalized communities into the problem-definition fold at the beginning of the process and 

provide multiple opportunities for different forms of knowledge to inform, add to, and critique 

the process and outputs.  

 The inherent complexity of SESs requires flexibility in managing for ecological integrity 

and moving beyond overly simplistic and discipline distinct management approaches. Decision-

making in regards to vulnerability and adaptation is place-based and context-specific, requiring 

the inclusion of local ways of knowing and understanding, which entails the engagement of 
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numerous often competing interests and goals (McNeeley 2009). Environmental impacts of 

invasive species are equally place-based and context specific (Levine 2000; Pyšek et al. 2012). 

With a strikingly limited assessment of the interactions between invasive species and ecosystem 

services that indigenous and rural communities rely on for their livelihoods, novel, 

transdisciplinary approaches that afford a more nuanced and holistic understanding of coupled 

SESs are needed. To address vulnerability we need to understand what is happening in a given 

location, including the internal and external stressors, the ability to adapt, and the priorities and 

needs of the stakeholders directly affected.   

Diverse knowledge framings provide an important understanding of these dimensions, 

because within the adaptive governance framework, managing for ecological integrity and social 

resilience “...is about bringing together old knowledge, from diverse sources, into new 

perspectives for practice...to develop the social capacity to respond to environmental feedback 

and change” (Folke et al. 2005: 445). Different approaches to participation and stakeholder 

engagement may contribute greatly to adaptive management (Stringer et al. 2006), and I contend 

that engaging in both normative participation approaches, such as knowledge co-production, or 

pragmatic participation approaches, such as knowledge integration can facilitate important 

arenas for marginalized voices to be heard and enhance adaptive and collaborative management 

efforts.  

 Collaboration facilitated by knowledge integration and co-production is critical between 

diverse indigenous, academic, and management stakeholders. Local and indigenous communities 

bring insights into their own environment, and unique understandings of their own social and 

spatial systems, including what things are most important and what has typically worked in the 

past. Outside researchers can provide understanding of relevant disciplines and other technical 
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and functional skills. Integrative geospatial modeling can act as a useful and accessible tool for 

adaptive and collaborative management of ecosystem services and invasive species within an 

adaptive governance framework. As a researcher engaged in integrative geospatial modeling, I 

can act as a bridging and boundary-spanning individual, but one that is driven by local and 

indigenous community concerns and further enhanced by other bridging and boundary-spanning 

organizations and individuals to achieve these results. Triangulating common concerns and 

important conservation targets among different stakeholders, combining diverse qualitative and 

quantitative datasets from these groups, and utilizing advanced geospatial applications provided 

an important opportunity for identifying regions across a vast landscape in need of targeted 

monitoring and surveying, which I argue should be collaborative and inclusive of local and 

indigenous communities if we are to effectively address the growing environmental and social 

challenges we face on this planet.  
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APPENDICES 
 
 

 

Bioclimatic Predictor Variables 
BIO1- Annual Mean Temperature 
BIO4- Temperature Seasonality  
BIO5- Mean Temperature of Warmest Month  
BIO6- Mean Temperature of Coldest Month 
BIO7- Temperature Annual Range 
BIO8- Mean Temperature of Wettest Quarter  
BIO9- Mean Temperature of Driest Quarter 
BIO10- Mean Temperature of Warmest Quarter*  
BIO11- Mean Temperature of Coldest Quarter* 
BIO12- Annual Precipitation 
BIO13- Precipitation of Wettest Month 
BIO14- Precipitation of Driest Month  
BIO15- Precipitation Seasonality  
BIO16- Precipitation of Wettest Quarter  
BIO17- Precipitation of Driest Quarter  
BIO18- Precipitation of Warmest Quarter* 
BIO19- Precipitation of Coldest Quarter 
BIO20- Permafrost  

Appendix 1 

Full list of predictor variables considered in the ensemble models. Note: BIO2 (Mean Diurnal 
Range) and BIO3 (Isothermality) were not included, as these calculations require minimum 
and maximum values, which the Alaska-specific SNAP climate data does not provide, rather 
it only accounts for mean values. *Denotes variables retained in the final ensemble modeling. 
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Appendix 2 

Predictor variable response curves for the current climate suitability ensemble, including 
Mean Temperature of Warmest Quarter (BIO10), Mean Temperature of Coldest Quarter 
(BIO11), and Precipitation of Warmest Quarter (BIO18). The X-axis is a range of 
temperature or precipitation values for a given predictor variable starting with the 
minimum value and ending with the maximum value and the Y-axis is the suitability 
index. 
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 Appendix 3 

SAHM Covariate Correlation and Selection Matrix (Final Ensemble 
Model). 
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          Appendix 4 

        Qualitative and quantitative triangulation of Native Alaskan subsistence practices.

Cultural/Linguis

tic Group 

Subsistence Practices 

(*sources) 
Alaska Fish and Game Subsistence Survey Data Relative Risk of Elodea 

Impacts  

Alutiiq/Sugpiaq 
 
 
 

 
Pacific salmon, marine 
mammals, halibut, marine 
mollusks, caribou 
 
 
 
 
*Salomon et al. (2007), Reedy-
Maschner (2013), Reedy & 
Maschner (2014) 
 

 Current climate: (Low to 

Moderate).  Chinook and 
whitefish make up 7% of 
subsistence harvest. Regions of 
high climate suitability for 
elodea restricted to the Kenai 
Peninsula where known 
infestations exist.  
 
Future climate: (Moderate). 
High climate suitability for 
elodea predicted by all 5 GCMs 
across the entire Alutiiq/Sugpiaq 
region by 2040-2059. 

Athabascan  
Moose, caribou, Pacific salmon, 
bear, water fowl, berries, 
whitefish 
 
 
 
 
*McNeeley (2009), Brown et al. 
(2012), Van Lanen et al. (2012), 
Brinkman et al. (2014) 

 Current climate: (Moderate to 

High). Chinook and whitefish 
make up 24% of subsistence 
harvest. Region of high climate 
suitability for elodea in the 
Yukon Flats which contains a 
major lake district and the 
confluence of a number of major 
rivers for the state, in addition to 
the Kenai Peninsula. 
 
Future climate: (High):  
Increased climate suitability for 
elodea predicted by all 5 GCMs 
across the Athabascan region by 
2040-2059.  
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Inupiaq Marine mammals, whitefish, birds 
and eggs, dolly varden, caribou, 
Pacific salmon (pink and chum) 
 
 
 
 
 
 
*Moore et al. (2007), Brown et al. 
(2012), Moerlein & Carothers 
(2012), Carothers et al. (2013) 

 

Current climate: (Low). 
Whitefish make up 11% of 
subsistence harvest. Chinook 
salmon makes up 0%. No GCMs 
predict high climate suitability for 
elodea in this region. 
 
Future climate: (Low). Small 
pockets of high climate suitability 
for elodea predicted by all 5 
GCMs by 2040-2059 do not 
coincide with any recorded 
Chinook salmon or whitefish 
spawning and rearing sites. 

 

Southeastern Tribes Pacific salmon, halibut, steelhead, 
marine mammals, bird eggs, 
berries, moose, deer, mountain goat 
 
 
 
 
 
 
 
 
*Betts & Wolfe (1992), Langdon 
(2006) 

 

Current climate: (Low to 

Moderate).  Chinook salmon 
makes up 9% of subsistence 
harvest. Whitefish make up 0%. 
Regions of high climate 
suitability for elodea span the 
region, but few recorded Chinook 
salmon spawning and rearing 
sites. 
 
Future climate: (Low to 

Moderate).  Increased climate 
suitability for elodea predicted by 
all 5 GCMs across the region by 
2040-2059, but few recorded 
Chinook salmon spawning and 
rearing sites are present. 
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Yup'ik Marine mammals, Pacific salmon, 
water fowl, moose, caribou, bird 
eggs, berries, roots, whitefish 
 
 
 
 
 
 
 
 
* Zavaleta (1999), Brown et al. 
(2012), Kolahdooz et al. (2014) 

  
  Current climate: (Low). 
Chinook salmon and whitefish 
make up 26% of subsistence 
harvest. No areas of high climate 
suitability for elodea predicted for 
the region. 
 
Future climate: (Moderate to 

High):  Increased climate 
suitability for elodea predicted by 
all 5 GCMs across southern 
stretches of the region by 2040-
2059. 

Unangan (Aleut) Marine mammals, Pacific salmon, 
water fowl, halibut, marine 
mollusks, cod 
 
 
 
 
 
 
 
 
 
* Duncan et al. (2014), Reedy & 
Maschner (2014), Young et al. 
(2014) 

 Current climate: (Low). Chinook 
salmon makes up 4% of 
subsistence harvest. Whitefish 
make up 0%. No regions of high 
climate suitability for elodea 
exist. 
 
Future climate: (Low to 

Moderate).  Increased climate 
suitability for elodea predicted by 
all 5 GCMs across the region by 
2040-2059, but few recorded 
Chinook salmon spawning and 
rearing sites are present. 
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Pastoralist Perceptions and Use of Invasive Mesquite (Prosopis juliflora): Utilization Assessment and 
Documentation of Local Knowledge of Mesquite and Ecosystem Services in Northeastern Ethiopia 

 
Verbal Consent Script 

The Research Study 
Hello. My name is (interviewer state name). Thank you for speaking with me today. I am from Colorado 
State University in the United States of America. We are inviting you to take part in a research study. 
Please ask me to explain anything you do not understand. You can ask questions now or anytime during 
the study. You will have a chance to ask questions before you make your decision. We are looking for 
local men and women to help with our research project. For this research we are collecting information on 
the beneficial economic uses of mesquite as well as its negative impacts in Afar. 
 
 

Your Help 
I am asking you to be in a group interview (or we can talk talk privately) to help identify beneficial 
economic uses of mesquite as well as its negative impacts in Afar, and provide information on local plants 
and animals. The interview will take around four hours and is voluntary. You may stop at any time. And 
you may skip any question that you do not want to answer. We will share our research results with you. 
You may or may not benefit from being in the study. But we hope it will help your community with local 
concerns about plants and animals in the area. Knowledge we gain from this study may benefit others in 
the future. 
 
 

Risks  
There are no known risks to being a part of this study. Our team will do everything possible to protect the 
health and safety of everyone helping us with this project. Your name will not be written down or used in 
our reports. No personal information of yours will be shared with other people of groups outside of our 
team.  
 
 

Questions 
If you have any questions please ask me. I will also give you the name and contact information for local 
team members, and team members at the university in the United States: Tewodros Wakie (Colorado 
State University, United States of America): tdwakie@gmail.com, Matthew Luizza (Colorado State 
University, United States of America): mwluizza@rams.colostate.edu, Paul Evangelista (Colorado State 
University, United States of America): paulevan@nrel.colostate.edu, Emebet Abera W/Senbet (Addis 
Ababa):  +251-0910145507, emebetabera28@yahoo.com, and Dr. Amanuel Kassie (Addis Ababa): +251-
0911408276. 
 
Will you be a part of the interview? 

Appendix 5 

Full interview guide for Afar focus groups. 
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Interview Protocol 
A series of 11 semi-structured focus group interviews will be conducted with men and women from rural 
pastoral communities located in the Afar region of northeastern Ethiopia. A focus group approach will be 
conducted to afford diverse perspectives simultaneously, allow unanticipated information to emerge, and 
facilitate a rapid appraisal approach. Focus groups of 2-4 people will be conducted at each of the 11 
research sites (approximately 44 respondents total), and will encompass two full weeks (April 28, 2014 
through May 11, 2014), with each focus group interview lasting approximately four hours.  
 
A series of open-ended questions will be asked that are grouped into the following categories: Landscape-
Scale Changes, Plants and Animals, Prosopis Economics, Water, and Governance. These questions will 
be followed by two participatory mapping activities focusing on water features and invasive species and 
how the village interacts with them: 
 
Part 1: Participants will be provided with two sets of satellite image and/or semi-transparent mylar 
topographic maps. The first set will be at the community/village scale, and the other will be at the scale of 
the surrounding region. The group will then discuss and decided what types of water-related features to 
map and what symbols will be used to represent them. Once this is established, participants will begin 
marking and labeling water access points and water-related features—first on the community-scale maps, 
and then on the regional maps. As the maps are marked, each feature will have a number of attributes 
recorded using the provided template (see page 13 of this document). 

When the group is satisfied with the water features, they will be asked to mark at least five landmarks on 
the satellite image. These will be located in the field and marked with GPS units to serve as ground 
control points for eventual digitizing and geo-referencing of the drawn maps. The resultant digitized maps 
and tabular data will be incorporated into a Geographic Information System for use in geospatial analysis 
and map creation. 

Part 2: Participants will be asked to add to the water feature sketch maps, additionally depicting existing 
locations of the globally invasive mesquite species Prosopis juliflora, and how the local pastoral 
community interacts with the species at each site. 
 
Participants will be provided with the same satellite image and/or topographic map from the water 
features mapping exercise and will be asked to additionally mark and label existing Prosopis juliflora 
locations and their relation to other landscape features and community assets as described in the 
questionnaire (see page 14 of this document). These images/maps will later be digitized and incorporated 
into a Geographic Information System for use in geospatial analysis and map creation. 
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Interview Questions 

 
Location __________________________ 
 
Date ____________________ 
 
 
Land Cover Category (farmland, grassland, rangeland; if more than one, answer for the category 

where Prosopis is of most concern) 
 
Study Site Prosopis Density Class (Scattered (less than 20%), Moderate (20-40%), Dense (over 
40%)) 

 

Demographics (list for all respondents in focus group) 
 

1. Gender: Male  Female   
 
2. Age: 15-20 21-25 26-30 31-35 36-40 41-45 46-50 51-55 56-60 60+ 
 
3. Primary Occupation (Pastoralist, Agro-pastoralist, Farmer) 
 
4. Were you born from here? If not, when and why did you move here?  
 
 
 
 
 
 
 
5. How many people are in your household? 
 
 
6. Do you have children?  Yes No  How many? ______________ 
 

 

Landscape-Scale Changes 
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1. Are there changes to nature which you have observed in your community during your 
lifetime, for  
example, changes in plants, water, soils, or wildlife? 
 
 
 
 
 
 
 
 
 
 
2. What do you think caused this change? 
 
 
 
 
 
 
 
 

 

3. Has the timing of the seasons changed over 
time? 
 
Seasons: Note which have changed 
 
 
 
 
 
 
 
 
 
4. If yes, how has it changed? 
 
 
 
 
 
 
 
 

7. If no to #6, describe how it varies (e.g. 
early, later, shorter, longer)? 
 
 
 
 
8. Is the amount of rain different? 
 
 
 
 
9. Does flooding and/or drought happen 
more or less, or is less predictable? 
 
 
 
10. Does this affect your livestock and/or 
crops? 
 
 
 
 

Early wet Wet Late wet Early  Dry Late dry 
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5.  When do the rains come? Jan  Feb  Mar  Apr  
May  Jun  Jul  Aug  Sep  Oct  Nov  Dec 
 
 
6.  Is it the same time every year? 
 
 
 
 
 

 
 
11. Does this affect wildlife? 

 

Plants and Animals  
 

1. Do you use plants for medicine or go to the doctor? 
 
 
 
 
 
 
 
 
 
2. Are there plants that you consider bad? Are any of these new to the region? 
 
 
 
 
 
 
 
 
 
 
 
 
3. Are any of these plants taking the place of useful plants and cannot be controlled? 
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4. What are the most important plants to you? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5. Why are they important? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6. What type of wood do you prefer to burn? 
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7. What wildlife are beneficial to you and why? 
 
 
 
 
 
 
 
 
 
 
 
 
8. What wildlife are harmful and why? 
 
 
 
 
 
 
 
 
 
 
 
  
9. Is there anything we didn’t ask regarding plants and animals in the area that you’d like to 
share? 
 
 
 
 
 
 

 
 
 
Participatory Mapping 
 
Participants will be provided with a satellite image and/or topographic map of the region and asked to 
mark and label water access points and water-related features described in the questionnaire. 
 



178 
 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 6 

SAHM Covariate Correlation and Selection Matrix (Final Model) for 
invasive rubber vine model, Afar, Ethiopia. 
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Scientific Name  Afar Name  Uses Notes  

Acacia nilotica Keselto Firewood, charcoal, 
construction, forage, 
medicinal, other (shade).  

One of the preferred firewood and 
charcoal sources (including high-end 
hookah charcoal). Bole and branches 
used in house construction. Pods, 
leaves and flowers critical forage 
source for livestock and wildlife. 
Bark ground, mixed with water, and 
applied to snake bite wounds.   

Acacia senegal Adado Firewood, charcoal, 
construction, food, forage. 

Number one charcoal source. 
Provides forage for livestock 
(especially camels and goats). Used 
to build strong fences to protect 
livestock. Produces edible gum that 
is mixed with camel's milk and 
consumed. 

Combretum 

aculeatum 

Kilaito Firewood, charcoal, 
medicinal, cosmetic, forage, 
fodder. 

Leaves, pods and flowers important 
forage source for livestock and 
wildlife. Leaves cut and gathered as 
fodder for all livestock. Wood is 
burned and a person allows the 
smoke to cover their body for skin 
health and beautification.   

Acacia tortilis Ehebto Firewood, charcoal, 
construction, forage, other 
(shade). 

Bole and branches used in used in 
house construction. Pods, leaves and 
flowers provide forage for livestock 
and wildlife.  

Acacia mellifera Maka'arto Firewood, charcoal, 
construction, forage. 

Provides forage for livestock 
(especially camels and goats) and 
wildlife. Used to build houses and 
fences to protect livestock.  

Cordia spp. Mederto Firewood, construction, 
food, other 
(walking/herding/fighting 
sticks and rope).  

Preferred firewood source but also 
used to start fires (sticks rubbed 
together). Used in construction of 
traditional Afar homes called Afar 

arri or arri orburra. Preferred 
source of walking/herding/fighting 
sticks. Bark used to make rope. 
Produces edible fruits. 

Salvadora 

persica 

Adayto Firewood, medicinal, 
forage, other (toothbrush).   

Has antibacterial and antiseptic 
compounds used for overall oral 
health and to treat oral ailments. 

Appendix 7 

Most important native trees used by Afar pastoralists for firewood. Trees listed in order of 
importance (determined by focus group participants) with scientific name, local Afar name 
and all provisioning ecosystem services provided (uses) listed. 
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Provides forage for livestock 
(especially camels and goats) and 
wildlife.  

Cadaba 

rotundifolia 

Adengeli Firewood, medicinal, 
veterinary, forage, other 
(milk storage).  

Leaves crushed and snorted or 
chewed to alleviate cold symptoms, 
asthma, or headaches. Ingested to 
combat any gastrointestinal issues. 
Leaves chewed and the paste applied 
to open wounds of people and 
livestock to assist the healing 
process. Critical source of drought 
forage (especially camels). Branches 
burned and smoke used to fumigate 
milk containers and improve the taste 
of milk. 
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Appendix 8 

Maxent Jackknife validation assessment model output, including area under the receiver-
operating curve (AUC) and percent contribution of model predictor variables for each model. 
 

Model Run AUC Variable Contribution 

Model 1 0.644 Distance to water (78%), Distance to roads (10%), August NDVI 
(9%), Slope (2%), Elevation (1%), Distance to settlements, (0%), 
CTI (0%). 

Model 2 0.998  Distance to water (75%), August NDVI (12%), Distance to roads 
(10%), Slope (2%), Elevation (1%), Distance to settlements, (0%), 
CTI (0%). 

Model 3 0.989 Distance to water (73%), August NDVI (12%), Distance to roads 
(10%), Slope (3%), Elevation (2%), Distance to settlements, (0%), 
CTI (0%). 

Model 4  0.792 Distance to water (62%), August NDVI (24%), Distance to roads 
(8%), Slope (5%), Elevation (1%), Distance to settlements, (0%), 
CTI (0%). 

Model 5 0.980 Distance to water (73%), August NDVI (11%), Distance to roads 
(12%), Slope (3%), Elevation (1%), Distance to settlements, (0%), 
CTI (0%). 

Model 6 0.931 Distance to water (68%), August NDVI (15%), Distance to roads 
(11%), Elevation (3%), Slope (3%), Distance to settlements, (0%), 
CTI (0%). 

Model 7 0.964 Distance to water (71%), August NDVI (18%), Distance to roads 
(9%), Slope (2%), Elevation (0%), Distance to settlements, (0%), 
CTI (0%).  

Model 8 0.262 Distance to water (66%), Distance to roads (17%), August NDVI 
(14%), Slope (2%), CTI (1%), Distance to settlements, (0%), 
Elevation (0%). 

Model 9 0.927 Distance to water (69%), August NDVI (13%), Distance to roads 
(9%), slope (7%), Elevation (2%), Distance to settlements, (0%), 
CTI (0%). 

Model 10  0.972 Distance to water (72%), August NDVI (12%), Distance to roads 
(9%), Slope (4%), Elevation (3%), Distance to settlements, (0%), 
CTI (0%). 

Model 11 0.458 Distance to water (64%), August NDVI (13%), Elevation (12%), 
Distance to roads (8%), Slope (3%), Distance to settlements, (0%), 
CTI (0%). 

Model 12 0.830 Distance to water (76%), Distance to roads (10%), August NDVI 
(10%), Slope (3%), Elevation (1%), Distance to settlements, (0%), 
CTI (0%). 

Model 13 0.883 Distance to water (65%), August NDVI (24%), Distance to roads 
(8%), Slope (3%), Elevation (0%), Distance to settlements, (0%), 
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CTI (0%).  

Model 14 0.529 Distance to water (68%), August NDVI (20%), Distance to roads 
(8%), Slope (2%), Elevation (2%), Distance to settlements, (0%), 
CTI (0%). 

Model 15 0.891 Distance to water (68%), August NDVI (13%), Distance to roads 
(9%), Slope (7%), Elevation (3%), Distance to settlements, (0%), 
CTI (0%). 

Model 16 0.846 Distance to water (65%), August NDVI (20%), Distance to roads 
(10%), Slope (3%), Elevation (2%), Distance to settlements, (0%), 
CTI (0%). 

Model 17 0.967 Distance to water (71%), August NDVI (17%), Distance to roads 
(9%), Slope (2%), Elevation (1%), Distance to settlements, (0%), 
CTI (0%). 

Model 18 0.479 Distance to water (69%), August NDVI (21%), Distance to roads 
(7%), Slope (2%), Elevation (1%), Distance to settlements, (0%), 
CTI (0%). 
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Study Location Mechanism(s) Stakeholders Methods Findings  Citation 

United States Evaluation of 

knowledge 

integration (LEK 
and conventional 
science) for a 
sustainable 
agriculture 
monitoring team 

Farmers, university 
and agency 
researchers, and 
non-profit staff 

Interviews, field 
notes, and content 
analysis  

Knowledge integration provided opportunity 
for empowerment through sharing of LEK 
and valuing of alternative knowledge systems 
by scientific researchers. Trust building 
between stakeholders a key result of process. 
Major challenges still existed throughout 
process linked with distinct worldviews and 
epistemologies between scientific researchers 
and farmers. 

Nerbonne et 
al. (2003) 

Russia  Knowledge 

integration (TEK) 
of village elders 
into community 
definitions of 
sustainability  

Local communities 
and research 
scientists 

Focus groups, 
interviews, and 
surveys 

TEK integration of elder community members 
was shown to bolster local sustainability 
definitions and goals, as well as enhance 
inter-generational knowledge transfer 
between community elders and youth. 

Crate (2006) 

United States  Evaluation of 

knowledge 

integration (TEK 
and conventional 
science) for applied 
co-management 
research  

Research scientists, 
land managers and 
Native Alaskan 
hunters 

Interviews, 
participant 
observation, 
document analysis 
and workshops 

Various roles of TEK integration. Strong 
dissemination of integrated research findings. 
Genuine power sharing promoted successful 
integration. Inclusion of TEK in all phases of 
research and long-term relationship building 
afforded multiple opportunities for informal 
interactions between stakeholders (enhanced 
trust-building and transparency). Some 
conflicts between different observations of 
conventional science and TEK. Potential for 
co-option of knowledge still exists based on 
underlying power imbalances. 
 

Fernandez-
Gimenez et al. 
(2006) 

Sweden Evaluation of local 
knowledge 
generation and 

Government 
officials (local, 
regional and 

Interviews, 
historical document 
analysis 

Flexible organizational structure of municipal 
wetland group and strong leadership 
(enhanced by vertical and horizontal 

Hahn et al. 
(2006) 

Appendix 9 

Overview of the geographic location, stakeholder arrangement, research methods and key findings of all 45 knowledge integration 
and knowledge co-production case studies assessed and my two dissertation cases. TEK= traditional ecological knowledge, LEK= 

local ecological knowledge, IK= indigenous knowledge, and NGO= non-governmental organization. 
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integration with a 
municipal wetland 
group for adaptive 
co-management 
processes  

national), 
organization staff, 
local farmers and 
landowners, and 
national non-profits 

institutional linkages) facilitated knowledge 
generation and created an arena for enhanced 
trust-building, conflict resolution, and 
collaborative learning. Informal nature of 
organization makes it potentially vulnerable, 
as no legal mandates exist and all 
collaboration related to organization is 
voluntary. 

Kenya Knowledge 
integration (LEK) 
for biodiversity 
conservation and 
adaptive 
collaborative 
management  

Local farmers and 
research scientists  

Participatory 
mapping, transect 
walks with photo 
documentation and 
recorded narratives 

LEK integration of men and women through 
participatory mapping and photo 
documentation revealed gendered distinctions 
in how people valued and portrayed the local 
landscape based in part on different resource 
use patterns. Historical timelines relayed 
important cultural resources and changes on 
the landscape. Process enhanced 
understanding of resource diversity and links 
to local livelihoods. 

Kalibo & 
Medley (2007) 

United States  Evaluation of 

knowledge 

integration (LEK 
and conventional 
science) for 
ecological 
stewardship and 
monitoring among 
7 community 
forestry efforts 

Community 
residents, 
community forestry 
organization staff, 
scientists, migrant 
workers, university 
researchers, land 
managers, Native 
American tribes, 
environmental 
organizations, 
loggers 

Interviews, 
participant 
observation, 
document analysis 
and workshops 

Collaboration on joint reports between 
community members and scientists. 
Redistribution of power through diverse 
knowledge sources. Traditionally 
underrepresented groups still having limited 
knowledge integration and involvement. 

Ballard et al. 
(2008) 

United States  Evaluation of 

knowledge 

integration (LEK 
and conventional 
science) for 
fisheries 
management 

Local fishers, 
commercial fishers, 
and research 
scientists 

Surveys Survey results revealed that a vast majority of 
stakeholders felt LEK integration very 
important to bring fishermen’s information 
experience, and expertise into the scientific 
framework for necessary management and 
that cooperative research is beneficial, but not 
overwhelmingly convinced it can be achieved 
due to lack of trust and communication 
between fishermen and scientists. 

Hartley & 
Robertson 
(2008) 

United Evaluation of Local farmers and Semi-structured Knowledge exchange and integration Ingram (2008) 
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Kingdom knowledge 
exchange and 
integration (LEK 
and conventional 
science) for 
sustainable farming 
practices  

private agricultural 
advisors 
(agronomists) 

interviews  processes noted to often be characterized by 
power imbalances (in favor of agronomists), 
distrust and the divergence of knowledge 
(steeped in opposing values). Some instances 
based in dialogue and knowledge 
sharing/integration, provided opportunities for 
mutual learning and adoption of legitimized 
knowledge into farming practices. 

Canada  Evaluation of 

knowledge 

integration (TEK 
and conventional 
scientific) 
knowledge about 
arctic fox and snow 
goose ecology for a 
co-management 
effort 

First Nations tribes 
and land managers 

Workshops, semi-
directive interviews, 
mapping, 
focus groups, 
participatory 
observations, and an 
elders-youth camp 

Complementarity of integrating TEK and 
conventional science across spatial and 
temporal scales. Knowledge comparison 
expanded the spatial and temporal scales of 
documented scientific knowledge about both 
species. Facilitated generation of new insights 
and new hypotheses. Did raise some tensions 
around distrust of goose ecologists by tribal 
members who feel their studies have 
disrupted the birds.  
 

Gagnon & 
Berteaux 
(2009) 

Kenya, 
Switzerland, 
Bolivia and 
Nepal 

Evaluation of 

knowledge co-

production and the 
role of researchers 
within 
sustainability 
projects 

Local community 
members (farmers, 
agro-pastoralists), 
NGOs, scientific 
researchers, 
government 
representatives 

Case study 
comparison 

Knowledge integration as an important part of 
co-production process. Different roles of 
researchers as “reflective scientist” 
(facilitating common understanding and 
incorporating local knowledge), 
“intermediary” (bridging different stakeholder 
concerns and approaches around common 
issue) and “facilitator of a joint learning 
process” (reconciling different worldviews). 
Sustainable development provides a crucial 
normative framework for co-production. 
Sustainability researchers acting as boundary 
organization for knowledge co-production 
between scientific and non-scientific 
communities. 
 

Pohl et al. 
(2010) 

United 
Kingdom, 
Solomon 
Islands, and 
Australia  

Evaluation of 

knowledge 

integration (LEK 
and conventional 
science) for 

Local stakeholders, 
research scientists, 
and resource 
managers 

Comparative case-
study analysis  

Knowledge integration is a complex process. 
No single optimum approach for integrating 
LEK and conventional science. Needs to be a 
shift from seeking knowledge integration 
products to developing problem-focused 

Raymond et al. 
(2010) 
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environmental 
management  

knowledge integration processes that are 
reflexive, systematic and include multiple 
views and methods. 

Panel on 
Indigenous 
Peoples and 
Climate Change 
(multiple Arctic 
communities) 
 
 
 
 

Knowledge 

integration 
(indigenous 
observations of 
climate change and 
global climate 
assessment data) 

Arctic tribal 
representatives, 
indigenous 
knowledge 
scholars, climate 
scientists 

Indigenous 
knowledge (IK) 
documentation and 
collating of IK 
narratives with peer-
reviewed scientific 
studies. Narratives 
overlaid on GIS map 
of climate change 
impact studies from 
1970- 2004 

Complementarity of integrating indigenous 
knowledge (IK) with Global climate 
assessments, which have largely excluded IK 
from their reports. IK filling in gaps of 
conventional science by providing important 
information on climate patterns in regions 
with limited instrumental records. Narratives 
provide needed human dimension to climate 
change research, a voice to resource 
dependent communities and insight into 
adaptive strategies.  
 

Alexander et 
al. (2011) 

Canada Evaluation of 

knowledge co-

production as a 
mechanism for 
learning and 
adaptation in a co-
management 
arrangement 

Inuit and Inuvialuit 
community 
members, resource 
managers and 
government 
officials 

Interviews, 
participant 
observation and 
document analysis 

Importance of long-term commitment to 
institutional building, diverse modes of 
interaction, deliberation and communication. 
Knowledge integration noted to be a 
dimension of knowledge co-production, but 
the latter having greater potential to avoid 
simple knowledge without meaningful 
participation.   
 

Armitage et al. 
(2011) 

Canada  Evaluation of 

knowledge 

integration (TEK 
and conventional 
science) for 
adaptive co-
management of 
grizzly bear-human 
conflict 

Aboriginal hunter 
and trapper 
committees, 
Wildlife 
Management 
councils, Territorial 
governments 

Interviews Horizontal and vertical institutional 
connections and leadership important for 
facilitating knowledge integration.  
 

Clark & 
Slocombe 
(2011) 

Canada Evaluation of 

knowledge co-

production for 
building adaptive 
capacity within a 
co-management 
arrangement 

Inuit communities 
and resource 
managers 

Interviews Knowledge co-production enhanced channels 
of communication, built trust, fostered the 
formation of problem solving networks and 
facilitated social learning, but it is a long-term 
investment. Knowledge integration acted as 
an important dimension of co-production. 
Compartmentalized views of knowledge and 

Dale & 
Armitage 
(2011) 
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top-down management approaches pose 
barriers to adaptive and collaborative 
management.  
 

Netherlands Evaluation of 

knowledge co-

production for 
effective water 
management  
 

Scientists, civil 
servants and policy 
makers and local 
citizens 

Comparative case 
study with 
participant 
observation, 
document analysis 
and interviews 

Inherent challenges for engaging in 
knowledge co-production between local 
citizens and other stakeholders, leading to 
issues of legitimacy in policy relevant 
knowledge production and decision-making. 
Resistance to incorporate citizen knowledge 
in decision-making by policy-makers. 
Knowledge co-production occurred between 
other stakeholders due to discipline 
congruence and institutionalized 
relationships.  
 

Edelenbos et 
al. (2011) 

Australia  Knowledge 

integration and 
validation (IK and 
western science) 
for invasive fish 
management within 
a co-management 
arrangement  

Aboriginal elders 
and research 
scientists 

Interviews and 
laboratory 
experiments  

Knowledge validation project initiated by 
aboriginal elders and not deemed as 
disrespectful, but empowering and necessary 
for their knowledge to be understood and 
appreciated by scientists. Process of 
knowledge socialization whereby new 
knowledge goes through steps of 
comprehension, contextualization and 
valuation, built trust and mutual respect. 
Argue for importance of collaborative cultural 
cross validation (not just one-sided evaluation 
of IK), which could result in knowledge co-
production. 
 

Gratani et al. 
(2011) 

Australia Evaluation of 

knowledge 

integration (TEK 
and western 
science) for 
fisheries 
management in an 
emerging co-
management 
arrangement 

Melanesian local 
fishers, fishery 
managers and 
scientists 

Surveys Different application of knowledge 
integration across fisheries. Importance of 
cultural keystone species (provide significant 
ecosystem services for communities and 
international conservation interests) for 
stimulating cross-cultural resource adaptive 
governance and potential local co-
management efforts.  

 

 

Butler et al. 
(2012) 
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Philippines  Knowledge 

integration (LEK 
and conventional 
science) for flood 
risk assessment and 
disaster risk 
reduction planning  

Community 
members, local and 
municipal 
government, 
regional NGO, 
research scientists 

Participatory 
mapping  

Participatory mapping facilitated the broad 
understanding of geo-referenced data and the 
incorporation of LEK and scientific 
knowledge about vulnerability through 
collaborative learning. Foundation of trust 
and communication key for engaging a wide 
array of stakeholders. Process empowered the 
most marginalized people by providing access 
to scientific knowledge and legitimizing their 
LEK.  

Cadag & 
Gaillard 
(2012) 

Ethiopia Traditional 
ecological 
knowledge 
documentation and 
integration for fire 
management plan 
development  

Local pastoralists 
and research 
scientists 

Interviews, field 
observations, and 
landscape level 
vegetation age 
structure analysis  

TEK of pastoralists revealed high level of 
understanding regarding fire behavior and 
effects. Observations and vegetation analyses 
corroborated sustainable nature of traditional 
burning practices that is based on community 
needs of increasing grazing value, controlling 
a toxic caterpillar, and reducing predator 
attacks, but also provides important firebreaks 
and diverse vegetation mosaic. TEK could 
inform sanctioned government management 
fire planning. 

Johansson et 
al. (2012) 

Canada  Knowledge co-

production (TEK 
and conventional 
science) for 
enhanced 
community-based 
participatory 
research  

First Nation 
community 
members and 
research scientists  

Interviews, 
workshops, 
participant 
observation, and 
field-based surveys 

Knowledge co-production, in concert with a 
community-defined research agenda, 
collaborative equitable partnerships at all 
phases of research, an emphasis on local 
relevance, and a long-term commitment, 
fostered critical basis for enacting 
environmental protection and strengthening 
local institutions. Key outcome being 
knowledge exchange within and beyond the 
native community. 

Mulrennan et 
al. (2012) 

Colombia Ethnographic 
evaluation of 

knowledge co-

production for 
decision-making 
efforts in a co-
management 
arrangement 

Scientific 
researchers, park 
staff and 
indigenous Tikuna 
community 
members 

Participant 
observation, focus 
groups, informal 
interviews, 
workshops 

No evidence of co-produced knowledge 
informing management. Management efforts 
not built on open deliberation around 
collectively created knowledge, but rather a 
need to create, maintain or mobilize multi-
scale social networks to respond to crises and 
long-term social-ecological dynamics. 
Noticeable lack of trust between many 
stakeholders. Importance of understanding 

Ungar & 
Strand (2012) 
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socio-political underpinnings.  

Russia Knowledge 

integration (LEK 
and conventional 
science) for 
enhanced climate 
change knowledge 
exchange  

Native 
agropastoralists and 
research scientists  

Focus groups, 
interviews, surveys, 
and comparison of 
community 
perceptions with 
regional climate 
change data  

Knowledge integration and participatory 
knowledge exchange process proved 
beneficial for more quickly fostering 
understanding among stakeholders of global 
and local levels of climate change impacts on 
landscapes and livelihoods.  

Crate & 
Fedorov 
(2013) 

Switzerland  Knowledge 

integration (LEK) 
into spatially 
explicit valuation 
of forest ecosystem 
services  

Scientific 
researchers, 
environmental 
economists, local 
farming community 
experts 

Surveys, mapping 
workshops, GIS-
based Bayesian 
Networks 

Iterative process important for improving 
ecosystem services value maps and reduced 
uncertainty by filling in data gaps. Enhanced 
mutual learning that could foster adaptive 
resource management and understanding of 
valuation of forest ecosystem services under 
land use and climate change impacts. 
 

Gret-
Reganmey et 
al. (2013) 

Australia  Evaluation of 
knowledge 
exchange dynamics 
and integration for 
coastal adaptation 
planning  

State and local 
government, 
research scientists, 
NGOs, community 
groups, coastal 
catchment 
representatives, and 
industry 
representatives  

Semi-structured 
interviews  

Knowledge exchange and integration greatly 
limited. Divergence in views of legitimacy of 
different forms of knowledge for decision-
making, with knowledge heavily fragmented 
across sources that do not engage one another 
or openly share information. Need for more 
social and collaborative learning processes 
and move away from linear, technocratic, top-
down knowledge transfer, to integrating 
diverse knowledge forms. 

O’Toole & 
Coffey (2013)  

Uruguay Evaluation of 
participatory 
research as a 

knowledge co-

production 
approach 

Artisanal fishers, 
government, 
university and 
NGO members 

Participant 
observation, 
interviews and 
workshops 

Participatory research enhanced trust 
building, shared learning and knowledge co-
production among stakeholders. This is 
argued to potentially pave the way towards 
future co-management arrangements. 
Knowledge integration noted to be a critical 
part of knowledge co-production, to facilitate 
trust-building and mutual respect, which are 
needed for power and responsibility sharing 
in co-management arrangements. 
  
 

Trimble & 
Berkes (2013) 

Botswana Knowledge 

integration (LEK, 
Local tribal 
communities, 

Interviews, 
workshops, 

LEK integration important for defining 
sustainability goals and understanding drivers 

Perkins et al. 
(2013) 
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and conventional 
science) for the 
Desertification 
Mitigation and 
Remediation of 
Land Project  

scientific 
researchers 

participatory 
modeling, and 
process-based 
modeling  

of desertification. Scientific knowledge 
provided insights into degradation indicators. 
Modeling provided important scenario 
analyses including scope and impacts for 
implementing projects like biogas production. 
Challenges to this approach include high 
poverty and illiteracy rates, slowing the 
initiation of projects and local technology 
access. 

Mexico Knowledge 

integration (LEK) 
of communal forest 
owners for 
sustainable forest 
management 

Local land owners 
and research 
scientists 

Surveys and 
interviews  

Incorporating LEK of communal forest 
owners through a deliberative and iterative 
setting (multiple engagements at different 
stages of the process) revealed shifts in forest 
owners’ preferences about sustainable forest 
management indicators. Importance of a 
participatory process that promoted shared 
learning. 

Rodriguez-
Piñeros & 
Lewis (2013) 

Australia  Evaluating the 
utility of 

knowledge 

integration and 
interpretation (IK) 
for marine wildlife 
co-management 

Indigenous and 
non-indigenous 
Australian resource 
managers, 
government policy 
makers and 
academic 
researchers 

Interviews Indigenous and non-indigenous managers 
noted the utility of empirical information 
within indigenous and western knowledge 
systems. Long-term relationships built on 
trust and frequent communication critical. 
Argue that increasing respect for different 
ways of knowing will enhance collaborative 
co-management efforts. 

Weiss et al. 
(2013) 

United States Quantitative 
modeling approach 
to knowledge 

integration (LEK) 
and evaluation of 
variance in 
fisheries 
observations  

Local fishers and 
divers and 
scientific 
researchers 

Interviews and 
bootstrapping and 
statistical modeling 

Synthesizing LEK over 70 year period proved 
to be a valuable source of ecological 
information. Variation in local knowledge 
existed based of age group and information 
environments (characterized by how, when 
and where individuals acquired ecological 
information). Arguably this holistic nature of 
including diverse knowledge sources could 
overcome some issues of “shifting baseline 
syndrome” due to lack of long-term 
ecological data that may lead to 
misconceptions about the ecological integrity 
of a given system. 
 

Beaudreau & 
Levin (2014) 

Alaska Knowledge Iñupiat and Participant TEK consensus was found to be highly Carothers et al. 
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integration (TEK) 
for measuring 
perceptions of 
climate change and 
related impacts on 
subsistence 
practices 

Athabascan 
communities and 
scientific 
researchers  

observations, 
interviews, and 
cultural consensus 
analysis  

consistent in regards to local perceptions of a 
broad range of changes impacting subsistence 
practices, but variation existed within 
communities regarding certain observations 
(i.e. precipitation patterns). Combining 
cultural consensus and detailed ethnography 
noted to be an important tool for resource 
management.    

(2014) 

Peru Evaluation of 

knowledge 

integration (LEK) 
for a river basin 
council 

Farmers, 
government, and 
mining 
representatives  

Interviews, 
participatory 
mapping, and a 
workshop 

Incremental changes have been made through 
greater stakeholder participation but 
traditional power structures have not changed 
(including heavy mining influence). 
Knowledge integration not occurring in a 
meaningful way due to barriers such as a lack 
of dialogue and divergent views of water as 
“commodity” versus “social” or socio-
ecological good”, but could offer an 
opportunity to transform governance if 
engaged.   

Filippi et al. 
(2014) 

Germany Knowledge 

integration 

(conventional 
science across 
fields) for climate 
scenario planning  

Research scientists 
and government 
agencies  

Workshops, focus 
groups, interviews, 
and participatory 
mapping  

Scenario planning process facilitated social 
learning through a platform of diverse 
knowledge integration and exchange (from 
distinct epistemologies) and may enhance 
adaptive capacity. Collaborative process 
further enhanced by participatory mapping 
exercises. 

Hagemeier-
Klose et al. 
(2014) 

Phillipines  Evaluation of 

knowledge 

integration (TEK 
and conventional 
science) for 
integrated water 
management 

Members of civil 
society, public, 
academic, 
corporate, and other 
sectors (not 
defined) 

Interviews and 
surveys 

Evidence of integration of TEK and scientific 
knowledge into local decision-making. 
Critical nature of social capital, linked with 
leadership and flexible institutional network. 
These things facilitated creating a shared 
vision for management among stakeholders. 
High bonding social capital but need for more 
bridging relationships. Stakeholder dialogue 
and participatory networks deemed important. 

Hearne & 
Powell (2014) 

Senegal Knowledge 

integration (LEK) 
of local land users 
with remote 
sensing imagery to 

Researchers and 
local land users 
(agricultural, 
pastoral, and agro-
pastoral) 

Time series of 
remote sensing 
imagery, 
participatory 
methods (focus 

LEK of land users corroborated re-greening 
trends (reversing of desertification) found in 
remote sensing analyses, but challenged 
dominant assumptions of re-greening overall 
improving the landscape. Instead degradation 

Herrmann et 
al. (2014) 
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understand 
perceptions and 
trends in land 
degradation and 
desertification 

groups, mapping 
and matrix scoring)  

a common theme related to undesired shifts in 
species compositions. Revealed importance of 
LEK for interpreting remote sensing trends 
and assisting with monitoring and 
rehabilitation efforts.  

Australia Evaluation of 

knowledge 

integration (IK 
and conventional 
science) for 
improved water 
planning/ 
management  

University research 
scientists and 
indigenous 
landowners from 
three language 
groups 

Focus groups and 
interviews 

Comparison of knowledge systems revealed 
both to compliment each other. New 
knowledge was generated for both scientific 
and indigenous participants (knowledge co-
production coming out of integration 
process). Process enhanced scientific 
knowledge of fish species but also provided 
opportunities for indigenous landowners to 
share stories about fish, including their 
cultural significance and assisted in building 
community capacity to contribute to water 
management planning.  

Jackson et al. 
(2014) 

United 
Kingdom  

Evaluation of 

knowledge 

integration 
(agency 
knowledge) within 
a central 
government 
department for 
environmental risk 
governance 

Employees across 
different teams 
within the central 
government 
department  

Semi-structured 
interviews  

Lateral knowledge integration across teams 
working in different policy areas found to be 
key source of new knowledge and learning 
(facilitated by open, informal communication 
and collaboration). Governance structures 
focused on centralized and vertical knowledge 
transfer do not support this informal 
knowledge transfer and integration. Potential 
vulnerability of knowledge loss with staff 
turnover. 

Mauelshagen 
et al. (2014) 

United 
Kingdom 

Evaluation of local 
and expert 
knowledge 
exchange, 
generation, and 
integration across 
13 environmental 
management 
research projects  

Project experts 
(project managers, 
academic 
researchers, and 
non-academic 
stakeholders) 

Document analysis, 
expert workshop, 
and interviews  

Evaluation produced a set of research 
principles for conducting knowledge 
exchange, generation and integration work 
that need to be designed into research, 
including the needs of diverse stakeholders 
being systematically represented, and long-
term relationships built on trust and open 
dialogue between researchers and 
stakeholders to produce new knowledge. 
Process must be flexible, monitored and 
adapted.  

Reed et al. 
(2014) 

Switzerland Evaluation of 

knowledge co-

Community 
members, 

Participatory 
observations and 

Meaningful deliberative dialogue and 
knowledge co-production coming out of 

Schneider & 
Rist (2014) 
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production for 
transdiciplinary 
water governance 

recreation 
managers and 
scientists 

scenario planning, 
rapid appraisals, 
focus groups 

transdisciplinary process. Iterative process 
that brought knowledge back to stakeholders 
at multiple cycles facilitated learning and trust 
building. Requires great flexibility of 
stakeholders and creating conditions where 
different forms of knowledge are on equal 
footing. 
 

Tanzania Evaluation of 

Knowledge co-

production for 
local scale climate 
change monitoring  

U.S. and Tanzanian 
researchers and 
local communities 

Participatory data 
collection and 
analysis. Scientific 
observations 
analyzed in light of 
TEK. Interviews 

Much congruence between TEK and 
conventional scientific observations. 
Empowered communities to explore local 
climate adaptation and policy-making and 
facilitated sharing of information between 
districts. Trust critical to support an 
environment conducive of knowledge co-
production.  

Shaffer (2014) 

Uruguay  Evaluation of 

knowledge co-

production (LEK 
and conventional 
science) for a 
coastal artisanal 
fishery case 

Local fishers, 
government 
representatives, 
academic 
researchers, and 
NGO 
representatives 

Case study process 
evaluation, 
interviews, and 
workshops 

Participatory research approaches, which 
involved interested stakeholders at all stages 
of the research, collective decision-making 
through deliberation and adaptability through 
iterative cycles, produced positive outcomes 
of knowledge co-production, learning, 
strengthened social networks, and conflict 
resolution. 

Trimble & 
Lazaro (2014)  

Tibet Knowledge co-

production 
(diverse 
practitioner 
knowledge) for 
preserving and 
enhancing 
traditional Tibetan 
medicinal practices 

Traditional Tibetan 
medicine 
practitioners and 
scientific 
researchers  

Workshop 
(collaborative event 
ethnography), 
participant 
observation, and 
interviews  

Knowledge co-production platform facilitated 
shared learning as well as co-generation of 
tangible and intangible things (shared 
knowledge and medicines). Mutual respect for 
different forms of knowledge, flexibility and 
adaptability in how the process was 
conducted, a neutral workshop site, and use of 
Tibetan language provided added 
opportunities for enhanced knowledge co-
production and empower participants. 

Blaikie et al. 
(2015) 

Finland  Evaluation of 
knowledge sharing 
and co-production 
(LEK and 
conventional 
science) for 

Forest owners and 
forest professionals 
(government 
agencies) 

Focus groups  Potential for knowledge co-production exists, 
but not occurring extensively. Expert-led 
knowledge of government forest professionals 
dominates in a one-way transfer, with some 
informal knowledge communities happening 
among rural neighbors and families. Need for 

Hamunen et al. 
(2015) 
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silviculture  learning environments where participation can 
occur at multiple levels.   

Arctic 
Observing 
Summit 
(multiple Arctic 
communities) 

Evaluation of 

knowledge co-

production (TEK 
and conventional 
science) for 
community-based 
monitoring 

Indigenous 
communities, 
resource managers, 
and scientific 
researchers  

Literature review 
and observations at 
2013 Arctic 
Observing Summit  

The state of community-based monitoring in 
the Arctic shows processes focused on 
community needs and interests where TEK 
and science produce fine-grained local-scale 
data, readily accessible to communities and 
decision-makers. Need for connecting efforts, 
as they are often undocumented and 
disconnected among wider networks. 

Johnson et al. 
(2015) 

South Africa Knowledge 

integration (LEK) 
and comparison 
with remotely 
sensed and field 
data to assess 
rangeland 
conditions and 
assist in remote 
rangeland 
monitoring 

Livestock farmers, 
research scientists  

Remote sensing, 
statistical variance 
analysis, photo 
elicitation and 
participatory field 
evaluations 
 

Local knowledge explained significant 
differences in field sampled vegetation 
classes. Remote sensing correlated poorly to 
field-measured vegetation classes to do 
spectral noise and high iron oxide content of 
soil, revealing LEK to be highly useful for 
monitoring efforts.  
 

Kong et al. 
(2015) 

 
 

Study Location Mechanism(s) Stakeholders Methods Findings  Citation 

Alaska  Knowledge 

integration (TEK 
and LEK) for risk 
assessment of 
stakeholder-
defined 
provisioning 
ecosystem services 
to invasive species 
under current and 
future climate 
conditions 

Native Alaskan 
tribal 
representatives, 
federal and state 
land managers, 
research scientists  

Integrative 
geospatial modeling: 
Species distribution 
modeling, 
participant 
observation, 
informal interviews  

Knowledge integration provided an important 
rapid appraisal opportunity for the co-
definition of critical conservation targets and 
threatening disturbance drives between LEK 
of land management agencies and TEK of 
Native Alaskan tribal representatives. Diverse 
land manager LEK facilitated access to an 
array of spatial data sets incorporated into 
analyses.  

Luizza et al. 
(In Review) 

Ethiopia  Knowledge 

integration and 

knowledge co-

production 

Indigenous 
pastoralists and 
research scientists  

Integrative 
geospatial modeling: 
Species distribution 
modeling, 

Pastoral revealed a new invasive species in 
the region, unknown to research scientist 
stakeholders and receiving little attention 
from government agencies and NGOs. 

Luizza et al. 
(Accepted) 
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(indigenous 
pastoral 
knowledge) for risk 
of stakeholder-
defined 
provisioning 
ecosystem services 
to invasive species 

participant 
observation, focus 
group interviews, 
participatory data 
collection, 
participatory 
mapping 

Participatory approaches of knowledge co-
production empowered communities and 
provided setting of mutual respect for 
different knowledge sources, facilitating 
shared learning and trust building. Much 
congruence between pastoral knowledge and 
conventional scientific observations, with the 
former expanding scientific understanding of 
the invasive species in question.  
 

 


