
The Robustness of Resource Allocation in Parallel
and Distributed Computing Systems

Shoukat Ali
University of Missouri-Rolla
Department of Electrical and

Computer Engineering
Rolla, MO 65409–0040

Email: shoukat@umr.edu

Howard Jay Siegel‡§

and Anthony A. Maciejewski‡

Colorado State University
‡Department of Electrical and Computer Engineering

§Department of Computer Science
Fort Collins, CO 80523–1373

Email: {hj, aam}@colostate.edu

Abstract— This paper gives an overview of the material to be
discussed in the invited keynote presentation by H. J. Siegel; it
summarizes our research in [1].

Performing computing and communication tasks on parallel
and distributed systems involves the coordinated use of different
types of machines, networks, interfaces, and other resources.
Decisions about how best to allocate resources are often based
on estimated values of task and system parameters, due to
uncertainties in the system environment. An important research
problem is the development of resource management strategies
that can guarantee a particular system performance given such
uncertainties. We have designed a methodology for deriving the
degree of robustness of a resource allocation - the maximum
amount of collective uncertainty in system parameters within
which a user-specified level of system performance (QoS) can be
guaranteed. Our four-step procedure for deriving a robustness
metric for an arbitrary system will be presented. We will illustrate
this procedure and its usefulness by deriving robustness metrics
for some example distributed systems.

I. I NTRODUCTION

This paper gives an overview of the material to be discussed
in the invited keynote presentation by H. J. Siegel; it summa-
rizes our research in [1].

This research focusses on the robustness of a resource
allocation in parallel and distributed computing systems. What
does robustness mean? Some dictionary definitions of robust-
ness are: (a) strong and healthy, as in “a robust person” or “a
robust mind,” (b) sturdy or strongly formed, as in “a robust
plastic,” (c) suited to or requiring strength as in “a robust
exercise” or “robust work,” (d) firm in purpose or outlook as
in “robust faith,” (e) full-bodied as in “robust coffee,” and (f)
rough or rude as in “stories laden with robust humor.”

In the context of resource allocation in parallel and dis-
tributed computing systems, how is the concept of robustness
defined? Parallel and distributed systems may operate in an en-
vironment where certain system performance features degrade
due to unpredictable circumstances, such as sudden machine
failures, higher than expected system load, or inaccuracies
in the estimation of system parameters (e.g., [2]–[8]). An

This research was supported by the DARPA/ITO Quorum Program through
the Office of Naval Research under Grant No. N00014-00-1-0599, and by
the Colorado State University George T. Abell Endowment. Some of the
equipment used was donated by Intel and Microsoft.

important question then arises: given a system design, what
extent of departure from the assumed circumstances will cause
a performance feature to be unacceptably degraded? That is,
how robust is the system? Before answering this question one
needs to clearly define robustness.

In the realm of distributed systems, robustness has been
defined in different ways by different researchers. According
to [6], robustness is the degree to which a system can
function correctly in the presence of inputs different from
those assumed. In a more general sense, [4] states that a
robust system continues to operate correctly across a wide
range of operational conditions. Robustness, according to [5],
guarantees the maintenance of certain desired system charac-
teristics despite fluctuations in the behavior of its component
parts or its environment. The concept of robustness, as used
in this research, is similar to that in [5]. Like [5], this work
emphasizes that robustness should be defined for a given set of
system features, with a given set of perturbations applied to the
system. This research investigates the robustness of resource
allocation in parallel and distributed systems, and accordingly
customizes the definition of robustness.

This paper argues that any claim of robustness for a given
system should be followed by three items of information:
(a) what behavior of the system makes it robust? (b) what
uncertainties is the system robust against? (c) quantitatively,
exactly how robust is the system? In this paper, we want
to know what robustness means in the context of resource
allocation. How is it quantified? How is it measured? Why
does it matter?

A resource allocation is defined to berobust with respect
to specified system performance features against perturbations
in specified system parametersif degradation in these features
is limited when the perturbations occur. For example, if a
resource allocation has been declared to be robust with respect
to satisfying a throughput requirement against perturbations
in the system load, then the system, configured under that
allocation, should continue to operate without a throughput
violation when the system load increases. The immediate
question is: what is thedegreeof robustness? That is, for
the example given above, how much can the system load
increase before a throughput violation occurs? This research

Administrator
Text Box
0-7695-2210-6/04 $20.00 © 2004

addresses this question, and others related to it, by formulating
the mathematical description of a metric that evaluates the
robustness of a resource allocation with respect to certain
system performance features against multiple perturbations in
multiple system components and environmental conditions. In
addition, this work outlines a procedure called FePIA (named
after the four steps that constitute the procedure) for deriving a
robustness metric for an arbitrary system. For illustration, the
procedure is employed to derive robustness metrics for two
example distributed systems. The robustness metric and the
FePIA procedure for its derivation are the main contributions
of this paper.

The rest of the paper is organized as follows. Section
II describes the FePIA procedure mentioned above. It also
defines a generalized robustness metric. Derivations of this
metric for two example parallel and distributed systems are
given in Section III. Section IV presents some experiments
that highlight the usefulness of the robustness metric. Section
VI outlines some future work, and Section VII concludes the
paper.

II. GENERALIZED ROBUSTNESSMETRIC

This section presents a general procedure, calledFePIA, for
deriving a general robustness metric for any desired computing
environment. The name for the above procedure stands for
identifying the performancefeatures, theperturbation param-
eters, theimpact of perturbation parameters on performance
features, and theanalysis to determine the robustness. Specific
examples illustrating the application of the FePIA procedure
to sample systems are given in the next section. Each step of
the FePIA procedure is now described.
1) Describe quantitatively the requirement that makes the
system robust. Based on thisrobustness requirement, deter-
mine the QoS performance features that should be limited
in variation to ensure that the robustness requirement is met.
Identify the acceptable variation for these feature values as
a result of uncertainties in system parameters. Consider an
example where (a) the QoS performance feature ismakespan
(the total time it takes to complete the execution of a set of
applications) for a given resource allocation, (b) the acceptable
variation is up to a 30% increase of the makespan that was
calculated for the given resource allocation using estimated
execution times of applications on the machines they are
assigned, and (c) the uncertainties in system parameters are
inaccuracies in the estimates of these execution times.

Mathematically, letΦ be the set of system performance
features that should be limited in variation. For each element
φi ∈ Φ, quantitatively describe the tolerable variation inφi.
Let

〈
βmin

i , βmax
i

〉
be a tuple that gives the bounds of the

tolerable variation in the system featureφi. For the makespan
example,φi is the time thei-th machine finishes its assigned
applications, and its corresponding

〈
βmin

i , βmax
i

〉
could be

〈0, 1.3× (estimated makespan value)〉.
2) Identify all of the system and environment parameters
whose values may impact the QoS performance features se-
lected in step 1. These are called theperturbation parameters

(these are similar to hazards in [3]), and the performance
features are required to be robust with respect to these per-
turbation parameters. For the makespan example above, the
resource allocation (and its associated estimated makespan)
was based on the estimated application execution times. It
is desired that the makespan be robust (stay within 130%
of its estimated value) with respect to uncertainties in these
estimated execution times.

Mathematically, letΠ be the set of perturbation parameters.
It is assumed that the elements ofΠ are vectors. Letπj be
the j-th element ofΠ. For the makespan example,πj could
be the vector composed of the actual application execution
times, i.e., thei-th element ofπj is the actual execution
time of the i-th application on the machine it was assigned.
In general, representation of the perturbation parameters as
separate elements ofΠ would be based on their nature or
kind (e.g., message length variables inπ1 and computation
time variables inπ2).
3) Identify the impact of the perturbation parameters in step
2 on the system performance features in step 1. For the
makespan example, the sum of the actual execution times
for all of the applications assigned a given machine is the
time when that machine completes its applications. Note that
1(b) implies that the actual time each machine finishes its
applications must be within the acceptable variation.

Mathematically, for everyφi ∈ Φ, determine the relation-
ship φi = fij(πj), if any, that relatesφi to πj . In this
expression,fij is a function that mapsπj to φi. For the
makespan example,φi is the finishing time for machinemi,
andfij would be the sum of execution times for applications
assigned to machinemi. The rest of this discussion will
be developed assuming only one element inΠ. The case
where multiple perturbation parameters can affect a givenφi

simultaneously is examined in [1].
4) The last step is to determine the smallest collective variation
in the values of perturbation parameters identified in step 2 that
will cause any of the performance features identified in step 1
to violate its acceptable variation. This will be the degree of
robustness of the given resource allocation. For the makespan
example, this will be some quantification of the total amount
of inaccuracy in the execution times estimates allowable before
the actual makespan exceeds 130% of its estimated value.

Mathematically, for everyφi ∈ Φ, determine theboundary
values ofπj , i.e., the values satisfying theboundary relation-
shipsfij(πj) = βmin

i andfij(πj) = βmax
i . (If πj is a discrete

variable then the boundary values correspond to the closest
values that bracket each boundary relationship. See [1] for an
example.) These relationships separate the region of robust
operation from that of non-robust operation. Find the smallest
perturbation inπj that causes anyφi ∈ Φ to exceed the bounds〈
βmin

i , βmax
i

〉
imposed on it by the robustness requirement.

Specifically, letπorig
j be the value ofπj at which the system

is originally assumed to operate. However, due to inaccuracies
in the estimated parameters or changes in the environment, the
value of the variableπj might differ from its assumed value.

This change inπj can occur in different “directions” depend-
ing on the relative differences in its individual components.
Assuming that no information is available about the relative
differences, all values ofπj are possible. Figure 1 illustrates
this concept for a single feature,φi, and a two-element
perturbation vectorπj ∈ R2. The curve shown in Figure 1
plots the set of boundary points{πj|| fij(πj) = βmax

i } for
a resource allocationµ. For this figure, the set of boundary
points

{
πj|| fij(πj) = βmin

i

}
is given by the points on the

πj1-axis andπj2-axis.
The region enclosed by the axes and the curve gives the

values ofπj for which the system is robust with respect to
φi. For a vectorx = [x1 x2 · · · xn]T, let ‖x‖2 be the `2-

norm(Euclidean norm) of the vector, defined by

√
n∑

r=1
x2

r. The

point on the curve marked asπ?
j (φi) has the property that the

Euclidean distance fromπorig
j to π?

j (φi), ‖π?
j (φi)−πorig

j ‖2, is
the smallest over all such distances fromπorig

j to a point on the
curve. An important interpretation ofπ?

j (φi) is that the value
‖π?

j (φi) − πorig
j ‖2 gives the largest Euclidean distance that

the variableπj can change inanydirection from the assumed
value of πorig

j without the performance featureφi exceeding
the tolerable variation. Let the distance‖π?

j (φi)− πorig
j ‖2 be

called therobustness radius, rµ(φi, πj), of φi againstπj for
resource allocationµ. Mathematically,

rµ(φi, πj) = min
πj : (fij(πj)=βmax

i)∨(fij(πj)=βmin
i)

‖πj − πorig
j ‖2.

(1)
This work definesrµ(φi, πj) to be the robustness radius
of resource allocationµ with respect to performance feature
φi against the perturbation parameterπj . The computation
complexity of calculating the robustness radius is discussed in
[1].

λ
init

orig

ππ

ππ

(φi)

j

j rµ(φi, j)ππ

j| fij(j) =ππ{ππ βmax}i

*

2

πj1

πj2

Fig. 1. Some possible directions of increase of the perturbation pa-
rameter πj , and the direction of the smallest increase. The curve plots
the set of points,

{
πj || fij(πj) = βmax

i

}
. The set of boundary points,{

πj || fij(πj) = βmin
i

}
is given by the points on theπj1-axis andπj2-axis.

The robustness definition can be extended easily for all
φi ∈ Φ. It is simply the minimum of all robustness radii.
Mathematically, let

ρµ(Φ, πj) = min
φi∈ Φ

(rµ(φi, πj)) . (2)

Then,ρµ(Φ, πj) is the robustness metric of resource alloca-
tion µ with respect to the performance feature setΦ against
the perturbation parameterπj .

Even though thè2-norm has been used for the robustness
radius in this general formulation, in practice, the choice of a
norm should depend on the particular environment for which
a robustness measure is being sought. Reference [1] gives an
example situation where thè1-norm is preferred over thè2-
norm.

In addition, in some situations, changes in some elements
of πj may be more probable than changes in other elements.
In such cases, one may be able to modify the distance
calculation so that the contribution from an element with a
larger probability to change has a proportionally larger weight.
This is a subject for future study.

III. D ERIVATIONS OF ROBUSTNESSMETRIC FOR

EXAMPLE SYSTEMS

A. Independent Application Allocation System

The first example derivation of the robustness metric is for
a system that assigns a set of independent applications to a
set of machines (e.g., [9]). In this system, it is required that
the makespan (defined as the completion time for the entire
set of applications) be robust against errors in application
execution time estimates. Specifically, the actual makespan
under the perturbed execution times must be no more than a
certain factor times the estimated makespan calculated using
the assumed execution times. It is obvious that the larger the
“factor,” the larger the robustness. Assuming that`2-norm is
used, one might also reason that as the number of applications
assigned to a given machine increases, the change in the
finishing time for that machine will increase due to errors
in the application computation times. As will be seen shortly,
the instantiation of the general framework for this system does
reflect this intuition.

A brief description of the system model is now given.
The applications are assumed to be independent, i.e., no
communications between the applications are needed. The set
A of applications is to be assigned to a setM of machines so
as to minimize the makespan (defined as the finishing time of
the machine that finishes last). Each machine executes a single
application at a time (i.e., no multi-tasking), in the order in
which the applications are assigned. LetCij be theestimated
time to compute(ETC) for applicationai on machinemj . It is
assumed thatCij values are known for alli, j, and a resource
allocationµ is determined using the ETC values. In addition,
let Fj be the time at whichmj finishes executing all of the
applications assigned to it.

Assume that unknown inaccuracies in the ETC values are
expected, requiring that the resource allocationµ be robust

against them. More specifically, it is required that, for a given
resource allocation, its actual makespan valueM (calculated
considering the effects of ETC errors) may be no more than
τ times itsestimated value, Mest. The estimated value of the
makespan is the value calculated assuming the estimated ETC
values. Following step 1 of the FePIA procedure in Section
II, the system performance features that should be limited in
variation to ensure the makespan robustness are the finishing
times of the machines. That is,Φ = {Fj|| 1 ≤ j ≤ |M|} .

According to step 2 of the FePIA procedure, the pertur-
bation parameter needs to be defined. LetCest

i be the ETC
value for applicationai on the machine where it is assigned.
Let Ci be equal to the actual computation time value (Cest

i

plus the estimation error). In addition, letC be the vector of
the Ci values, such thatC = [C1 C2 · · · C|A|]. Similarly,
Cest = [Cest

1 Cest
2 · · · Cest

|A|]. The vectorC is the perturbation
parameter for this analysis.

In accordance with step 3 of the FePIA procedure,Fj has
to be expressed as a function ofC. To that end,

Fj(C) =
∑

i: ai is assigned tomj

Ci. (3)

Note that the finishing time of a given machine depends
only on the actual execution times of the applications as-
signed to that machine, and is independent of the finish-
ing times of the other machines. Following step 4 of the
FePIA procedure, the set of boundary relationships corre-
sponding to the set of performance features is given by
{Fj(C) = τMest|| 1 ≤ j ≤ |M|} .

For a two-application system,C corresponds toπj in Figure
1. Similarly, C1 and C2 correspond toπj1 and πj2, respec-
tively. The termsCest, Fj(C), andτMest correspond toπorig

j ,
fij(πj), and βmax

i , respectively. The boundary relationship
“Fj(C) = τMest” corresponds to the boundary relationship
“fij(πj) = βmax

i .”
From Equation 1, the robustness radius ofFj againstC is

given by

rµ(Fj , C) = min
C: Fj(C)=τMest

‖C −Cest‖2 (4)

That is, if the Euclidean distance between any vector of
the actual execution times and the vector of the estimated
execution times is no larger thanrµ(Fj , C), then the finishing
time of machinemj will be at mostτ times the estimated
makespan value.

Note that the right hand side in Equation 4 can be interpreted
as the perpendicular distance from the pointCest to the
hyperplane described by the equationτMest− Fj(C) = 0.
Using the point-to-plane distance formula [10], Equation 4
reduces to

rµ(Fj , C) =
τMest− Fj(Cest)√

number of applications assigned tomj

(5)

The robustness metric, from Equation 2, isρµ(Φ, C) =
minFj ∈Φ rµ(Fj , C). That is, if the Euclidean distance be-
tween any vector of the actual execution times and the vector

of the estimated execution times is no larger thanρµ(Φ, C),
then the actual makespan will be at mostτ times the estimated
makespan value. The value ofρµ(Φ, C) has the units ofC,
namely time.

B. The HiPer-D System

The second example derivation of the robustness metric
is for a HiPer-D [11] like system that assigns a set of
continuously executing, communicating applications to a set of
machines. It is required that the system be robust with respect
to certain QoS attributes against unforeseen increases in the
“system load.”

The HiPer-D system model used here was developed in [12],
and is summarized here for completeness. The system consists
of heterogeneous sets of sensors, applications, machines, and
actuators. Each machine is capable of multi-tasking, executing
the applications assigned to it in a round robin fashion.
Similarly, a given network link is multi-tasked among all
data transfers using that link. Each sensor produces data
periodically at a certain rate, and the resulting data streams
are input into applications. The applications process the data
and send the output to other applications or to actuators. The
applications and the data transfers between them are modelled
with a directed acyclic graph, shown in Figure 2. The figure

path 1

path 2

path 3

path 4

S1

S2

S3

d

e

b

c

Fig. 2. The DAG model for the applications (circles) and data transfers (ar-
rows). The diamonds and rectangles denote sensors and actuators, respectively.
The dashed lines enclose each path formed by the applications.

also shows a number ofpaths (enclosed by dashed lines)
formed by the applications. Apath is a chain of producer-
consumer pairs that starts at a sensor (thedriving sensor) and
ends at an actuator (if it is atrigger path) or at a multiple-input
application (if it is anupdate path). In the context of Figure
2, path 1 is a trigger path, and path 2 is an update path. In
a real system, applicationd could be a missile firing program
that produces an order to fire. It needs target coordinates from
application b in path 1, and an updated map of the terrain
from applicationc in path 2. Naturally, applicationd must
respond to any output fromb, but must not issue fire orders if
it receives an output fromc alone; such an output is used only
to update an internal database. So whiled is a multiple input
application, the rate at which it produces data is equal to the

rate at which the trigger applicationb produces data (in the
HiPer-D model). That rate, in turn, equals the rate at which the
driving sensor,S1, produces data. The problem specification
indicates the path to which each application belongs, and the
corresponding driving sensor.

Let P be the set of all paths, andPk be the list of appli-
cations that belong to thek-th path. Note that an application
may be present in multiple paths. As in Subsection III-A,A
is the set of applications.

The sensors constitute the input interface of the system to
the external world. Let the maximum periodic data output
rate from a given sensor be called itsoutput data rate. The
minimum throughput constraintstates that the computation or
communication time of any application inPk is required to
be no larger than the reciprocal of the output data rate of the
driving sensor forPk. For applicationai ∈ Pk, let R(ai)
be set to the output data rate of the driving sensor forPk.
In addition, letT c

ij be the computation time for applicationai

assigned to machinemj . Also, letT n
ip be the time to send data

from applicationai to applicationap. Because this analysis
is being carried out for a specific resource allocation, the
machine where a given application is assigned is known. It is
assumed thatai is assigned tomj , and the machine subscript
for T c

ij is omitted in the ensuing analysis for clarity unless the
intent is to show the relationship between execution times of
ai at various possible machines.

The maximum end-to-end latencyconstraint states that, for
a given pathPk, the time taken between the instant the driving
sensor outputs a data set until the instant the actuator or the
multiple-input application fed by the path receives the result
of the computation on that data set must be no greater than
a given value,Lmax

k . Let Lk be the actual (as opposed to the
maximum allowed) value of the end-to-end latency forPk.
The quantityLk can be found by adding the computation and
communication times for all applications inPk (including any
sensor or actuator communications). LetD(ai) be the set of
successor applications ofai. Then,

Lk =
∑

i: ai∈Pk

p: (ap∈Pk)∧(ap∈D(ai))

[
T c

i + T n
ip

]
. (6)

It is desired that a given resource allocationµ of the system
be robust with respect to the satisfaction of two QoS attributes:
the latency and throughput constraints. Following step 1 of
the FePIA procedure in Section II, the system performance
features that should be limited in variation are the latency
values for the paths and the computation and communication
time values for the applications. The setΦ is given by

Φ = {T c
i || 1 ≤ i ≤ |A|}⋃ {

T n
ip|| (1 ≤ i ≤ |A|) ∧ (for p whereap ∈ D(ai))

}⋃ {
Lk|| 1 ≤ k ≤ |P|

}
(7)

This system is expected to operate under uncertain outputs
from the sensors, requiring that the resource allocationµ be
robust against unpredictable workload increases in the sensor

outputs. Letλz be the workload output from thez-th sensor
in the set of sensors, and be defined as the number of objects
present in the most recent data set from that sensor. Thesystem
workload, λ, is the vector composed of the load values from
all sensors. Letλinit be the initial value ofλ, andλinit

i be the
initial value of thei-th member ofλinit . Following step 2, the
perturbation parameterπj is identified to beλ.

Step 3 of the FePIA procedure requires that the impact of
λ on each of the system performance features be identified.
The computation times of different applications (and the
communication times of different data transfers) are likely to
be of different complexities with respect toλ. Assume that the
dependence ofT c

i andT n
ip onλ is known (or can be estimated)

for all i, p. Given that,T c
i and T n

ip can be re-expressed as
functions ofλ asT c

i (λ) andT n
ip(λ), respectively. In general,

T c
i (λ) andT n

ip(λ) will be functions of the loads from all those
sensors that can be traced back fromai. For example, the
computation time for applicationd in Figure 2 is a function
of the loads from sensorsS1 andS2, but that for application
e is a function ofS2 and S3 loads (but each application has
just one driving sensor:S1 for d andS2 for e). Then Equation
6 can be used to expressLk as a function ofλ.

Following step 4 of the FePIA procedure, the set of bound-
ary relationships corresponding to Equation 7 is given by

{T c
i (λ) = 1/R(ai)|| 1 ≤ i ≤ |A|}⋃ {

T n
ip(λ) = 1/R(ai)|| (1 ≤ i ≤ |A|) ∧ (for p whereap ∈ D(ai))

}⋃ {
Lk(λ) = Lmax

k || 1 ≤ k ≤ |P|}.

Then, using Equation 1, one can find, for eachφi ∈ Φ, the
robustness radius,rµ(φi, λ). Specifically,

rµ(φi, λ) =



min
λ: T c

x(λ)=1/R(ax)
‖λ− λinit‖2 if φi = T c

x (8a)

min
λ: T n

xy(λ)=1/R(ax)
‖λ− λinit‖2 if φi = T n

xy (8b)

min
λ: Lk(λ)=Lmax

k

‖λ− λinit‖2 if φi = Lk (8c)

The robustness radius in Equation 8a is the largest increase
(Euclidean distance) in load in any direction (i.e., for any
combination of sensor load values) from the assumed value
that does not cause a throughput violation for the computation
of applicationax. This is because it corresponds to the value
of λ for which the computation time ofax will be at the
allowed limit of 1/R(ax). The robustness radii in Equations
8b and 8c are the similar values for the communications of
applicationax and the latency of pathPk, respectively. The
robustness metric, from Equation 2, is given byρµ(Φ, λ) =
minφi∈ Φ (rµ(φi, λ)) . For this system,ρµ(Φ, λ) is the
largest increase in load in any direction from the assumed
value that does not cause a latency or throughput violation for
any application or path. Note thatρµ(Φ, λ) has the units ofλ,
namely objects per data set. In addition, note that althoughλ is
a discrete variable, it has been treated as a continuous variable
in Equation 8 for the purpose of simplifying the illustration.
A method for handling a discrete perturbation parameter is
discussed in [1].

IV. EXPERIMENTS

The experiments in this section seek to establish the utility
of the robustness metric in distinguishing between resource
allocations that perform similarly in terms of a commonly
used metric, such as makespan. Two different systems were
considered: the independent task allocation system discussed
in Subsection III-A and the HiPer-D system outlined in Sub-
section III-B. Experiments were performed for a system with
five machines and 20 applications. A total of 1000 resource
allocations were generated by assigning a randomly chosen
machine to each application, and then each resource allocation
was evaluated with the robustness metric and the commonly
used metric.
Independent Application Allocation System: For the system
in Subsection III-A, the ETC values were generated by sam-
pling a Gamma distribution. The mean was arbitrarily set to
10, the task heterogeneitywas set to 0.7, and themachine
heterogeneitywas also set to 0.7 (the heterogeneity of a set
of numbers is the standard deviation divided by the mean).
See [13] for a description of a method for generating random
numbers with given mean and heterogeneity values.

The resource allocations were evaluated for robustness,
makespan, andload balance index(defined as the ratio of
the finishing time of the machine that finishes first to the
makespan). The larger the value of the load balance index,
the more balanced the load (the largest value being 1). The
tolerance,τ , was set to 120% (i.e., the actual makespan could
be no more than 1.2 times the estimated value). In this context,
a robustness value ofx for a given resource allocation means
that the resource allocation can endure any combination of
ETC errors without the makespan increasing beyond 1.2 times
its estimated value as long as the Euclidean norm of the errors
is no larger thanx seconds.

Figure 3(a) shows the “normalized robustness” of a re-
source allocation against its makespan. Thenormalized robust-
nessequals the absolute robustness divided by the estimated
makespan. A similar graph for the normalized robustness
against the load balance index is shown in Figure 3(b). It
can be seen in Figure 3 that some resource allocations are
clustered into groups, such that for all resource allocations
within a group, the normalized robustness remains constant as
the estimated makespan (or load balance index) increases.

The cluster of the resource allocations with the highest
robustness has the feature that the most loaded machine has
the smallest number of applications assigned to it (which is
two for the experiments in Figure 3). The cluster with the
smallest robustness has the largest number, 11, of applications
assigned to it. The intuitive explanation for this behavior is that
the larger the number of applications assigned to a machine,
the more degrees of freedom for the finishing time of that
machine. A larger degree of freedom then results in a shorter
path to constraint violation in the parameter space. That is,
the robustness is then smaller (using the`2-norm). The formal
explanation is given in [1].

If one agrees with the utility of the observations made

above, one can still question if the same information could
be gleaned from some traditional metrics (even if they are
not traditionally used to measure robustness). In an attempt to
answer that question, note that sharp differences exist in the
robustness of some resource allocations that have very similar
values of makespan. A similar observation could be made
from the robustness against load balance index plot (Figure
3(b)). In fact, it is possible to find a set of resource allocations
that have very similar values of makespan, and very similar
values of load balance index, but with very different values
of the robustness. These observations highlight the fact that
the information given by the robustness metric could not be
obtained from two popular performance metrics.

40 60 80 100 120

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

makespan (seconds)

no
rm

al
iz

ed
 r

ob
us

tn
es

s

(a)

0 0.2 0.4 0.6 0.8

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

load balance index

no
rm

al
iz

ed
 r

ob
us

tn
es

s

(b)

Fig. 3. The plots of normalized robustness against (a) makespan, and (b)
load balance index for 1000 randomly generated resource allocations

The HiPer-D System: For the model in Subsection III-B,
the experiments were performed for a system that consisted
of 19 paths, where the end-to-end latency constraints of the

paths were uniformly sampled from the range [750, 1250].
The system had three sensors (with rates4 × 10−5, 3 ×
10−5, and 8 × 10−6), and three actuators. The experiments
made the following simplifying assumptions. The computa-
tion time function,T c

ij(λ), was assumed to be of the form∑
1≤z≤3 bijzλz, wherebijz = 0 if there is no route from the

z-th sensor to applicationai. Otherwise,bijz was sampled
from a Gamma distribution with a mean of 10 and task and
machine heterogeneity values of 0.7 each. For simplicity in
the presentation of the results, the communication times were
all set to zero. These assumptions were made only to simplify
the experiments, and arenot a part of the formulation of the
robustness metric. The salient point in this example is that the
utility of the robustness metric can be seen even when simple
complexity functions are used.

The resource allocations were evaluated for robustness and
“slack.” In this context, a robustness value ofx for a given
resource allocation means that the resource allocation can
endure any combination of sensor loads without a latency or
throughput violation as long as the Euclidean norm of the
increases in sensor loads (from the initial values) is no larger
thanx. Slack has been used in many studies as a performance
measure (e.g., [6], [14]) for resource allocation in parallel
and distributed systems, where a resource allocation with a
larger slack is considered better. In this study, slack is defined
mathematically as follows. Let thefractional valueof a given
QoS attribute be the value of the attribute as a percentage of
the maximum allowed value. Then thepercentage slackfor
a given QoS attribute is the fractional value subtracted from
1. Thesystem-wide percentage slackis the minimum value of
percentage slack taken over all QoS constraints, and can be
expressed mathematically as

min

[
min

k:Pk∈P

(
1− Lk(λ)

Lmax
k

)
,

min
i: ai∈A

1−
max

(
T c

i (λ), max
ap∈D(ai)

T n
ip(λ)

)
1/R(ai)


 . (9)

Figure 4 shows the normalized robustness of a resource
allocation against its slack. For this system, the normalized
robustness equals the absolute robustness divided by‖λinit‖2.
It can be seen that the normalized robustness and slack are not
correlated.If , in some research study, the purpose of using
slack is to measure a system’s ability to tolerate additional
load, then our measure of robustness is a better indicator
of that ability than slack. This is because the expression for
slack, Equation 9, does not directly take into account how the
sensor loads affect the computation and communication times.
It could be conjectured that for a system where all sensors
affected the computation and communication times of all ap-
plications in exactly the same way, the slack and this research’s
measure of robustness would be tightly correlated. This, in
fact, is true. Other experiments performed in this study show
that for a system with small heterogeneity, the robustness and
slack are tightly correlated, thereby suggesting that robustness

0.2 0.3 0.4 0.5 0.6

0.5

1

1.5

2

2.5

slack

no
rm

al
iz

ed
 r

ob
us

tn
es

s

Fig. 4. The plot of normalized robustness against slack for 1000 randomly
generated resource allocations

measurements are not needed if slack is known. As the system
heterogeneity increases, the robustness and slack become less
correlated, indicating that the robustness measurements can
be used to distinguish between resource allocations that are
similar in terms of the slack. As the system size increases,
the correlation between the slack and the robustness decreases
even further. In summary, for heterogeneous systems, using
slack as a measure of how much increase in sensor load a
system can tolerate may cause system designers to grossly
misjudge the system’s capability.

V. RELATED WORK

Although a number of robustness measures have been
studied in the literature (e.g., [3], [6]–[8], [14]–[18]), those
measures were developed for specific systems. The focus of
the research in this paper is a general mathematical formula-
tion of a robustness metric that could be applied to a variety
of parallel and distributed systems by following the FePIA
procedure presented in this paper.

Given an allocation of a set of communicating applications
to a set of machines, the work in [3] develops a metric
for the robustness of the makespan against uncertainties in
the estimated execution times of the applications. The paper
discusses in detail the effect of these uncertainties on the value
of makespan, and how the robustness metric could be used to
find more robust resource allocations. Based on the model
and assumptions in [3], several theorems about the properties
of robustness are proven. The robustness metric in [3] was
formulated for errors in the estimation of application execution
times, and was not intended for general use (in contrast to
our work). Additionally, the formulation in [3] assumes that
the execution time for any application is at mostk times the
estimated value, wherek ≥ 1 is the same for all applications.
In our work, no such bound is assumed.

In [15], the authors address the issue of probabilistic guar-
antees for fault-tolerant real-time systems. As a first step

towards determining such a probabilistic guarantee, the authors
determine the maximum frequency of software or hardware
faults that the system can tolerate without violating any hard
real-time constraint. In the second step, the authors derive a
value for the probability that the system will not experience
faults at a frequency larger than that determined in the first
step. The output of the first step is what our work would
identify as the robustness of the system, with the satisfaction
of the real-time constraints being the robustness requirement,
and the occurrence of faults being the perturbation parameter.

The research in [16] considers a single-machine scheduling
environment where the processing times of individual jobs are
uncertain. The system performance is measured by the total
flow time (i.e., the sum ofcompletiontimes of all jobs). Given
the probabilistic information about the processing time for
each job, the authors determine the normal distribution that
approximates the flow time associated with a given schedule.
A given schedule’s robustness is then given by 1 minus the
risk of achieving substandard flow time performance. The risk
value is calculated by using the approximate distribution of
flow time.

The studies in [14] and [17] explore slack-based techniques
for producing robust resource allocations. While [14] focusses
on a job-shop environment, [17] focusses on real-time systems.
The central idea is to provide each task with extra time
(defined as slack) to execute so that some level of uncertainty
can be absorbed without having to reallocate.

In [6], a “neighborhood-based” measure of robustness is
defined for a job-shop environment. Given a schedules and
a performance metricP (s), the robustness of the schedule
s is defined to be a weighted sum of allP (s′) values such
that s′ is in the set of schedules that can be obtained from
s by interchanging two consecutive operations on the same
machine.

The work in [7] develops a mathematical definition for the
robustness of makespan against machine breakdowns in a job-
shop environment. The authors assume a certain random distri-
bution of the machine breakdowns and a certain rescheduling
policy in the event of a breakdown. Given these assumptions,
the robustness of a schedules is defined to be a weighted
sum of the expected value of the makespan of the rescheduled
system,M , and the expected value of the schedule delay (the
difference betweenM and the original value of the makespan).
Because the analytical determination of the schedule delay be-
comes very hard when more than one disruption is considered,
the authors propose surrogate measures of robustness that are
claimed to be strongly correlated with the expected value of
M and the expected schedule delay.

The research in [8] uses a genetic algorithm to produce
robust schedules in a job-shop environment. Given a schedule
s and a performance metricP (s), the “robust fitness value” of
the schedules is a weighted average of allP (s′) values such
that s′ is in a set of schedules obtained froms by adding
a small “noise” to it. The size of this set of schedules is
determined arbitrarily. The “noise” modifiess by randomly
changing the ready times of a fraction of the tasks.

Our work is perhaps closest in philosophy to [18], which
attempts to calculate the stability radius of an optimal schedule
in a job-shop environment. The stability radius of an optimal
schedule,s, is defined to be the radius of a closed ball
in the space of the numerical input data such that within
that ball the schedules remains optimal. Outside this ball,
which is centered at the assumed input, some other schedule
would outperform the schedule that is optimal at the assumed
input. From our viewpoint, for a given optimal schedule, the
robustness requirement could be the persistence of optimality
in the face of perturbations in the input data. Our work differs
and is more general because we consider the given system
requirements to generate a robustness requirement, and then
determine the robustness. In addition, our work considers the
possibility of multiple perturbations in different dimensions.

VI. FUTURE WORK

We are considering extending our current work in many
different directions. Some of these directions include:

1) Incorporating robustness into static (off-line) and dy-
namic (on-line) resource allocation heuristics [19].

2) Deriving the boundary curves for different problem
domains.

3) Incorporating multiple types of perturbation parameters,
e.g., sensor loads and estimated execution times. Chal-
lenges here are how to define the collective impact
to find robust radius and how to state the combined
bound on multiple perturbation parameters to maintain
the promised performance.

4) Incorporating probabilistic information about uncertain-
ties. Such information might be available about individ-
ual perturbation parameter elements or one might only
have only relative information about perturbation param-
eter elements. In another case, one might have relative
information about different perturbation parameters.

5) Determining when to use Euclidean distance versus a
simple sum when calculating the collective impact of
changes in the perturbation parameter elements.

VII. C ONCLUSIONS

This paper argues that any claim of robustness for a given
system should be followed by three items of information:
(a) what behavior of the system makes it robust? (b) what
uncertainties is the system robust against? (c) quantitatively,
exactly how robust is the system? The paper presents a
mathematical description of a metric for the robustness of a
resource allocation with respect to desired system performance
features against multiple perturbations in various system and
environmental conditions. In addition, the research describes
a procedure, called FePIA, to methodically derive the robust-
ness metric for a variety of parallel and distributed resource
allocation systems. For illustration, the FePIA procedure is
employed to derive robustness metrics for two example dis-
tributed systems. The experiments conducted illustrate the
utility of the robustness metric in distinguishing between
resource allocations that perform similarly otherwise.

REFERENCES

[1] S. Ali, A. A. Maciejewski, H. J. Siegel, and J.-K. Kim, “Measuring the
robustness of a resource allocation,”IEEE Transactions on Parallel and
Distributed Systems, vol. 15, no. 7, pp. 630–641, July 2004.

[2] P. M. Berry, “Uncertainty in scheduling: probability, problem reduction,
abstractions and the user,” IEE Computing and Control Division Collo-
quium on Advanced Software Technologies for Scheduling, Digest No.
1993/163, Apr. 26, 1993.

[3] L. Bölöni and D. C. Marinescu, “Robust scheduling of metaprograms,”
Journal of Scheduling, vol. 5, no. 5, pp. 395–412, Sept. 2002.

[4] S. D. Gribble, “Robustness in complex systems,” in8th Workshop on
Hot Topics in Operating Systems (HotOS-VIII), May 2001, pp. 21–26.

[5] E. Jen, “Stable or robust? What is the difference?”Complexity, to appear.
[6] M. Jensen, “Improving robustness and flexibility of tardiness and total

flowtime job shops using robustness measures,”Journal of Applied Soft
Computing, vol. 1, no. 1, pp. 35–52, June 2001.

[7] V. J. Leon, S. D. Wu, and R. H. Storer, “Robustness measures and robust
scheduling for job shops,”IEE Transactions, vol. 26, no. 5, pp. 32–43,
Sept. 1994.

[8] M. Sevaux and K. S̈orensen, “Genetic algorithm for robust schedules,”
in 8th International Workshop on Project Management and Scheduling
(PMS 2002), Apr. 2002, pp. 330–333.

[9] T. D. Braun, H. J. Siegel, N. Beck, L. L. B̈olöni, M. Maheswaran, A. I.
Reuther, J. P. Robertson, M. D. Theys, B. Yao, D. Hensgen, and R. F.
Freund, “A comparison of eleven static heuristics for mapping a class of
independent tasks onto heterogeneous distributed computing systems,”
Journal of Parallel and Distributed Computing, vol. 61, no. 6, pp. 810–
837, June 2001.

[10] G. F. Simmons,Calculus With Analytic Geometry, Second Edition. New
York, NY: McGraw-Hill, 1995.

[11] R. Harrison, L. Zitzman, and G. Yoritomo, “High performance dis-
tributed computing program (HiPer-D)—engineering testbed one (T1)
report,” Naval Surface Warfare Center, Dahlgren, VA, Tech. Rep., Nov.
1995.

[12] S. Ali, J.-K. Kim, Y. Yu, S. B. Gundala, S. Gertphol, H. J. Siegel, A. A.
Maciejewski, and V. Prasanna, “Greedy heuristics for resource allocation
in dynamic distributed real-time heterogeneous computing systems,”
in The 2002 International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA 2002), Vol. II, June
2002, pp. 519–530.

[13] S. Ali, H. J. Siegel, M. Maheswaran, D. Hensgen, and S. Sedigh-
Ali, “Representing task and machine heterogeneities for heterogeneous
computing systems,”Tamkang Journal of Science and Engineering,
vol. 3, no. 3, pp. 195–207, invited, Nov. 2000.

[14] A. J. Davenport, C. Gefflot, and J. C. Beck, “Slack-based techniques
for robust schedules,” in6th European Conference on Planning (ECP-
2001), Sept. 2001, pp. 7–18.

[15] A. Burns, S. Punnekkat, B. Littlewood, and D. Wright, “Probabilistic
guarantees for fault-tolerant real-time systems,” Design for Validation
(DeVa) TR No. 44, Esprit Long Term Research Project No. 20072, Dept.
of Computer Science, Univ. of Newcastle upon Tyne, UK, Tech. Rep.,
1997.

[16] R. L. Daniels and J. E. Carrillo, “β-Robust scheduling for single-
machine systems with uncertain processing times,”IIE Transactions,
vol. 29, no. 11, pp. 977–985, 1997.

[17] S. Ghosh, “Guaranteeing Fault Tolerance Through Scheduling in Real-
Time Systems,” Ph.D. dissertation, Faculty of Arts and Sciences, Univ.
of Pittsburgh, 1996.

[18] Y. N. Sotskov, V. S. Tanaev, and F. Werner, “Stability radius of an
optimal schedule: A survey and recent developments,” inIndustrial
Applications of Combinatorial Optimization, G. Yu, Ed. Norwell, MA:
Kluwer Academic Publishers, 1998, pp. 72–108.

[19] S. Ali, A. A. Maciejewski, H. J. Siegel, and J.-K. Kim, “Robust resource
allocation for distributed computing systems,” inThe 2004 International
Conference On Parallel Processing (ICPP 2004), accepted, to appear in
Aug. 2004.

	I Introduction
	II Generalized Robustness Metric
	III Derivations of Robustness Metric for Example Systems
	III-A Independent Application Allocation System
	III-B The HiPer-D System

	IV Experiments
	V Related Work
	VI Future Work
	VII Conclusions
	References

