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Abstract— This paper gives an overview of the material to be important question then arises: given a system design, what
discussed in the invited keynote presentation by H. J. Siegel; it extent of departure from the assumed circumstances will cause
summarizes our research in [1]. o a performance feature to be unacceptably degraded? That is,

Performing computing and communication tasks on parallel h b is th " Bef : hi .
and distributed systems involves the coordinated use of different Ow robust Is the System. efore answering this question one
types of machines, networks, interfaces, and other resources. N€€ds to clearly define robustness.

Decisions about how best to allocate resources are often based In the realm of distributed systems, robustness has been
on estimated values of task and system parameters, due todefined in different ways by different researchers. According
uncertainties in the system environment. An important research to [6], robustness is the degree to which a system can

problem is the development of resource management strategies]c fi fv in th fi ts diff tf
that can guarantee a particular system performance given such unction correctly in the presence of Inputs difierent from

uncertainties. We have designed a methodology for deriving the those assumed. In a more general sense, [4] states that a
degree of robustness of a resource allocation - the maximum robust system continues to operate correctly across a wide
amount of collective uncertainty in system parameters within range of operational conditions. Robustness, according to [5],
which a user-specified level of system performance (Q0S) can begarantees the maintenance of certain desired system charac-
guaranteed. Our four-step procedure for deriving a robustness teristics despite fluctuations in the behavior of its component
metric for an arbitrary system will be presented. We will illustrate ; .

this procedure and its usefulness by deriving robustness metrics Parts or its environment. The concept of robustness, as used
for some example distributed systems. in this research, is similar to that in [5]. Like [5], this work
emphasizes that robustness should be defined for a given set of
system features, with a given set of perturbations applied to the

This paper gives an overview of the material to be discusssgstem. This research investigates the robustness of resource
in the invited keynote presentation by H. J. Siegel; it summalocation in parallel and distributed systems, and accordingly
rizes our research in [1]. customizes the definition of robustness.

This research focusses on the robustness of a resourc&his paper argues that any claim of robustness for a given
allocation in parallel and distributed computing systems. Whsystem should be followed by three items of information:
does robustness mean? Some dictionary definitions of robustr what behavior of the system makes it robust? (b) what
ness are: (a) strong and healthy, as in “a robust person” oruacertainties is the system robust against? (c) quantitatively,
robust mind,” (b) sturdy or strongly formed, as in “a robustxactly how robust is the system? In this paper, we want
plastic,” (c) suited to or requiring strength as in “a robudb know what robustness means in the context of resource
exercise” or “robust work,” (d) firm in purpose or outlook asllocation. How is it quantified? How is it measured? Why
in “robust faith,” (e) full-bodied as in “robust coffee,” and (f)does it matter?
rough or rude as in “stories laden with robust humor.” A resource allocation is defined to bebust with respect

In the context of resource allocation in parallel and dige specified system performance features against perturbations
tributed computing systems, how is the concept of robustnessspecified system parametéfslegradation in these features
defined? Parallel and distributed systems may operate in anienlimited when the perturbations occur. For example, if a
vironment where certain system performance features degraegource allocation has been declared to be robust with respect
due to unpredictable circumstances, such as sudden machinsatisfying a throughput requirement against perturbations
failures, higher than expected system load, or inaccuraciasthe system load, then the system, configured under that
in the estimation of system parameters (e.g., [2]-[8]). Aallocation, should continue to operate without a throughput

violation when the system load increases. The immediate

This research was supported by the DARPA/ITO Quorum Program througiyestion is: what is thelegreeof robustness? That is, for
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I. INTRODUCTION

0-7695-2210-6/04 $20.00 © 2004


Administrator
Text Box
0-7695-2210-6/04 $20.00 © 2004


addresses this question, and others related to it, by formulatitigese are similar to hazards in [3]), and the performance

the mathematical description of a metric that evaluates tfeatures are required to be robust with respect to these per-
robustness of a resource allocation with respect to certdimbation parameters. For the makespan example above, the
system performance features against multiple perturbationsré@source allocation (and its associated estimated makespan)
multiple system components and environmental conditions.Wwas based on the estimated application execution times. It
addition, this work outlines a procedure called FePIA (nameésl desired that the makespan be robust (stay within 130%

after the four steps that constitute the procedure) for derivingfiits estimated value) with respect to uncertainties in these

robustness metric for an arbitrary system. For illustration, thestimated execution times.

procedure is employed to derive robustness metrics for twopathematically, lefll be the set of perturbation parameters.

example distributed systems. The robustness metric and (e assumed that the elements lifare vectors. Letr; be

FePIA procedure for its derivation are the main contributionge j-th element offI. For the makespan example, could

of this paper. _ . _be the vector composed of the actual application execution
The rest of the paper is organized as follows. Sectifines, i.e., thei-th element ofx; is the actual execution

[ describes the FePIA procedure mentioned above. It algme of thei-th application on the machine it was assigned.

defines a generalized robustness metric. Derivations of thys general, representation of the perturbation parameters as

metric for two example parallel and distributed systems agaparate elements a1 would be based on their nature or

given in _SeCt'Ofﬂ]L Sectiof TV presents some experimenignd (e.g., message length variables7n and computation

that highlight the usefulness of the robustness metric. Secti@ie variables inr,).

[VTJoutlines some future work, and Sectipn VIl concludes thg) |dentify the impact of the perturbation parameters in step

paper. 2 on the system performance features in step 1. For the

Il. GENERALIZED ROBUSTNESSMETRIC makespan exampl_e, t.he sum.of the agtual execqtion_ times
for all of the applications assigned a given machine is the

q Th!s section pr?segtsta generatl prtf)cedured, cdlilhddtlA,for t.time when that machine completes its applications. Note that
eriving a general robustness metric for any desired computi ) implies that the actual time each machine finishes its

environment. The name for the above procedure stands rplications must be within the acceptable variation
identifying the performancéeatures, theperturbation param- . i o
eters, theimpact of perturbation parameters on performance Mathematically, for everyp; € @, determine the relation-
features, and thanalysis to determine the robustness. SpeciffiP i = fi;(m;), if any, that relatesp; to ;. In this
examples illustrating the application of the FePIA proceduf&Pression.f;;

is a function that mapsr; to ¢;. For the
to sample systems are given in the next section. Each steg’§t<€span example; is the finishing time for machine;,
the FePIA procedure is now described.

and f;; would be the sum of execution times for applications
1) Describe quantitatively the requirement that makes t

ﬁésigned to machinen;. The rest of this discussion will
system robust. Based on thisbustness requirementleter- P€ developed assuming only one elementlin The case
mine the QoS performance features that should be limit4i€re multiple perturbation parameters can affect a given
in variation to ensure that the robustness requirement is n&t!

ultaneously is examined in [1].
Identify the acceptable variation for these feature values %)sThe last step is to determine the smallest collective variation
a result of uncertainties in system parameters. Consider

igthe values of perturbation parameters identified in step 2 that
example where (a) the QoS performance featumaakespan will cause any of the performance features identified in step 1
(the total time it takes to complete the execution of a set Ig violate its acceptable variation. This will be the degree of

applications) for a given resource allocation, (b) the acceptaBffPustness of the given resource allocation. For the makespan
variation is up to a 30% increase of the makespan that wexample, this will be some quantification of the total amount

calculated for the given resource allocation using estimat@finaccuracy in the execution times estimates allowable before

execution times of applications on the machines they & actual makespan exceeds 130% of its estimated value.

assigned, and (c) the uncertainties in system parameters adathematically, for every); € ®, determine theboundary
inaccuracies in the estimates of these execution times. ~ values ofr;, i.e., the values satisfying theoundary relation-
Mathematically, let® be the set of system performance&hipsfi;(m;) = 3" and f;;(m;) = 3. (If 7, is a discrete
features that should be limited in variation. For each elemevgriable then the boundary values correspond to the closest
¢; € ®, quantitatively describe the tolerable variationgpn Values that bracket each boundary relationship. See [1] for an
Let (gmin, gmax) pe 3 tuple that gives the bounds of théxample.) These relationships separate the region of robust
tolerable variation in the system featuse For the makespan operauon. fro_m that of non-robust operation. Find the smallest
example,p; is the time thei-th machine finishes its assigneaoegglrb%ggxn 'mj that causgs any; € @ to exceed the.bounds
applications, and its corresponding™™, 57*) could be (Bmn, gmax) imposed on it by the robustness requirement.
(0, 1.3 x (estimated makespan valjig) Specifically, letr;"® be the value ofr; at which the system
2) Identify all of the system and environment parameters originally assumed to operate. However, due to inaccuracies
whose values may impact the QoS performance features sethe estimated parameters or changes in the environment, the
lected in step 1. These are called fyerturbation parameters value of the variabler; might differ from its assumed value.




This change inr; can occur in different “directions” depend- The robustness definition can be extended easily for all
ing on the relative differences in its individual componentg); € ®. It is simply the minimum of all robustness radii.
Assuming that no information is available about the relativelathematically, let

differences, all values ofr; are possible. Figurg] 1 illustrates .

this concept for a single feature);, and a two-element pu(®, ;) = seD (ru (i, m5)). @
perturbation vectorr; € R2. The curve shown in Figuﬂé] , )

plots the set of boundary point&r;| fi;(m;) = Bma<} for Then,p#.(<1>, ;) is therobustness metric of resource glloca-
a resource allocatiom. For this figure, the set of boundary tion 4 with respect to the performance feature deagainst

the perturbation parametet
points {m;| f;(m;) = A"} is given by the points on the I
7,1-aXiS and o-axis. Even though the&,-norm has been used for the robustness

The region enclosed by the axes and the curve gives t&ﬁldlus in this general formulation, in practice, the choice of a
values ofrr; for which the system is robust with respect to Srm should depend on the particular environment for which
6:. For a \j/ectorx = oy a o 20]T, let |X[l» be the fy- a robustness measure is being sought. Reference [1] gives an
example situation where thig-norm is preferred over thé-

n
norm(Euclidean normof the vector, defined by, > «2. The horm.

=1 In addition, in some situations, changes in some elements
point on the curve marked as; (¢;) has the property that the of -; may be more probable than changes in other elements.
qug||2' In such cases, one may be able to modify the distance

calculation so that the contribution from an element with a

larger probability to change has a proportionally larger weight.
This is a subject for future study.

Euclidean distance fror’rr;’“g to7r (i), |7 (i) —

the smallest over all such distances franf{'g to a point on the
curve. An important interpretation of’ (¢;) is that the value

7% (¢:) — 7r°”g||2 gives the largest Euclidean distance that
the varlablen-] can change irany direction from the assumed I1l. DERIVATIONS OF ROBUSTNESSMETRIC FOR
value of 75" without the performance featurg; exceeding EXAMPLE SYSTEMS

the tolerable variation. Let the distanie’s (¢;) — 75"||2 be  A. Independent Application Allocation System
called therobustness radius-,(¢;, m;), of ¢; agalnstﬂ-j for

: AT I The first example derivation of the robustness metric is for
resource allocatiom. Mathematically,

a system that assigns a set of independent applications to a
set of machines (e.g., [9]). In this system, it is required that
the makespan (defined as the completion time for the entire
(1) set of applications) be robust against errors in application
This work defines:,(¢;, ;) to be the robustness radiusexecution time estimates. Specifically, the actual makespan
of resource allocatioru: with respect to performance featureunder the perturbed execution times must be no more than a
i agamst the perturba“on parametef]_ The Computanon certain factor times the estimated makespan calculated usmg
complexity of calculating the robustness radius is discussedth® assumed execution times. It is obvious that the larger the
[1]. “factor,” the larger the robustness. Assuming thanorm is
used, one might also reason that as the number of applications
assigned to a given machine increases, the change in the
finishing time for that machine will increase due to errors
in the application computation times. As will be seen shortly,
the instantiation of the general framework for this system does
reflect this intuition.
(f) A brief description of the system model is now given.
rn—(fi;pj) The applications are assumed to be independent, i.e., no
communications between the applications are needed. The set
A of applications is to be assigned to a gdtof machines so
as to minimize the makespan (defined as the finishing time of
{p | f»-(p-) :b_max} the r_nac_hine that finish_es last). Each maqhine _executes a si_ngle
e LM ' application at a time (i.e., no multi-tasking), in the order in
which the applications are assigned. k&t be theestimated
time to comput¢ETC) for applicationa; on machinen;. Itis
P2 assumed thaf’;; values are known for all, j, and a resource
allocationy is determined using the ETC values. In addition,

! let F; be the time at whichm; finishes executing all of the
Fig. 1. Some possible directions of increase of the perturbation pa

rameterr;, and the direction of the smallest increase. The curve mogppllcanons assigned to it. o
the set of points{r;| fi;(w;) = 8**}. The set of boundary points, ~Assume that unknown inaccuracies in the ETC values are
{m;| fij(m;) = B} is given by the points on the;-axis andr;»-axis.  expected, requiring that the resource allocatiome robust

Tl,(d):) 77): min ) ||7T 7770”9”
O e (3 (o) =B (fi () =pmin)




against them. More specifically, it is required that, for a giveof the estimated execution times is no larger thagd, C),

resource allocation, its actual makespan valiie(calculated then the actual makespan will be at medtmes the estimated

considering the effects of ETC errors) may be no more thamakespan value. The value pf,(®, C) has the units ofC,

T times itsestimated valueM® The estimated value of the namely time.

makespan is the value calculated assuming the estimated ETC

values. Following step 1 of the FePIA procedure in Sectidh The HiPer-D System

[M the system performance features that should be limited inThe second example derivation of the robustness metric

variation to ensure the makespan robustness are the finishiidor a HiPer-D [11] like system that assigns a set of

times of the machines. That i$, = {F;| 1 < j < |M]|}. continuously executing, communicating applications to a set of
According to step 2 of the FePIA procedure, the pertumachines. It is required that the system be robust with respect

bation parameter needs to be defined. C§t' be the ETC to certain QoS attributes against unforeseen increases in the

value for applicatiors; on the machine where it is assigned:system load.”

Let C; be equal to the actual computation time vald&X  The HiPer-D system model used here was developed in [12],

plus the estimation error). In addition, |€t be the vector of and is summarized here for completeness. The system consists

the C; values, such thaC = [Cy C, --- C|4]. Similarly, of heterogeneous sets of sensors, applications, machines, and

C®'= [CF C5° -+ CFY]. The vectorC is the perturbation actuators. Each machine is capable of multi-tasking, executing

parameter for thIS anaIyS|s the applications assigned to it in a round robin fashion.
In accordance with step 3 of the FePIA procedurg,has Similarly, a given network link is multi-tasked among all
to be expressed as a function ©f To that end, data transfers using that link. Each sensor produces data
periodically at a certain rate, and the resulting data streams
F(C) = Z Ci. ®) are input into applications. The applications process the data

i ai is assigned ton, and send the output to other applications or to actuators. The

Note that the finishing time of a given machine dependgplications and the data transfers between them are modelled
only on the actual execution times of the applications aw4ith a directed acyclic graph, shown in Figdre 2. The figure
signed to that machine, and is independent of the finish-
ing times of the other machines. Following step 4 of the
FePIA procedure, the set of boundary relationships corre- .-
sponding to the set of performance features is given by
{F;(C) = rM*| 1< j < |M|}.

For a two-application systeni; corresponds ter; in Figure
Q Similarly, C, and C, correspond tar;; and 7, respec-
tively. The termsC®st, F;(C), andTM® correspond tero”g
fij(m;), and g**, respectively. The boundary relat|onsh|p
“F;(C) = TM®" corresponds to the boundary relationship
“fig(mwy) = e

From Equatior 1, the robustness radiusFyfagainstC' is
given by

ru(Fj, C) = min |C — C®, (4)
C: F;(C)=rMest Fig. 2. The DAG model for the applications (circles) and data transfers (ar-
. rows). The diamonds and rectangles denote sensors and actuators, respectively.
That is, if the Euclidean distance between any vector ofie dashed lines enclose each path formed by the applications.

the actual execution times and the vector of the estimated

execution times is no larger thap(F;, C), then the finishing also shows a number gfaths (enclosed by dashed lines)

time of machinem; will be at mostr times the estimated formed by the applications. Aath is a chain of producer-

makespan value. consumer pairs that starts at a sensor (theing sensoy and
Note that the right hand side in Equat[dn 4 can be interpretedds at an actuator (if it istagger path or at a multiple-input

as the perpendicular distance from the po@f* to the application (if it is anupdate path In the context of Figure

hyperplane described by the equation/**' — F;(C) = 0. [J, path 1 is a trigger path, and path 2 is an update path. In

Using the point-to-plane distance formula [10], Equatign 4 real system, applicatiosh could be a missile firing program

reduces to that produces an order to fire. It needs target coordinates from
TMeSt— Fj(CesY applicationd in path 1, and an updated map of the terrain
ru(Fy, C) = (5) from applicationc in path 2. Naturally, application must

number of a Ilcat|ons assigned ) ) .
v PP 9 o respond to any output fromy but must not issue fire orders if

The robustness metric, from Equat@]'n 2,d8(®, C) = itreceives an output from alone; such an output is used only
ming, ¢ 7, (F;, C). That is, if the Euclidean distance be-to update an internal database. So whiles a multiple input
tween any vector of the actual execution times and the vectpplication, the rate at which it produces data is equal to the



rate at which the trigger application produces data (in the outputs. Let\, be the workload output from the-th sensor
HiPer-D model). That rate, in turn, equals the rate at which the the set of sensors, and be defined as the number of objects
driving sensor,S;, produces data. The problem specificatiopresent in the most recent data set from that sensorsyigtem
indicates the path to which each application belongs, and therkload A, is the vector composed of the load values from
corresponding driving sensor. all sensors. LeA™ be the initial value of\, and A" be the

Let P be the set of all paths, arfll, be the list of appli- initial value of thei-th member ofA"t. Following step 2, the
cations that belong to the-th path. Note that an applicationperturbation parametert; is identified to beX.
may be present in multiple paths. As in Subsecfion lllA,  Step 3 of the FePIA procedure requires that the impact of
is the set of applications. X on each of the system performance features be identified.

The sensors constitute the input interface of the systemhe computation times of different applications (and the
the external world. Let the maximum periodic data outp@ommunication times of different data transfers) are likely to
rate from a given sensor be called dstput data rate The be of different complexities with respect 0 Assume that the
minimum throughput constrairgtates that the computation ordependence o7 andTi';, on X is known (or can be estimated)
communication time of any application iR} is required to for all 4, p. Given that,7¢ and 77, can be re-expressed as
be no larger than the reciprocal of the output data rate of thenctions of A as7F(A) and T7,(X), respectively. In general,
driving sensor forP;. For applicationa; € Py, let R(a;) T¢(X) andT})(X) will be functions of the loads from all those
be set to the output data rate of the driving sensor/@r sensors that can be traced back fram For example, the
In addition, letT}; be the computation time for applicatien computation time for applicatiod in Figure[2 is a function
assigned to machine;. Also, letT}), be the time to send dataof the loads from sensors; and .S, but that for application
from applicationa; to applicationa,. Because this analysise is a function ofS, and Ss loads (but each application has
is being carried out for a specific resource allocation, thest one driving sensors; for d and.S; for €). Then Equation
machine where a given application is assigned is known. Ifscan be used to expreds, as a function of\.
assumed thad; is assigned ton;, and the machine subscript Following step 4 of the FePIA procedure, the set of bound-
for T¢, is omitted in the ensuing analysis for clarity unless th@&" relationships corresponding to Equatjgn 7 is given by

intent is .to show t_hb(T relatic;]nship between execution times ?H(A) = 1/R(a)| 1<i<|Al}
a; at various possible machines. ,

The maximum end-to-end latenepnstraint states that, for UATE() = 1/R(a)] (1 < < |A)) A (for p wherea, € D(a,))}
a given pathPy, the time taken between the instant the drivingU {Li(\) =LY 1 <k <|P|}.
sensor outputs a data set until the instant the actuator or the i i )
multiple-input application fed by the path receives the resulf!en, using Equation]1, one can find, for eaghe @, the
of the computation on that data set must be no greater thrglpustness radiusy,(¢:, A). Specifically,

a given value, L™ Let L; be the actual (as opposed to the

A= X"z if s =T° (8a)

min
maximum allowed) value of the end-to-end latency foy. A: T (A)=1/R(ax) N
The quantityZ,, can be found by adding the computation and,. (5, x) = = (;I)li:nl/R(a )||A —A™||z if ¢; = T2, (8b)
communication times for all applications # (including any I ’ it )
sensor or actuator communications). [2ta;) be the set of N L;{l;)“:waxu)‘ =A™l if ¢s = Lx (8¢)

successor applications of. Then,
The robustness radius in Equatforj 8a is the largest increase

Ly = > (17 + T3] - (6) (Euclidean distance) in load in any direction (i.e., for any
combination of sensor load values) from the assumed value
that does not cause a throughput violation for the computation
Itis desired that a given resource allocatjoof the system of applicationa,. This is because it corresponds to the value
be robust with respect to the satisfaction of two QOS att”butqﬁ' X for which the Computation time O&w will be at the
the latency and throughput constraints. Following step 1 gfiowed limit of 1/R(a,). The robustness radii in Equations
the FePIA procedure in Sectign II, the system performang§ and[8L are the similar values for the communications of
features that should be limited in variation are the latengpplicationa, and the latency of patt;, respectively. The
values for the paths and the computation and communicatigfbystness metric, from Equati@h 2, is given fy(®, ) =
time values for the applications. The gktis given by ming,c ¢ (r,(¢:, A)). For this system,p,(®, ) is the
= {T|1<i<|A]} largest increase in load in any direction from thel as;umed
value that does not cause a latency or throughput violation for
{751 (1 <i < |A]) A (for p wherea,, € D(a;))} any application or path. Note that (®, A) has the units oA,
U {Lkl 1<k< \P\} @) namely object.s pergiata set. In addition, note thaF althdu'gh_
a discrete variable, it has been treated as a continuous variable
This system is expected to operate under uncertain outpitsEquation[8 for the purpose of simplifying the illustration.
from the sensors, requiring that the resource allocatidme A method for handling a discrete perturbation parameter is
robust against unpredictable workload increases in the sendiscussed in [1].

it a; EPg
p: (ap€Pk)A(ap€D(as))



IV. EXPERIMENTS above, one can still question if the same information could

) o _ . _be gleaned from some traditional metrics (even if they are
The experiments in this section seek to establish the utilifp; traditionally used to measure robustness). In an attempt to
of the robustness metric in distinguishing between resourggs\ver that question, note that sharp differences exist in the
allocations that perform similarly in terms of a commonly,pystness of some resource allocations that have very similar
used metric, such as makespan. Two different systems W@ ,es of makespan. A similar observation could be made
considered: the independent task allocation system discusggg}; the robustness against load balance index plot (Figure
in Subsectiorf TT-A and the HiPer-D system outlined in Subyp)y |n fact, it is possible to find a set of resource allocations
sectior[11-B. Experiments were performed for a system Withat have very similar values of makespan, and very similar
five machines and 20 applications. A total of 1000 resour¢gyes of load balance index, but with very different values
allocations were generated by assigning a randomly chos§nihe ropustness. These observations highlight the fact that

machine to each application, and then each resource alloca@eg information given by the robustness metric could not be
was evaluated with the robustness metric and the commoglyained from two popular performance metrics.

used metric.
Independent Application Allocation Systentor the system
in Subsectiot TT-A, the ETC values were generated by sam-
pling a Gamma distribution. The mean was arbitrarily set to
10, thetask heterogeneityvas set to 0.7, and thmachine
heterogeneitywas also set to 0.7 (the heterogeneity of a set $0.13
of numbers is the standard deviation divided by the mean). £o0.12¢
See [13] for a description of a method for generating random
numbers with given mean and heterogeneity values.

The resource allocations were evaluated for robustness,

XX XIOO L X ORI K X
X

makespan, andoad balance indexdefined as the ratio of ‘_go.09f * o x e
the finishing time of the machine that finishes first to the §0.08“ o XX . o x wxx x
makespan). The larger the value of the load balance index, - - e
the more balanced the load (the largest value being 1). The =~ 007[ =" 1" T I Im=mil,mlr il
tolerance;r, was set to 120% (i.e., the actual makespan could 20 - 6‘: . XS‘S = 180 30
be no more than 1.2 times the estimated value). In this context, makespan (seconds)
a robustness value af for a given resource allocation means
that the resource allocation can endure any combination of (@)
ETC errors without the makespan increasing beyond 1.2 times
its estimated value as long as the Euclidean norm of the errors
is no larger than: seconds.

Figure[3(a) shows the “normalized robustness” of a re- 014l

source allocation against its makespan. mhamalized robust-
nessequals the absolute robustness divided by the estimated ©$0-13f
makespan. A similar graph for the normalized robustness £o0.12¢
against the load balance index is shown in Figure 3(b). It
can be seen in Figufg 3 that some resource allocations are
clustered into groups, such that for all resource allocations
within a group, the normalized robustness remains constant as
the estimated makespan (or load balance index) increases. 50.08" oo e x
The cluster of the resource allocations with the highest < - oo o

robustness has the feature that the most loaded machine has ~ 0-07pzrzr =~

the smallest number of applications assigned to it (which is

o
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x
£
X
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£
%
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two for the experiments in Figure] 3). The cluster with the load balance index
smallest robustness has the largest number, 11, of applications
assigned to it. The intuitive explanation for this behavior is that (b)

the larger the number of applications assigned to a machine,

the more degrees of freedom for the finishing time of thalg. 3. The plots of normalized robustness against (a) makespan, and (b)

machine. A larger degree of freedom then results in a shortead balance index for 1000 randomly generated resource allocations

path to constraint violation in the parameter space. That is,

the robustness is then smaller (using thenorm). The formal The HiPer-D System For the model in Subsection TT1}B,

explanation is given in [1]. the experiments were performed for a system that consisted
If one agrees with the utility of the observations madef 19 paths, where the end-to-end latency constraints of the



paths were uniformly sampled from the range [750, 1250].

The system had three sensors (with ratesc 1075, 3 x 2.5f" ‘ ‘ ‘ N
107°, and 8 x 107%), and three actuators. The experiments
made the following simplifying assumptions. The computa-  ,
tion time function, 77 (), was assumed to be of the form § 2 !
Y 1<.<3bijzAz, Whereb;;, = 0 if there is no route from the 3 L
z-th sensor to application;. Otherwise,b;;, was sampled 31 5t . Z+
from a Gamma distribution with a mean of 10 and task and £ S e T
machine heterogeneity values of 0.7 each. For simplicity in -G:) N LIRS S
the presentation of the results, the communication times were g 11 R : bt #; :
. . . B e TR e e S

all set to zero. These assumptions were made only to simplify &€ TP A e TR A
the experiments, and aret a part of the formulation of the 2 ¢§+5%£¥i ﬁ}%qﬁi&}i b e
robustness metric. The salient point in this example is that the ~ 0.5g%7 ﬁ%ﬁ{iﬁ%@#ﬁ%ﬁﬁ”éf foe
utility of the robustness metric can be seen even when simple ﬁﬂ%:ﬁﬁ%ﬁf;%fﬁw%
complexity functions are used. e ‘ ‘ ‘

. 0.2 0.3 0.4 0.5 0.6

The resource allocations were evaluated for robustness and slack

“slack.” In this context, a robustness value offor a given

resource allocation means that the resource allocation d¢@m 4. The plot of normalized robustness against slack for 1000 randomly
endure any combination of sensor loads without a latency $inerated resource allocations

throughput violation as long as the Euclidean norm of the

increases in sensor loads (from the initial values) is no larggf 5 rements are not needed if slack is known. As the system

thanz. Slack has been used in many studies as a performapeg.geneity increases, the robustness and slack become less

measure (e.g., [6], [14]) for resource allocation in parallel, e|ated, indicating that the robustness measurements can

and distribut_ed sys_tems, where a resource aIIocatipn W'_thoé used to distinguish between resource allocations that are
larger slack is considered better. In this study, slack is definggliior in terms of the slack. As the system size increases

mathematically as follows. Let thieactional valueof a given . ¢ rrelation between the slack and the robustness decreases
QoS attribute be the value of the attribute as a percentage,Qf

N | ' 4 val h lack QEn further. In summary, for heterogeneous systems, using
the maximum allowed value. Then tigercentage slackor  gacx as a measure of how much increase in sensor load a

a given QoS attribute is the fractional value subtracted fro@/stem can tolerate may cause system designers to grossly
1. Thesystem-wide percentage slaiskthe minimum value of misjudge the system’s capability.

percentage slack taken over all QoS constraints, and can be

expressed mathematically as V. RELATED WORK
Although a number of robustness measures have been
min | min (1 N Lk(A)) studied in the literature (e.g., [3], [6]-[8], [14]-[18]), those
k:PrEP Ly )’ measures were developed for specific systems. The focus of
max (Tlp()\)’ max TE},(A)> the research in this paper is a general mathematical formula—
min | 1— ap€D(a;) ) tion of a robustngss_metrlc that could be appl_led to a variety
ia;€A 1/R(ai) of parallel and distributed systems by following the FePIA

procedure presented in this paper.

Figure[4 shows the normalized robustness of a resourceGiven an allocation of a set of communicating applications
allocation against its slack. For this system, the normalizédl a set of machines, the work in [3] develops a metric
robustness equals the absolute robustness divided\BY||.. for the robustness of the makespan against uncertainties in
It can be seen that the normalized robustness and slack arethetestimated execution times of the applications. The paper
correlated.If, in some research study, the purpose of usirdiscusses in detail the effect of these uncertainties on the value
slack is to measure a system’s ability to tolerate additionaf makespan, and how the robustness metric could be used to
load, then our measure of robustness is a better indicatind more robust resource allocations. Based on the model
of that ability than slack. This is because the expression fand assumptions in [3], several theorems about the properties
slack, Equatiof]9, does not directly take into account how tleé robustness are proven. The robustness metric in [3] was
sensor loads affect the computation and communication timésrmulated for errors in the estimation of application execution
It could be conjectured that for a system where all sensdises, and was not intended for general use (in contrast to
affected the computation and communication times of all apur work). Additionally, the formulation in [3] assumes that
plications in exactly the same way, the slack and this researcttie execution time for any application is at mdstimes the
measure of robustness would be tightly correlated. This, @stimated value, wherke > 1 is the same for all applications.
fact, is true. Other experiments performed in this study shdw our work, no such bound is assumed.
that for a system with small heterogeneity, the robustness andn [15], the authors address the issue of probabilistic guar-
slack are tightly correlated, thereby suggesting that robustnesgees for fault-tolerant real-time systems. As a first step



towards determining such a probabilistic guarantee, the author©ur work is perhaps closest in philosophy to [18], which
determine the maximum frequency of software or hardwaegtempts to calculate the stability radius of an optimal schedule
faults that the system can tolerate without violating any ham a job-shop environment. The stability radius of an optimal
real-time constraint. In the second step, the authors deriveschedule,s, is defined to be the radius of a closed ball
value for the probability that the system will not experiencin the space of the numerical input data such that within
faults at a frequency larger than that determined in the fibtat ball the schedule remains optimal. Outside this ball,
step. The output of the first step is what our work wouldhich is centered at the assumed input, some other schedule
identify as the robustness of the system, with the satisfactimould outperform the schedule that is optimal at the assumed
of the real-time constraints being the robustness requiremenput. From our viewpoint, for a given optimal schedule, the
and the occurrence of faults being the perturbation parametebustness requirement could be the persistence of optimality

The research in [16] considers a single-machine scheduliimgthe face of perturbations in the input data. Our work differs
environment where the processing times of individual jobs aaed is more general because we consider the given system
uncertain. The system performance is measured by the tatduirements to generate a robustness requirement, and then
flow time (i.e., the sum ofompletiontimes of all jobs). Given determine the robustness. In addition, our work considers the
the probabilistic information about the processing time fgrossibility of multiple perturbations in different dimensions.
each job, the authors determine the normal distribution that
approximates the flow time associated with a given schedule.
A given schedule’s robustness is then given by 1 minus theWe are considering extending our current work in many
risk of achieving substandard flow time performance. The rigkfferent directions. Some of these directions include:
value is calculated by using the approximate distribution of 1) Incorporating robustness into static (off-line) and dy-
flow time. namic (on-line) resource allocation heuristics [19].

The studies in [14] and [17] explore slack-based techniques?) Deriving the boundary curves for different problem
for producing robust resource allocations. While [14] focusses  domains.
on a job-shop environment, [17] focusses on real-time systems3) Incorporating multiple types of perturbation parameters,
The central idea is to provide each task with extra time e.g., sensor loads and estimated execution times. Chal-
(defined as slack) to execute so that some level of uncertainty |enges here are how to define the collective impact

VI. FUTURE WORK

can be absorbed without having to reallocate. to find robust radius and how to state the combined
In [6], a “neighborhood-based” measure of robustness is  bound on multiple perturbation parameters to maintain

defined for a job-shop environment. Given a schedubknd the promised performance.

a performance metrid®(s), the robustness of the schedule 4) Incorporating probabilistic information about uncertain-

s is defined to be a weighted sum of df(s’) values such ties. Such information might be available about individ-

that s’ is in the set of schedules that can be obtained from  ual perturbation parameter elements or one might only
s by interchanging two consecutive operations on the same  have only relative information about perturbation param-
machine. eter elements. In another case, one might have relative
The work in [7] develops a mathematical definition for the information about different perturbation parameters.
robustness of makespan against machine breakdowns in a jols) Determining when to use Euclidean distance versus a
shop environment. The authors assume a certain random distri- simple sum when calculating the collective impact of
bution of the machine breakdowns and a certain rescheduling changes in the perturbation parameter elements.
policy in the event of a breakdown. Given these assumptions,
the robustness of a scheduleis defined to be a weighted VIl. CONCLUSIONS
sum of the expected value of the makespan of the reschedule@his paper argues that any claim of robustness for a given
system,M, and the expected value of the schedule delay (tegstem should be followed by three items of information:
difference betwee/ and the original value of the makespan)(a) what behavior of the system makes it robust? (b) what
Because the analytical determination of the schedule delay becertainties is the system robust against? (c) quantitatively,
comes very hard when more than one disruption is consideredactly how robust is the system? The paper presents a
the authors propose surrogate measures of robustness thatrexthematical description of a metric for the robustness of a
claimed to be strongly correlated with the expected value tdsource allocation with respect to desired system performance
M and the expected schedule delay. features against multiple perturbations in various system and
The research in [8] uses a genetic algorithm to produeavironmental conditions. In addition, the research describes
robust schedules in a job-shop environment. Given a schedalprocedure, called FePIA, to methodically derive the robust-
s and a performance metrig(s), the “robust fitness value” of ness metric for a variety of parallel and distributed resource
the schedule is a weighted average of aff(s’) values such allocation systems. For illustration, the FePIA procedure is
that s’ is in a set of schedules obtained framby adding employed to derive robustness metrics for two example dis-
a small “noise” to it. The size of this set of schedules igibuted systems. The experiments conducted illustrate the
determined arbitrarily. The “noise” modifies by randomly utility of the robustness metric in distinguishing between
changing the ready times of a fraction of the tasks. resource allocations that perform similarly otherwise.
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