QC984 . C6C49a no. 94-3 ABCHIVE

Climate Data Continuity with ASOS 1994 Annual Report
for the period September 1993 - August 1994

Thomas B. McKee
Nolan J. Doesken
John Kleist

Cimatology Report \#94-3

DEPARTMENT OF ATMOSPHERIC SCIENCE COLORADO STATE UNIVERSITY FORT COLLINS, COLORADO

Climate Data Continuity with ASOS - 1994 Annual Report

for the period September 1993-August 1994

Thomas B. McKee
Nolan J. Doesken
John Kleist

The research was supported by NOAA, NWS, Office of Meteorology under grant number NA37RJ0202.

Colorado Climate Center
Department of Atmospheric Science
Colorado State University
Fort Collins, CO 80523

December 1994

Climatology Report \# 94-3

Table of Contents

Page

1. Introduction 1
2. Data 2
3. Temperature and Humidity 3
4. Precipitation 8
5. Wind 15
6. Conclusion 17
Appendix A 57
Appendix B 62

Climate Data Continuity with ASOS - 1994 Annual Report for the period September 1993-August 1994

1. Introduction

The past year for the CDCP has been marked by three significant issues. The first is that the modified hygrothermometer has been implemented in the field starting in November 1993. By Spring 1994 all of the MARD sites that are commissioned received the modified hygrothermometer. The second issue is that the final 15 -month test period began on June 1, 1994 for all commissioned sites with the modified instrument. Other sites both in the central U.S. area and in the expansion list will be included as sites are commissioned and have the modified instrument installed. The third issue is that the ASOS heated tipping bucket was found to need several modifications which included the Reed switch, funnel extension, and modified stops. These modifications did not reach the field in the current year.

Three presentations were made or will be made at scientific meetings. Extended abstracts are included as Appendices A and B for American Meteorological Society meetings in January 1994 and January 1995. Another presentation was made at the National Weather Association Annual Meeting in October 1994.

Since the final 15 -month testing period has begun, this annual report will include an analysis of temperature for the three-month period June to August 1994. Precipitation data for the entire year are compiled and discussed. This is the first report containing CDCP wind comparisons.

2. Data

The ASOS sites for the central U.S. sites and the national expansion sites are given in Tables 1 and 2 and shown in Figure 1. All central U.S. sites have the modified hygrothermometer and were commissioned by June 1, 1994 except Springfield, MO. ALS does not have midnight to midnight maximum and minimum temperatures from the conventional (CONV) observations due to its partime status. A station move at PUB has resulted in discontinuing it as a CDCP site effective in August 1994. Consequently, there are only 11 complete central U.S. sites used in some of the analyses. A total of 5 expansion sites met the conditions to begin the final 15 -month test on June 1. One other site, PWM, will be included starting in the fall season in September 1994. Data flow from NCDC has gone rather smoothly in the past three months. Special attention has been devoted to the examination of data outliers in maximum and minimum temperatures for the summer season so the final comparison is not influenced by bad data. A list of outliers is given in Table 3. Twenty-five data values have been replaced with a corrected value or identified as missing. Fifteen of the values were from ASOS while ten were from CONV. Values were specified as "missing" if confidence in a replacement value was low. If the real value of the observation was available, it was used as the replacement. The CONV errors were usually obvious since we have a copy of the MF1-10B forms. One type is simply an error in keypunching. A second type is the daily values were not entered and someone picked the wrong value from the 6-hourly maximum and minimum values. Also, the observer could record a daily maximum or minimum which was clearly in conflict with
the 6 -hourly values. On one occasion one of the 6-hourly maximum and minimum values was missing. The ELY site has some times when the 6-hourly periods don't seem to fit the data selected for midnight to midnight. The source of ASOS errors is not clear. In all cases an ASOS maximum or minimum had a conflict with either the SAO or the 6 -hourly maximum or minimum. Four potential error sources exist which include the ASOS instrument, an observer which edits an ASOS value, processing at NCDC, or processing at CSU. We have no way to determine which is the real source. Table 3 is offered so that we might find out if NCDC or the NWS can help determine the cause of these outliers.

Several items related to data quality also emerged with the precipitation records. These are discussed in the beginning of the section on precipitation. Wind data are also discussed separately.

3. Temperature and Humidity

Tables 4 and 5 contain monthly and seasonal statistics for all sites included for the comparison of maximum and minimum temperatures with a midnight to midnight 24 -hour period during the June through August 1994 period. Tables 6 and 7 contain monthly summaries for the 6-hourly observations and the humidity variables. The past year of maximum and minimum temperature differences are presented in Figures 2-5. A vertical bar between May and June 1994 denotes the start of the final 15 -month comparisons of ASOS and CONV.

Mean monthly systematic differences continue to show ASOS consistently cooler than CONV in both the daily maximum and minimum temperatures. Considerable station to station variability persists along with sizeable month to month variations at individual stations. The National Expansion CDCP sites show similar overall characteristics. ELY is a notable exception with ASOS minimum temperature much warmer than CONV.

Observations for June, July and August provide a good opportunity to assess how well we can determine the systematic difference (often called "bias") between the ASOS and the CONV. If we consider the summer period, we have a sample (ranging from 90 to 92 observations) with a known sample mean and sample standard deviation. The relationship between the sample mean and the true population mean is given from the student's t distribution for a large number of degrees of freedom as

$$
t_{.025} \sqrt{\frac{s^{2}}{n}}<\bar{y}-\mu<t_{.025} \sqrt{\frac{s^{2}}{n}}
$$

where $t_{-.025}$ is the t value which has 2.5% of the distribution below it, s is the sample standard deviation, n is the size of the sample, \bar{y} is the sample mean, and μ is the population mean. The parameter $t \sqrt{\frac{s^{2}}{n}}$ establishs a confidence interval. If a large number of samples were taken, the sample mean would be within $t \sqrt{\frac{s^{2}}{n}}$ of the population mean for some known percentage of the samples. The $t_{.025}$ would establish the confidence interval for 95% of the samples. For the application to the ASOS - CONV observation, we have a 90-92 day sample for which we establish a sample interval of $\pm t \sqrt{\frac{s^{2}}{n}}$. This parameter is included in Tables 8 and 9 along with the seasonal mean and the standard deviation for both 95% and 99% of the t distribution.

The range of the mean values is related to the fact that the ASOS is a new instrument and the location has changed so local effects could be important. Note that COS and ICT are essentially colocated. These minimums of $-0.47^{\circ} \mathrm{F}$ and $-0.63^{\circ} \mathrm{F}$ with confidence intervals of approximately $0.2^{\circ} \mathrm{F}$ indicate a real bias exists between the instruments. Our field calibration tests at COS, OKC and TUL have indicated that ASOS does not have an absolute bias so a tentative conclusion is that the HO-83 has a warm bias of something near $0.5^{\circ} \mathrm{F}$. In a similar way the COS and ICT maximums of $-1.59^{\circ} \mathrm{F}$ and $-1.50^{\circ} \mathrm{F}$ would tend to confirm that the HO-83 has a solar heating problem leading to something near a $1^{\circ} \mathrm{F}$ magnitude. Mean values of other locations would indicate the local effects are important since the variation is quite wide compared with COS and ICT. The range of the standard deviations is also quite large and this leads to a rather large variation in the confidence intervals given in Table 6. We are concerned that the rounding of observations to whole numbers may have a significant effect on the range of the standard deviation but not on the means. A further analysis of this problem will be pursued in a later reporting period.

It is apparent now with close to two years of CDCP comparison data, that much of the observed station to station variability that produces the wide $\left(\pm 2^{\circ} \mathrm{F}\right)$ in Figures 2-5 is attributable to station location differences. Proximity to buildings, local vegetation differences, minor topographic features and large areas of pavement are factors that are affecting observed differences. An inventory of local exposure differences is currently being compiled to accompany CDCP results. But this still does not explain the month to month variations at individual stations that sometimes are as much as $\pm 1^{\circ} \mathrm{F}$. Instrument changes (ASOS or CONV) continue to introduce variability, and discontinuities in ASOS-CONV records continue to appear periodically. For example, LNK had one such change in mid July resulting in larger negative mean values in July and August.

Similar variability continues to be a common feature in ASOS-CONV humidity differences. Table 10 provides a summary of ASOS-CONV differences in dewpoint temperature, dewpoint depression and relative humidity. In general, ASOS dew points have been very similar to CONV with very little systematic bias when averaged across all stations. Since ASOS temperatures are cooler, dewpoint depressions are less and ASOS relative humidities are higher at nearly all sites. For the summer of 1994 all Central U.S. CDCP sites except one showed higher ASOS relative humidities than CONV. Summer season differences ranged from $\mathbf{- 1 . 1 \%}$ at Topeka to $+4.8 \%$ at Tulsa. The average difference was $+1.9 \%$. National expansion sites showed similar differences. Many sites continue to see larger daily variability in dewpoint differences than with temperature.

Meteorological conditions have been found to contribute to ASOS-CONV difference although these effects appear smaller than overall instrument difference and station location differences. The April-June 1994 progress report dedicated several pages to discussing
temperature differences as a function of time of day, sky cover, wind speed and wind direction. No further analyses are presented here but this will be revisited later in the 15 -month final test.

4. Precipitation

Beginning 1 September 1993, ASOS one-minute data became the primary source of ASOS precipitation data for CDCP sites. This greatly helped overcome data problems that had plagued CDCP analyses during the first year of commissioned ASOS comparisons. Unlike precipitation observations contained in ASOS SAO data, the one-minute ASOS data cannot be editted or augmented. Hence, it represents what ASOS actually observed. This information is what was used for subsequent comparisons with CONV precipitation observations. The hourly and sixhourly precipitation contained in the PCPN and additive data fields in the ASOS SAO transmissions were also compiled for comparative purposes.

ASOS one-minute and ASOS PCPN reports were combined to form six-hourly and daily totals for comparison with CONV. Periods when the two ASOS sources differed could usually be traced to periods when observers were editting ASOS PCPN data fields due to unrepresentative or deconfigured ASOS measurements. Under those circumstances, the sum of the hourly PCPN totals equalled CONV. There were some instances, however, when the PCPN data differed from the raw one-minute data and also differed from CONV. This occurred frequently at some stations and not at all at other sites. There was also a considerable amount of missing one-minute data at some CDCP sites. It was difficult to determine if ASOS was really not functioning during these periods or whether data had been available on site but were simply missing from the final data files transmitted to the Colorado Climate Center. If the data are truly missing, such as is the case when the precipitation gage is deconfigured, then CONV
data are normally used in the ASOS PCPN reports. When totals don't match up, local observers may only be using CONV data to edit SAO reports for a subset of the hours. There were many examples where one-minute data were missing from the files received but there was nothing to suggest that PCPN data were being modified. On a case by case basis, decisions were made whether to use the PCPN data as ASOS precipitation or to treat it as missing. Thus, despite the noticeable improvements over the past year in data available for precipitation comparisons, careful manual evaluations were still required. As many as 25% of all precipitation events required manual checking at a few sites while at other sites no special checking was required. Overall, less than 10% of the daily precipitation totals required close inspection. Our goal to automate much of the precipitation intercomparison process during 1994 proved unrealistic because of these data challenges. However, our confidence is much greater than last year that the results presented here are representative of how ASOS precipitation compares to CONV.

Tables 11 and 12 provide an inventory of available precipitation data for the period 1 September 1993-31 August 1994 for the Central U.S. and the National Expansion CDCP sites, respectively. With the availability of ASOS one-minute data, the number of days with missing or suspect data have decreased. Only those days with missing or deconfigured ASOS one-minute precipitation on days when precipitation was known to fall were counted as missing. Spurious ASOS precipitation days are listed separately but also were removed from the list of valid comparison days. These include all days on which ASOS reported significant precipitation (equal to or greater than $0.08^{\prime \prime}$) but where there was neither any CONV precipitation reported or any nearby shower activity indicated by ASOS and CONV weather conditions. Thirteen of 19 CDCP sites with commissioned operations experienced at least one day with falsely reported precipitation. Most of these reports were successfully removed from ASOS data transmissions
either automatically or manually. Colorado Springs had the greatest number of false reports with four. Sixteen of the 19 CDCP sites experienced some missing data. Five of these sites reported missing or spurious ASOS precipitation on 6 or more days during the year on which precipitation is known to have fallen. CONV precipitation that fell on days with missing ASOS reports was not included in the comparative statistics.

The total number of valid comparison days across the 13 Central U.S. CDCP sites was 4,659, which was 528 more than last year. However, the number of days with reported CONV and ASOS precipitation were significantly less than last year due to a consistently drier regional weather pattern. Similar comparisons cannot be made for National Expansion CDCP sites as only two sites had been commissioned prior to the period covered by this report. Four additional national sites were commissioned throughout the current year. Among all sites, the station with by far the highest daily frequency of precipitation was AST (Astoria, Oregon).

Accumulated precipitation totals for each comparison site were computed and will be retained as a part of the CDCP data archive. Figures 6 and 7 show selected examples for two Central U.S. sites and two National Expansion sites. AST, as well as being the site that experienced the most frequent precipitation, is also the only site where ASOS consistently measured more precipitation than CONV in all seasons of the year.

Tables 13 and 14 show monthly CONV and ASOS precipitation totals, respectively, for the Central U.S. CDCP sites. Comparable information for the National Expansion sites are contained in Tables 15 and 16. Please note that some precipitation amounts in these tables may differ from what appears in progress reports published during the year. Some differences are a result of including data that had not been received on time. Other changes came about when the final quality control analyses were completed.

Total CONV and ASOS precipitation by month for all Central U.S. CDCP sites combined are presented in Figure 8. This part of the country is characterized by a distinct seasonal precipitation cycle with relatively low amounts of precipitation in the cold season and much higher amounts in summer. In comparison to the previous year, less precipitation fell this year across the region in every month except April. Total CONV precipitation for valid comparison days from the 13 sites combined totalled 277.26 inches compared to $381.08^{\prime \prime}$ the previous year. ASOS precipitation totalled $250.32^{\prime \prime}$ compared to $338.59^{\prime \prime}$. ASOS precipitation for the whole year was 90.3% of CONV compared to 88.9% last year.

Monthly values of Central U.S. ASOS precipitation as a percent of CONV are shown in Figure 9. Combined three-month percentages are shown in Figure 10. ASOS and CONV were most similar in Autumn and Spring. ASOS precipitation was slightly lower with respect to CONV in each season this year compared to last except during the summer. The low winter value is likely due to the fact that a higher percentage of regional precipitation fell in the form of snow this year. The lower spring value can also be traced to a large March snowstorm that affected much of the Southern Plains. Improved summer percentages in 1994 appear to relate to fewer very intense rainstorms than occurred during the extremely wet summer of 1993.

Total 12-month precipitation for the Central U.S. CDCP sites is shown in Figure 11 and 12. COS and DDC both registered very similar ASOS and CONV totals for the year. GLD, LNK and OKC had less ASOS precipitation than CONV but were within 5\%. The lowest percentages were GRI and PUB with 78% and 72%, respectively. It is interesting to note that annual percentages were very similar between this analysis period and the previous year at ALS, CNK, COS, DDC, GLD, GRI, ICT, OKC, and TOP. AMA, PUB and TUL each experienced significantly lower ASOS percentages this year while LNK saw a noticeable improvement. The
variations in differences and year-to-year consistency may suggest that some of the CONV to ASOS differences that have been observed so far are directly associated with individual gage performance characteristics (both ASOS and CONV).

Central U.S. CDCP precipitation for just the 1994 summer months and for all four seasons separately (Figure 13) show some interesting results. Several sites experienced summer ASOS totals equal to or greater than CONV. TUL and AMA have each experienced recent declines in ASOS precipitation with respect to CONV that may be associated with deteriorating ASOS gage performance. At the same time, LNK, ICT and PUB have noted significant improvements. The improvement at ICT appears to relate to a gage replacement that occurred there 12 May 1994. Keep in mind that large ASOS-CONV differences may not always imply gage problems. Large spatial variability in convective precipitation is a natural part of our climate system. CDCP sites are not stictly colocated and the effects on CDCP results may be significant at times. Such differences, however, should be random and should average out over time. More discussion of this topic appears at the end of this section.

By far the most consistent characteristic of ASOS precipitation measurements affecting climate data continuity has been the systematic undermeasurement of precipitation that falls as snow. Figure 14 shows the effects of air temperature on ASOS precipitation as a percent of CONV observed this past winter. For precipitation events that were primarily snow, ASOS reported only 43% of CONV. These findings essentially duplicated what had been observed during the first winter following commissioning.

The 1993 results also pointed toward significant undermeasurement of precipitation by ASOS during heavy rain results. To further test this theory, all CONV and ASOS precipitation were compared for any 6-hour period during the September 1993 through August 1994 period
when precipitation totals exceeded $0.75^{\prime \prime}$ in either the CONV or ASOS gage (Figure 15). The 1994 results were not as dramatic as what was first documented in 1993. ASOS precipitation as a percent of CONV for these heavier rain events averaged 90.7% with ASOS reporting less precipitation than CONV about 80% of the time. At heavier rain rates where at least $1.50^{\prime \prime}$ of rain was reported in 6 hours, ASOS measured only 85% of CONV.

Data from National Expansion sites is still limited but is increasing steadily. Precipitation totals and percentages for the six commissioned expansion sites are presented in Figure 16 (top and bottom). Results are generally comparable in magnitude and variation with what has been observed in the Central U.S. Syracuse, New York, (SYR) which experienced a large amount of winter snow has shown the lowest ASOS percentages. Baton Rouge, Lousiana, (BTR) which has received only rain but several very intense rains has shown very similar CONV and ASOS totals. Astoria, Oregon, (AST) continues to be unique in that it consistently reports more ASOS precipitation than CONV at all times of year.

The frequency of precipitation is just as important as the quantity of accumulated precipitation for many applications. Based on the approximately 1000 precipitation days sampled by the 13 Central U.S. CDCP sites this past year, the overall frequency of measurable precipitation was very comparable for both ASOS and CONV. Of the 4,659 valid comparison days, measurable precipitation was reported 20.7% of the days by CONV and 21.2% by ASOS. Last year, ASOS also reported a 0.5% higher frequency than CONV across the region. The frequency of events in various size ranges is shown in Figure 17. The dominant feature which also appeared last year was the large number of ASOS daily reports of $0.01^{\prime \prime}$. It has now been confirmed that many of these events are the result of dew collection, fog deposition or delayed
tips from rain that partially filled the bucket the previous day. This higher frequency is offset by a lower frequency of events in other size ranges.

Before applying a stict interpretation to the results that have been presented here, it is useful to contemplate what effect the separation of ASOS and CONV gages are having. Very few gage pairs are within 1,000 feet of each other and some are more than 5,000 feet apart. ASOS gage locations are more uniformly exposed in that nearly all installations are in open areas near runways and taxiways. CONV exposures are more varied ranging from open to protected. In some cases, CONV instrumentation is within a few tens of feet of existing buildings or other obstacles. These distances in combination with exposure effects are sufficient to introduce variability in the CONV-ASOS relationships that are not strictly related to the instruments themselves. The greatest variability would be expected in the summer during convective precipitation and during wind driven rain or snow. The least variability would be expected when precipitation is most stratiform.

Several months of side-by-side comparisons with additional raingages have been performed by NWS Staff during the past years. Results from these studies at selected sites will be reviewed and incorporated in future CDCP results.

5. Wind

The work began on July 25 with overall project planning. The method for photographically recording metadata of wind site exposure was begun and tested on a day trip (1) to Olympia, WA, (OLY) on August 2.

A paper, entitled "Wind Climate Data Continuity Study" was written and submitted to the American Meteorological Society as paper 16.2 for the Eleventh International Conference on Interactive Information and Processing Systems (IIPS) to be held in Dallas, TX, January 15-20, 1995. It was also to be presented at the National Weather Association annual meeting in Salt Lake City in October.

A trip (2) was made by T.J. Lockhart and J.T. Lockhart to Silver Spring, MD, on August 16, returning to Fox Island on August 24, 1994. Among the activities during the trip were the following: attended ASOS meeting, gave talk at NCDC, discussed support activities from NCDC in Asheville, discussed project plans at Silver Spring, visited the ASOS Project Office, visited Belfort Instruments, visited NIST regarding wind climate requirements, and visited NWS/T\&ED at Sterling to discuss project goals. The trip resulted in a considerable amount of data from NCDC and a more comprehensive understanding of the ASOS program from NWS.

A brief trip (3) was taken to Billings, MT, (BIL) to inspect one of the two data continuity sites which still operates a totalizing anemometer and triple register recorder used for the daily fastest mile observation. Metadata photographs were taken, sensors were inspected and data were gathered to look at some F420 vs. ASOS comparisons. This data evaluation was more a
familiarizing exercise than final data analysis since the BIL ASOS has not been commissioned nor has the official list of stations been chosen.

The time between trips 2 and 3 was devoted to the study of the data and materials gathered during trip 2. A one-day trip (4) to Binghamton, NY, (BGM) was taken on September 25 to examine the special wind instrument comparison being operated there and at Cheyenne, WY, (CYS).

The process made during this period was entirely preparatory to the data collection, compilation and analysis necessary to judge whether or not the new ASOS wind instruments and data handling procedures will have an effect on the continuity of the apparent wind climate.

6. Conclusions

The past year has been marked by the fielding of modified hygrothermometers, the beginning of the final 15 -month temperature test phase on June 1 for all sites commissioned and equipped with modifications, and the continuation of comparison of precipitation as modifications to the heated-tipping bucket gage are in progress. Also, wind was added to the CDCP in July 1994.

Significant conclusions for temperature include ASOS does not have a systematic bias relative to field calibration thermometers, colocated sites of COS and ICT indicate the HO-83 has a warm bias (approximately $0.5^{\circ} \mathrm{F}$) and a solar heating at temperature maximums (approximately $1^{\circ} \mathrm{F}$), local effects of station location are important, and seasonal bias in the summer has a confidence interval of 95% of $0.1^{\circ} \mathrm{F}$ to $0.4^{\circ} \mathrm{F}$.

Precipitation comparisons continue as the modifications to the HTB are implemented. Observations in the 1993-94 winter confirm that ASOS is not a good frozen precipitation gage. ASOS continues to record more $0.01^{\prime \prime}$ events than the universal gage. ASOS continue to record less rain in heavy rain events but the summer of 1994 had far fewer events than did 1993.

Table 1.
Climate Data Continuity Study (CDCP)
Comparison Sites in the Central U.S.

Site ID	Station Name	Modified Hygrothermometer Installed	Commissioned Dates
ALS	Alamosa, CO	December 8, 1993	September 1, 1992
AMA	Amarillo, TX	January 10, 1994	November 1, 1992
CNK	Concordia, KS	January 7, 1994	September 1, 1992
COS	Colorado Springs, CO	November 30, 1993	November 1, 1992
DDC	Dodge City, KS	January 11, 1994	September 1, 1992
GLD	Goodland, KS	February 11, 1994	September 1, 1992
GRI	Grand Island, NE	December 21, 1993	October 1, 1992
ICT	Wichita, KS	December 6, 1993	November 1, 1992
LNK	Lincoln, NE	May 20, 1994	November 1, 1992
OKC	Oklahoma City, OK	November 1, 1993	October 1, 1992
PUB	Pueblo, CO	March 31, 1994	October 1, 1992
SGF	Springfield, MO	February 17, 1994	Expected date: 1995
TOP	Topeka, KS	December 10, 1993	December 1, 1992
TUL	Tulsa, OK	November 22, 1993	October 1, 1992

Table 2.
Climate Data Continuity Study (CDCP)
National Expansion Sites

Site ID	Station Name	Modified Hygrothermometer Installed	Commissioned Dates
ACY	Atlantic City, NJ	May, 1993	Expected date: 1995
AST	Astoria, OR	April 28, 1994	March 1, 1993
BIL	Billings, MT	September 17, 1993	Expected date: 1995
BIS	Bismarck, ND	August, 1994	Expected date: 1995
BRO	Brownsville, TX	November 15, 1993	May 1, 1994
BRW	Barrow, AK	August 10, 1994	Expected date: 1995
BTR	Baton Rouge, LA	March 2, 1994	November 1, 1993
CYS	Cheyenne, WY	March, 1993	Expected date: 1995
DAB	Daytona Beach, FL	December 14, 1993	Expected date: 1995
ELY	Ely, NV	December 16, 1993	June 1, 1994
GRR	Grand Rapids, MI	November 15, 1993	Expected date: 1995
ITO	Hilo, HI	March 18, 1994	Expected date: 1995
ADQ	Kodiak, AK	July 1, 1993	Expected date: 1995
PAH	Paducah, KY	June 30, 1994	Expected date: 1995
PWM	Portland, ME	March 25, 1994	August 1, 1994
SJU	San Juan, PR	Oct 27 - Nov 10, 1994*	Expected date: 1995
SMX	Santa Maria, CA	March 20, 1994	Expected date: 1995
SYR	Syracuse, NY	January 15, 1994	November 1, 1993
TUS	Tucson, AZ	May 16, 1994	Expected date: 1995

Table 3.
A summary of data outliers in temperature identified for the period June through August 1994.

Station Code	Date Yr-Mo-Day	ASOS or CONV	Parameter	Old Value	New Value	Reason
AMA	$94-08-07$	ASOS	Tmn	46	-99	SAO or 6-hrly
AST	$94-08-25$	ASOS	Tmn	67	-99	SAO or 6-hrly
AST	$94-08-26$	ASOS	Tmn	66	-99	SAO or 6-hrly
AST	$94-08-27$	ASOS	Tmx	69	-99	SAO or 6-hrly
CNK	$94-06-11$	CONV	Tmn	79	61	Keypunch error
COS	$94-08-26$	ASOS	Tmn	66	59	SAO or 6-hrly
COS	$94-08-27$	ASOS	Tmn	63	57	SAO or 6-hrly
DDC	$94-06-28$	CONV	Tmn	69	-99	Missing 6-hrly
DDC	$94-08-26$	ASOS	Tmn	68	61	SAO or 6-hrly
DDC	$94-08-27$	ASOS	Tmx	90	103	SAO or 6-hrly
ELY	$94-06-21$	CONV	Tmn	63	-99	Ely observation confusing
GLD	$94-06-09$	CONV	Tmn	69	57	Keypunch error
GRI	$94-07-07$	ASOS	Tmx	87	-99	ASOS not operating
ICT	$94-07-04$	CONV	Tmn	78	70	Missing 6-hrly
ICT	$94-07-11$	CONV	Tmn	76	67	Missing 6-hrly
ICT	$94-07-17$	CNV	Tmn	80	67	Observer error
ICT	$94-07-25$	ASOS	Tmx	81	87	SAO or 6-hrly
ICT	$94-08-27$	ASOS	Tmn	64	-99	SAO or 6-hrly
LNK	$94-08-25$	ASOS	Tmn	57	68	SAO or 6-hrly
OKC	$94-08-27$	CONV	Tmn	80	74	Observer error
SYR	$94-08-26$	ASOS	Tmn	52	-99	SAO or 6-hrly
TOP	$94-08-22$	CONV	Tmn	65	55	Observer error
TOP	$94-08-23$	CONV	Tmn	76	59	Observer error
TOP	$94-08-26$	ASOS	Tmn	62	68	SAO or 6-hrly
TUL	$94-08-26$	ASOS	Tmn	62	69	SAO or 6-hrly

$-99=$ missing value code.

Table 4.

Monthly statistical summaries of ASOS-CONV maximum and minimum temperature differences, June-August 1994, for Commissioned CDCP sites in the central U.S. Comparisons are based on ASOS Summary of the Day data and CONV midnight-midnight data except at noted.
als - Daily Max Temperatures

gld - Daily Max Temperatures

Year	$M n$	N	d	S	M	K	C
94	6	30	-1.77	0.77	0.0332	2.3057	1.9235
94	7	31	-1.68	0.98	-0.0304	2.6244	1.9344
94	8	31	-1.45	0.89	-0.1410	2.1853	1.6944
Season	92	-1.63	0.89	-0.0288	2.5836	1.8533	

gld - Daily Min temperatures

Year Mn	N	d	s	M	k	C	
94	6	29	-0.72	0.96	-0.7783	3.0101	1.1890
94	7	31	-0.81	0.91	-0.1133	2.7492	1.2048
94	8	30	-0.83	0.65	-0.1499	6.7729	1.0488
Season	90	-0.79	0.84	-0.4057	3.6454	1.1556	

Year $M n$	N	d	S	M	K	C	
94	6	30	-1.83	1.15	-0.8439	3.4274	2.1525
94	7	31	-1.58	0.96	-1.3176	6.0927	1.8404
94	8	31	-1.32	1.30	-1.1695	3.6821	1.8404
Season	92	-1.58	1.15	-1.0363	4.0834	1.9528	

gri - Daily Max Temperatures

Year	Mn	N	d	S	M	k	c
94	6	30	0.07	1.31	-0.4728	2.2682	1.2910
94	7	31	-0.52	1.03	-0.1360	1.7748	1.1359
94	8	31	-1.26	0.86	0.4909	2.9517	1.5134
Season	n	92	-0.58	1.20	0.1777	2.1139	1.3229

Year	Mn	N	d
94	6	30	-1.40
94	7	30	-1.17
94	8	31	-1.61
Season	91	-1.40	

S	M
0.81	-0.3119
0.70	-0.3688
0.76	-1.1695
0.77	-0.6324

gri - Daily Min Temperatures

Year $M n$	N	d	S	M	k	C	
94	6	29	-0.72	0.70	-0.4013	1.9857	1.0000
94	7	31	-0.65	0.71	-1.1255	4.6855	0.9504
94	8	31	-0.74	0.82	-0.1171	3.7933	1.0925
Season	91	-0.70	0.74	-0.5194	3.7441	1.0249	

cos Daily Max Temperatures							
Year Mn	N	d	S	M	k	C	
94	6	30	-1.50	0.94	0.1213	2.0209	1.7607
94	7	31	-1.39	1.02	-0.2956	3.3061	1.7133
94	8	31	-1.87	1.77	-2.4058	9.7150	2.5527
Season	92	-1.59	1.30	-2.3220	13.5969	2.0483	

ict - Daily Max Temperatures

Year M	Mn	N	d	s	M	k	c
94	6	30	-1.37	0.72	-0.4547	2.8742	1.5384
94	7	31	-1.68	0.91	-0.3875	2.8301	1.9008
94	8	31	-1.45	0.62	-0.1758	2.5611	1.5760
Season		92	-1.50	0.76	-0.5135	3.3566	1.6811
ict - Daily Min Temperatures							
Year Mr	Mn	N	d	s	M	k	C
94	6	30	-0.47	0.51	-0.1270	0.9511	0.6831
94	7	31	-0.52	0.51	0.0615	0.9404	0.7184
94	8	30	-0.90	0.40	0.7970	5.1917	0.9832
		91	-0.63	0.51	0.2621	1.6433	0.816

Mn = Month; $N=$ number of occurrences; $d=$ systematic difference; $s=$ estimated standard deviation of the difference; $M=$ skewness; $k=$ kurtosis; $C=$ operational comparability.

Ink - Da	ily	Max Te	ratu			
Year Mn	N	d	s	M	k	C
946	30	-2.17	1.26	-0.6933	2.6757	2.4967
947	31	-2.61	1.33	0.5201	2.7956	2.9238
948	31	-2.55	0.89	0.1410	2.1853	2.6941
Season	92	-2.45	1.18	0.0302	2.6819	2.7127
Ink - Dai	ily	in Tem	崖			
Year Mn	N	d	s	M	k	C
946	30	-1.40	1.38	-1.3434	5.0131	1.9494
947	31	-1.52	1.18	-0.3755	2.2267	1.9092
948	31	-2.10	1.51	-0.5121	2.0407	2.5716
Season	92	-1.67	1.38	-0.8355	3.2070	2.1737
oke - Dail	ily	Max Tem	ratu			
Year Mn	N	d	s	M	k	c
946	30	-0.10	0.96	-0.4890	2.2104	0.9487
7	27	0.63	1.45	-0.1019	2.2464	1.5516
948	31	0.35	1.14	1.9080	9.2701	1.1778
Season	88	0.28	1.21	0.6374	4.7685	1.2386
oke - Da	ily	in Tem	eratur			
Year Mn	N	d	s	M	k	c
946	29	-2.52	1.72	-0.5773	2.0356	3.0343
947	27	-2.11	1.31	-1.2842	4.1536	2.4721
948	31	-2.48	1.61	-0.1905	2.4710	2.9457
Season	87	-2.38	1.56	-0.6426	2.6894	2.8411
top - Dai	ily	Max Tem	at			
Year Mn	N	d	s	M	k	C
946	30	-0.17	1.26	1.4973	5.7271	1.2517
947	31	0.10	1.30	0.3560	2.0634	1.2826
948	30	0.07	2.92	-2.7448	13.7480	2.8752
Season	91	0.00	1.96	-2.7728	22.4290	1.9499
top - Dai	ily	Min Te	at			
Year Mn	N	d	s	M	k	c
946	30	-0.10	0.96	-0.2626	4.6642	0.9487
947	31	0.39	1.26	-1.2165	5.4962	1.2952
948	29	0.28	1.25	-0.9317	5.9226	1.2594
Season	90	0.19	1.17	-0.8234	5.4616	1.1877
tul - Dai	ily	Max Tem	ratu			
Year Mn	N	d	s	M	k	c
946	30	-2.17	0.99	-0.0967	2.4887	2.3735
94	31	-2.35	1.02	-0.0156	1.7500	2.5590
948	31	-2.16	1.16	-2.1929	10.1839	2.4429
Season	92	-2.23	1.05	-1.0092	6.0190	2.4606
tul - Dai	ily	Min Tem	eratu			
Year Mn	N	d	s	M	k	c
946	30	-1.63	0.96	-0.5257	2.5229	1.8886
947	31	-1.35	0.88	-0.1446	2.2184	1.6064
948	31	-1.45	0.72	-0.1626	2.6088	1.6164
Season	92	-1.48	0.86	-0.3766	2.8402	1.7146

[^0] deviation of the difference; $M=$ skewness; $k=$ kurtosis; $C=$ operational comparability.

Table 5.
Monthly statistical summaries of ASOS-CONV maximum and minimum temperature differences, June-August 1994, for commissioned Expansion sites in the central U.S. Comparisons are based on ASOS Summary of the Day data and CONV midnight-midnight data except at noted.

$M n=$ Month; $N=$ number of occurrences; $d=$ systematic difference; $s=$ estimated standard deviation of the difference; $M=$ skewness; $k=$ kurtosis; $C=$ operational comparability.

Table 6.
Monthly statistical summaries of ASOS-CONV hourly temperature, dewpoint temperature, dewpoint depression and relative humidity differences, June-August 1994, for commissioned CDCP sites in the Central U.S.

ALS - All Hourly Temperatures

Year	Mn	N	N	d	S	M	K
1994	6	52	-1.71	1.36	-1.1571	5.6865	2.1794
1994	7	52	-2.17	1.42	-0.1399	2.2990	2.5907
1994	8	54	-2.17	1.45	0.6858	2.9695	2.5999
Season	158	-2.02	1.42	-0.1521	3.2040	2.4662	

$\text { ALS - } 06$ Year Mn	UTC Max	Temperatures d s s
19946		Part-time station.
19947		Midnight to Midnight
19948		CONV data not avajlable
Season		

ALS - 18	UTC	Min Temperatures					
Year	Mn	N	d	S	M	k	C
1994	6	30	-0.60	1.45	0.8768	4.6514	1.5492
1994	7	31	-0.68	1.11	0.3654	2.2514	1.2826
1994	8	29	-0.79	0.68	-0.2439	2.0711	1.0339
Season	90	-0.69	1.12	0.8536	5.4920	1.3185	

ALS - All Hourly Dewpoint	Temperatures						
Year Mn	N	d	S	M	k	C	
1994	6	52	-0.17	3.87	1.5573	6.0362	3.8406
1994	7	52	0.83	1.54	0.0017	3.3147	1.7376
1994	8	54	0.87	2.52	1.2360	6.2684	2.6422
Season	158	0.51	2.83	1.2988	7.5144	2.8710	

| ALS - All Hourly Relative | Humidities | (percent) | | | | | |
| :--- | ---: | :--- | :--- | :---: | ---: | :---: | :---: | :---: |
| Year Mn | N | d | S | M | K | C | |
| 1994 | 6 | 52 | 1.24 | 3.11 | 1.2120 | 4.3563 | 3.3228 |
| 1994 | 7 | 52 | 3.38 | 3.05 | 0.1812 | 2.0817 | 4.5368 |
| 1994 | 8 | 53 | 3.97 | 3.99 | -0.7767 | 3.4865 | 5.6006 |
| Season | 157 | 2.87 | 3.59 | 0.0603 | 2.6515 | 4.5923 | |

AMA - All Hourly Temperatures

Year	Mn	N	d	s	M	K	C
1994	6	116	-0.26	1.24	0.1670	4.1651	1.2594
1994	7	121	-0.58	1.33	0.5598	4.7262	1.4431
1994	8	124	-0.63	0.98	0.6896	4.9577	1.1640
Season	362	-0.49	1.20	0.4793	4.7257	1.2917	

AMA - O6	UTC	Max	Temperatures				
Year	Mn	N	d	s	M	K	C
1994	6	28	-0.43	0.92	0.3481	3.1336	1.0000
1994	7	29	-0.79	1.35	1.1618	6.4936	1.5425
1994	8	31	-0.97	0.66	-0.0291	2.2361	1.1640
Season	89	-0.75	1.03	1.0001	7.2390	1.2733	

AMA - All Hourly Dewpoint	Depressions						
Year Mn	N	d	s	M	k	C	
1994	6	118	-0.32	2.92	-0.4860	13.4857	2.9256
1994	7	120	-0.03	1.79	1.7309	14.4392	1.7819
1994	8	123	-0.59	1.30	-0.2368	2.9724	1.4200
Season	362	-0.31	2.11	-0.0540	19.0404	2.1294	

AMA - All	Hourly Relative Humidities	(percent)					
Year Mn	N	d	S	M	k	C	
1994	6	115	0.32	2.43	-0.4192	5.8364	2.4381
1994	7	120	0.04	3.02	-0.4887	7.2818	3.0053
1994	8	123	0.75	2.43	-0.2981	3.1715	2.5385
Season	359	0.36	2.66	-0.4731	6.2970	2.6777	

CNK - 06 UTC Max Temperatures

Year $M n$	N	d	S	M	k	C	
1994	6	28	0.00	1.52	-0.8006	2.9395	1.4880
1994	7	31	-0.45	0.99	-0.2274	1.9073	1.0776
1994	8	31	-1.29	0.86	0.5633	2.9271	1.5450
Season	91	-0.60	1.25	0.0142	2.4270	1.3830	

CNK - 18 UTC Min Temperatures

Year $M n$	N	d	S	M	k	C	
1994	6	27	0.37	1.24	1.8400	7.5910	1.2766
1994	7	31	0.32	1.35	1.8561	6.9315	1.3678
1994	8	31	0.29	2.13	1.6088	5.5069	2.1175
Season	89	0.33	1.62	1.8732	7.6032	1.6503	

CNK - All Hourly Dewpoint Temperatures

Year	Mn	N	d	s	M	\mathcal{N}	C
1994	6	115	-0.03	0.69	0.1898	4.3286	0.6916
1994	7	124	0.58	1.20	0.4460	4.6190	1.3259
1994	8	123	1.49	1.64	0.8785	4.8181	2.2068
Season	363	0.70	1.39	1.2174	6.2609	1.5549	

Mn = Month; $N=$ number of occurrences; $d=$ systematic difference; $s=$ estimated standard deviation of the difference; $M=$ skewness; $k=$ kurtosis; $C=$ operational comparability.

Year	Mn	N	d	s	M	k	c
94	6	115	0.17	1.28	0.0502	4.6504	1.2854
4	7	124	-0.85	1.57	-0.4756	3.0988	1.7803
1994	8	123	-2.05	2.07	-1.0598	3.8289	2.9078
Seas		363	-0.93	1.	-0.9	4.8	2.1181

CNK - All Year Mn	$\mathrm{L}_{\mathrm{N}}^{\mathrm{Hou}}$	$\begin{array}{ll} \text { ly } \\ \mathrm{Re} \end{array}$	ive	Midities	(percent	C
19946	115	-0.15	2.88	0.0940	5.3349	2.8746
1994	124	1.74	3.39	-0.2097	4.6965	3.8010
19948	123	3.88	3.25	0.3649	2.9012	5.0590
Season	363	1.88	3.59	0.1391	3.8336	4.0461
COS - All Hourly Temperatures						
Year Mn	N	d	s	M	k	c
19946	118	-0.85	1.22	-0.4313	4.3738	1.4787
19947	124	-0.98	0.95	-0.4217	3.3357	1.3678
19948	123	-0.79	1.07	-0.1859	5.2224	1.3282
Season	366	-0.87	1.08	-0.3325	4.6370	1.3899

COS - 06 UTC Max Temperatures							
Year Mn	N	d	s				
1994	6	29	-1.48	0.95	0.0733	1.9791	1.7518
1994	7	31	-1.42	1.03	-0.2101	3.2369	1.7413
1994	8	31	-1.52	0.81	-0.3124	2.3519	1.7133
Season	92	-1.46	0.93	-0.1252	2.8172	1.7301	

COS - 18							
UTC	Min Temperatures						
Year Mn	N	d	S	M	k	C	
1994	6	30	-0.33	2.01	1.3375	6.2644	2.0000
1994	7	31	-0.26	0.77	1.2853	5.0278	0.8032
1994	8	31	0.23	1.59	1.6797	4.9529	1.5760
Season	92	-0.12	1.54	1.6280	8.0411	1.5419	

cos							
Year	Mn	N	d	s	M	k	c
99	6	118	0.96	1.25	0.3656	3.3864	1.5704
1994	7	124	1.63	1.77	1.7636	7.3665	2.3996
1994	8	123	0.84	1.18	0.4340	4.5284	1.439
Seas		366	1.14	1.46	1.477	8.240	1.8

COS - All Hourly Dewpoint	Depressions						
Year Mn	N	d	s	M	M	C	
1994	6	118	-1.81	1.99	-0.4812	5.1157	2.6792
1994	7	124	-2.61	2.21	-1.3140	5.1151	3.4172
1994	8	124	-1.56	2.00	0.1306	5.9290	2.5305
Season	367	-1.99	2.11	-0.6717	5.8333	2.9021	

COS - All Hourly Relative Humidities (percent)

Year	Mn	N	d	s	M	M	k
1994	6	118	2.06	2.41	-0.4888	5.3171	\mathbf{C}
1994	7	123	3.36	2.60	0.5506	3.8539	4.2386
1994	8	122	2.34	2.53	-1.1178	8.1585	3.4371
Season	364	2.58	2.57	-0.2487	6.0177	3.6429	

DDC - 06		ax Ter	rat			
Year Mn	N	d	s	M	k	c
19946	29	0.14	0.95	-0.5017	2.7568	0.9469
19947	30	0.63	1.13	-0.1125	3.0261	1.2780
19948	30	0.47	1.11	-0.8060	3.1040	1.1832
Season	90	0.40	1.08	-0.3546	3.1190	1.1508
DDC - 18 UTC Min Temperatures						
Year Mn	N	d	s	M	k	c
19946	30	-1.17	3.18	-2.2924	12.8095	3.3417
1994	30	-0.43	1.41	1.1264	4.1252	1.4491
19948	31	-0.16	2.13	1.8643	6.8123	2.1022
Season	91	-0.58	2.37	-1.5668	17.9763	2.4273

DDC - All Hourly Dewpoint Temperatures

Year	Mn	N	d	s	M	k	C
1994	6	119	-0.61	0.86	-0.1193	5.8101	1.0572
1994	7	124	-1.06	0.80	0.0053	3.1905	1.3229
1994	8	124	-0.81	0.84	-0.5339	4.7145	1.1640
Season	368	-0.83	0.85	-0.1804	4.5320	1.1892	

DDC - All Hourly Dewpoint	Depressions						
Year	Mn	N	d	s	M	K	C
1994	6	119	-0.11	1.54	-1.4775	8.0906	1.5367
1994	7	124	0.83	1.36	0.0743	4.3950	1.5888
1994	8	124	0.68	1.57	0.7494	6.4402	1.7039
Season	368	0.47	1.54	-0.2475	7.1152	1.6111	

$\begin{aligned} & \text { DDC - All } \\ & \text { Year Mn } \end{aligned}$	$\begin{aligned} & \mathrm{HOA} \\ & \mathrm{~N} \end{aligned}$	$\begin{array}{ll} \text { y } \\ d e \\ d e \end{array}$	$\begin{gathered} \mathrm{ve} \\ \mathrm{~s} \end{gathered}$	M	$\begin{gathered} \text { (percen } \\ k \end{gathered}$	C
19946	118	0.35	2.66	1.3132	5.5273	2.6744
19947	124	-1.44	2.66	0.6410	6.5997	3.0129
19948	123	-1.05	2.88	0.7055	5.8510	3.0522
Season	366	-0.72	2.83	0.7756	5.8791	2.9183
GLD - All Hourly Temperatures						
Year Mn	N	d	s	M	k	C
19946	119	-1.37	1.56	1.9201	18.4806	2.0682
1994	124	-1.51	1.02	-0.0010	3.7888	1.8206
19948	124	-0.88	1.02	0.3116	4.1797	. 3410
Season	368	-1.25	1.25	1.1802	15.5086	1.7624
GLD - 06 UTC Max Temperatures						
Year Mn	N	d	s	M	k	c
4	29	-1.79	0.77	0.0999	2.3615	1.9476
1994	31	-1.65	0.98	-0.1134	2.5820	1.9092
1994	31	-1.45	0.89	-0.1410	2.1853	1.6944
Season	92	-1.63	0.89	-0.0288	2.5836	1.8585

GLD - 18 UTC Min Temperatures

Year	Mn	N	d	s	M	k	C
1994	6	30	-1.70	2.74	-2.8120	13.9050	3.1885
1994	7	31	-0.77	2.03	1.1870	5.1267	2.1402
1994	8	31	-0.52	2.36	1.8640	9.0087	2.3827
Season		92	-0.99	2.42	-0.6337	13.5146	2.6061

	Mn		$\begin{aligned} & \text { y De } \\ & d \end{aligned}$	s		k	
94	6	119	-0.21	1.81	-0.4762	9.7643	1.8173
94	7	124	-0.35	1.04	0.6782	5.2007	. 088
1994	8	124	-0.31	0.78	0.3980	5.2174	0.8376
Season		368	-0.29	1.27	-0.2025	13.827	1.30

[^1]| | | | | M | k | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 19946 | 119 | -1.16 | 2.21 | -0.3138 | 5.7964 | 2.4869 |
| 19947 | 124 | -1.16 | 1.61 | -0.1192 | 4.5884 | 1.9838 |
| 19948 | 124 | -0.56 | 1.21 | 0.0815 | 5.5691 | 1.3320 |
| Season | 368 | -0.96 | 1.74 | -0.4026 | 6.7433 | 1.9818 |

GLD - All Hourly Relative Humidities	(percent)						
Year	Mn	N	d	S	M	M	C
1994	6	117	2.03	3.49	0.2129	6.3370	4.0255
1994	7	124	2.13	3.12	0.1367	3.3807	3.7673
1994	8	124	1.04	2.43	-0.4582	5.2710	2.6326
Season	366	1.72	3.07	0.1907	5.6013	3.5132	

GRI - All Hourly Temperatures

Year	Mn	N	d	\mathbf{s}	M	K	C
1994	6	118	-1.01	0.92	-1.3555	7.7984	1.3623
1994	7	123	-0.92	0.83	0.0237	4.7591	1.2330
1994	8	124	-1.02	0.88	-0.4533	3.0190	1.3470
Season	366	-0.98	0.87	-0.6751	5.5186	1.3130	

GRI - 06 UTC Max Temperatures

Year	Mn	N	d	s	M	M	K
1994	6	28	-1.43	0.84	-0.2173	2.3566	1.6475
1994	7	30	-1.17	0.70	-0.3688	3.0866	1.3540
1994	8	31	-1.52	0.63	-0.7320	2.4344	1.6363
Season	90	-1.37	0.73	-0.3768	2.9014	1.5503	

Mn				M		
19946	28	-0.21	1.47	0.8244	3.2567	4639
7	30	0.13	1.66	1.7353	6.1508	. 6330
19948	31	0.13	1.93	1.4174	4.7615	1.9008
Season	89	0.02	1.69	1.4960	5.5611	1.6879

GRI			De				
ear	Mn	N	d	s	M	k	c
94	6	117	-1.14	1.01	1.5251	14.7380	. 5163
1994	7	123	-0.61	1.20	3.9826	34.3589	1.3404
1994	8	124	-0.31	0.83	-0.0693	4.001	0.8799
Seas		365	0.67	1.0	2.163	22.28	. 2

GRI - All						
Mn	N	d	s	M	k	c
19946	118	0.16	1.40	-0.8277	8.2401	1.3992
94	124	-0.30	1.31	-3.1870	25.0002	1.3410
9948	124	-0.72	1.25	-0.3149	4.1360	1.4340
Seas	367	-0.29	1.36	-1.2683	11.3649	1.391

GRI - All Hourly Relative Humidities (percent)

Year	Mn	N	d	s	M	k	C
1994	6	117	-0.40	2.64	1.3780	9.2596	2.6627
1994	7	123	0.46	2.45	-0.0858	2.6035	2.4795
1994	8	124	1.55	2.71	-0.4083	4.1074	3.1144
Season	365	0.55	2.71	0.2770	4.3914	2.7647	

ICT - All Hourly Temperatures							
Year Mn	N	d	S	M	K	C	
1994	6	119	-0.76	1.35	5.2958	48.9170	1.5476
194	7	122	-1.00	0.90	-0.2024	2.5741	1.3429
1994	8	126	-1.21	0.99	-1.4642	9.4100	1.5660
Season	368	-1.00	1.11	2.8622	40.7862	1.4882	

M		d				
car Mn	N	d	s	. M	k	c
1946	29	-1.38	0.73	-0.4067	2.7918	1.5536
94	29	-1.69	0.89	-0.6123	2.8215	1.9028
19948	31	-1.45	0.62	-0.1758	2.5611	1.5760
Season	90	1.50	0.	-0.623	3.43	1.6816

ICT - 18 UTC Min Temperatures

Year	Mn	N	d	s	M	k	C
1994	6	30	-0.20	1.19	2.8908	12.7977	1.1832
1994	7	29	-0.52	3.19	-0.2104	6.8138	3.1786
1994	8	31	-0.16	1.98	2.3196	7.6215	1.9593
Season	90	-0.29	2.24	0.3650	11.2827	2.2501	

ICT - All Hourly Dewpoint Temperatures

Year	Mn	N	d	s	M	k
1994	6	118	0.31	1.49	5.9303	47.8196
1.5183						
1994	7	123	0.50	0.99	0.9276	4.1373
1994	8	126	0.81	1.05	0.6706	7.7618
Season	368	0.54	1.21	3.7819	35.4967	1.3244
S						

ICT - All Hourly Dewpoint Depressions

| Year | Mn | N | d | s | M | k | M |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1994 | 6 | 118 | -1.08 | 1.32 | -1.9104 | 12.6145 | 1.7000 |
| 1994 | 7 | 122 | -1.50 | 1.49 | -0.7216 | 3.0806 | 2.1097 |
| 1994 | 8 | 126 | -2.02 | 1.65 | -0.8155 | 10.9401 | 2.6049 |
| Season | 367 | -1.54 | 1.54 | -1.0775 | 8.3220 | 2.1782 | |

ICT - All	Hourly Relative Humidities	(percent)					
Year Mn	N	d	s	M	k	C	
1994	6	118	1.96	2.32	0.6990	6.4136	3.0283
1994	7	122	2.84	2.73	0.3184	3.5677	3.9303
1994	8	125	3.71	2.41	-0.1852	8.7073	4.461
Season	366	2.85	2.58	0.2547	5.1648	3.8472	

		Ho	T				
1994	6	119	-1.19	0.98	-0.5311	148	
1994	7	124	-1.69	1.16	-0.5323	3.1858	. 045
1994	8	116	-1.83	1.14	-0.7248	3.6295	2.1496
eas		360	-1.56	1.13	-0.6434	3.4739	1.92

LNK - 06 UTC Max Temperatures

Year	Mn	N	d	s	M	K	C
1994	6	29	-2.21	1.26	-0.6477	2.6319	2.5325
1994	7	30	-2.57	1.38	0.4370	2.5022	2.9040
1994	8	29	-2.62	0.78	0.1679	2.5234	2.7292
Season	89	-2.45	1.18	0.0454	2.7370	2.7189	

LNK - 18 UTC Min Temperatures

Year Mn	N	d	s	M	k	C	
1994	6	30	-1.00	1.55	-0.1067	7.4031	1.8257
1994	7	30	-0.97	1.63	0.4572	2.7664	1.8708
1994	8	29	-1.31	2.45	0.2915	2.1900	2.7418
Season	89	-1.09	1.90	0.1766	3.5830	2.1871	

LNK - All Hourly Dewpoint Temperatures

Year	Mn	N	d	s	M	K	C
1994	6	119	-1.47	1.93	-3.2798	16.6160	2.4202
1994	7	124	-1.07	1.88	-2.4116	11.6727	2.1571
1994	8	116	-0.51	0.84	0.2895	3.2310	0.9782
Season	360	-1.02	1.68	-3.1194	18.1817	1.9630	

LNK - All Hourly Dewpoint	Depressions						
Y Year Mn	N	d	s	M	k	C	
1994	6	119	0.28	2.00	2.6214	13.8509	2.0147
1994	7	124	-0.61	2.44	1.2025	6.4300	2.5081
1994	8	116	-1.32	1.36	-0.5848	2.7871	1.8915
Season	360	-0.54	2.09	1.5303	9.7194	2.1602	

| LNK - All Hourly Relative Humidities | (percent) | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Year Mn | N | d | s | M | K | C | |
| 1994 | 6 | 116 | -0.30 | 3.45 | -0.9007 | 5.7812 | 3.4441 |
| 1994 | 7 | 120 | 1.67 | 4.37 | -0.4970 | 3.9084 | 4.6601 |
| 1994 | 8 | 115 | 2.78 | 2.85 | 0.2683 | 3.0056 | 3.9702 |
| Season | 352 | 1.38 | 3.82 | -0.4971 | 4.6827 | 4.0581 | |

OKC - All Hourly Temperatures

Year Mn	N	d	S	M	K	C	
1994	6	117	-1.33	1.74	0.1153	$\mathbf{3 . 4 7 1 5}$	2.1878
1994	7	108	-1.16	1.54	-0.3974	3.8955	1.9173
1994	8	124	-1.39	1.60	-0.7749	3.9128	2.1099
Season	350	-1.30	1.62	-0.3277	3.8232	2.0771	

OKC - 06 UTC Max Temperatures

Year Mn	N	d	s	M	K	C	
1994	6	29	-0.07	0.96	-0.5687	2.3129	0.9469
1994	7	27	0.59	1.47	-0.0704	2.1165	1.5635
1994	8	31	0.32	1.14	2.0074	9.6451	1.1640
Season	88	0.28	1.21	0.6374	4.7685	1.2481	

OKC - 18	UTC	Min Temperatures					
Year Mn	N	d	S	M	K	C	
1994	6	29	-2.28	1.98	0.0243	3.1392	2.9942
1994	7	27	-1.56	1.85	0.3141	4.5124	2.3882
1994	8	31	-2.29	2.48	0.3606	3.4766	3.3457
Season	87	-2.06	2.14	0.1940	3.8911	2.9600	

$\text { C }-\mathrm{All}$ ar Mn	Hou	$\begin{aligned} & \text { y Del } \\ & d \end{aligned}$	$\begin{gathered} n t \\ s \end{gathered}$	M	k	
946	118	-0.02	0.97	0.1450	3.5963	0.9655
19947	108	-0.22	0.87	0.0136	3.5628	0.8924
948	123	-0.24	0.86	-0.2774	4.1772	0.8926
ason	350	-0.16	0.90	0.0235	3.893	. 9227
KKC - All Hourly Dewpoint Depressions						
Mn	N	d	- s	M	k	c
19946	117	-1.32	1.59	0.0003	2.8154	2.0652
94	108	-0.94	1.60	-0.6858	3.3402	1.8484
94	123	-1.15	1.65	-0.4652	3.4091	2.0020
			1.62	38	3.135	

OKC - All Hourly Relative Humidities (percent)

| Year $M n$ | N | d | s | M | k | C | |
| :--- | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1994 | 6 | 117 | 3.30 | 3.80 | 0.3738 | 2.8503 | 5.0178 |
| 1994 | 7 | 107 | 2.14 | 3.55 | 0.8207 | 3.3885 | 4.1322 |
| 1994 | 8 | 123 | 2.90 | 3.98 | 0.9002 | 3.5746 | 4.9071 |
| Season | 348 | 2.79 | 3.81 | 0.7202 | 3.3007 | 4.7150 | |

PUB - All Hourly Temperatures							
Year Mn	N	d	s	M	k	C	
1994	6	113	-1.43	1.84	-0.5892	9.2400	2.3234
1994	7	123	-1.32	1.06	-0.8308	4.4059	1.6869
1994	8	data	not taken.				
Season	237	-1.37	1.48	-0.7608	11.1901	2.0137	

PUB - All Hourly Dewpoint Temperatures

Year $M n$	N	d	s	M	K	C	
1994	6	113	0.17	1.60	-0.5204	5.5197	1.5992
1994	7	123	0.28	0.95	1.0428	6.1189	0.9918
1994	8	data	not taken.				
Season	237	0.23	1.30	-0.3099	7.0962	1.3192	

PUB - All Hourly Dewpoint Depressions

ear	Mn	N	d	s	M	k	c
1994	6	115	-1.47	2.65	0.3894	9.7271	3.0231
1994	7	123	-1.60	1.21	-0.4341	3.1435	2.0061
1994	8	data	not ta	n.			
Seaso	on	239	-1.54	2.03	0.4308	13.8601	2.5453

PUB - All Hourly Relative Humidities	(percent)							
Year	Mn	N	d	S	M	(p	C	C
1994	6	113	2.01	3.84	-0.6620	7.9709	4.3209	
1994	7	123	2.38	2.21	1.0876	4.1159	3.2386	
1994	8	data	not taken.					
Season	237	2.20	3.09	-0.4887	9.8320	3.7910		

Year	Mn	${ }_{\mathrm{N}}^{\mathrm{NO}}$	$\begin{aligned} & \mathrm{Te} \\ & \mathrm{~d} \end{aligned}$	s	M	k	
94	6	118	-0.03	1.23	0.6157	3.6944	1.2213
94	7	123	0.28	1.29	0.2607	3.0269	1.3159
199	8	121	0.42	1.10	0.5692	4.5029	1.1748
Season		363	0.23	1.22	0.4227	3.5936	1.23

TOP - 06 UTC Max Temperatures

Year	Mn	N	d	s	M	K	C
1994	6	29	-0.17	1.28	1.4837	5.5564	1.2731
1994	7	31	0.03	1.25	0.4356	2.3070	1.2313
1994	8	30	0.57	1.59	0.5535	3.8910	1.6633
Season	91	0.13	1.40	0.8969	4.2025	1.4034	

TOP - 18 UTC Min Temperatures

Year	Mn	N	d	S	M	K	C
1994	6	30	0.43	1.77	1.3935	5.4260	1.7981
1994	7	31	0.55	1.12	-0.3231	2.1093	1.2313
1994	8	27	0.81	3.45	1.2243	10.3360	3.4854
Season	88	0.59	2.25	1.7325	18.8136	2.3194	

TOP - All Hourly Dewpoint Temperatures

Year	Mn	N	d	s	M	K	C
1994	6	115	0.30	1.20	-1.5145	8.3683	1.2301
1994	7	123	-1.00	1.40	-1.0077	4.1092	1.7179
1994	8	121	-0.30	1.22	0.0598	5.7813	1.2531
Season	360	-0.34	1.38	-0.8038	5.1134	1.4243	

$M n=$ Month; $N=$ number of occurrences; $d=$ systematic difference; $s=$ estimated standard deviation of the difference; $M=$ skewness; $k=k u r t o s i s ; C=$ operational comparability.

TOP - All	Hourly Relative Humidities	(percent)					
Year Mn	N	d	S	M	K	C	
1994	6	116	0.79	4.57	-0.9223	5.2085	4.6218
1994	7	124	-2.73	3.63	-0.3597	2.6167	4.5366
1994	8	122	-1.41	3.79	0.7609	4.857	4.0292
Season	363	-1.14	4.25	-0.0727	3.8411	4.3978	

TUL - All Hourly Temperatures

Year	Mn	N	d	s	M	k	C
1994	6	119	-1.66	1.04	0.0746	5.9865	1.9575
1994	7	124	-1.42	1.07	-0.2285	2.6842	1.7735
1994	8	123	-1.35	0.97	-0.0011	3.8507	1.6626
Season	367	-1.47	1.03	-0.0766	4.1034	1.7984	

TUL - O6 UTC Max Temperatures							
Year Mn	N	d	s		M	C	
1994	6	29	-2.17	1.00	-0.0786	2.4029	2.3853
1994	7	31	-2.39	0.99	-0.037	1.8442	2.5778
1994	8	31	-1.97	0.75	-0.0488	1.7120	2.1022
Season	92	-2.18	0.92	-0.1272	2.2881	2.3747	

退 Mn	N	d	s	M	k	c
19946	30	-1.27	1.70	1.6651	6.5528	2.0976
19947	31	-0.94	1.53	1.0933	3.7891	1.7689
8	31	-0.55	2.28	2.1237	7.7822	2.3071
Season	92	-0.91	1.87	2.0386	8.7102	2.0757

Ye			Temperatures				
	Mn	N	d	s		k	c
	6	119	0.52	1.01	0.9054	4.7601	1.1302
1994	7	124	0.59	1.00	1.1278	6.2188	1.1535
994	8	123	1.24	1.51	1.3242	5.4370	1.9527
Seas		367	0.78	1.24	1.4920	7.073	1

TUL	Al	Hour		int	pressio		
ar	Mn	N	d	s	M	k	c
1994	6	119	-2.18	1.42	-0.8021	3.9993	2.6025
94	7	124	-2.01	1.55	-1.1216	5.6326	2.5352
94	8	124	-2.56	1.91	-1.2728	5.0743	3.1902
as		368	-2.25	1.65	-1.2306	5.6299	

TUL - All Hourly Relative Humidities (percent)

Year	Mn	N	N	d	s	M	M
1994	6	119	4.57	2.78	0.5406	3.8972	5.3439
1994	7	124	4.30	3.08	0.3858	2.7256	5.2813
1994	8	124	5.41	3.44	0.3786	2.9006	6.3983
Season	368	4.76	3.14	0.4756	3.2180	5.6976	

$M n=$ Month; $N=$ number of occurrences; $d=$ systematic difference; $s=$ estimated standard deviation of the difference; $M=$ skewness; $k=$ kurtosis; $c=$ operational comparability.

Table 7.

Monthly statistical summaries of ASOS-CONV hourly temperature, dewpoint temperature, dewpoint depression and relative humidity differences, June-August 1994, for commissioned Expansion sites in the U.S.

AST - All		ly Te	ratu			
Year Mn	N	d	s	M	k	${ }^{\text {C }}$
19946	119	-0.44	0.99	-0.1997	3.2532	1.0769
1994	124	-0.26	0.76	-0.6215	3.7774	0.8032
19948	124	-0.08	0.77	-0.7067	4.0575	0.7725
Season	368	-0.26	0.86	-0.5244	3.7135	0.8923
AST - 06 UTC Max Temperatures						
Year Mn	N	d	s	M	k	c
1994	29	-0.93	1.00	1.7448	9.2408	1.3519
1994	30	-1.23	1.48	-2.0874	8.5415	1.9061
19948	31	-0.06	0.81	0.1110	3.2338	0.8032
Season	91	-0.73	1.22	-1.3253	10.2554	1.4177
ASt - 18 UTC Min Temperatures						
Year Mn	N	d	s	M	k	C
19946	30	1.17	1.60	1.1066	4.0164	1.9579
1994	31	0.45	1.26	1.7477	6.4661	1.3198
19948	31	1.35	1.62	1.6081	4.3799	2.0945
Season	92	0.99	1.54	1.5087	5.0181	1.8250

AST - All Hourly Dewpoint Temperatures

Year	Mn	N	d	s	M	k	C
1994	6	119	0.61	0.77	-1.0606	6.5143	0.9788
1994	7	124	0.21	0.62	0.4703	3.6091	0.6476
1994	8	124	0.48	0.68	0.4415	3.6758	0.8328
Season	368	0.43	0.71	-0.1036	4.4954	0.8321	

AST - All Hourly Dewpoint Depressions

Year $M n$	N	d	s	M	K	C	
1994	6	119	-1.04	0.99	0.0318	3.5720	1.4378
1994	7	124	-0.47	0.91	-0.5838	3.7059	1.0160
1994	8	124	-0.56	0.84	-0.2083	3.0938	1.0080
Season	368	-0.69	0.95	-0.3027	3.3348	1.1712	

All						
Mn	N	${ }^{\text {d }}$	S	M		
94	119	2.89	2.67	-0.4395	3.5927	3.9253
19947	124	1.40	2.65	0.4934	3.4780	2.9876
8	124	1.64	2.44	-0.0666	2.6865	2.9303
Season	368	1.98	2.67	0.0368	2.9870	3.

BRO - All Hourly Tem							
Ye	Mn	N		s	M	k	c
1994	6	117	-0.67	1.04	-0.7802	4.6894	1.2334
994	7	124	-0.19	0.76	-1.3081	7.2920	0.7829
1994	8	123	-0.31	0.80	-1.5799	11.4729	0.8554
		365	-0.38	. 89	-1.2515	7.0842	

	UTC	Max				
19946	25	. 28	1.	-0.8	1	S64
19947	27	-0.74	1.35	-2.0932	8.9640	. 5154
19948	28	-0.68	0.61	-0.2614	2.1895	0.9063
easo	81	-0.89	1.12	-1.7530	7.7889	1.

	N				k	
1994	26	-0.19	1.50	-1.1287	5.5480	1.4806
1994	25	0.08	0.64	-0.0570	8.0288	0.6325
8	28	0.14	1.33	3.0618	13.8905	1.3093
eas	79	0.01	1.21	0.6127	12.5956	1.

BRO	Al		d		,		
-ar	Mn	N	d	s	M	k	c
94	6	117	-0.33	0.85	-0.0647	4.6508	0.9105
4	7	121	-0.31	0.62	-0.7610	5.0093	0.6863
94	8	111	-0.45	0.75	1.1907	6.4632	. 869
		350	0.36	0	0.1	5	

			d		,		
Year	Mn	N	d	s	M	k	c
1994	6	118	-0.25	1.48	2.1995	22.2818	1.4929
94	7	121	0.12	0.89	-0.1534	3.0246	0.8907
19	8	110	0.15	1.06	-0.6585	4.8314	1.0617
		350	0.01				

BRO - All Hourly Relative Humidities	(percent)						
Year Mn	N	d	S	M	M	k	C
1994	6	117	0.67	2.70	0.6728	5.0498	2.7693
11994	7	121	-0.39	2.05	0.065	3.064	2.0779
1994	8	110	-0.55	2.75	0.7867	5.6220	2.7925
Season	349	-0.09	2.56	0.6435	5.3282	2.5605	

BTR - All Hourly Temperatures								
Year Mn	N	d	s	M	k	C		
1994	6	114	-1.67	1.43	-3.4306	24.6806	2.1925	
1994	7	124	-1.62	1.39	-3.1469	22.5073	2.0810	
1994	8	124	-1.51	0.97	-0.3521	2.8828	1.7893	
Season	363	-1.60	1.24	-3.0046	23.9219	2.0233		

| BIR - O6 UTC | Max Temperatures | | | M | K | C | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Year | Mn | N | d | s | M | | |
| 1994 | 6 | 28 | -2.64 | 0.68 | 0.1610 | 2.7004 | 2.7255 |
| 1994 | 7 | 30 | -2.30 | 0.65 | 0.3475 | 2.1441 | 2.3875 |
| 1994 | 8 | 30 | -2.33 | 0.76 | 0.1360 | 2.3099 | 2.4495 |
| Season | 89 | -2.43 | 0.71 | 0.2241 | 2.5934 | 2.5308 | |

18	UTC	Min Te				
Year Mn	N	,	${ }_{1}^{\text {s }}$	${ }_{0}^{\text {M }}$	k	${ }_{1}{ }^{\text {c }}$
19946	29	-1.10	1.37	-0.5426	8.6162	1.7420
19947	31	-0.77	1.48	1.1853	9.8502	1.6461
19948	30	-1.00	0.95	1.4136	5.0593	1.3663
Season	90	-0.96	1.28	0.6493	10.6888	1.6005
BTR - All Hourly Dewpoint Temperatures						
Year Mn	N	d	s	M	k	c
19946	114	0.26	1.50	1.1272	3.9131	1.5160
1994	124	0.02	1.52	0.9524	4.2196	1.5134
19948	124	-1.28	1.16	0.3402	3.6039	1.7251
Season	363	-0.36	1.56	0.8507	4.2839	1.5968

[^2]

BTR - All Hourly Relative Humidities (percent)

Year	Mn	N	d	s	M	K	C
1994	6	111	3.90	4.15	0.2810	2.0767	5.6803
1994	7	121	3.34	4.04	0.2049	2.9079	5.2239
1994	8	124	-0.03	3.81	0.3160	2.5551	3.7977
Season	357	2.32	4.36	0.2387	2.5998	4.9324	

ELY - All Hourly Temperatures							
Year Mn	N	d	s	M	k	C	
1994	6	83	1.24	1.50	-0.5788	5.9966	1.9419
1994	7	93	1.34	1.53	-0.0413	3.9122	2.0294
1994	8	92	1.54	1.48	-0.3061	3.4502	2.1315
Season	268	1.38	1.50	-0.2983	4.4814	2.0388	

ELY - 06 UTC Max Temperatures

Year	Mn	N	N	S	s	M	K
C	C						
1994	6	27	-1.41	1.08	-1.1030	5.2189	1.7638
1994	7	31	-1.26	0.68	0.3384	2.0515	1.4256
1994	8	30	-1.33	0.92	0.4155	2.7747	1.6125
Season	89	-1.34	0.89	-0.4432	5.0159	1.6112	

ELY - 18 UTC Min Temperatures

| Year | Mn | N | d | d | M | K | C |
| :--- | ---: | :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| 1994 | 6 | 29 | 2.45 | 0.95 | -0.4638 | 2.9027 | 2.6196 |
| 1994 | 7 | 31 | 2.61 | 0.95 | -0.5348 | 3.1178 | 2.7766 |
| 1994 | 8 | 31 | 3.74 | 1.65 | 2.0723 | 8.4174 | 4.0798 |
| Season | 91 | 2.95 | 1.35 | 1.8025 | 11.2953 | 3.2406 | |

ELY - All	Hourly Dewpoint	Temperatures					
Year Mn	N	d	s	M	K	C	
1994	6	90	1.46	5.19	1.0347	3.6165	5.3635
1994	7	28	-7.61	8.60	1.6034	4.460	11.3657
1994	8	98	0.45	3.94	0.9138	5.9564	3.9409
Season	216	-0.18	5.99	0.1291	3.9467	5.9827	

			d		H		
ar	Mn	N	d	s	M	k	c
1994	6	86	0.76	4.77	-0.9812	4.0347	4.8019
1994	7	24	10.75	3.91	-0.7495	2.5747	11.4127
4	8	100	2.25	4.01	0.7155	4.5754	4.5793
Seaso		210	2.61	5.26	0.0952	3.9033	5.8

All	Hou	$y \mathrm{Re}$		S	(perce	
Year Mn	N	d	${ }^{5}$	M	k	C
19946	85	-0.83	3.36	-0.4082	4.9870	3.4431
19948	93	-0.92	3.54	-0.3141	4.8351	3.6364
Season	181	-1.00	3.58	-0.4600	4.8138	3.7109

[^3]Table 8.
Summer season ASOS-CONV temperature comparison for mean bias, standard deviation, 95% confidence interval, and 99% confidence interval for Central U.S.

Location	Temp.	Mean$\left({ }^{\circ} \mathrm{F}\right)$	Standard Deviation $\left({ }^{\circ} \mathrm{F}\right)$	Confidence Interval	
				95\% (${ }^{\circ} \mathrm{F}$)	99\% (${ }^{\circ} \mathrm{F}$)
AMA	Max	-0.79	0.91	± 0.19	± 0.25
	Min	-0.79	0.84	± 0.17	± 0.23
CNK	Max	-0.58	1.20	± 0.25	± 0.32
	Min	-0.16	0.70	± 0.14	± 0.19
COS	Max	-1.59	1.30	± 0.27	± 0.35
	Min	-0.47	0.75	± 0.15	± 0.20
DDC	Max	0.37	1.13	± 0.23	± 0.31
	Min	-0.91	1.18	± 0.24	± 0.32
GLD	Max	-1.63	0.89	± 0.18	± 0.24
	Min	-1.58	1.15	± 0.24	± 0.31
GRI	Max	-1.40	0.77	± 0.16	± 0.21
	Min	-0.70	0.74	± 0.15	± 0.20
ICT	Max	-1.50	0.76	± 0.16	± 0.20
	Min	-0.63	0.51	± 0.10	± 0.14
AST	Max	-0.42	1.86	± 0.38	± 0.50
	Min	0.48	1.70	± 0.35	± 0.46
LNK	Max	-2.45	1.18	± 0.24	± 0.32
	Min	-1.67	1.38	± 0.28	± 0.37
OKC	Max	0.28	1.21	± 0.25	± 0.33
	Min	-2.38	1.56	± 0.32	± 0.42
TOP	Max	0.00	1.96	± 0.40	± 0.53
	Min	0.19	1.17	± 0.24	± 0.32
TUL	Max	-2.23	1.05	± 0.22	± 0.28
	Min	-1.48	0.86	± 0.18	± 0.23

Table 9.
Summer season ASOS-CONV temperature comparison for mean bias, standard deviation, 95% confidence interval, and 99% confidence interval for expansion sites in the U.S.

Location	Temp.	Mean $\left({ }^{\circ} \mathrm{F}\right)$	Standard Deviation $\left({ }^{\circ} \mathrm{F}\right)$	Confidence Interval	
AST	Max	-0.42	1.86	$\pm 0\left({ }^{\circ} \mathrm{F}\right)$	$99 \%\left({ }^{\circ} \mathrm{F}\right)$
	Min	0.48	1.70	± 0.35	± 0.50
	MRO	Max	-0.82	0.93	± 0.19
	Min	-0.01	0.71	± 0.15	± 0.19
BTR	Max	-2.39	0.71	± 0.15	± 0.19
	Min	-1.18	0.86	± 0.18	± 0.23
ELY	Max	-1.36	0.91	± 0.19	± 0.25
	Min	2.30	2.09	± 0.43	± 0.56
SYR	Max	-1.22	1.44	± 0.30	± 0.39
	Min	-0.72	1.44	± 0.30	± 0.39

Table 10.
ASOS-CONV temperature (T), dewpoint temperature (T_{D}), dewpoint depression (T-T T_{D}) difference (${ }^{\circ} \mathrm{F}$) and relative humidity (RH) for summer 1994 (June-August 1994 combined) based on 6-hourly observations $0000,0600,1200$ and 1800 UTC.

Station	T	T	T-T	RH (\%)
Central U.S. Sites				
ALS	-2.0	+0.5	-2.5	+2.9
AMA	-0.5	-0.1	-0.3	+0.4
CNK	-0.2	+0.7	-0.9	+1.9
COS	-0.9	+1.1	-2.0	+2.6
DDC	-0.4	+0.5	-0.7	+1.4
GLD	-1.3	-0.3	-1.0	+1.7
GRI	-1.0	-0.7	-0.3	+0.6
ICT	-1.0	+0.5	-1.5	+2.9
LNK	-1.6	-1.0	-0.5	+1.4
OKC	-1.3	-0.2	-1.1	+2.8
PUB	Inc	Inc	Inc	Inc
TOP	+0.2	-0.3	+0.6	-1.1
TUL	-1.5	+0.8	-2.3	+4.8
Average	-0.96	0.13	-1.04	1.86
National U.S. Sites				
AST	-0.3	+0.4	-0.7	+2.0
BRO	-0.4	-0.4	0	-0.1
BTR	-1.6	-0.4	-1.2	+2.3
ELY	bad data	bad data	bad data	bad data
PWM	Inc	Inc	Inc	Inc
SYR	-0.8	-0.1	-0.7	+1.7
Average	-0.78	-0.13	-0.65	1.48

Table 11.

Summary of precipitation days for each ASOS CDCP site based on 24-hour ASOS and CONV totals for period ending at 1200 UTC based on all comparison data

September 1993 through August 1994.

Station	Period of Record	Valid Comparison $_{\text {Days }^{1}}$	Suspect ASOS Days 2	CONV Precip $^{\text {Days }^{3}}$	ASOS Precip Days 4	Mutual Precip Days 3
ALS	$9 / 1 / 93-8 / 31 / 94$	360	1	58	53	49
AMA	$9 / 1 / 93-8 / 31 / 94$	360	2	64	65	60
CNK	$9 / 1 / 93-8 / 31 / 94$	357	3	83	82	76
COS	$9 / 1 / 93-8 / 31 / 94$	360	4	90	95	85
DDC	$9 / 1 / 93-8 / 31 / 94$	364	0	62	73	59
GLD	$9 / 1 / 93-8 / 31 / 94$	363	0	66	71	62
GRI	$9 / 1 / 93-8 / 31 / 94$	359	0	80	74	65
ICT	$9 / 1 / 93-8 / 31 / 94$	363	2	71	72	62
LNK	$9 / 1 / 93-8 / 31 / 94$	360	1	89	96	81
OKC	$9 / 1 / 93-8 / 31 / 94$	363	1	68	75	61
PUB	$9 / 1 / 93-7 / 31 / 94$	324	3	60	40	38
TOP	$9 / 1 / 93-8 / 31 / 94$	365	0	95	99	92
TUL	$9 / 1 / 93-8 / 31 / 94$	361	1	80	92	78
Total		4659	18	966	987	868

${ }^{1}$ All days when both CONV and ASOS total 24-hour precipitation data were available.
2 Days with significant ASOS precipitation reported ($20.08^{\prime \prime}$) when no CONV precipitation was reported or indicated from weather conditions. (These days were removed from further analysis.)

3 Valid comparison days when measurable (≥ 0.01 inches) precipitation was reported by the conventional observation.

4 Valid comparison days when measurable (20.01 inches) precipitation was reported by ASOS observations.

5 Valid comparison days on which both ASOS and CONV reported ≥ 0.01 inches of precipitation.

Table 12.
Summary of precipitation days for each ASOS Expansion site based on 24 -hour ASOS and CONV totals for period ending at 1200 UTC based on all comparison data from September 1993 or date of commissioning through August 1994.

	Station	Period of Record	Valid Comparison Days 1	Suspect ASOS Days 2	CONV Precip 3 Days 3	ASOS Precip $^{\text {Days }^{4}}$
AST	$9 / 1 / 93-8 / 31 / 94$	359	2	144	188	Mutual Precip Days 5
BRO	$6 / 1 / 94-8 / 31 / 94$	92	0	16	20	164
BTR	$11 / 3 / 93-8 / 31 / 94$	299	3	91	103	89
ELY	$6 / 1 / 94-8 / 31 / 94$	92	0	12	11	11
PWM	$8 / 1 / 94-8 / 31 / 94$	29	1	9	9	8
SYR	$1 / 11 / 94-8 / 31 / 94$	226	3	118	95	85
Total		1097	9	390	426	353

All days when both CONV and ASOS total 24-hour precipitation data were available.
2 Days with significant ASOS precipitation ($20.08^{\prime \prime}$) when no CONV precipitation was reported or indicated from weather conditions. (These days were removed from further analysis.)

3 Valid comparison days when measurable (≥ 0.01 inches) precipitation was reported by the conventional observation.

4 Valid comparison days when measurable (≥ 0.01 inches) precipitation was reported by ASOS observations.

5 Valid comparison days on which both ASOS and CONV reported ≥ 0.01 inches of precipitation.

Table 13.

Monthly total CONV precipitation (inches) for each commissioned ASOS CDCP site from September 1993 through August 1994. Precipitation was not included for periods when ASOS operations were suspended.

	Monthly Total Precipitation - Conventional (inches)															
Station	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	Total			
ALS	0.47	0.39	0.35	0.10	0.26	0.05	0.44	0.34	1.75	0.14	0.03	0.75	5.07			
AMA	0.91	0.47	0.53	0.74	1.00	0.07	0.99	1.05	1.10	1.18	4.54	3.10	15.68			
CNK	3.13	0.94	0.72	1.30	0.71	0.53	0.08	1.83	1.60	5.41	3.88	0.40	20.53			
COS	1.35	1.03	1.36	0.13	0.30	0.14	1.03	1.96	3.86	3.35	0.99	3.46	18.96			
DDC	0.70	0.93	0.61	1.02	0.38	0.45	0.06	2.02	0.82	2.27	4.52	3.06	16.84			
GLD	0.24	2.23	0.80	0.01	0.38	0.10	0.17	2.88	1.42	2.19	2.87	1.66	14.95			
GRI	1.46	1.56	0.89	0.42	0.66	1.20	0.04	3.29	0.44	3.93	5.40	1.63	20.92			
ICT	1.83	2.16	0.65	0.46	0.11	0.60	0.49	5.41	0.96	2.94	6.21	1.59	23.41			
LNK	3.73	1.58	0.58	0.49	0.53	0.58	0.06	1.73	1.86	4.26	4.26	2.97	22.63			
OKC	6.79	0.41	1.42	1.27	0.28	2.59	3.57	3.26	2.73	1.92	2.17	2.01	28.42			
PUB	0.64	0.26	1.11	0.00	0.46	0.02	1.04	1.97	1.90	2.27	0.21		9.88			
TOP	7.21	1.41	1.19	0.94	0.49	0.69	0.31	4.67	1.01	5.12	3.34	8.17	34.55			
TUL	6.72	1.17	1.88	0.89	0.52	1.74	3.56	6.83	3.61	2.41	12.20	3.89	45.42			
SUM	35.2	14.5	12.09	7.77	6.08	8.76	11.84	37.24	23.06	37.39	50.62	32.69	277.26			
AVE	2.71	1.12	0.93	0.60	0.47	0.67	0.91	2.86	1.77	2.88	3.89	2.72	21.33			

Note: Final editting and inclusion of additional data have resulted in some changes in precipitation totals from those shown in quarterly progress reports.

Table 14.
Monthly total ASOS precipitation (inches) for each commissioned ASOS CDCP site from September 1993 through August 1994. Precipitation was not included for periods when ASOS operations were suspended.

	Monthly Total Precipitation-ASOS (inches)																	
Station	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	Total					
ALS	0.58	0.32	0.25	0.10	0.22	0.04	0.43	0.39	1.76	0.15	0.03	0.46	4.73					
AMA	1.00	0.53	0.51	0.95	0.47	0.06	0.73	1.11	1.41	0.96	3.87	2.56	14.16					
CNK	3.13	0.84	0.56	1.10	0.60	0.19	0.06	1.62	1.58	4.64	3.15	0.05	17.52					
COS	1.44	1.01	0.97	0.09	0.18	0.11	0.70	1.50	4.11	4.32	1.30	3.46	19.19					
DDC	0.80	1.03	0.63	0.90	0.39	0.35	0.01	1.92	0.90	1.88	4.73	3.46	17.00					
GLD	0.31	2.38	0.92	0.01	0.07	0.10	0.27	2.72	1.52	2.13	2.98	0.89	14.30					
GRI	1.54	1.54	0.72	0.19	0.00	0.34	0.01	2.77	0.35	3.60	4.11	1.21	16.38					
ICT	1.77	1.63	0.55	0.29	0.03	0.24	0.25	3.80	1.06	2.77	5.43	2.12	19.94					
LNK	3.24	1.56	0.54	0.41	0.45	0.41	0.07	1.79	1.72	4.15	4.10	3.24	21.68					
OKC	7.07	0.47	1.34	1.27	0.16	2.18	3.23	3.39	2.71	1.72	1.52	1.80	26.86					
PUB	0.07	0.00	0.10	0.00	0.00	0.00	0.03	2.13	2.20	2.59	0.01		7.13					
TOP	7.01	1.30	1.13	0.84	0.42	0.17	0.31	4.31	0.96	3.96	2.77	7.72	30.90					
TUL	6.88	1.14	1.69	0.92	0.68	1.88	2.88	6.58	2.86	2.73	8.23	4.06	40.53					
SUM	34.8	13.8	9.91	7.07	3.67	6.07	8.98	34.03	23.14	35.6	42.23	31.03	250.32					
AVE	2.68	1.06	0.76	0.54	0.28	0.47	0.69	2.62	1.78	2.74	3.25	2.59	19.26					

Note: Final editting and inclusion of additional data have resulted in some changes in precipitation totals from those shown in quarterly progress reports.

Table 15.
Monthly total CONV precipitation (inches) for each Expansion ASOS CDCP site from September 1993 or date of commissioning through

August 1994. Precipitation was not included for periods when ASOS operations were suspended.

Station	Monthly Total Precipitation - Conventional (inches)												
	SEP	OCT	Nov	DEC	JAN	FEB	MAR	APR	MAY	תN	ru.	AUG	total
ACY													
AST	0.09	2.15	5.40	8.79	6.26	11.00	5.90	3.98	2.32	2.05	0.71	1.41	50.06
BIL													
BIS													
BRO									1.20	3.73	0.16	3.75	8.84
BRW													
BTR			3.71	3.52	6.71	2.99	4.06	9.17	(n / a)	6.97	9.88	3.24	50.25
DAB													
ELY										T	0.05	0.61	0.66
GRR													
ITO													
KDK													
PAH													
PWM												2.80	2.80
SJU													
SMX													
SYR					1.36	1.92	4.82	3.43	2.56	2.94	2.37	4.09	23.49
TUS													
SUM	0.09	2.15	9.11	12.31	12.97	13.99	9.96	13.15	3.52	12.75	10.8	9.01	109.81
AVE	0.09	2.15	4.56	6.16	6.49	7.00	4.98	6.58	1.76	4.25	2.70	2.25	8.45

Table 16.
Monthly total ASOS precipitation (inches) for each Expansion ASOS CDCP site from September 1993 or date of commissioning through August 1994. Precipitation was not included for periods when ASOS operations were suspended.

Station	Monthly Total Precipitation - ASOS (inches)												
	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JN	rr	aug	total
ACY													
AST	0.18	2.32	5.42	9.05	6.49	11.36	6.48	4.31	2.56	2.30	0.82	1.58	52.87
BIL													
BIS													
BRO									1.27	3.32	0.15	3.42	8.16
BRW													
BTR			3.72	3.30	6.68	2.99	3.76	8.75	(5.82)	6.52	10.22	3.11	43.23
DAB													
ELY										T	0.05	0.56	0.61
GRR													
ITO													
KDK													
PAH													
PWM												1.76	1.76
SJU													
SMX													
SYR					0.53	0.80	4.09	3.42	1.88	2.91	2.57	2.17	18.37
TUS													
SUM	0.18	2.32	9.14	12.35	13.7	15.15	14.33	16.48	-0.11	15.05	13.81	12.60	125.00
AVE	0.18	2.32	4.57	6.18	4.57	5.05	4.78	5.49	-0.03	3.76	2.76	2.10	6.94

ESDIM

Figure 1. A national perspective on the locations of the ASOS CDCP comparison stations in the Central U.S. (solid circles) along with the names and locations of CDCP expansion sites (stars). Figure provided by Andy Horvitz, NWS, Office of Meteorology.

ASOS - CONV TEMPERATURE DIFFERENCES COMMISSIONED SITES ONLY

Figure 2. The composite mean ASOS-CONV systematic difference (${ }^{\circ}$ F), September 1993 through August 1994, for daily maximum temperature (solid line) with the actual monthly systematic differences plotted for each of the 13 ASOS CDCP sites in the Central U.S.

ASOS - CONV TEMPERATURE DIFFERENCES COMMISSIONED SITES ONLY

Figure 3. The composite mean ASOS-CONV systematic difference (${ }^{\circ} \mathrm{F}$), September 1993 through August 1994, for daily minimum temperatures (solid line) with the actual monthly systematic differences plotted for each of the 13 ASOS CDCP sites in the Central U.S.

ASOS - CONV TEMPERATURE DIFFERENCES NATIONAL CDCP COMPARISON

Figure 4. The composite mean ASOS-CONV systematic difference (${ }^{\circ}$ F), September 1993 through August 1994, for daily maximum temperatures (solid line) with the actual monthly systematic differences plotted for each of the commissioned national expansion CDCP sites.

ASOS - CONV TEMPERATURE DIFFERENCES NATIONAL CDCP COMPARISON

Figure 5. The composite mean ASOS-CONV systematic difference (${ }^{\circ}$ F), September 1993 through August 1994, for daily minimum temperatures (solid line) with the actual monthly systematic differences plotted for each of the commissioned national expansion CDCP sites.

Figure 6. Accumulated precipitation (inches) for CONV (heavy solid line) and ASOS (thin line) for Concordia, Kansas (top) and Topeka, Kansas (bottom) for September 1993 through August 1994.

Figure 7. Accumulated precipitation (inches) for CONV (heavy solid line) and ASOS (thin line) for Astoria, Oregon (top) and Syracuse, New York (bottom) for September 1993 or date of commissioning through August 1994.

NWS PRECIPITATION COMPARISON CENTRAL U.S. CDCP SITES 9/93-8/1994

Figure 8. Total CONV and ASOS cumulative precipitation, by month, for all 13 CDCP sites in the Central U.S. combined for the period September 1993 through August 1994. Numbers above each set of monthly bars show ASOS precipitation as a percent of CONV.

ASOS PRECIPITATION AS A PERCENT OF CONV COMMISSIONED ASOS SITES 9/93-8/94

Figure 9. Total cumulative ASOS precipitation as a percent of CONV, by month, for all 13 Central U.S. CDCP sites combined for the period September 1993 through August 1994.

SEASONAL COMPARISON: ASOS PRECIPITATION AS A PERCENT OF CONV ALL 13 STATIONS

Figure 10. Total cumulative ASOS precipitation as a percent of CONV, by season, for each three-month period September 1992 through August 1994 based on all valid Central U.S. CDCP comparison data from date of commissioning through August 1994.

CUMULATIVE PRECIPITATION COMPARISONS

 CENTRAL U.S. CDCP SITES 6/94-8/1994

CUMULATIVE PRECIPITATION COMPARISONS CENTRAL U.S. CDCP SITES 9/93-8/1994

Figure 11. Comparison of total cumulative CONV and ASOS precipitation data for the summer (June through August) season (top) and for September 1993 through August 1994 (bottom) for each of the 13 ASOS CDCP sites in the Central U.S. The number above the bar represents ASOS precipitation as a percent of CONV for each site.

ASOS CUMULATIVE PRECIPITATION VS. CONV CENTRAL U.S. CDCP SITES 9/93-8/1994

Figure 12. Total cumulative ASOS precipitation (y-axis) versus total cumulative CONV precipitation (x-axis) for the 13 commissioned ASOS CDCP stations based on all valid comparison data from September 1993 through August 1994.

ASOS PRECIPITATION AS PERCENT OF CONV SEPTEMBER 1993 - AUGUST 1994

ATW FALL WINTER SPRING SUMMER

Figure 13. ASOS precipitation as a percent of CONV, by season, for each of the 13 Central U.S. CDCP sites based on all valid comparison data from September 1993 through August 1994.

TEMPERATURE EFFECTS ON ASOS PRECIP. 13 CENTRAL U.S. STATIONS 11/93-3/94

Figure 14. ASOS precipitation as a percent of CONV precipitation versus temperature for each storm event, November 1993 through March 1994, with at least 0.10 inches of CONV precipitation within 36 hours for all commissioned CDCP sites in the Central U.S.

Figure 15. Six-hour ASOS precipitation totals (y-axis) versus CONV totals (x -axis) for all precipitation events of $0.75^{\prime \prime}$ or greater (either CONV or ASOS) for all U.S. CDCP sites September 1993 through August 1994.

CUMULATIVE PRECIPITATION COMPARISONS

 CDCP EXPANSION SITES 6/94-8/1994

CUMULATIVE PRECIPITATION COMPARISONS CDCP EXPANSION SITES 9/93-8/1994

Figure 16. Comparison of total cumulative CONV and ASOS precipitation data for the summer season, June through August 1994, (top) and for September 1993 through August 1994 (bottom) for each of the commissioned National Expansion CDCP sites. The number above each bar represents ASOS precipitation as a percent of CONV for each site.

PRECIPITATION FREQUENCY COMPARISON ALL 13 CENTRAL U.S. CDCP SITES COMBINED

Figure 17. Frequency of occurrence of daily precipitation in selected categories for CONV and ASOS based on data from the 13 commissioned ASOS CDCP sites in the Central U.S. for all valid comparison days September 1993 through August 1994.

Appendix \mathbf{A}.
 An Assessment of Temperature, Precipitation, and Relative Humidity Data Continuity with ASOS

Preprints, 10th AMS International Conference on Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography and Hydrology 23-28 January 1994, Nashville, TN.

AN ASSESSMENT OF TEMPERATURE, PRECIPITATION, AND RELATIVE HUMIDITY DATA CONTINUITY WITH ASOS

Thomas B. McKee, Nolan J. Doesken and John Klest
Atmospheric Science Department
Colorado State University
Fort Collins, CO 80523

Norman L Canfield
Department of Meteorology
University of Maryland
College Park, MD 20742

Michael S. Uhart
NOAA/National Weather Service
Office of Meteorology
Siver Spring, MD 20910

1.0 INTRODUCTION

One of the elements of the modernization program of the National Weather Service (NWS) is the development and deployment of the Automated Surface Observing System (ASOS). As the ASOS is deployed in the field, an effort is being made to provide the climate community with information to document the impact of this change on the continuity of climate data. The Climate Data Continuity Project (CDCP) was initiated when pre-commissioning deployment of ASOS began in the Fall of 1991. Results of pre-commissioning comparisons of ASOS observations of temperature and precipitation with conventional observations (CONV) have been presented by McKee et al. (1993). The commissioning of ASOS installations commenced on September 1, 1992 and marked the start of official ASOS observations. The purpose of this report is to provide a comparison of ASOS with CONV observations for commissioned ASOS obsenvations for the variables of temperature, dewpoint temperature, and precipitation and to provide an update on the status of the ASOS observations.

2.0 DATA

The current phase of the CDCP is limited to the NWS stations in Table 1 and Figure 1. A later phase of the CDCP will include an expanded set of stations representing a wide variety of climates in the U.S. The present sites are in the states of Colorado, Kansas, Nebraska, Missouri, Oklahoma and Texas. The climate is of an interior continental nature with some range in latitude and elevation. The ASOS and CONV sites are not co-located and are usually separated by several hundred meters.

Data for the present study include hourty and summary of the day observations for ASOS and sixhourty and summary of the day observations for CONV.

TABLE 1. Climate Data Continuity Project NWS-ASOS Stations

ID	Station Location	Commissioning Date
ALS	Alamosa, CO	Sept 1, 1992
AMA	Amarilio Int'l, TX	Nov 1, 1992
CNK	Concordia, KS	Sept 1, 1992
cos	Colorado Springs, CO	Nov 1, 1992
DDC	Dodge City, KS	Sept 1, 1932
GLD	Goodiand, KS	Sept 1, 1992
GRI	Grand island, NE	Oct 1, 1992
ICT	Wichita/Mid-Cont, KS	Nov 1, 1992
LNK	Lincoln, NE	Nov 1, 1992
OKC	Oklahoma City/Rogers, OK	Oct 1, 1992
PUB	Pueblo, CO	Oct 1, 1992
SGF	Springfield, MO	delayed
TOP	Topeka/Billard, KS	Dec 1, 1992
TUL	Tulsa int'I, OK	Oct 1, 1992

Usually, when a station is commissioned the ASOS observations become the official observations and the CONV observations are terminated. As a part of the Climate Data Continuity Project, special arrangements have been made to continue the limited set of CONV observations at the stations listed in Table 1. These observations include precipitation, snowfall and depth, temperature, dewpoint temperature, coincident skycover, cloud types, visibility, weather and obstructions to vision at 0000, 0600, 1200 and 1800 UTC.

The hygrothermometer used in pre-ASOS observations has been designated as the HO-83. An electronic measurement is made of air temperature and of the temperature of a chilled mirror for dewpoint temperature. Similar temperature measurements are made in.the ASOS HO-83, but the instruments are not identical. Precipitation observations were made with an 8 -inch Universal Weighing Gage which was usually not shielded in the

Figure 1. ASOS locations for CDCP.
southern U.S. and was shielded in most locations with a significant amount of snow. In ASOS, the precipitation observation is made with an 8 -inch heated tipping bucket type gage which is shielded at most locations.

3.0 ANALYSIS

3.1 Temperature

The systematic ASOS-CONV temperature difference (bias) is presented for all commissioned sites for the period September 1992 through May 1993 in Figures 2 and 3. The wide variation in mean monthly differences from near $0 \cdot \mathrm{~F}$ to $-2.5^{\circ} \mathrm{F}$ is obvious. A mean value near -1.3. F for the period September through February has decreased in the spring months. A significant part of the variation with time and among locations is due to variation from one ASOS instrument to another. The NWS has been aware of this characteristic of the ASOS

Figure 2. ASOS-CONV maximum temperaturs differences - commissioned sites only.
instrument and is in the process of making modifications which will improve the ASOS performance. Modified hygrothermometers should be placed in the field beginning in the fall of 1993. Further monitoring of the modified ASOS instrument will be done in the months ahead. No evidence is found in Figure 2 indicating high maximum temperatures as reported by Gall et al. (1992), but both ASOS and CONV could carry the same trait. Kessler et al. (1993) reported on a comparison of an HO-63 to HO-83 change at Albany, NY in 1985. The ASOS hygrothermometer presently deployed is not the same instrument as the HO-83 used in Albany in 1985. The NWS expects the new modified ASOS hygrothermometer to be improved for climate applications.

Figure 3. ASOS-CONV minimum temperature differences - commissioned stations only.

3.2 Dewpoint temperature

Composite results for all of the commissioned sites along with uncommissioned data for DEN, SGF and MCl are shown in Figure 4. Monthly average systematic dewpoint differences at individual stations have ranged from $-1.2^{\bullet} \mathrm{F}$ to $+1.1^{\circ} \mathrm{F}$. Overall, the composite 16 -station systematic difference has averaged -0.2•F. In March 1993, the composite difference became slightly positive for the first time.

Although ASOS dewpoint temperatures are very similar to CONV at most stations, ASOS temperatures are consistently cooler. This means ASOS dewpoint depressions are less than CONV so relative humidities are greater. Interestingly, ASOS-CONV systematic differences in 6-hourly instantaneous temperature observations have averaged -0.9 F , not as great as the differences between either daily maximum or minimum temperatures. Overall, relative humidity increases are averaging about 1.5%. Using accumulated difference analysis, discontinuities and irregular behavior have been found in ASOS-CONV systematic humidity differences at some of the stations. The irregular behavior is such that the ASOS dewpoint temperature observations can either increase or decrease

Figure 4. ASOS-CONV relative humidity, dewpoint and dewpoint depression differences. Values represent average differences of all 13 commissioned and 3 noncommissioned stations.
relative to the CONV observation for a limited period of time. The frequency distribution of the ASOS-CONV observations is broadened by this irregular behavior. Differences are nearly normally distributed with a low frequency of occurrence of differences of as much as $\pm 20 \cdot \mathrm{~F}$.

3.3 Precipitation

Precipitation analysis has been done for the period September 1992 through May 1993. This period included several widespread snow and freezing rain events along with numerous episodes of rain but very little airmass convection. A considerable effort has been required to quality control the observations to obtain a truly independent set of CONV and ASOS precipitation data. This effort has been necessitated since observers may "correct" or "augment" ASOS observations some of the time when the ASOS observations are judged not to be representative. Missing, suspect or modified observations were not included in most comparisons. The resulting data set allows an initial assessment of ASOS to CONV precipitation.

A comparison of total accumulated ASOS precipitation as a percent of CONV for the spring and fall seasons is shown in Figure 5. Most precipitation fell as rain, and totals ranged from less than 5 inches at ALS, AMA and COS to more than 20 inches as ICT, OKC and TUL Nine of the 13 commissioned sites reported less ASOS precipitation than CONV. Over the entire area, ASOS averaged 94% of CONV for the combined SeptemberNovember 1992 and March-May 1993 6-month period. This is an improvement over the 92% observed during the pro-commissioning period.

Winter precipitation was analyzed separately. For the months of December through February ASOS precipitation across the region was less than 80% of CONV. An

Figure 5. ASOS precipitation as a percent of CONV for commissioned ASOS stations for the fall (Sept-Nov 1992) and spring (Mar-May 1993) seasons combined. Days with missing or suspect ASOS observations were not included.

Figure 6. ASOS precipitation as a percent of CONV as a function of temperature for all storms Nov. 1992-Feb 1993 with $>0.19^{\prime \prime}$ CONV precipitation.
investigation of individual storm events (Figure 6) revealed that ASOS precipitation decreased dramatically with respect to CONV as temperatures decreased below freezing. Overall ASOS performance during significant snow events was only 54% of CONV. This is a serious problem for climatology, and the NWS is responding by planning several changes in the heated tipping bucket gage and by considering other possible technologies for measuring precipitation.

Heavy rain events were also examined separately. Daily precipitation totals were compared for all days which had at least one 6 -hour period with 0.40 in. CONV precipitation or greater. The results are shown in Figure 7.

Figure 7. CONV vs. ASOS daily precipitation for heavy rain events, Sept 1992-May 1993 from all 13 commissioned stations.

ASOS precipitation was less than CONV in 69 of the 103 cases and averaged 90% of CONV for all cases combined.

Finally, the frequency of daily precipitation was compared (Figure 8). The number of days with measurable precipitation has been slightly higher with ASOS than with CONV. The frequency of daily precipitation amounts in the range of 0.02 to 0.15 in. has been about 12% of all comparison days for both ASOS and CONV. However, ASOS has recorded fewer days with heavier amounts and many more days with 0.01 in . Many of these small events have been found to occur during clear weather. It is likely that dew collection added to moisture in the tipping bucket from a previous storm may produce these reports.

Figure 8. Precipitation frequency comparison using all daily values, Sept 1992-May 1993, for all 13 commissioned ASOS sites.

4.0 SUMMARY

A comparison of observations from commissioned ASOS sites with the observations from pro-ASOS instruments has been made for the period September 1992 through May 1993. ASOS has a consistent bias toward cooler temperatures and a noticeable variation with time and among the sites. The NWS has recognized these characteristics and has moved to have a modified instrument prepared which will be available in Fall 1993. ASOS dewpoint temperature observations have smaller biases than temperature and can be positive or negative. Relative humidity with ASOS is slightly higher. Initial analysis of ASOS precipitation shows the following traits relative to the pre-ASOS observations: a larger frequency of 0.01 " precipitation events but fewer daily events greater than 0.25°, accumulated fall and spring rainfall of approximately 6% less, accumulated precipitation from snow events average about 50% less with even less with cold temperatures and wind, and heavier rain events have a reduction of 10%. The ASOS precipitation catch in Spring 1993 seemed better than in Fall 1992 and better than precommissioning.

ACKNOWLEDGEMENTS

This research has been supported by NOAA, National Weather Service, Office of Meteorology, under grant \#NA90RAH00077.

REFERENCES

Gall, R., K. Young, R. Schotlund and J. Schmitz, 1992: The recent maximum temperature anomalies in Tucson: Are they real or an instrumental problem? J. of Climate, 5(6), pp. 657-665.

Kessler, R.W., LF. Bosart, and R.S. Gaza, 1993: Recent maximum temperature anomalies at Albany, New York: Fact or Fiction? Bull. Amer. Meteor. Soc., 74, 2(February), 215-227.

McKee, T.B., N.J. Doesken, J. Kleist, N.L Canfield, and M.S. Uhart, 1993: A preview of temperature and precipitation data continuity into the ASOS (Automated Surface Observing System) Era. Preprints, 8th Symposium on Meteorological Observations and Instrumentation, 17-22 January, Ananeim, CA, J16J21.

Appendix B.
 Early Results of Climate Data Continuity with ASOS

Preprints, 11th AMS International Conference on Interactive Information and Processing Systems (IIPS)

Meteorology, Oceanography and Hydrology
15-20 January 1995, Dallas, TX.

EARLY RESULTS OF CLIMATE DATA CONTINUITY WITH ASOS

Thomas B. McKee*, Nolan J. Doesken, John Kleist
Atmospheric Science Department
Colorado State University
Norman L. Canfield
Department of Meteorology
University of Maryland

1.0 INTRODUCTION AND PURPOSE

The introduction of the National Weather Service's (NWS) Automated Surface Observing System (ASOS), beginning in the fall of 1991, has attracted considerable attention. Users and providers of climatic information along with operational data users have become exceedingly interested in the accuracy of ASOS measurements and their consistency with respect to the conventional surface observations that they are replacing.

The Climate Data Continuity Project (CDCP) was initiated by the National Oceanic and Atmospheric Administration (NOAA) late in 1991 to ease the transition to ASOS for the many users of NWS surface weather observations. The goal for the CDCP was to identify and quantify biases and variations introduced by ASOS into the climate record. The project has matured to include the following six components: 1) Deveiop an extensive data set in the public domain of coincident ASOS and conventional (CONV) observations from selected sites in the U.S., 2) Make quantitative comparisons of ASOS temperature, humidity and precipitation measurements to previous CONV data (and other elements as needed), 3) Evaluate the effects of the transition to ASOS on the continuity of climatological data, 4) Assess the accuracy of ASOS temperature observations by comparison with a calibrated field standard, 5) Present results to the scientific community and 6) Provide recommendations to the NWS.

Previous papers have focused on ASOSCONV comparisons made prior to ASOS commissioning (McKee et al., 1993) and during the first year of commissioned ASOS operations (McKee et al., 1994). During these periods only sites in the Central U.S. were included in the CDCP. During 1994, the commissioning of ASOS sites nationwide has accelerated. Additionally, various modifications and upgrades to ASOS have been proposed and

[^4]implemented. Most noteably, a modified version of the hygrothermometer used to measure temperature and dew point has been developed and recently installed at most field sites. The modifications included an increased rate of aspiration, reversed direction of aspiration and increased stability in the electronics. With these modifications in place, the final phases of the temperature portion of the CDCP are now underway.

2.0 DATA

Sixteen sites in the Central U.S. were originally selected for the CDCP. Of these, only 13 sites were commissioned (Table 1) and included in analyses to date. Nationally, 18 sites have been approved for CDCP analysis (Table 2). As of August 1994, six of these have been commissioned. Commissioning of the remaining sites will continue gradually. Upon commissioning, these sites will be added to CDCP analyses.

Table 1.
Climate Data Continuity Study (CDCP)
Comparison Sites in the Central United States

Site		Modfined	Commis- sioned
ID	Station Name	Hygrotherm Installed	Date
ALS	Alamosa, CO	$12 / 8 / 93$	$9 / 1 / 92$
AMA	Amarillo, TX	$1 / 10 / 94$	$11 / 1 / 92$
COS	Colo. Springs, CO	$11 / 30 / 93$	$11 / 1 / 92$
CNK	Concordia, KS	$1 / 7 / 94$	$9 / 1 / 92$
DDC	Dodge City, KS	$1 / 11 / 94$	$9 / 1 / 92$
GLD	Goodland, KS	$2 / 11 / 94$	$9 / 1 / 92$
GRI	Grand Island, NE	$12 / 21 / 93$	$10 / 1 / 92$
ICT	Wichita, KS	$12 / 6 / 93$	$11 / 1 / 92$
LNK	Lincoln, NE	$5 / 20 / 94$	$11 / 1 / 92$
OKC	Oklahoma City, OK	$11 / 1 / 93$	$10 / 1 / 92$
PUB	Pueblo, CO	$3 / 31 / 94$	$10 / 1 / 92$
SGF	Springfield, MO	$2 / 17 / 94$	delayed
TOP	Topeka, KS	$12 / 1093$	$1211 / 92$
TUL	Tulsa, OK	$11 / 22193$	$10 / 1 / 92$

Table 2.
Climate Data Continuity Study (CDCP)
National Expansion Sites

$\begin{array}{\|l} \text { Site } \\ \text { in } \end{array}$	Station Name	Modified Hygrotherm Installed	$\begin{aligned} & \text { Commis- } \\ & \text { sioned } \\ & \text { Date } \end{aligned}$
ACY	Atlantic City, NJ		
AST	Astoria, OR	4/28/94	3/1/93
BIL	Billings; MT	9/17/93	
BIS	Bismarck, ND		
BRO	Brownsvilile, TX	11/15/93	5/1/94
BRW	Barrow, AK	8/10/94	
BTR	Baton Rouge, LA	372194	11/93
DAB	Daytona Beach. FL	12/14/93	
ELY	Ety, NV	12/16/93	6/1/94
GRR	Grand Rapids, MI	11/15/93	
ITO	Hilo, HI	3/18/94	
ADQ	Kodiak, AK	7/1/93	
PAH	Paducah, KY	6/30/94	
PWM	Portand, ME	3/25/94	8/1/94
SJU	San Juan, PR		
SMX	Santa Maria, CA	3/20/94	
SYR	Syracuse, NY	1/15/94	1293
Tus	Tucson, AZ	5/16/94	

Data for the CDCP consists of ASOS high resolution 1-minute data, hourly surface observations (SAOs) and ASOS-generated summary of the day data sets from each commissioned CDCP site. Upon commissioning. CDCP sites continue reading and recording conventional (CONV) data but on a much more limited basis. Observations every 6 hours (0000 , 0600. 1200 and 1800 UTC) of current temperature, dew point, visibility, cloudcover and weather conditions along with 6 -hour maximum and minimum temperature, precipitation, snowfall and snowdepth are recorded manually and provided to the National Climatic Data Center and the Colorado Climate Center. Together these data sets provide what is needed to compare ASOS with conventional climate data.

The value of data comparisons and climate data continuity studies is reduced when system and instrument changes occur frequently. This was the case with temperature and humidity comparisons earlier in the CDCP. However, since modified hygrothermometers have been deployed at most comparison sites, results now become more significant. A $\mathbf{1 5}$-month final comparison period for evaluating ASOS-CONV temperature and dew point biases and relationships has been established. For all commissioned CDCP sites with the modified hygrothermometer, 1 June 1994 was chosen as the

Figure 1. Mean monthly ASOS-CONV temperature differences (Deg. Fahrenheit) for daily maximum temperatures (top) and minimum temperatures (bottom) for all 13 commissioned ASOS CDCP sites in the Central U.S. from date of commissioning through June 1994. Individual monthly station differences are shown along with a composite average (solid line).
beginning of the 15 -month test. Other stations will begin their final 15 -month comparisons as they meet these two conditions.

3.0 RESULTS

3.1 Temperature

The general tendency for ASOS to read cooler than CONV has persisted from the very beginning. Figure 1 shows mean monthly differences for the 13 Central U.S. comparison sites since commissioning. Relationships vary from station to station and have changed over time at individual stations. Overall, daily maximum temperatures have averaged about $1.0^{\circ} \mathrm{F}$ cooler with ASOS than CONV while minimum temperatures have averaged $0.8^{\circ} \mathrm{F}$ cooler. So far, only limited data are available nationally (Figure 2). The same general results have been observed except that there may be more sites in the national comparison where ASOS minimum temperatures are equal to or warmer than CONV.

Figure 2. Mean monthly ASOS-CONV temperature differences (Deg. Fahrenheit) for daily maximum temperatures (top) and minimum temperatures (bottom) for commissioned ASOS national CDCP expansion sites from date of commissioning through June 1994. Individual monthly station differences are shown along with a composite average (solid line).

During the first year of commissioned ASOS intercomparisons, numerous discontinuities in the ASOS-CONV temperature relationship were observed. These discontinuities, many of which could be traced to modifications or servicing of either the ASOS or the CONV hygrothermometer, contributed considerably to variability in the ASOS-CONV relationship. Since the installation of modified hygrothermometers, fewer discontinuities have been observed. Large station-tostation differences continue, however.

ASOS-CONV data continuity results are complicated by the fact that instruments are not colocated. Instrument separation ranges from just a few hundred feet to more than one mile. Since all CDCP sites are at airports, little elevation differences are noted. However, local exposure and vegetation differences can be significant. Therefore, the observed ASOS-CONV differences are composed of actual instrument biases in combination with station location differences. To better quantify the roles of these two factors, side-by-side measurements are needed. For this purpose, an R. M. Young calibrated aspirated precision thermometer has been acquired. Direct intercomparisons at three sites, OKC, TUL and COS were performed prior to the beginning of the 15-month comparison. Early results suggest that ASOS temperatures have been cooler than the calibrated field instrument. More intercomparisons are planned during the 15 -month test following further calibration of field sensors at the NWS Test Facility in Sterling, Virginia during September 1994.

3.2 Dew Point and Relative Humidity

Table 3 shows ASOS-CONV differences for 6hourly temperatures, dew points and relative humidities based on data collected since the modified hygrothermometers have been installed. Early comparisons of dewpoint temperatures have shown very small differences at most stations. Only GRI has shown an average dew point difference of more than one degree. Among the Central U.S. sites, the average ASOS-CONV dewpoint difference has been $-0.1^{\circ} \mathrm{F}$. So far, among three national sites from more humid climates, the average difference has been $+0.4^{\circ} \mathrm{F}$. A characteristic of the dew point differences that has been observed so far is that while most differences are very small, occasional large differences ($> \pm 8^{\circ} \mathrm{F}$) occur at most stations. These large differences may be inherent to the chilled mirror technology used in both the CONV and the ASOS hygrothermometers. Relative humidities computed from ASOS temperature and dewpoint measurements have systematically been higher by 1 to 3.5% at nearly all stations.

Table 3.
ASOS-CONV differences based on 6 -hourly data for months since modified hygrothermometer installed through June 1994

Station	Months	Difierence		
		Temp. $\left({ }^{\circ} \mathrm{F}\right)$	Dew Point (${ }^{\circ}$ F)	Relative Humidity (\%)
CENTRAL U.S.				
ALS	1-6/94	-1.6	-0.8	+1.2
AMA	2-6/94	-0.5	-0.1	+0.4
cos	12/93-6/94	-0.7	+0.1	+1.5
CNK	2-6/94	-0.4	-0.0	+1.0
DDC	2-6/94	-0.8	-0.2	+1.7
GLD	3-6/94	-1.2	-0.7	+1.0
GRI	1-6/94	-1.2	-1.4	-0.3
ICT	1-6/94	-0.7	+0.7	+2.7
LNK	4-5/94	-1.4	-0.2	+2.0
OKC	11/93-5/94	-1.3	+0.3	+3.3
PUB	4-6/94	-1.0	+0.5	+1.5
TOP	1-6/94	-0.2	+0.4	+1.0
TUL	12194-6/94	-1.7	-0.3	+3.4
NATIONAL EXPANSION SITES				
AST	5-6/94	-0.4	+0.3	+1.6
BRO	5-6/94	NA	NA	NA
BTR	3-6/94	-1.3	+0.2	+3.2
ELY	6/94	NA	NA	NA
SYR	2-6/94	-0.8	+0.7	+3.5

3.3 Precipitation

Significant differences have been observed in precipitation totals from ASOS when compared to CONV. ASOS uses a heated tipping bucket precipitation gage (HTB) while CONV observations are taken from universal weighing gages. Since commissioning, ASOS precipitation as a percent of CONV combined for the Central U.S. sites has shown a distinct seasonal pattern (Figure 3). With nearly two annual cycles completed, ASOS has measured significantly less precipitation during winter and summer. Autumn and spring totals have been much more simitar. Individual station comparisons are shown in Figure 4. Since September 1993, most CDCP sites in the Central U.S. have received less ASOS precipitation than CONV. Of the national expansion sites, differences are not large for those sites that have received primarily rain. Astoria, OR (AST) systematically measures slightly more ASOS precipitation than CONV. At Syracuse, New York (SYR) large differences persist. SYR is the only CDCP national expansion site commissioned so far where significant quantities of precipitation fall as snow.

Figure 3. ASOS precipitation as a percent of CONV, by season, for each three-month period September 1992 through May 1994 based on all Central U.S: CDCP comparison data since commissioning.

Figure 4. Comparison of total cumulative CONV and ASOS precipitation from September 1993 or date of commissioning (if after Sep. 1993) through June 1994 for each CDCP site in the Central U.S. (top) and national expansion sites (bottom). The number above the bars shows ASOS precipitation as a percent of CONV for each site.

The primary reasons for the lower precipitation measurements by ASOS have been traced to snow and heavy rain. Deficiencies in the HTB resulting in undermeasurement of intense precipitation may be overcome by a set of gage modifications which include a new switch that signals the occurrence of each tip (0.01" precipitation
increment), an extension of the funnel to bring the top closer to the tipping bucket, and a redesign of mechanical stops to prevent the tipping bucket from sticking. The snow problem is more difficult. For the second winter in a row, precipitation that fell as snow, especially at temperatures below the freezing point, were significantly undermeasured by ASOS (Figure 5).

Figure 5. ASOS precipitation as a percent of CONV precipitation plotted as a function of temperature for each storm event, November 1993 through March 1994, with at least $0.10^{\prime \prime}$ of CONV precipitation within 36 hours for all 13 commissioned CDCP sites in the Central U.S.

4.0 PERSPECTIVE

A great deal has been learned about temperature, humidity and precipitation information from ASOS data and how it compares to CONV. This has helped justify several modifications and proposed future changes to ASOS. In the year ahead, the CDCP will focus on the 15 -month comparison establishing seasonal ASOS-CONV temperature and humidity relationships. This will assist climatologists comparing current data (gathered by ASOS) with data from the past. As more data from CDCP national expansion sites becomes available, we will begin to understand if CDCP relationships can be applied nationwide or if differences vary significantly as a function of climatic conditions.

ACKNOWLEDGEMENTS

This research has been supported by NOAA, National Weather Service, Office of Meteorology under contract number NA37RJ0202-Item 9.

REFERENCES

McKee, T.B., N.J. Doesken, J. Keist, N.L. Canfield, and M.S. Unart, 1993: A preview of temperature and precipitation data continuity into ASOS Era. Preprints, 8th Symposium on Meteor. Observerations and Instrumentation, 17-22 January, Anaheim, CA, J16-J21.

McKee, T.B., N.J. Doesken, J. Kleist, N.L. Canfield, M.S. Uhart, 1994: An assessment of temperature, precipitation and relative humidity data continuity with ASOS. Proceedings, 10th IIPS for Meteor. Ocean. and Hydrology, 23-28 Jan, Nashville, TN.

[^0]: $M n=$ Month; $N=$ number of occurrences; $d=$ systematic difference; $s=$ estimated standard

[^1]: $M n=$ Month; $N=$ number of occurrences; $d=$ systematic difference; $s=$ estimated standard deviation of the difference; $M=$ skewness; $k=$ kurtosis; $C=$ operational comparability.

[^2]: $M n=$ Month; $N=$ number of occurrences; $d=$ systematic difference; $s=$ estimated standard deviation of the difference; $M=$ skewness; $k=$ kurtosis; $C=$ operational comparability.

[^3]: Mn = Month; $N=$ number of occurrences; $d=$ systematic difference; $s=$ estimated standard deviation of the difference; $M=$ skewness; $k=k u r t o s i s ; ~ C=o p e r a t i o n a l ~ c o m p a r a b i l i t y . ~$

[^4]: - Corresponding author's address: Thomas B. McKee, Colorado Climate Center, Atmospheric Science Dept, Colorado State University, Fort Collins, CO 80523.

