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ABSTRACT 
 
 
 

REACTIVE TRANSPORT MODELING OF NUTRIENTS IN ARCTIC TUNDRA 

STREAMS 

 
 

  The one dimensional solute transport inflow and storage (OTIS) model is used to 

simulate the transport of non-conservative and conservative solutes in arctic tundra streams. 

Field research was conducted in I8 Inlet and Outlet streams,(in Northen Alaska) which are 

located upstream and downstream of I8 Lake between June and September 2010 and 2011 

(thaw season) and these two streams are classified as alluvial, low gradient, headwater tundra 

streams. Repeat solute injections were conducted on both streams. Two sets of solute 

injections were made, Injection A is sodium chloride (NaCl) and phosphate (PO4) and 

Injection B is sodium chloride (NaCl) and ammonium (NH4). The NaCl is conservative and 

other two solutes are non-conservative solutes.  

With the observed concentration data, OTIS-P was used to estimate the model 

parameters values related to transport (dispersion and advection), transient storage and 

nutrient uptake mechanisms, by nonlinear least squares fit. The dispersion coefficient and 

main channel cross-sectional area parameters represented transport, storage zone cross-

sectional area and exchange coefficient parameters represent transient storage, and 1st order 

decay coefficient in main channel and storage zone represent nutrient uptake. Additionally, 

transport and uptake metrics were calculated with estimated parameters. We assumed 

discharge, stream water temperature, and date (as a surrogate for thaw depth beneath the 

stream) were potential control variables on transport, transient storage, and nutrient uptake 

processes.  
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Linear regression was conducted to identify potential relationships between these 

estimated parameters and metrics and control variables. Hydraulic controls are positively 

correlated with transport and transient storage mechanisms and stream temperature has 

positive relationships with nutrient uptake of non-conservative solutes (NH4 and PO4). 

Although, this study did not found direct influence of date (indicate of thaw depth) as a 

control, active layer condition is an important factor in solute transport dynamics in arctic 

region. Moreover, additional controls should be considered to explain solute transport 

dynamics more exactly. Beyond the scope of this study, for example, stream ecosystem status 

or activity may more directly explain NH4 and PO4 uptake variability.
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1 Introduction 

 The transient storage model has been used in many studies of stream solute transport, 

as it served to present the delay of downstream transport in the small eddies, pools and 

hyporheic zones of streams. The most popular mathematical transient storage model accounts 

for conservative and non-conservative transport, OTIS-P. Several studies have found that 

reactive terms were related to the rates of chemical and microbial processes and these have a 

first order dependence on the concentration of reactant [Mcknight et al., 2004; Gooseff et al., 

2004]. Many studies have found that transient storage in the hyporheic zone resulted in 

biochemical transformations such as nutrient uptake and cycling, regeneration of inorganic 

nutrients and organic matter mineralization and these processes have great importance on 

ecosystem [D’Angelo et al., 1993; Lyons et al., 1998; Edward et al., 2003; Gooseff et al., 

2004]. Thus, stream solute transport dynamics are important to stream ecosystem function 

and processes. 

Because of the increasing attention paid to the effects of solute transport (transient 

storage and chemical reaction), numerous studies have focused on Interpretation of model 

parameters. Various studies conducted investigations on the relationship between transport 

and transient storage and hydraulic parameters such as discharge, velocity and channel cross-

sectional area [Legrand-Marcq & Laudelout, 1985; Wondzell & Swanson, 1996]. 

Additionally, other controls (e.g. morphology, sediments characteristics, etc) have been 

considered to identify controls or relationships to transport and transient storage mechanisms 

[Leopold & Maddock, 1953; Kasahara & Wondzell, 2003]. Characteristics and control 

variables (e.g climatic variation, nutrient cycling and dynamics) of the transport and uptake 

of non-conservative solutes have been also studied [Mullholland et al., 1997; Hall et al., 

2002]. 
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Arctic tundra streams are underlain by permafrost, yet they exchange water with 

thaw bulbs that surround the stream during the thaw season. Bradford et al. [2005] found that 

the active layer of a peat bed arctic stream was thicker than the terrestrial environments in the 

same region. Various studies conducted investigations on the characteristics of the thaw bulb. 

The active layer development and how it affects stream processes depend on surface energy 

balance, and in a typical season, the thaw depth increases rapidly in early summer, and then 

becomes fairly consistent by middle to late summer [Sturm et al., 2005; Zarnetskt et al., 

2007]. When the streambeds thaw, and streams are flowing, there is an opportunity for 

hyporheic exchange to occur [Bradford et al., 2005]. Several studies of streams in permafrost 

regions have proposed that, the thaw bulb development during the summer thaw season 

influences hyporheic exchange, and therefore stream ecosystems, in addition to cahnnel 

morphology [Edwardson et al., 2003; Gooseff et al., 2004; Zarnetske et al., 2007; Gooseff et 

al., 2004].In addition to hyporheic exchange controls by thaw bulb development, stream 

nutrient uptake may also be influenced by water temperature, as stream ecosystem demands 

change with water temperature.  

In this study, I evaluate the stream solute transport dynamics in two arctic streams to 

explore the controls of hydraulics (discharge), thaw bulb development (date), and stream 

temperature on three processes: (transport, transient storage and nutrient uptake, Figure 1-1). 

Repeat instantaneous stream tracer experiments were simulated with OTIS-P to estimate 

model parameters which represent transport processes. Parameter optimization was 

conducted using a nonlinear least squares fitting of simulated values to observations. 

Dispersion coefficient (D) and main stream cross-sectional area (A) are parameters related to 

transport process, storage zone cross-sectional area (As) and exchange coefficient (α) are 

parameter values that represent transient storage processes, and 1st order decay coefficient in 

the main channel (λ) and 1st order decay coefficient in the storage zone (λs) are parameters 
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related to nutrient uptake of NH4 and PO4. In addition, discharge, date (as a surrogate for 

thaw bulb development) and average stream water temperature, which were acquired from 

field studies, represent each control variable (hydraulic conditions, thaw depth and stream 

temperature). Linear regression is conducted with these data to identify relationships between 

model parameters and three solute transport and fate processes. It is expected that hydraulic 

conditions control transport and transient storage mechanisms, that transient storage is related 

to thaw depth, and that stream water temperature has a significant correlation to the fate of 

non-conservative solutes.          

 
Figure 1-1 Expected relationships between controls on solute transport and fate mechanisms 
in streams, and their ultimate influence on the stream ecosystem.   
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2 Study site/Method 

2.1 Study Site 

2.1.1  Overview of the TOOLIK Region 

 

Figure 2-1 Map of Toolik Region. Field research was conducted in the vicinity of Toolik 
field station. http://toolik.alaska.edu/gis/maps/maps.php?category=general 
 

The study area was located in the North Slope of Alaska’s Brooks Range, within the 

Toolik Research Natural Area (Figure 2-1). Glacial sediments from the greater Wisconsonian 

glaciations established river drainages and stream side vegetation consists dominantly of 

sedges, grasses and mixed dwarf birch. The regional hydrology is dominated by spring snow 

melt and this initiates a brief surface flow period from May through late September [Kane et 

al., 1989]. This region is high polar desert due to small average annual rainfall, 18cm which 

occurs during thaw season [Kane et al., 1989; McNamara et al., 1997, 1998]. Streams of this 

region are underlain by continuous permafrost. Thus, stream water can be connected to 

shallow groundwater, but not deep groundwater. Stream water exchange results in exchange 

of heat between the stream channel and streambed [Brosten et al., 2006, 2009]. Two streams 



 

5 

were selected for this study, I8 Inlet and I8 Outlet, located upstream and downstream of I8 

Lake, respectively (Figure 2-2). Both two streams were divided into 2 reaches with a single 

upstream injection point, and 2 sampling stations downstream (Table 2-1).We assume that 

each reach is an appropriate representation of stream morphology and hydrologic features. 

Both streams drain tundra-covered foothills of North Slope and are meandering streams with 

gravel and cobble beds. Due to these geomorphic characteristics, they were classified as 

alluvial, low gradient, headwater tundra streams. 

Table 2-1 Characteristics of Stream reaches, I8 Inlet and I8 Outlet  

 
 
 

2.2 Field Data Collection 

2.2.1 Solute Injection 

  All stream tracer experiments in this study were conducted using the 

instantaneous solute injection (SI) technique, in which a known mass of dissolved tracer is 

directly applied to streams. Between June and September 2010 and 2011, two sets of solute 

slugs were released on both I8 Inlet and I8 Outlet in a day; Injection A (sodium chloride 

(NaCl), phosphate (PO4) and Nitrate (NO3)) and Injection B (sodium chloride (NaCl) and 

ammonium (NH4)). From the Injection A results, NO3 did not show uptake, and therefore 

ignored in analysis. The information about each injection, such as solute masses and time of 

release, were used to define stream boundary condition in the solute transport modeling. Cl is 

non-reactive solute, considered a tracer for solute transport, and PO4 and NH4 are reactive 

solutes. Non-reactive and reactive solutes were simulated to characterize conservative and 

Stream Name Year Sub-reach 1 [m] Sub-reach 2 [m] Total-reach 

I8 Inlet 
2010 340 160 550 

2011 340 215 555 

I8 Outlet 2010, 2011 260 100 360 
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non-conservative transport of fate processes. At each sampling location for each injection 

simple mass balance calculations were made by integrating under the solute concentration 

breakthrough curves (BTCs). The ratio conservative (Cl) masses to non-conservative (PO4 

and NH4) masses were estimated to assess proportions or percentages of loss, when compared 

the ratio of injected masses 

 
Figure 2-2 Location of experimental two reaches I8 Inlet and Outlet (map modified from 
http://toolik.alaska.edu/gis/maps/maps.php?category=general) 

 
 
 

2.2.2 Gauging and Monitoring 

Discharge was measured by the dilution gauging technique using NaCl and high 

frequency specific conductance (SC) measurements by HOBO U24-001 conductivity logger 

record. Monitored specific conductivity translated to concentration by calibration curves 

which by correcting for background SC [Gooseff & McGlynn, 2005; Payn et al., 2009]. 

Discharge is quantified with using following equation. 

Q		[Lଷ T⁄ ] = 	
M

∫ C(t)୲
଴

	[
M

(M Lଷ)⁄ × [T]]						(2 − 1) 

Where, Q is discharge [L/s], M is the injected mass [g], C is concentration, t is time [s] and 
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∫ C(t)୲
଴  is 0th moment, integrating area under a curve of BTC. Moreover, any observed 

difference discharge between injection and monitoring points were treated as lateral inflow or 

outflow in the transient storage modeling (Appendix 1).  

In a few cases, dilution gauging discharge was not conduced or had a poor result. 

When this occurred, discharge in the model was taken from a seasonal record of discharge at 

a long-term monitoring station at the end of each reach. These records were developed by 

relating discrete discharge measurements to continuously measured stage data (HOBO U20 

water Level Data Logger which was located in deep-pool location).  

Q = Cdୠ					(2 − 2) 

Where, d is depth (m), and c and b are constants. For I8 Inlet c= 45607 and b=5.8 and I8 

Outlet, c=18640 and b=6.81. These relationships were used to transform continuous stage 

measurements into continuous discharge measurements.  

Stream temperatures and temperature at 1m depth beneath stream bed were also 

monitored continuously at I8 Inlet and I8outlet with Campbell Scientific CR1000 data 

loggers, at 3-hour interval. Non-conservative (PO4) concentrations were measured by 

analyzing for dissolved orthophosphate from filtered through Glass Fiber Filters. The PO4
3- 

reacts with ammonium molybdate and antimony potassium tartrate under acidic conditions 

to form a antimony-phosphomolybdate complex. This complex is reduced with ascorbic acid 

to form a blue complex which absorbs light at 880 nm. The absorbance is proportional to the 

concentration of PO4
3− in the digested sample. In the case of ammonia, when it is heated 

with salicylate and hypochlorite in an alkaline phosphate bufferan emerald green color is 

produced which is proportional to the ammonia concentration. This color is intensified by 

the addition of sodium nitroprusside. In addition, if distillation is required, the sample is 

buffered at a pH of 9.5 with a borate buffer to decrease hydrolysis of cyanates and organic 

nitrogen compounds, and is distilled into a dilute solution of sulfuric acid.  
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2.3 Modeling Method 

2.3.1 OTIS (One-dimensional Solute Transport with Inflow and Storage)  

 

 

Figure 2-3 Conceptual model which include the main channel and the storage zone. Source : 
One-Dimensional Transport with Inflow and Storage (OTIS): A Solute Transport Model for 
Streams and Rivers, by Runkel, R. L. (1998), U.S. Geological Survey Water-Resources 
Investigations Report 98-4018, p. 3. 
 

The OTIS model simulates stream solute transport in streams and includes not only 

advection and dispersion in main channel, but also exchange of solute with storage zones. 

Storage zones are all lumped in the model, but may be stagnant zones in the stream channel 

or exchange through the subsurface. This model is referred to as transient storage model 

[Bencala & Walter, 1983]. Processes that affect solute concentrations within the stream solute 

models are depicted in Figure 2-3. Solutes in main channels are transported downstream by 

advection and dispersion. However, these two transport mechanisms are not included in the 

storage zone. Lateral inflow is incoming water to main channel such as overland flow, inter 

flow and ground-water discharge and lateral outflow represents additional water discharging 

from the main channel to the surrounding watershed. Transient solute exchanges between the 

main channel and the storage zone and chemical reactions can be represented to occur in the 
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main channel and storage zone. Stream reach and storage zone are represented with finite 

difference elements. In this study, length of all finite difference elements is set as 1m.  

Observed tracer concentration data from non-reactive solute was simulated with 

OTIS. The governing equations for this model are organized by writing mass balance 

equations for two conceptual areas [Runkel & Broshears, 1991]. The main channel and the 

storage zone 

∂C
∂t = −

Q
A
∂C
∂x +

1
A
∂
∂x ൬AD୶

∂C
∂x൰ +

q୐୍୒
A

(C୐ − C) + α(Cୱ − C)					(2 − 3) 

∂Cୱ
∂t = ∂

A
Aୱ
(C − Cୱ)					(2 − 4) 

Where Q is stream discharge (m3/s), C is main channel solute concentration (mg/m3), Cs is 

the storage zone solute concentration (mg/L), CL is the lateral inflow solute concentration 

(mg/m3), A is main channel area (m2), As is the storage zone area (m2), Dx is the dispersion 

coefficient (m2/s), qLIN is the lateral inflow rate (m3/s), and α is the main channel – storage 

zone exchange rate (1/s). 

In case of non-conservative solutes, chemical reaction should be considered. OTIS-P 

can simulate sorption and first-order decay. However, sorption would be ignored in this 

modeling because nutrient uptake can be well represented by 1st order decay, which can be 

represented by adding terms to equations (2-3) and (2-4). 

∂C
∂t = L(C) + −λC					(2 − 5) 

∂Cୱ
∂t = S(Cୱ) + −λୱCୱ					(2 − 6) 

Where L(C) and S(Cs) are physical processes in the main channel and storage zone(equation 

2-3 and 2-4), λ is main channel first order decay coefficient (1/s), λs is storage zone first order 

decay coefficient (1/s). For the reason of accuracy, efficiency and stability, the Crank-

Nicolson techniques are used for these differential equations (equation 2-3 ~ 2-6). In this 
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study, the integration of time steps within time-variable solution is set to be 0.004 (and 0.005 

if simulation results were unstable with the smaller time step) 

 
 
 

2.3.2 Metrics Characterizing Transient Storage  

Several metrics have been developed to characterize transient storage. One common 

metric is turnover length Ls [Mulholland et al., 1994]  

Lୱ =
u
α
					(2 − 7) 

Stream velocity, u is computed by dividing the stream volumetric flow rate by stream cross-

sectional area. The turnover length characterizes how far a solute travels in the main channel 

before entering the storage zone. After traveling a distance Ls, the molecule remains in 

storage zone for an average time given by ts [Thackston &Schnelle,1970]. 

tୱ =
Aୱ
αA					(2 − 8) 

An additional metric is the storage exchange flux, 

qୱ = αA					(2 − 9) 

Which is reported in m3/s/m2. In addition, reaction significance factor (RSF) describes the 

effect of chemical reactions in storage zone from the stream-tracer injections and simulation. 

RSF =
λୱtୱL
Lୱ

					(2 − 10) 

Where, λs is the reaction rate constant in the storage zone, ts is the hydrologic residence time 

in the storage zone, and L is the length of the stream reach under consideration. When the 

values of RSF are greater than 0.2, it is suggested that chemical reactions in the storage zone 

are fast and flow through the storage zone significant enough to exert a cumulative influence 

on downstream chemistry.  
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2.3.3 Modeling OTIS and OTIS-P 

A goal of this solute transport study is quantifying transport parameters by simulating 

observed concentrations. In field research, sodium chloride (NaCl) is subject to the physical 

processes of advection, dispersion and transient storage. We therefore want to estimate area 

of main channel and storage zone (A and As) and coefficient of dispersion and storage (D and 

α). The PO4 and NH4 are simulated with fixed transport parameters to estimate 1st order decay 

coefficient in main channel and storage zone (λ and λs). Estimation of these parameters was 

conducted by Nonlinear Least Squares (NLS) via a trial and error procedure using OTIS-P. 

The procedure starts with initial parameter estimates and the initial size of the trust region 

and then determines the simulated main-channel concentration corresponding to the observed 

concentration by equation (2-5) and (2-6). The observed solute concentration may be 

expressed as the sum of simulated concentration and a random error term.  

C୩ = ƒ൫ζ, θሬ⃗ ൯ + ε୩					K = 1.N					(2 − 11) 

Where N is the number of observation, NP is the number of model parameter, ck is the 

observed main channel solute concentration, ƒ(ζ+θሬ⃗ )k  is a nonlinear function that simulates 

the kth observation, ζ is time in time-variable problem and distance is steady-state problem, 

θሬ⃗  is a vector length NP containing the parameter estimates (D,A,As,α,λ,λs) and ε୩ is random 

error associated with kth observation. The goal of NLS is to determine the vector of 

parameter estimate that minimized by 

RSS൫θሬ⃑ ൯ =෍{
୒

୩ୀଵ

ω୩[c୩ − ƒ൫ζ, θሬ⃗ ൯]ଶ} =෍൫ω୩ε୩ଶ൯
୒

୩ୀଵ

				(2 − 12) 

Where RSS൫θሬ⃑ ൯ is weighted residual sum of squares, wk is weighting factor. NLS minimizes 

RSS൫θሬ⃑ ൯ by an iterative process. During this process, parameter estimates updated by 

θ୫ାଵሬሬሬሬሬሬሬሬሬ⃗ = θ୫ሬሬሬሬሬ⃗ − (J୘WJ + s + Y)୫ିଵJ୫୘W୫ε⃗୫
୘ 					(2 − 13) 
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With condition 

ඩ෍[
(θ୫ାଵ,୪ − θ୫,୪)

SCALE୪

୒୔

୪ୀଵ

]ଶ ≤ d୫					(2 − 14) 

Where, S is NP by NP matrix, SCALE is typical size of parameter, W is N by N diagonal 

matrix of weighting factors, Y is NP by NP matrix which satisfied equation (2-14), d is size of 

trust region, l is quantities corresponding to lth parameter, m is the number of iteration, ε⃗ is 

vector of length N of residuals, θ is estimates of lth parameter at mth iteration and J is N by 

NP matrix with Jk,l defined by 

J୩,୪ =
∂ƒ൫ζ, θሬ⃗ ൯୩
∂θ୪

					(2 − 15) 

The iterative procedure continued until satisfying one of two criteria: 1) the relative change in 

parameters  

max ቈ
หθ୫ାଵ,୪ − θ୫,୪ห

SCALE୪
቉

max ቈหθ୫ାଵ,୪ห −
หθ୫,୪ห
SCALE୪

቉
≤ STOPP, l = 1,N					(2 − 16) 

2) the change of the residual sum of squares. 

fcst[RSS൫θሬ⃑ ൯]
RSS൫θ୫ሬሬሬሬሬ⃑ ൯

	< ܱܵܶܲܵܵ					(2 − 17) 

Where, STOPP and STOPSS are convergence criteria and fcst[RSS൫θሬ⃑ ൯] is the expected 

change in the residual sum of squares. 

Additionally, the time-variable upstream boundary condition was characterized. 

There are 3 options (Fig 2-4) which can be used to simulate boundary condition (IBOUND): 

1) Concentration-Step (IBOUND=1), 2) Flux-Step (IBOUND=2) and 3) Concentration-

Countinuous (IBOUND=3).  
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Figure 2-4 Upstream boundary condition options (a) Concentration-Step (b) Flux-Step (c) 
Concentration-Continuous Source : One-Dimensional Transport with Inflow and Storage 
(OTIS): A Solute Transport Model for Streams and Rivers, by Runkel, R. L. (1998), U.S. 
Geological Survey Water-Resources Investigations Report 98-4018, p. 36. 

 

In this research, the concentration-step option was used for upstream boundary 

conditions. Under this option, boundary value corresponds to the upstream boundary 

concentration and this subsequently updated at appropriate time. Slug injections were 

simulated to occur over 3 or 4 time steps (0.005 hours) 

Cୠୡ =
mass	injection

Q × t୧୬୨
					(2 − 18) 

 Where, Cbc is boundary concentration [mg/L], tinj is time for conducting injection [s].  

 
 
 

2.3.4 Output of OTIS and OTIS-P 

The simulation models created 3 output files: 1) solute output file 2) parameter 

output file and 3) STARPAC output file. The breakthrough curves of simulated solutes from 

solute output files compare with observed concentration at monitoring points. Coefficients of 

determination (R2) are used for goodness of fit evaluation between observed concentrations 

and the simulated concentration.  

(a) Concentrati

on-Step

(b) Flux

-Step

(c) Concentration-c

ontinuous
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Rଶ =
SS୰ୣ୥
SS୲୭୲

= 1−
SS୰ୣୱ
SS୲୭୲

=
∑(y୧ −yనෝ)

1 − ∑(y୧ − yത)					(2 − 19) 

Where, SStot is the total sum of squares (proportional to the sample variance), SSreg is the 

regression sum of squares, also called the explained sum of squares and SSres is the regression 

sum of squares, also called the explained sum of squares. The output files for solutes and 

coefficients of determinations are provided in the Appendix. STARPAC output file contains 

initial conditions and the statistical interpretation of results related to observed data and the 

NLS procedure (section2.3.3). This output file also contains the upper and lower boundary 

value related to 95% confidence limits determined by NLS procedure. Additionally, since all 

transport parameters could not be negative value, estimated error terms below zero were 

ignored.  
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3 Results 

3.1 Three Potential Control Variables 

 
 

Figure 3-1 Break though curves from simulation result. A is Cl from injection A, B is Cl from 
injection B, C is PO4 from injection A and D is NH4 from injection B 
 

The simulated and observed concentrations of conservative and non-conservative 

solutes were typically in excellent agreement (e.g. Figure3-1). The mass of solute injected 

and the masses which passed the sampling locations are presented in Table3-1. In most cases, 

calculated mass passing, as calculated from simulated and observed solute concentrations, 

were less than actual injected masses.  

All transport and fate parameters were estimated by OTIS-P and they were related to 

the three control variables. The linear regression to determine whether there was a significant 

relationship. When a statistically significant regression was identified (P<0.1), the regression 

is displayed in the graph with solid line, otherwise, relationship is presented as a dashed line.

13.0 13.5 14.0 14.5 15.0 15.5 16.0

0

20

40

60

80

100

340m Simulation Result
500m Simulation Result
340m Observation
500m Observation

14.8 15.0 15.2 15.4 15.6 15.8 16.0 16.2 16.4 16.6

0

20

40

60

80

100

13.0 13.5 14.0 14.5 15.0 15.5 16.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

14.8 15.0 15.2 15.4 15.6 15.8 16.0 16.2 16.4 16.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
oncentration [m

g/L] 

Time [Hr] 

A B 

C D 



 

16 

Stream Date Reach 
Cl A [g] Cl B [g] PO4_P [g] NH4_N [g] 

Inj Mass Sim Mass OBS Mass Inj Mass Sim Mass OBS Mass Inj Mass Sim Mass OBS Mass Inj Mass Sim Mass OBS Mass 

I8 In 

20100721 
Reach 1 12237.0 11340.2 12758.2 12473.4 10835.2 11768.1 113.8 62.8 98.5 104.7 80.9 100.7 

Reach 2 12237.0 11340.2 10919.7 12473.4 10835.2 11601.9 113.8 61.6 68.9 104.7 76.2 107.5 

20100728 
Reach 1 4864.1 4864.1 5066.8 4923.6 4903.8 4827.7 28.4 13.4 14.3 26.2 17.9 19.3 

Reach 2 4864.1 4836.3 5629.9 4923.6 4127.9 4194.0 28.4 6.7 6.9 26.2 10.1 9.2 

20100918 
Reach 1 10077.8 9850.5 10851.0 10330.5 10098.1 10835.8 158.7 126.3 132.8 71.5 66.0 74.4 

Reach 2 10077.8 9290.2 9962.1 10330.5 9515.7 10208.1 158.7 91.3 88.0 71.5 52.4 52.8 

20100925 
Reach 1 3584.7 4762.1 4843.0 3709.5 3709.5 4369.9 57.0 36.0 33.2 25.5 24.8 28.0 

Reach 2 3584.7 3791.2 3761.1 3709.5 3707.7 4806.5 57.0 20.0 18.3 25.5 16.7 19.2 

20110606 
Reach 1 1232.6 1117.2 954.3 1305.6 1183.8 1185.7 108.2 44.8 46.7 27.1 14.1 11.0 

Reach 2 1232.6 862.5 861.6 1305.6 676.3 788.2 108.2 11.7 12.6 27.1 3.1 4.1 

20110612 
Reach 1 1781.1 1687.4 1660.0 1880.8 1781.4 1812.2 51.7 7.8 7.6 14.5 3.2 3.7 

Reach 2 1781.1 1255.2 1358.2 1880.8 1079.1 1092.1       
20110719 Reach 1 4562.0 4561.6 4372.5 4693.2 5722.7 4594.0 68.9 29.8 28.6 33.3 15.0 14.8 

I8 Out 

20100719 
Reach 1 3648.8 3648.8 4411.8 3008.3 3808.2 4167.5 51.0 20.4 33.8 52.3 30.1 34.3 

Reach 2 3648.8 3648.8 3938.6       51.0 12.8 14.5       

20100726 
Reach 1 6037.4 4520.8 4808.9 6167.9 4593.9 5099.8 45.5 14.9 16.2 39.3 20.8 25.3 

Reach 2 6037.4 4505.3 5437.3 6167.9 4556.6 5046.9 45.5 8.7 9.3 39.3 15.3 18.0 

20100916 
Reach 1 4818.4 4689.2 4375.3 4938.0 4770.5 4409.6 74.7 33.2 33.3 33.6 24.3 27.4 

Reach 2 4818.4 4686.0 4780.6 4938.0 4719.4 4747.5 74.7 19.5 28.3 33.6 21.0 22.4 

20110604 
Reach 1 4224.4 4221.7 4162.2 3724.6 3724.4 4047.2 66.5 25.9 27.8 33.1 15.3 16.5 

Reach 2 4224.4 4099.9 4213.3 3724.6 3689.6 4188.7 66.5 15.3 18.5 33.1 9.6 17.4 

20110610 
Reach 1 4321.1 3941.7 3918.5 4407.0 3839.5 3876.9 74.9 13.2 14.9 34.5 11.3 11.5 

Reach 2 4321.1 3426.6 3509.6 4407.0 3514.3 3547.0    34.5 3.7 4.1 

20110716 Reach 1 8380.7 7723.2 7046.4 8111.6 7512.5 7272.5 52.3 13.3 13.0 45.5 17.8 18.0 

20110902 Reach 1 2437.7 2403.0 2285.2 2476.1 2374.0 2182.6 17.8 1.7 1.7 20.8 17.2 16.5 

Table 3-1 Injected Mass and Mass Calculation Result from Simulation and Observation Data  
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Transport parameters estimated by OTIS-P are expected to be controlled by channel 

hydraulics. Therefore, they have been related to stream discharge. Although other studies 

suggest many other physical characteristics should be considered (e.g., geomorphology, flow 

and substrate), we expect that discharge is the master hydraulic variable [D’ Angelo et al., 

1993; Runkel et al., 2002]. In addition, transport metrics and fate parameters are also 

considered to assess relationship with discharge and As/A (the ratio of storage zone size to 

main channel size) is considered to assess potential for storage of solute during transport. 

Depth of thaw beneath and adjacent to stream channels increases rapidly in early 

summer and slows by middle to late summer in these arctic tundra season [Zarnetsket et al., 

2007]. Further, the energy of water in active layer extends beneath streambed creating thawed 

bulb [Brosten et al., 2006] and thawed sediment creates opportunity for hyporheic exchange 

in tundra streams. Although thaw depth was not monitored directly, it has an intimate 

relationship with seasonal change [Osterkamp & Romanovsky, 1999]. So we assumed date is 

reasonable surrogate for thaw depth influence on solute transport, namely storage parameters 

(As, α). 

Chemical reactions which occur in main stream and storage zone are likely 

associated with biological processes in solute transport dynamics. These processes are 

important to ecosystem function [Lyons et al., 1998]. Nutrient uptake is also affected by other 

control variables like permeability of sediments and hyporheic processes. Temperature also 

has vital role in biological processes, generally positively correlated. Hence, temperature may 

be related to nutrient uptake rates (λ, λs) to determine if it is a control on fate of NH4 and PO4. 

Although, I8 Inlet and I8 outlet have similar conditions such as alluvial, low gradient, 

headwater tundra streams, it has been found that there is a potential influence of Lake I-8 

which results in different solute transport mechanisms in the two streams [Wlostoski, 2012]. 

He suggested that I8 Inlet had wider and shallower channel structure with fine particles and 
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different shallow groundwater dynamics. I8 Lake affects seasonal stream flow dynamics in I8 

Outlet, buffering sharp inflows to the lake. Because of this reason, the controls in both 

streams are analyzed separately. The hydrographs of two streams in 2011 indicate different of 

flow regime in the two streams (Figure 3-2).  

Figure 3-2 Hydrographs of 2011from I8 Inlet and I8 Outlet Source: “Solute transport 
dynamics in alaskan arctic tundra streams” by Wlostoski N. Adam. (2012) Master’s thesis, 
Pennsylvania State University 
 
 
 
3.2 Discharge and Hydraulic controls on solute transport dynamics 

3.2.1 I8Inlet 

Interpretation of dispersion coefficient and main stream cross sectional area is related 

to dispersion and advection mechanisms. Discharge is positively correlated with these 

mechanisms. In the case of longitudinal dispersion which was only considered in the OTIS, it 

seems positive correlation could not be approached by uncertainty (Figure 3-3). However, 

main stream cross sectional area is highly correlated with discharge (Figure 3-4, p<0.001 

Reach 1 Injection A, p=0.002 Reach 1 Injection B, p=0.002 Reach 2 Injection A and p=0.03 

Reach 2 Injection B). In addition, both parameters have slightly different correlations in reach 

1 and 2. This suggests that there are small changes through downstream transport 

characteristic such as presence of obstructions, stream size, slope, etc.  

To determine whether there is a hydraulic control on transient storage, storage zone 

cross-sectional area and exchange coefficient are also related to discharge. In the figure 3-5, 

storage zone cross sectional area display positive correlation in reach 1, with only a 
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significant relationship for injection A (p<0.001 Reach 1 Injection A), and negative 

correlations in reach 2 (not significant trends). The exchange coefficient linearly increased 

when discharge increased (Figure, 3-6, p=0.001 Reach 1 Injection A, p=0.001 Reach 1 

Injection B, p=0.003 Reach 2 Injection A and p=0.005 Reach 2 Injection B) In addition, 

transient storage zone are as a proportion of stream cross sectional area is not correlated with 

discharge (Figure 3-7). 

 
Q [m3/s] 

Figure 3-3 Linear regression between Dispersion coefficient (D) and Discharge (Q) with 95% 
confidence limits, left is Reach 1, right is Reach 2 at I8 Inlet  

 
Q [m3/s] 

Figure 3-4 Linear regression between Main stream area (A) and Discharge (Q) with 95% 
confidence limits, left is Reach 1, right is Reach 2 at I8 Inlet  

 

Three metrics – turnover length, mean storage residence time and storage exchange 

flux –were related to discharge to further determine the potential influence of discharge on 

transient storage (Figure 3-8 ~ 3-10). Turnover length and average storage zone residence 

time appear to decrease when discharge increased. However, none of these relationships are 

significant. Thus, we should consider other factors which may affect solute transport 
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dynamics. Storage exchange flux has strong correlation with discharge (Fig 3-9, p<0.001 

Reach 1 Injection A, p<0.001 Reach 1 Injection B, p<0.001 Reach 2 Injection A and p=0.001 

Reach 2 Injection B). Storage exchange flux is strongly related to discharge, likely due to the 

fact that discharge is strongly related to cross-sectional area (Figure 3-4) which is constituent 

of the exchange flux metric (equation 2-9).  

 
Q [m3/s] 

Figure 3-5 Linear regression between Storage zone stream area (As) and Discharge (Q) with 
95% confidence limits, left is Reach 1, right is Reach 2 at I8 Inlet  

   
Q [m3/s] 

Figure 3-6 Linear regression between Exchange coefficient (α) and Discharge (Q), left is 
Reach 1, right is Reach 2 at I8 Inlet  
 

To determine whether discharge has an influence on the fate of NH4 and PO4, values 

of the 1st order decay coefficient in main channel and storage zone and the RSF metric (which 

describes relative chemical reaction rate occurring in the main channel and storage zone area) 

are also related to stream discharge. None of these three parameters were significantly related 

to discharge in any of the reaches (Figure 3-10, 3-11 and 3-12). When we consider model 

structure, we estimated transport parameters first and then 1st order decay parameters in two 

0.0 0.2 0.4 0.6 0.8
0.000

0.002

0.004

0.006

0.008

0.010

Injection A
Inj A Regr
Injection B
Inj B Regr
Inj A non-con
Inj B non-con

0.0106

0.0 0.2 0.4 0.6 0.8
0.000

0.002

0.004

0.006

0.008

0.010

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

Injection A
Inj A Regr
Injection B
Inj B Regr
Inj A non-con 
Inj B non-con

0.0 0.2 0.4 0.6 0.8
0

2

4

6

10

12
93.6268

50.2785

α 
[1

/s
] 

A s
 [m

2 ] 



 

21 

conceptual zones, so biogeochemical processes were simulated separate from transport 

processes.  

 
Q [m3/s] 

Figure 3-7 Linear regression between As/A and Discharge (Q), left is Reach 1, right is Reach 
2 at I8 Inlet  

 
Q [m3/s] 

Figure 3-8 Linear regression between Turn over length (Ls) and discharge (Q), left is Reach 1, 
right is Reach 2 at I8 Inlet  

 
Q [m3/s] 

Figure 3-9 Linear regression between Storage exchange flux (qs) and Discharge (Q), left is 
Reach 1, right is Reach 2 at I8 Inlet 
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Q [m3/s] 

Figure 3-10 Linear regression between Average residence time in storage zone (ts) and 
discharge (Q), left is Reach 1, right is Reach 2 at I8 Inlet 
 

 
Q [m3/s] 

Figure 3-11 Linear regression between Decay coefficient in main channel (λ) and Discharge 
(Q) with 95% confidence limits, left is Reach 1, right is Reach 2 at I8 Inlet  
 

 
Q [m3/s] 

Figure 3-12 Linear regression between Decay coefficient in storage zone (λs) and Discharge 
(Q) with 95% confidence limits, left is Reach 1, right is Reach 2 at I8 Inlet  

0.0 0.2 0.4 0.6 0.8
0.000

0.001

0.002

0.003

0.004

0.005

Injection A (PO4)
Inj A Regr
Injection B (NH4)
Inj B Regr
Inj B non-con

0.0 0.2 0.4 0.6 0.8
0.000

0.001

0.002

0.003

0.004

0.005

0.0233

0.0 0.2 0.4 0.6 0.8
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

Injection A (PO4)
Inj A Regr
Injection B (NH4)
Inj B Regr
Inj B non-con

0.0 0.2 0.4 0.6 0.8
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0 0.2 0.4 0.6 0.8
10

100

1000

10000

Injection A
Inj A Regr
Injection B
Inj B  Regr

0.0 0.2 0.4 0.6 0.8
0

10000

20000
40000
50000
60000
70000

t s 
[s

] 
λ 

[1
/s

] 
λ s

 [1
/s

] 



 

23 

 
Q [m3/s] 

Figure 3-13 Linear regression between RSF and Discharge (Q), left is Reach 1, right is Reach 
2 at I8 Inlet 
 
 
 

3.2.2 I8Outlet 

   In the figure 3-14, dispersion coefficients display strong positive correlation with 

discharge in reach 1 (p=0.001 Reach 1 Injection A and p=0.0069 Reach 1 Injection B), and 

negative correlation in reach 2 (no significant trends). The main stream cross sectional area 

also has positive correlation with discharge at reach 1 and 2 as similar with the result of I8 

Inlet. To be specific, only main stream area in reach 1 displays significant trends (Figure 3-15, 

p=0.002 Reach 1 injection A and p=0.03 Reach 1 injection B), however, in the case of 

injection A in reach 2, the regression has a p-value close to 0.1 (p=0.134 Reach 2 Injection A). 

 
Q [m3/s] 

Figure 3-14 Linear regression between Dispersion coefficient (D) and Discharge (Q) with 95% 
confidence limits, left is Reach 1, right is Reach 2 at I8 outlet 
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Q [m3/s] 

Figure 3-15 Linear regression between Main stream area (A) and Discharge (Q) with 95% 
confidence limits, left is Reach 1, right is Reach 2 at I8 outlet  

 

Two transient storage parameters- storage zone cross sectional area and exchange 

coefficient –were also related to discharge to determine whether there was a hydraulic control 

on transient storage. The storage zone cross sectional area is not correlated with discharge in 

either reach (Figure 3-16). The exchange flux coefficient displays strong positive correlation 

with discharge (p=0.015 Reach 1 Injection A, p=0.033 Reach 1 Injection B and p=0.0049 

Reach 2 Injection A; Figure 3-16). The transient storage zone area as a proportion of stream 

cross sectional area is also not correlated with discharge (Figure 3-17). 

   
Q [m3/s] 

Figure 3-16 Linear regression between Storage zone stream area (As) and Discharge (Q) with 
95% confidence limits, left is Reach 1, right is Reach 2 at I8 outlet  
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Q [m3/s] 

Figure 3-17 Linear regression between Exchange coefficient (α) and Discharge (Q) with 95% 
confidence limits, left is Reach 1, right is Reach 2 at I8 outlet  

   
Q [m3/s] 

Figure 3-18 Linear regression between As/A and Discharge (Q) with 95% confidence limits, 
left is Reach 1, right is Reach 2 at I8 outlet 

 

The turnover lengths have similar result as I8Inlet. They have negative correlation 

with no significant trends (Figure 3-19). The storage exchange fluxes display distinct positive 

correlation with discharge in reach 1 and 2 except injection B in reach 2 (p=0.012 Reach 1 

Injection A and p=0.002 Reach 1 Injection B and p=0.023 Reach 2 Injection A; Figure 3-20). 

Average residence time in storage has different results in I8 outlet than I8 inlet (Figure 3-21). 

This metric has a significant negative relationship with discharge in reach 1(p=0.001 Reach 1 

Injection A, p=0.023 Reach 1 Injection B).Thus, average residence time in the storage zone is 

strongly related to discharge in I8 inlet. It is worth noting that I8 outlet flow regime was 

lower than I8 inlet.  
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  Q [m3/s] 
Figure 3-19 Linear regression between Turn over length (Ls) and Discharge (Q) with 95% 
confidence limits, left is Reach 1, right is Reach 2 at I8 outlet 

  
Q [m3/s] 

Figure 3-20 Linear regression between Storage exchange flux (qs) and Discharge (Q) with 95% 
confidence limits, left is Reach 1, right is Reach 2 at I8 outlet 

  
Q [m3/s] 

Figure 3-21 Linear regression between Average residence time in storage zone (ts) and 
Discharge (Q) with 95% confidence limits, left is Reach 1, right is Reach 2 at I8 outlet 
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Q [m3/s] 
Figure 3-22 Linear regression between Decay coefficient in main channel (λ) and Discharge 
(Q) with 95% confidence limits, left is Reach 1, right is Reach 2 at I8 outlet  

   
Q [m3/s] 

Figure 3-23 Linear regression between Decay coefficient storage zone (λs) and Discharge (Q) 
with 95% confidence limits, left is Reach 1, right is Reach 2 at I8 outlet  

  
Q [m3/s] 

Fig 3-24 Linear regression between RSF and Discharge (Q) with 95% confidence limits, left 
is Reach 1, right is Reach 2 at I8 outlet  
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this metric (equation 2-11), it is hard to suggest that discharge does not controls nutrient 

uptake.   

 
 
 

3.3 Date and Thaw Depth  

 
Figure 3-25 Time series of temperatures at 1m depth beneath stream bed on I8 Inlet and I8 
Outlet Source: “Solute transport dynamics in alaskan arctic tundra streams” by Wlostoski N. 
Adam. (2012) Master’s thesis, Pennsylvania State University 
 

In both I8 inlet and outlet streams, streambed temperature monitoring stations have 

been deployed for several years. Both reach 1m depth. The temperature time series from two 

thaw seasons is provided to demonstrate the thaw process in both stream channels (Figure 3-

25). Temperature beneath I8 Inlet declines more rapidly than I8Inlet during September 2010 

and October 2011 and I8 Inlet has higher temperature than I8 outlet in the thaw season. From 

this data, it is implied that the subsurface thaw season is between mid June and early October 

in this region.  

 
 
 

3.3.1 I8Inlet 

Although field studies were conducted in 2010 and 2011, thaw seasons were fairly 

similar (no anomalous weather). Because of this, we can evaluate, as if all data were collected 
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in the same year for linear regression analysis. We hypothesized if thaw depth affects solute 

transport, parameter values would change in a particular direction (increasing and decreasing) 

as a function of date. Dispersion coefficient has no distinct relationship with date (Figure 3-

26). Main stream cross-sectional area has relatively high value in the thaw season (Figure 3-

27). However it is continuous to be a high value in late Sep. This is indicated that both 

transport parameters are more correlated with discharge than thaw bulb condition. 

  
Date [M-D] 

Figure 3-26 Linear regression between Dispersion coefficient (D) and Date with 95% 
confidence limits, left is Reach 1, right is Reach 2 at I8 Inlet 

   
Date [M-D] 

Figure 3-27 Linear regression between Main stream area (A) and Date with 95% confidence 
limits, left is Reach 1, right is Reach 2 at I8 Inlet 

 
The two parameters related to transient storage - storage zone cross-sectional area 

and exchange coefficient - also do not have distinct relationships with date (Figure 3-28 and 

3-29). This supports previous study results indicated that transient storage of tracer solute did 

not increase with increasing thaw depths [Zarnetske et al., 2008].  
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Date [M-D] 

Figure 3-28 Linear regression between Storage zone area (As) and Date with 95% confidence 
limits, left is Reach 1, right is Reach 2 at I8 Inlet 

  
Date [M-D] 

Figure 3-29 Linear regression between Exchange coefficient (α) and Date with 95% 
confidence limits, left is Reach 1, right is Reach 2 at I8 Inlet 

   
Date [M-D] 

Figure 3-30 Linear regression between Turn over length (Ls) and Date with 95% confidence 
limits, left is Reach 1, right is Reach 2 at I8 Inlet 
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layer condition in this period does not affect solute transport.  

To determine whether active layer condition affects the fate of NH4 and PO4, 1st order 

decay coefficients in two conceptual area and metric RSF are related to date. Although1st 

order decay coefficients have relative high values in the thaw season; they do not display 

correlation with date and similar trends with temperature at 1m beneath streambed. (Figure 3-

33, 3-34 and 3-35). In the figure 3-34, there is a significant correlation with date for reach 2 

(p=0.048 Reach 2 Injection A). However, we hypothesized this may be more greatly affected 

by stream temperatures condition.  

 

 
  Date [M-D] 
Figure 3-31 Linear Regression between Storage exchange flux (qs) and Date with 95% 
confidence limits, left is Reach 1, right is Reach 2 at I8 Inlet 
  

 
  Date [M-D] 
Figure 3-32 Linear regression between Average residence time in storage zone (ts) and Date 
with 95% confidence limits, left is Reach 1, right is Reach 2 at I8 inlet 
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Date [M-D] 

Figure 3-33 Linear regression between Decay coefficient in main channel (λ) and Date with 
95% confidence limits, left is Reach 1, right is Reach 2 at I8 Inlet 

   
Date [M-D] 

Figure 3-34 Linear regression between Decay coefficient in storage zone (λs) and Date with 
95% confidence limits, left is Reach 1, right is Reach 2 at I8 Inlet 

   
Date [M-D] 

Figure 3-35 Linear regression between RSF and Date with 95% confidence limits, left is 
Reach 1, right is Reach 2 at I8 Inlet 
 
 
 

3.3.2 I8 outlet 
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indicate a positive correlation with date. However, these parameters do not have significant 

trends (Figure 3-37). These results support the idea that transport parameters have stronger 

relationships with hydraulic characteristics than active layer condition (Section 3.3.1). 

 
Date [M-D] 

Figure 3-36 Linear regression between Dispersion coefficient (D) and Date with 95% 
confidence limits, left is Reach 1, ritght is Reach 2 at I8 Outlet 

   
Date [M-D] 

Figure 3-37 Linear regression between Main stream area (A) and Date with 95% confidence 
limits, left is Reach 1, right is Reach 2 at I8 Outlet 
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parameters display correlation with date. This suggests that there are other factors which 

affect transient storage more strongly than thaw bulb condition.    
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Date [M-D] 

Figure 3-38 Linear regression between Storage zone area (As) and Date with 95% confidence 
limits, left is Reach 1, line is Reach 2 at I8 Outlet 

   
Date [M-D] 

Figure 3-39 Linear regression between Exchange coefficient (α) and Date with 95% 
confidence limits, left is Reach 1, right is Reach 2 at I8 Outlet 

 

   
Date [M-D] 

Fig 3-40 Linear regression between Turn over length (Ls) and Date with 95% confidence 
limits, left is Reach 1, right is Reach 2 at I8 Outlet 
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Date [M-D] 

Figure 3-41 Linear regression between Storage exchange flux (qs) and Date with 95% 
confidence limits, left is Reach 1, right is Reach 2 at I8 Outlet 

   
Date [M-D] 

Figure 3-42 Linear Regression between Average residence time in storage zone (ts) and Date, 
with 95% confidence limits left is Reach 1, right is Reach 2 at I8 Outlet 

 

   
Date [M-D] 

Figure 3-43 Linear regression between Decay coefficient in main channel (λ) and Date with 
95% confidence limits, left is Reach 1, right is Reach 2 at I8 Outlet 
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correlation with date (Figure 3-40, 3-41 and 3-42). In the case of storage exchange flux, there 

is relatively high value in middle of summer and a similar trend with temperature at 1m 

beneath streambed (Reach 2 Injection B). However, this is not enough evidence for 

supporting active layer conditions controls on transient storage.  

In the figure 3-43, best fit 1st order decay coefficients display similar trends with 

temperature at 1m beneath streambed and have significant correlation to date (p=0.0072 

Reach1 Injection B). However, in the case of reach 2, there is no correlation with date. In 

addition, 1st order decay coefficient in storage zone and the RSF metric are also not correlated 

with date (Figure 3-44 and 3-45). These results also do not enough for support active layer 

condition controls on nutrient uptake dynamics. 

 

   
Date [M-D] 

Figure 3-44 Linear regression between Decay coefficient in storage zone (λs) and Date with 
95% confidence limits, left is Reach 1, right is Reach 2 at I8 Outlet 
 

   
Date [M-D] 

Figure 3-45 Linear regression between RSF and date, left is Reach 1, right is Reach 2 at I8 
Outlet 
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3.4 The Ratio non-conservative to conservative masses and Mass loss 

To determine whether there is a dependence of the ratio conservative (Cl) masses to 

non-conservative (PO4 and NH4) masses as a function of parameters and metrics related to 

transient storage mechanisms (A, As, α, qs, Ls and ts), linear regressions were conducted 

between them. Specific values of the ratio of nutrient to tracer masses are provided in 

appendix 4. The ratios decrease from reach 1 and reach 2 and this change between reach 1 

and 2 are provided in the Table 4-2. Masses used in the ratio of nutrient to tracer masses were 

calculated under the main channel BTCs. This means the change of ratio is related to mass 

loss downstream. The analysis between ratio and parameter related to transient storage 

parameter can assess the effect of mass loss on transient storage of non-conservative solute. 

Stream and Date 
SIM Mass OBS Mass 

SIM/INJ OBS/INJ 
SIM Mass OBS Mass 

SIM/INJ OBS/INJ 
Ratio of PO4_P : Cl Ratio of NH4_N : Cl 

I8 IN 
(R1-R2) 

20100721 0.0001 0.0014 0.0110 0.1516 0.0004 -0.0007 0.0514 -0.0847 

20100728 0.0014 0.0016 0.2328 0.2721 0.0012 0.0018 0.2295 0.3410 

20100918 0.0030 0.0034 0.1904 0.2162 0.0010 0.0017 0.1477 0.2454 

20100925 0.0023 0.0020 0.1424 0.1264 0.0022 0.0024 0.3200 0.3521 

20110606 0.0266 0.0343 0.3025 0.3912 0.0073 0.0040 0.3539 0.1951 

20100719 0.0021 0.0040 0.1504 0.2851 0.0079 0.0082 0.4538 0.4735 

I8 Out 
(R1-R2) 

20100726 0.0014 0.0017 0.1831 0.2198 0.0012 0.0014 0.1820 0.2187 

20100916 0.0029 0.0017 0.1888 0.1103 0.0007 0.0015 0.0957 0.2205 

20110604 0.0024 0.0023 0.1528 0.1460 0.0015 -0.0001 0.1699 -0.0085 

20110610     0.0019 0.0018 0.2409 0.2298 

Table 4-2 The ratio change between reach 1 and reach 2 
 
 
 

3.4.1 I8Inlet 

There is no significant correlation between main channel cross-sectional area and the 

ratio conservative masses to non-conservative masses (Figure 3-46). In addition, storage zone 

cross-sectional area and exchange coefficient also do not demonstrate a relationship with the 

ratio. (Figure 3-47 and 3-48). However, the main stream cross-sectional area and exchange 
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coefficient increased when the ratio increased.  

Three metrics (Ls,qs and ts) display some correlation with the ratio of nutrient to 

tracer masses. The turnover length has significant negative relationship with the ratio in reach 

1 for PO4 (p=0.055) and reach 2 for NH4 (Figure 3-49, p=0.014). Storage exchange fluxes do 

not display distinct correlation with the ratio of nutrient to tracer masses. However, they show 

that when ratio increased storage exchange flux also increased (Figure 3-50). Average 

residence time in the storage zone has positive significant negative correlation with the ratio 

of nutrient to tracer masses in reach 1 for PO4 (Figure 3-51, p=0.034). 

  
A [m2] 

Figure 3-46 Linear regression between Ratio of nutrient: tracer masses and Main channel area 
(A) with 95% confidence limits, left is Injection A, right is Injection B at I8 Inlet 

 
As[m2] 

Figure 3-47 Linear regression between Ratio of nutrient: tracer masses and Storage zone area 
(As) with 95% confidence limits, left is Injection A, right is Injection B at I8 Inlet 
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α [1/s] 

Figure 3-48 Linear Regression between ratio of nutrient: tracer masses and Exchange 
coefficient (α) with 95% confidence limits, left is Injection A, right is Injection B at I8 Inlet 
  

 
Ls [m] 

Figure 3-49 Linear regression between Ratio of nutrient: tracer masses and Turn over length 
(Ls) with 95% confidence limits, left is Injection A, right is Injection B at I8 Inlet 
 

 
qs [m3/s·m] 

Figure 3-50 Linear regression between Ratio of nutrient: tracer masses and Storage exchange 
flux (qs) with 95% confidence limits, left is Injection A, right is Injection B at I8 Inlet 
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ts [s] 

Figure 3-51 Linear regression between Ratio of nutrient: tracer masses and Average residence 
time in storage zone (ts) with 95% confidence limits, left is Injection A, right is Injection B at 
I8 Inlet 
 
 
 

3.4.2 I8 Outlet 

 
A [m2] 

Figure 3-52 Linear regression between Ratio of nutrient: tracer masses and Main channel area 
(A) with 95% confidence limits, left is Injection A, right is Injection B at I8 Outlet 

 
As[m2] 

Figure 3-53 Linear regression between Ratio of nutrient: tracer masses and Storage zone area 
(As) with 95% confidence limits, left is Injection A, right is Injection B at I8 Outlet 
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α [1/s] 

Figure 3-54 Linear regression between Ratio of nutrient: tracer masses and Exchange 
coefficient (α) with 95% confidence limits, left is Injection A, right is Injection B at I8 Outlet 

      
Ls [m] 

Figure 3-55 Linear regression between Ratio of nutrient: tracer masses and Turn over length 
(Ls) with 95% confidence limits, left is Injection A, right is Injection B at I8 Outlet 

 
qs [m3/s·m] 

Figure 3-56 Linear regression between Ratio of nutrient: tracer masses and Storage exchange 
flux (qs) with 95% confidence limits, left is Injection A, right is Injection B at I8 Outlet 
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ts [s] 

Figure 3-57 Linear regression between Ratio of nutrient: tracer masses and Average residence 
time in storage zone (ts) with 95% confidence limits, left is Injection A, right is Injection B at 
I8 Outlet 
 

In the I8 Outlet, parameters related to transient storage (A, As and α) do not show 

relationship with the ratio of nutrient to tracer masses(Figure 3-52, 3-53 and 3-54). These 

results are same as those of I8 Inlet. 

Three metrics related to transient storage also do not display distinct correlation with the 

ratio of nutrient to tracer masses. Only average residence time in storage zone has significant 

negative relationship with the ratio in reach 1 for NH4 (Figure. 3-57, p=0.022). In the I8 

Outlet, the metrics do not have similar trends which display in the I8-Inlet.  

 
 
 
3.5 Stream Water Temperature as a Potential Control on the fate of PO4 and NH4 

3.5.1 I8 Inlet 

 To determine whether average stream water temperature may influence solute 

transport dynamics, dispersion coefficient and main channel cross sectional area are related to 

stream water temperature. Dispersion coefficient displays positive correlation to stream water 

temperature with no significant trends (Figure 3-58). Main channel cross sectional area shows 

negative correlation to stream water temperature with no significant trends (Figure 3-59). 

This suggests that stream water temperature does not control on dispersion and advection 

mechanisms.     
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T [℃] 

Figure 3-58 Linear regression between Dispersion coefficient (D) and Temperature (℃) with 
95% confidence limits, left is Reach 1, right is Reach 2 at I8 Inlet 

   
T [℃] 

Figure 3-59 Linear regression between Main Stream Area (A) and Temperature (℃) with 95% 
confidence limits, left is Reach 1, right is Reach 2 at I8 Inlet 

 

Two parameters related to transient storage – storage zone cross sectional area and 

exchange coefficient – are tested to determine influence of stream water temperature on 

transient storage mechanism. One potential reason for the influence of stream water 

temperature on exchange is that the dynamic viscosity of water is dependent on temperature. 

Similar to the transport metrics, there are no distinct relationships between estimated 

parameters and stream water temperature (Figure 3-60 and 3-61). 
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Temperature [℃] 

Figure 3-60 Linear regression between Storage zone area (As) and Temperature (℃) with 95% 
confidence limits, left is Reach 1, right is Reach 2 at I8 Inlet 

   
Temperature [℃] 

Figure 3-61 Linear Regression between Exchange Coefficient (α) and Temperature (℃) with 
95% confidence limits, left is Reach 1, right is Reach 2 at I8 Inlet 

 

Estimated turnover length is significantly correlated to stream water temperature in 

reach 1 (Figure 3-62, p=0.042 Reach 1 Injection B), but no other injection set is correlated 

with stream water temperature. In addition, storage exchange flux and average residence time 

in storage zone also display no correlation with average stream water temperature (Figure 3-

63).  
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Temperature [℃] 

Figure 3-62 Linear regression between Turn over length (Ls) and Temperature (℃), left is 
Reach 1, right is Reach 2 at I8 Inlet 

   
Temperature [℃] 

Figure 3-63 Linear regression between Storage exchange flux (qs) and Temperature (℃), left 
is Reach 1, right is Reach 2 at I8 Inlet  

   
Temperature [℃] 

Figure 3-64 Linear regression between Average residence time in storage zone (ts) and 
Temperature (℃), left is Reach 1, right is Reach 2 at I8 inlet 
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65, p=0.086 Reach1 Injection A , p=0.064 Reach 1 Injection B). This parameter values do not 

0 2 4 6 8 10 12 14
0

500

1000

1500

2000

Injection A
Inj A Regr
Injection B
Inj B Regr

0 2 4 6 8 10 12
0

10000

20000
40000
50000
60000
70000

0 2 4 6 8 10 12 14
0.000

0.002

0.004

0.006

0.008

0.010

Injection A
Inj A Regr
Injection B
Inj B Regr

0 2 4 6 8 10 12
0.000

0.002

0.004

0.006

0.008

0.010

0 2 4 6 8 10 12 14
0

200

400

600

800

1000

Injection A 
Inj A Regr
Injection B
Inj B Regr

0 2 4 6 8 10 12
0

200

400

600

800

1000

L s
 [m

] 
q s

 [m
3 /s

·m
] 

t s 
[s

] 



 

46 

have significant trends in reach 2. However, they also display positive correlation. The 1st 

order decay coefficient for PO4 in storage zone has distinct relationship with stream water 

temperature in reach2 (Figure 3-66, p=0.089 Reach 2 Injection A). This parameter has 

negative correlation with water temperature in reach 1 for PO4, this suggests that when 

stream water temperature increases, uptake of PO4 also increase. The RSF metric does not 

have any relationship with stream water temperature for either nutrient (Figure 3-67). This is 

likely because the metric is a function of uptake and transient storage, which may not be 

related. Similar to the previous result between transient storage parameters and stream water 

temperature, we conclude that stream water temperature only affects nutrient uptake, and 

does not have a significant impact on transport exchange processes. In addition, the estimated 

parameter values are different between both injections (PO4 and NH4).  

   
Temperature [℃] 

Figure 3-65 Linear Regression between Decay coefficient in main channel (λ) and 
Temperature (℃) with 95% confidence limits, left is Reach 1, right is Reach 2 at I8 Inlet 
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Figure 3-66 Linear Regression between Decay coefficient in storage zone (λs) and 
Temperature (℃) with 95% confidence limits, left is Reach 1, right is Reach 2 at I8 Inlet 

 

   
Temperature [℃] 

Figure 3-67 Linear regression between RSF and Temperature (℃), left is Reach 1, right is 
Reach 2 at I8 Inlet 
 
 
 

3.5.2 I8 Outlet 

Similar to I8 Inlet, dispersion coefficients and main channel cross sectional areas 

simulated in I8 Outlet are not correlated with stream water temperature (Figure 3-68 and 3-

69). These results are similar to those in I8 Inlet, stream water temperature does not have 

relationship with advection and dispersion mechanisms (Section 3.3.1) and these transport 

parameters only have strong relationships with hydraulic characteristics (Section 3.2.1). 

 
  Temperature [℃] 

Figure 3-68 Linear Regression between Dispersion coefficient (D) and Temperature (℃) with 
95% confidence limits, left is Reach 1, right is Reach 2 at I8 Outlet 
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Temperature [℃] 

Figure 3-69 Linear regression between Main Stream Area (A) and Temperature (℃) with 95% 
confidence limits, left is Reach 1, right is Reach 2 at I8 Outlet 

 

The transient storage parameters – storage zone cross sectional area and exchange 

coefficient- have slightly different relationships, compared to I8Inlet. Storage zone cross 

sectional area displays a positive correlation with stream water temperature in reach 2 (Figure 

3-70, p=0.038 Reach 2 Injection B), however uncertainties in these parameters are great. 

Exchange coefficients display same trends that increasing trends when stream water 

temperature increase in both streams (Figure 3-71). However, these results do not have 

significant trends. Because of these reasons, this is not enough to suggest that stream water 

temperature controls transient storage dynamics. 

   
Temperature [℃] 

Figure 3-70 Linear regression between Storage zone area (As) and Temperature (℃) with 95% 
confidence limits, left is Reach 1, right is Reach 2 at I8 Outlet 
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Temperature [℃] 

Figure 3-71 Linear regression between Exchange coefficient (α) and Temperature (℃) with 
95% confidence limits, left is Reach 1, right is Reach 2 at I8 Outlet 

 

Turnover length is not correlated with stream water temperature, similar to I8 Inlet 

(Figure 3-72). However, storage exchange flux displays significant correlation with water 

temperature in reach 2 (Figure 3-73, p=0.044 Reach 2 Injection A and p=0.002 Reach 2 

Injection B). The average residence time in storage zone also does not have correlation with 

stream water temperature (Figure 3-74). These results support the idea that stream water 

temperature does not control transport or transient storage dynamics.   

 
Temperature [℃] 

Figure 3-72 Linear regression between Turn over length (Ls) and Temperature (℃), left is 
Reach 1, right is Reach 2 at I8 Outlet 
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Temperature [℃] 

Figure 3-73 Linear regression between Storage exchange flux (qs) and Temperature (℃), left 
is Reach 1, right is Reach 2 at I8 Outlet 

   
Temperature [℃] 

Figure 3-74 Linear regression between Average residence time in storage zone (ts) and 
Temperature (℃), left is Reach 1, right is Reach 2 at I8 Outlet 
  

The 1st order decay coefficients in the main channel and storage zone were related to 

stream temperature to determine whether temperature controls nutrient uptake. These nutrient 

uptake rates are not significantly correlated with stream water temperature, which is different 

from the results of I8 Inlet (Figure 3-75 and 3-76). These results suggest that there are other 

factors which affect nutrient uptake rates in I8 Outlet. Additionally, there are differences 
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Temperature [℃] 

Figure 3-75 Linear regression between Decay coefficient in main channel (λ) and 
Temperature (℃) with 95% confidence limits, left is Reach 1, right is Reach 2 at I8 Outlet 

   
Temperature [℃] 

Figure 3-76 Linear regression between Decay coefficient in storage zone (λs) and 
Temperature (℃) with 95% confidence limits, left is Reach 1, right is Reach 2 at I8 Outlet 
 

The RSF metric is also not correlated with stream water temperature, similar to the 

result of I8 Inlet (Figure 3-77). This result supports the previous suggestion that, in addition 

to transport and transient storage dynamics, stream water temperature does not control 

nutrient uptake in I8 Outlet.  
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T [℃] 

Fig 3-77 Linear regression between RSF and Temperature (℃), left is Reach 1, right is Reach 
2 at I8 Outlet 
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4 Discussion 

4.1 OTIS-P and uncertainty 

The parameters estimated from simulations are not always reliable for various 

reasons such as measurement errors, structure of model errors and errors from nonlinear least 

squares parameter methods. For reliability of these simulations, coefficients of determination 

between observed data and simulated data are provided in appendix. Almost all of these 

values are greater than 0.9, indicating excellent simulation fits to observed data. However, we 

should consider about uncertainty during the analysis. 

Many of the estimated parameters for reach 1 have lower uncertainty than those for 

reach 2. This is likely due to the difference in the number of observations in the two reaches 

and model structure. Frequently, the number of observations at reach 2 is less than in reach 1 

(Appendix 7-3).The simulations of reach 1 and 2 were conducted at the same time. As 

mentioned, initial value of parameters are required to run the simulations. It is possible that 

these initial parameter values for reach 1 have an effect on estimation of parameters for reach 

2. 

Stream Date(MM/DD) 
Inj A (Cl) Inj B (Cl) Inj A (PO4) Inj B (NH4) 

R 1 R 2 R 1 R 2 R 1 R 2 R 1 R 2 

I8IN 

06/06 19 13 22 11 19 12 17 9 

06/12 25 12 24 11 26 13 23 10 

07/19 34  32  34  34  

07/21 11 20 11 22 11 21 11 21 

07/28 12 22 13 21 12 21 13 21 

09/16 26 13 22 12 23 15 22 12 

09/25 23 24 23 12 23 12 23 11 

I8OUT 

06/04 22 11 17 11 23 11 18 10 

06/10 20 12 21 11 19  18 11 

07/16 34  31  34  31  

07/19 34  32  34  34  

07/26 27 12 24 11 26 13 23 10 

09/02 33  31  24  20  

09/16 25 14 23 12 25 13 23 12 

Table 4-1 the number of observation 
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In OTIS-P, all model parameters were estimated by linear regression optimization, 

these include a random error term within 95% confidence limits. These confidence intervals 

provide opportunity to consider the uncertainty of each estimated parameter. This is an 

important benefit of OTIS-P [Scott et al., 2003]. Estimates of parameter simulation 

uncertainty are valuable for assessing confidence in optimized parameter values. In the case 

of four metrics (qs, ts, Ls and RSF), since the metrics are acquired from equations which 

consisted of estimated parameters, the metrics have greater uncertainty than these for 

estimated parameters.    

 
 
 

4.2 Relationship between each parameter and control variable  

 One dimensional solute transport with inflow and storage model (OTIS) includes 

transport (dispersion and advection), transient storage and chemical reaction mechanisms. 

Linear regressions between estimated parameters related to mechanisms and control variables 

were conducted to determine which variables may control which mechanisms (e.g. Q 

influence on transient storage processes). In addition, considering uncertainty was useful for 

identifying potential controls. This analysis has helped to identify relationships between 

mechanisms and controls in these streams.  

Discharge is used as a parameter related to channel hydraulics and has some 

correlation with estimated parameters. Mainstream cross sectional area, exchange coefficient 

(A, and α) were found to be correlated to discharge in the both streams. In addition, 

dispersion coefficients (D) displayed correlation with discharge in I8 outlet reach 1. In I8 

Inlet reach 2, dispersion coefficient increased when discharge increased. Analyzing four 

metrics (As/A, Ls, qs, and ts) is useful for interpreting the solute transport dynamics and 

quantified values are provided in table 4-2. Uncertainty of linear regression analysis and the 

calculation of metrics should be considered (eq. 2-7, 2-8 and 2-9). Ratios of storage zone 
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cross sectional areas to the main channel cross sectional area (As/A) do not have relationship 

with discharge. However, this metric increase as stream discharge decreases in all reaches 

except I8inlet in reach1. Turn over length did not display significant correlation to three 

control variables due to the uncertainty of estimated parameter which used in the equation (α). 

Velocity is also influenced by many control variables. However, this metric was found to 

decrease when discharge increased in every stream. Storage exchange fluxes show distinct 

positive relation with discharge in both reaches of I8 Inlet and reach 1 in I8 outlet. Although 

average residence time in storage zone was not correlated with temperature and date in reach 

2 of I8outlet, this metric has significant relationship with discharge. Additionally, this metric 

decreased when discharge decreased in every study stream. These results indicate that 

discharge is an important on transport and an inconsistent control on transient storage. These 

support suggestions from various previous studies regarding hydraulic control on transient 

storage [Legrand, Marcq, & Laudelout, 1985; D’ Angelro et al., 1993; Wondzell & Swanson, 

1996]. In addition, discharge does not exhibit correlation with parameters related to nutrient 

uptake. This means that discharge does not affect nutrient uptake, directly.   

Average stream water temperature also exhibited a distinct relationship with nutrient 

uptake parameters (λ, λs). The 1st order decay in main channel has a positive relationship in I8 

Inlet reach 1 and the 1st order decay in storage zone is significantly positively correlated with 

stream water temperature in I8 Inlet reach 2. Even though they have smaller p-value than 0.1, 

they have similar positive trends. Other previous studies also suggested that stream 

temperature has an influence on the uptake of PO4 and NH4. Stream water temperature affects 

changes in microbial densities and activities and these have an effect on nutrient retention 

[Butturini & Sabater, 1998; D’Angelo et al., 1991]. The RSF metric related to nutrient uptake 

is not correlated with stream water temperature.  

The ratio of nutrient to tracer masses do not display significant relationships with the 
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parameters related to transient storage. However metrics related to transient storage have 

some correlation with the ratio of nutrient to tracer masses. This suggests that the mass loss in 

main channel is affected by transient storage. In addition, the change of ratio of PO4 and NH4 

are quite different.  

Although, in this study, we found some direct relationships between estimated 

parameters and controls, there is another valuable result. Five parameters/metrics (D, A, α, qs 

and ts) showed correlation with discharge. Hence, we show discharge has strong control 

transport and transient storage. However, other parameters related to these mechanisms (As 

and Ls) did not display correlation with discharge. In addition, there are not any estimated 

parameters which have significant relationship with date which is a surrogate for thaw depth. 

However, these results do not mean thaw bulb is not a control on solute transport dynamics. 

Moreover, uptake rates of PO4 are generally higher than those for NH4 in the all reaches and 

these results could not be explained with stream temperature. In conclusion, other control 

variables should be adopted to predict solute transport dynamics without experiment. 

 
 
 

4.3 Other control variables effects on solute transport dynamics 

The transient storage model representation of solute transport dynamics could not be 

elucidated with only discharge, date (thaw depth) and temperature. Although, the results from 

this study did not display significant relationship, channel hydraulics, active layer conditions 

and temperature should have some influence on transport, transient storage and nutrient 

uptake. In addition, a number of studies provided other factors which we did not consider 

affecting solute transport dynamics.  

Apart from these three variables, stream morphology has been found to control solute 

transport dynamics. Morphology characteristics of streams play an important role in 

dominant solute transport processes (advection and dispersion) and transient storage [Leopold 
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& Maddock, 1953; Kasahara &Wondzell, 2003]. Additionally, this factor also has been 

shown to influence on transient storage in hyporheic zone. Harvey and Wagner [2000] 

suggested that various morphologic factors operate on transient storage in hyporheic zone 

such as channel slope, width, sinuosity and catchment. Packman and Salehin [2003] 

suggested that sediment characteristics such as porous bed and bed permeability also 

influence hyporheic exchange. Moreover, elevation of channel stage and water table and 

perturbations in the discharge affect transient storage [D’ Angelo et al., 1993; Harvey & 

Bencala, 1993]. Degree of channel complexity and presence of secondary channels or 

channel splits also influences hyporheic exchange [Kasahara & Wondzell, 2003; Gooseff et 

al., 2007].  

In the case of nutrient uptake, there are other control variables besides temperature. 

However, none were measured in concert with the solute injections. Many studies suggested 

nutrient cycling in the stream influences non-conservative solute transport dynamics 

[Mulholland et al., 1997; Hall et al., 2002]. Oxidation/reduction processes occurring in 

stream and availability of organic matter to be mineralized affect nutrient transformation and 

demand [Holmes et al., 1996]. Kim [1991] and Mulholland [1994] suggested the benthic 

biota is also controls on nutrient uptake. In addition, the degree of water exchange can be also 

correlated to nutrient demand [Berhanrdt et al., 2005; Mullholland et al., 2008]. Nutrient 

dynamics related to benthic microbial communities also control nutrient uptake of non-

conservative solute [Mulholland et al., 1994; Mcknight et al., 2004]. Considering these 

additional controls may explain differences values of estimated parameters between PO4 and 

NH4. Since PO4 and NH4 have different characteristics, they have different effects from 

biological communities and have different metabolic rates. Additionally, n-cycling such as 

nitrification and denitrification processes ma have influences on the uptake of NH4. Mc 

Knight et al. [2004] also suggested benthic algal mats does not control uptake of NH4. The 
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differences between the changes of ratios of PO4 to Cl masses and the changes of ratios of 

NH4 to Cl masses also indicate other controls.  
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5 Conclusion 

The purpose of this study is to investigate relationship between three mechanisms of 

solute transport and fate (transport, transient storage and nutrient uptake) and control 

variables (discharge, date, mass loss and stream water temperature). These findings enhance 

our assists understanding of solute transport dynamics in arctic streams and effect of solute 

transport on ecosystem. The OTIS-P is used to estimate transport and transient storage 

parameters (D, A, AS, α) with conservative solute and nutrient uptake parameters (λ and λs) 

with non-conservative solute. Solutes were injected with slug injection method. Additionally, 

five metrics (qs, ts, Ls, RSF and As/A) were calculated to help understanding solute transport 

dynamics with estimated parameters.    

During thaw season, arctic tundra streams are not significantly different from streams 

in temperate streams. However, a distinct difference in arctic streams is the thaw bulb which 

creates opportunity for hyporheic exchange during the thaw season. Transport and transient 

storage mechanisms are positively correlated with discharge, suggesting strong hydraulic 

controls on conservative processes. Although thaw depth is related to date, we did not 

observe date to control solute transport directly. However, thaw below a stream channel is 

still important control due to hyporheic exchange. Morphology characteristics (e.g. channel 

slope, width, sinuosity, etc) have also been shown to be important controls, affecting these 

mechanisms. In case of reactive solute transport dynamics, stream water temperature has a 

positive relationship with fate of non-conservative solutes. However, fate of non-conservative 

solutes is different for NH4 and PO4. This is expected because they have different nutrient 

demand, cycling, and metabolic rates. In addition, difference between the ratio change of PH4 

to Cl masses and the ratio change of NH4 to Cl masses can explain when we consider these 

controls. Additionally, biological communities and their change through time also affect 

nutrient uptake through time.  
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Appendix 1 Break through Curves [BTCs] and Optimized Parameter Value 
- I8IN/2010/07/21 [STREAM/YYYY/MM/DD]   
 
A Cl from injection A B Cl from injection B 
C PO4 from Injection A D NH4 from injection B 

  

. 
 

 
Parameters 

Reach 1 
Injection A   

Reach 2  
Injection A 

D (m2/s) 7.95 x 10-2  4.11 x 10-1 (0-9.3 x 10-1) 

A (m2) 1.323 1.947 (1.81-2.07) 

As (m2) 3.28 x 10-1 4.186 x 10-1 (3.34-5.02 x 10-1) 

α (1/s) 4.511 x 10-3 1.232 x 10-3 (0.46-2.01 x 10-3) 

λ (1/s) 1.436 x 10-5 (0-4.68 x 10-4) 2.027 x 10-4 (1.13-2.92 x 10-5) 

λs (1/s) 8.487 x 10-4 (0-3.71 x 10-3) 1.397 x 10-4 (0.67-2.13 x 10-3) 

 
Parameters 

Reach 1 
Injection B 

Reach 2  
Injection B 

D (m2/s) 4.81 x 10-2 (0-7.8 x 10-1) 1.64 x 10-1 (0-3.7 x 10-1) 

A (m2) 1.2095 (0.98-1.43) 2.002 (1.91-2.087) 

As (m2) 3.347 x 10-1 (1.27-5.42 x 10-1) 5.29 x 10-1 (4.47-6.11 x 10-1) 

α (1/s) 8.236 x 10-3 (0-18.8 x 10-3) 3.026 x 10-3 (1.95-4.11 x 10-3) 

λ (1/s) 1.306 x 10-6 7.605 x 10-7 (0-1.96 x 10-4) 

λs (1/s) 7.873 x 10-4  5.69 x 10-4 (4.17-7.21 x 10-3) 

 Discharge [m3/s]  Lateral Inflow Reach1 [m3/s·m] Lateral outflow Reach 2 [m3/s·m] 

0.6969 0.000310 0.00031495 
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- I8IN/2010/07/28 [STREAM/YYYY/MM/DD] 

 
 

 
 

 
Parameters 

Reach 1 
Injection A   

Reach 2  
Injection A 

D (m2/s) 1.915 x 10-1 (0.445-3.38 x 10-1) 3.34 x 10-1 (2.09-4.6 x 10-1) 

A (m2) 7.96 x 10-1 (7.43-8.49 x 10-1) 1.126 (1.08-1.165) 

As (m2) 1.535 x 10-1 (1.03-2.04 x 10-1) 2.506 x 10-1 (1.96-3.05 x 10-1) 

α (1/s) 1.685 x 10-3 (0.52-2.85 x 10-3) 4.33 x 10-4 (2.01-6.66 x 10-4) 

λ (1/s) 3.426 x 10-4 (2.58-4.27 x 10-4) 6.06 x 10-4 (4.07-8.05 x 10-4) 

λs (1/s) 1.001 x 10-3 (0.341-1.66 x 10-3) 6.82 x 10-4 (0-44.1 x 10-4) 

 
Parameters 

Reach 1 
Injection B 

Reach 2  
Injection B 

D (m2/s) 4.41 x 10-1 (3.41-5.4 x 10-1) 5.656 x 10-1 (5.06-6.25 x 10-1) 

A (m2) 7.88 x 10-1 (7.7-8.06 x 10-1) 1.091 (1.082-1.099) 

As (m2) 1.32 x 10-1 (1.08-1.55 x 10-1) 9.48 (0-93.6) 

α (1/s) 4.9 x 10-4 (2.82-6.98 x 10-4) 1.767 x 10-4 (1.48-2.05 x 10-4) 

λ (1/s) 1.355 x 10-4 (0.54-2.17 x 10-4) 6.65 x 10-4 (5.12-8.18 x 10-4) 

λs (1/s) 1.005 x 10-3 (0-2.7 x 10-3) 9.412 x 10-5 (0-1.05 x 10-3) 

 Discharge [m3/s] Lateral Inflow Reach1 [m3/s·m] Lateral outflow Reach 2 [m3/s·m] 

0.186 0 0 
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-  I8IN/2010/09/18 [STREAM/YYYY/MM/DD] 

 
 

 

 
Parameters 

Reach 1 
Injection A   

Reach 2  
Injection A 

D (m2/s) 1.87 x 10-1 (1.32-2.42 x 10-1) 2.45 x 10-1 (0-5.48 x 10-1) 

A (m2) 8.42 x 10-1 (8.23-8.62 x 10-1) 1.26 (1.12-1.404) 

As (m2) 1.64 x 10-1 (1.46-1.83 x 10-1) 2.09 x 10-1 (0.88-3.31 x 10-1) 

α (1/s) 2.22 x 10-3 (1.71-2.73 x 10-1) 7.3 x 10-4 (0-17.3 x 10-4) 

λ (1/s) 9.42 x 10-5 (8.04-10.8 x 10-5) 2.28 x 10-1 (1.82-2.75 x 10-1) 

λs (1/s) 3.73 x 10-4 (2.76-4.71 x 10-4) 6.09 x 10-4 (1.72-10.5 x 10-4) 

 
Parameters 

Reach 1 
Injection B 

Reach 2  
Injection B 

D (m2/s) 2.095 x 10-1 (1.53-2.66 x 10-1) 1.96 x 10-1 (0.63-3.3 x 10-1) 

A (m2) 8.51 x 10-1 (8.31-8.69 x 10-1) 1.24 (1.18-1.29) 

As (m2) 1.62 x 10-1 (1.43-1.8 x 10-1) 2.48 x 10-1 (1.95-3.02 x 10-1) 

α (1/s) 2.03 x 10-3 (1.56-2.49 x 10-3) 9.66 x 10-4 (4.82-14.5 x 10-4) 

λ (1/s) 4.35 x 10-5 (1.58-7.14 x 10-5) 1.773 x 10-4 (0.925-2.62 x 10-4) 

λs (1/s) 8.89 x 10-6 (0-2.03 x 10-4) 1.48 x 10-4 (0-7.62 x 10-4) 

Discharge [m3/s] Lateral Inflow Reach1 [m3/s·m] Lateral Inflow Reach 2 [m3/s·m] 

0.227913 1.535 E-05 8.78 E-05 
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-  I8IN/2010/09/25 [STREAM/YYYY/MM/DD] 

 
 

 

 
Parameters 

Reach 1 
Injection A   

Reach 2  
Injection A 

D (m2/s) 3.16 x 10-1 (2.79-3.53 x 10-1) 2.945 x 10-1 (2.025-3.53 x 10-1) 

A (m2) 1.074 (1.05-1.09) 1.14 (1.126-1.164) 

As (m2) 1.137 x 10-1 (0.96-1.31 x 10-1) 10.67 (0-50.28) 

α (1/s) 1.45 x 10-4 (1.25-1.75 x 10-4) 1.49 x 10-4 (1.25-1.75 x 10-4) 

λ (1/s) 4.38 x 10-5 (1.67-7.1 x 10-5) 2.18 x 10-4 (1.56-2.82 x 10-4) 

λs (1/s) 2.51 x 10-3 (0.259-4.74 x 10-3) 4.38 x 10-6 (0-3.19 x 10-3) 

 
Parameters 

Reach 1 
Injection B 

Reach 2  
Injection B 

D (m2/s) 1.044 x 10-1  5.991 x 10-2  

A (m2) 7.451 x 10-1 8.986 x 10-1  

As (m2) 1.78 x 10-1  2.87 x 10-1 

α (1/s) 2.21 x 10-3 9.9 x 10-4 

λ (1/s) 1.07 x 10-5 (0-5.47 x 10-5) 2.84 x 10-4 

λs (1/s) 3.9 x 10-6 (0-2.15 x 10-4) 6.16 x 10-5 

Discharge [m3/s] Lateral Inflow Reach1 [m3/s·m] Lateral Inflow Reach 2 [m3/s·m] 

0.11 0 0 
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- I8IN/2011/06/06 [STREAM/YYYY/MM/DD] 

 
 

 

 
Parameters 

Reach 1 
Injection A   

Reach 2  
Injection A 

D (m2/s) 2.09 x 10-1 (1.715-2.47 x 10-1) 4.46 x 10-5 (3.19-5.73 x 10-5) 

A (m2) 6.00 x 10-1 (5.86-6.15 x 10-1) 5.71 x 10-1 (5.57-5.86 x 10-5) 

As (m2) 7.88 x 10-2 (6.58-9.19 x 10-2) 1.334 (0-2.845) 

α (1/s) 3.31 x 10-4 (1.96-4.67 x 10-4) 2.04 x 10-4 (1.6-2.48 x 10-4) 

λ (1/s) 1.60 x 10-4 (1.46-1.74 x 10-4) 5.26 x 10-4 (4.57-5.96 x 10-4) 

λs (1/s) 9.53 x 10-4 (0.129-6.14 x 10-4) 1.52 x 10-3 (0-2.34 x 10-2) 

 
Parameters 

Reach 1 
Injection B 

Reach 2  
Injection B 

D (m2/s) 2.059 x 10-1 (1.67-2.44 x 10-1) 1.2 x 10-2 

A (m2) 6.25 x 10-1 (6.06-6.44 x 10-1) 5.81 x 10-1  

As (m2) 7.64 x 10-2 (6.00-9.28 x 10-2) 1.83 x 10-1  

α (1/s) 3.25 x 10-4 (1.53-4.97 x 10-4) 5.38 x 10-4 

λ (1/s) 2.29 x 10-4 (1.98-2.61 x 10-4) 3.78 x 10-4 (0.925-6.1 x 10-4) 

λs (1/s) 5.32 x 10-5 (0-5.58 x 10-4) 5.049 x 10-4 (0-2.76 x 10-3) 

Discharge [m3/s] Lateral Inflow Reach1 [m3/s·m] Lateral Inflow Reach 2 [m3/s·m] 

0.06263 1.8614 E-05 4.5256 E-05 
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- I8IN/2011/06/12 [STREAM/YYYY/MM/DD] 

 
 

 

 
Parameters 

Reach 1 
Injection A   

Reach 2  
Injection A 

D (m2/s) 1.52 x 10-1 (1.36-1.69 x 10-1) 3.48 x 10-1 (2.44-4.53 x 10-1) 

A (m2) 5.07 x 10-1 (4.99-5.15 x 10-1) 5.17 x 10-1 (5.00-5.35 x 10-1) 

As (m2) 7.07 x 10-2 (6.09-8.05 x 10-2) 4.61 x 10-1 (1.46-7.75 x 10-1) 

α (1/s) 1.04 x 10-4 (0.73-1.34 x 10-4) 8.34 x 10-5 (5.56-10.11 x 10-5) 

λ (1/s) 2.86 x 10-4 (2.54-3.18 x 10-4)  

λs (1/s) 7.45 x 10-5 (0-6.09 x 10-4)  

 
Parameters 

Reach 1 
Injection B 

Reach 2  
Injection B 

D (m2/s) 1.35 x 10-1 (1.19-1.50 x 10-1) 1.90 x 10-1 (0.35-3.46 x 10-1) 

A (m2) 5.25 x 10-1 (5.15-5.35 x 10-1) 4.99 x 10-1 (4.72-5.26 x 10-1) 

As (m2) 6.68 x 10-2 (5.8-7.56 x 10-2) 6.12 x 10-1 (2.75-9.5 x 10-1) 

α (1/s) 1.16 x 10-4 (0.79-1.54 x 10-4) 1.48 x 10-4 (0.978-2.0 x 10-4) 

λ (1/s) 2.22 x 10-4 (1.83-2.62 x 10-4)  

λs (1/s) 3.52 x 10-5 (0-6.8 x 10-4)  

Discharge [m3/s] Lateral Inflow Reach1 [m3/s·m] Lateral Inflow Reach 2 [m3/s·m] 

0.02663 3.73661 E-06 1.31782 E-05 
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- I8IN/2011/07/19 [STREAM/YYYY/MM/DD] 

 
 

 

 
Parameters 

Reach 1 
Injection A   

Reach 2  
Injection A 

D (m2/s) 5.06 x 10-1 (4.24-5.89 x 10-1)  

A (m2) 8.15 x 10-1 (8.00-8.3 x 10-1)  

As (m2) 1.37 x 10-1 (1.22-1.53 x 10-1)  

α (1/s) 6.20 x 10-4 (4.56-7.85 x 10-4)  

λ (1/s) 4.00 x 10-4 (3.75-4.24 x 10-4)  

λs (1/s) 1.716 x 10-3 (1.32-2.12 x 10-1)  

 
Parameters 

Reach 1 
Injection B 

Reach 2  
Injection B 

D (m2/s) 7.91 x 10-1 (6.72-9.08 x 10-1)  

A (m2) 8.79 x 10-1 (8.65-8.91 x 10-1)  

As (m2) 6.40 x 10-1 (4.22-8.6 x 10-1)  

α (1/s) 3.79 x 10-4 (3.19-4.41 x 10-4)  

λ (1/s) 2.305 x 10-4 (1.98-2.68 x 10-4)  

λs (1/s) 1.96 x 10-3 (3.95-1.69 x 10-3)  

Discharge [m3/s] Lateral Outlow Reach 1 [m3/s·m] Lateral Inflow Reach 2 [m3/s·m] 

0.198 1.54938 E-05 1.60193 E-05 
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-  I8OUT/2010/07/19 [STREAM/YYYY/MM/DD] 

 
 

 

 
Parameters 

Reach 1 
Injection A   

Reach 2  
Injection A 

D (m2/s) 8.32 x 10-1 (5.84-10.8 x 10-1) 8.78 x 10-1  

A (m2) 9.56 x 10-1 (9.12-10.0 x 10-1) 9.92 x 10-1  

As (m2) 2.17 x 10-1 (1.7-2.61 x 10-1) 4.05x 10-1 

α (1/s) 9.69 x 10-4 (5.36-14.0 x 10-4) 1.57 x 10-3 

λ (1/s) 8.79 x 10-4 (7.98-9.6 x 10-4) 8.58 x 10-4 (5.65-11.5 x 10-4) 

λs (1/s) 2.97 x 10-4 (0-8.45 x 10-4) 1.05 x 10-3 (0-2.48 x 10-3) 

 
Parameters 

Reach 1 
Injection B 

Reach 2  
Injection B 

D (m2/s) 8.62 x 10-1 (7.21-10.0 x 10-1)  

A (m2) 9.23 x 10-1 (8.91-9.55 x 10-1)  

As (m2) 2.04 x 10-1 (1.75-2.33 x 10-1)  

α (1/s) 1.13 x 10-3 (0.755-1.51 x 10-3)  

λ (1/s) 5.385 x 10-1 (5.38-5.39 x 10-4)  

λs (1/s) 2.09 x 10-4 (0.04-4.15 x 10-4)  

Discharge [m3/s] Lateral Inflow Reach 1 [m3/s·m] Lateral Inflow Reach 2 [m3/s·m] 

0.25 0 0 
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- I8OUT/2010/07/26 [STREAM/YYYY/MM/DD] 

 
 

 

 
Parameters 

Reach 1 
Injection A   

Reach 2  
Injection A 

D (m2/s) 8.94 x 10-1 (0.75-10.3 x 10-1) 2.11 x 10-1 (0-4.66 x 10-1) 

A (m2) 9.77 x 10-1 (9.42-10.1 x 10-1) 1.65 (1.58-1.72) 

As (m2) 2.74 x 10-1 (2.45-3.05 x 10-1) 8.77 x 10-1 (7.22-10.3 x 10-1) 

α (1/s) 4.90 x 10-4 (2.82-6.98 x 10-4) 1.76 x 10-4 (1.48-2.05 x 10-4) 

λ (1/s) 7.31 x 10-4 (6.65-7.97 x 10-4) 8.52 x 10-4 (5.24-11.8 x 10-4) 

λs (1/s) 1.73 x 10-3 (1.25-2.22 x 10-3) 1.47x 10-3 (0-4.3 x 10-3) 

 
Parameters 

Reach 1 
Injection B 

Reach 2  
Injection B 

D (m2/s) 8.07 x 10-1 (4.58-11.6 x 10-1) 3.71 x 10-1 (1.88-5.55 x 10-1) 

A (m2) 9.71 x 10-1 (8.82-10.6 x 10-1) 1.63 (1.57-1.68) 

As (m2) 2.78 x 10-1 (2.0-3.58 x 10-1) 9.06 x 10-1 (8.15-9.97 x 10-1) 

α (1/s) 2.97 x 10-3 (1.22-4.72 x 10-3) 1.49 x 10-4 (1.15-1.85 x 10-3) 

λ (1/s) 3.92 x 10-4 (3.03-4.82 x 10-4) 5.52 x 10-4 (3.23-7.81 x 10-4) 

λs (1/s) 2.97 x 10-4 (0-7.26 x 10-4) 1.83 x 10-4 (0-12.1 x 10-4) 

Discharge [m3/s] Lateral Inflow Reach 1 [m3/s·m] Lateral Outflow Reach 2 [m3/s·m] 

0.2984 0.0003967 0.00012039 
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- I8OUT/2010/09/16 [STREAM/YYYY/MM/DD] 

 
 

 

 
Parameters 

Reach 1 
Injection A   

Reach 2  
Injection A 

D (m2/s) 7.84 x 10-1 (6.78-8.9 x 10-1) 7.33 x 10-1 (0-17.8 x 10-2) 

A (m2) 9.45 x 10-1 (9.19-9.72 x 10-1) 1.1 (1.075-1.13) 

As (m2) 2.51 x 10-1 (2.2-2.8 x 10-1) 2.6 x 10-1 (2.08-3.12 x 10-1) 

α (1/s) 5.58 x 10-4 (3.85-7.33 x 10-4) 3.4 x 10-4 (2.34-4.46 x 10-4) 

λ (1/s) 4.49 x 10-4 (4.28-4.71 x 10-4) 9.44 x 10-4 (9.35-9.53 x 10-4) 

λs (1/s) 8.08 x 10-4 (4.5-11.7 x 10-4) 4.25 x 10-6 (0-1.88 x 10-3) 

 
Parameters 

Reach 1 
Injection B 

Reach 2  
Injection B 

D (m2/s) 8.74 x 10-1 (7.81-9.67 x 10-1) 3.38 x 10-1 (1.83-5.55 x 10-1) 

A (m2) 9.63 x 10-1 (9.42-9.84 x 10-1) 1.1 (1.06-1.13) 

As (m2) 2.71 x 10-1 (2.4-3.02 x 10-1) 4.14 x 10-1 (3.47-4.82 x 10-1) 

α (1/s) 4.86 x 10-4 (3.7-6.03 x 10-4) 5.96 x 10-4 (3.93-7.99 x 10-4) 

λ (1/s) 1.97 x 10-4 (1.59-2.35 x 10-4) 2.04 x 10-4 (1.46-2.62 x 10-4) 

λs (1/s) 8.74 x 10-5 (0-4.98 x 10-4) 1.17x 10-4 (0-1.85 x 10-3) 

Discharge [m3/s] Lateral Inflow Reach 1 [m3/s·m] Lateral Outflow Reach 2 [m3/s·m] 

0.1844 1.9673 E-05 2.671 E-05 
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- I8OUT/2011/06/04 [STREAM/YYYY/MM/DD] 

 
 

 
Parameters 

Reach 1 
Injection A   

Reach 2  
Injection A 

D (m2/s) 5.97 x 10-1 (4.68-7.26 x 10-1) 3.79 x 10-1 (0-8.95 x 10-1) 

A (m2) 8.28 x 10-1 (7.92-8.63 x 10-1) 1.074 (0.95-1.20) 

As (m2) 3.08 x 10-1 (2.78-3.38 x 10-1) 6.46 x 10-1 (2.41-10.5 x 10-1) 

α (1/s) 9.15 x 10-4 (6.21-12.1 x 10-4) 86.06 x 10-4 (0-12.3 x 10-4) 

λ (1/s) 4.28 x 10-4 (3.96-4.6 x 10-4) 5.33 x 10-4 (3.98-6.67 x 10-4) 

λs (1/s) 8.80 x 10-4 (5.57-12.0 x 10-4) 5.42 x 10-4 (0-2.08 x 10-3) 

 
Parameters 

Reach 1 
Injection B 

Reach 2  
Injection B 

D (m2/s) 2.28 x 10-1 (0.89-3.68 x 10-1) 1.008 (0-2.96) 

A (m2) 7.64 x 10-1 (7.17-8.1 x 10-1) 1.395 (0.78-2.00) 

As (m2) 3.3 x 10-1 (2.83-3.77 x 10-1) 1.49 x 10-1 (0-1.36) 

α (1/s) 1.625 x 10-3 (0.94-2.31 x 10-3) 9.84 x 10-5 (0-1.76 x 10-3) 

λ (1/s) 5.16 x 10-4 (4.4-5.91 x 10-4) 4.95 x 10-4 (0.84-9.06 x 10-4) 

λs (1/s) 4.11 x 10-5 (0-3.06 x 10-4) 1.15 x 10-3 (0-3.03 x 10-3) 

Discharge [m3/s] Lateral Outflow Reach 1 [m3/s·m] Lateral Outflow Reach 2 [m3/s·m] 

0.153 1.633 E-05 5.242 E-06 
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- I8OUT/2011/06/10 [STREAM/YYYY/MM/DD] 

 
 

 
Parameters 

Reach 1 
Injection A   

Reach 2  
Injection A 

D (m2/s) 3.65 x 10-1 (2.99-4.31 x 10-1) 6.29 x 10-1 (2.40-10.19 x 10-1) 

A (m2) 7.72 x 10-1 (7.46-7.97 x 10-1) 1.16 (1.04-1.27) 

As (m2) 2.49 x 10-1 (2.12-2.85 x 10-1) 9.73 x 10-1 (0-3.46) 

α (1/s) 3.21 x 10-4 (2.13-4.28 x 10-4) 1.10 x 10-4 (0-2.71 x 10-4) 

λ (1/s) 4.27 x 10-4 (4.01-4.54 x 10-4)  

λs (1/s) 1.18 x 10-3 (8.32-15.4 x 10-4)  

 
Parameters 

Reach 1 
Injection B 

Reach 2  
Injection B 

D (m2/s) 3.88 x 10-1 (3.15-4.61 x 10-1) 1.305 x 10-1 (0-1.03) 

A (m2) 8.03 x 10-1 (7.74-8.33 x 10-1) 7.51 x 10-1 (3.45-11.6 x 10-1) 

As (m2) 3.21 x 10-1 (2.21-4.21 x 10-1) 5.46 x 10-1 (4.61-10.88 x 10-1) 

α (1/s) 2.51 x 10-4 (1.51-3.51 x 10-4) 1.5 x 10-3 (0-4.43 x 10-3) 

λ (1/s) 3.55 x 10-4 (3.25-3.87 x 10-4) 6.31 x 10-4 (2.95-9.68 x 10-4) 

λs (1/s) 4.11 x 10-4 (0.5-3.06 x 10-4) 1.15 x 10-3 (0-3.03 x 10-3) 

Discharge [m3/s] Lateral Inflow Reach 1 [m3/s·m] Lateral Outflow Reach 2 [m3/s·m] 

0.0704 2.3035 E-05 3.8861 E-05 
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- I8OUT/2011/07/16 [STREAM/YYYY/MM/DD] 

 
 

 

 
Parameters 

Reach 1 
Injection A   

Reach 2  
Injection A 

D (m2/s) 6.57 x 10-1 (5.84-7.30 x 10-1)  

A (m2) 8.01 x 10-1 (7.87-8.15 x 10-1)  

As (m2) 3.3 x 10-1 (3.03-3.57x 10-1)  

α (1/s) 5.75 x 10-4 (4.93-6.57 x 10-4)  

λ (1/s) 6.92 x 10-4 (6.67-7.18 x 10-4)  

λs (1/s) 6.67 x 10-4 (4.29-9.06 x 10-4)  

 
Parameters 

Reach 1 
Injection B 

Reach 2  
Injection B 

D (m2/s) 5.47 x 10-1 (4.55-6.39 x 10-1)  

A (m2) 7.63 x 10-1 (7.43-7.84 x 10-1)  

As (m2) 2.85 x 10-1 (2.63-3.07 x 10-1)  

α (1/s) 8.12 x 10-4 (6.47-9.77 x 10-4)  

λ (1/s) 5.27 x 10-4 (4.92-5.63 x 10-4)  

λs (1/s) 2.52 x 10-4 (0.49-4.54 x 10-4)  

Discharge [m3/s] Lateral Inflow Reach 1 [m3/s·m] Lateral Outflow Reach 2 [m3/s·m] 

0.1332 4.06192 E-05 9.80409 E-05 
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-  I8OUT/2011/07/16 [STREAM/YYYY/MM/DD] 

 
 

 
Parameters 

Reach 1 
Injection A   

Reach 2  
Injection A 

D (m2/s) 54.49 x 10-1 (3.96-5.03 x 10-1)  

A (m2) 7.84 x 10-1 (7.70-7.98 x 10-1)  

As (m2) 1.89 x 10-1 (1.66-2.14 x 10-1)  

α (1/s) 3.07 x 10-4 (2.38-3.76 x 10-4)  

λ (1/s) 1.27 x 10-3 (1.21-1.34 x 10-3)  

λs (1/s) 26.37 x 10-4 (0-1.47 x 10-3)  

 
Parameters 

Reach 1 
Injection B 

Reach 2  
Injection B 

D (m2/s) 5.2 x 10-1 (4.61-5.79 x 10-1)  

A (m2) 57.94 x 10-1 (7.79-8.07 x 10-1)  

As (m2) 2.57 x 10-1 (2.12-3.03 x 10-1)  

α (1/s) 2.5 x 10-4 (1.94-3.06 x 10-4)  

λ (1/s) 4.912 x 10-5 (4.89-4.93 x 10-5)  

λs (1/s) 4.39 x 10-5 (0-1.474 x 10-3)  

Discharge [m3/s] Lateral Inflow Reach 1 [m3/s·m] Lateral Outflow Reach 2 [m3/s·m] 

0.1002 1.4303 E-05  
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Appendix 2 Linear Regression result of parameter estimation 
 
-  I8IN/2010/07/21 [STREAM/YYYY/MM/DD] 

A 
Cl Injection A 

Reach1 
C 

Cl injection B 
Reach1 

E 
PO4 Injection A 

Reach1 
G 

NH4 injection B 
Reach1 

B 
Cl Injection A 

Reach2 
D 

Cl injection B 
Reach2 

F 
PO4 Injection A 

Reach2 
H 

NH4 injection B 
Reach2 

  
 
 

 A B C D E F G H 

R2 0.8846 0.9947 0.9817 0.9950 0.9287 0.9799 0.9803 0.9963 

 
 
-  I8IN/2010/07/28 [STREAM/YYYY/MM/DD]  

 
 
 

 A B C D E F G H 

R2 0.9935 0.9981 0.9932 0.9966 0.9896 0.8746 0.9613 0.9394 

 
 
 

0 10 20 30 40 50
0

10

20

30

40

50

Observation vs Simulation Result
Plot 1 Regr

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

0 10 20 30 40 50
0

10

20

30

40

50

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.00 0.01 0.02 0.03 0.04 0.05
0.00

0.01

0.02

0.03

0.04

0.05

0.00 0.05 0.10 0.15 0.20 0.25
0.00

0.05

0.10

0.15

0.20

0.25

0.00 0.02 0.04 0.06 0.08 0.10
0.00

0.02

0.04

0.06

0.08

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

Observation vs Simulation Result
Plot 1 Regr

0 10 20 30 40 50
0

10

20

30

40

50

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

0 10 20 30 40 50
0

10

20

30

40

50

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

A 

B 

C 

D 

E 

F 

G 

H 

A 

B 

C 

D 

E 

F 

G 

H 



 

81 

- I8IN/2010/09/18 [STREAM/YYYY/MM/DD]  

  
 

 A B C D E F G H 

R2 0.9968 0.9985 0.9969 .0.9981 0.9974 0.9964 0.987 0.9969 

 
 
 
 
- I8IN/2010/09/25 [STREAM/YYYY/MM/DD]  

  
 

 A B C D E F G H 

R2 0.9963 0.9961 0.9899 0.9736 0.9831 0.962 0.9806 0.9553 
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-  I8IN/2011/06/06 [STREAM/YYYY/MM/DD]  

 
 

 A B C D E F G H 

R2 0.9967 0.9963 0.9868 0.9739 0.9941 0.9647 0.9537 0.7278 

 
 
 
 
-  I8IN/2011/06/12 [STREAM/YYYY/MM/DD]  

  
 

 A B C D E F G H 

R2 0.9959 0.9661 0.9966 0.9875 0.8041  0.7023  
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-  I8IN/2011/07/19 [STREAM/YYYY/MM/DD]  

 
 

 A B C D E F G H 

R2 0.9943  .9837  0.9845  0.9654  

 
-  I8OUT/2010/07/19 [STREAM/YYYY/MM/DD]  

 
 

 A B C D E F G H 

R2 0.9978 0.9798 0.9975  0.9840 0.9776 0.9901  

 
-  I8OUT/2010/07/26 [STREAM/YYYY/MM/DD]  

 
 A B C D E F G H 

R2 0.9975 0.9980 0.9963 0.9969 0.9929 0.9723 0.9878 0.9845 
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-  I8OUT/2010/09/16 [STREAM/YYYY/MM/DD]  

 
 A B C D E F G H 

R2 0.9959 0.9988 0.9969 0.9991 0.9959 0.9633 0.9805 0.9349 

 
 
 
 
 
-  I8OUT/2011/06/04 [STREAM/YYYY/MM/DD]  

 
 

 A B C D E F G H 

R2 0.9949 0.9911 0.9840 0.9494 0.9833 0.9859 0.9614 0.9336 
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-  I8OUT/2011/06/10 [STREAM/YYYY/MM/DD]  

 
 

 A B C D E F G H 

R2 0.9925 0.9779 0.9861 0.9945 0.9589  0.9579 0.9213 

 
-  I8OUT/2011/07/16 [STREAM/YYYY/MM/DD]  

 
 

 A B C D E F G H 

R2 0.9941  0.9934  0.9858  0.9237  

 
 
-  I8OUT/2011/09/02 [STREAM/YYYY/MM/DD]  

 
 

 A B C D E F G H 

R2 0.9955  0.9957  0.9237  0.8222  
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Appendix 3 Result of Metrics 
 

Stream Date Injection 
qs [m3s-1m-1] ts [s] Ls [m] RSF As/A 

R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 

I8In 

20100721 
A 0.005971 0.0024 55.00024 174.4485 124.9867 310.9796 0.126979 0.125427 0.248  0.215  
B 0.009962 0.00606 33.595 87.34331 74.91807 123.1619 0.120031 0.064576 0.277  0.264  

20100728 
A 0.001342 0.000488 114.4698 513.5019 138.641 381.0212 0.281181 0.147022 0.193  0.223  
B 0.000386 0.000193 340.7286 49220.73 481.2807 965.0483 0.240823 0.768134 0.167  8.697  

20100918 
A 0.001869 0.000922 87.99975 227.3368 126.3439 256.0688 0.088497 0.086602 0.195  0.166  
B 0.001725 0.001199 93.77263 207.155 136.8646 196.824 0.002072 0.024979 0.190  0.200  

20100925 
A 0.000156 0.000172 729.2711 62201.17 705.0804 641.069 0.87949 0.1285 0.106  9.320  
B 0.001645 0.00089 108.3666 322.4433 66.87907 123.5957 0.002149 0.025735 0.239  0.319  

20110606 
A 0.000199 0.000117 396.6792 11450.13 340.748 581.2459 0.377167 6.428664   
B 0.000203 0.000312 376.0209 586.9006 333.4601 216.9276 0.020416 0.293698 0.131  2.334  

20110612 
A 5.28E-05 4.32E-05 1340.517 10673.06 538.7223 658.0294 0.063019   0.122  0.316  
B 6.12E-05 7.43E-05 1091.092 8245.275 464.1732 382.6753 0.028171   0.139  0.891  

20110719 
A 0.000505   271.7232   388.2897   0.408307   0.127  1.226  
B 0.000334   1920.218   588.3495   2.179094   0.169   

I8OUT 

20100719 
A 0.000927 0.001565 234.4568 258.8562 269.5661 159.7688 0.067307 0.170648 0.729   

B 0.001046   194.8075   238.9479 none 0.044455     

20100726 
A 0.002493 0.002227 110.2735 393.9184 132.2756 148.0523 0.375578 0.390733 0.227  0.408  

B 0.002883 0.00244 96.77846 371.538 114.3778 135.1205 0.065477 0.050278 0.221   

20100916 
A 0.000528 0.000376 475.2446 692.3577 354.1661 498.1234 0.282138 0.000592 0.281  0.530  

B 0.000469 0.000655 578.4271 632.6165 399.2677 285.5119 0.032941 0.026076 0.287  0.556  

20110604 
A 0.000757 0.000652 406.7281 991.1326 198.0138 230.0622 0.470082 0.233488 0.266  0.235  

B 0.001241 0.000137 265.9661 1085.767 120.8009 1092.186 0.128229 0.01213 0.281  0.377  

20110610 
A 0.000248 0.000128 1004.231 7628.102 294.2576 571.6138 1.050488     

B 0.000202 0.001131 1594.058 483.5796 361.5876 64.50473 0.047144 0.865701 0.372  0.601  

20110716 
A 0.000461   716.3286   295.9229   0.419907   0.432  0.107  

B 0.00062   460.472   220.1123   0.13711   0.322  0.840  

20110902 
A 0.000241   788.1633   272.1445   0.480077   0.400  0.727  

B 0.000198   1297.353   330.2805   0.044884   0.412   
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Appendix 4 Result of the ratio of nutrient to tracer masses 
 

Stream Date @ Reach 
Inj Mass Sim Mass OBS Mass 

SIM / INJ OBS / SIM 
Inj Mass Sim Mass OBS Mass 

SIM / INJ OBS / SIM Ratio of PO4_P : Cl Ratio of NH4_N : Cl 

I8In 

20100721 @ R1 0.009298 0.005533 0.00772 0.595098295 0.83019885 0.008392 0.007464 0.008553 0.889413 1.019199 

20100721 @ R2 0.009298 0.005431 0.00631 0.584125901 0.678562857 0.008392 0.007033 0.009264 0.838041 1.103899 

20100728 @ R1 0.005848 0.002749 0.002819 0.470015736 0.482020478 0.005315 0.003658 0.003997 0.688176 0.752078 

20100728 @ R2 0.005848 0.001387 0.001228 0.237239626 0.209908963 0.005315 0.002438 0.002185 0.458723 0.411076 

20100918 @ R1 0.015747 0.012824 0.012238 0.814393523 0.777184735 0.006917 0.006533 0.006868 0.944434 0.992985 

20100918 @ R2 0.015747 0.009826 0.008833 0.624031341 0.560936693 0.006917 0.005511 0.005171 0.796746 0.747634 

20100925 @ R1 0.015899 0.007549 0.006863 0.474803835 0.431641691 0.006877 0.006694 0.00641 0.973372 0.932022 

20100925 @ R2 0.015899 0.005286 0.004853 0.332436952 0.305207977 0.006877 0.004493 0.003988 0.653349 0.57993 

20110606 @ R1 0.0878 0.040079 0.048961 0.456480498 0.557643502 0.020755 0.01195 0.00926 0.575781 0.446162 

20110606 @ R2 0.0878 0.013518 0.014612 0.153968259 0.166428558 0.020755 0.004606 0.005212 0.221921 0.251102 

20110612 @ R1 0.029017 0.004646 0.004602 0.160120341 0.158613724 0.007715 0.001785 0.002044 0.231388 0.264941 

20110612 @ R2 
          

20110719 @ R1 0.015095 0.006535 0.006536 0.432911028 0.433000806 0.007106 0.002621 0.003218 0.368878 0.452892 

20110719 @ R2 
          

I8 Out 

20100719 @ R1 0.013983 0.005603 0.007665 0.400686938 0.548146023 0.017397 0.007895 0.008237 0.453819 0.473482 

20100719 @ R2 0.013983 0.003499 0.003679 0.25025542 0.263090691 
     

20100726 @ R1 0.007539 0.003304 0.003365 0.438282602 0.446396587 0.006364 0.00452 0.004955 0.710276 0.778662 

20100726 @ R2 0.007539 0.001924 0.001708 0.255182869 0.226615839 0.006364 0.003362 0.003564 0.528285 0.559968 

20100916 @ R1 0.015493 0.007082 0.007622 0.45712313 0.491958146 0.006798 0.005102 0.006215 0.750528 0.914311 

20100916 @ R2 0.015493 0.004157 0.005913 0.26828056 0.381631851 0.006798 0.004451 0.004717 0.654823 0.69384 

20110604 @ R1 0.015731 0.006138 0.006689 0.390181692 0.42523851 0.008899 0.00412 0.004069 0.463016 0.457241 

20110604 @ R2 0.015731 0.003733 0.004393 0.237336505 0.279263385 0.008899 0.002608 0.004145 0.293116 0.465759 

20110610 @ R1 0.017327 0.003357 0.003792 0.193740477 0.218840038 0.007831 0.00295 0.002967 0.376692 0.378886 

20110610 @ R2 
     

0.007831 0.001063 0.001168 0.135755 0.149117 

20110716  @ R1 0.006241 0.001728 0.001845 0.276873689 0.295600773 0.005609 0.002364 0.002471 0.421471 0.440629 

20110716  @ R2 
          

20110902 @ R1 0.007289 0.000712 0.000753 0.097682819 0.10325885 0.008397 0.00724 0.00755 0.862215 0.899099 

20110902 @ R2 
           


