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ABSTRACT

SURVEY SAMPLING WITH NONPARAMETRIC METHODS:

ENDOGENOUS POST-STRATIFICATION AND

PENALIZED INSTRUMENTAL VARIABLES

Two topics related to the common theme of nonparametric techniques in survey

sampling are examined. The first topic explores the estimation of a finite popula-

tion mean via post-stratification. Post-stratification is used to improve the precision

of survey estimators when categorical auxiliary information is available from exter-

nal sources. In natural resource surveys, such information may be obtained from

remote sensing data classified into categories and displayed as maps. These maps

may be based on classification models fitted to the sample data. Such “endogenous

post-stratification” violates the standard assumptions that observations are classi-

fied without error into post-strata, and post-stratum population counts are known.

Properties of the endogenous post-stratification estimator (EPSE) are derived for the

case of sample-fitted nonparametric models, with particular emphasis on monotone

regression models. Asymptotic properties of the nonparametric EPSE are investi-

gated under a superpopulation model framework. Simulation experiments illustrate

the practical effects of first fitting a nonparametric model to survey data before

post-stratifying.

The second topic explores the use of instrumental variables to estimate regression

coefficients. Informative sampling in survey problems occurs when the inclusion

probabilities depend on the values of the study variable. In a regression setting under

this sampling scheme, ordinary least squares estimators are biased and inconsistent.

Given inverse inclusion probabilities as weights for the sample, various consistent

estimators can be constructed. In particular, weighted covariates can be used as
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instrumental variables, allowing for calculation of a consistent, classical two-stage

least squares estimator. The proposed estimator uses a similar two-stage process,

but with penalized splines at the first stage. Consistency and asymptotic normality

of the new estimator are established. The estimator is asymptotically unbiased, but

has a finite-sample bias that is analytically characterized. Selection of an optimal

smoothing parameter is shown to reduce the finite-sample variance, in comparison

to that of the classical two-stage least squares estimator, offsetting the bias and

providing an estimator with a reduced mean square error.
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CHAPTER 1

INTRODUCTION

1.1 Overview

This paper explores the use of nonparametric methods in two distinct survey sam-

pling situations, each involving an atypical reliance on the study variable. First, the

study variable is used to form post-strata in an effort to estimate a finite population

mean. One chapter is devoted to this topic. Second, the sample inclusion proba-

bilities depend on the study variable and the selected sample is used to estimate

regression coefficients. Two chapters are devoted to this topic. The final chapter

provides a summary and concluding remarks.

In the remainder of this chapter, we introduce the two main topics and set

the stage for more detailed discussions of each. We start with the endogenous post-

stratification estimator (EPSE) and follow this with a two-stage regression estimator

that uses instrumental variables (IV’s) at stage one.

1.2 Endogenous post-stratification

The U.S. Forest Service provides tools to monitor and quantify the current status

of the nation’s forests. The Forest Inventory and Analysis (FIA) program annually

conducts field visits to collect data that are used to determine estimates for a variety

of forest attributes (see Frayer and Furnival 1999). Post-stratification (PS) is one
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method used to improve the precision of these estimators.

1.2.1 Post-stratification background

In traditional PS (see e.g., Särndal, Swensson, and Wretman 1992, Ch. 7), we col-

lect a sample and classify the observations into two or more post-strata. These

classifications are made without error and it is assumed that we have access to the

population count for each category. This population count information is typically

obtained from a source outside the survey.

Once the observations have been categorized and the population counts are

known, we calculate the estimated mean of the study variable by finding a weighted

sum of the sample strata means. The weights are the ratios of each stratum popu-

lation count to the total population count. In practice, it is common to apply these

post-strata weights to other study variables of interest.

1.2.2 Endogenous post-stratification estimator (EPSE)

For the FIA, the auxiliary information used to post-stratify takes the form of ground-

cover categories (e.g., forest, nonforest, etc.) defined for each pixel in a map of a

specified region. These groundcover categories are often determined from remotely

sensed data. Because the raw satellite imagery is not immediately interpretable

for this purpose, classification schemes are developed to allow category prediction

for each pixel in the groundcover map. Examples of classification algorithms cur-

rently used by the U.S. Forest Service are found in Moisen and Frescino (2002).

The FIA uses observed sample data from field visits to aid the development of the

classification schemes (see Figure 1). This atypical use of survey data for the PS

estimation process leads to the EPSE, which is examined in Breidt and Opsomer

(2008). The use of the EPSE leads to the violation of two fundamental assumptions

of traditional PS: imperfect classification of sample observations into the post-strata,

2
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Figure 1: In this simplified example each dot represents a pixel of remotely sensed
data (RSD) for a population area of interest. Ground-level sample data (GLSD) is
available at each circled location. The relationship between the RSD and the GLSD
at the circled locations is used to create the sample-fitted classification scheme that
predicts the groundcover classifications at each uncircled dot.
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and unknown exact post-stratum population counts. These violations raise concerns

about the validity of the FIA process (Scott et al. 2005). The work of Breidt and Op-

somer (2008) addresses these concerns by examining the properties of sample-fitted

classification schemes based on parametrically specified generalized linear models.

The authors demonstrate design consistency of the EPSE under mild conditions,

and they demonstrate the consistency and asymptotic normality of the EPSE un-

der a superpopulation model. The EPSE has the same asymptotic variance as the

traditional post-stratified estimator with fixed strata.

1.2.3 Contributions of this thesis: Nonparametric EPSE

The nonparametric endogenous post-stratification estimator (NEPSE) of Chapter 2

extends the work of Breidt and Opsomer (2008), specifically focusing on the case

where the sample-fitted model is nonparametric and monotone. This chapter is a

joint work with F. Jay Breidt, Jean Opsomer, and Ingrid Van Keilegom. A condensed

version of this chapter has been accepted for publication in Statistica Sinica (Dahlke

et al. 2012).

The U.S. Forest Service is interested in this nonparametric extension because it

provides justification for the nonparametric methods that are already being used in

the FIA context (see Moisen and Frescino 2002 and McRoberts, Nelson, and Wendt

2002).

Asymptotic properties of the NEPSE are investigated under a superpopulation

model framework. Consistency and asymptotic normality of the NEPSE are estab-

lished, showing that the NEPSE has the same asymptotic variance as the traditional

post-stratified estimator with fixed strata.

Simulation experiments illustrate the practical effects of first fitting a nonpara-

metric model to the survey data before post-stratifying. We conduct two primary

simulations. In the first simulation, the PS variable follows a regression through the

4



origin. Weights for the estimators are calculated and then applied to seven other

study variables with various underlying patterns. In the second simulation, we

choose other study variables to serve as the PS variable and investigate the behavior

of the NEPSE when monotonicity does not hold. We find that the NEPSE outper-

forms the estimator with Horvitz-Thompson weights in nearly all the cases of each

simulation, with roughly equivalent performance in the other cases. The NEPSE

also outperforms the estimator with simple linear regression weights in roughly half

of the cases in the first simulation, and nearly two-thirds of the cases in the second

simulation. The regression-weights estimator does well when the response variable

is linear or near linear. In both simulations, the NEPSE performance is very similar

to the traditional PS estimator performance.

1.3 Two-stage regression estimator

1.3.1 Analytic inference

In Chapters 3 and 4, we are interested in the estimation of the coefficients β for sim-

ple linear regression models. We will actually examine several different estimators,

but in this subsection we generically represent one of them using β̂. We assume

a superpopulation model governed by β that generates our finite population yUN ,

and we treat this finite population as a realization of an N × 1 random vector Y UN

(see Chambers and Skinner 2003, Ch. 1). For a specific N , we let βN represent

the corresponding finite population (census) parameter. This value also serves as a

population-level estimator for β and we assume

βN − β = Op(N
−1/2).

We next select a Poisson sample s of size nN from the finite population. We represent

this sample using sample membership indicators Ii, where Ii = 1, if i ∈ s and Ii = 0

5



otherwise, for i = 1, . . . , N .

Once the sample is selected, we let β̂ represent the sample-level estimator for the

census parameter. The asymptotic normality of this estimator yields

β̂ − βN = Op(n
−1/2
N ),

so that

β̂ − β = (β̂ − βN) + (βN − β) = Op(n
−1/2
N ) +Op(N

−1/2) = Op(n
−1/2
N ),

since N →∞ faster than nN →∞. Because the orders of the previous two expres-

sions are the same, we focus on the design-based theory and use β in place of βN as

we examine the asymptotic and finite sample properties of β̂.

For the consistency of β̂ (Lehmann and Casella 1998, Ch. 1), we demonstrate

that

β̂
P→ β,

and for the asymptotic normality of β̂ we use the Lyapunov Central Limit Theorem

(Billingsley 1995, Ch. 5) and Slutsky’s Theorem (Casella and Berger 2002, Ch. 5)

to show
√
N(β̂ − β)

d→ N(0,V ),

where V is the appropriate covariance matrix. To compare the various estimators

in our simulations, we find the mean squared error (Casella and Berger 2002, Ch. 7)

of each using

MSE(β̂) = Var(β̂) + (E[β̂]− β)2

where E[β̂] and Var(β̂) are estimated by the corresponding sample mean and vari-

ance.

6



1.3.2 Informative sampling

The samples we select in Chapters 3 and 4 are based on inclusion probabilities that

are related to the study variable. This is known as informative sampling. We let

xUN represent the covariates and consider the superpopulation regression model

f(yUN ,xUN ) =
∏
i∈UN

f(yi | xi;β) × f(xUN ),

where the marginal distribution f(xUN ) does not depend on β. We restrict our

attention to the sampled elements (i.e., Ii = 1), suppress the subscript i, and consider

f(y | x, I = 1;β); that is, the regression of y on x given that it was observed.

Selection bias occurs when f(y | x, I = 1;β) 6= f(y | x;β). Under informative

sampling, we have πi = πi(xUN ,yUN ) = Pr
{
Ii = 1 | xUN ,yUN

}
. We again suppress

the subscript i and find

f(y |x, I = 1;β) =
Pr {I = 1 |x, y}∫

Pr {I = 1 |x, y} f(y | x;β) dy
f(y | x;β)

=
E[π(xUN ,yUN ) |x, y]∫

E[π(xUN ,yUN ) |x, y]f(y | x;β) dy
f(y | x;β)

6= f(y | x;β),

since the factor E[π(xUN ,yUN ) |x, y] depends on y, remains in the integrand, and

is not canceled (Pfeffermann and Sverchkov 1999). In this scenario, the sampling

process cannot be ignored in our estimation of the regression coefficients.

1.3.3 Classical instrumental variable use

The traditional use of instrumental variables is common in econometrics when there

is a suspected correlation between an explanatory variable and the error term (see

Wooldridge 2009, Ch. 15). As a simple example, suppose we have the following

7



model

y = β0 + β1x+ ε,

and we have reason to believe that x and ε are correlated. This correlation causes

bias and inconsistency in the ordinary least squares estimator for β0 and β1. If we

observe an additional variable z that satisfies the assumptions: (1) z is uncorrelated

with ε, and (2) z is correlated with x; then we call z an instrumental variable for

x. Given this instrumental variable z, we can calculate a two-stage least squares

estimator that will provide consistent estimators for β0 and β1. Stage one involves

the least squares regression of x on z to obtain fitted values for x, denoted x̂. We can

think of this stage as “cleaning up” the x’s. Stage two is the least squares regression

of y on x̂ to obtain the consistent estimators for β0 and β1. The two-stage estimator

we develop in the survey-sampling context is similar to this one, but the need for

instrumental variables arises not because x and ε are correlated, but rather because

the sample inclusion probabilities and the error terms are correlated.

1.3.4 Instrumental variables for analytic inference

We show that the ordinary least squares (OLS) estimator β̂ols is biased and incon-

sistent under informative sampling. As a simple example of the inadequacy of β̂ols

in an informative sampling context, we look at Figure 2 which is very similar to a

graph provided in ten Cate (1986). In this graph we have a finite population (gray

circles) of (x, y)-pairs with an obvious linear relationship. A sample (black dots) is

drawn from this population based on inclusion probabilities (πi) that depend on the

y-values of the ordered pairs. There are three strata of y-values, each with a fixed

inclusion probability. The outer two strata have the same small inclusion probabil-

ity and the middle stratum has a large inclusion probability. We see in the figure

that the OLS estimated regression line does not follow the linear trend of the finite

population values. Instead, the slope is too small and the intercept is too large. We

8



would like to fix this problem.

One solution is to use the probability-weighted least squares estimator β̂2sls (see

ten Cate 1986, Pfeffermann and Sverchkov 1999, or Fuller 2009, Ch. 6). In Chapter 3,

we show that this estimator is consistent under informative sampling. The estimator

has the form

β̂2sls = (XTWX)−1XTWy,

where X is the matrix of covariates and W is a diagonal matrix with the reciprocal

inclusion probabilities (i.e., 1/πi’s) as weights on the diagonal. We will think of

this estimator as the end result of a two-stage least squares process that involves

instrumental variables (see Fuller 2009, Ch. 6). The informative sampling issue that

plagues β̂ols is the correlation between the errors and the inclusion probabilities that

arises since both depend on y. The use of appropriate instrumental variables negates

this problem. Fuller (2009, Ch. 6) demonstrates that any weighted function of the

covariate x can be used as an instrumental variable (IV).

In addition to studying and explaining β̂2sls’s advantages over β̂ols, we also seek

an estimator that is better than β̂2sls. Several authors have explored improved

estimators for various models and sampling designs and based on various criteria

(e.g., Holt, Smith, and Winter 1980, Jewell 1985, and Pfeffermann and Sverchkov

2003). One semi-parametric estimator mentioned in Fuller (2009, Ch. 6) is the

estimator developed in Pfeffermann and Sverchkov (1999) having the form

β̂pfsv = (XTWW̃
−1
X)−1XTWW̃

−1
y,

where W̃ is obtained by regressing the column vector of weights w on X. Generally,

the modified weights of β̂pfsv make it a more efficient estimator than β̂2sls. We include

comparisons to this estimator in some of our simulations.

Before discussing our new estimator, we again refer to the two-stage least squares

9
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process and the use of IV’s. Hidden in the final form of β̂2sls is the use of IV’s at

stage one. At stage one we regress X on Ax where Ax = WX is the IV matrix (i.e.,

weighted X). This regression allows us to calculate a fitted covariate matrix X̂. At

stage two, we regress y on X̂ to produce β̂2sls. A second, similar estimator is formed

by increasing the number of IV’s used at stage one. We let Z denote a matrix of

K functions of x, then A = W [X Z] takes the place of Ax as the IV matrix and

the two-stage process is repeated to obtain β̂
K+2

2sls . The K + 2 denotes the number of

IV’s used at stage one when the original model has the form y = β0 + β1x + ε. In

Chapter 3, we demonstrate the consistency and asymptotic normality of β̂2sls and

β̂
K+2

2sls before introducing our new estimator.

1.3.5 Contributions of this thesis: Nonparametric IV’s

The proposed estimator, which we call the penalized spline estimator, is similar

to β̂
K+2

2sls , but instead of ordinary least squares at stage one, we use a penalized

spline to determine the fitted covariate matrix X̂. At stage two, we regress y

on X̂ to produce β̂pspl. We demonstrate consistency and asymptotic normality of

β̂pspl, but we also find that a bias term remains for finite samples. We further

demonstrate that in certain informative sampling situations, the variance of β̂pspl

is small enough to offset the finite sample bias and produce an estimator with a

smaller MSE than β̂2sls and β̂
K+2

2sls (and β̂pfsv). We provide an informative sampling

simulation that verifies the advantage of the penalized spline estimator over the

ordinary least squares estimator, the other two-stage least squares estimators, and

the Pfeffermann-Sverchkov estimator.

Chapter 4 examines the reasons for the reduction in variance of the regression

estimators when additional IV’s are used at stage one. Under informative sampling,

the development of expressions for the variance of regression estimators is very com-

plicated for even the most basic designs (see e.g., Hausman and Wise 1981 and ten
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Cate 1986). We therefore rely on a less analytic approach in this chapter. Through

simulations we demonstrate that β̂2sls performs well in some informative sampling

designs, but in other designs β̂2sls performs poorly because some large-weight sample

observations have a greater influence on it than on other two-stage estimators that

use additional IV’s. We quantify the size of the large-weight effect by adopting the

concept of Cook’s distance from the context of standard regression diagnostics (see

e.g., Cook and Weisberg 1982, Ch. 3 or Kutner, Nachtsheim, Neter, and Li 2005,

Ch. 10). In the designs where β̂2sls performs poorly, the additional IV’s increase

the flexibility of the stage one “fitting” process and this can reduce the influential

effect (i.e. Cook’s distance) of the large-weight sampled observations. There is much

literature about robust regression in the presence of outliers and there are also many

articles about the use of survey weights in regression coefficient estimation, but the

literature regarding regression coefficient estimation and the effect of large-weight

sample observations under informative sampling is sparse.
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CHAPTER 2

NONPARAMETRIC ENDOGENOUS

POST-STRATIFICATION ESTIMATION

2.1 Introduction

Post-stratification (Särndal et al. 1992, Ch. 7.6) is the primary method in use to-

day for improving the precision of survey estimators by calibrating the estimates

to known population quantities. Calibration is achieved by adjusting the sample

weights so that their totals over the strata match the stratum population counts,

which is useful to ensure consistency between surveys and other data products re-

leased by government agencies. Calibration can facilitate interpretability of the

sample weights, because the stratum counts are often highly visible quantities such

as the sizes of important subpopulations. Improvement in precision is achieved

when stratum membership has predictive power for the survey variables, since post-

stratification is a form of model-assisted estimation with regression on categorical

covariates. Relative to other calibration methods such as regression estimation or

more general model-assisted estimation, post-stratification has the important prac-

tical advantages of simplicity and interpretability, often with only a modest loss in

efficiency.

In order to post-stratify, categorical auxiliary information is required from sources

external to the survey. In surveys of natural resources such as forest inventories,

auxiliary information is often obtained from remote sensing data. These data are

13



typically not directly interpretable, since they are composed of reflectance values

at different wavelengths and various indices derived from those values. Models are

applied to the remote sensing data to transform them into more useful and inter-

pretable quantities, such as predicted biomass or landcover types. The resulting

derived variables are classified into categories, displayed as pixel-based maps and

used in post-stratification for surveys. In particular, these are the methods used by

the U.S. Forest Service in producing estimators for the Forest Inventory and Analysis

(FIA; see Frayer and Furnival 1999). The FIA relies on post-stratification using clas-

sification maps derived from satellite imagery and other ancillary information. The

assurance of some consistency between the maps derived from remote sensing data

and estimates derived from field survey data is regarded as an important practical

advantage of the method.

The models used for transformation of remote sensing variables into forestry-

relevant variables are built using statistical methods and empirical data. In order

to ensure the relevance and accuracy of the post-stratification variables with re-

spect to the survey being post-stratified, the sample data themselves are a very

attractive option for the model building. For example, the FIA data represent a

source of high quality ground-level information of forest characteristics, so there is

a clear desire for being “allowed” to use them in estimating the classification maps

used later for post-stratification. However, in traditional survey theory, the post-

stratification variables are considered fixed with respect to the population, and the

stratum counts are assumed known without error. Using a model fitted on sample

data to post-stratify the sample data violates these assumptions, so that existing

results on post-stratification do not apply. Breidt and Opsomer (2008) coined the

term endogenous post-stratification estimation (EPSE) for this scenario, and studied

it for the case of a sample-fitted generalized linear model, from which the post-strata

are constructed by dividing the range of the model predictions into predetermined
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intervals. Under the generalized linear model set-up, Breidt and Opsomer (2008)

obtained the design consistency of the endogenous post-stratification estimator for

general unequal-probability sampling designs. Model consistency and asymptotic

normality of the endogenous post-stratification estimator (EPSE) were also estab-

lished, showing that EPSE has the same asymptotic variance as the traditional post-

stratified estimator with fixed strata. Simulation experiments demonstrated that the

practical effect of first fitting a model to the survey data before post-stratifying is

small, even for relatively small sample sizes.

The results in Breidt and Opsomer (2008) provided some “weak justification” for

using FIA data in estimating classification maps to be used for post-stratification

(see Czaplewski 2010). The restriction of those results to parametric models limits

their applicability in the FIA context, where the methods being used are often

nonparametric in nature (e.g. Moisen and Frescino 2002). As a specific example of

this, McRoberts et al. (2002) explored nearest-neighbor methods for creating strata

for FIA, which effectively corresponds to using a nonparametric EPSE-like method

even though it was not acknowledged as such.

In this chapter, we extend the EPSE methodology to the nonparametric esti-

mation context, and hence strengthen the justification for inferential methods in

current use by the U.S. Forest Service in FIA applications. We show here that the

superpopulation results obtained for EPSE by Breidt and Opsomer (2008) continue

to hold in this nonparametric setting, justifying the use of the nonparametric EPSE,

the corresponding normal-theory confidence interval, and the standard variance es-

timator. We focus on the case where the underlying model is nonparametric but

monotone, which is the most practically reasonable scenario in surveys since the

model is used to divide the sample into homogeneous classes. Our theoretical re-

sults are valid for a general class of nonparametric estimators that includes kernel

regression and penalized spline regression.

15



In the following section we give the definitions of the estimators we propose in

this chapter. The asymptotic results are given in Section 2.3. Section 2.4 examines

some of the models and estimators satisfying the outlined conditions, and in Section

2.5 we present both a numerical illustration and the results of a small simulation

study. Application of the NEPSE methods to U.S. Forest Service data for a region

of Utah appears in Section 2.6, followed by a discussion section. The proofs of the

asymptotic results are collected in Section 2.8.

2.2 Definition of the estimator

Consider a finite population UN = {1, . . . , i, . . . , N}. For each i ∈ UN , an auxiliary

vector xi is observed. A probability sample s of size n is drawn from UN according

to a sampling design pN(·), where pN(s) is the probability of drawing the sample

s. Assume πiN = Pr {i ∈ s} =
∑

s:i∈s pN(s) > 0 for all i ∈ UN , and define πijN =

Pr {i, j ∈ s} =
∑

s:i,j∈s pN(s) for all i, j ∈ UN . For compactness of notation we

suppress the subscript N and write πi, πij in what follows. Various study variables,

generically denoted yi, are observed for i ∈ s.

The targets of estimation are the finite population means of the survey variables,

ȳN = N−1
∑

UN
yi. A purely design-based estimator (with all randomness coming

exclusively from the selection of s) is provided by the Horvitz-Thompson estimator

(HTE)

ȳπ =
1

N

∑
i∈s

yi
πi
.

Post-stratification (PS) and endogenous post-stratification are methods that take

advantage of auxiliary information available for the population to improve the effi-

ciency of design-based estimators. Following Breidt and Opsomer (2008), we first

introduce some non-standard notation for PS that is useful in our later discussion of

endogenous PS. Using the {xi}i∈UN and a real-valued function m(·), a scalar index
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{m(xi)}i∈UN is constructed and used to partition UN into H strata according to pre-

determined stratum boundaries −∞ ≤ τ0 < τ1 < · · · < τH−1 < τH ≤ ∞. Typically,

m(·) is the true relationship between a specific study variable zi and the auxiliary

variable/vector xi. We assume the additive error model

zi = m(xi) + σ(xi)εi, (1)

where σ2(xi) is the unknown variance function, and E[εi|xi] = 0,Var(εi|xi) = 1.

Breidt and Opsomer (2008) considered the particular case in which the index func-

tion m(·) is parameterized by a vector, λ. We write mλ(xi) in that case.

For exponents ` = 0, 1, 2 and stratum indices h = 1, . . . , H, define

ANh`(m) =
1

N

∑
i∈UN

y`iI{τh−1<m(xi)≤τh}

and

A∗Nh`(m) =
1

N

∑
i∈UN

y`i
I{i∈s}
πi

I{τh−1<m(xi)≤τh}, (2)

where I{C} = 1 if the event C occurs, and zero otherwise. In this notation, stra-

tum h has population stratum proportion ANh0(m), design-weighted sample post-

stratum proportion A∗Nh0(m), and design-weighted sample post-stratum y-mean

A∗Nh1(m)/A∗Nh0(m). The traditional design-weighted PS estimator (PSE) for the

population mean ȳN = N−1
∑

i∈UN yi is then

µ̂∗y(m) =
H∑
h=1

ANh0(m)
A∗Nh1(m)

A∗Nh0(m)

=
∑
i∈s

{
H∑
h=1

ANh0(m)
N−1π−1i I{τh−1<m(xi)≤τh}

A∗Nh0(m)

}
yi =

∑
i∈s

w∗is(m)yi, (3)

where the sample-dependent weights {w∗is(m)}i∈s do not depend on {yi}, and so can

be used for any study variable.
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For the important special case of equal-probability designs, in which πi = nN−1,

we write

Anh`(m) =
1

n

∑
i∈s

y`iI{τh−1<m(xi)≤τh}.

In this case, the equal-probability PSE for the population mean ȳN is

µ̂y(m) =
H∑
h=1

ANh0(m)
Anh1(m)

Anh0(m)
=
∑
i∈s

wis(m)yi, (4)

where the weights {wis(m)}i∈s are obtained by substituting nN−1 for πi in (3).

In parametric PS, the vector λ is known. In parametric endogenous PS, the

vector λ is not known and needs to be estimated from the sample {xi, zi : i ∈ s}

using, for example, maximum likelihood estimation or estimating equations. Thus,

mλ(xi) is estimated by mλ̂(xi), and the endogenous post-stratification estimator

(EPSE) for the population mean ȳN is then defined as

µ̂∗y(mλ̂) =
H∑
h=1

ANh0(mλ̂)
A∗Nh1(mλ̂)

A∗Nh0(mλ̂)
=
∑
i∈s

w∗is(mλ̂)yi.

This parametric EPSE was studied in Breidt and Opsomer (2008). We consider now

the case where m(·) is not assumed to follow a specific parametric shape. Again, m

is typically the true regression relationship between a specific study variable zi and

an auxiliary variable/vector xi as in model (1).

The estimator µ̂∗y(m) is infeasible, because m(·) is unknown. We can estimate

m(·) from the sample {(xi, zi) : i ∈ s} by nonparametric regression, and here we

explicitly consider both kernel and spline-based methods. However, results should

also apply to such other nonparametric and semi-parametric fitting methods as re-

gression trees, neural nets, GAMs, etc. Writing m̂ for the nonparametric estimator,
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Table 1: Data for example of EPSE calculations for n = 4 sample from population
with N = 9 and m̂(x) computed by ordinary least squares estimation of simple linear
regression model.

xi, i ∈ UN −3 −2 −1 −1 0 1 2 3 4
zi, i ∈ s −3 −1 1 3

m̂(xi) = 1.4xi −4.2 −2.8 −1.4 −1.4 0 1.4 2.8 4.2 5.6
h 1 1 1 1 1 2 2 2 2

the nonparametric endogenous post-stratified estimator is then defined as

µ̂∗y(m̂) =
H∑
h=1

ANh0(m̂)
A∗Nh1(m̂)

A∗Nh0(m̂)
. (5)

For the special case of equal-probability designs, in which πi = nN−1, the equal-

probability NEPSE for the population mean ȳN is

µ̂y(m̂) =
H∑
h=1

ANh0(m̂)
Anh1(m̂)

Anh0(m̂)
=
∑
i∈s

wis(m̂)yi. (6)

To demonstrate the endogenous post-stratification calculations, we examine an

equal-probability sample of size n = 4 selected from a finite population of size

N = 9. Table 1 provides the data. As would be the case in practice, the auxiliary

variable xi is observed for all population elements, while the survey variable zi is

only observed for the sample elements. The HTE is z̄π = 0. Given the small sample

size, we consider parametric EPSE with m̂ obtained as the ordinary least squares fit

of the simple linear regression model to the sample data {(xi, zi) : i ∈ s}, yielding

m̂(x) = 0 + 1.4x. A single boundary at τ1 = 0.7 divides the data into two strata

based on the m̂(xi) values. The quantities required to compute the EPSE in (6) are

given by
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ANh0(m̂) Anh1(m̂) Anh0(m̂)

h = 1 5/9 1
4
(−3 + (−1)) = −1 2/4

h = 2 4/9 1
4
(1 + 3) = 1 2/4

and the EPSE is

µ̂z(m̂) =
5

9

(−1)

2/4
+

4

9

1

2/4
= −2

9
.

In the next section, we study the theoretical properties of the NEPSE. It is

sufficient to consider the following simpler estimators

Aτ`(m̂) =
1

N

∑
i∈UN

y`iI{m̂(xi)≤τ}

and

A∗τ`(m̂) =
1

N

∑
i∈UN

I{i∈s}
πi

y`iI{m̂(xi)≤τ}

for a generic boundary value τ ∈ {τ0, τ1, . . . , τH}. For equal probability designs we

write

Anτ`(m̂) =
1

n

∑
i∈s

y`iI{m̂(xi)≤τ}.

The form of these estimators suggests the use of tools from empirical process theory,

which we turn to next.

2.3 Main results

2.3.1 Superpopulation model assumptions

Before we explicitly state the model assumptions for studying the NEPSE, we need

the concept of bracketing number of empirical process theory (van der Vaart and

Wellner 1996). For any ε > 0, any class G of measurable functions, and any norm

‖·‖G defined on G, N[ ](ε,G, ‖·‖G) is the bracketing number, i.e., the minimal positive

integer M for which there exist ε-brackets {[lj, uj] : ‖lj−uj‖G ≤ ε, ‖lj‖G, ‖uj‖G <∞,
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j = 1, . . . ,M} to cover G (i.e., for each g ∈ G, there is a j = j(g) ∈ {1, . . . ,M} such

that lj ≤ g ≤ uj).

We make the following superpopulation model assumptions.

Assumption 2.3.1. The covariates {xi} are independent and identically distributed

random p-vectors with nondegenerate continuous joint probability density function

f(x) having compact support. The function u→ Pr(m(x) ≤ u) is Lipschitz contin-

uous of order 0 < γ ≤ 1, and

Pr(m(x) ≤ τh−1) < Pr(m(x) ≤ τh)

for h = 1, . . . , H.

Assumption 2.3.2. The sample s is selected according to an equal-probability design

of fixed size n, with πi = nN−1 → π ∈ [0, 1] as N →∞.

Assumption 2.3.3. The nonparametric estimator m̂(·) satisfies

sup
x
|m̂(x)−m(x)| = o(1) a.s.

Assumption 2.3.4. There exists a space D of measurable functions that satisfies

m ∈ D, Pr(m̂ ∈ D)→ 1 as n→∞, and

∫ ∞
0

√
logN[ ](λ,F , ‖ · ‖2) dλ <∞,

where F = {x→ I{d(x)≤τ} : d ∈ D}.

Assumption 2.3.5. Given [xi]i∈UN , the study variables [yi]i∈UN are conditionally

independent of the post-stratification variables [zi]i∈UN , and yi | xi are conditionally

independent random variables with E(y2`i | xi) ≤ K1 <∞ for ` = 0, 1, 2.
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These assumptions follow those of Section 3.2 in Breidt and Opsomer (2008),

generalized to the nonparametric setting. Assumption 2.3.1 gives conditions on the

multivariate distribution of covariates {xi} and excludes degenerate situations in

which some strata are empty. Assumption 2.3.2 restricts attention to equal proba-

bility sampling, and Assumptions 2.3.3 and 2.3.4 specify conditions on the sample fit

m̂(·). Finally, Assumption 2.3.5 gives moment conditions and specifies that the sur-

vey variables are independent of each other, conditionally on the auxiliary variables

used in stratification. In Section 2.4, we discuss specific combinations of nonpara-

metric models and estimators that satisfy them. As noted earlier, we focus on

monotone models, because they are of primary interest in applications and because

it is easier to establish Assumption 2.3.4. Intuitively, all that is required is that the

class of functions is not too large, which is represented by the bracketing number of

the class. When the class is too large, the bracketing integral in Assumption 2.3.4

fails to be finite. The class of monotone functions is one example of a well-behaved

class, but other classes exist as well, including classes of functions that satisfy certain

smoothness conditions. Consider for example the class D = Cα
M(X ) of all continuous

functions f : X → IR with ||f ||α ≤M , where

||f ||α = max
k.≤α

sup
x
|Dkf(x)|+ max

k.=α
sup
x,y

|Dkf(x)−Dkf(y)|
||x− y||α−α

,

α is the largest integer strictly smaller than α, k = (k1, . . . , kd), D
k = ∂k.

∂x
k1
1 ...∂x

kd
d

,

and k. =
∑
ki. Suppose that the support X of x is a bounded, convex subset of IRp

with nonempty interior. Then it follows from Corollary 2.7.2 in van der Vaart and

Wellner (1996) that logN[ ](λ,D, ‖ · ‖2) ≤ Kλ−p/α for some 0 < K <∞, and hence

it can be easily seen that Assumption 2.3.4 holds provided α > p.
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2.3.2 Central limit theorem

For ` = 0, 1, 2, define ατ`(m) = E(y`iI{m(xi)≤τ}). We start with a crucial lemma

that shows that Aτ`(m̂) (which is difficult to handle since it contains the nonpara-

metric estimator m̂(xi) inside an indicator function) is asymptotically equivalent to

E(y`iI{m̂(xi)≤τ} | m̂) + Aτ`(m)− ατ`(m).

Lemma 1. Under Assumptions 2.3.1–2.3.5, for ` = 0, 1, 2,

Aτ`(m̂)− E(y`iI{m̂(xi)≤τ} | m̂)− Aτ`(m) + ατ`(m) = op(N
−1/2) (7)

and

Anτ`(m̂)− E(y`iI{m̂(xi)≤τ} | m̂)− Anτ`(m) + ατ`(m) = op(n
−1/2). (8)

We are now ready to state the main result of the chapter.

Theorem 1. Under Assumptions 2.3.1–2.3.5,

{
1

n

(
1− n

N

)}−1/2
(µ̂y(m̂)− ȳN)

d→ N(0, Vym),

where

Vym =
H∑
h=1

Pr{τh−1 < m(xi) ≤ τh}Var(yi|τh−1 < m(xi) ≤ τh).

The proofs of both results are deferred to Section 2.8.

2.3.3 Variance estimation

For the estimation of the variance Vym we follow Breidt and Opsomer (2008).

Theorem 2. If

V̂ym̂ =
H∑
h=1

A2
Nh0(m̂)

Anh0(m̂)

Anh2(m̂)− A2
nh1(m̂)/Anh0(m̂)

Anh0(m̂)− n−1
, (9)
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and Assumptions 2.3.1–2.3.5 hold,

{
1

n

(
1− n

N

)}−1/2
V̂
−1/2
ym̂ (µ̂y(m̂)− ȳN)

d→ N(0, 1).

The proof can be found in Section 2.8.

2.4 Applying the results

The results in the previous sections are expressed under quite general conditions

on the class D and the estimator m̂. We now give some particular models for the

regression function m and some particular estimators m̂ for which the conditions are

satisfied. The underlying models we consider are at least partly monotone, which

is reasonable in this context because the function m is used to split the data into

homogeneous cells.

2.4.1 Monotone regression

Let

D = {d : RX → IR : d monotone and sup
x∈RX

|d(x)| ≤ K}

for someK <∞, where RX is a compact subset of IR. Suppose for simplicity that the

functions in D are monotone decreasing. Then, the class F defined in Assumption

2.3.4 is itself a set of one-dimensional bounded and monotone functions, and hence

logN[ ](λ,F , ‖ · ‖2) ≤ K1λ
−1

for some K1 <∞, by Theorem 2.7.5 in van der Vaart and Wellner (1996). It follows

that the integral in Assumption 2.3.4 is finite.

Let m̂ be any estimator of m for which supx∈RX |m̂(x)−m(x)| = o(1) a.s. Then,

provided the true regression function m is monotone and bounded, we have Pr(m̂ ∈
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D)→ 1 as n→∞. The estimator m̂ does not need to be monotone itself, a classical

local polynomial or spline estimator does the job. Hence, Theorem 1 applies in this

case. Moreover, the case of generalized monotone regression functions, obtained by

using e.g. a logit transformation, works as well. See Subsection 2.4.4 for more details.

2.4.2 Partially linear monotone regression

Consider now

D = {RX → IR : (xT1 , x2)
T → βTx1 + d(x2) : β ∈ B ⊂ IRk compact,

d monotone, sup
x2∈RX2

|d(x2)| ≤ K},

where RX = RX1 × RX2 is a compact subset of IRk+1. Suppose for simplicity that

all coordinates of an arbitrary x1 ∈ RX1 and β ∈ B are positive. Divide B into

r = O(λ−2k) pairs (βLi , β
U
i ) (i = 1, . . . , r) that cover B and are such that

∑k
l=1(β

U
il −

βLil )
2 ≤ λ4. Similarly, divide RX1 into s = O(λ−2k) pairs (xL1j,x

U
1j) (j = 1, . . . , s) that

cover RX1 and are such that
∑k

l=1(x
U
1jl−xL1jl)2 ≤ λ4. Let dL1 ≤ dU1 , . . . , d

L
q ≤ dUq be the

q = O(exp(Kλ−1)) ‖ · ‖∞-brackets for the space of bounded and monotone functions

(see Theorem 2.7.5 in van der Vaart and Wellner (1996)). Then, for each β ∈ B and

d monotone and bounded, there exist i, j and l such that, for all (x1, x2) ∈ RX ,

`Lijl(x2) := I{βUTi xU1j+dUl (x2)≤τ}

≤ I{βTx1+d(x2)≤τ}

≤ I{βLTi xL1j+dLl (x2)≤τ} := uUijl(x2).

It is easy to see that the brackets (x1, x2)→ (`Lijl(x2), u
U
ijl(x2)) are λ-brackets with re-

spect to the ‖·‖2-norm. The number of these brackets is bounded by λ−4k exp(Kλ−1),

and hence the integral in Assumption 2.3.4 is finite.
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The estimator m̂ can, as in the previous example, be chosen as any uniformly

consistent estimator of m. Then, Pr(m̂ ∈ D) → 1 provided the true regression

function m belongs to D. This shows that Theorem 1 also holds for this case.

2.4.3 Single index monotone regression

Our next example concerns a single index model with a monotone link function. Let

D = {RX → IR : x→ d(βTx) : β ∈ B ⊂ IRk compact, d monotone, sup
u
|d(u)| ≤ K},

where RX is a compact subset of IRk. The treatment of this case is similar to that

of the partial linear monotone regression model. We omit the details.

2.4.4 Generalized nonparametric monotone regression

The use of generalized linear models in EPSE was initially discussed in Breidt and

Opsomer (2008). This approach enjoys the benefit of being able to handle cate-

gorical response variables, and has (in many cases) obvious and easily interpretable

boundary values. Let the covariate xi be univariate for ease of presentation, and

write

E(zi|xi) = µ(xi),Var(zi|xi) = σ2(xi) := V (µ(xi)).

Consider the case of a known monotone link function g(·), such that g(µ(xi)) =

m(xi), following the framework of McCullagh and Nelder (1989). The quasi-likelihood

function Q(µ(x), z) satisfies

∂

∂µ(x)
Q(µ(x), z) =

z − µ(x)

V (µ(x))
,

as in McCullagh and Nelder (1989). The function m(x) can be estimated nonpara-

metrically, as suggested by Green and Silverman (1994) and Fan, Heckman, and
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Wand (1995), among others.

Now approximate the function m(x) locally by a pth-degree polynomial m(x) ≈

β0 + β1(x − xi) + · · · + βp(x − xi)p, and maximize the weighted quasi-likelihood to

estimate the function m(x) at each location x on the support of xi, as suggested by

Fan, Heckman, and Wand (1995),

∑
i∈s

1

πi
Q(g−1(β0 + β1(x− xi) + · · ·+ βp(x− xi)p), zi)Kh(xi − x), (10)

where Kh(·) = 1
h
K(·/h) and K(·) is a kernel function (for details, see Simonoff 1996

and Silverman 1999).

Let (β̂0x, β̂1x, . . . , β̂px) be the minimizer of (10). Then m̂(x) = β̂0x, and Ê(z|X =

x) = g−1(m̂(x)) = g−1(β̂0x). One can retain the boundary values for variable z,

{τ0, τ1, . . . , τH}, and define A∗Nh`(m̂) as in (2):

A∗Nh`(m̂) =
1

N

∑
i∈UN

y`i
I{i∈s}
πi

I{τh−1<g−1(m̂(xi))≤τh}, (11)

for l = 0, 1, 2. Given (11), a natural estimator for the population mean ȳN is the

same as in (5). The verification of Assumptions 2.3.3 and 2.3.4 is similar to the

verification in Subsection 2.4.1, and is therefore omitted.

2.5 Simulations

2.5.1 Numerical example

In Section 2.2, we illustrated the endogenous post-stratification calculations with a

linear regression example. To demonstrate the more interesting use of nonparametric

regression, we briefly discuss a second small example with penalized splines, as

justified in Subsection 2.4.1. Figure 3 shows data for an equal-probability sample of

size n = 25 selected from a finite population of size N = 100. Here, m̂ is estimated
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using the sample data {(xi, zi) : i ∈ s}, a penalized spline with 10 knots, and a

smoothing parameter which allows approximately five degrees of freedom. A single

boundary at τ1 = 0.44 divides the data into two strata based on the m̂(xi) values.

The “rug” lines at the bottom of the graph indicate the known xi values for i ∈ UN .

Using the notation of Section 2.2, we have the tabled values

ANh0(m̂) Anh1(m̂) Anh0(m̂)

h = 1 1
100

(30) 1
25

(0.24) 1
25

(8)

h = 2 1
100

(70) 1
25

(24.41) 1
25

(17)

,

where 0.24 and 24.41 are the sums of the sample zi values in each stratum. Based

on this, the HTE is z̄π = 0.99 and the estimated mean using (6) is

µ̂z(m̂) =
1

100
(30)

0.24

8
+

1

100
(70)

24.41

17
= 1.01.

2.5.2 Monte Carlo study

The main goal of the simulation was to assess the design efficiency of the NEPSE

relative to competing survey estimators. The simulations were performed in a set-

ting that mimics a survey in which characteristics of multiple study variables are

estimated using one set of weights. We considered several different sets of weights

for estimation of a mean: the Horvitz-Thompson estimator (HTE) weights {n−1}i∈s,

the PSE weights {wis(m)}i∈s, the NEPSE weights {wis(m̂)}i∈s, and the simple lin-

ear regression (REG) weights (e.g. Särndal et al. 1992, equation (6.5.12)). We used

H = 4 strata with fixed, known boundaries τ = (−∞, 0.5, 1.0, 1.5,∞) for PSE and

NEPSE. The HTE did not use auxiliary information; the PSE used auxiliary in-

formation with a known model; the REG used auxiliary information with a fitted

parametric model, and the NEPSE used auxiliary information with a fitted non-

parametric model. Specifically, we used a linear penalized spline with approximate
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Figure 3: Equal-probability sample of n = 25 (xi, zi) values from a finite population
of size N = 100 fitted with a penalized spline, m̂, with ten knots and five degrees of
freedom. “Rug” lines at the bottom of the graph represent xi for i ∈ UN . Boundary
value τ1 determines the strata, h = 1 and h = 2.
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degrees of freedom determined by the smoothing parameter (Ruppert et al. 2003,

§3.13).

We generated a population of size N = 1000 with eight survey variables of

interest. The values x1, . . . , xN were independent and uniformly distributed on (0, 1).

The first variable, ratio, was generated according to a regression through the origin

or ratio model (see e.g. Särndal et al. 1992, p.226), with mean 1 + 2(x − 0.5) and

with independent normal errors with variance 2σ2x. For the next six variables (yi),

we took their mean functions to be

2
gk(x)−minx∈[0,1] gk(x)

maxx∈[0,1] gk(x)−minx∈[0,1] gk(x)

where

quad: g1(x) = 1 + 2(x− 0.5)2

bump: g2(x) = 1 + 2(x− 0.5) + exp(−200(x− 0.5)2)

jump: g3(x) = {1 + 2(x− 0.5)}I{x≤0.65} + 0.65I{x>0.65}

expo: g4(x) = exp(−8x)

cycle1: g5(x) = 2 + sin(2πx)

cycle4: g6(x) = 2 + sin(8πx).

This means that the minimum was 0 and the maximum was 2 for each of the first

seven mean functions. Finally, the eighth survey variable was

noise: g7(x) = 8.

Independent normal errors with mean zero and variance equal to σ2 were then added

to each of these mean functions. The variance function for the ratio model was

chosen so that, averaging over the covariate x, we had E[v(x)] = σ2. Thus, the

heteroskedastic ratio variable and the remaining seven study variables all had the

same variance, averaged over x. See Figure 4 for examples of the population graphs.
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Figure 4: Example population graphs of the eight survey variables of interest
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For given values of σ, we fixed the population (that is, simulated N values for

each of the eight variables of interest) and drew 1000 replicate samples of size n,

each via simple random sampling without replacement from this fixed population.

We constructed HTE and REG weights using standard methods. We then computed

the ratio of the MSE for each competing estimator to that of the NEPSE.

In the first simulation experiment, we consider in detail the case in which the

PS variable follows a regression through the origin or ratio model. We used the

ratio variable as the PS variable and computed PSE weights with known m(x) =

1 + 2(x− 0.5) and NEPSE weights with (approximately) 2 or 5 degrees of freedom

(df) in the smoothing spline. The weights were then applied to the remaining seven

study variables. We also varied the noise variance (σ = 0.25 or σ = 0.5). With 2

df, the smoothing spline yields the linear (parametric) fit, and thus corresponds to

EPSE. Results for this case, presented in Table 2, are qualitatively similar to those

in Table 1 of Breidt and Opsomer (2008) (the results are different because the earlier

paper fits regression through the origin instead of simple linear regression, and uses

different signal-to-noise ratios since the mean functions are not scaled to [0,2]).

NEPSE dominates HTE in every case except cycle4 (since NEPSE does not

have enough df to capture the four cycles and so its estimate of the mean function

is oversmoothed and nearly constant) and noise, where NEPSE fits an entirely su-

perfluous model. REG beats NEPSE for ratio, where REG has the correct working

model, and is slightly better for bump, which is highly linear over most of its range.

REG is also slightly better for cycle4 and for noise. NEPSE performs far better

than REG for all of the other variables.

The effect of changing degrees of freedom in NEPSE is negligible in this example,

since the true model for the PS variable is in fact linear. The effect of increasing

noise variance is quite substantial, bringing the performance of all estimators closer

together, as expected. Finally, NEPSE is essentially equivalent to the PSE in terms
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Table 2: Ratio of MSE of Horvitz-Thompson (HTE), post-stratification on 4 strata

(PSE(4)), and linear regression (REG) estimators to MSE of nonparametric endoge-

nous post-stratification estimator on 4 strata (NEPSE(4)). Numbers greater than

one favor NEPSE. Based on ratio post-stratification variable in 1000 replications

of simple random sampling of size n = 50 from a fixed population of size N = 1000.

Replications in which at least one stratum had fewer than two samples are omitted

from the summary: 4 reps at df ≈ 2, σ = 0.5 and 33 reps at df ≈ 5, σ = 0.5.

(σ = 0.25) (σ = 0.5)

Response NEPSE(4) versus NEPSE(4) versus

Variable df ≈ HTE PSE(4) REG HTE PSE(4) REG

ratio 2 4.98 1.01 0.74 2.19 1.02 0.91

5 4.68 0.95 0.69 2.21 1.03 0.91

quad 2 2.34 1.03 2.56 1.62 1.05 1.75

5 2.29 1.01 2.51 1.50 0.97 1.62

bump 2 3.22 1.00 0.94 1.88 1.00 0.95

5 3.26 1.01 0.95 1.90 1.02 0.96

jump 2 2.19 1.00 1.80 1.40 0.99 1.26

5 2.13 0.97 1.76 1.33 0.94 1.20

expo 2 1.88 0.99 1.17 1.29 1.01 1.07

5 1.88 0.99 1.17 1.28 1.01 1.06

cycle1 2 3.10 1.04 1.56 1.97 1.03 1.26

5 3.04 1.02 1.53 1.96 1.02 1.25

cycle4 2 0.96 1.00 0.92 0.98 1.02 0.95

5 0.98 1.02 0.94 1.00 1.05 0.98

noise 2 0.93 1.00 0.96 0.92 1.00 0.96

5 0.92 0.99 0.95 0.93 1.01 0.97

of design efficiency, even for n = 50, implying that the effect of basing the PS on

a nonparametric regression instead of on stratum classifications and stratum counts

known without error from a source external to the survey is negligible for moderate

to large sample sizes.

In the second simulation, we fixed n = 100, df ≈ 5, σ = 0.25 and considered four

different PS variables: ratio, quad, bump, and cycle1. The latter three allowed

us to investigate the behavior of NEPSE when monotonicity did not hold. Table 3
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summarizes the design efficiency results as ratios of the MSE of the HTE, PSE(4),

or REG over the MSE of the NEPSE(4). Overall, the behavior of the NEPSE is con-

sistent with expectations. Even for the non-monotone functions, NEPSE produces

a large improvement in efficiency relative to the HTE for the variable on which the

PS is based, and usually for other variables as well. NEPSE is as good or better

(i.e. MSE ratio > 0.95) than REG in all but 12 of the 32 cases considered: NEPSE

loses out in particular when the true model is linear or nearly so (bump). The noise

variable shows that, when a variable is not related to the stratification variable, the

efficiency is near that of the HTE (since the stratification is unnecessary).

We also assessed the coverage of confidence intervals computed using the normal

approximation from Theorem 1 and the variance estimator from Theorem 2. Cover-

age of nominal 95% confidence intervals, µ̂y(m̂)± 1.96{n−1(1− nN−1)V̂ym̂}1/2, was

consistently in the range of 93% to 96%.

2.6 Application

We illustrate the applicability of the NEPSE approach using pilot study data col-

lected by the U.S. Forest Service in a region of Utah. The field-based data collection

methods and variables are similar to those currently in use in the Forest Inventory

and Analysis (FIA) program, while the remote sensing variables are among those

being considered as post-stratification variables in this context (see e.g. Blackard

et al. 2008). FIA is the primary source of information in the United States for as-

sessing status and trends in forested areas, including size, health, growth, mortality,

and removals of trees by species. The pilot study is designed to assess the increased

use of remote sensing information in the inventory.

The population in this example is a set of N = 1, 707 90m×90m plots that are

classified as forest and for which extensive remote-sensing data are available. The

n = 250 sample plots were selected with equal probability from that population, and
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Table 3: Ratio of MSE of Horvitz-Thompson (HTE), post-stratification on 4 strata

(PSE(4)), and linear regression (REG) estimators to MSE of nonparametric endoge-

nous post-stratification estimator on 4 strata (NEPSE(4)). Numbers greater than

one favor NEPSE. Based on four different PS variables in 1000 replications of simple

random sampling of size n = 100 from a fixed population of size N = 1000.

PS
Variable Estimator ratio quad bump jump expo cycle1 cycle4 noise

HTE 5.17 2.46 3.48 2.12 2.13 3.31 0.99 0.95

ratio PSE(4) 0.98 1.03 1.02 0.97 1.01 1.02 1.00 1.00

REG 0.71 2.49 0.97 1.70 1.19 1.64 0.90 0.97

HTE 0.97 5.47 1.01 1.53 1.31 0.97 0.98 0.96

quad PSE(4) 1.01 1.00 1.02 1.02 1.04 1.00 1.03 0.99

REG 0.13 5.53 0.28 1.23 0.73 0.48 0.89 0.98

HTE 4.07 1.93 4.13 2.02 2.30 2.70 1.13 0.95

bump PSE(4) 1.27 1.33 0.76 1.07 1.11 0.96 1.05 1.00

REG 0.56 1.95 1.15 1.62 1.29 1.34 1.03 0.97

HTE 2.89 1.01 2.53 1.26 1.35 5.68 1.00 0.97

cycle1 PSE(4) 1.01 1.00 1.06 1.04 0.96 0.92 1.03 1.01

REG 0.40 1.02 0.70 1.01 0.75 2.81 0.91 0.99

a large number of field-based variables were measured on those plots. We considered

variables that are representative of the variables typically collected as part of the

FIA: basal area of live trees per acre (BA), net annual growth of sound live trees

(GROW), stand age (STAG), and a binary forest type code (FOTP), chosen here as

“Aspen” (code 901). We constructed the NEPSE post-strata using BA, since this is

a commonly used forestry indicator for the amount of harvestable wood on a plot

and is a key FIA variable. From the remote sensing data, we chose as the auxiliary

variable the so-called Greenness index (GREEN). This is a frequently used summary

of reflectances at different frequencies with good predictive properties for forestry

variables (Crist and Cicone 1984). As in traditional post-stratification, we then

applied the resulting NEPSE weights to all of the other survey variables.

As in the simulation study, a linear penalized spline was used in the regression
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Figure 5: BA vs. GREEN values (n = 250) for a U.S. Forest Service pilot study in
Utah. Plus signs (+) indicate penalized spline fitted values, {m̂(xi)}Ni=1, using four
degrees of freedom, where N = 1, 707. Gray lines are boundaries for the case of four
post-strata, based on quartiles of the fitted values.

of BA on GREEN to form the nonparametric endogenous post-strata. For comparison,

the data were analyzed at two levels of degrees of freedom and for four different

numbers of strata. The degrees of freedom levels were determined by adjusting the

smoothing parameter and the strata were determined by using appropriate quantiles

of the {m̂(xi)}Ni=1 values. For comparison, we also applied the Horvitz-Thompson

estimator (HTE) that does not use any auxiliary information.

Figure 5 shows the n = 250 BA versus GREEN values, plotted as open circles, for the

Utah pilot study data. Also shown are ‘+’ symbols indicating the penalized spline

fitted values, {m̂(xi)}Ni=1, using four degrees of freedom. The three gray lines indicate
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Table 4: Estimates of finite population means for BA, GROW, and STAG, and estimated

population proportion of Aspen (FOTP = 901) with estimated standard errors in

parentheses. The numbers in parentheses after “NEPSE” indicate the number of

strata.

Estimator BA, ft2 GROW, ft3 STAG FOTP

HTE 26.80 (1.20) 7.92 (1.82) 112.98 (4.87) 0.088 (0.017)

df = 4

NEPSE(2) 26.92 (1.09) 8.02 (1.79) 112.64 (4.63) 0.089 (0.016)

NEPSE(4) 26.30 (0.98) 7.49 (1.67) 114.27 (4.67) 0.080 (0.014)

NEPSE(8) 26.23 (0.95) 6.98 (1.65) 114.12 (4.69) 0.072 (0.013)

NEPSE(16) 26.07 (0.97) 6.98 (1.63) 113.16 (4.77) 0.068 (0.012)

df = 8

NEPSE(2) 26.92 (1.09) 8.02 (1.79) 112.64 (4.63) 0.089 (0.016)

NEPSE(4) 26.30 (0.98) 7.49 (1.67) 114.27 (4.67) 0.080 (0.014)

NEPSE(8) 26.31 (0.99) 7.32 (1.75) 114.31 (4.70) 0.073 (0.013)

NEPSE(16) 26.04 (1.01) 7.12 (1.70) 113.67 (4.75) 0.072 (0.012)

the post-stratum boundaries for the four-stratum case, computed as the quartiles of

the fitted values. In this case, the relationship is monotone but nonlinear, so that this

application falls under the setting of Subsection 2.4.1. In actual large-scale forestry

survey practice, additional auxiliary variables can be expected to be available and

more complicated models would undoubtedly be required.

Table 4 shows the estimates and estimated standard deviations for the four

forestry variables considered, using NEPSE and HTE. At both df levels and for

all numbers of strata, the estimated standard error for each variable is smaller for

NEPSE than for HTE. The results are reasonably insensitive to the amount of

smoothing and the number of post-strata. Averaging across these factors, the HTE

has standard error averaging 19% higher than NEPSE for BA, 7% higher for GROW,

4% higher for STAG, and 25% higher for FOTP.

In this particular illustration, the NEPSE-derived post-strata could be inter-

preted as corresponding to levels of (predicted) tree basal area per acre (e.g. thinly
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stocked stratum vs. heavily stocked stratum), facilitating interpretation by forest

scientists and other users of FIA data. While a single covariate, GREEN, was used

here, in actual large-scale forestry survey practice, additional auxiliary variables can

be expected to be available and more complicated models would undoubtedly be

applied. The interpretation of the strata would remain the same, which is a strong

practical advantage of NEPSE. More sophisticated models are also likely to result

in increased efficiency, and hence a larger decrease in the estimated standard errors

relative to HTE, compared to that seen in Table 4.

2.7 Discussion

In this article, we have obtained the theoretical properties of NEPSE, a new post-

stratification-based estimator that uses a sample-fitted nonparametric index to cre-

ate the post-strata. The finite-sample properties of the estimator are shown in a

simulation study, and the applicability of the method is illustrated on a forestry

dataset.

There are a number of open issues related to implementation of NEPSE in sur-

veys. Perhaps most importantly, the choice of the number of strata and the selection

of the boundaries are of clear interest to practitioners. As noted above, we expect

that in many situations these will be dictated by the application. Nevertheless, a

data-driven approach that provides guidance in this respect would be desirable, and

is currently being investigated.

2.8 Proofs

Proof of Lemma 1. The expression on the left hand side of (7) is

N−1
∑
i∈UN

{y`iI{m̂(xi)≤τ} − y`iI{m(xi)≤τ} − E[y`iI{m̂(xi)≤τ} | m̂] + E[y`iI{m(xi)≤τ}]}.
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Let

H = {(x, y)→ y`I{d(x)≤τ} − y`I{m(x)≤τ}

−E[y`I{d(x)≤τ}] + E[y`I{m(x)≤τ}] : d ∈ D},

where D is as in Assumption 2.3.4.

In a first step we show that the class H is Donsker. From Theorem 2.5.6 in

van der Vaart and Wellner (1996), it suffices to show that

∫ ∞
0

√
logN[ ](λ,H, ‖ · ‖2) dλ <∞. (12)

From Assumption 2.3.4 we know that the class

F = {(x, y)→ y`I{d(x)≤τ} : d ∈ D}

satisfies (12) with H replaced by F , and hence the same holds for H itself, since the

three other terms in H do not change its bracketing number.

Let

ĥ(x, y) = y`
(
I{m̂(x)≤τ} − I{m(x)≤τ}

)
− E

[
y`
(
I{m̂(x)≤τ} − I{m(x)≤τ}

)∣∣ m̂] ,
where (x, y) is independent of the fit, m̂(·). Then

Var
(
ĥ(x, y) | m̂

)
= Var

(
y`
(
I{m̂(x)≤τ} − I{m(x)≤τ}

)∣∣ m̂)
≤ E

[(
y`
(
I{m̂(x)≤τ} − I{m(x)≤τ}

))2∣∣∣ m̂]
= E

[
y2`
(
I{m̂(x)≤τ} − I{m(x)≤τ}

)2∣∣∣ m̂]
= E

[
E
[
y2`
(
I{m̂(x)≤τ} − I{m(x)≤τ}

)2∣∣∣ m̂,x]∣∣∣ m̂]
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= E
[

E[y2` | m̂,x]
(
I{m̂(x)≤τ} − I{m(x)≤τ}

)2∣∣∣ m̂]
= E

[
E[y2` | x]

(
I{m̂(x)≤τ} − I{m(x)≤τ}

)2∣∣∣ m̂]
≤ K1 {Pr(m̂(x) ≤ τ,m(x) > τ | m̂) + Pr(m̂(x) > τ,m(x) ≤ τ | m̂)} , (13)

where K1 is given in Assumption 2.3.5. Let ε > 0 be given. By Assumption 2.3.1,

F (u) = Pr(m(x) ≤ u) is uniformly continuous, so there exists δ > 0 such that

|u1 − u2| ≤ δ implies |F (u1) − F (u2)| < ε. We show that Pr(m̂(x) ≤ τ,m(x) > τ |

m̂) = op(1). Consider

Pr
(

Pr(m̂(x) ≤ τ,m(x) > τ | m̂) > ε
)

≤ Pr
(

Pr(m̂(x) ≤ τ,m(x) > τ | m̂) > ε, sup
x
|m̂(x)−m(x)| ≤ δ

)
+ Pr

(
sup
x
|m̂(x)−m(x)| > δ

)
≤ Pr

(
Pr(m(x)− δ ≤ τ,m(x) > τ | m̂) > ε

)
+ o(1)

= Pr
(

Pr(m(x)− δ ≤ τ,m(x) > τ) > ε
)

+ o(1)

= I{F (τ+δ)−F (τ)>ε} + o(1) = o(1), (14)

by choice of δ, where the second inequality follows from Assumption 3.1.3. Similarly,

Pr(m̂(x) > τ,m(x) ≤ τ | m̂) = op(1). (15)

For fixed η > 0, λ > 0 consider

Pr
(
N1/2|Aτ`(m̂)− E[y`iI{m̂(xi)≤τ} | m̂]− Aτ`(m) + ατ`(m)| > λ

)
= Pr

(
N−1/2

∣∣∣∣∣∑
i∈UN

ĥ(xi, yi)

∣∣∣∣∣ > λ

)

≤ Pr

(
N−1/2

∣∣∣∣∣∑
i∈UN

ĥ(xi, yi)

∣∣∣∣∣ > λ,Var(ĥ(x, y) | m̂) < η, m̂ ∈ D

)
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+ Pr

(
N−1/2

∣∣∣∣∣∑
i∈UN

ĥ(xi, yi)

∣∣∣∣∣ > λ,Var(ĥ(x, y) | m̂) ≥ η, m̂ ∈ D

)
+ Pr (m̂ /∈ D)

≤ Pr

(
sup

h∈H,Var(h)<η
N−1/2

∣∣∣∣∣∑
i∈UN

h(xi, yi)

∣∣∣∣∣ > λ

)
+ Pr

(
Var(ĥ(x, y) | m̂) ≥ η

)
+ Pr (m̂ /∈ D)

= d1N + d2N + d3N .

As N → ∞, d1N = o(1) as η ↓ 0 by Corollary 2.3.12 in van der Vaart and Well-

ner (1996) and the fact that H is Donsker. Also, d2N = o(1) by the arguments in

(13)–(15), and d3N = o(1) by Assumption 2.3.4. This establishes (7), and similar

arguments verify (8). �

Proof of Theorem 1. We start with a statement about equal-probability PSE

(i.e., m(·) known) error that is used later for comparison. Since ȳN =
∑H

h=1ANh1(γ)

for any γ, we subtract from (4) to obtain

µ̂y(m)− ȳN

=
H∑
h=1

ANh0(m)
Anh1(m)

Anh0(m)
−

H∑
h=1

ANh1(m)

=
H∑
h=1

{
Anh1(m)

Anh0(m)
ANh0(m)− ANh1(m)

}

=
H∑
h=1

{
Anh1(m)

Anh0(m)
ANh0(m)− Anh1(m) + Anh1(m)− ANh1(m)

}

=
H∑
h=1

{
Anh1(m)

Anh0(m)
(ANh0(m)− Anh0(m)) + (Anh1(m)− ANh1(m))

}
. (16)

Next, we have ANh`(M) = Aτh`(M) − Aτh−1`(M) and Anh`(M) = Anτh`(M) −
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Anτh−1`(M), for M = {m, m̂}. Let

αh`(m) = ατh`(m)− ατh−1`(m) = E[y`iI{τh−1<m(xi)≤τh}].

Then, applying Lemma 1 to two consecutive boundary values, τh−1 and τh, the

differences of the respective equations are

ANh`(m̂)− E[y`iI{τh−1<m̂(xi)≤τh} | m̂]− ANh`(m) + αh`(m) = op(N
−1/2), (17)

and

Anh`(m̂)− E[y`iI{τh−1<m̂(xi)≤τh} | m̂]− Anh`(m) + αh`(m) = op(n
−1/2). (18)

Given (17) and (18), the remainder of the proof is very similar to the correspond-

ing proof in Breidt and Opsomer (2008), with adjustments made for the NEPSE

context. Define ah = ANh0(m) − Anh0(m) and bh = ANh1(m) − Anh1(m), and as-

sume, without loss of generality, that in the following calculations the first n values

in N constitute the sample. First,

Cov (ah, ak)

= Cov
(
ANh0(m)− Anh0(m), ANh1(m)− Anh1(m)

)
= Cov

(
1

N

N∑
i=1

I{τh−1<m(xi)≤τh} −
1

n

n∑
i=1

I{τh−1<m(xi)≤τh},

1

N

N∑
i=1

I{τk−1<m(xi)≤τk} −
1

n

n∑
i=1

I{τk−1<m(xi)≤τk}

)

= Cov

((
1

N
− 1

n

) n∑
i=1

I{τh−1<m(xi)≤τh} +
1

N

N∑
i=n+1

I{τh−1<m(xi)≤τh},(
1

N
− 1

n

) n∑
i=1

I{τk−1<m(xi)≤τk} +
1

N

N∑
i=n+1

I{τk−1<m(xi)≤τk}

)
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= Cov

((
1

N
− 1

n

) n∑
i=1

I{τh−1<m(xi)≤τh},

(
1

N
− 1

n

) n∑
i=1

I{τk−1<m(xi)≤τk}

)

+ Cov

(
1

N

N∑
i=n+1

I{τh−1<m(xi)≤τh},
1

N

N∑
i=n+1

I{τk−1<m(xi)≤τk}

)
. (19)

We examine the two terms in (19) separately. For the first term,

Cov

((
1

N
− 1

n

) n∑
i=1

I{τh−1<m(xi)≤τh},

(
1

N
− 1

n

) n∑
i=1

I{τk−1<m(xi)≤τk}

)

= E

[(
1

N
− 1

n

)2 n∑
i=1

n∑
j=1

I{τh−1<m(xi)≤τh}I{τk−1<m(xi)≤τk}

]

− E

[(
1

N
− 1

n

) n∑
i=1

I{τh−1<m(xi)≤τh}

]
E

[(
1

N
− 1

n

) n∑
i=1

I{τk−1<m(xi)≤τk}

]

=

(
1

N
− 1

n

)2

E

[
n∑
i=1

I{τh−1<m(xi)≤τh}I{τk−1<m(xi)≤τk}

+
∑∑

i 6=j

I{τh−1<m(xi)≤τh}I{τk−1<m(xj)≤τk}

]

−
(

1

N
− 1

n

)2

n2E
[
I{τh−1<m(xi)≤τh}

]
E
[
I{τk−1<m(xi)≤τk}

]
=

(
1

N
− 1

n

)2 {
nαh0(m)I{h=k} + n(n− 1)αh0(m)αk0(m)

}
−
(

1

N
− 1

n

)2

n2αh0(m)αk0(m)

=

(
1

N
− 1

n

)2 {
nαh0(m)I{h=k} +

(
n2 − n− n2

)
αh0(m)αk0(m)

}
=

(
1

N
− 1

n

)2

n
{
αh0(m)I{h=k} − αh0(m)αk0(m)

}
, (20)

and for the second term,

Cov

(
1

N

N∑
i=n+1

I{τh−1<m(xi)≤τh},
1

N

N∑
i=n+1

I{τk−1<m(xi)≤τk}

)

=

(
1

N

)2 {
(N − n)αh0(m)I{h=k} + (N − n)(N − n− 1)αh0(m)αk0(m)

}
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−
(

1

N

)2

(N − n)2αh0(m)αk0(m)

=

(
1

N

)2 {
(N − n)αh0(m)I{h=k}

+
(
(N − n)2 − (N − n)− (N − n)2

)
αh0(m)αk0(m)

}
=

(
1

N

)2

(N − n)
{
αh0(m)I{h=k} − αh0(m)αk0(m)

}
. (21)

Inserting (20) and (21) into (19) yields

Cov (ah, ak)

=

(
1

N
− 1

n

)2

n
{
αh0(m)I{h=k} − αh0(m)αk0(m)

}
+

(
1

N

)2

(N − n)
{
αh0(m)I{h=k} − αh0(m)αk0(m)

}
=

[(
1

N
− 1

n

)2

n+

(
1

N

)2

(N − n)

]{
αh0(m)I{h=k} − αh0(m)αk0(m)

}
=

[(
1

N
− 1

n

)( n
N
− 1
)

+
1

N

(
1− n

N

)]{
αh0(m)I{h=k} − αh0(m)αk0(m)

}
=

[(
1

n
− 1

N

)(
1− n

N

)
+

1

N

(
1− n

N

)]{
αh0(m)I{h=k} − αh0(m)αk0(m)

}
=

[(
1− n

N

)( 1

n
− 1

N
+

1

N

)]{
αh0(m)I{h=k} − αh0(m)αk0(m)

}
=

1

n

(
1− n

N

){
αh0(m)I{h=k} − αh0(m)αk0(m)

}
. (22)

Similar calculations show that

Cov (ah, bk) =
1

n

(
1− n

N

){
αh1(m)I{h=k} − αh0(m)αk1(m)

}
. (23)

Because Var(ah) = Cov(ah, ah) = O(n−1), it follows that ah = Op(n
−1/2). Similar

steps show that bh = Op(n
−1/2).
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We next examine

E
[{

E[y`iI{τh−1<m̂(xi)≤τh} | m̂]− αh`(m)
}2]

= E
[{

E[y`iI{τh−1<m̂(xi)≤τh} | m̂]− E[y`iI{τh−1<m(xi)≤τh}]
}2]

= E
[{

E[y`i
(
I{τh−1<m̂(xi)≤τh} − I{τh−1<m(xi)≤τh}

)
| m̂]

}2]
≤ E

[
E
[
y2`i
(
I{τh−1<m̂(xi)≤τh} − I{τh−1<m(xi)≤τh}

)2∣∣∣ m̂]]
= E

[
E
[

E
[
y2`i
(
I{τh−1<m̂(xi)≤τh} − I{τh−1<m(xi)≤τh}

)2∣∣∣ m̂,xi]∣∣∣ m̂]]
= E

[
E
[

E[y2`i | m̂,xi]
(
I{τh−1<m̂(xi)≤τh} − I{τh−1<m(xi)≤τh}

)2∣∣∣ m̂]]
= E

[
E
[

E[y2`i | xi]
(
I{τh−1<m̂(xi)≤τh} − I{τh−1<m(xi)≤τh}

)2∣∣∣ m̂]]
≤ E

[
K1E

[(
I{τh−1<m̂(xi)≤τh} − I{τh−1<m(xi)≤τh}

)2∣∣∣ m̂]]
≤ E

[
K1

{
Pr(τh−1 < m̂(xi) ≤ τh,m(xi) > τh | m̂)

+ Pr(τh−1 < m̂(xi) ≤ τh,m(xi) ≤ τh−1 | m̂)

+ Pr(m̂(xi) > τh, τh−1 < m(xi) ≤ τh | m̂)

+ Pr(m̂(xi) ≤ τh−1, τh−1 < m(xi) ≤ τh | m̂)
}]
. (24)

We want to show that (24) converges to 0 as n→∞. For a given ε > 0,

Pr
(

Pr(τh−1 < m̂(xi) ≤ τh,m(xi) > τh | m̂) > ε
)

≤ Pr
(

Pr(m̂(xi) ≤ τh,m(xi) > τh | m̂) > ε
)

= o(1),

by (14). Similar reasoning shows that each of the terms inside the expectation in

(24) is op(1). By uniform integrability, (24) is o(1). Thus, E[y`iI{τh−1<m̂(xi)≤τh} | m̂]

converges to αh`(m) in mean square, and hence in probability.

We also have

ANh`(m)− αh`(m) = Op

(
N−1/2

)
and Anh`(m)− αh`(m) = Op

(
n−1/2

)
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by the Central Limit Theorem, and additionally, Anhl(m) and ANhl(m) are Op(1) by

the Weak Law of Large Numbers.

Of interest to us is the asymptotic distribution of the NEPSE error,

µ̂y(m̂)− ȳN =
H∑
h=1

ANh0(m̂)
Anh1(m̂)

Anh0(m̂)
−

H∑
h=1

ANh1(m̂)

=
H∑
h=1

{
ANh0(m̂)Anh1(m̂)− Anh0(m̂)ANh1(m̂)

Anh0(m̂)

}
. (25)

We begin by separately examining the numerator and denominator of the summand

in (25), making use of the above order results throughout.

For the numerator, let D` = E[y`iI{τh−1<m̂(xi)≤τh} | m̂] − αh`(m) and recall that

D` = op(1). Substitute (17) and (18) to obtain

ANh0(m̂)Anh1(m̂)− Anh0(m̂)ANh1(m̂)

=
(
ANh0(m) +D0 + op(N

−1/2)
) (
Anh1(m) +D1 + op(n

−1/2)
)

−
(
Anh0(m) +D0 + op(n

−1/2)
) (
ANh1(m) +D1 + op(N

−1/2)
)

=
(
ANh0(m)Anh1(m) + ANh0(m)D1 + ANh0(m)op(n

−1/2) +D0Anh1(m) +D0D1

+ D0op(n
−1/2) + op(N

−1/2)Anh1(m) + op(N
−1/2)D1 + op(N

−1/2)op(n
−1/2)

)
−
(
Anh0(m)ANh1(m) + Anh0(m)D1 + Anh0(m)op(N

−1/2)

+ D0ANh1(m) +D0D1 +D0op(N
−1/2) + op(n

−1/2)ANh1(m)

+ op(n
−1/2)D1 + op(n

−1/2)op(N
−1/2)

)
= ANh0(m)Anh1(m)− Anh0(m)ANh1(m) + (ANh0(m)− Anh0(m))D1

+ (Anh1(m)− ANh1(m))D0 + op(n
−1/2)

= ANh0(m)Anh1(m)− Anh0(m)ANh1(m) +Op(n
−1/2)op(1)

+ Op(n
−1/2)op(1) + op(n

−1/2)

= ANh0(m)Anh1(m)− Anh0(m)ANh1(m) + op(n
−1/2)
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= (ANh0(m)− αh0(m) + αh0(m)) (Anh1(m)− αh1(m) + αh1(m))

− (Anh0(m)− αh0(m) + αh0(m)) (ANh1(m)− αh1(m) + αh1(m)) + op(n
−1/2)

= {(ANh0(m)− αh0(m)) (Anh1(m)− αh1(m)) + (ANh0(m)− αh0(m))αh1(m)

+ αh0(m) (Anh1(m)− αh1(m)) + αh0(m)αh1(m)}

− {(Anh0(m)− αh0(m)) (ANh1(m)− αh1(m)) + (Anh0(m)− αh0(m))αh1(m)

+ αh0(m) (ANh1(m)− αh1(m)) + αh0(m)αh1(m)}+ op(n
−1/2)

=
{
Op(N

−1/2)Op(n
−1/2) + ANh0(m)αh1(m)− αh0(m)αh1(m)

+ αh0(m)Anh1(m)− αh0(m)αh1(m) + αh0(m)αh1(m)
}

−
{
Op(n

−1/2)Op(N
−1/2) + Anh0(m)αh1(m)− αh0(m)αh1(m)

+ αh0(m)ANh1(m)− αh0(m)αh1(m) + αh0(m)αh1(m)
}

+ op(n
−1/2)

= αh1(m) (ANh0(m)− Anh0(m)) + αh0(m) (Anh1(m)− ANh1(m)) + op(n
−1/2)

= αh1(m)ah + αh0(m)bh + op(n
−1/2). (26)

And for the denominator, we use (18) to show

Anh0(m̂) = E[y`iI{τh−1<m̂(xi)≤τh} | m̂] + Anh0(m)− αh0(m) + op(n
−1/2)

= αh0(m) +
(
E[I{τh−1<m̂(xi)≤τh} | m̂]− αh0(m)

)
+ (Anh0(m)− αh0(m)) + op(n

−1/2)

= αh0(m) + op(1) +Op(n
−1/2) + op(n

−1/2)

= αh0(m) + op(1). (27)

Since αh0(m) > 0 by Assumption 2.3.1, then by a continuous mapping we have

1

Anh0(m̂)
=

1

αh0(m)
+ op(1). (28)
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Substitute (26) and (28) into (25) to rewrite the NEPSE error as

µ̂y(m̂)− ȳN =
H∑
h=1

{
(αh1(m)ah + αh0(m)bh + op(n

−1/2))

(
1

αh0(m)
+ op(1)

)}

=
H∑
h=1

{
αh1(m)

αh0(m)
ah + αh1(m)ahop(1) +

αh0(m)

αh0(m)
bh + αh0(m)bhop(1)

+ op(n
−1/2)

1

αh0(m)
+ op(n

−1/2)op(1)

}
=

H∑
h=1

{
αh1(m)

αh0(m)
ah + αh1(m)Op(n

−1/2)op(1)

+ bh + αh0(m)Op(n
−1/2)op(1) + op(n

−1/2)

}
=

H∑
h=1

{
αh1(m)

αh0(m)
ah + bh

}
+ op(n

−1/2). (29)

By comparison with (16), the asymptotic distribution for the NEPSE error is the

same as that obtained when m(·) is known.

To derive the asymptotic distribution of the NEPSE error we apply the Central

Limit Theorem to (29) and note that the limiting distribution is normal with mean

zero. We use the earlier covariance computations and the fact that
∑H

h=1 bh = ȳN−ȳπ

to show that the variance of (29) is approximated by

Var (µ̂y(m̂)− ȳN)

' Var

(
H∑
h=1

{
αh1(m)

αh0(m)
ah + bh

})

= Var

(
H∑
h=1

αh1(m)

αh0(m)
ah +

H∑
h=1

bh

)

= Var

(
H∑
h=1

αh1(m)

αh0(m)
ah

)
+ Var

(
H∑
h=1

bh

)
+ 2 Cov

(
H∑
h=1

αh1(m)

αh0(m)
ah,−

H∑
h=1

bh

)

=

{
H∑
h=1

(
αh1(m)

αh0(m)

)2

Var(ah) + 2
∑∑
1≤h<k≤H

αh1(m)

αh0(m)

αk1(m)

αk0(m)
Cov(ah, ak)

}
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+ Var (ȳN − ȳπ)− 2
H∑
h=1

H∑
k=1

αh1(m)

αh0(m)
Cov(ah, bk)

=
H∑
h=1

(
αh1(m)

αh0(m)

)2
1

n

(
1− n

N

){
αh0(m)− α2

h0(m)
}

+ 2
∑∑
1≤h<k≤H

αh1(m)

αh0(m)

αk1(m)

αk0(m)

1

n

(
1− n

N

)
{0− αh0(m)αk0(m)}

− 2
H∑
h=1

H∑
k=1

αh1(m)

αh0(m)

1

n

(
1− n

N

){
αh1(m)I{h=k} − αh0(m)αk1(m)

}
+ Var (ȳN − ȳπ)

=
1

n

(
1− n

N

){ H∑
h=1

α2
h1(m)

αh0(m)
−

H∑
h=1

α2
h1(m)

}
− 2

1

n

(
1− n

N

) ∑∑
1≤h<k≤H

αh1(m)αk1(m)

− 2
1

n

(
1− n

N

){ H∑
h=1

H∑
k=1

α2
h1(m)

αh0(m)
I{h=k} −

H∑
h=1

H∑
k=1

αh1(m)αk1(m)

}
+ Var (ȳN − ȳπ)

=
1

n

(
1− n

N

){ H∑
h=1

α2
h1(m)

αh0(m)
−

H∑
h=1

α2
h1(m)− 2

∑∑
1≤h<k≤H

αh1(m)αk1(m)

}

− 2
1

n

(
1− n

N

){ H∑
h=1

α2
h1(m)

αh0(m)
−

(
H∑
h=1

α2
h1(m) + 2

∑∑
1≤h<k≤H

αh1(m)αk1(m)

)}
+ Var (ȳN − ȳπ)

=
1

n

(
1− n

N

){ H∑
h=1

α2
h1(m)

αh0(m)
−

H∑
h=1

α2
h1(m)− 2

∑∑
1≤h<k≤H

αh1(m)αk1(m)

− 2
H∑
h=1

α2
h1(m)

αh0(m)
+ 2

H∑
h=1

α2
h1(m) + 4

∑∑
1≤h<k≤H

αh1(m)αk1(m)

}
+ Var (ȳN − ȳπ)

=
1

n

(
1− n

N

){
−

H∑
h=1

α2
h1(m)

αh0(m)
+

(
H∑
h=1

α2
h1(m) + 2

∑∑
1≤h<k≤H

αh1(m)αk1(m)

)}
+ Var (ȳN − ȳπ)

=
1

n

(
1− n

N

)−
H∑
h=1

α2
h1(m)

αh0(m)
+

(
H∑
h=1

αh1(m)

)2
+ Var (ȳN − ȳπ) . (30)
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Under equal-probability design,

Var (ȳN − ȳπ) =
1

n

(
1− n

N

)
Var(yi), (31)

and

H∑
h=1

αh1(m) =
H∑
h=1

E[yiI{τh−1<m(xi)≤τh}]

= E[yi]. (32)

Also, by definition of expectation given an event,

αh1(m)

αh0(m)
= E[yi | τh−1 < m(xi) ≤ τh],

and

E[y2i ] =
H∑
h=1

αh0(m){Var(yi | τh−1 < m(xi) ≤ τh)

+(E[yi | τh−1 < m(xi) ≤ τh])
2}.

Substituting (31) and (32) into (30), and making use of the previous two equations,

we get

Var (µ̂y(m̂)− ȳN)

' 1

n

(
1− n

N

){
−

H∑
h=1

α2
h1(m)

αh0(m)
+ (E[yi])

2 + Var(yi)

}

=
1

n

(
1− n

N

){
−

H∑
h=1

α2
h1(m)

αh0(m)
+ E[y2i ]

}

=
1

n

(
1− n

N

){
−

H∑
h=1

α2
h1(m)

αh0(m)
+

H∑
h=1

αh0(m)

{
Var(yi | τh−1 < m(xi) ≤ τh)

+ (E[yi | τh−1 < m(xi) ≤ τh])
2

}}
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=
1

n

(
1− n

N

){
−

H∑
h=1

α2
h1(m)

αh0(m)
+

H∑
h=1

αh0(m)

{
Var(yi | τh−1 < m(xi) ≤ τh)

+

(
αh1(m)

αh0(m)

)2}}

=
1

n

(
1− n

N

){ H∑
h=1

αh0(m)Var(yi | τh−1 < m(xi) ≤ τh)

}

=
1

n

(
1− n

N

){ H∑
h=1

E[I{τh−1<m(xi)≤τh}]Var(yi | τh−1 < m(xi) ≤ τh)

}

=
1

n

(
1− n

N

){ H∑
h=1

Pr{τh−1 < m(xi) ≤ τh}Var(yi | τh−1 < m(xi) ≤ τh)

}
,

and the result is proved. �

Proof of Theorem 2. This proof follows the basic structure of the corresponding

proof in Breidt and Opsomer (2008) with modifications for the NEPSE setting.

Applying arguments similar to those used in (27) to (17) and (18), we find that

ANh`(m̂)
P→ αh`(m) and Anh`(m̂)

P→ αh`(m) for ` = 0, 1, 2. So, for the expression

given for V̂ym̂ in (9), we have

V̂ym̂ =
H∑
h=1

A2
Nh0(m̂)

Anh0(m̂)

Anh2(m̂)− A2
nh1(m̂)/Anh0(m̂)

Anh0(m̂)− n−1

P→
H∑
h=1

α2
h0(m)

αh0(m)

αh2(m))− α2
h1(m)/αh0(m)

αh0(m)

=
H∑
h=1

αh0(m)

{
αh2(m)

αh0(m)
−
(
αh1(m)

αh0(m)

)2
}

=
H∑
h=1

αh0(m)
{

E[y2i | τh−1 < m(xi) ≤ τh]− (E[yi | τh−1 < m(xi) ≤ τh])
2}

=
H∑
h=1

αh0(m)Var(yi | τh−1 < m(xi) ≤ τh)

=
H∑
h=1

Pr{τh−1 < m(xi) ≤ τh}Var(yi | τh−1 < m(xi) ≤ τh)

= Vym,

51



which implies

V̂
−1/2
ym̂

P→ V −1/2ym ,

so
V̂
−1/2
ym̂

V
−1/2
ym

P→ 1. (33)

By Theorem 1,

{
1

n

(
1− n

N

)}−1/2
V −1/2ym (µ̂y(m̂)− ȳN)

d→ N(0, 1). (34)

Applying Slutsky’s Theorem to (33) and (34), we get

V̂
−1/2
ym̂

V
−1/2
ym

{
1

n

(
1− n

N

)}−1/2
V −1/2ym (µ̂y(m̂)− ȳN)

=

{
1

n

(
1− n

N

)}−1/2
V̂
−1/2
ym̂ (µ̂y(m̂)− ȳN)

d→ N(0, 1),

and the result is proved. �
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CHAPTER 3

INSTRUMENTAL VARIABLES AND PENALIZED SPLINES:

ESTIMATING REGRESSION COEFFICIENTS

UNDER INFORMATIVE SAMPLING

3.1 Introduction

3.1.1 Background

In survey problems informative sampling occurs when the inclusion probabilities

depend on the values of the study variable. This chapter considers the estimation

of regression coefficients under informative sampling. We show that ordinary least

squares estimators are inconsistent in this sampling scheme, but that consistent

estimators can be calculated using a two-stage least squares approach as outlined in

Fuller (2009, Ch. 6).

The two-stage least squares process first requires the selection of an appropriate

instrumental variable (IV). Stage one is a regression of the auxiliary variable x on

the IV to obtain a “fitted” auxiliary variable x̂. The study variable y is regressed

on x̂ at stage two to obtain the consistent estimator of β.

The proposed estimator is a variation of the two-stage least squares process. In

our approach, penalized splines (see Ruppert, Wand, and Carroll 2003, Ch. 3) and

IV’s are used to determine the “fitted” auxiliary variable x̂ at the first stage, and

the second stage is an ordinary least-squares regression of y on x̂. This estimator is
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referred to as the penalized spline estimator.

3.1.2 Notation

Consider a finite population UN = {1, . . . , i, . . . , N}. For each i ∈ UN , assume

a nonrandom auxiliary scalar variable xi is known. Model the finite population

of yi’s, conditioned on the auxiliary variable xi, as a realization from an infinite

superpopulation, ξ, with

yi = β0 + β1xi + εi,

where εi are independent random variables with mean zero and variance σ2
ε .

An unequal probability sample s is drawn from UN according to a Poisson sam-

pling design. Let πi be the positive inclusion probability for the ith element of UN ,

where πi is a function of xi and yi, πi = π(xi, yi), so that the sampling is informative.

Let Ii = 1 if i ∈ s and Ii = 0 otherwise, where the Ii are independent and distributed

as

Pr {Ii = 1} = πi, and Pr {Ii = 0} = 1− πi,

for i ∈ UN . Note that E[Ii|yi] = πi, the expectation with respect to the sampling

design (i.e., averaging over all possible samples from the finite population). Let nN

be the size of s, define wi = 1/πi, and assume wi is known for i ∈ s. The goal is to

estimate β0 and β1 given the finite population xi’s and the sample yi’s and wi’s.

Select K knots at locations κ1, . . . , κK and define the truncated line function

(x− c)+ as zero when x < c and (x− c) when x ≥ c. (Appropriate selection of knots

is discussed later.) Define the column vectors

xi =

[
1

xi

]
, and zi =


(xi − κ1)+

...

(xi − κK)+

 ,
for i ∈ UN so that

54



bi =

[
xi

zi

]

is a (K+2)-vector for each i in the finite population. Because the xi are nonrandom

and known for i ∈ UN , the vectors xi, zi, and bi are also nonrandom and known for

i ∈ UN .

In the special case where the entire finite population is considered, define the

subscripted N × 2 matrix

XUN =


xT1
...

xTN

 =
[
xTi

]
i∈UN

,

but in the more common sample setting, define the nN × 2 matrix without subscript

as

X =
[
xTi

]
i∈s
.

Similarly, for the sample, define the nN ×K matrix

Z =
[
zTi

]
i∈s
.

and also define the nN × (K + 2) matrix

B =
[
bTi

]
i∈s
.

Define the nN × nN matrix

W = diag{wi}i∈s,

and the nN × (K + 2) matrix

A = WB =
[
wib

T
i

]
i∈s

=
[
aTi

]
i∈s
,
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where ai equals wibi, a (K + 2)-vector, for i ∈ s. Use the notation

Ax = WX =
[
wix

T
i

]
i∈s

for the nN × 2 submatrix of A.

Let

β =

[
β0

β1

]
,

and let y = [yi]i∈s and ε = [εi]i∈s be the nN-vectors of yi’s obtained in the sample

and the corresponding errors, respectively, so that

y = Xβ + ε.

3.1.3 Chapter outline

In the following section we demonstrate the bias and inconsistency of the ordinary

least squares estimator under informative sampling. Sections 3.3 and 3.4 examine

the classical two-stage least squares estimators with 2 and K + 2 IV’s, respectively.

Section 3.5 introduces and evaluates the new penalized spline estimator. Section 3.6

explores the estimation of the optimal smoothing parameter used by the penalized

spline estimator and also contains a simulation study.

3.2 Ordinary least squares estimator, β̂ols

In this section we demonstrate the bias and inconsistency of the ordinary least

squares estimator under informative sampling, indicating the need for an improved

estimator.
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3.2.1 Assumptions

Let (C)jk indicate the element in the jth row and kth column of matrix C, and

make the following assumptions,

Assumption 3.2.1. lim
N→∞

N−1
∑
i∈UN

E[πi]xix
T
i = P 1 is a positive definite 2× 2 ma-

trix.

Assumption 3.2.2. lim
N→∞

N−1
∑
i∈UN

(E[πi]− (E[πi])
2)(xix

T
i )2jk = (P 2)jk for all (j,k)

where P 2 is a 2× 2 matrix with finite elements.

Assumption 3.2.3. lim
N→∞

N−1
∑
i∈UN

xiCov(εi, πi) = p3 is a 2× 1 column vector with

finite elements.

Assumption 3.2.4. lim
N→∞

N−1
∑
i∈UN

(
E[ε2iπi] − (Cov(εi, πi))

2
)
xix

T
i = P 4 is a 2 × 2

matrix with finite elements.

Assumption 3.2.5. {εiIi}i∈UN are independent.

3.2.2 Bias and consistency results for β̂ols

Let β̂ols denote the ordinary least squares estimator for β. We have

β̂ols − β = (XTX)−1XTy − β

= (XTX)−1XT (Xβ + ε)− β

= β + (XTX)−1XTε− β

=

(∑
i∈s

xix
T
i

)−1(∑
i∈s

xiεi

)

=

(∑
i∈UN

xix
T
i Ii

)−1(∑
i∈UN

xiεiIi

)
(35)

=

(
1

N

∑
i∈UN

xix
T
i Ii

)−1(
1

N

∑
i∈UN

xiεiIi

)
. (36)
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Since the xi’s are fixed, the only randomness is in the sample membership indicators

(Ii’s) and the errors (εi’s). The expected value of (35) is not a zero vector because

E

[∑
i∈UN

xiεiIi

]
=

∑
i∈UN

xiE [εiIi]

=
∑
i∈UN

xiE
[
E
[
εiIi
∣∣yi] ]

=
∑
i∈UN

xiE
[
εiE
[
Ii
∣∣yi] ]

=
∑
i∈UN

xiE [εiπi]

=
∑
i∈UN

[
1

xi

]
Cov(εi, πi) 6=

[
0

0

]
,

since πi is a function of yi. As a result, β̂ols is biased.

Next, consider the consistency of β̂ols by separately examining the two factors of

(36). For the first factor,

E[xix
T
i Ii] = E[E[Ii|yi]]xixTi

= E[πi]xix
T
i ,

and

Var(Ii) = E[Var(Ii|yi)] + Var(E[Ii|yi])

= E[πi(1− πi)] + Var(πi)

= E[πi]− E[π2
i ] + {E[π2

i ]− (E[πi])
2}

= E[πi]− (E[πi])
2,
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so that

lim
N→∞

E

[
1

N

∑
i∈UN

(xix
T
i )jkIi

]
= lim

N→∞

1

N

∑
i∈UN

E
[
(xix

T
i )jkIi

]
= lim

N→∞

1

N

∑
i∈UN

E[πi](xix
T
i )jk

= (P 1)jk

by Assumption 3.2.1, and since the Ii are independent,

Var

(
1

N

∑
i∈UN

(xix
T
i )jkIi

)
=

1

N2
Var

(∑
i∈UN

(xix
T
i )jkIi

)

=
1

N2

∑
i∈UN

(xix
T
i )2jkVar(Ii)

=
1

N

(
1

N

∑
i∈UN

(E[πi]− (E[πi])
2)(xix

T
i )2jk

)
.

Then, as N →∞,

E

( 1

N

∑
i∈UN

(xix
T
i )jkIi − (P 1)jk

)2


= Var

(
1

N

∑
i∈UN

(xix
T
i )jkIi − (P 1)jk

)
+

(
E

[
1

N

∑
i∈UN

(xix
T
i )jkIi − (P 1)jk

])2

= Var

(
1

N

∑
i∈UN

(xix
T
i )jkIi

)
+

(
1

N

∑
i∈UN

E
[
(xix

T
i )jkIi

]
− (P 1)jk

)2

=
1

N

(
1

N

∑
i∈UN

(E[πi]− (E[πi])
2)(xix

T
i )2jk

)
+

(
1

N

∑
i∈UN

E[πi](xix
T
i )jk − (P 1)jk

)2

=
1

N

(
(P 2)jk + o(1)

)
+
(

(P 1)jk + o(1)− (P 1)jk

)2
= o(1)
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by Assumptions 3.2.1 and 3.2.2, verifying

1

N

∑
i∈UN

(xix
T
i )jkIi

m.s.−−→ (P 1)jk,

for each element, and thus

1

N

∑
i∈UN

(xix
T
i )Ii

P→ P 1. (37)

For the second factor of (36),

lim
N→∞

E

[
1

N

∑
i∈UN

xiεiIi

]
= lim

N→∞

1

N

∑
i∈UN

xiE[εiIi]

= lim
N→∞

1

N

∑
i∈UN

xiCov(εi, πi)

= p3

by Assumption 3.2.3, and also

Var(εiIi) = E[Var(εiIi|yi)] + Var(E[εiIi|yi])

= E[ε2iVar(Ii|yi)] + Var(εiπi)

= E[ε2iπi(1− πi)] + {E[(εiπi)
2]− (E[εiπi])

2}

= E[ε2iπi]− E[ε2iπ
2
i ] + E[ε2iπ

2
i ]− (Cov(εiπi))

2

= E[ε2iπi]− (Cov(εiπi))
2. (38)

Next, to allow work with scalars, we multiply by an arbitrary t ∈ R2. Later we

recover the desired vector results via the Cramér-Wold device. We also use Assump-

tion 3.2.5 for the variance of the sum in the following equation. As N →∞,

E

(tT 1

N

∑
i∈UN

xiεiIi − tTp3

)2
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= Var

(
tT

1

N

∑
i∈UN

xiεiIi − tTp3

)
+

(
E

[
tT

1

N

∑
i∈UN

xiεiIi − tTp3

])2

=
1

N2
tT

[∑
i∈UN

xiVar(εiIi)x
T
i

]
t+

(
tT

1

N

∑
i∈UN

xiE [εiIi]− tTp3

)2

=
1

N2
tT

[∑
i∈UN

Var(εiIi)xix
T
i

]
t+

(
tT

1

N

∑
i∈UN

xiCov(εi, πi)− tTp3

)2

=
1

N
tT

[
1

N

∑
i∈UN

(
E[ε2iπi]− (Cov(εi, πi))

2
)
xix

T
i

]
t+

(
tTp3 + o(1)− tTp3

)2
=

1

N
tT
(
P 4 + o(1)

)
t+ o(1)

= o(1)

by Assumptions 3.2.3 and 3.2.4. This verifies

tT
1

N

∑
i∈UN

xiεiIi
m.s.−−→ tTp3,

which implies

tT
1

N

∑
i∈UN

xiεiIi
d→ tTp3,

and by the Cramér-Wold device,

1

N

∑
i∈UN

xiεiIi
d→ p3.

Because the convergence is to a constant,

1

N

∑
i∈UN

xiεiIi
P→ p3.

By this result and (37),

(β̂ols − β)
P→ P−11 p3 6=

[
0

0

]
,
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showing that β̂ols is not consistent.

3.3 Two-stage least squares estimator, β̂2sls (2 IV’s)

As indicated in Fuller (2009, Ch. 6), wi multiplied by any function of xi is a potential

IV under the assumption that E[εi|xi] = 0 for all i in the superpopulation. Thus,

we may select Ax = WX as the nN × 2 IV matrix for a two-stage least squares

estimator for β. We have W T = W and AT
xX = XTWX is a 2 × 2 invertible

matrix. After stage one, the matrix of “fitted” vectors is

X̂x = Ax

[
(AT

xAx)
−1AT

xX
]
, (39)

and after stage two,

β̂2sls = (X̂
T

x X̂x)
−1X̂

T

xy

= (XTAx(A
T
xAx)

−1AT
xAx(A

T
xAx)

−1AT
xX)−1XTAx(A

T
xAx)

−1AT
xy

= (XTAx(A
T
xAx)

−1AT
xX)−1XTAx(A

T
xAx)

−1AT
xy

= (AT
xX)−1(AT

xAx)(X
TAx)

−1XTAx(A
T
xAx)

−1AT
xy

= (AT
xX)−1(AT

xAx)(A
T
xAx)

−1AT
xy

= (AT
xX)−1AT

xy

= (XTWX)−1XTWy. (40)

This is also called the probability weighted least squares estimator (see Pfeffermann

and Sverchkov 1999).

3.3.1 Assumptions

Make the following assumptions,
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Assumption 3.3.1. lim
N→∞

N−1
∑
i∈UN

xix
T
i = P 5 is a positive definite 2× 2 matrix.

Assumption 3.3.2. lim
N→∞

N−1
∑
i∈UN

(E[wi]− 1)(xix
T
i )2jk = (P 6)jk for all (j,k) where

P 6 is a 2× 2 matrix with finite elements.

Assumption 3.3.3. lim
N→∞

N−1
∑
i∈UN

E[wiε
2
i ]xix

T
i = P 7 is a 2 × 2 matrix with finite

elements.

Assumption 3.3.4. {wiIi}i∈UN are independent.

Assumption 3.3.5. {wiεiIi}i∈UN are independent.

Assumption 3.3.6. (Lyapunov condition) lim
N→∞

1

V
1+δ/2
Nx

∑
i∈UN

E
[∣∣tTwixiεiIi − 0

∣∣2+δ] =

0, for some δ > 0, where t ∈ R2 and VNx = tT

( ∑
i∈UN

E[wiε
2
i ]xix

T
i

)
t.

3.3.2 Consistency results for β̂2sls

Using (40) we can write

β̂2sls − β = (XTWX)−1XTWy − β

= (XTWX)−1XTW (Xβ + ε)− β

= β + (XTWX)−1XTWε− β

=

(
1

N
XTWX

)−1(
1

N
XTWε

)
. (41)

We examine each factor as N →∞.

For the first factor of (41), start with

E[wixix
T
i Ii] = E[E[wiIi|yi]]xixTi

= E[wiE[Ii|yi]]xixTi

= E[wiπi]xix
T
i

= xix
T
i ,
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and

Var(wiIi) = E[Var(wiIi|yi)] + Var(E[wiIi|yi])

= E[w2
iVar(Ii|yi)] + Var(wiE[Ii|yi])

= E[w2
i πi(1− πi)] + Var(wiπi)

= E[wi − 1] + Var(1)

= E[wi]− 1. (42)

Next,

lim
N→∞

E

[
1

N
(XTWX)jk

]
= lim

N→∞

1

N

∑
i∈UN

E[wi(xix
T
i )jkIi]

= lim
N→∞

1

N

∑
i∈UN

(xix
T
i )jk

= (P 5)jk

by Assumption 3.3.1, and by Assumption 3.3.4,

Var

(
1

N
(XTWX)jk

)
=

1

N2
Var

(∑
i∈UN

wi(xix
T
i )jkIi

)

=
1

N2

∑
i∈UN

(xix
T
i )2jkVar(wiIi)

=
1

N2

∑
i∈UN

(E[wi]− 1)(xix
T
i )2jk

=
1

N

(
1

N

∑
i∈UN

(E[wi]− 1)(xix
T
i )2jk

)
.

Then, as N →∞,

E

[(
1

N
(XTWX)jk − (P 5)jk

)2
]
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= Var

(
1

N
(XTWX)jk − (P 5)jk

)
+

(
E

[
1

N
(XTWX)jk − (P 5)jk

])2

= Var

(
1

N
(XTWX)jk

)
+

(
1

N

∑
i∈UN

E[wi(xix
T
i )jkIi]− (P 5)jk

)2

=
1

N

(
1

N

∑
i∈UN

(E[wi]− 1)(xix
T
i )2jk

)
+

(
1

N

∑
i∈UN

(xix
T
i )jk − (P 5)jk

)2

=
1

N

(
(P 6)jk + o(1)

)
+
(

(P 5)jk + o(1)− (P 5)jk

)2
= o(1)

by Assumptions 3.3.1 and 3.3.2, verifying

1

N
(XTWX)jk

m.s.−−→ (P 5)jk,

for each element, and thus

1

N
XTWX

P→ P 5. (43)

For the second factor of (41),

E[wixiεiIi] = E[E[wiεiIi|yi]]xi

= E[wiεiE[Ii|yi]]xi

= E[wiεiπi]xi

= E[εi]xi

= 0, (44)

and

Var(wiεiIi) = E[Var(wiεiIi|yi)] + Var(E[wiεiIi|yi])

= E[(wiεi)Var(Ii|yi)(εiwi)] + Var(εi)

= E[w2
i πi(1− πi)ε2i ] + Var(εi)
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= E[(wi − 1)ε2i ] + σ2
ε

= E[wiε
2
i ]− E[ε2i ] + σ2

ε

= E[wiε
2
i ]− σ2

ε + σ2
ε

= E[wiε
2
i ]. (45)

Let t ∈ R2 and let N →∞ to find

E

[(
tT

1

N
XTWε− 0

)2
]

= Var

(
tT

1

N
XTWε

)
+

(
E

[
tT

1

N
XTWε

])2

=
1

N2
tTVar

(∑
i∈UN

wixiεiIi

)
t+

(
1

N

∑
i∈UN

tTE[wixiεiIi]

)2

=
1

N2
tT

(∑
i∈UN

xiVar(wiε
2
i )x

T
i

)
t+

(
1

N

∑
i∈UN

tT0

)2

=
1

N
tT

(
1

N

∑
i∈UN

E[wiε
2
i ]xix

T
i

)
t+ 0

=
1

N
tT
(
P 7 + o(1)

)
t

= o(1)

by Assumption 3.3.3, and using Assumption 3.3.5 for the variance of the sum. This

result verifies

tT
1

N
XTWε

m.s.−−→ 0.

This implies

tT
1

N
XTWε

d→ tT0,

and by the Cramér-Wold device,

1

N
XTWε

d→ 0.
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Because the convergence is to a constant,

1

N
XTWε

P→

[
0

0

]
. (46)

Equations (41), (43), and (46) together imply the consistency of the two-stage

least squares estimator,

(β̂2sls − β)
P→ P−15

[
0

0

]
= 0.

3.3.3 Central limit theorem results for β̂2sls

To examine the asymptotic distribution of the estimator, start by writing

√
N
(
β̂2sls − β

)
=
√
N
(
β + (XTWX)−1XTWε− β

)
=

(
1

N
XTWX

)−1(
1√
N
XTWε

)
. (47)

As N →∞, by (43),

(
1

N
XTWX

)−1
P→ (P 5)

−1. (48)

For the second factor of (47), select t ∈ R2 to get the scalars

E[tTwixiεiIi] = tTE[wixiεiIi] = tT0 = 0,

using (44), and

Var(tTwixiεiIi) = tTVar(wixiεiIi)t = tT (E[wiε
2
i ]xix

T
i )t,

using (45).
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Next, examine

tT
1√
N
XTWε = tT

1√
N

∑
i∈UN

wixiεiIi

=
1√
N

∑
i∈UN

tTwixiεiIi

=
1√
N
V

1/2
Nx V

−1/2
Nx

∑
i∈UN

(
tTwixiεiIi − 0

)
,

with VNx as defined in Assumption 3.3.6. We have

1√
N
V

1/2
Nx =

(
1

N
VNx

)1/2

=

(
tT

(
1

N

∑
i∈UN

E[wiε
2
i ]xix

T
i

)
t

)1/2

→
(
tTP 7t

)1/2
by Assumption 3.3.3, and by Assumption 3.3.6 and the Lyapunov Central Limit

Theorem (Billingsley 1995, Ch. 5),

V
−1/2
Nx

∑
i∈UN

(
tTwixiεiIi − 0

) d→ N(0, 1).

Applying Slutsky’s Theorem,

tT
1√
N
XTWε

d→
(
tTP 7t

)1/2
N(0, 1)

= N(0, tTP 7t)

= N(tT0, tTP 7t)

= tTN(0,P 7),
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so by the Cramér-Wold device,

1√
N
XTWε

d→ N(0,P 7). (49)

Another application of Slutsky’s Theorem using (47), (48), and (49) yields

√
N
(
β̂2sls − β

)
d→ P−15 N(0,P 7)

= N

([
0

0

]
,P−15 P 7P

−1
5

)
, (50)

so that

β̂2sls is AN

(
β,

1

N
P−15 P 7P

−1
5

)
.

3.4 Two-stage least squares estimator, β̂
K+2

2sls (K + 2 IV’s)

In this section we select A = WB as the nN × (K + 2) IV matrix, utilizing K new

IV’s in addition to the two IV’s used in the previous section. The results we obtain

are later useful as a reference for comparisons. Specifically, the central limit theorem

results here are shown to be one limiting case of the results for the penalized spline

estimator presented in Section 3.5.

For the current IV matrix, define the (K+ 2)× 2 matrix of stage one coefficients

as

Γ̂0 = (ATA)−1ATX,

so that after the first stage, the nN × 2 matrix of “fitted” vectors is

X̂0 = AΓ̂0,
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and after the second stage,

β̂
K+2

2sls = (X̂
T

0 X̂0)
−1X̂

T

0 y. (51)

3.4.1 Assumptions

As a reference aid, limiting vectors and matrices related strictly to the xi’s are

denoted with p’s and P ’s, and limiting matrices related to the bi’s are denoted with

M ’s. When a matrix P is a submatrix of a matrix M , the relationship is clearly

noted in the text. We make the following additional assumptions,

Assumption 3.4.1. lim
N→∞

N−1
∑
i∈UN

E[wi]bib
T
i = M 1 is a positive definite (K+ 2)×

(K + 2) matrix.

Assumption 3.4.2. lim
N→∞

N−1
∑
i∈UN

bix
T
i = M 2 is a (K + 2)× 2 matrix with finite

elements.

Assumption 3.4.3. {w2
i Ii}i∈UN are independent.

Assumption 3.4.4. lim
N→∞

N−1
∑
i∈UN

(E[w3
i ]−(E[wi])

2)(bib
T
i )2jk = (M 3)jk for all (j,k)

where M 3 is a (K + 2)× (K + 2) matrix with finite elements.

Assumption 3.4.5. lim
N→∞

N−1
∑
i∈UN

(E[wi]−1)(bix
T
i )2jk = (M 4)jk for all (j,k) where

M 4 is a (K + 2)× 2 matrix with finite elements.

Assumption 3.4.6. lim
N→∞

N−1
∑
i∈UN

E[wiε
2
i ]bib

T
i = M 5 is a positive definite (K +

2)× (K + 2) matrix.

Assumption 3.4.7. (Lyapunov condition) lim
N→∞

1

V
1+δ/2
N

∑
i∈UN

E
[∣∣tTwibiεiIi − 0

∣∣2+δ] =

0, for some δ > 0, where t ∈ R2 and VN = tT

( ∑
i∈UN

E[wiε
2
i ]bib

T
i

)
t.
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3.4.2 Consistency results for β̂
K+2

2sls

Using the result

X̂
T

0 X̂0 = Γ̂
T

0A
TAΓ̂0

= Γ̂
T

0A
TA(ATA)−1ATX

= Γ̂
T

0A
TX

= X̂
T

0X,

together with (51), allows us to write

β̂
K+2

2sls − β = (X̂
T

0 X̂0)
−1X̂

T

0 y − β

= (X̂
T

0 X̂0)
−1X̂

T

0 (Xβ + ε)− β

= (X̂
T

0 X̂0)
−1X̂

T

0Xβ + (X̂
T

0 X̂0)
−1X̂

T

0 ε− β

= β + (X̂
T

0 X̂0)
−1X̂

T

0 ε− β

=

(
1

N
X̂

T

0 X̂0

)−1(
1

N
X̂

T

0 ε

)
. (52)

The following work shows that this converges to a zero vector.

We begin by defining Γ0 = M−1
1 M 2 and show that Γ̂0

P→ Γ0. Start by consid-

ering

Γ̂0 = (ATA)−1ATX =

(
1

N
ATA

)−1(
1

N
ATX

)
.

We have

E[w2
i bib

T
i Ii] = E[E[w2

i Ii|yi]]bibTi

= E[w2
iE[Ii|yi]]bibTi

= E[w2
i πi]bib

T
i

= E[wi]bib
T
i ,
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and

Var(w2
i Ii) = E[Var(w2

i Ii|yi)] + Var(E[w2
i Ii|yi])

= E[w4
iVar(Ii|yi)] + Var(w2

iE[Ii|yi])

= E[w4
i πi(1− πi)] + Var(w2

i πi)

= E[w3
i − w2

i ] + Var(wi)

= E[w3
i ]− E[w2

i ] + E[w2
i ]− (E[wi])

2

= E[w3
i ]− (E[wi])

2.

Next, show that an individual element of N−1ATA converges in probability to the

corresponding element of M 1. Using Assumption 3.4.1,

lim
N→∞

E

[
1

N
(ATA)jk

]
= lim

N→∞

1

N

∑
i∈UN

E[w2
i (bib

T
i )jkIi]

= lim
N→∞

1

N

∑
i∈UN

E[wi](bib
T
i )jk

= (M 1)jk,

and by Assumption 3.4.3,

Var

(
1

N
(ATA)jk

)
=

1

N2
Var

(∑
i∈UN

w2
i (bib

T
i )jkIi

)

=
1

N2

∑
i∈UN

(bib
T
i )2jkVar(w2

i Ii)

=
1

N2

∑
i∈UN

(
E[w3

i ]− (E[wi])
2
)

(bib
T
i )2jk

=
1

N

(
1

N

∑
i∈UN

(
E[w3

i ]− (E[wi])
2
)

(bib
T
i )2jk

)
.
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Then, as N →∞,

E

[(
1

N
(ATA)jk − (M 1)jk

)2
]

= Var

(
1

N
(ATA)jk − (M 1)jk

)
+

(
E

[
1

N
(ATA)jk − (M 1)jk

])2

= Var

(
1

N
(ATA)jk

)
+

(
1

N

∑
i∈UN

E[w2
i (bib

T
i )jkIi]− (M 1)jk

)2

=
1

N

(
1

N

∑
i∈UN

(
E[w3

i ]− (E[wi])
2
)

(bib
T
i )2jk

)

+

(
1

N

∑
i∈UN

E[wi](bib
T
i )jk − (M 1)jk

)2

=
1

N

(
(M 3)jk + o(1)

)
+
(

(M 1)jk + o(1)− (M 1)jk

)2
= o(1)

by Assumptions 3.4.1 and 3.4.4, verifying

1

N
(ATA)jk

m.s.−−→ (M 1)jk,

for each element, and thus

1

N
ATA

P→M 1. (53)

Similarly, for the N−1ATX factor,

E[wibix
T
i Ii] = E[E[wiIi|yi]]bixTi

= E[wiE[Ii|yi]]bixTi

= E[wiπi]bix
T
i

= bix
T
i ,
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and by (42),

Var(wiIi) = E[wi]− 1.

Next,

lim
N→∞

E

[
1

N
(ATX)jk

]
= lim

N→∞

1

N

∑
i∈UN

E[wi(bix
T
i )jkIi]

= lim
N→∞

1

N

∑
i∈UN

(bix
T
i )jk

= (M 2)jk

by Assumption 3.4.2, and by Assumption 3.3.4,

Var

(
1

N
(ATX)jk

)
=

1

N2
Var

(∑
i∈UN

wi(bix
T
i )jkIi

)

=
1

N2

∑
i∈UN

(bix
T
i )2jkVar(wiIi)

=
1

N2

∑
i∈UN

(E[wi]− 1)(bix
T
i )2jk

=
1

N

(
1

N

∑
i∈UN

(E[wi]− 1)(bix
T
i )2jk

)
.

Then, as N →∞,

E

[(
1

N
(ATX)jk − (M 2)jk

)2
]

= Var

(
1

N
(ATX)jk − (M 2)jk

)
+

(
E

[
1

N
(ATX)jk − (M 2)jk

])2

= Var

(
1

N
(ATX)jk

)
+

(
1

N

∑
i∈UN

E[wi(bix
T
i )jkIi]− (M 2)jk

)2

=
1

N

(
1

N

∑
i∈UN

(E[wi]− 1)(bix
T
i )2jk

)
+

(
1

N

∑
i∈UN

(bix
T
i )jk − (M 2)jk

)2

=
1

N

(
(M 4)jk + o(1)

)
+
(

(M 2)jk + o(1)− (M 2)jk

)2
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= o(1)

by Assumptions 3.4.2 and 3.4.5, verifying

1

N
(ATX)jk

m.s.−−→ (M 2)jk,

for each element, and thus

1

N
ATX

P→M 2. (54)

Therefore, by (53) and (54), as N →∞,

Γ̂0 =

(
1

N
ATA

)−1(
1

N
ATX

)
P→M−1

1 M 2 = Γ0, (55)

and (53) together with (55) yields

1

N
X̂

T

0 X̂0 =
1

N
Γ̂
T

0A
TAΓ̂0 = Γ̂

T

0

(
1

N
ATA

)
Γ̂0

P→ ΓT
0M 1Γ0. (56)

For the second factor of (52),

1

N
X̂

T

0 ε =
1

N
Γ̂
T

0A
Tε = Γ̂

T

0

(
1

N
ATε

)
,

and since convergence of Γ̂0 has been established, it remains to show the convergence

of N−1ATε to a zero vector. First, consider

E[wibiεiIi] = E[E[wiεiIi|yi]]bi

= E[wiεiE[Ii|yi]]bi

= E[wiεiπi]bi

= E[εi]bi

= 0, (57)
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where 0 is a (K + 2)-vector of zeros, and by equation (45),

Var(wiεiIi) = E[wiε
2
i ].

Next, let t ∈ RK+2 and let N →∞ to find

E

[(
tT

1

N
ATε− 0

)2
]

= Var

(
tT

1

N
ATε

)
+

(
E

[
tT

1

N
ATε

])2

=
1

N2
tTVar

(∑
i∈UN

wibiεiIi

)
t+

(
1

N

∑
i∈UN

tTE[wibiεiIi]

)2

=
1

N2
tT

(∑
i∈UN

biVar(wiε
2
i )b

T
i

)
t+

(
1

N

∑
i∈UN

tT0

)2

=
1

N
tT

(
1

N

∑
i∈UN

E[wiε
2
i ]bib

T
i

)
t+ 0

=
1

N
tT
(
M 5 + o(1)

)
t

= o(1)

by Assumption 3.4.6, and using Assumption 3.3.5 for the variance of the sum. This

result verifies

tT
1

N
ATε

m.s.−−→ 0.

This implies

tT
1

N
ATε

d→ tT0,

and by the Cramér-Wold device,

1

N
ATε

d→ 0.
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Because the convergence is to a constant,

1

N
ATε

P→ 0, (58)

and combining with (55), we get

1

N
X̂

T

0 ε = Γ̂
T

0

(
1

N
ATε

)
P→ ΓT

0 0 =

[
0

0

]
. (59)

Equations (52), (56), and (59) together imply the consistency of the estimator,

(β̂
K+2

2sls − β)
P→ (ΓT

0M 1Γ0)
−1

[
0

0

]
= 0.

3.4.3 Central limit theorem results for β̂
K+2

2sls

To examine the asymptotic distribution of the estimator, start by writing

√
N
(
β̂2sls − β

)
=
√
N
(
β + (X̂

T

0 X̂0)
−1X̂

T

0 ε− β
)

=

(
1

N
X̂

T

0 X̂0

)−1
1√
N
X̂

T

0 ε

=

(
1

N
X̂

T

0 X̂0

)−1
Γ̂
T

0

(
1√
N
ATε

)
. (60)

As N →∞, by (56),

(
1

N
X̂

T

0 X̂0

)−1
P→ (ΓT

0M 1Γ0)
−1,

a 2× 2 matrix, and by (55),

Γ̂
T

0
P→ ΓT

0 ,

a (K + 2)× 2 matrix.
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For the third factor of (60), select t ∈ RK+2 to get the scalars

E[tTwibiεiIi] = tTE[wibiεiIi] = tT0 = 0,

using (57), and

Var(tTwibiεiIi) = tTVar(wibiεiIi)t = tT (E[wiε
2
i ]bib

T
i )t,

using (45).

Next, examine

tT
1√
N
ATε = tT

1√
N

∑
i∈UN

wibiεiIi

=
1√
N

∑
i∈UN

tTwibiεiIi

=
1√
N
V

1/2
N V

−1/2
N

∑
i∈UN

(
tTwibiεiIi − 0

)
,

with VN as defined in Assumption 3.4.7. We have

1√
N
V

1/2
N =

(
1

N
VN

)1/2

=

(
tT

(
1

N

∑
i∈UN

E[wiε
2
i ]bib

T
i

)
t

)1/2

→
(
tTM 5t

)1/2
by Assumption 3.4.6, and by Assumption 3.4.7 and the Lyapunov Central Limit

Theorem,

V
−1/2
N

∑
i∈UN

(
tTwibiεiIi − 0

) d→ N(0, 1).
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Applying Slutsky’s Theorem,

tT
1√
N
ATε

d→
(
tTM 5t

)1/2
N(0, 1)

= N(0, tTM 5t)

= N(tT0, tTM 5t)

= tTN(0,M 5),

so by the Cramér-Wold device,

1√
N
ATε

d→ N(0,M 5). (61)

Another application of Slutsky’s Theorem using (55), (56), (60), and (61) yields

√
N
(
β̂
K+2

2sls − β
)

d→ (ΓT
0M 1Γ0)

−1ΓT
0N(0,M 5)

= N

([
0

0

]
, (ΓT

0M 1Γ0)
−1ΓT

0M 5Γ0(Γ
T
0M 1Γ0)

−1

)
,

so that

β̂
K+2

2sls is AN

(
β,

1

N
(ΓT

0M 1Γ0)
−1ΓT

0M 5Γ0(Γ
T
0M 1Γ0)

−1
)
.

3.5 Penalized spline estimator, β̂pspl

For this new estimator, the first stage of the two-stage process uses penalized splines

and IV’s to determine the “fitted” auxiliary variable vector x̂. As in the previous

two sections, stage two is an ordinary least squares regression of y on x̂. The

smoothing parameter for the penalized splines is denoted as λN . Later in this section

we demonstrate that when λN →∞, the penalized spline estimator behaves like the

probability weighted least squares estimator, which is also the classical two-stage

least squares estimator with two instrumental variables, β̂2sls. Also, when λN = 0,

79



the resulting estimator is the classical two-stage least squares estimator with K + 2

instrumental variables, β̂
K+2

2sls . As verified previously, both of these estimators are

consistent for β. When λN is allowed to vary between 0 and ∞, the resulting

estimator is also shown to be consistent, provided λ2N/N → 0 as N → ∞. In finite

samples, however, a bias term ∆Nβ is present. Using simulations, we demonstrate

that in certain informative sampling cases the finite-sample variance of the estimator

for some values of λN between 0 and∞ is smaller than at the two extremes of λN . An

examination of the trade-off between reduced variance and the square of the induced

bias shows that an “optimal” λN can be selected to minimize the mean squared error

of the estimator. This optimal λN can be estimated from the sample data.

In this section, we evaluate the penalized spline estimator under the typical

conditions one would find in the informative sampling survey situation. The IV

matrix is A = WB and we define D to be the (K + 2)× (K + 2) diagonal matrix

D =

[
02×2 02×K

0K×2 IK×K

]
.

In addition, define Γ̂λ as the (K + 2)× 2 matrix of stage one coefficients,

Γ̂λ = (ATA+ λ2ND)−1ATX,

so that after the first stage, the nN × 2 matrix of “fitted” vectors is

X̂λ = AΓ̂λ,

and after the second stage,

β̂pspl = (X̂
T

λX̂λ)
−1X̂

T

λy. (62)
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3.5.1 Assumptions

Make the following additional assumption,

Assumption 3.5.1. lim
N→∞

N−1λ2N = 0.

3.5.2 Consistency results for β̂pspl

We define the 2× 2 matrix

∆N = (X̂
T

λX̂λ)
−1X̂

T

λ (X − X̂λ),

and write

(X̂
T

λX̂λ)
−1X̂

T

λXβ = (X̂
T

λX̂λ)
−1X̂

T

λ (X̂λ +X − X̂λ)β

= (X̂
T

λX̂λ)
−1X̂

T

λX̂λβ + (X̂
T

λX̂λ)
−1X̂

T

λ (X − X̂λ)β

= β + ∆Nβ.

Together with (62) this yields

β̂pspl − β = (X̂
T

λX̂λ)
−1X̂

T

λy − β

= (X̂
T

λX̂λ)
−1X̂

T

λXβ + (X̂
T

λX̂λ)
−1X̂

T

λε− β

= β + ∆Nβ + (X̂
T

λX̂λ)
−1X̂

T

λε− β

= ∆Nβ +

(
1

N
X̂

T

λX̂λ

)−1(
1

N
X̂

T

λε

)
. (63)

We show that this converges to a zero vector.

As N →∞, by (53), (54), and Assumption 3.5.1,

Γ̂λ = (ATA+ λ2ND)−1ATX

=

(
1

N
(ATA+ λ2ND)

)−1(
1

N
ATX

)
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=

(
1

N
ATA+

1

N
λ2ND

)−1(
1

N
ATX

)
P→ (M 1 + 0)−1M 2 = Γ0, (64)

which leads to

1

N
X̂

T

λX̂λ =
1

N
Γ̂
T

λA
TAΓ̂λ = Γ̂

T

λ

(
1

N
ATA

)
Γ̂λ

P→ ΓT
0M 1Γ0, (65)

and

1

N
X̂

T

λX =
1

N
Γ̂
T

λA
TX = Γ̂

T

λ

(
1

N
ATX

)
P→ ΓT

0M 2,

so that

∆N = (X̂
T

λX̂λ)
−1X̂

T

λ (X − X̂λ)

=

(
1

N
X̂

T

λX̂λ

)−1
1

N
X̂

T

λ (X − X̂λ)

=

(
1

N
X̂

T

λX̂λ

)−1(
1

N
X̂

T

λX −
1

N
X̂

T

λX̂λ

)
P→ (ΓT

0M 1Γ0)
−1(ΓT

0M 2 − ΓT
0M 1Γ0)

= (ΓT
0M 1Γ0)

−1ΓT
0M 2 − I2×2

= (MT
2M

−1
1 M 1M

−1
1 M 2)

−1MT
2M

−1
1 M 2 − I2×2

= (MT
2M

−1
1 M 2)

−1MT
2M

−1
1 M 2 − I2×2

= 0,

and

∆Nβ
P→ 0. (66)

Results (58) and (64) show that

1

N
X̂

T

λε =
1

N
Γ̂
T

λA
Tε
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= Γ̂
T

λ

(
1

N
ATε

)
P→ ΓT

0 0 =

[
0

0

]
. (67)

Equations (63), (65), (66), and (67) together imply the consistency of the penal-

ized spline estimator,

(β̂pspl − β)
P→

(
0 + (ΓT

0M 1Γ0)
−1

[
0

0

])
= 0.

3.5.3 Central limit theorem results for β̂pspl

To examine the asymptotic distribution of the estimator, start by writing

√
N
(
β̂pspl − β −∆Nβ

)
=
√
N
(

(X̂
T

λX̂λ)
−1X̂

T

λXβ + (X̂
T

λX̂λ)
−1X̂

T

λε− β − (X̂
T

λX̂λ)
−1X̂

T

λ (X − X̂λ)β
)

=
√
N
(

(X̂
T

λX̂λ)
−1X̂

T

λXβ + (X̂
T

λX̂λ)
−1X̂

T

λε− β − (X̂
T

λX̂λ)
−1X̂

T

λXβ + β
)

=
√
N(X̂

T

λX̂λ)
−1X̂

T

λε

= (X̂
T

λX̂λ)
−1
√
NX̂

T

λε

=

(
1

N
X̂

T

λX̂λ

)−1
1√
N
X̂

T

λε

=

(
1

N
X̂

T

λX̂λ

)−1
Γ̂
T

λ

(
1√
N
ATε

)
. (68)

As N →∞, by (65),

(
1

N
X̂

T

λX̂λ

)−1
P→
(
ΓT

0M 1Γ0

)−1
,

and by (64),

Γ̂
T

λ
P→ ΓT

0 ,
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and also by (61),

1√
N
ATε

d→ N(0,M 5).

An application of Slutsky’s Theorem using (61), (64), (65), and (68) yields

√
N
(
β̂pspl − β −∆Nβ

)
d→ (ΓT

0M 1Γ0)
−1ΓT

0N(0,M 5)

= N

([
0

0

]
, (ΓT

0M 1Γ0)
−1ΓT

0M 5Γ0(Γ
T
0M 1Γ0)

−1

)
,

so that

β̂pspl is AN

(
β + ∆Nβ,

1

N
(ΓT

0M 1Γ0)
−1ΓT

0M 5Γ0(Γ
T
0M 1Γ0)

−1
)
. (69)

CLT results for β̂pspl, when λN = 0

In this subsection and the next we examine the penalized spline estimator β̂pspl at

the two extreme values for λN . When λN = 0,

Γ̂λ = (ATA+ 02D)−1ATX = Γ̂0,

so that β̂pspl is equivalent to β̂
K+2

2sls , the consistent estimator discussed in Section 3.4.

CLT results for β̂pspl, when λN →∞

Here we assume λ2N → ∞ faster than N → ∞, so that N−1λ2N → ∞. Under this

condition, we demonstrate that the finite-sample bias term vanishes and β̂pspl has

the same asymptotic variance as β̂2sls. We define the 2× 2 matrix

Γ̂x = (AT
xAx)

−1AT
xX,

so that X̂x = AxΓ̂x. At stage one of our two-stage process, when λN → ∞, our
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estimate for X̂λ converges to X̂x. To verify this, we write

A = WB = W
[
X Z

]
=
[
WX WZ

]
=
[
Ax WZ

]
,

so that

ATA =

[
AT
xAx AT

xWZ

ZTWAx ZTW 2Z

]
,

and

Γ̂λ = (ATA+ λ2ND)−1ATX

=

[
AT
xAx AT

xWZ

ZTWAx ZTW 2Z + λ2NIK×K

]−1 [
AT
xX

ZTWX

]

=

[
G11 G12

G21 G22

][
AT
xX

ZTWX

]
,

where

G11 = (AT
xAx)

−1 + (AT
xAx)

−1AT
xWZG22Z

TWAx(A
T
xAx)

−1,

G12 = −(AT
xAx)

−1AT
xWZG22,

G21 = −G22Z
TWAx(A

T
xAx)

−1, and

G22 =
(
ZTW 2Z + λ2NIK×K −ZTWAx(A

T
xAx)

−1AT
xWZ

)−1
= 1

λ2N

(
1
λ2N
ZTW 2Z + IK×K − 1

λ2N
ZTWAx(A

T
xAx)

−1AT
xWZ

)−1
.

As λN → ∞, G22 → 0K×K, implying that G11 → (AT
xAx)

−1, G12 → 02×K, and

G21 → 0K×2. We denote the convergent Γ̂λ as Γ̂∞ where

Γ̂∞ =

[
(AT

xAx)
−1 02×K

0K×2 0K×K

][
AT
xX

ZTWX

]

=

[
(AT

xAx)
−1AT

xX

0K×2

]
=

[
Γ̂x

0

]
.
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Because X̂λ = AΓ̂λ, as λN →∞,

X̂λ → AΓ̂∞ =
[
Ax WZ

] [Γ̂x

0

]
= AxΓ̂x = X̂x.

As a consequence of this result, when λN →∞ the bias term ∆Nβ vanishes because

X̂
T

x X̂x = Γ̂
T

xA
T
xAxΓ̂x

= Γ̂
T

xA
T
xAx(A

T
xAx)

−1AT
xX

= Γ̂
T

xA
T
xX

= X̂
T

xX,

and

∆N = (X̂
T

λX̂λ)
−1X̂

T

λ (X − X̂λ)

= (X̂
T

λX̂λ)
−1X̂

T

λX − I2×2

→ (X̂
T

x X̂x)
−1X̂

T

xX − I2×2

= I2×2 − I2×2

= 0.

We turn our focus to the asymptotic variance. We start by defining

P 8 = lim
N→∞

1

N

∑
i∈UN

E[wi]xix
T
i ,

as the symmetric, positive definite 2× 2 submatrix of M 1, such that

M 1 =

 P 8 lim
N→∞

1
N

E[wi]xiz
T
i

lim
N→∞

1
N

E[wi]zix
T
i lim

N→∞
1
N

E[wi]ziz
T
i

 .
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By result (53), N−1ATA
P→M 1, and therefore

1

N
AT
xAx

P→ P 8. (70)

We next refer to result (43),

1

N
AT
xX =

1

N
XTWX

P→ P 5, (71)

and combine with (70) to show

Γ̂∞ =

[(
1
N
AT
xAx

)−1 ( 1
N
AT
xX
)

0

]
P→

[
P−18 P 5

0

]
= Γ∞.

In the general β̂pspl case, Γ̂λ converges to Γ0, but here, Γ̂λ converges to Γ∞, so

for the asymptotic variance term we examine

(ΓT
∞M 1Γ∞)−1ΓT

∞M 5Γ∞(ΓT
∞M 1Γ∞)−1.

Basic matrix calculations show

ΓT
∞M 1Γ∞ = P 5P

−1
8 P 5,

a positive definite 2× 2 matrix, and since

M 5 =

 P 7

lim
N→∞

1
N

∑
i∈UN

E[wiε
2
i ]ziz

T
i

 ,
further calculations demonstrate

ΓT
∞M 5Γ∞ = P 5P

−1
8 P 7P

−1
8 P 5,
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also a 2× 2 matrix. Combining these results yields

(ΓT
∞M 1Γ∞)−1ΓT

∞M 5Γ∞(ΓT
∞M 1Γ∞)−1 = P−15 P 7P

−1
5 ,

so that under the condition stated at the beginning of the subsection, β̂pspl has the

same asymptotic variance as the classical two-stage least squares estimator with two

instrumental variables, β̂2sls.

3.6 Estimating the optimal λN

For finite samples we need to determine the λN that minimizes the MSE of β̂pspl.

To estimate this optimal λN , we refer to (69) and develop estimates for the bias and

the asymptotic variance of β̂pspl, both of which depend on λN via Γ̂λ.

The bias term is

∆Nβ = (X̂
T

λX̂λ)
−1X̂

T

λ (X − X̂λ)β

=
(

(X̂
T

λX̂λ)
−1X̂

T

λX − I2×2
)
β,

where

X̂λ = AΓ̂λ = A(ATA+ λ2ND)−1ATX.

The matrices A, D, and X are all known for the sampling design described in

Subsection 3.1.2, and β can be estimated by β̂2sls, so the estimated 2×1 bias vector

is

b̂ias =
(

(X̂
T

λX̂λ)
−1X̂

T

λX − I2×2
)
β̂2sls.

For the asymptotic variance of the estimator,

1

N
(ΓT

0M 1Γ0)
−1ΓT

0M 5Γ0(Γ
T
0M 1Γ0)

−1,
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we estimate Γ0 using Γ̂λ from the sample, and we use N−1X̂
T

λX̂λ as an estimator

for ΓT
0M 1Γ0, as suggested by the convergence result of (65). The estimation of M 5

is slightly more involved. We begin by calculating the residuals

ε̂ = y −Xβ̂2sls,

and we let ψ be an nN-vector with components {wiε̂2i }i∈s. Motivated by Assumption

3.4.6, we use

M̂ 5 =
1

N

∑
i∈UN

Ê[wiε
2
i ]bib

T
i

as the estimator for M 5, where Ê[wiε
2
i ] = Ê[wiε

2
i |xi] is calculated by regressing ψ

on X̂x. We obtain the 2× 1 vector

γ = (X̂
T

x X̂x)
−1X̂

T

xψ,

so that the fitted values of Ê[wiε
2
i ] for i ∈ UN are given by

Ê[ψ] = XUNγ.

As a result, for finite samples the 2× 2 estimated variance matrix is

V̂ =
1

N

(
1

N
X̂

T

λX̂λ

)−1
Γ̂
T

λM̂ 5Γ̂λ

(
1

N
X̂

T

λX̂λ

)−1
=

(
X̂

T

λX̂λ

)−1
Γ̂
T

λ

(∑
i∈UN

Ê[wiε
2
i ]bib

T
i

)
Γ̂λ

(
X̂

T

λX̂λ

)−1
.

As mentioned above, b̂ias and V̂ are functions of λN , and the optimal λN may

be selected as the λN that minimizes the estimated MSE for either β̂pspl parameter,

M̂SE(β̂0,pspl) = (V̂ )11 + (b̂ias)21,
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or

M̂SE(β̂1,pspl) = (V̂ )22 + (b̂ias)22.

3.6.1 Simulation study

Motivated by an informative sampling example from Pfeffermann and Sverchkov

(1999), we select N = 3000 values from a Unif(0, 1) distribution and treat them

as a fixed, known population of x’s. Also, K = 35 knot locations are determined

by equal-spacing along the interval (0, 1). Next, 5000 finite populations of y’s are

selected as

yi = 1 + xi + εi; εi ∼ N(0, 1), i = 1 . . . 3000,

so that β0 = β1 = 1. An informative Poisson sample is selected from each of the

finite populations using inclusion probabilities given by

πi =
zi

2.5 max{zi}i∈UN
,

where

zi = 5 + 5yi + 10xi + ui,

and ui ∼ Unif(0, 1). The estimators β̂ols, β̂2sls, β̂
K+2

2sls , and β̂pspl are calculated

for each sample. We also calculate the semi-parametric estimator presented by

Pfeffermann and Sverchkov (1999). This estimator is generally expected to be more

efficient than β̂2sls, and has the form

β̂pfsv = (XTWW̃
−1
X)−1XTWW̃

−1
y,

where W̃ is an nN × nN diagonal matrix whose diagonal elements are the estimated

wi’s found by regressing the sample weights on X.

To compare the five estimators, we look at the ratio of the MSE of the given
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Table 5: Ratio of MSE of β̂ols, β̂2sls, β̂
K+2

2sls , β̂pfsv to MSE of β̂pspl. Numbers greater

than one favor β̂pspl. Based on 5000 replications of informative Poisson sampling

from finite populations of size N = 3000.

Optimal λN selection β̂ols β̂2sls β̂
K+2

2sls β̂pfsv

Intercept 10.03 1.17 1.32 1.07
λN,intercept Slope 2.01 1.18 1.07 1.03

Intercept 10.82 1.27 1.42 1.16
λN,slope Slope 2.16 1.27 1.15 1.11

Intercept 10.32 1.21 1.36 1.10
(λN,intercept + λN,slope)/2 Slope 2.06 1.21 1.10 1.06

parameter estimator to the MSE of the corresponding parameter estimator using

the penalized splines method. Values larger than one favor β̂pspl. For each sample,

the optimal λN for β̂pspl is selected three different ways: first, using the λN that

minimized M̂SE(β̂0,pspl), denoted λN,intercept; second, using the λN that minimized

M̂SE(β̂1,pspl), denoted λN,slope; and third, using an average of λN,intercept and λN,slope.

The results are provided in Table 5.

For this informative sampling scheme, we find that β̂pspl easily outperforms β̂ols,

as expected. It also outperforms both of the classical two-stage least squares estima-

tors and has a smaller advantage over β̂pfsv . There is little difference in the results

based on the three options for the optimal λN selection. The results are similar when

the same simulation is conducted with different penalized spline basis functions.
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CHAPTER 4

INSTRUMENTAL VARIABLE SELECTION

UNDER INFORMATIVE SAMPLING

4.1 Introduction

In this chapter we explore the selection of instrumental variables in greater detail,

and we examine the reason for their relative usefulness under specific informative

sampling schemes. For consistency, we retain the notation of the previous chap-

ter unless otherwise noted. The collection of IV’s consisting only of the weighted

covariates is denoted Ax. This matrix of IV’s leads to the weighted least squares

estimator β̂2sls that is analyzed in Fuller (2009, Ch. 6). Under informative sampling,

β̂2sls provides a better estimator than β̂ols. We also look at the set of IV’s denoted

A and the two-stage estimator to which it leads. This collection of IV’s consists of

Ax plus the additional weighted functions of the covariates, denoted WZ. We are

interested in comparing the estimator that uses only Ax at stage one to estimators

that use additional IV’s, A, at stage one.

In the next section, we define a no-intercept model and the two two-stage esti-

mators we use in our analysis. Section 4.3 provides simulation results that contrast

the use of Ax and A as IV’s at stage one. Finally, Section 4.4 examines influen-

tial points as a possible explanation for the advantage of A in certain informative

sampling designs.
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4.2 Model designation and estimators

For simplicity, in this chapter we adopt the no-intercept model

yi = βxi + εi; εi ∼ N(0, 1), i ∈ UN ,

written in vector form as y = Xβ + ε. We let β = 1 for our simulations. When

working with i ∈ s, W is the nN×nN diagonal matrix of weights and X is an nN×1

vector of x’s. It will be convenient for us to maintain the use of capital letters for

the vectors X and Ax = WX.

The two-stage estimators we examine rely on the calculation of a vector of mod-

ified x’s at stage one. The choice of IV’s determines the form of this vector. When

only the weighted covariates Ax are used as IV’s, we denote the vector of modified

x’s as

X̂x = HxX,

where Hx = Ax(A
T
xAx)

−1AT
x is the idempotent hat matrix. The estimator of β is

written

β̂2sls = (X̂
T

x X̂x)
−1X̂

T

xy

= (X̂
T

x X̂x)
−1X̂

T

xXβ + (X̂
T

x X̂x)
−1X̂

T

x ε

= β + (X̂
T

x X̂x)
−1X̂

T

x ε, (72)

since X̂
T

x X̂x = XTHxHxX = XTHxX = X̂
T

xX.

For the additional IV’s beyond the weighted covariates Ax, we use functions of

the covariates in the form of truncated lines as defined in Chapter 3. The number of

additional IV’s is indicated by the number of knots K, and Z represents the nN×K

matrix of these truncated lines. We have
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A = W
[
X Z

]
=
[
Ax WZ

]
,

and we denote the vector of modified x’s as

X̂ = HX,

with no subscript, for the hat matrix H = A(ATA)−1AT . This estimator of β is

written

β̂add = (X̂
T
X̂)−1X̂

T
y

= (X̂
T
X̂)−1X̂

T
Xβ + (X̂

T
X̂)−1X̂

T
ε

= β + (X̂
T
X̂)−1X̂

T
ε, (73)

since X̂
T
X̂ = XTHHX = XTHX = X̂

T
X.

We use the estimator β̂add rather than the penalized spline estimator because the

smoother (hat) matrix Sλ = A(ATA+ λ2ND)−1AT for β̂pspl is not idempotent and

this leads to an additional complicating term in our expression for the estimator of β.

Not using the penalized spline estimator is of little concern in this chapter, because

we are primarily interested in exploring the reason for the potential advantage of

additional IV’s beyond Ax. We are able to adjust the number of additional IV’s

used for the β̂add estimator, which is similar to the way we vary λN to control the

approximate df , or roughness, of the fit for the penalized spline estimator.

4.3 Two informative sampling simulations

Based on the work of ten Cate (1986), we are motivated to examine the estimation

of regression parameters for an informative sampling scheme with fixed inclusion

probabilities assigned to predefined strata. Stratum inclusion is determined by the y-
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values of the data points. The three-strata example of ten Cate (1986) assigns smaller

inclusion probabilities to the two extreme strata of y-values and a larger inclusion

probability to the middle stratum. The author also explains why an estimator

equivalent to β̂2sls has advantages over β̂ols under this sampling design. We modify

his example and use only two strata, with the strata boundary defined so that smaller

y-values are in the stratum with the smaller inclusion probability. We look at two

separate simulations whose only difference is the location of the boundary. The first

simulation, referred to as high-low, places the boundary at y = 0 and the inclusion

probabilities are defined as

πi = 0.01 + (0.09)I{yi>0}, i ∈ UN .

The second simulation, referred to as extreme, places the boundary at y = −1 and

the inclusion probabilities are defined as

πi = 0.01 + (0.09)I{yi>−1}, i ∈ UN .

Our goals are to verify that β̂2sls is better than β̂ols in these two-strata sampling

designs, and to determine if β̂add provides additional improvement.

For both simulations we select N = 10, 000 values from a Unif(0,1) distribution

and treat these as a fixed, known population of x’s. Next, 1000 finite populations

of y’s are selected according to the no-intercept model of the previous section. An

informative Poisson sample is selected from each of the finite populations and the

estimators β̂ols, β̂2sls, and β̂add for K = 1, 2, and 35 are calculated for each sample.

Knot placement is based on equal spacing along the interval (0,1). We also calculate

the estimator β̂pfsv presented in Pfeffermann and Sverchkov (1999) and discussed in

the previous chapter. To compare the six estimators, we calculate the simulation

MSE of each and then divide these values by the simulation MSE of β̂2sls. Ratios
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Table 6: Ratio of MSE of β̂ols, β̂2sls, β̂add (for K = 1, 2, and 35), and β̂pfsv to

MSE of β̂2sls. Numbers greater than one favor β̂2sls. Based on 1000 replications of

informative Poisson sampling from finite populations of size N = 10, 000.

Simulation β̂ols β̂2sls β̂add,K=1 β̂add,K=2 β̂add,K=35 β̂pfsv

high-low 18.23 1.00 1.04 1.11 6.77 1.41
extreme 2.72 1.00 0.94 0.92 1.61 1.68

larger than one favor β̂2sls. The results for both examples are provided in Table 6.

We notice in both simulations that all two-stage estimators (i.e., those using IV’s)

perform better than β̂ols. We also notice that in high-low, β̂2sls outperforms all other

estimators, but in extreme, β̂2sls is outperformed by two of the β̂add estimators. In

fact, the extreme simulation verifies the results of Chapter 3, and we could use those

concepts to find an optimal λ for the β̂pspl estimator if desired. The β̂pfsv estimator

does not perform well in these two simulations when compared to the two-stage

estimators, with the exception of β̂add for K = 35 in high-low.

In this chapter, we are mainly interested in why β̂2sls is better than all β̂add esti-

mators in the high-low simulation and not in the extreme simulation. By examining

graphs (not shown) of individual realizations from each simulation, and by conduct-

ing additional unrecorded simulations with other strata boundaries, we are led to

believe that the difference in results between high-low and extreme for the two-stage

estimators depends in some (possibly complex) way on the number of large-weight

data points in the individual samples. We explore this further in the next section.

4.4 Influential points

We open this section with a third informative sampling simulation that will more

clearly demonstrate the advantage of the additional IV’s used in finding β̂add. We

call this simulation advantage. The basic design is the same as for the two examples
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Table 7: Bias, variance, MSE, and ratio of MSE of β̂ols, β̂2sls, β̂add (for K = 1, 2, and

35), and β̂pfsv to MSE of β̂2sls. Ratio numbers greater than one favor β̂2sls. Based

on 1000 replications of informative Poisson sampling from finite populations of size

N = 10, 000 for advantage simulation.

β̂ols β̂2sls β̂add,K=1 β̂add,K=2 β̂add,K=35 β̂pfsv

Bias 0.3956 0.0015 0.0041 0.0065 0.0555 0.0009
Variance 0.0060 0.0087 0.0085 0.0084 0.0076 0.0144

MSE 0.1626 0.0087 0.0085 0.0084 0.0107 0.0144
MSE Ratio 18.71 1.00 0.98 0.97 1.26 1.65

of the previous section and the only difference is the inclusion probability which is

now given by

πi =
yi + 3

80
, i ∈ UN .

This definition for the inclusion probabilities is similar to the earlier examples in the

sense that smaller y-values have smaller inclusion probabilities and larger weights.

The results of advantage, including the bias and variance components of the MSE,

are provided in Table 7.

One result from this simulation that is similar to results found in high-low and

extreme is the indication that based on MSE ratios, β̂pfsv does not perform well

compared to the two-stage estimators. For this reason, and because we are primarily

interested in studying the use of IV’s for the two-stage estimators, we omit the β̂pfsv

estimator from future discussion in this chapter.

The MSE ratios for advantage also demonstrate that β̂add outperforms β̂2sls for

some values of K. As we increase K, our fitted x-values approach the original x

values and the bias increases, indicating that the decreasing variance component

is the reason for the MSE improvement. We would like to look at closed-form

expressions for the variances of these two simple estimators in order to explain

why the variance for β̂add is smaller than the variance for β̂2sls in some informative
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sampling cases and not in others. We begin by writing β̂add as

β̂add = β̂2sls + (additional terms).

As we now demonstrate, the use of two stages unfortunately causes great com-

plexity in the expressions we seek. Because X̂x, X̂, and y are all vectors, we can

write (72) and (73) as

β̂2sls = β +
X̂

T

x ε

X̂
T

x X̂x

,

and

β̂add = β +
X̂

T
ε

X̂
T
X̂
,

where all numerators and denominators of the fractions are scalars. We use hat

matrix notation to derive an expression for β̂2sls in terms of sums over the sample.

We have

Hx = Ax(A
T
xAx)

−1AT
x

= WX(XTW 2X)−1XTW

= WX

(∑
i∈s

w2
i x

2
i

)−1
XTW ,

so that

X̂x = WX

(∑
i∈s

w2
i x

2
i

)−1
XTWX

= WX

(∑
i∈s

w2
i x

2
i

)−1(∑
i∈s

wix
2
i

)
= c1WX,

where c1 is the scalar

c1 =

∑
i∈swix

2
i∑

i∈sw
2
i x

2
i

.
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We have

X̂
T

x ε = c1X
TWε = c1

(∑
i∈s

wixiεi

)
,

and

X̂
T

x X̂x = c21X
TW 2X = c21

(∑
i∈s

w2
i x

2
i

)
,

so that by (72)

β̂2sls = β + (X̂
T

x X̂x)
−1X̂

T

x ε

= β +
c1
∑

i∈swixiεi

c21
∑

i∈sw
2
i x

2
i

= β +

∑
i∈swixiεi∑
i∈swix

2
i

.

We follow a similar process to write β̂add in a form that contains β̂2sls. We start

with the hat matrix

H = A(ATA)−1AT

=
[
Ax WZ

]([ AT
x

ZTW

] [
Ax WZ

])−1 [ AT
x

ZTW

]

=
[
Ax WZ

] [ AT
xAx AT

xWZ

ZTWAx ZTW 2Z

]−1 [
AT
x

ZTW

]

=
[
Ax WZ

] [E11 E12

E21 E22

][
AT
x

ZTW

]
= AxE11A

T
x +AxE12Z

TW +WZE21A
T
x +WZE21Z

TW ,
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where

E11 = (AT
xAx)

−1 + (AT
xAx)

−1AT
xWZE22Z

TWAx(A
T
xAx)

−1,

E12 = −(AT
xAx)

−1AT
xWZE22,

E21 = −E22Z
TWAx(A

T
xAx)

−1, and

E22 =
(
ZTW 2Z −ZTWAx(A

T
xAx)

−1AT
xWZ

)−1
=
(
ZTW 2Z −ZTWHxWZ

)−1
,

so that

H = Hx +HxWZE22Z
TWHx

−HxWZE22Z
TW −WZE22Z

TWHx +WZE22Z
TW

= Hx +HxWZE22Z
TW (Hx − I) +WZE22Z

TW (I −Hx)

= Hx −HxWZE22Z
TW (I −Hx) +WZE22Z

TW (I −Hx)

= Hx + (I −Hx)WZE22Z
TW (I −Hx) .

From this we have

X̂ = HX

= HxX + (I −Hx)WZE22Z
TW (X −HxX)

= X̂x + (I −Hx)WZE22Z
TW

(
X − X̂x

)
= X̂x + g,

where g represents the second term of the expression that depends on W , X, and

Z. Substituting into (73), we have

β̂add = β + (X̂
T
X̂)−1X̂

T
ε
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= β +
(X̂x + g)Tε

(X̂x + g)T (X̂x + g)

= β +
X̂

T

x ε+ gTε

X̂
T

x X̂x + X̂
T

xg + gTX̂x + gTg

= β +
X̂

T

x ε+ c2

X̂
T

x X̂x + c3

= β +
(
X̂

T

x ε+ c2

) 1

X̂
T

x X̂x

− c3

X̂
T

x X̂x

(
X̂

T

x X̂x + c3

)


= β +
X̂

T

x ε

X̂
T

x X̂x

+ c4

= β̂2sls + c4,

where c2 = gTy, c3 = X̂
T

xg + gTX̂x + gTg, and c4 is a complicated function of W ,

X, Z, and y. Although we now have expressions relating H and Hx, X̂ and X̂x,

and β̂add and β̂2sls, when we attempt to write these results in terms of sums over the

sample, even for the case of one additional IV beyond Ax, the expressions are very

complex.

Thus, to answer our question about the reduction in variance for the β̂add es-

timator, we take a different approach. We begin by looking at the four graphs of

Figure 6 that result from one realization of the advantage simulation. In this and

similar figures for the remainder of the chapter, we provide graphs of β̂ols, β̂2sls, and

β̂add for K = 1 and 2. In each graph of Figure 6, the solid line is y = x and the

dashed line is the estimated line for the given β̂. The plotted points are y vs. x for

β̂ols and y vs. fitted x for each two-stage estimator. The three two-stage estimators

are better predictors than β̂ols in this single realization. When we look at similar

graphs from several different simulated individual realizations we find similar results

most of the time. However, we occasionally find a result that looks like Figure 7. In
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Table 8: Bias of β̂ols, β̂2sls, and β̂add (for K = 1, 2, and 35). Slider points located

at y = −2.9 and x = 0, 0.2, 0.4, 0.6, 0.8, and 1.0. Based on 1000 replications of

informative Poisson sampling from finite populations of size N = 10, 000 for modified

advantage simulation.

Slider location β̂ols β̂2sls β̂add,K=1 β̂add,K=2 β̂add,K=35

no slider 0.40 0.00 0.00 0.01 0.06
x = 0 0.40 0.00 0.00 0.01 0.06
x = 0.2 0.39 -0.15 -0.06 -0.02 0.05
x = 0.4 0.39 -0.30 -0.06 -0.04 0.04
x = 0.6 0.38 -0.46 -0.16 -0.07 0.03
x = 0.8 0.38 -0.61 -0.42 -0.36 0.03
x = 1.0 0.37 -0.75 -0.13 -0.08 0.02

this single realization, β̂2sls is not as accurate as in Figure 6. In the β̂2sls graph of

Figure 7, we also notice the presence of a single point separate from the others in

the far lower-right corner. We refer to this circled point as a slider and we see that

it corresponds to a small y-value in the original sample of (x, y) pairs, and thus has

a small inclusion probability and a large weight. Because the two β̂add estimators

seem less effected by the slider than β̂2sls in Figure 7, we suspect that the occasional

selection of a slider-like point in the samples of the advantage simulation causes the

increase in variation of β̂2sls.

For our first informal test of this assumption we conduct four separate simula-

tions similar to the advantage simulation, except that in each realization of each

modified simulation we add one additional pre-selected slider point to the sample.

This additional “sample point” is always at y = −2.9 so that its “inclusion proba-

bility” is π = 0.1/80. We allow the x-value to change from one simulation to the

next, but the x-value remains fixed for all finite sample realizations during a given

simulation. In these simulations we are only interested in the bias of each estima-

tor. The results from the simulations at x-values of 0, 0.2, 0.4, 0.6, 0.8, and 1.0 are

provided in Table 8.
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Figure 6: Graphs from one realization of the advantage simulation. Plotted points
(nN = 459) are y vs. x for β̂ols and y vs. fitted x for each two-stage estimator. The
solid line is y = x (i.e., β = 1) and the dashed line is the estimated line for the given
β̂.
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Figure 7: Graphs from one realization of the modified advantage simulation (nN =
425). The circled point, the slider, has a small inclusion probability and a large
weight. The slider has the greatest influence on β̂2sls.
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Using the “no slider” values for comparison, we find results that verify what we

saw in the single example of Figure 7. The presence of a slider has the most obvious

effect on β̂2sls. The tabled values imply that in our original advantage simulation

whenever a truly random slider is selected into the sample, it is likely to have the

greatest effect on β̂2sls, a much smaller effect on the β̂add estimators for K = 1 and

2, and very little effect on β̂ols and β̂add for K = 35. In the advantage simulation, we

might expect to see an occasional slider-like point near the smaller values of x. At

x = 0, the slider has little or no effect on any of the estimators, and at x = 0.2 or

.04, the bias when even one additional IV is used for β̂add (i.e., K = 1) is two times

less and five times less, respectively, than the bias for β̂2sls. We do not expect to see

sliders near the larger x values in the advantage simulation, but the bias results for

x = 0.6, 0.8, or 1.0, while not as convincing as the results for the smaller x-values,

still show an advantage for β̂add over β̂2sls.

As a precaution against the possible effects of the varying column spaces of A for

the various K values, we also conduct the simulations using principal components

regression at stage one. To accomplish this, we set K = 35 and calculate the singular

value decomposition of the matrix[
Ax (I −Hx)WZ

]
to obtain the matrix U with 36 orthonormal columns. We then select the appro-

priate number of columns from U to match the number of IV’s used in the original

simulations. The numerical results are similar to those of the original simulations.

Two additional figures use Cook’s distance Di (see Cook and Weisberg 1982,

Ch. 3) as a measure of influence of individual points to explain the difference between

biases for β̂2sls and β̂add. The first, Figure 8, shows ln(Di) for each point in a single

realization of the modified advantage simulation with the slider located at x = 0.4.

The criteria for designating an observation as influential based on Cook’s distance
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depends on the problem, but Cook and Weisberg (1982, Ch. 3) suggest Di > 1 (i.e.,

ln(Di) > 0) as a general rule. In this realization the Di for the slider is very large for

β̂2sls, meaning that it has a large influence on the slope of the estimated regression

line. The value of Di for the slider is much reduced, and less than one, for both β̂add

estimators. To see why Di for the slider is so large only for β̂2sls, we look at Figure 9.

Here we have plots of x vs. weighted x in each graph, and we have added the values

of fitted x vs. weighted x using “+” symbols, where the different fitted x’s depend

on the number of IV’s used at stage one. In the β̂2sls graph, the inflexibility of the

Ax IV’s allows the x̂x-value for the slider to be very large and thus very influential

at the second stage. When additional IV’s are added, as in both β̂add cases, the

flexibility of the fit at the first stage keeps the x̂-value for the slider from becoming

dramatically larger than the other x̂-values, and thus it does not have the strong

influence at the second stage that we saw for the β̂2sls case.

This is a likely explanation for the results of the advantage simulation, because

for most of the trials β̂2sls and both β̂add estimators perform similarly, but when the

occasional extreme, large-weight data point happens to be included in the sample,

β̂2sls is effected much more than the β̂add estimators. These occasional “bad” es-

timates lead to an increased variance for β̂2sls, while not dramatically affecting its

bias. Another way to look at this is to run the original advantage simulation and

record the maximum Cook’s distance value for each estimator in each realization of

the simulation. Figure 10 shows these maximum Di values graphed vs. the estimated

β’s for the corresponding realizations. We see that a handful of realizations for the

β̂2sls estimator have large Cook’s distance values and corresponding low estimates

for β, while this is not true of the β̂add estimators.

In summary, the empirical evidence of this chapter shows that additional IV’s,

beyond the weighted covariates, sometimes help at stage one in reducing the mag-

nitude of fitted x-values for large-weight data points. This in turn reduces the
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Figure 8: Graphs from one realization of the modified advantage simulation (slider
at x = 0.4), with the natural log of Cook’s distance ln(Di) plotted vs. the index for
all nN = 425 x’s for β̂ols or vs. the index for all fitted x’s for the two-stage estimators.
The horizontal line at ln(Di) = 0 represents the threshold for influential points. In
the β̂2sls graph the slider has an actual Di = 88.6, well above the threshold of Di = 1.
In the other three graphs, all Di values, including the Di for the slider, are below
the threshold.

107



●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●●

●

●

●●

●●

●
●
●●

●

●
●

●
●
●●

●

●●●

●

●

●
●

●

●

●●

●

●
●
●

●

●

●
●

●●
●

●●
●●
●

●●●

●
●●●

●
●

●

●

●
●

●
● ●
● ●

●

●
●
●

●
●
●●

●
●
●

●●●

●●
●●●

●

●

●

●
●
●

●

●●
●

●

●
●●
●
●

●●●

●

●

●
●

●

●

●●

●●

●●●
●

●

●
●

●
●

●
●

●
●

●●
●

●

●
●

●
●

●
●

●
●

●

●●

●
●●
●●
●●

●●●

●

●

●

●

●
●●

●
●

●

●

●
●

●

●●●

●

●
●

●●●
●

●

●●
●
●●

●

●

●

●
●
●

●

●●

●●●

●

●

●
●
●●●
●

●

●
●●

●

●●

●

●

●●●
●

●

●

●●

●●
●

●
●

●

●

●
●●

●
●

●●

● ●●●
●
●

●●
●

●●

● ●

●

●●

●
●
●

●

●

●

●

●

●
●

●●

●

●

●
●
●●●
●

●●●

●

●
●●●

●

●

●●

●

●
●
●

●●●

●●

●●

●●●
●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●
●

●
●

●
●●●●

●
●

●

●
●

●

●

●●

●●

●
●

●
●

●
●●●

●●●
●
●
●

●

●●

●

●

●

●●●

●

●●●

●

●

●●

●●

●
●

●

●●

●●
●
●

●

●●
●●● ●●

●●●

●

●
●

●

●

●

●

●

●
●●●
●●

●
●

●
●

0 50 100 150 200 250 300

0
1

2
3

4
5

6

WX

X

●●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●●

●

●

●●

●●

●
●
●●

●

●
●

●
●
●●

●

●●●

●

●

●
●

●

●

●●

●

●
●
●

●

●

●
●

●●
●

●●
●●
●

●●●

●
●●●

●
●

●

●

●
●

●
● ●
● ●

●

●
●
●

●
●
●●

●
●
●

●●●

●●
●●●

●

●

●

●
●
●

●

●●
●

●

●
●●
●
●

●●●

●

●

●
●

●

●

●●

●●

●●●
●

●

●
●

●
●

●
●

●
●

●●
●

●

●
●

●
●

●
●

●
●

●

●●

●
●●
●●
●●

●●●

●

●

●

●

●
●●

●
●

●

●

●
●

●

●●●

●

●
●

●●●
●

●

●●
●
●●

●

●

●

●
●
●

●

●●

●●●

●

●

●
●
●●●
●

●

●
●●

●

●●

●

●

●●●
●

●

●

●●

●●
●

●
●

●

●

●
●●

●
●

●●

● ●●●
●
●

●●
●

●●

● ●

●

●●

●
●
●

●

●

●

●

●

●
●

●●

●

●

●
●
●●●
●

●●●

●

●
●●●

●

●

●●

●

●
●
●

●●●

●●

●●

●●●
●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●
●

●
●

●
●●●●

●
●

●

●
●

●

●

●●

●●

●
●

●
●

●
●●●

●●●
●
●
●

●

●●

●

●

●

●●●

●

●●●

●

●

●●

●●

●
●

●

●●

●●
●
●

●

●●
●●● ●●

●●●

●

●
●

●

●

●

●

●

●
●●●
●●

●
●

●
●

0 50 100 150 200 250 300

0
1

2
3

4
5

6

WX, β̂2sls
X

++++++++++
++++
+++++++++++++++++++++++
+

++++++++
+

+
++

+
+++++++++++++++++++++++++++
++++++

+
+

+++++++++++++++++++++++
+

+++++++++
+++

+++++++++++++++++++++
++

+
++++++++++++++++++++++
++

+++
++++
+++

+++
+

++++++++++++++++
++++++++++
+++
+

+++++++++++
+++

+++++++++++++++
+

+++++++++++++
++

+++
+

+

+++++++
++++

++++
+

++++++++++
+

++++++++++++
+++++++++++

+++++++
+++++++++++++++++

+++++++
++++
++++++++++++++++++++++++++++

++++
+

+
+

++++++++++++++++++
+++++
+

++++
++

+
+++++++++

+

+  =  X̂x

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●●

●

●

●●

●●

●
●
●●

●

●
●

●
●
●●

●

●●●

●

●

●
●

●

●

●●

●

●
●
●

●

●

●
●

●●
●

●●
●●
●

●●●

●
●●●

●
●

●

●

●
●

●
● ●
● ●

●

●
●
●

●
●
●●

●
●
●

●●●

●●
●●●

●

●

●

●
●
●

●

●●
●

●

●
●●
●
●

●●●

●

●

●
●

●

●

●●

●●

●●●
●

●

●
●

●
●

●
●

●
●

●●
●

●

●
●

●
●

●
●

●
●

●

●●

●
●●
●●
●●

●●●

●

●

●

●

●
●●

●
●

●

●

●
●

●

●●●

●

●
●

●●●
●

●

●●
●
●●

●

●

●

●
●
●

●

●●

●●●

●

●

●
●
●●●
●

●

●
●●

●

●●

●

●

●●●
●

●

●

●●

●●
●

●
●

●

●

●
●●

●
●

●●

● ●●●
●
●

●●
●

●●

● ●

●

●●

●
●
●

●

●

●

●

●

●
●

●●

●

●

●
●
●●●
●

●●●

●

●
●●●

●

●

●●

●

●
●
●

●●●

●●

●●

●●●
●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●
●

●
●

●
●●●●

●
●

●

●
●

●

●

●●

●●

●
●

●
●

●
●●●

●●●
●
●
●

●

●●

●

●

●

●●●

●

●●●

●

●

●●

●●

●
●

●

●●

●●
●
●

●

●●
●●● ●●

●●●

●

●
●

●

●

●

●

●

●
●●●
●●

●
●

●
●

0 50 100 150 200 250 300

0
1

2
3

4
5

6

WX, β̂add, K=1

X

+++

+

+

+

++++
+

+++
++
+

++
++
+
+

++++
+
+++
+
++++
+
+

+

+++
+

+

++

+

+

++

+

+
+
+

+

+

++
++
+

+++
+
+

+
+
+

+
+++

++
+

+
+
+

++++
+

+

+

++
++
++

+
++

+++
++

++
+

+

+

+
+

++

+

+++
+

+++
+
+

+
++

++++++
++
++
++++

+

++++++
+

+

+

+
++
++

++++
+
++
++
++++++
+
++

+

+
+

+

+

+++
+

+

+

+
++

+

+++
+
+

+
+++
+

+++
+++

+

+
+
+++
+

++
+
++

+

+

+++++++
++++

+
+

+

+

+++
++

++++++

+
+

+

+

+++

++
++

++++++

+
+

+
++

+

+

+
++

++
+
+

+

+

+

+

+
+

++

+

+
++++++
+
++

+

++++++++
++++

+
+
+

++

++

++++ +

+

+
+
++
+

++
+

+
+

++++
+

+
++

++++
+
++++
+

+

+
+

+

+

+
++

++
+
+
++++++
+++
+
++

+
++

+

+
++++

+

+++

+

+
+

+
++

+++
+
+

++
+
+

+

++
+++
+

++++

+

++
+

+

+
+

+

+
+++

+
+
+
+

+

+

+  =  X̂

●●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●●

●

●

●●

●●

●
●
●●

●

●
●

●
●
●●

●

●●●

●

●

●
●

●

●

●●

●

●
●
●

●

●

●
●

●●
●

●●
●●
●

●●●

●
●●●

●
●

●

●

●
●

●
● ●
● ●

●

●
●
●

●
●
●●

●
●
●

●●●

●●
●●●

●

●

●

●
●
●

●

●●
●

●

●
●●
●
●

●●●

●

●

●
●

●

●

●●

●●

●●●
●

●

●
●

●
●

●
●

●
●

●●
●

●

●
●

●
●

●
●

●
●

●

●●

●
●●
●●
●●

●●●

●

●

●

●

●
●●

●
●

●

●

●
●

●

●●●

●

●
●

●●●
●

●

●●
●
●●

●

●

●

●
●
●

●

●●

●●●

●

●

●
●
●●●
●

●

●
●●

●

●●

●

●

●●●
●

●

●

●●

●●
●

●
●

●

●

●
●●

●
●

●●

● ●●●
●
●

●●
●

●●

● ●

●

●●

●
●
●

●

●

●

●

●

●
●

●●

●

●

●
●
●●●
●

●●●

●

●
●●●

●

●

●●

●

●
●
●

●●●

●●

●●

●●●
●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●
●

●
●

●
●●●●

●
●

●

●
●

●

●

●●

●●

●
●

●
●

●
●●●

●●●
●
●
●

●

●●

●

●

●

●●●

●

●●●

●

●

●●

●●

●
●

●

●●

●●
●
●

●

●●
●●● ●●

●●●

●

●
●

●

●

●

●

●

●
●●●
●●

●
●

●
●

0 50 100 150 200 250 300

0
1

2
3

4
5

6

WX, β̂add, K=2

X

+++

+

+

+
++
+

+

+
++
+
+++

++
++
+
+

++
+
+
+
+
++
+
++++
+
+

+

+++
+

+

++

+

+

++

+

+
++

+

+

+
+
+++

++
++
+
+
++

+

+++
++
+

+
+
+

+
+

++
+

+

+

++
+++
+

+
++

+
++
++

++
+

+

+

+

+
++

+

+++

+

+
++
+
+

+
++

+
+

++
+

+

++
+

+
++++

+

++
++
++

+

+

+

+
++
++

++++
++
+
++
+
+
+

++
+
++
+
+

+
+

+

+
+
++

+
+

+

+
+
+

+

+++
+
+
+

++++
+++

+
++
+

+
+
++
+
+

++
+
++

+

+

+++++++
+
+++

+
+

+

+

+++

++
+

++
+++

+
+

+

+

+
++

++
++

+++
++
+

++

+
++

+

+

+
++

++
+
+

+

+

+

+

+
+

++

+

+
++++

+
+
+++
+

+++
++
+

++
+
+
+
+

+
+
+

++

++

++++ +

+

+
+++
+

++
+

+

+
++
+

+
+

+

++

++++

++++++
+

+

+

+

+

+
++

++

++
+
+++++

+++
+++

+
+
+

+

+
+

+++

+

+++

+

+

+
+
++

+++

+
+
++

++

+
++++

+
+

+
+++

+

++
+

+

+

+

+

+

+++
+

+++
+

+

+  =  X̂

●●

Figure 9: Graphs from one realization of the modified advantage simulation (slider
at x = 0.4), with x plotted vs. weighted x (nN = 425). The slider has a weighted
x equal to 320. For the three two-stage estimators, values of fitted x vs. weighted
x are also plotted using plus signs (+). The inflexibility at stage one of β̂2sls allows
for a large fitted x-value for the slider, leading to a large Di at stage two.
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Figure 10: Graphs of maximum Cook’s distance vs. estimated β for all 1000 replica-
tions of the advantage simulation, for all four estimators. The β̂2sls graph has large
maxDi’s for several of its low-end biased estimates.
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excessive influence of those data values at stage two. The complex relationship be-

tween weights, x-values, and IV’s at stage one makes it difficult to draw specific

conclusions, but the evidence suggests that for informative sampling surveys that

will possibly include extreme values with large weights, the techniques of Chapter 3

should be considered.
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CHAPTER 5

CONCLUSION

We examined two survey sampling problems in this paper. The first was the

estimation of a population mean and the second was the estimation of regression

coefficients. Both problems involved an atypical reliance on the study variable and

both problems utilized nonparametric methods in their solution.

In Chapter 2, the study variable was used in the post-stratification process. We

developed the NEPSE and demonstrated its consistency and asymptotic normality

under a superpopulation model. We also showed that the NEPSE has the same

asymptotic variance as the traditional post-stratified estimator with fixed strata.

This work provides justification for the estimation methods currently being used

by the U.S. Forest Service. Using simulations, we demonstrated the finite sample

properties of the estimator. We found that the NEPSE generally outperformed the

Horvitz-Thompson estimator, and performed similarly to the traditional PS esti-

mator. The NEPSE also generally outperformed the estimator with simple linear

regression weights, with exceptions in cases where the response variable was lin-

ear or near linear. Future work may involve more detailed examination of specific

nonparametric methods used in developing sample-fitted classification schemes.

In Chapter 3, the inclusion probabilities were a function of the study variable.

We developed an estimator for regression coefficients that uses instrumental vari-

ables and a penalized spline at stage one of a two-stage process. Unlike the ordinary

least squares estimator, the penalized spline estimator is consistent under informative
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sampling. In certain sampling situations, the penalized spline estimator outperforms

the traditional two-stage least squares estimator because of a bias/variance trade-

off. We also provided a method for estimating the optimal smoothing parameter

λN for the penalized spline estimator. In our informative sampling simulation, we

found that the penalized spline estimator significantly outperformed the ordinary

least squares estimator and the other two-stage least squares estimators. The penal-

ized spline estimator also performed slightly better than the Pfeffermann-Sverchkov

estimator.

In Chapter 4, we continued our study of the penalized spline estimator by ex-

amining the reasons for the decreased variance that often accompanied the use of

additional instrumental variables. The analytic expressions were intractable, so we

relied mainly on simulations and other tools including Cook’s distance which allowed

us to quantify the influence of the fitted x-values. In our informative sampling sim-

ulations, we found that large-weight observations often had less influence on the

estimators that utilized additional instrumental variables because of the increased

flexibility of the model at stage one.

Future work with the penalized spline estimator may involve its comparison to

other estimators for new data sets and the examination of properties that arise when

the technique is applied to more complex regression models.

112



REFERENCES

Billingsley, P. (1995). Probability and Measure (3rd ed.). New York: John Wiley

& Sons.

Blackard, J., M. Finco, E. Helmer, G. Holden, M. Hoppus, D. Jacobs, A. Lister,

G. G. Moisen, M. Nelson, R. Riemann, B. Ruefenacht, D. Salajanu, D. Wey-

ermann, K. Winterberger, T. Brandies, R. Czaplewski, R. McRoberts, P. Pat-

terson, and R. Tymcio (2008). Mapping U.S. forest biomass using nationwide

forest inventory data and moderate resolution information. Remote Sensing of

Environment 112, 1658–1677.

Breidt, F. J. and J. D. Opsomer (2008). Endogenous post-stratification in surveys:

classifying with a sample-fitted model. Annals of Statistics 36, 403–427.

Casella, G. and R. L. Berger (2002). Statistical Inference (2nd ed.). India: Cengage

Learning.

Chambers, R. L. and C. J. Skinner (Eds.) (2003). Analysis of Survey Data. Chich-

ester, U. K.: John Wiley & Sons.

Cook, R. D. and S. Weisberg (1982). Residuals and Influence in Regression. Wash-

ington, D. C.: Chapman and Hall.

Crist, E. P. and R. C. Cicone (1984). A physically-based transformation of The-

matic Mapper data - the TM Tasseled Cap. IEEE Transactions on Geoscience

and Remote Sensing GE-22, 256–263.

Czaplewski, R. L. (2010). Complex sample survey estimation in static state-space.

Gen. Tech. Rep. RMRS-GTR-239, U.S. Department of Agriculture, Forest

Service, Rocky Mountain Research Station, Fort Collins, CO.

113



Dahlke, M., F. J. Breidt, J. D. Opsomer, and I. Van Keilegom (2012). Nonpara-

metric endogenous post-stratification estimation. Statistica Sinica, (in press),

doi:10.5705/ss.2011.272.

Fan, J., N. E. Heckman, and M. P. Wand (1995). Local polynomial kernel regres-

sion for generalized linear models and quasi-likelihood functions. Journal of

the American Statistical Association 90 (429), 141–150.

Frayer, W. E. and G. M. Furnival (1999). Forest survey sampling designs: A

history. Journal of Forestry 97, 4–8.

Fuller, W. A. (2009). Sampling Statistics. Hoboken, NJ: Wiley & Sons.

Green, P. J. and B. W. Silverman (1994). Nonparametric Regression and Gener-

alized Linear Models. tylis. Washington, D. C.: Chapman and Hall.

Hausman, J. A. and D. A. Wise (1981). Stratification on endogenous variables and

estimation: the gary income maintenance experiment. In C. F. Manski and

D. McFadden (Eds.), Structural Analysis of Discrete Data with Econometric

Applications, Chapter 10, pp. 365–391. Cambridge: MIT Press.

Holt, D., T. M. F. Smith, and P. D. Winter (1980). Regression analysis of data

from complex surveys. Journal of the Royal Statistical Society, Series A 143,

474–487.

Jewell, N. P. (1985). Least squares regression with data arising from stratified

samples of the dependent variable. Biometrika 72 (1), 11–21.

Kutner, M. H., C. J. Nachtsheim, J. Neter, and W. Li (2005). Applied Linear

Statistical Models (5th ed.). New York: McGraw-Hill.

Lehmann, E. L. and G. Casella (1998). Theory of Point Estimation (2nd ed.).

New York: Springer.

McCullagh, P. and J. A. Nelder (1989). Generalized Linear Models (2 ed.). London:

114



Chapman and Hall.

McRoberts, R. E., M. D. Nelson, and D. G. Wendt (2002). Stratified estimation of

forest area using satellite imagery, inventory data, and the k-nearest neighbors

technique. Remote Sensing of Environment 82, 457–468.

Moisen, G. G. and T. S. Frescino (2002). Comparing five modelling techniques for

predicting forest characteristics. Ecological Modelling 157, 209–225.

Pfeffermann, D. and M. Sverchkov (1999). Parametric and semi-parametric es-

timation of regression models fitted to survey data. Sankhyā, Series B 61,
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