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ABSTRACT

IMPROVED ESTIMATION FOR COMPLEX SURVEYS USING MODERN

REGRESSION TECHNIQUES

In the field of survey statistics, finite population quantities are often estimated based

on complex survey data. In this thesis, estimation of the finite population total of a study

variable is considered. The study variable is available for the sample and is supplemented

by auxiliary information, which is available for every element in the finite population. Fol-

lowing a model-assisted framework, estimators are constructed that exploit the relationship

which may exist between the study variable and ancillary data. These estimators have good

design properties regardless of model accuracy.

Nonparametric survey regression estimation is applicable in natural resource surveys

where the relationship between the auxiliary information and study variable is complex and

of an unknown form. Breidt, Claeskens, and Opsomer (2005) proposed a penalized spline

survey regression estimator and studied its properties when the number of knots is fixed.

To build on their work, the asymptotic properties of the penalized spline regression estima-

tor are considered when the number of knots goes to infinity and the locations of the knots

are allowed to change. The estimator is shown to be design consistent and asymptotically

design unbiased. In the course of the proof, a result is established on the uniform conver-

gence in probability of the survey-weighted quantile estimators. This result is obtained by

deriving a survey-weighted Hoeffding inequality for bounded random variables. A variance

estimator is proposed and shown to be design consistent for the asymptotic mean squared

error. Simulation results demonstrate the usefulness of the asymptotic approximations.
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Also in natural resource surveys, a substantial amount of auxiliary information, typi-

cally derived from remotely-sensed imagery and organized in the form of spatial layers in

a geographic information system (GIS), is available. Some of this ancillary data may be

extraneous and a sparse model would be appropriate. Model selection methods are there-

fore warranted. The ‘least absolute shrinkage and selection operator’ (lasso), presented

by Tibshirani (1996), conducts model selection and parameter estimation simultaneously

by penalizing the sum of the absolute values of the model coefficients. A survey-weighted

lasso criterion, which accounts for the sampling design, is derived and a survey-weighted

lasso estimator is presented. The root-n design consistency of the estimator and a central

limit theorem result are proved. Several variants of the survey-weighted lasso estimator are

constructed. In particular, a calibration estimator and a ridge regression approximation

estimator are constructed to produce lasso weights that can be applied to several study

variables. Simulation studies show the lasso estimators are more efficient than the regres-

sion estimator when the true model is sparse. The lasso estimators are used to estimate

the proportion of tree canopy cover for a region of Utah. Under a joint design-model

framework, the survey-weighted lasso coefficients are shown to be root-N consistent for

the parameters of the superpopulation model and a central limit theorem result is found.

The methodology is applied to estimate the risk factors for the Zika virus from an epidemi-

ological survey on the island of Yap. A logistic survey-weighted lasso regression model is

fit to the data and important covariates are identified.

iii



ACKNOWLEDGMENTS

I would like to thank the Colorado State Department of Statistics faculty and graduate

students for shaping me into the statistician, researcher and teacher I am today. Dr. Jay

Breidt, my advisor, was quite instrumental in this process. He provided me with generous

research support and many times helped me get un-stuck when a problematic proof was

blocking my way. I would also like to thank Dr. Thomas Lee, my co-advisor, for allowing

me the great pleasure of working with him in Hong Kong and Davis, CA. It is Dr. Jean

Opsomer, a member of my doctoral committee, who I must thank for introducing me to

the world of survey statistics during STAT605. Also, I am grateful to both Dr. Myung-Hee

Lee and Dr. Paul Doherty for being members of my doctoral committee. I appreciated the

thought-provoking questions and commentary they both provided. I would like to thank

Dr. Duane Boes, my fellow Iowan, for coming out of retirement to teach me STAT730.

Duane taught me to not be sloppy in my work because remembering one’s indicators can

make all the difference.

Additionally, I want to acknowledge the moral and mental support of my friends and

family. I can’t give Austin enough credit for helping me finish my dissertation. He made

sure we celebrated the small victories along the way and stayed confident in my abilities

even when my confidence faltered. My step-mother, Beth, was my own personal cheerleader

throughout the process and always had a motivating pep-talk ready. I would like to thank

Beth and my father for showing more interest in statistics and my work than I would

guess they actually had. Also, I need to acknowledge my little brother, Thomas, the

mathematician, for always attempting to answer my math questions, no matter how obscure

they were. And, when I needed a break from statistics, my friends, Julie, Nick and Sara,

all provided me with the laughter and wonderful diversions I needed.

iv



This research was supported in part by the National Science Foundation (SES-0922142)

and by the Program for Interdisciplinary Mathematics, Ecology and Statistics, a National

Science Foundation IGERT grant (DGE-0221595).

v



TABLE OF CONTENTS

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Survey statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Model-assisted estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Generalized regression estimator . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Nonparametric regression estimators . . . . . . . . . . . . . . . . . . 7

1.2.3 Survey estimation and model selection . . . . . . . . . . . . . . . . . 8

2 Penalized spline regression estimator . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Derivation of the estimator . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Asymptotic mean squared error . . . . . . . . . . . . . . . . . . . . . 17

2.2.3 Mean squared error consistency . . . . . . . . . . . . . . . . . . . . . 18

2.2.4 Consistency of variance estimator . . . . . . . . . . . . . . . . . . . . 19

2.3 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

vi



2.3.1 Unequal observations between knots . . . . . . . . . . . . . . . . . . 20

2.3.2 Estimator with estimated quantiles . . . . . . . . . . . . . . . . . . . 20

2.3.3 Estimator with estimated cells totals . . . . . . . . . . . . . . . . . . 23

2.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Survey-weighted lasso estimator: a model selection and estimation method 58

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.1.2 Derivation of survey-weighted lasso and lasso regression estimator . 62

3.1.3 Selection of the penalty parameter . . . . . . . . . . . . . . . . . . . 64

3.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2.1 Design assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2.2 Design-based asymptotic results . . . . . . . . . . . . . . . . . . . . 72

3.2.3 Asymptotic results under joint design-model framework . . . . . . . 78

3.3 Extensions of the lasso estimator . . . . . . . . . . . . . . . . . . . . . . . . 81

3.3.1 Survey-weighted group lasso . . . . . . . . . . . . . . . . . . . . . . . 82

3.3.2 Survey-weighted lasso for logistic regression . . . . . . . . . . . . . . 83

3.3.3 Survey-weighted adaptive lasso . . . . . . . . . . . . . . . . . . . . . 85

3.4 Calibration estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.4.1 Ridge regression approximation . . . . . . . . . . . . . . . . . . . . . 89

3.5 Model-based estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.6 Summary of estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.7 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.7.1 Picking the model selection criterion . . . . . . . . . . . . . . . . . . 93

3.7.2 Comparing estimators . . . . . . . . . . . . . . . . . . . . . . . . . . 103

vii



3.8 Applications: United States Forest Inventory and Analysis Program . . . . 119

3.9 Analytic inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

3.9.1 Application: Centers for Disease Control and Prevention . . . . . . . 125

4 Discussion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.2 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

viii



List of Figures

3.1 Constraint regions for regression model with two covariates . . . . . . . . . 62

3.2 Boxplots of penalty parameters selected for each criterion . . . . . . . . . . 100

3.3 Comparing the inverse inclusion probabilities to the regression and calibra-

tion weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.4 Standardized coefficient paths of survey-weighted lasso for US Forest Service

data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.5 Standardized coefficient paths of survey-weighted adaptive lasso for US For-

est Service data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

3.6 Standardized coefficient paths for CDC data . . . . . . . . . . . . . . . . . . 129

ix



List of Tables

2.1 Percent relative bias of variance estimator and alternate variance estimator

when estimating the empirical variance . . . . . . . . . . . . . . . . . . . . . 26

2.2 95% confidence interval coverage for variance estimator and alternate vari-

ance estimator when sample size is small or large . . . . . . . . . . . . . . . 27

2.3 Average correlation between t̂∗y and its approximations across the mean func-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Optimal penalty parameter, gMA,opt, for the model-assisted lasso estimator . 95

3.2 Optimal penalty parameter, gMB,opt, for the model-based lasso estimator . . 96

3.3 Average occurrence of coefficients for model-assisted estimator based on gMA,opt 97

3.4 Average occurrence of coefficients for model-based estimator based on gMB,opt 98

3.5 Ratio of MSE based on each criterion and MSE based on the optimal penalty

parameter for the model-assisted estimator . . . . . . . . . . . . . . . . . . 102

3.6 Ratio of MSE based on each criterion and MSE based on the optimal penalty

parameter for the model-based estimator . . . . . . . . . . . . . . . . . . . . 103

3.7 Superpopulation models for the other study variables and their relationship

to the superpopulation model for y . . . . . . . . . . . . . . . . . . . . . . . 106

3.8 Percent relative design bias and ratio of design MSE for each estimator to

design MSE of model-assisted oracle estimator . . . . . . . . . . . . . . . . 108

3.9 Average coefficient value for the survey-weighted lasso, survey-weighted adap-

tive lasso, and the survey-weighted regression estimators when the covariate

is included in the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

x



3.10 Average occurrence of covariates in the lasso and adaptive lasso fits . . . . . 110

3.11 Average variances for weights within and across samples for the model-

assisted and design based estimators . . . . . . . . . . . . . . . . . . . . . . 114

3.12 Ratios of the design mean squared error of model-assisted estimators to the

design mean squared error of the Horvitz-Thompson estimator . . . . . . . 115

3.13 Percent relative design biases and ratios of the design mean squared error of

the estimators to the design mean squared error of the model-assisted oracle

estimator for varying degrees of informative sampling. . . . . . . . . . . . . 116

3.14 Percent relative design biases and ratios of the design mean squared error of

the estimators to the design mean squared error of the model-assisted oracle

estimator for varying degrees of correlation among the covariates . . . . . . 117

3.15 Percent relative design biases and ratios of the design mean squared error of

the estimators to the design mean squared error of the model-assisted oracle

estimator as the model variance changes . . . . . . . . . . . . . . . . . . . . 118

3.16 Mean estimates of the proportion of canopy cover, percent relative design

biases, and the ratios of the design mean squared error of the model-assisted

and Horvitz-Thompson estimators to the design mean squared error of the

full regression estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

3.17 Average occurrence of the covariates in the survey-weighted lasso and adap-

tive lasso models and the average value of the coefficients when the covariate

is included in the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

3.18 Coefficient estimates for a sample modeling tree canopy cover . . . . . . . . 125

xi



Chapter 1

Introduction

1.1 Survey statistics

Survey statistics differs from other fields of statistics because of the emphasis placed on

inference about a definable, finite populaton at a particular point in time. Here we look at

two populations: a region of semi-forested land in Utah in 2010 and the human population on

the island of Yap during a Zika outbreak. Much of our discussion centers on the descriptive

study of survey samples and in particular on estimating the population total for a study

variable, y. For the region of Utah, we are interested in estimating the percent tree canopy

cover for the region, which is defined as the percent of forest floor covered by tree crowns

when viewed aerially (Toney, Shaw, and Nelson 2008). Tree canopy cover is an important

characteristic because it is used directly in the definition of forested land. Survey samples

can also be studied analytically to draw inferences about parameters in the hypothetical

model which is assumed to have generated the finite population. In this case, the analyst

is more interested in understanding the mechanism or system which created the population

or in understanding the population over time, of which the current population is just a

snapshot. For the human population of Yap, we want to know what covariates are associated

with the probability of a person being infected with the Zika virus, a vector borne illness.

Therefore, emphasis is placed on better understanding of some underlying model and not

on a descriptive value for the finite population.

In this dissertation, we construct estimators which incorporate auxiliary information for
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both descriptive and analytic inferences. Complex survey data are increasingly augmented

by auxiliary information since this ancillary data, such as large-scale photography or other

remote sensing information, tends to be less expensive to collect and is often known for each

element of the population. For the region of Utah, along with tree canopy cover, we have

Landsat satellite bands and geographic information systems layers such as aspect and slope.

For the population of Yap, in addition to infection data, we have data from a questionnaire

that collected demographic and risk factor information. In each case, we want to use the

auxiliary information to inform on the non-sampled study variable elements.

To conduct descriptive inference, we follow the typical framework as given by Särndal,

Swensson, and Wretman (1992). For the enumerated finite population U = {1, 2, . . . , N},

we want to estimate a function of the study variable y, and we primarily focus on estimating

the total of y, ty =
∑

j∈U yj . Since conducting a census is typically too expensive and time

consuming, we assume a sample s of size n is collected according to some sampling scheme

such as stratified simple random sampling, multi-stage sampling, cluster sampling, etc. Once

a sampling scheme is chosen, we can find the sampling design, p(·), where p(s) = P (S = s),

S is a random set representing the sample, and s is the realized sample. Since the study

variable yj is collected for j ∈ s, we can estimate the finite population quantity ty with

an estimator based on the sampled values, t̂y(s). For simplicity of notation, we write this

estimator as t̂y, but it is important to note that the estimator is based on the random

quantity S. Under design-based inference, the study variable, y, is considered to be a fixed

number for each element in the population and the randomness comes from the sample-to-

sample variation induced by the sampling design p(·).

To construct estimators and to understand the properties of these estimators, we need

to know the probability that any element in the population is included in the sample.

Therefore, we define the first-order inclusion probability for element j ∈ U as πj = P (j ∈

s) =
∑

s:j∈s p(s) and the second order inclusion probability of elements j1 and j2 ∈ U as

πj1j2 = P (j1, j2 ∈ s) =
∑

s:j1,j2∈s p(s). Once a sample is obtained, we can find sample

membership indicators for each element in the population. To denote sample inclusion for

element j, let Ij = 1 if j ∈ s and 0 otherwise. This indicator has the property EpIj = P (j ∈

s) = πj where Ep(·) represents the expectation with respect to the sampling design p(·).

2



A common estimator for ty based on the sampled values and their inclusion probabilities,

{yj , πj ; j ∈ s}, is the Horvitz-Thompson estimator

t̂y,HT =
∑
j∈U

yj
Ij
πj

(1.1)

(Horvitz and Thompson 1952). The Horvitz-Thompson estimator is called a design-based

estimator because it accounts for the sampling design. It is design unbiased, a desirable

property for a survey estimator, and the design variance of the Horvitz-Thompson estimator

is

Varp
(
t̂y,HT

)
=
∑∑
j,k∈U

4jk
yj
πj

yk
πk

where 4jk = πjk − πjπk. Since the Horvitz-Thompson estimator seeks to estimate the

total of the population by means of a total over the sample, each value in the sample

is inflated by its inverse inclusion probability. This inflation can be loosely understood

as the amount of elements in the population that the sample element represents. While

the Horvitz-Thompson estimator is both intuitive and easy to calculate, it typically lacks

efficiency because it is purely design-based and does not utilize a model. If we assume

auxiliary information, which we denote by x, is available for all elements in the population,

then we can possibly gain efficiency in our estimator by predicting the non-sampled y values

with a model that relates the study variable and the auxiliary information.

1.2 Model-assisted estimation

To incorporate the relationship between x and y into the estimation of ty, we introduce

a superpopulation model and consider the finite population values {yj ; j ∈ U} to be real-

izations of the model. Denoting the superpopulation by ξ, we assume that conditional on

xj ,

yj = f(xj) + εj (1.2)
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and the errors, εj , are independent, identically distributed random variables with mean

zero and variance σ2. We utilize (1.2) under design-based inference by adopting a model-

assisted framework where the randomness still stems from the sampling design, p(s), and

not the stochastic model (1.2). Under this construction, estimators for ty are judged based

on their design properties, such as design consistency and asymptotic design unbiasedness.

In essence, model-assisted estimators should be robust to model misspecification where

robustness implies the estimators have good design properties regardless of how accurate the

assumed model is. To emphasize this point, the superpopulation model is often referred to

as the working model, which implies it is simply an estimation tool and not the foundation

for inference. The working model is utilized to increase efficiency of survey estimators.

As stated by Hansen, Madow, and Tepping (1983), we seek estimators “that for large

enough samples the validity of randomization (design-based) inference does not depend

on assumptions concerning the distribution of characteristics in the finite population from

which the sample is drawn.”

Several model-assisted estimators have been investigated, such as the ratio estimator

(Cochran (1977), Ch. 6-7), the calibration estimator (Deville and Särndal 1992), and the

generalized regression estimator (Cassel, Särndal, and Wretman 1976). In this dissertation,

we study the generalized regression estimator and its properties under different assumed

superpopulation models.

1.2.1 Generalized regression estimator

In order to understand the form and properties of the generalized regression estimator, we

first introduce the generalized difference estimator. Suppose the mean function of (1.2) can

be estimated with a function of the finite population which we denote by fU (xj ;XU ,Y U)

where XU and Y U are the matrix of covariates and vector of the study variable at the

population level, respectively. For ease of notation, write fU (xj ;XU ,Y U) = fU (xj). If the

mean function is linear, f(xj) = xT
j β, then the ordinary least squares coefficient estimates,

βU = (XT
UXU)−1XT

UY U , are appropriate estimates of the superpopulation coefficients, β,

and therefore fU (xj) = xT
j βU estimates f(xj). Once we have an estimate of f(xj), we can

4



construct the generalized difference estimator

t̂y,diff =
∑
j∈s

yj − fU (xj)

πj
+
∑
j∈U

fU (xj) (1.3)

(Särndal, Swensson, and Wretman 1992). Noting that the finite population quantity fU (xj)

is not random because it is based on census data, we can easily see the difference estimator

is design unbiased. Further, we can find the design variance of the generalized difference

estimator

Varp
(
t̂y,diff

)
=
∑∑
j,k∈U

4jk
(yj − fU (xj))

πj

(yk − fU (xk))

πk
.

As long as fU (xj) is a decent approximation for yj , j ∈ U , the variance of the difference

estimator will be smaller than the variance of the Horvitz-Thompson estimator since it is

based on residuals (yj − fU (xj)) instead of raw values (yj).

Based on our assumptions, we cannot compute fU (xj), and consequently t̂y,diff , since

they both depend on Y U and we only have Y s, the vector of study variable values for the

sample. Therefore, we must estimate fU (xj) with a sample quantity which we denote by

f̂s (xj) (= fs (xj ;Xs,Y s,Πs)). Here, Xs and Y s are the matrix of covariates and vector

of the study variable at the sample level and Πs is a diagonal matrix of the inclusion

probabilities for the sampled values. A common survey estimator for a finite population

quantity that can be written as a function of population totals is the Horvitz-Thompson

‘plug-in’ estimator where the population totals are each replaced by their Horvitz-Thompson

estimator. Returning to the linear model example, we can write the finite population

coefficient vector as

βU = (XT
UXU)−1XT

UY U

=

∑
j∈U

xjx
T
j

−1∑
j∈U

xjyj

and therefore its Horvitz-Thompson ‘plug-in’ estimator is found by replacing the totals

in
∑

j∈U xjx
T
j and

∑
j∈U xjyj with their corresponding Horvitz-Thompson estimators to
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obtain

β̂s =

∑
j∈s

xjx
T
j

πj

−1∑
j∈s

xjyj
πj

=
(
XT

sΠ−1
s Xs

)−1
XT

sΠ−1
s Y s.

Replacing the finite population quantity, fU (xj), in (1.3) with the sample quantity, f̂s (xj),

we obtain the generalized regression estimator

t̂y =
∑
j∈s

yj − f̂s(xj)
πj

+
∑
j∈U

f̂s(xj) (1.4)

(Cassel, Särndal, and Wretman 1976). The generalized difference estimator is model-

assisted because it is design unbiased and has a valid and usually efficient (in comparison to

the Horvitz-Thompson estimator) design variance regardless of the assumed superpopula-

tion model. The generalized regression estimator is not exactly design unbiased but, under a

few weak assumptions, is both asymptotically design unbiased and design consistent. These

design properties rely on the form of the estimator. Suppose f̂s(xj) is a ‘bad’ estimate for yj

in the sense that f̂s(xj) tends to be negatively biased for yj , j ∈ U . This implies the second

component of (1.4) will be negatively biased for ty. In this situation, typically f̂s(xj) ≤ yj ,

which means the first term in (1.4) will be positive so that the overall estimator, t̂y,reg is

approximately design unbiased. We can make a similar argument if f̂s(xj) tends to be

positively biased for yj , j ∈ U . If f̂s(xj) tends to be a ‘good’ (approximately unbiased)

estimator for yj then the first term in (1.4) will be small and again the overall estimator will

be ‘good’. Therefore, the first term in (1.4) is referred to as the ‘design-bias’ adjustment

because, using the design weights, it appropriately accounts for a ‘bad’ model.

An analogous model-based regression estimator is

t̃y =
∑
j∈s

yj +
∑
j∈U−s

f̃s(xj). (1.5)

In this thesis, we assume f̃s(xj) does not directly account for the sampling design because

typically in a model-based framework the inclusion probabilities are considered unnecessary

6



information (Hansen, Madow, and Tepping 1983). Continuing the linear model example,

a sample model-based estimate for the finite population coefficient vector is the ordinary

least squares estimator

β̃s =

∑
j∈s
xjx

T
j

−1∑
j∈s
xjyj (1.6)

= (XT
sXs)

−1XT
sY s. (1.7)

The estimator (1.5) fails to be model-assisted because if f̃s(xj) is a design biased estimate for

yj then (1.5) is also design biased. Inference on (1.5) relies on the accuracy of the assumed

superpopulation model. The strengths and weaknesses of model-based versus model-assisted

or design-based estimators along with the corresponding paradigms of inference have been

extensively studied (Hansen, Madow, and Tepping (1983); Särndal, Swensson, and Wretman

(1992); Smith (1994); and Gregoire (1998)). In this thesis, we primarily study model-

assisted estimators under design-based inference because we want to describe a particular

finite population without relying on the superpopulation model for accuracy of inference.

However, in chapter 3, section 3.9, we discuss analytic inference, which necessitates a model

and therefore we employ a joint design-model framework for that scenario.

For the generalized regression estimator, various parametric models have been assumed

for f(xj) and their properties are summarized in Särndal, Swensson, and Wretman (1992).

We consider (1.4) under two possible superpopulation models (1.2): a nonparametric model

and a linear model where the number of potential covariates is quite large but the true

model is sparse.

1.2.2 Nonparametric regression estimators

Since the gain in design efficiency for the generalized regression estimator does rely on the

accuracy of the working model, nonparametric models, which are more flexible and can

account for more complex model structures, have been proposed to estimate f in (1.4). In

such cases, one only needs to assume the mean function is a smooth function in x. Breidt

and Opsomer (2000) employed local polynomial regression to estimate f . At the population
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level, they fit the local polynomial regression mean function for fU (xj) in (1.3) and then

estimated fU (xj) with a survey-weighted local polynomial regression mean function f̂s (xj)

to produce the local polynomial regression estimator, a nonparametric version of (1.4).

They showed design consistency and asymptotic design unbiasedness of the estimator along

with proving asymptotic equivalence of the design mean squared error of the estimator

and the design variance of the generalized difference estimator. Additionally, they derived

a variance estimator for the design mean squared error and showed it was both design

consistent and asymptotically design unbiased for the design mean squared error. When the

true superpopulation is non-linear, the local polynomial regression estimator out-performed

its parametric counterparts.

Breidt, Claeskens, and Opsomer (2005) proposed the penalized spline regression esti-

mator where penalized splines estimate f in (1.4). As is common in the penalized spline

literature, they assumed the number and location of the knots to be fixed when studying

the asymptotic properties of the penalized spline regression estimator. In chapter 2, we con-

sider the penalized spline regression estimator of Breidt, Claeskens, and Opsomer (2005)

and look at its asymptotic properties when the locations of the knots are allowed to change

and the number of knots goes to infinity.

1.2.3 Survey estimation and model selection

In the survey setting, there is often a large number of auxiliary variables available. For

example, in natural resource inventories conducted by the United States Forest Service, the

auxiliary variables consist of multiple layers of processed remote sensing data. Because these

layers are frequently correlated and potentially do not have a significant relationship with the

variable of interest, model selection is appropriate to remove extraneous variables. The ‘least

absolute shrinkage and selection operator’ (lasso) method proposed by Tibshirani (1996)

simultaneously performs model selection and coefficient estimation by shrinking unnecessary

coefficients to zero. In a non-survey context, the lasso estimator outperforms the ordinary

least squares estimator when the true model is sparse. In chapter 3, we estimate f in

(1.4) with a survey-weighted lasso regression model and construct a survey-weighted lasso

regression estimator.
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Chapter 2

Penalized spline regression

estimator

2.1 Introduction

In this chapter, we explore the asymptotic behavior of (1.4) when f(xj) is modeled with

piece-wise penalized splines (p-splines) with a first-order difference penalty. We allow the

number of knots to increase and the location of the knots to change as N increases. In

section 2.1.1, we apply the methods of Li and Ruppert (2008) to derive the explicit form

of the finite population p-spline coefficients and then construct Horvitz-Thompson ‘plug-in’

estimates of those coefficients. We also prove the asymptotic equivalence of the proposed

estimator to the one derived by Breidt, Claeskens, and Opsomer (2005). In section 2.2.2 we

show the asymptotic design mean squared error equals the design variance of the difference

estimator, in section 2.2.3 we prove the design mean squared consistency of the estimator

and in section 2.2.4 we prove the consistency of the variance estimator for the asymptotic

design mean squared error. In section 2.3 we discuss alternate estimators and in section 2.4

we present simulation results.
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2.1.1 Derivation of the estimator

Assume xj is univariate and the superpopulation model is (1.2). Also, assume an appropri-

ate estimate of the mean function is

fU(xj) = Ĩ
T

j βU (2.1)

where Ĩj = (Ĩ1j , Ĩ2j , . . . , ĨKj)
T and Ĩij = I{κUi−1 ≤ xj < κUi} with knots {κUi}Ki=0. The

number of cells is denoted by K and let CU = K−1N where we assume CU is an integer for

simplicity. To ensure the x’s are placed evenly between knots, every CU -th x is a knot. The

finite population coefficient vector, βU , minimizes

∑
j∈U

{
yj − Ĩ

T

j β
}2

+ λ

K∑
i=2

(βi − βi−1)2

where λ, the smoothness parameter, is a fixed, positive number. The p-spline solution for

βU can be written in ‘ridge regression’ format

(
XT

UXU + λDTD
)
βU = XT

UyU (2.2)

where XU =
[
Ĩ

T

1 , Ĩ
T

2 , . . . , Ĩ
T

N

]T
, yU = (y1, y2, . . . , yN)T , and the differencing matrix, D,

satisfies

DβU =



βU2 − βU1

βU3 − βU2

...

βUK − βUK−1


.

Dividing both sides of (2.2) by CU +2λ results in ΩU = (CU + 2λ)−1
(
XT

UXU +λDTD
)

with elements

ΩU(1,1) = ΩU(K,K) = θU = (CU + 2λ)−1 (CU + λ) , (2.3)
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for 1 < i < K, ΩU(i,i) = 1, for |i− j| = 1

ΩU(i,j) = ηU = − (CU + 2λ)−1 λ, (2.4)

and for |i− j| > 1,ΩU(i,j) = 0. Following the methods of Li and Ruppert (2008), we exploit

the tri-diagonal, banded structure found in all but the first and last columns of ΩU . This

banded structure allows us to find vectors of the form

Tt(ρU) = (ρt−1
U , ρt−2

U , . . . , ρU , 1, ρU , . . . , ρ
K−t
U )

which are orthogonal to all columns of ΩU except the first, last, and t-th. Each element in

the vector Tt(ρU) contains a power of

ρU =
CU + 2λ− (C2

U + 4λCU)1/2

2λ
,

and ρU , a function of the smoothing parameter, knot size, and population size, is between

zero and one. For simplicity of notation, we suppress the dependence on U in θ, η, and ρ.

Utilizing the vectors T t(ρ), we can explicitly solve for the elements of βU without inverting

ΩU . Since T 1(ρ) and TK(ρ) are orthogonal to all but the first and last columns of ΩU ,

T 1(ρ)TΩUβU = T 1(ρ)T (CU + 2λ)−1XT
UyU and TK(ρ)TΩUβU = TK(ρ)T (CU + 2λ)−1XT

UyU

yield the first and last finite population coefficients

βU1 =
(θ + ηρ)

∑K
i=1 ρ

i−1C−1
U

∑
j∈U yj Ĩij − ρK−2 (η + θρ)

∑K
i=1 ρ

K−iC−1
U

∑
j∈U yj Ĩij{

(θ + ηρ)2 − ρ2(K−2) (η + θρ)2
}(

1 + 2λC−1
U

)
(2.5)
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and

βUK =
(θ + ηρ)

∑K
i=1 ρ

K−iC−1
U

∑
j∈U yj Ĩij − ρK−2 (η + θρ)

∑K
i=1 ρ

i−1C−1
U

∑
j∈U yj Ĩij{

(θ + ηρ)2 − ρ2(K−2) (η + θρ)2
}(

1 + 2λC−1
U

) .

(2.6)

To find the interior coefficients, where 1 < t < K, substitute (2.5) and (2.6) into

T t(ρ)TΩUβU = T t(ρ)T (CU + 2λ)−1XT
UyU

to obtain

βUt =

∑
K

i=1 ρ
|t−i|C−1

U

∑
j∈U yj Ĩij

(1 + 2ρη)
(
1 + λC−1

U

) − ρt−2 (ρθ + η)βU1 + ρK−t−1 (ρθ + η)βUK

(1 + 2ρη)
.

If the coefficient vector, βU , is known, then we can compute the p-spline fit in (2.1) and

can construct

ty,diff =
∑
j∈s

yj − fU(xj)

πj
+
∑
j∈U

fU(xj), (2.7)

the generalized difference estimator (Särndal, Swensson, and Wretman 1992). We can also

compute the design variance of the generalized difference estimator

Varp (ty,diff ) =
∑∑
j,l∈U

4jl

(yj − Ĩ
T

j βU)

πj

(yl − Ĩ
T

l βU)

πl
(2.8)

where 4jl = πjl − πjπl. Assuming the linear combination of penalized piece-wise B-splines

is a good approximation for the true model, the difference estimator will be more design

efficient than the Horvitz-Thompson estimator.

Since the study variable y is collected for the sample, not the population, we must esti-

mate (2.1), or more specifically, the finite population coefficients, βU . For each coefficient,
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βUi, i = 1, 2, . . . ,K, we propose the following Horvitz-Thompson ‘plug-in’ estimators

β̂s1 =
(θ + ηρ)

∑K
i=1 ρ

i−1C−1
U

∑
j∈U yj Ĩij

Ij
πj
− ρK−2 (η + θρ)

∑K
i=1 ρ

K−iC−1
U

∑
j∈U yj Ĩij

Ij
πj{

(θ + ηρ)2 − ρ2(K−2) (η + θρ)2
}(

1 + 2λC−1
U

) ,

β̂sK =
(θ + ηρ)

∑K
i=1 ρ

K−iC−1
U

∑
j∈U yj Ĩij

Ij
πj
− ρK−2 (η + θρ)

∑K
i=1 ρ

i−1C−1
U

∑
j∈U yj Ĩij

Ij
πj{

(θ + ηρ)2 − ρ2(K−2) (η + θρ)2
}(

1 + λC−1
U

) ,

and for 1 < t < K,

β̂st =

∑
K

i=1 ρ
|t−i|C−1

U

∑
j∈U yj Ĩij

Ij
πj

(1 + 2ρη)
(
1 + λC−1

U

) −

[
ρt−2 (ρθ + η) β̂s1 + ρK−t−1 (ρθ + η) β̂sK

]
(1 + 2ρη)

.

Each Horvitz-Thompson ‘plug-in’ estimator, β̂Ui, is design unbiased for the corresponding

finite population coefficient βUi. Incorporating the estimated mean function f̂s(xj) = Ĩ
T

j β̂U

into (1.4) produces

t̂y =
∑
j∈s

yj − Ĩ
T

j β̂s
πj

+
∑
j∈U

Ĩ
T

j β̂s, (2.9)

the penalized spline regression estimator. Since in practice the survey weights are often

applied to several study variables, it is useful to write t̂y as a weighted linear combination

of the sampled study variables

t̂y =
∑
j∈s

 1

πj
+

1

CU + 2λ

∑
j∈U

Ĩj

(
1− Ij

πj

)T

Ω−1
U

Ĩj
πj

 yj

=
∑
j∈s

wjyj . (2.10)

Since the weights are constructed independent of the study variable y, they can be applied

to other study variables.

The spline fit in Breidt, Claeskens, and Opsomer (2005) employs a truncated polynomial

basis but could be equivalently represented using the B-spline basis presented here. How-
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ever, it is important to point out that the matrix form of the estimated B-spline coefficients

would be

β̂
∗
s =

(
XT

sΠ−1
s Xs + λDTD

)−1
XT

s Π−1
s ys (2.11)

where Πs is a diagonal matrix of the inclusion probabilities for the sample. These estimates

are not equal to the proposed B-spline coefficients

β̂s =
(
XT

UXU + λDTD
)−1

XT
s Π−1

s ys. (2.12)

The method for constructing the explicit solutions for β̂s relies on the tri-diagonal, banded

structure of ΩU . The matrix Ωs = (CU + 2λ)−1
(
XT

sΠ−1
s Xs + λDTD

)
is also tri-diagonal

but no longer banded since the elements on the diagonal need not be equal. Therefore, to

find (2.11), the K by K matrix Ωs must be inverted, a calculation that becomes troublesome

as K increases. To avert this issue, we prove the asymptotic results for the estimator based

on (2.12) and show the asymptotic equivalence of N−1t̂y and

N−1t̂∗y =
1

N

∑
j∈s

yj − Ĩ
T

j β̂
∗
s

πj
+

1

N

∑
j∈U

Ĩ
T

j β̂
∗
s (2.13)

in Lemma 2.9.

In this thesis, piece-wise constant penalized splines with a first-order difference penalty

are considered. The methods of Li and Ruppert (2008) and those discussed above also can be

used to construct finite populations coefficients and their corresponding Horvitz-Thompson

‘plug-in’ estimators for higher order B-splines and higher order difference penalties.

2.2 Main results

2.2.1 Assumptions

To study the asymptotic behavior of the penalized spline regression estimator, we employ

the classical survey asymptotic framework in which nested populations, U1 ⊂ U2 ⊂ . . . ⊂

Uζ ⊂ . . ., are subscripted by an increasing sequence {ζ}. For each Uζ , the sample is selected
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according to the sampling design pζ(·). Let {Nζ}, {nζ}, and {Kζ} be sequences of positive

integers with Nζ , nζ ,Kζ →∞, as ζ →∞. Henceforth, we suppress ζ for simplicity of nota-

tion but will use N as the asymptotic index when necessary. We write the finite population

penalized spline coefficient vector as βN and the sample penalized spline coefficient vector

as β̂N to emphasis the dependence on N .

Assumptions for the asymptotic design mean squared error and for the design

mean squared consistency:

A1. Let NK−1 be an integer for all N .

A2. Assume that for all i = 1, . . . ,K, KN−1
∑

j∈UN
y2
j Ĩij ≤M .

A3. For all N , minj∈UN
πj = πN∗ > 0 and min(i,j)∈UN

πij = πN∗∗ > 0.

A4. There exists τ ≥ 0 such that maxj∈UN

∑
l∈UN :l 6=j42

jl = O(N−2τ ) and
(
π2

N∗N
1/2+τ

)−1
n =

O(1).

A5. Assume 0 < lim infN→∞NπN∗n
−1 and lim supN→∞NπN∗n

−1 <∞.

A6. Let K2N2n−3 = o(1).

A7. Assumptions on the higher order inclusion probabilities: Let Dt,N denote the set of

all distinct t-tuples (j1, j2, . . . , jt) ∈ UN .

(i) (4 distinct elements) Assume

lim
N→∞

N2 max
(j1,j2,j3,j4)∈D4,N

|Ep [(Ij1 − πj1)(Ij2 − πj2)(Ij3 − πj3)(Ij4 − πj4)]| <∞.

(ii) (3 distinct elements) Assume

lim sup
N→∞

N max
(j1,j2,j3)∈D3,N

∣∣Ep [(Ij1 − πj1)2(Ij2 − πj2)(Ij3 − πj3)
]∣∣ <∞.

(iii) (2 distinct elements) Assume

lim sup
N→∞

K max
(j1,j2)∈D2,N

∣∣Ep [(Ij1 − πj1)3(Ij2 − πj2)
]∣∣ <∞.
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(iv) Assume

lim sup
N→∞

N max
(j1,j2,j3,j4)∈D4,N

|Ep [(Ij1Ij2 − πj1j2)(Ij3Ij4 − πj3j4)]| <∞.

Additional assumptions for the design consistency of the variance estimator:

A8. Assume for all N , N−1
∑

j∈UN
y4
j <∞.

A9. Assume n2(πN∗∗N
2)−1 = O(1) and nN τπ2

N∗∗ →∞ as N →∞.

A10. There exists ξ ≥ 0 such that maxj∈UN

∑
l∈UN :l 6=j44

jl = O(N−2ξ) and n2πN∗∗N
ξ−3/2 →

∞ as N →∞.

Remark 1. Assumption (A1) ensures the x’s are placed evenly between knots. In section

2.3.1, we discuss placement of the x’s when the assumption is dropped.

Remark 2. Assumption (A2) bounds the second moment in each cell along with the pop-

ulation second moment. As the number of cells increases, it is important for the second

moment in each cell to be bounded uniformly.

Remark 3. While ensuring a measurable, probability sampling design for each N , assump-

tion (A3) allows the first and second-order inclusion probabilities to each go to zero as N

goes to infinity. This flexibility, for example, allows the sample size to be of order less than

or equal to the order of the population size for simple random sampling without replace-

ment. For the relationship between sample size and number of knots, the assumption (A6)

requires K = o(
√
n).

Remark 4. Breidt and Opsomer (2008) have shown the first part of assumption (A4) covers

non-trivial dependencies in the sampling design by finding τ for both simple random sam-

pling without replacement and single-stage cluster sampling of equally sized clusters where

the clusters are sampled with simple random sampling without replacement. This assump-

tion allows for more potential sampling designs than the usual absolute value assumption

on 4jl which can be found in (A6) of Breidt and Opsomer (2000).

Remark 5. Assumptions (A8) through (A10), which bound higher order moments and place

stricter conditions on the design and model, are utilized in the consistency of the variance

estimator.
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Remark 6. If n = cNγ where c > 0, K = o(N3/2γ−1), and 2/3 < γ ≤ 1, then all the

assumptions hold for simple random sampling without replacement.

2.2.2 Asymptotic mean squared error

In this section we show equivalence of the asymptotic mean squared error of the penalized

spline regression estimator and the variance of the difference estimator. This equivalence

implies that the dominant source of variability is from the sampling mechanism, not the

model fit.

Theorem 2.1. Under assumptions (A1) – (A7),

Ep

[√
n

N
(t̂y − ty)

]2

=
n

N2

∑∑
j,l∈UN

4jl

(yj − Ĩ
T

j βN)

πj

(yl − Ĩ
T

l βN)

πl
+ o(1). (2.14)

Proof. Write

Ep

[√
n

N
(t̂y − ty)

]2

=
n

N2
Ep

∑
j∈UN

(yj − Ĩ
T

j β̂N)

(
Ij
πj
− 1

)2

=
n

N2
Ep

∑
j∈UN

(yj − Ĩ
T

j βN)

(
Ij
πj
− 1

)
+
∑
j∈UN

Ĩ
T

j (βN − β̂N)

(
Ij
πj
− 1

)2

=
n

N2
Ep

∑
j∈UN

(yj − Ĩ
T

j βN)

(
Ij
πj
− 1

)2

+
n

N2
Ep

∑
j∈UN

Ĩ
T

j (βN − β̂N)

(
Ij
πj
− 1

)2

+
2n

N2
Ep

∑
j∈UN

(yj − Ĩ
T

j βN)

(
Ij
πj
− 1

)∑
l∈UN

Ĩ
T

l (βN − β̂N)

(
Il
πl
− 1

) .
The first term equals the variance of the difference estimator and is O(1) by Lemma 2.1 while

Lemma 2.2 implies the second term is o(1). The last term is o(1) by the Cauchy-Schwarz

Inequality.
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2.2.3 Mean squared error consistency

The results of Theorem 2.1 allow us to look at the order of the design mean squared error

of the penalized spline regression estimator directly. From these order statements, we can

obtain design mean squared consistency of the penalized spline regression estimator.

Theorem 2.2. Assume (A1) – (A7). Then N−1t̂y is design mean squared consistent in

the sense that

lim
N→∞

Ep

[
t̂y − ty
N

]2

= 0

and therefore design consistent in the sense that

lim
N→∞

P

[∣∣∣∣ t̂y − tyN

∣∣∣∣ > η

]
= 0

for all η > 0.

Proof. Theorem 2.1 implies

Ep

[
1

N
(t̂y − ty)

]2

=
1

N2

∑∑
j,l∈UN

4jl

(yj − Ĩ
T

j βN)

πj

(yl − Ĩ
T

l βN)

πl
+ o

(
n−1

)
.

For the leading term

1

N2

∑∑
j,l∈UN

4jl

(yj − Ĩ
T

j βN)

πj

(yl − Ĩ
T

l βN)

πl

≤ 1

NπN∗

∑
j∈UN

(yj − Ĩ
T

j βN)2

N
+

1

N1/2+τπ2
N∗

N2τ max
j∈UN

∑
l∈U :j 6=l

42
jl


1/2∑

j∈UN

(yj − Ĩ
T

j βN)2

N


= o(1)

by assumptions (A4) and (A5).

The mean squared error consistency also implies t̂y is asymptotically design unbiased in
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the sense that

lim
N→∞

Ep

[
t̂y − ty
N

]
= 0.

2.2.4 Consistency of variance estimator

With additional assumptions on the sampling design and model, we now prove the standard

variance estimator is consistent for the asymptotic mean squared error. In section 2.4 we

explore the performance of the variance estimator via simulation for different combinations

of sample size, population size, and number of knots.

Theorem 2.3. Under assumptions (A1)- (A10),

lim
N→∞

n Ep
∣∣v̂ar (t̂yN−1

)
−AMSE

(
t̂yN

−1
)∣∣ = 0

where

v̂ar
(
t̂yN

−1
)

=
1

N2

∑∑
i,j∈UN

(yi − Ĩ
T

i β̂N)(yj − Ĩ
T

j β̂N)
4ij

πiπj

IiIj
πij

(2.15)

and

AMSE
(
t̂yN

−1
)

=
1

N2

∑∑
i,j∈UN

(yi − Ĩ
T

i βN)(yj − Ĩ
T

j βN)
4ij

πiπj
.

Proof. Applying the triangle inequality

nEp
∣∣v̂ar (t̂yN−1

)
−AMSE

(
t̂yN

−1
)∣∣

≤ Ep

∣∣∣∣∣∣ nN2

∑∑
i,j∈UN

(yi − Ĩ
T

i βN)(yj − Ĩ
T

j βN)
4ij

πiπj

(
IiIj
πij
− 1

)∣∣∣∣∣∣
+ Ep

∣∣∣∣∣∣ nN2

∑∑
i,j∈UN

[
(yi − Ĩ

T

i β̂N)(yj − Ĩ
T

j β̂N)− (yi − Ĩ
T

i βN)(yj − Ĩ
T

j βN)
] 4ij

πiπj

IiIj
πij

∣∣∣∣∣∣
= o(1)

by Lemma 2.3 and Lemma 2.4.
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By Markov’s Inequality, Theorem 2.3 implies the variance estimator v̂ar
(
t̂yN

−1
)

is both

asymptotically design unbiased and design consistent for the asymptotic mean squared error

AMSE
(
t̂yN

−1
)
.

2.3 Extensions

In this section, we consider the penalized spline regression estimator when there are unequal

observations between knots. Additionally, we try to improve the estimator found in (2.9) by

constructing an estimator based on sample quantiles and by constructing a Hajek plug-in

estimator.

2.3.1 Unequal observations between knots

If we relax assumption (A1), we can define C∗N := bNK−1c, C∗N1 := b(N − (K − 2)C∗N)2−1c,

and C∗NK = N − (K − 2)C∗N − C∗N1 and place C∗N x′js between the interior knots, C∗1 x′js

in the first cell and C∗K x′js in the last cell. The elements ΩU(1,1) and ΩU(K,K) of ΩU are

possibly unequal. However, the rest of ΩU remains the same and vectors T t(ρ) can still be

found which are orthogonal to all columns of ΩU except the first, last and t-th columns.

Therefore, the methods of Li and Ruppert (2008) still hold for finding βN . We must,

however, distinguish between ΩU(1,1) and ΩU(K,K) when finding the explicit forms for βN and

β̂N .

2.3.2 Estimator with estimated quantiles

Each estimated coefficient in (2.12) contains terms of the form: KN−1
∑

j∈UN
yj ĨijIjπ

−1
j

but it is possible for no xj j ∈ s to be between κNi−1 and κNi. To ensure that the estimator

has no empty cells, we consider estimated coefficients based on the sample derived knots.

The matrix form of this estimator is

β̂
(2)

N =
(
XT

UXU + λDTD
)−1

X̂
T

s Π−1
s ys (2.16)
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where X̂s =
[
Î

T

j

]
j∈s

, Îj =
(
Î1j , Î2j , . . . , ÎKj

)T

, and Îij = I{κ̂Ni−1 ≤ xj < κ̂Ni} for

estimated knots {κ̂Ni}Ki=0. To find the estimated knots, let pi = iK−1 for i = 0, 1, . . . ,K.

Define the first and last estimated knots as the boundaries of x: κ̂N0 = 0 and κ̂NK = 1. For

i = 1, 2, . . . ,K − 1, let

κ̂Ni = inf{x : F̂N(x) ≥ pi} (2.17)

where F̂N(x) = N̂−1
∑

j∈U π
−1
j IjI{xj ≤ x} and N̂ =

∑
j∈U π

−1
j Ij . The resulting model-

assisted penalized spline survey regression estimator is

t̂(2)
y =

∑
j∈s

yj − Î
T

j β̂
(2)

N

πj
+
∑
j∈UN

Î
T

j β̂
(2)

N . (2.18)

To obtain design consistency of t̂
(2)
y for ty, we use the uniform convergence of the sample

quantiles κ̂Ni for the finite population quantiles

κNi = inf{x : FN(x) ≥ pi}. (2.19)

A proof of the uniform convergence of the sample quantiles is found in Lemma 2.6. The

uniform convergence of the sample quantiles requires a probability inequality for bounded,

survey-weighted quantities and therefore in Lemma 2.5 we prove a survey-weighted version

of Hoeffding’s Inequality (Hoeffding 1963). A more general case of the survey-weighted Ho-

effding’s Inequality is found in Corollary 2.1 and applied in Lemma 2.6. The following three

assumptions are used for uniform convergence of the sample quantiles and design consis-

tency of N−1t̂
(2)
y . Assumption (A12) allows us to ignore the dependence between elements

in the sample. Hoeffding (1963) shows assumption (A12) holds for simple random sampling.

It can easily be shown that (A12) also holds for stratified simple random sampling.

Additional assumptions for the design consistency of the estimator with sample-

based quantiles:

A11. Assume the probability sampling design, p(·), is a fixed size design.
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A12. For any bounded function g and constant h > 0,

Ep exp

h ∑
j∈UN

g(xj)

πj
I{j ∈ s}

 ≤ Ep∗ exp

h n∑
l=1

1

n

∑
j∈UN

g(xj)

pj
I{Rl = j}


where p∗ is the sampling design corresponding to sampling with replacement. The

random variable, Rl, represents the l-th draw from the finite population and each

draw is independent. Therefore, P (Rl = j) = pj = n−1πj , where j is the j-th element

in the finite population, UN .

A13. Let the covariate, x, have compact support on [a, b]. The finite population distri-

bution function FN(x) = N−1
∑

j∈UN
I{xj ≤ x} converges uniformly in x to F (x),

lim
N→∞

sup
x∈[a,b]

|FN(x)− F (x)| = 0, and F (x) is continuous and differentiable. Assume

the derivative of F (x), denoted by f(x), is positive on [a, b].

A14. For all N , K = O(N1/4).

Theorem 2.4. Under assumptions (A1) – (A6), (A8), (A11) – (A14), N−1t̂
(2)
y is design

consistent for N−1ty in the sense that

lim
N→∞

P

[∣∣∣∣∣ t̂(2)
y − ty
N

∣∣∣∣∣ > η

]
= 0

for all η > 0.

Proof. Write

t̂
(2)
y − ty
N

=
1

N

∑
j∈UN

(
yj − Î

T

j β̂
(2)

N

)(I{j ∈ s}
πj

− 1

)

=
1

N

∑
j∈UN

(
yj − Ĩ

T

j βN

)(I{j ∈ s}
πj

− 1

)
+

1

N

∑
j∈UN

(
Ĩj − Îj

)T
(
I{j ∈ s}

πj
− 1

)
βN

+
1

N

∑
j∈UN

(
Îj − Ĩj

)T
(
I{j ∈ s}

πj
− 1

)(
βN − β̂

(2)

N

)
+

1

N

∑
j∈UN

Ĩ
T

j

(
I{j ∈ s}

πj
− 1

)(
βN − β̂

(2)

N

)
:= AN1 +AN2 +AN3 +AN4. (2.20)
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From Theorem 2.2 we have AN1 = op(1). For the second term, we can divide it into two

parts

AN2 =
1

N

K∑
i=1

∑
j∈UN

βNi

(
I{j ∈ s}

πj
− 1

)
Ĩij −

1

N

K∑
i=1

∑
j∈UN

βNi

(
I{j ∈ s}

πj
− 1

)
Îij

:= AN21 +AN22.

Both |AN21| and |AN22| are bounded by

∣∣∣∣∣∣ 1

N

K∑
i=1

∑
j∈UN

βNi

(
I{j ∈ s}

πj
− 1

)∣∣∣∣∣∣ ≤
∣∣∣∣∣
K∑
i=1

βNi

∣∣∣∣∣
∣∣∣∣∣∣ 1

N

∑
j∈UN

(
I{j ∈ s}

πj
− 1

)∣∣∣∣∣∣
=O(K)Op(n

−1/2)

=op(1)

by assumption (A6). In Lemma 2.7, it is shown that AN3 = op(1). For the last term, we

can write in a format similar to AN3 and then apply Lemma 2.7,

|AN4| ≤max
i
|βNi − β̂(3)

Ni |
1

N

∑
j∈UN

∣∣∣∣ Ijπj − 1

∣∣∣∣ K∑
i=1

Ĩij

= max
i
|βNi − β̂(3)

Ni |
1

N

∑
j∈UN

∣∣∣∣ Ijπj − 1

∣∣∣∣
= op(1).

2.3.3 Estimator with estimated cells totals

The estimated coefficient vectors essentially boil down to linear combination of the cell

means, where the cells are based on the finite population derived knots. However, since the

sample is not necessarily divided evenly among the cells, a more accurate cell mean would

take the form of the Hajek estimator which contains a estimate of the cell total based on

the sample. Therefore, another possible estimator for the population coefficients would be

a Hajek plug-in estimator (Hájek 1971). For 1 < t < K, the estimator for the population
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coefficient is

β̂
(3)
Nt =

(1 + 2ρη)−1

{ K∑
i=1

ρ|t−i|(N̂i + 2λ)−1
∑
j∈U

yj Ĩij −
[
ρt−2 (ρθ + η) β̂

(3)
N1 + ρK−t−1 (ρθ + η) β̂

(3)
NK

]}

where β̂
(3)
N1 and β̂

(3)
NK are the Hajek plug-in estimators for the first and last cells, respectively

and N̂i =
∑

j∈s π
−1
j Ĩij is the estimated total in the i-th cell. The estimated coefficients β̂

(3)

N

are similar to the estimator in (2.11) since XT
s Π−1Xs is a diagonal matrix of estimated cell

totals N̂i. The model-assisted survey regression estimator with Hajek plug-in estimators is

t(3)
y =

∑
j∈s

yj − Ĩ
T

j β̂
(3)

N

πj
+
∑
j∈U

Ĩ
T

j β̂
(3)

N . (2.21)

The asymptotic properties of this estimator are not derived here but in section 2.4 we look

at the relationship between (2.21) and t̂∗y via simulation.

2.4 Simulation

We want to investigate the performance of (2.15) as an estimator of the true variance of

the penalized spline regression estimator. Since t̂∗y is the estimator used in practice, we use

the estimated coefficients β̂
∗
N in the variance estimator. We also consider the performance

of the alternate variance estimator presented in Särndal, Swensson, and Wretman (1989)

where π−1
j in (2.15) is replaced by the weight, wj , found in (2.10). Because we approximated

the estimator t̂∗y with the proposed estimators, (2.9), (2.18), and (2.21), it is important to

assess the adequacy of these approximations.

The survey design is stratified random sampling with three strata and simple random

sampling without replacement in each strata. For the superpopulation model found in (1.2),

we fit the mean functions of Breidt and Opsomer (2000):
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piece-wise constant: fo(x) = 2I{0≤x≤0.25} + 10I{0.25<x≤0.6} + 5I{0.6<x≤1},

linear: f1(x) = 1 + 2(x− 0.5),

quadratic: f2(x) = 1 + 2(x− 0.5)2,

bump: f3(x) = 1 + 2(x− 0.5) + exp(−200(x− 0.5)2),

jump: f4(x) = {1 + 2(x− 0.5)I{x≤0.65}}+ 0.65I{x>0.65},

cdf: f5(x) = Φ
(

1.5−2x
σ

)
where Φ is the standard normal cdf,

exponential: f6(x) = exp(−8x),

cycle1: f7(x) = 2 + sin(2πx),

cycle4: f8(x) = 2 + sin(8πx)

where x ∈ [0, 1]. For stratum one, xj ∼ Uniform(0, 0.25), for stratum two,

xj ∼ Uniform(0.25, 0.6), and for stratum three, xj ∼ Uniform(0.6, 1) with stratum popula-

tion sizes b0.2Nc, b0.35Nc, and N − b0.2Nc − b0.35Nc respectively. We collected equally

sized samples from each stratum. The characteristics of interest yij , are generated by (1.2)

with εj ∼ N(0, 0.42) for each mean function fi(·) except y5j , which are binary realizations of

the indicator y5j = I{y1k≤1.5}. Since the fitted model consists of linear combinations of piece-

wise constant splines, we have various degrees of model misspecification. The smoothing

parameter λ is chosen such that the finite population coefficient vector βN has five degrees

of freedom. Therefore, for each sample, the estimated coefficients have approximately five

degrees of freedom.

We explore the variance estimator over different combinations of n,N , and K while ensur-

ing NK−1 is an integer. Of particular interest is the performance of the variance estimator

for ‘small’, ‘medium’, and ‘large’ sample sizes. Because the asymptotic results derive what

happens when the number of knots goes to infinity as the population and sample size go

to infinity, we focus on what happens when n,N,K each grow at rates similar to those

discussed in section 2.2.1. For each combination of n, N , and K considered, we generate

a population of size N and then sample 10, 000 times from the fixed finite population to

construct the estimators for each tyi where i = 0, . . . 8. Therefore, we are able to compute

the empirical design bias, empirical design variance, and empirical design mean squared

error across the 10, 000 samples from the fixed finite population.
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To assess the performance of the variance estimator and the alternate variance estimator,

denoted by ˜varp(t̂y), we compute the percent relative design bias of the variance estimator

for the design variance

Ep[v̂arp(t̂yi)]−Varp
(
t̂yi
)

Varp
(
t̂yi
) × 100%

for ‘small’, ‘medium’, and ‘large’ sample sizes. In Table 2.1, we consider three cases: n =

40, N = 600,K = 6 and n = 100, N = 2000,K = 8 and n = 200,K = 10, N = 5000. For

the smaller sample size, the negative bias is rather significant for both variance estimators

though the alternate variance estimator performs slightly better. However, as the sample

size increases the negative bias does decrease. Though both variance estimators exhibit

negative bias, as we see in Table 2.2, the confidence interval coverage is only slightly too

narrow with average rates around 91.5% for the small sample size and around 94.5% for the

large sample size.

Table 2.1: Percent relative bias of variance estimator and alternate variance estimator when
estimating the empirical variance

Relative bias of Relative bias of alternate
variance estimator variance estimator

Mean functions n = 40 n = 100 n = 200 n = 40 n = 100 n = 200

piece-wise constant −23.82 −7.02 −5.57 −11.52 −3.17 2.02

linear −18.78 −7.80 −3.95 −18.47 −6.86 −3.48

quadratic −19.40 −5.96 −4.13 −19.17 −5.14 −3.69

bump −20.48 −7.66 −4.32 −19.43 −5.89 −3.51

jump −15.62 −7.94 −2.97 −15.14 −6.84 −2.46

cdf −15.93 −8.26 −5.08 −14.52 −7.65 −2.73

exponential −16.48 −7.76 −1.52 −16.03 −6.88 −1.04

cycle1 −17.25 −5.48 −5.27 −16.43 −4.08 −4.55

cycle4 −18.18 −6.46 −4.67 −15.69 −3.38 −2.79

To assess the effect of model misspecification on the estimators, we compute the percent

relative design bias

Ep[t̂yi ]− tyi
tyi

× 100%
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Table 2.2: 95% confidence interval coverage for variance estimator and alternate variance
estimator when sample size is small or large

CI CI Coverage using
Coverage alternate variance estimator

Mean functions n = 40 n = 100 n = 200 n = 40 n = 100 n = 200

piece-wise constant 90.51 91.98 93.77 93.22 92.79 94.81

linear 91.19 93.40 94.25 91.16 93.40 94.38

quadratic 90.92 93.92 94.25 90.91 93.98 94.34

bump 90.36 93.70 94.30 90.27 93.95 94.42

jump 91.37 93.47 94.11 91.39 93.77 94.20

cdf 90.35 90.09 94.46 90.64 91.14 95.09

exponential 91.64 93.51 94.70 91.73 93.57 94.75

cycle1 91.53 94.03 94.17 91.79 94.22 94.26

cycle4 90.99 93.82 94.31 91.20 94.24 94.55

for i = 0, . . . , 9. For different combinations of n,N, andK, even small n and averaging across

mean functions, the percent relative design bias is less than 2% for all estimators except

t̂y. The bias of estimator t̂y, averaging across mean functions, does decrease as sample size

decreases with values of −7.30%, −3.08%, and −1.39% for the ‘small’, ‘medium’, and ‘large’

sample sizes respectively. To assess the difference between the estimator used in practice,

t̂∗y, and the approximations presented in this thesis, we computed the pairwise correlations.

The average correlations across mean functions are given in Table 2.3. The approximations

given in section 2.3 are more closely correlated with t̂∗y but the correlation with t̂y increases

as the sample size increases.

Table 2.3: Average correlation between t̂∗y and its approximations across the mean functions

Correlations by sample size

Approximate estimators n = 40 n = 100 n = 200

t̂y 0.736 0.865 0.924

t̂
(2)
y 0.925 0.961 0.979

t̂
(3)
y 0.952 0.956 0.963
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2.5 Appendix A

Lemma 2.1. Under assumptions (A1) – (A5),

n

N2
Ep

∑
j∈UN

(yj − Ĩ
T

j βN)

(
Ij
πj
− 1

)2

= O(1).

Proof. Following the method of Breidt and Opsomer (2008)

n

N2
Ep

∑
j∈UN

(yj − Ĩ
T

j βN)

(
Ij
πj
− 1

)2

=
n

N2

∑
j∈UN

(1− πj)
(yj − Ĩ

T

j βN)2

πj
+

n

N2

∑∑
j 6=l∈UN

4jl

(yj − Ĩ
T

j βN)

πj

(yl − Ĩ
T

l βN)

πl

≤ n

NπN∗

∑
j∈UN

(yj − Ĩ
T

j βN)2

N
+

n

N2π2
N∗

∑∑
j 6=l∈UN

42
jl


1/2∑∑

j 6=l∈UN

(yj − Ĩ
T

j βN)2(yl − Ĩ
T

l βN)2


1/2

≤ n

NπN∗

∑
j∈UN

(yj − Ĩ
T

j βN)2

N
+

n

N2π2
N∗

N max
j∈UN

∑
l∈UN :j 6=l

42
jl


1/2∑

j∈UN

(yj − Ĩ
T

j βN)2


=

n

NπN∗

∑
j∈UN

(yj − Ĩ
T

j βN)2

N
+

n

N1/2+τπ2
N∗

N2τ max
j∈UN

∑
l∈UN :j 6=l

42
jl


1/2∑

j∈UN

(yj − Ĩ
T

j βN)2

N

 .

(2.22)

By assumptions (A3) – (A5), (2.22) is bounded as long as N−1
∑
j∈UN

(yj − Ĩ
T

j βN)2 = O(1).

Assumption (A2) bounds the second moment of y. We must still bound max
i:i=1,2,...,K

β2
Ni.

Each coefficient has a similar form, therefore we can consider the first coefficient, β2
N1.
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Since θ = 1 + o(1), η = o(1) and 0 < ρ < 1, the square of (2.5) can be written as

β2
N1 =

(1 + o(1))
K∑
i=1

ρi−1K

N

∑
j∈UN

yj Ĩij − o(1)
K∑
i=1

ρK−i
K

N

∑
j∈UN

yj Ĩij

2

=(1 + o(1))

 K∑
i=1

ρi−1K

N

∑
j∈UN

yj Ĩij

2

− o(1)


 K∑
i=1

ρi−1K

N

∑
j∈UN

yj Ĩij

 K∑
i=1

ρK−i
K

N

∑
j∈UN

yj Ĩij

+

 K∑
i=1

ρK−i
K

N

∑
j∈UN

yj Ĩij

2
≤(1 + o(1))M2

(
1− ρK

1− ρ

)2

− o(1)2M2

(
1− ρK

1− ρ

)2

(2.23)

=O(1)

taking advantage of the uniform bound in (A2). The other squared coefficients can be

bounded uniformly in i by similar methods. Therefore, (2.22) is O(1).

Lemma 2.2. Under assumptions (A1) -(A7),

n

N2
E

∑
j∈UN

Ĩ
T

j (βN − β̂N)

(
Ij
πj
− 1

)2

= O(1).

Proof. Since Ĩ
T

j is a vector of indicators, which specify the placement of the j-th observation,

write

n

N2
E

∑∑
j1,j2∈UN

(βN − β̂N)T Ĩj1 Ĩ
T

j2(βN − β̂N)

(
Ij1
πj1
− 1

)(
Ij2
πj2
− 1

)
=

n

N2
E

 K∑
t1=1

K∑
t2=1

(βNt1
− β̂Nt1

)(βNt2
− β̂Nt2

)
∑∑
j1,j2∈UN

Ĩt1j1 Ĩt2j2

(
Ij1
πj1
− 1

)(
Ij2
πj2
− 1

) .
(2.24)

The difference between each coefficient and the corresponding estimator is of the form:

βN1 − β̂N1 =

K∑
i=1

ρi−1Di +RN1 (2.25)
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βNK − β̂NK =

K∑
i=1

ρK−iDi +RNK (2.26)

βNt − β̂Nt =
K∑
i=1

ρ|t−i|Di − ρt−1
(
βN1 − β̂N1

)
− ρK−t

(
βNK − β̂NK

)
+RNt (2.27)

where Di = KN−1
∑

j∈UN
yj Ĩij(1 − Ijπ−1

j ) and RN1, RNK , and RNt are lower order terms.

Substituting (2.25), (2.26), and (2.27) into (2.24) while excluding the lower order terms, we

find

(2.24) =
n

N2
E

cK1

K∑
i1=1

K∑
i2=1

ρi1−1ρi2−1Di1Di2

∑∑
j1,j2∈UN

Ĩ1j1 Ĩ1j2

(
Ij1
πj1
− 1

)(
Ij2
πj2
− 1

)
+

+ cK2

K∑
i1=1

K∑
i2=1

ρK−i1ρK−i2Di1Di2

∑∑
j1,j2∈UN

ĨKj1 ĨKj2

(
Ij1
πj1
− 1

)(
Ij2
πj2
− 1

)

+ cK3

K∑
i1=1

K∑
i2=1

ρi1−1ρK−i2Di1Di2

∑∑
j1,j2∈UN

Ĩ1j1 ĨKj2

(
Ij1
πj1
− 1

)(
Ij2
πj2
− 1

)

+ cK4

K−1∑
t=2

K∑
i1=1

K∑
i2=1

ρi1−1ρ|t−i2|Di1Di2

∑∑
j1,j2∈UN

Ĩ1j1 Ĩtj2

(
Ij1
πj1
− 1

)(
Ij2
πj2
− 1

)

+ cK5

K−1∑
t=2

K∑
i1=1

K∑
i2=1

ρK−i1ρ|t−i2|Di1Di2

∑∑
j1,j2∈UN

ĨKj1 Ĩtj2

(
Ij1
πj1
− 1

)(
Ij2
πj2
− 1

)

+ cK6

K−1∑
t1=2

K−1∑
t2=2

K∑
i1=1

K∑
i2=1

ρ|t1−i1|ρ|t2−i2|Di1Di2

∑∑
j1,j2∈UN

Ĩt1j1 Ĩt2j2

(
Ij1
πj1
− 1

)(
Ij2
πj2
− 1

)
:=

n

N2
E[aN ] +

n

N2
E[bN ] +

n

N2
E[cN ] +

n

N2
E[dN ] +

n

N2
E[eN ] +

n

N2
E[fN ]

where cKm ≤ 4 for m = 1, 2, . . . , 6. Looking more closely at the nN−2E[fN ], which has the

largest order of terms, and plugging in Di1 and Di2 , we see

n

N2
E[fN ] =

n

N2
E

[
cK6

K−1∑
t1=2

K−1∑
t2=2

K∑
i1=1

K∑
i2=1

ρ|t1−i1|ρ|t2−i2| (2.28)

× K2

N2

∑∑∑∑
j1,j2,j3,j4∈UN

yj3yj4 Ĩt1j1 Ĩt2j2 Ĩi1j3 Ĩi2j4
πj1πj2πj3πj4

(Ij1 − 1) (Ij2 − 1) (Ij3 − 1) (Ij4 − 1)

]
.

Let At,N denote the set of all distinct t-tuples from the set {1, 2, . . . ,K}. Ignoring the
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second group of summations and their dependence on t1, t2, i1 and i2, the order of the first

part can be bounded

K−1∑
t1=2

K−1∑
t2=2

K∑
i1=1

K∑
i2=1

ρ|t1−i1|ρ|t2−i2| = O(K2) (2.29)

in three cases:

1. t1, t2, i1, i2 ∈ A4,N .

2. t1 = i1 and t1, t2, i2 ∈ A3,N (or t2 = i2 and t1, t2, i1 ∈ A3,N).

3. t1 = i1, t2 = i2 and t1, t2 ∈ A2,N .

The order of the first case is found by solving two geometric series,

K−1∑
t1=2

K−1∑
t2=2

K∑
i1=1

K∑
i2=1

t1,t2,i1,i2∈A4,N

ρ|t1−i1|ρ|t2−i2| =

K−1∑
t=2

K∑
i=1

t6=i

ρ|t−i|


2

=

[
K−1∑
t=2

ρ

(
t−2∑
i=0

ρi +

K−t−1∑
i=0

ρi

)]2

= ρ2

[
K−1∑
t=2

(
1− ρt−1

1− ρ
+

1− ρK−t

1− ρ

)]2

=
ρ2

(1− ρ)2

[
K−1∑
t=2

2− ρt−1 − ρK−t
]2

=
ρ2

(1− ρ)2

[
2(K − 2)− 2ρ

K−3∑
t=0

ρt

]2

=
ρ2

(1− ρ)2

[
2(K − 2)− 2ρ(1− ρK−2)

1− ρ

]2

= O(K2).

The order of the second case is found similarly and the third is trivial. For other com-

binations of t1, t2, i1 and i2, (2.29) is o(K2), therefore, we shall focus on these three

cases, which have the highest order. In the first case, the four distinct cells imply that
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(j1, j2, j3, j4) ∈ D4,N ,

n

N2
E

[
cK6

K−1∑
t1=2

K−1∑
t2=2

K∑
i1=1

K∑
i2=1

(t1,t2,i1,i2)∈A4,N

ρ|t1−i1|ρ|t2−i2|
K2

N2

∑∑∑∑
(j1,j2,j3,j4)∈D4,N

yj3yj4 Ĩt1j1 Ĩt2j2 Ĩi1j3 Ĩi2j4
πj1πj2πj3πj4

× (Ij1 − 1) (Ij2 − 1) (Ij3 − 1) (Ij4 − 1)

]

≤ n

N2
cK6

K−1∑
t1=2

K−1∑
t2=2

K∑
i1=1

K∑
i2=1

(t1,t2,i1,i2∈A4,N )

ρ|t1−i1|ρ|t2−i2|
K2

N2

∑∑∑∑
(j1,j2,j3,j4)∈D4,N

|yj3 ||yj4 |Ĩt1j1 Ĩt2j2 Ĩi1j3 Ĩi2j4
πj1πj2πj3πj4

×|E [(Ij1 − 1) (Ij2 − 1) (Ij3 − 1) (Ij4 − 1)] |

≤ n

N2π4
N∗
cK6

K−1∑
t1=2

K−1∑
t2=2

K∑
i1=1

K∑
i2=1

(t1,t2,i1,i2)∈A4,N

ρ|t1−i1|ρ|t2−i2|
K

N

∑
j3

|yj3 |Ĩi1j3
K

N

∑
j3

|yj4 |Ĩi1j4
∑
j1

Ĩt1j1
∑
j2

Ĩt2j2

× max
(j1,j2,j3,j4)∈D4,N

|E [(Ij1 − 1) (Ij2 − 1) (Ij3 − 1) (Ij4 − 1)] |

≤ n

N2π4
N∗
cK6

K−1∑
t1=2

K−1∑
t2=2

K∑
i1=1

K∑
i2=1

(t1,t2,i1,i2)∈A4,N

ρ|t1−i1|ρ|t2−i2|M2N
2

K2

× max
(j1,j2,j3,j4)∈D4,N

|E [(Ij1 − 1) (Ij2 − 1) (Ij3 − 1) (Ij4 − 1)] |

≤ n

N2π4
N∗
c∗K6 (2.30)

where c∗K6 = O(1) by (A7i). Assumption (A6) implies (2.30) goes to zero as N → ∞. For

the second case, where we have three distinct cells, either all the elements are distinct or

only three elements are distinct (e.g. j1 = j3). If all elements are distinct, the computations

are similar to above. If only three are distinct, assumption (A7ii) ensures the term goes

to zero. For case three, where we have two distinct cells, we could have two, three or

four distinct elements. For the case where only two elements are distinct, without loss of

generality assume j1 = j3 and j2 = j4 where j1 6= j2. No assumptions on the higher order
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inclusion probabilities are necessary since

n

N2

[
cK6

K−1∑
t1=2

K−1∑
t2=2

(t1,t2)∈A2,N

K2

N2

∑∑
j1 6=j2∈UN

yj1yj2 Ĩt1j1 Ĩt2j2
π2
j1
π2
j2

Ep (Ij1 − 1)2 (Ij2 − 1)2

]

≤ n

N2π4
N∗

(K − 2)2M24

= O

(
nK2

N2π4
N∗

)
= o(1) (2.31)

by (A6). Following similar arguments, nN−2E[aN ], nN−2E[bN ], nN−2E[cN ], nN−2E[dN ],

and nN−2E[eN ] each converge to zero.

Lemma 2.3. Under assumptions (A1) – (A10),

lim
N→∞

Ep

∣∣∣∣∣∣ nN2

∑∑
i,j∈UN

(yi − Ĩ
T

i βN)(yj − Ĩ
T

j βN)
4ij

πiπj

(
IiIj
πij
− 1

)∣∣∣∣∣∣ = 0.

Proof. Applying the Cauchy-Schwarz Inequality

Ep

∣∣∣∣∣∣ nN2

∑∑
i,j∈UN

(yi − Ĩ
T

i βN)(yj − Ĩ
T

j βN)
4ij

πiπj

(
IiIj
πij
− 1

)∣∣∣∣∣∣
≤

Ep
 n

N2

∑∑
i,j∈UN

(yi − Ĩ
T

i βN)(yj − Ĩ
T

j βN)
4ij

πiπj

(
IiIj
πij
− 1

)2
1/2

=

Ep
 n

N2

∑
i∈UN

(yi − Ĩ
T

i βN)2 (1− πi)
π2
i

(Ii − πi)

+
n

N2

∑∑
i 6=j∈UN

(yi − Ĩ
T

i βN)(yj − Ĩ
T

j βN)
4ij

πiπj

(
IiIj
πij
− 1

)2
1/2
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=

{
Ep

n2

N4

∑∑
i,k∈UN

(yi − Ĩ
T

i βN)2(yk − xT
kβN)2 (1− πi)(1− πk)

π2
i π

2
k

(Ii − πi) (Ik − πk)

+ Ep
2n2

N4

∑∑∑
i 6=j,k∈UN

(yi − Ĩ
T

i βN)(yj − Ĩ
T

j βN)(yk − xT
kβN)24ij(1− πk)

πiπjπ2
kπij

(Iij − πij) (Ik − πk)

+ Ep
n2

N4

∑∑∑∑
i 6=j,k 6=l∈UN

(yi − Ĩ
T

i βN)(yj − Ĩ
T

j βN)(yk − xT
kβN)(yl − Ĩ

T

l βN)
4ij

πiπjπij

4kl

πkπlπkl

× (IiIj − πij) (IkIl − πkl)
}1/2

:= {aN1 + aN2 + aN3}1/2 .

For the first term,

aN1 =

n2

N4

∑
i∈UN

(yi − Ĩ
T

i βN)4 (1− πi)3

π3
i

+
n2

N4

∑∑
i 6=k∈UN

(yi − Ĩ
T

i βN)2(yk − Ĩ
T

kβN)2 (1− πi)(1− πk)4ik

π2
i π

2
k

≤ n2

N3π3
N∗

∑
i∈UN

N−1(yi − Ĩ
T

i βN)4 +
n2

N4π4
N∗

∑∑
i 6=k∈UN

(yi − Ĩ
T

i βN)4(yk − Ĩ
T

kβN)4


1/2

×

∑∑
i 6=k∈UN

42
ik


1/2

=
n2

N3π3
N∗

∑
i∈UN

N−1(yi − Ĩ
T

i βN)4 +
n2

N5/2+τπ4
N∗

∑
i∈UN

N−1(yi − Ĩ
T

i βN)4

N2τmax
∑

i 6=k∈UN

42
ik


1/2

= O

(
1

n

)

by assumptions (A4) and (A5) as long as
∑
i∈UN

N−1(yi − Ĩ
T

i βN)4 = O(1). The assumption

(A8) and an argument similar to (2.23) for maxi β
4
Ni bounds the fourth moment term. The
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last term expands into components with two, three, or four distinct elements,

aN3 =
n2

N4

∑∑
i 6=j∈UN

(yi − Ĩ
T

i βN)2(yj − Ĩ
T

j βN)2
42
ij(1− πij)
π2
i π

2
jπij

+
4n2

N4

∑∑∑
(i,j,l)∈D3,N

(yi − Ĩ
T

i βN)2(yj − Ĩ
T

j βN)(yl − Ĩ
T

l βN)
4ij4il

π2
i πjπlπijπil

E (IiIj − πij) (IiIl − πil)

+
n2

N4

∑∑∑∑
(i,j,k,l)∈D4,N

(yi − Ĩ
T

i βN)(yj − Ĩ
T

j βN)(yk − xT
kβN)(yl − Ĩ

T

l βN)
4ij

πiπjπij

4kl

πkπlπkl

× E (IiIj − πij) (IkIl − πkl)

:= aN31 + aN32 + aN33.

Utilizing the bounded fourth moments and an additional condition on dependencies,

aN31 ≤
n2

N4π4
N∗πN∗∗

∑∑
i 6=j∈UN

(yi − Ĩ
T

i βN)2(yj − Ĩ
T

j βN)242
ij

≤ n2

N4π4
N∗πN∗∗

∑∑
i 6=j∈UN

(yi − Ĩ
T

i βN)4(yj − Ĩ
T

j βN)4


1/2∑∑

i 6=j∈UN

44
ij


1/2

≤ n2

N5/2+ξπ4
N∗πN∗∗

∑
i∈UN

(yi − Ĩ
T

i βN)4

N

N2ξmax
∑

i 6=j∈UN

44
ij


1/2

O

(
1

N ξ−3/2n2πN∗∗

)
= o(1)

by assumption (A10). Bounding each element of aN32 by its absolute value and then applying
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the Cauchy-Schwarz Inequality,

aN32 ≤
4n2

N4π4
N∗π

2
N∗∗

∑∑∑
(i,j,l)∈D3,N

(yi − Ĩ
T

i βN)2
∣∣∣yj − ĨT

j βN

∣∣∣ ∣∣∣yl − ĨT

l βN

∣∣∣ |4ij |

× |4il| |E (IiIj − πij) (IiIl − πil)|

≤ 16n2

N4π4
N∗π

2
N∗∗

∑∑∑
(i,j,l)∈D3,N

(yi − Ĩ
T

i βN)4
(
yj − Ĩ

T

j βN

)2 (
yl − Ĩ

T

l βN

)2


1/2

×

∑∑∑
(i,j,l)∈D3,N

42
ij42

il


1/2

≤ 16n2

N4π4
N∗π

2
N∗∗

{∑
i∈U

(yi − Ĩ
T

i βN)4

}Nmax
i∈U

∑
j∈U
42
ij

2
1/2

≤ 16n2

N5/2+2τπ4
N∗π

2
N∗∗

{∑
i∈U

(yi − Ĩ
T

i βN)4

N

}
N2τmax

i∈U

∑
j∈U
42
ij

=O

(
1

N τnπ2
N∗∗

)
=o(1)

by assumption (A9). Employing similar methods and assumption (A7iv),

aN33 ≤
n2

N3+2τπ4
N∗π

2
N∗∗

[
N max

(i,j,k,l)∈D4,N

|Ep [(IiIj − πij)(IkIl − πkl)]|
]

×
∑
j∈UN

N−1(yj − Ĩ
T

j βN)4

N2τmax
i∈U

∑
j∈U
42
ij


= O

(
n2

N3+2τπ4
N∗π

2
N∗∗

)
= O

(
N−1/2

)

by assumptions (A4), (A5), and (A9). Finally, the term aN2 → 0 as N → ∞ by Cauchy-

Schwarz Inequality.
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Lemma 2.4. Under assumptions (A1) – (A10),

lim
N→∞

Ep

∣∣∣∣∣∣ nN2

∑∑
i,j∈UN

[
(yi − Ĩ

T

i β̂N)(yj − Ĩ
T

j β̂N)− (yi − Ĩ
T

i βN)(yj − Ĩ
T

j βN)
] 4ij

πiπj

IiIj
πij

∣∣∣∣∣∣ = 0.

Proof. Write

Ep

∣∣∣∣∣∣ nN2

∑∑
i,j∈UN

[
(yi − Ĩ

T

i β̂N)(yj − Ĩ
T

j β̂N)− (yi − Ĩ
T

i βN)(yj − Ĩ
T

j βN)
] 4ij

πiπj

IiIj
πij

∣∣∣∣∣∣
= Ep

∣∣∣∣∣∣ nN2

∑∑
i,j∈UN

[
2(yi − βT

N Ĩi)Ĩ
T

j (βN − β̂N) + (βN − β̂N)T ĨiĨ
T

j (βN − β̂N)
] 4ij

πiπj

IiIj
πij

∣∣∣∣∣∣
≤ Ep

∣∣∣∣∣∣ nN2

∑∑
i,j∈UN

2(yi − βT
N Ĩi)Ĩ

T

j (βN − β̂N)
4ij

πiπj

IiIj
πij

∣∣∣∣∣∣
+ Ep

∣∣∣∣∣∣ nN2

∑∑
i,j∈UN

(βN − β̂N)T ĨiĨ
T

j (βN − β̂N)
4ij

πiπj

IiIj
πij

∣∣∣∣∣∣
:= bN1 + bN2.

Define the vector gN =
(
|βNo − β̂No|, |βN1 − β̂N1|, . . . , |βNK − β̂NK |

)T

, which is the element-

wise absolute value of the vector βN − β̂N . Also define the matrix

HN =
n

N2

∑∑
i,j∈UN

ĨiĨ
T

j

|4ij |
πiπjπij

.

Then we can bound the term, bN2,

bN2 = Ep

∣∣∣∣∣∣(βN − β̂N)T

 n

N2

∑∑
i,j∈UN

ĨiĨ
T

j

4ij

πiπj

IiIj
πij

 (βN − β̂N)

∣∣∣∣∣∣
≤ Ep (gT

NHNgN) (2.32)

since IiIj ≤ 1. By a property of quadratic forms,

(2.32) = Tr {HNvarp (gN)}+ {Ep(gN)}T HN {Ep(gN)}

:= bN21 + bN22.
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We can bound the variance element-wise by

varp (gN) = Ep [gNg
T
N ]− [Ep(gN)] [Ep(gN)]T ≤ 2QN (2.33)

where QN is a K×K matrix with elements QNij =
{
Ep(βNi − β̂Ni)

2Ep(βNj − β̂Nj)
2
}1/2

. To

bound each element ofQN , plug (2.25), (2.26), and (2.27) into Ep(βNt−β̂Nt)
2 for 1 < t < K,

Ep(βNt − β̂Nt)
2

=

[
K∑
i1=1

K∑
i2=1

ρ|t−i1|ρ|t−i2| − 2ρt−1
K∑
i1=1

K∑
i2=1

ρi1−1ρ|t−i2| − 2ρK−t
K∑
i1=1

K∑
i2=1

ρK−i1ρ|t−i2|

+ 2ρK−1
K∑
i1=1

K∑
i2=1

ρi1−1ρK−i2 + ρ2(t−1)
K∑
i1=1

K∑
i2=1

ρi1−1ρi2−1

+ρ2(K−t)
K∑
i1=1

K∑
i2=1

ρK−i1ρK−i2

]
× K2

N2

∑∑
j1,j2∈UN

yj1yj2
Ĩi1j1 Ĩi2j2
πj1πj2

4j1j2 +R∗Nt (2.34)

=

K∑
i=1

f(ρ, t, i, i)
K2

N2

∑
j∈UN

y2
j

Ĩij(1− πj)
πj

+

K∑
i=1

f(ρ, t, i, i)
K2

N2

∑∑
j1 6=j2∈UN

yj1yj2
Ĩij1 Ĩij2
πj1πj2

4j1j2

+
K∑
i1=1

K∑
i2=1

i1 6=i2

f(ρ, t, i1, i2)
K2

N2

∑∑
j1 6=j2∈UN

yj1yj2
Ĩi1j1 Ĩi2j2
πj1πj2

4j1j2 +R∗Nt (2.35)

where f(ρ, t, i1, i2) = ρ|t−i1|ρ|t−i2|−2ρt−1ρi1−1ρ|t−i2|−2ρK−tρK−i1ρ|t−i2|+2ρK−1ρi1−1ρK−i2+

ρ2(t−1)ρi1−1ρi2−1 + ρ2(K−t)ρK−i1ρK−i2 .
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(2.35) ≤20M
K

NπN∗
+

K∑
i=1

f(ρ, t, i, i)
K2

N2π2
N∗

∑∑
j1 6=j2∈UN

|yj1 ||yj2 |Ĩij1 Ĩij2 |4j1j2 |

+
K∑
i1=1

K∑
i2=1

i1 6=i2

f(ρ, t, i1, i2)
K2

N2π2
N∗

∑∑
j1 6=j2∈UN

|yj1 ||yj2 |Ĩi1j1 Ĩi2j2 |4j1j2 |

≤20M
K

NπN∗
+

K∑
i=1

f(ρ, t, i, i)
K2

N2π2
N∗

∑∑
j1 6=j2∈UN

y2
j1y

2
j2 Ĩij1 Ĩij2


1/2∑∑

j1 6=j2∈UN

42
j1j2


1/2

+

K∑
i1=1

K∑
i2=1

i1 6=i2

f(ρ, t, i1, i2)
K2

N2π2
N∗

∑∑
j1 6=j2∈UN

y2
j1y

2
j2 Ĩi1j1 Ĩi2j2


1/2∑∑

j1 6=j2∈UN

42
j1j2


1/2

≤20MK

NπN∗
+

56MK

N1/2+τπ2
N∗

N2τ max
j1∈UN

∑
j2∈UN :j2 6=j1

42
j1j2


1/2

. (2.36)

It can easily be shown that (2.36) also bounds E(βNt − β̂Nt)
2 for t = 1 and t = K since

these terms appear in (2.34). For the diagonal elements of HN ,

hNii =
n

N2

∑∑
j1,j2∈UN

Ĩij1 Ĩij2
|4j1j2 |

πj1πj2πj1j2
(2.37)

=
n

N2

∑
j∈UN

Ĩij
(1− πj)
π2
j

+
n

N2

∑∑
j1 6=j2∈UN

Ĩij1 Ĩij2
|4j1j2 |

πj1πj2πj1j2

≤ n

N2π2
N∗

∑
j∈UN

Ĩij +
n

N2π2
N∗πN∗∗

∑∑
j1 6=j2∈UN

Ĩij1 Ĩij2


1/2∑∑

j1 6=j2∈UN

42
j1j2


1/2

≤ n

NKπ2
N∗

+
n

N1/2+τKπ2
N∗πN∗∗

N2τ max
∑

j1 6=j2∈UN

42
j1j2


1/2

. (2.38)

For the off-diagonal elements, hNi1i2
, j1 and j2 are distinct and therefore

hNi1i2
≤ n

N1/2+τKπ2
N∗πN∗∗

N2τ max
∑

j1 6=j2∈UN

42
j1j2


1/2

.
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Finally, applying the bounds obtained in (2.36) and (2.38)

bN21 ≤2Tr (HNQN)

≤K2

20MK

NπN∗
+

56MK

N1/2+τπ2
N∗

N2τ max
j1∈UN

∑
j2∈UN :j2 6=j1

42
j1j2


1/2


×

 n

NKπ2
N∗

+
n

N1/2+τKπ2
N∗πN∗∗

N2τ max
∑

j1 6=j2∈UN

42
j1j2


1/2


=o(1)

by assumptions (A4) – (A6) and (A9). Both bN1 and bN22 go to 0 as N → ∞ by similar

methods.

Lemma 2.5. For the sample {xj}j∈s, assume (A11), (A12) and

0 ≤ xj
πj
≤ 1 for j ∈ U. (2.39)

Denote the Horvitz-Thompson estimator for the population mean as

x̄HT =
1

N

∑
j∈U

xjIj
πj

(2.40)

and the finite population mean as

x̄U =
1

N

∑
j∈U

xj . (2.41)

Then for 0 < t < nN−1 − x̄U ,

P (x̄HT − x̄U ≥ t) ≤


(

x̄U

x̄U + t

)x̄U+t
(

1− N
n x̄U

1− N
n x̄U − N

n t

)n/N−x̄U−t
N

(2.42)

≤ exp
{
−Nt2g(x̄U)

}
(2.43)

≤ exp

{
−2N2t2

n

}
(2.44)
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where

g(x̄U) =


(
n
N − 2x̄U

)−1
log
( n

N
−x̄U
x̄U

)
: 0 < x̄U <

n
2N

n
(
2Nx̄U

[
n
N − x̄U

])−1
: n

2N ≤ x̄U <
n
N

.

Proof. Following the method of Hoeffding (1963), we can apply the following property of

indicator functions

P (x̄− x̄U ≥ t) = Ep [I{x̄− x̄U ≥ t}]

= Ep

I
∑
j∈U

xjIj
πj
−Nx̄U −Nt ≥ 0




≤ Ep exp

h
∑
j∈U

xjIj
πj
−Nx̄U −Nt

 (2.45)

for h > 0. The above relationship holds since exp(x) ≥ 1 if x ≥ 0 and exp(x) > 0 if x < 0.

Pulling that which is not random out of the expectation, we can now rewrite (2.45) as

follows

(2.45) = exp
{
− hNt− hNx̄U

}
Ep exp

h∑
j∈U

xjIj
πj


≤ exp

{
− hNt− hNx̄U

}
Ep∗ exp

h
n∑
l=1

1

n

∑
j∈U

xjI{Rl = j}
pj

 (2.46)

by assumption (A12). Since each draw from the finite population is independent under with

replacement sampling, we can take the expectation of each transformed draw individually,

(2.46) = exp
{
− hNt− hNx̄U

} n∏
l=1

Ep∗ exp

h
 1

n

∑
j∈U

xjI{Rl = j}
pj


= exp

{
− hNt− hNx̄U

} n∏
l=1

Ep∗ exp {hVl} (2.47)

where we define Vl to be

Vl =
1

n

∑
j∈U

xjI{Rl = j}
pj

.
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Notice 0 ≤ Vl ≤ 1 since the vector [I{Rl = j}]j∈U contains a single one for some j∗ ∈ U

and zero otherwise which implies

Vl =
1

n

x∗j
p∗j

=
x∗j
π∗j
≤ 1

by assumption (2.39). Additionally, the mean of Vl under sampling with replacement is

given by

Ep∗Vl = Ep∗

 1

n

∑
j∈U

xjI{Rl = j}
pj

 =
1

n

∑
j∈U

xj =
N

n
x̄U .

Applying Lemma 1 in Hoeffding (1963) to the random quantity in (2.47), we obtain

(2.47) = exp
{
− hNt− hNx̄U

} n∏
l=1

[
1− N

n
x̄U +

N

n
x̄Ue

h

]
≤ exp

{
− hNt− hNx̄U

}[
1− N

n
x̄U +

N

n
x̄Ue

h

]n
:= Q(h, t, x̄U),

because the geometric mean is less than or equal to the arithmetic mean. To obtain the

first inequality, we minimize the function Q(h, t, x̄U) with respect to h and find

ho = arg min
h

Q(h, t, x̄U)

= log

[
(x̄U + t)

(
1− N

n x̄U

)
x̄U

(
1− N

n x̄U − N
n t
)] .

Since we assumed 0 < t < nN−1 − x̄U , ho > 0 and we have

P (x̄− x̄U ≥ t) ≤ Q(ho, t, x̄U)

= (2.42).
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We can write Q(ho, t, x̄U) in the following way,

Q(ho, t, x̄U) =


(

x̄U

x̄U + t

)x̄U+t
(

1− N
n x̄U

1− N
n x̄U − N

n t

)n/N−x̄U−t
N

= exp
{
−Nt2G(t, x̄U)

}
where

G(t, x̄U) =
x̄U + t

t2
log

(
x̄U + t

x̄U

)
+

n
N − x̄U − t

t2
log

(
1− N

n x̄U − N
n t

1− N
n x̄U

)
.

If we take the derivative of G(t, x̄U) with respect to t, we get

t2
∂

∂t
G(t, x̄U) =

t2 − 2t(x̄U + t)

t2
log

(
x̄U + t

x̄U

)
+
t2 − 2t

(
n
N − x̄U

)
t2

log

(
1− N

n x̄U − N
n t

1− N
n x̄U

)

=

(
1− 2

(
n
N − x̄U

)
t

)
log

(
1−

N
n t

1− N
n x̄U

)
−
(

1− 2
x̄U + t

t

)
log

(
x̄U

x̄U + t

)

=

(
1− 2

(
n
N − x̄U

)
t

)
log

(
1− t

n
N − x̄U

)
−
(

1− 2
x̄U + t

t

)
log

(
1− t

x̄U + t

)
= H

(
t

n
N − x̄U

)
−H

(
t

x̄U + t

)

where H(x) = (1− 2x−1) log(1− x). Since we assumed 0 < t < nN−1 − x̄U ,

0 <
t

n
N − x̄U

< 1 and 0 <
t

x̄U + t
< 1.

For |x| < 1, we can write out H(x) as two Taylor expansions:

H(x) = (1− 2

x
) log(1− x)

= log(1− x)− 2

x
log(1− x)

= −
∞∑
n=1

xn

n
+

2

x

∞∑
n=1

xn

n

= 2 +
∞∑
n=1

(
2

n+ 1
− 1

n

)
xn

= 2 +

(
2

3
− 1

2

)
x2 +

(
2

4
− 1

3

)
x3 . . .
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Since the coefficients are positive, as x increases, so does H(x). Therefore, ∂
∂tG(t, x̄U) > 0

if and only if

t
n
N − x̄U

>
t

x̄U + t
.

So if

n

N
− 2x̄U > 0

then G(t, x̄U) obtains a minimum at t = n
N − 2x̄U . But if

n

N
− 2x̄U ≤ 0

then G(t, x̄U) obtains a minimum at t = 0. Let to = arg min
t

G(t, x̄U) and define g(x̄U) =

G(to, x̄U). Since g(x̄U) > 0 for 0 < x̄U < nN−1, we can obtain the second inequality where

Q(ho, t, x̄U) = exp
{
−Nt2G(t, x̄U)

}
≤ exp

{
−Nt2g(x̄U)

}
= (2.43).

To obtain the last inequality, we only need to notice that minx̄U g(x̄U) = 2Nn−1 and

therefore

exp
{
−Nt2g(x̄U)

}
≤ exp

{
−2N2t2n−1

}
= (2.44).

Corollary 2.1. For the sample {x∗j}j∈s, assume (A11), (A12) and

a ≤
x∗j
πj
≤ b for j ∈ U. (2.48)
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Denote the Horvitz-Thompson estimator for the population mean as

x̄∗HT =
1

N

∑
j∈U

x∗jIj

π∗j
(2.49)

and the finite population mean as

x̄∗U =
1

N

∑
j∈U

x∗j . (2.50)

Then for 0 < t∗ < nbN−1 − x̄∗U ,

P (x̄∗HT − x̄∗U ≥ t∗) ≤
(

Nx̄∗U − na
N(x̄∗U + t∗)− na

)N(x̄∗U+t∗)−na

(b−a)
(

nb−Nx̄∗U
nb−Nx̄∗U −Nt∗

)nb−Nx̄∗U−Nt∗

(b−a)

(2.51)

≤ exp
{
−N(t∗)2g(x̄∗U)

}
(2.52)

≤ exp

{
− 2N2(t∗)2

n(b− a)2

}
(2.53)

where

g(x̄∗U) =


(

N
(b−a)(n(b−a)−2Nx̄∗U)

)
log
(
nb−Nx̄∗U
Nx̄∗U−na

)
: naN < x̄∗U <

n(b+a)
2N

nN
2(Nx̄∗U−na)(nb−Nx̄∗U ) : n(b+a)

2N ≤ x̄∗U < na
N + (b− a)

Proof. If we define

xj =
x∗j − aπj
b− a

then by assumption (2.48), we have

0 ≤ xj
πj
≤ 1

Additionally if we define

t =
t∗

b− a
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and

x̄U =
Nx̄∗U − na
N(b− a)

then

P (x̄∗ − x̄∗U ≥ t∗) = P (x̄− x̄U ≥ t)

and we can apply the results from Lemma 2.5 to obtain the three inequalities in terms of

x̄∗U and t∗.

Lemma 2.6. Under assumptions (A3) – (A5) and (A11) – (A13),

sup
i:i=1,2,...,K−1

|κ̂Ni − κNi|
p→0

where κ̂Ni is defined in (2.17), κNi in (2.19) and 0 < pNi < 1.

Proof. For population UN , find the κ̂∗N and κ∗N such that

max
i:i=1,2,...,K−1

|κ̂Ni − κNi| = |κ̂∗N − κ∗N | .

Using the technique in section 2.3.2 of Serfling (1980),

P (|κ̂∗N − κ∗N | > ε) = P (κ̂∗N > ε+ κ∗N) + P (κ̂∗N < κ∗N − ε).
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Since F̂N(x) is a distribution function and using Lemma 1.1.4 in Serfling (1980),

P (κ̂∗N > ε+ κ∗N) =P
(
p∗N > F̂N (ε+ κ∗N)

)
=P

1− p∗N <
1

N̂

∑
j∈s

1

πj
I{xj > ε+ κ∗N}


=P

∑
j∈s

1

πj
I{xj > ε+ κ∗N} − N̂ (1− p∗N) > 0


=P

 1

N

∑
j∈s

1

πj
I{xj > ε+ κ∗N}+

(N − N̂)

N
(1− p∗N) > (1− p∗N)


=P

 1

N

∑
j∈s

1

πj
I{xj > ε+ κ∗N}+AN > (1− p∗N) ; |AN | > ηε


+ P

 1

N

∑
j∈s

1

πj
I{xj > ε+ κ∗N}+AN > (1− p∗N) ; |AN | ≤ ηε

 (2.54)

where AN = (N − N̂)N−1 (1− p∗N) and 0 < ηε ≤ 2−1ε min
x∈[a,b]

f(x). Write

(2.54) ≤ P (|AN | > ηε) + P

∑
j∈s

1

πj
I{xj > ε+ κ∗N}+AN > N (1− p∗N) ; |AN | ≤ ηε

 .

We know P (|AN | > ηε) ≤ P
(∣∣∣(N − N̂)N−1

∣∣∣ > ηε

)
→ 0 since N̂N−1 is consistent for 1.

For the second term

P

 1

N

∑
j∈s

1

πj
I{xj > ε+ κ∗N}+AN > (1− p∗N) ; |AN | ≤ ηε


≤ P

 1

N

∑
j∈s

1

πj
I{xj > ε+ κ∗N}+ ηε > (1− p∗N)


= P

 1

N

∑
j∈UN

I{j ∈ s}
πj

I{xj > ε+ κ∗N} −
1

N

∑
j∈UN

I{xj > ε+ κ∗N} > FN(ε+ κ∗N)− p∗N − ηε


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= P

(
1

N

∑
j∈UN

I{j ∈ s}
πj

I{xj > ε+ κ∗N} −
1

N

∑
j∈UN

I{xj > ε+ κ∗N} > FN(ε+ κ∗N)− p∗N − ηε
)

×I{FN(ε+ κ∗N)− p∗N ≤ ηε}

+P

(
1

N

∑
j∈UN

I{j ∈ s}
πj

I{xj > ε+ κ∗N} −
1

N

∑
j∈UN

I{xj > ε+ κ∗N} > FN(ε+ κ∗N)− p∗N − ηε
)

×I{FN(ε+ κ∗N)− p∗N > ηε}

≤ I{FN(ε+ κ∗N)− p∗N ≤ ηε}+ P

(
1

N

∑
j∈UN

I{j ∈ s}
πj

I{xj > ε+ κ∗N}

− 1

N

∑
j∈UN

I{xj > ε+ κ∗N} > FN(ε+ κ∗N)− p∗N − ηε
)
I {FN(ε+ κ∗N)− p∗N > ηε}

:= dN1 + dN2.

For the first term

dN1 ≤ I{FN(ε+ κ∗N)− FN(κN∗) ≤ ηε}

= I{
[
FN(ε+ κ∗N)− F (ε+ κN∗)

]
+
[
F (κN∗)− FN(κN∗)

]
+
[
F (ε+ κN∗)− F (κN∗)

]
≤ ηε}

≤ I{ min
x∈[a,b]

[
FN(x)− F (x)

]
+ min
x∈[a,b]

[
F (x)− FN(x)

]
+ min
x∈[a,b]

[
εf(x)

]
≤ ηε}

N→∞→ I{ε min
x∈[a,b]

[
f(x)

]
≤ ηε}

= 0

since ηε < 2−1ε min
x∈[a,b]

f(x). Applying Corollary 2.1 to the second term

dN2 ≤ exp

{
−2N2(π∗)

2

n
(FN(ε+ κ∗N)− p∗N − ηε)

2

}
I {FN(ε+ κ∗N)− p∗N > ηε}

≤ exp

{
− 2N2(π∗)

2

n

([
FN(ε+ κ∗N)− F (ε+ κN∗)

]
+
[
F (κN∗)− FN(κN∗)

]
+
[
F (ε+ κN∗)− F (κN∗)

]
− ηε

)2
}
I {FN(ε+ κ∗N)− p∗N > ηε}

≤ exp

{
−2N2(π∗)

2

n

(
min
x∈[a,b]

[
FN(x)− F (x)

]
+ min
x∈[a,b]

[
F (x)− FN(x)

]
+ min
x∈[a,b]

[
εf(x)

]
− ηε

)2
}

→ 0
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as N →∞. By similar methods

P (κ̂∗N < κ∗N − ε)→ 0

as N →∞.

Lemma 2.7. Under assumptions (A1) – (A6), (A8), (A12) – (A14),

1

N

∑
j∈UN

(
Îj − Ĩj

)T
(
I{j ∈ s}

πj
− 1

)(
βN − β̂

(3)

N

)
= op(1).

Proof.

P

∣∣∣∣∣∣ 1

N

∑
j∈UN

(
Îj − Ĩj

)T
(
I{j ∈ s}

πj
− 1

)(
βN − β̂

(2)

N

)∣∣∣∣∣∣ > ε


=P

∣∣∣∣∣∣ 1

N

K∑
i=1

∑
j∈UN

(βNi − β̂(2)
Ni )

(
Îij − Ĩij

)(I{j ∈ s}
πj

− 1

)∣∣∣∣∣∣ > ε


≤P

 1

N

K∑
i=1

∑
j∈UN

∣∣∣βNi − β̂(2)
Ni

∣∣∣ ∣∣∣Îij − Ĩij∣∣∣ ∣∣∣∣I{j ∈ s}πj
− 1

∣∣∣∣ > ε


≤P

max
i

∣∣∣βNi − β̂(2)
Ni

∣∣∣ 1

N

∑
j∈UN

∣∣∣∣I{j ∈ s}πj
− 1

∣∣∣∣ K∑
i=1

∣∣∣Îij − Ĩij∣∣∣ > ε


≤P

max
i

∣∣∣βNi − β̂(2)
Ni

∣∣∣
 2

NπN∗

∑
j∈UN

I{j ∈ s}+ 2

 > ε


≤P

(
max
i

∣∣∣βNi − β̂(2)
Ni

∣∣∣ ( 2n

NπN∗
+ 2

)
> ε

)
. (2.55)

We can bound maxi

∣∣∣βNi − β̂(2)
Ni

∣∣∣ with

max
i

∣∣∣βNi − β̂(2)
Ni

∣∣∣ ≤cN1DN1 + cN2DN2
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where cN1 = O(1), cN2 = O(1),

DN1 = max
i

∣∣∣∣∣∣KN
∑
j∈UN

yj Ĩij

(
1− I{j ∈ s}

πj

)∣∣∣∣∣∣ and DN2 = max
i

K

N

∣∣∣∣∣∣
∑
j∈UN

yj
I{j ∈ s}

πj

(
Ĩij − Îij

)∣∣∣∣∣∣
≤max

i

K
N

∑
j∈UN

|yj |
I{j ∈ s}

πj

∣∣∣Ĩij − Îij∣∣∣


=
K

N

∑
j∈UN

|yj |
I{j ∈ s}

πj

∣∣∣Ĩ∗j − Î∗j∣∣∣.
In term DN2, define Ĩ∗j = I{κN∗−1 ≤ xj < κN∗} and Î∗j = I{κ̂N∗−1 ≤ xj < κ̂N∗}. Also, let

dN∗ = (dN∗1, dN∗2) = (κ̂N∗−1 − κN∗−1, κ̂N∗ − κN∗) and let δ > 0. Therefore, we have

(2.55) ≤P

cN1DN1 + cN2

K

N

∑
j∈UN

|yj |
I{j ∈ s}

πj

∣∣∣Ĩ∗j − Î∗j∣∣∣
( 2n

NπN∗
+ 2

)
> ε


≤P (||dN∗||L1 > δ)

+ P

cN1DN1 + cN2

K

N

∑
j∈UN

|yj |
I{j ∈ s}

πj

∣∣∣Ĩ∗j − Î∗j∣∣∣
( 2n

NπN∗
+ 2

)
> ε; ||dN∗||L1 ≤ δ

 .

The first term goes to zero as N →∞ by Lemma 2.6. For the second term, we have

P

cN1DN1 + cN2

K

N

∑
j∈UN

|yj |
I{j ∈ s}

πj

∣∣∣Ĩ∗j − Î∗j∣∣∣
( 2n

NπN∗
+ 2

)
> ε; ||dN∗||L1 ≤ δ


≤P

cN1

(
2n

NπN∗
+ 2

)
DN1 + sup

||dN∗||≤δ
cN2

(
2n

NπN∗
+ 2

)
K

N

∑
j∈UN

|yj |
I{j ∈ s}

πj

∣∣∣Ĩ∗j − Î∗j∣∣∣ > ε


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≤1

ε
cN1

(
2n

NπN∗
+ 2

)
EpDN1 (2.56)

+
1

ε
cN2

(
2n

NπN∗
+ 2

)
Ep

K
N

∑
j∈UN

|yj |
Ij
πj
I{κN∗−1 − δ < xj ≤ κN∗−1}I{xj ≤ κN∗}


(2.57)

+
1

ε
cN2

(
2n

NπN∗
+ 2

)
Ep

K
N

∑
j∈UN

|yj |
Ij
πj
I{κN∗−1 < xj ≤ κN∗−1 + δ}I{xj ≤ κN∗}


(2.58)

+
1

ε
cN2

(
2n

NπN∗
+ 2

)
Ep

K
N

∑
j∈UN

|yj |
Ij
πj
I{κN∗ − δ < xj ≤ κN∗}I{xj > κN∗−1}

 (2.59)

+
1

ε
cN2

(
2n

NπN∗
+ 2

)
Ep

K
N

∑
j∈UN

|yj |
Ij
πj
I{κN∗ < xj ≤ κN∗ + δ}I{xj > κN∗−1}

 .

(2.60)

By assumption (A5), we know cN2

(
2n(NπN∗)

−1 + 2
)

= O(1). Let

Ĩ∗j = arg max
Ĩij :i=1,...,K

∣∣∣KN−1
∑

j∈UN
yj Ĩij(1− Ijπ−1

j )
∣∣∣ so that we can write the rest of (2.56) as

EpDN1 ≤

K2

N2

∑∑
j,l∈UN

yjylĨ∗j Ĩ∗l
4jl

πjπl


1/2

=

K2

N2

∑
j∈UN

y2
j Ĩ∗j

1− πj
πj

+
K2

N2

∑∑
j 6=l∈UN

yjylĨ∗j Ĩ∗l
4jl

πjπl


1/2

≤

 K

NπN∗
M +

K2

N2π2
N∗

max
i

∑
j∈UN

y2
j Ĩ∗j

Nmax
∑

j 6=l∈UN

42
jl

1/2


1/2

≤

 K

NπN∗
M +

K

N1/2+τπ2
N∗

M

N2τmax
∑

j 6=l∈UN

42
jl

1/2


1/2

=O

(
K1/2

N1/2

)

=o(1)

by assumption (A6). For last half of (2.57), we can now easily take the expectation and
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apply assumptions (A8) and (A13) to obtain

K

N

∑
j∈UN

|yj |I{κN∗−1 − δ < xj ≤ κN∗−1}I{xj ≤ κN∗}

≤K
{

1

N

∑
j∈UN

y2
j

}1/2{
FN(κN∗−1)− FN(κN∗−1 − δ)

}1/2

≤ K

N1/4

{
1

N

∑
j∈UN

y4
j

}1/4{
2 sup

x
|FN(x)− F (x− δ)|+ sup

x
|F (x)− F (x− δ)|

}1/2

=o

(
K

N1/4

)
=o(1)

by assumption (A14). The terms (2.58) – (2.60) are o(1) by similar logic.

The last two lemmas concern the asymptotic equivalence of N−1t̂y and N−1t̂∗y. Lemma

2.8 provides the rate of convergence of the standardized mean squared error of the estimated

cell totals and it is an important result for Lemma 2.9 because the critical difference between

N−1t̂y and N−1t̂∗y is the estimated cell totals present in Ωs. We use an additional assumption

on the relationship between sample size and knot size along with an assumption concerning

the higher order moments of the estimated cell totals:

A15. Assume K = O(n1/4).

A16. For m = 2, 3, . . ., assume

Ep max
i:i=1,2,...,K

[
K

N

(
N

K
− N̂i

)]2m

≤ c

nm/2

where c > 0.

Lemma 2.8. Under assumptions (A1)- (A5) and (A15),

Ep max
i:i=1,2,...,K

[
K

N

(
N

K
− N̂i

)]2

= O(n−3/4) (2.61)
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Proof. To bound (2.61), write it as

(2.61) =Ep max
i:i=1,2,...,K

K
N

∑
j∈UN

Ĩij

(
1− Ij

πj

)2

= max
i

K2

N2

∑
j∈UN

Ĩij
(1− πj)
πj

+ max
i

K2

N2

∑∑
j1 6=j2

Ĩij1 Ĩij2
4j1j2

πj1πj2

≤ K2

πN∗N2
max
i

∑
j∈UN

Ĩij +
K2

π2
N∗N

2

max
i

∑∑
j1 6=j2

Ĩij1 Ĩij2


1/2∑∑

j1 6=j2

42
j1j2


1/2

≤ K

πN∗N
+

K2

π2
N∗N

2

max
i

∑
j∈UN

Ĩij


Nmax

∑
j1 6=j2

42
j1j2


1/2

≤ K

πN∗N
+

K

π2
N∗N

1/2+τ

N2τmax
∑

j1 6=j2

42
j1j2


1/2

=
1

n3/4

K

n1/4

n

πN∗N
+

1

n3/4

K

n1/4

n

π2
N∗N

1/2+τ

N2τmax
∑

j1 6=j2

42
j1j2


1/2

=O(n−3/4)

by assumptions (A4), (A5), and (A15).

Lemma 2.9. Under assumptions (A1) – (A6), (A15), and (A16),

N−1t̂∗y = N−1t̂y + op(1).

Proof. Apply Taylor’s Theorem to the matrices Ω−1
s and Ω−1

U and write the difference

between N−1t̂∗y and N−1t̂y in three parts:

t̂∗y − t̂y
N

=
1

N

∑
j∈UN

Ĩ
T

j

(
1− Ij

πj

)[
Ω−1
s −Ω−1

U

] 1

NK−1 + 2λ

∑
j∈UN

yj Ĩj
Ij
πj

=
1

N

∑
j∈UN

Ĩ
T

j

(
1− Ij

πj

)[
(I +As)

−1 − (I +AU)−1
] 1

NK−1 + 2λ

∑
j∈UN

yj Ĩj
Ij
πj
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=
1

N

∑
j∈UN

Ĩ
T

j

(
1− Ij

πj

)[(
I −As +A2

s . . .
)
−
(
I −AU +A2

U . . .
)]

× 1

NK−1 + 2λ

∑
j∈UN

yj Ĩj
Ij
πj

=
1

N

∑
j∈UN

Ĩ
T

j

(
1− Ij

πj

)
[AU −As]

1

NK−1 + 2λ

∑
j∈UN

yj Ĩj
Ij
πj

(2.62)

+

∞∑
m=2

(−1)m
1

N

∑
j∈UN

Ĩ
T

j

(
1− Ij

πj

)
Am

U

1

NK−1 + 2λ

∑
j∈UN

yj Ĩj
Ij
πj

(2.63)

+

∞∑
m=2

(−1)m−1 1

N

∑
j∈UN

Ĩ
T

j

(
1− Ij

πj

)
Am
s

1

NK−1 + 2λ

∑
j∈UN

yj Ĩj
Ij
πj

(2.64)

where AU(1,1) = AU(K,K) = (CN + λ)(CN + 2λ)−1 − 1, AU(i,i) = 0 for 1 < i < K, AU(i,j) =

−λ(CN + 2λ)−1 for |i − j| = 1 and AU(i,j) = 0 for |i − j| > 1. Also, As(i,j) = AU(i,j) for

|i − j| > 0 but on the diagonal As(i,i) = (N̂i + λ)(CN + 2λ)−1 − 1 for i = 1 and K and

As(i,i) = (N̂i + 2λ)(CN + 2λ)−1 − 1 for 1 < i < K. The first term (2.62) can be bounded

using the Cauchy-Schwarz Inequality,

Ep

∣∣∣∣∣∣ 1

N

∑
j∈UN

Ĩ
T

j

(
1− Ij

πj

)
[AU −As]

1

NK−1 + 2λ

∑
j∈UN

yj Ĩj
Ij
πj

∣∣∣∣∣∣
=Ep

∣∣∣∣∣∣ 1

K

K∑
i=1

K2

N2

(
N

K
− N̂i

)2 K

N

∑
j∈UN

yj Ĩij
Ij
πj

[
N2

K2
(NK−1 + 2λ)−2

]∣∣∣∣∣∣
≤Ep

1

K

K∑
i=1

K2

N2

(
N

K
− N̂i

)2 K

N

∑
j∈UN

|yj |Ĩij
Ij
πj

[
N2

K2
(NK−1 + 2λ)−2

]

≤M 1

π∗

[
N2

K2
(NK−1 + 2λ)−2

]
Ep

1

K

K∑
i=1

K2

N2

(
N

K
− N̂i

)2

≤M 1

π∗

[
N2

K2
(NK−1 + 2λ)−2

]
Ep max

i:i=1,2,...,K

K2

N2

(
N

K
− N̂i

)2

=O

(
KN

n2

)
=o(1)

by (A6). For the terms in (2.63) and (2.64), we need to bound the element-wise absolute
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value of Am
U and Am

s . A crude bound for each is

|AmU | =
[
max
ij
|AU(i,j)|

]m
Km−1J =

[
λ

NK−1 + 2λ

]m
Km−1J

and

|Ams | =
[
max
ij
|As(i,j)|

]m
Km−1J =

[
max

(
λ

NK−1 + 2λ
,max

i

∣∣∣∣KN
(
N

K
− N̂i

)∣∣∣∣)]mKm−1J

where J is a matrix of ones and || represents element-wise absolute value. Then we can

bound the expectation of the absolute value of the individual terms of (2.63) as follows:
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Ĩ
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1− Ij
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N

∑
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)
M
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+
K

π4
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
1/2


1/2

.

(2.65)
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Now we can use the individual term bound found in (2.65) to bound the expectation of the

absolute value of (2.63):

Ep

∣∣∣∣∣∣
∞∑
m=2

(−1)m
1

N

∑
j∈UN

Ĩ
T

j

(
1− Ij
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U

1

NK−1 + 2λ
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yj Ĩj
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πj
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Ĩ
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U

1

NK−1 + 2λ

∑
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yj Ĩj
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πj

∣∣∣∣∣∣
≤
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(2.65)

=

(
NK−1

NK−1 + 2λ

)
M

 K

π3
N∗N

+
K

π4
N∗N

1/2+τ

N2τmax
∑

j1 6=j2
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
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
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m=2

[
λK

NK−1 + 2λ

]m

= o(1)

[
1

1− λK
NK−1+2λ

− 1− λK

NK−1 + 2λ

]

= o(1).

For the terms in (2.64), we assume, without loss of generality, that

maxij |As(i,j)| = maxi

∣∣∣KN (NK − N̂i

)∣∣∣ since the other case is covered by the terms of (2.63)

and can find the expectation of the absolute value of a term in (2.64) is bounded by:
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(2.66)

As with (2.63), we can bound the expectation of the absolute value of (2.64) using the

bound found in (2.66):
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Ĩ
T

j

(
1− Ij

πj

)
Am
s

1

NK−1 + 2λ

∑
j∈U

yj Ĩj
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Therefore, we have

Ep

∣∣∣∣∣ t̂∗y − t̂yN

∣∣∣∣∣ = o(1).
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Chapter 3

Survey-weighted lasso estimator: a

model selection and estimation

method

3.1 Introduction

In this chapter, we again consider the estimation of the total ty in the presence of auxiliary

information, xj , which is available for each element in the population (j ∈ U). In chapter

2, we only assume the mean function f is smooth in x and can be approximated by a linear

combination of penalized B-splines fit on the finite population values. Now, we assume the

superpopulation model is parametric and linear where given xj , we have

yj = xT
j β + εj . (3.1)

Assume the random variables εj are independent and identically distributed with mean zero

and variance σ2. Additionally, the superpopulation model may be sparse, which means of

the p possible covariates, only po β’s are non-zero where po < p. Often in survey applications,

the number of covariates is large and possibly even greater than the sample size and it is very

likely that some covariates do not relate strongly with the study variable. When po < p < n

but the full model is fit, the design mean squared error of the estimator for ty may be larger
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than the design mean squared error of an estimator based on a reduced model

Since our goal is estimation of the finite population quantity ty we want to select a

working model which enables us to more accurately estimate ty. Therefore, we are inter-

ested in constructing a regression estimator whose estimate for f includes model selection.

We will explore conditions under which the regression estimator based on model selection

outperforms the regression estimator where no model selection occurs.

Frequently, one is interested in estimating several finite population totals and therefore

it is advantageous to have one set of regression weights to apply to several study variables.

However, since the model selection is based on a regression model for a particular study

variable, the corresponding regression estimator weights are also dependent on that study

variable. Therefore we are interested in how the model selection regression weights perform

when applied to other study variables of interest.

In section 3.1.1 we discuss model selection when the data are independently drawn from

an infinite population and specifically look at the lasso method of Tibshirani (1996). We

derive a survey-weighted lasso regression estimator when the data are sampled from a finite

population, in section 3.1.2. In section 3.2, we present the asymptotic properties of the

survey-weighted lasso estimator and then discuss extensions of the estimator in section 3.3.

The lasso regression estimator cannot be written as a weighted linear combination of the

study variable because the lasso coefficients cannot, in general, be written in closed form.

Therefore, lasso regression weights cannot be directly obtained. In section 3.4 we modify

the survey-weighted lasso estimator to achieve sampling weights with the caveat that the

weights are dependent on the sampled observations. Several model-based lasso estimators

are presented in section 3.5 and section 3.6 provides a summary of the estimators discussed

in this chapter. We conduct two simulation studies in section 3.7: a study to determine the

appropriate criterion for selecting the penalty parameter in the lasso estimators and a study

comparing the lasso estimators to other model-assisted and model-based survey estimators.

In section 3.8, we estimate the proportion of tree canopy cover for a region in Utah and

use the Utah data to conduct a simulation study that compares the performance of the

lasso estimators with other model-assisted survey estimators for real data. In section 3.9

we discuss how to use the survey-weighted lasso criterion in a joint design-model framework
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for analytic inference of survey data.

3.1.1 Background

We first consider model selection for data drawn independently from an infinite population

where the regression model is (3.1). Two very widely used discrete methods of model

selection are best subsets selection and stepwise selection. The method of best subsets

picks a certain number of subset models based on some criterion, such as Mallow’s Cp,

from the 2p possible models (Kutner, Nachtsheim, Neter, and Li 2005). A drawback of the

best subsets method is that when the number of possible covariates is moderate or large,

the method becomes rather computationally infeasible since the number of possible models

grows exponentially. Stepwise methods are more computationally efficient than best subsets

because instead of considering all possible models, they develop the best model by picking

covariates sequentially. For example, the forward stepwise method adds a covariate at each

step by selecting the covariate which leads to the largest test statistic (Kutner, Nachtsheim,

Neter, and Li 2005). This discrete solution path can lead one to select a model which is

locally, but not globally, the best model. The lasso method is a continuous method for

model selection that simultaneously performs model selection and parameter estimation

by shrinking some coefficients and by forcing other coefficients to be exactly equal to zero

(Tibshirani 1996). The lasso method finds coefficients which minimize the sum of squared

residuals subject to a constraint on the sum of the absolute value of the coefficients. More

specifically, the coefficient estimates for lasso are given by:

β̂ = arg min
β

(Y −Xβ)T (Y −Xβ) subject to

p∑
j=1

|βj | ≤ g (3.2)

where the estimate for βo is not penalized and g ≥ 0 (Tibshirani 1996). An equivalent

solution is given by

β̂ = arg min
β

(Y −Xβ)T (Y −Xβ) + λ

p∑
j=1

|βj | (3.3)
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with λ ≥ 0 since the Lagrangian function of (3.2) is

L(β, λ∗) = (Y −Xβ)T (Y −Xβ)− λ∗
g − p∑

j=1

|βj |


= (Y −Xβ)T (Y −Xβ) + λ∗

p∑
j=1

|βj | − λ∗g

where λ∗ ≥ 0 by the Karush-Kuhn-Tucker conditions. The lasso model selection method is

computationally efficient since the solution path is piece-wise linear (Efron, Hastie, John-

stone, and Tibshirani 2004). It selects the global solution since the lasso criterion is convex,

which often makes it superior to the best subsets method and the stepwise method. To

better understand how the penalty term induces sparsity, we consider the more general

penalty term of the bridge estimator, introduced by Frank and Friedman (1993),

λ

p∑
j=1

|βj |γ

where γ > 0, γ = 1 represents the lasso penalty, and γ = 2 represents the ridge regression

penalty. The constrained estimation regions for a regression model with two covariates

and for γ = 2, 1, and 2−1 respectively are displayed in Figure 3.1.1. If the ordinary least

squares (OLS) estimator is within or on the constrained estimation region, then the bridge

estimator is the OLS estimator. However, if the OLS estimator is outside the region, then

the bridge estimator is the point on the constrained estimation region which is touched by

the contours

(β − β̂(OLS)
)TXTX(β − β̂(OLS)

) (3.4)

since the unpenalized criterion can be re-written as a constant term (i.e. a term which does

not contain β) plus (3.4):

(Y −Xβ)T (Y −Xβ) = Y TY − (β̂
(OLS)

)TXTXβ̂
(OLS)

+ (β − β̂(OLS)
)TXTX(β − β̂(OLS)

).

For γ ≤ 1 and when the OLS esimator is outside the constrained estimation region,
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the contours touch the region on an axis, forcing one coefficient to equal zero, whereas

for γ > 1, this is not the case. Therefore, we can visually see how the lasso and other

bridge estimators where γ ≤ 1 produce sparsity in the estimated model. Lasso is more

computationally convenient than the bridge estimators with γ < 1 since the lasso penalty,

along with the objective function, are convex.

Ridge Regression Penalty

β1

-2 -1 0 1 2

-2

-1

0

1

2

β2

Lasso Regression Penalty

β1

-2 -1 0 1 2

-2

-1

0

1

2

β2

Bridge Regression Penalty

β1

-2 -1 0 1 2

-2

-1

0

1

2

β2

Figure 3.1: Constraint regions for regression model with two covariates

3.1.2 Derivation of survey-weighted lasso and lasso regression estimator

Assume the finite population elements {yj}j∈U are independent realizations from the super-

population model (3.1), the auxiliary information {xj}j∈U are known and that the sample

{yi,xi}i∈s is obtained according to a measurable sampling design p(·). We can find the

first and second order inclusion probabilities as defined in chapter 1, section 1.1. Since the

superpopulation model is linear an appropriate regression estimator has the form

t̂y,lasso =
∑
j∈s

yj − xT
j β̂s

πj
+
∑
j∈U

xT
j β̂s. (3.5)

To find appropriate sample coefficient estimates, β̂s, we should define the finite population

quantity, βU . Under the model (3.1), an estimate of β is the OLS estimator

β(OLS)
U = arg min

β
(Y U −XUβ)T (Y U −XUβ)

= (XT
UXU)−1XT

UY U (3.6)
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where XU is an N × (p + 1) matrix whose j-th row is the vector (1,xT
j ) and Y U =

(y1, y2, . . . , yN)T . Although β(OLS)
U ignores the sparsity of the model, it is still a good esti-

mate of β since it is model unbiased. Also, at the population level, model selection is not as

important since N is probably much larger than p and in the descriptive setting, the work-

ing model is only a tool used to increase design efficiency. The common survey-weighted

estimator of β(OLS)
U , which under mild assumptions is approximately design unbiased for

β(OLS)
U , is

β̂
(WLS)

s = arg min
β

(Y s −Xsβ)T Π−1
s (Y s −Xsβ)

=
(
XT

sΠ−1
s Xs

)−1
XT

sΠ−1
s Y s (3.7)

where Xs is an n × (p + 1) matrix where the j-th row is the vector (1,xT
j ), Y s =

(y1, y2, . . . , yn)T and Πs is an n × n diagonal matrix of the first-order inclusion proba-

bilities for the sampled elements. However, at the sample level, the sparsity of the working

model is more important since while N is most likely bigger than p, n may be smaller than

p. Also, regardless of whether the model is truly sparse, a reduced model could shrink

the overall design variance of the regression estimator, yielding a more efficient estimator.

Therefore, we propose estimating β(OLS)
U with the following survey-weighted lasso coefficient

estimates

β̂
(L)

s = arg min
β

(Y s −Xsβ)T Π−1
s (Y s −Xsβ) subject to

p∑
i=1

|βi| ≤ g. (3.8)

The survey-weighted lasso coefficient estimates can be found using one of the various algo-

rithms constructed to find (3.3) since we can re-write (3.8) as

β̂
(L)

s = arg min
β

(Y ∗s −X∗sβ)T (Y ∗s −X∗sβ) subject to

p∑
i=1

|βi| ≤ g

where Y ∗s = Π
−1/2
s Y s, X

∗
s = Π

−1/2
s Xs and Π

−1/2
s = diag

(
π
−1/2
k

)
k∈s

. However, it is

important to employ a fitting algorithm which does not require the standardization of the

columns of X∗s since the weighting structure induced by the inverse inclusion probabilities
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would be lost. In the statistical software package, R (R Development Core Team 2010), we

fit the lasso coefficient estimates with the algorithm of Turlach (2005) by using the function

l1ce() in the package lasso2 (Lokhorst et al. 2010). Since weight is an argument in the

l1ce() function, one can either use the original variables Y s and Xs along with the weight

argument or the weighted variables Y ∗s and X∗s with no weight argument. In both cases, it

is important to ensure the intercept term is not weighted.

The estimate for ty is the regression estimator with (3.8) instead of (3.7) for the coeffi-

cient estimates

t̂y,lasso =
∑
j∈s

yj − xT
j β̂

(L)

s

πj
+
∑
j∈U

xT
j β̂

(L)

s . (3.9)

3.1.3 Selection of the penalty parameter

So far, we have assumed the penalty parameter, g, is a fixed, non-negative number. However,

we can also view the penalty parameter as another value to be estimated. Since the goal is

estimation of the finite population quantity, ty, we want to find a criterion for selecting g

which leads to a design efficient t̂y,lasso. In analytic inference, a useful criterion for selecting

g is one which produces coefficient estimates with small mean squared error, and often

even more importantly, a useful criterion is one which selects the true, sparse model with

a high probability. Although the goals of descriptive and analytic inference differ, we still

want to consider some of the criteria used in analytic inference to estimate g in the survey-

weighted lasso coefficient estimates since the value of g which yields accurate coefficient

estimates should also yield an accurate estimate for the population total. Two common

model selection criteria for independently drawn data are the corrected Akaike’s Information

Criterion (AICC) (Hurvich and Tsai 1989) and the Bayesian Information Criterion (BIC)

(Schwarz 1978). We want to derive the appropriate AICC statistic and the appropriate BIC

statistic for survey data.

Assume the true superpopulation model which generated the finite population is (3.1)

and denote the true coefficient vector by βo and the true error variance by σ2
o . Also, assume
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the errors are normally distributed. Consider working models of the form

yj = xT
j β + εj

and therefore assume the family of working models contains the true superpopulation model.

The Kullback-Leibler information,

4(β, σ2) = Eξ
[
−2 logL(β, σ2)

]
,

measures the accuracy of a particular working model as an approximation to the true model.

The Expectation, Eξ, is taken with respect to the true superpopulation model whereas the

likelihood function, L(β, σ2), is calculated with respect to the working model. We want

to estimate the coefficients, βo, with the lasso criterion and stress the dependence on the

penalty parameter by writing the estimates as β(L)
U (g). To estimate the variance σ2

o we use

the maximum likelihood estimate

σ2
U =

1

N

∑
j∈U

[
yj − xT

j β
(L)
U (g)

]2
.

Based on this model fitting procedure, the risk for the working model is

Eξ4
[
β(L)

U (g), σ2
U

]
. (3.10)

We want to minimize the risk and therefore we seek the penalty parameter which minimizes

(3.10). Hurvich and Tsai (1989) showed

Eξ4
[
βU , σ

2
U

]
≈ Eξ

N log

 1

N

∑
j∈U

(yj − xT
j βU(δ))2

+
N(dfU +N)

N − dfU −2
(3.11)

when the maximum likelihood procedure is used to estimate both βo and σ2
o and dfU is the

associated degrees of freedom. Under a few common assumptions (presented in section 3.2),

the lasso estimates, β(L)
U (g), are consistent for βo and β(L)

U (g)− βo approximately follows a

multivariate normal distribution (Knight and Fu 2000). Therefore, (3.11) also holds under
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the lasso procedure. Additionally, Hurvich and Tsai (1989) studied the corrected Akaike’s

information criterion, which is an approximately unbiased estimate of (3.11). The corrected

Akaike’s information criterion for the lasso procedure is

AICCU(g) = N log

 1

N

∑
j∈U

[
yj − xT

j β
(L)
U (g)

]2+
N(d̂fU(g) +N)

N − d̂fU(g)− 2
. (3.12)

Efron (2004) defines the degrees of freedom of any model fitting procedure to be

dfU =
∑
j∈U

cov(ŷj , yj)

σ2
.

For the maximum likelihood procedure, the degrees of freedom equals the number of coef-

ficients since

dfU =
∑
j∈U

cov(xT
j (XT

UXU)−1XT
Uy, yj)

σ2
=
∑
j∈U

hjjσ
2

σ2
= p+ 1

where hjj is the j-th diagonal element of the Hat matrix. For the lasso fitting procedure,

the fitted values do not have a closed form and therefore, the degrees of freedom cannot

be found analytically. Zou, Hastie, and Tibshirani (2007) proved the estimate ˆdfU(g) = pL,

where pL is the number of non-zero lasso coefficients, is an unbiased estimate for the degrees

of freedom.

We want to minimize the risk to determine the optimal penalty parameter. Since we can-

not compute the risk or its population level estimator, AICCU(g), we seek an approximately

design unbiased estimator for AICCU(g). A sample-based corrected Akaike’s information

criterion (AICCs(g)), which accurately estimates the population-based corrected Akaike’s

informaton criterion, can be viewed as a reasonable estimator of the risk. A potential

sample-based corrected Akaike’s information criterion is

AICCs(g)∗ = N log

 1

N

∑
j∈s

1

πj

[
yj − xT

j β̂
(L)

s (g)
]2

+
N(d̂fs(g) +N)

N − d̂fs(g)− 2
. (3.13)

The estimated degrees of freedom, d̂fs(g), equals the number of non-zero entries in β̂
(L)

s (g).
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We can heuristically argue what assumptions are required for the AICCs(g)∗ to be approx-

imately unbiased for the AICCU(g) by looking at the difference between the criteria:

AICCs(g)∗ −AICCU(g)

= N log

{
N−1

∑
j∈s π

−1
j [yj − xT

j β̂
(L)

s (g)]2

N−1
∑

j∈U [yj − xT
j β

(L)
U (g)]2

}
+

[
N(d̂fs(g) +N)

N − d̂fs(g)− 2
− N(d̂fU (g) +N)

N − d̂fU (g)− 2

]
.

As long as β̂
(L)

s is design consistent for β(L)
U , the ratio in the first term will go to 1 in proba-

bility under reasonable assumptions because the numerator is almost a Horvitz-Thompson

estimator of the denominator. Also, if the sample-based lasso model is variable selection

consistent for the population-based lasso model, the second term will go to 0 in probability.

However, in simulations AICCs(g)∗ performed poorly at selecting the correct model and

instead prefered larger models than the true model. It appears to over-penalize the residual

term while under-penalizing the degrees of freedom term. Therefore, we prefer a different

sample-based corrected Akaike’s information criterion:

AICCs(g) = n log

 1

N

∑
j∈s

1

πj

[
yj − xT

j β̂
(L)

s (g)
]2

+
n(d̂fs(g) + n)

n− d̂fs(g)− 2
. (3.14)

The penalty on model complexity is larger for AICCs(g) than it is for AICCs(g)∗ and there-

fore, it selects smaller models. AICCs(g) performs well in simulations (presented in section

3.7.1). The formal justification of AICCs(g) as a suitable model selection criteria for survey

data should be studied in further detail.

Another common model selection criterion is the Bayesian Information Criterion (BIC)

(Schwarz 1978), which is based on the asymptotic Bayes solution for a particular model

and fitting procedure. The BICU(g) and AICCU(g) are similar under the model (3.1) with

normal errors but have slightly different penalties for model complexity. In particular,

BICU(g) tends to favor more parsimonious models than AICCU(g). The finite population

BICU(g) criterion for the lasso method is

BICU(g) = N log

 1

N

∑
j∈U

(yj − xT
j βU(g))2

+N + log(N) [dfU (g) + 1] .
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The sample-based estimate for BICU(g) is

BICs(g) = n log

 1

N

∑
j∈s

1

πj
(yj − xT

j β̂
(L)

s (g))2

+ n+ log(n)
[
d̂fs(g) + 1

]
. (3.15)

The information statistics attempt to find the optimal model by balancing the bias and

variance of the model. However, we are interested in balancing the design-based bias and

variance of the estimator of the finite population total by minimizing its design-based mean

squared error. Therefore, we also consider the following design-based criterion, proposed by

Opsomer and Miller (2005), which accounts for the sampling design and our desired goal of

a design efficient estimator,

V̂CV (g) =
∑∑
i,j∈s

4ij

πij

(yi − f̂s(xi, g)(−))

πi

(yj − f̂s(xj , g)(−))

πj
(3.16)

where f̂s(xi, g)(−) is the leave-one-out model fit for the i-th observation. Opsomer and

Miller (2005) show that (3.16) works well for selecting the bandwidth for the non-parametric

model-assisted estimator based on local polynomial regression. In section 3.7.1 we look at

how these criteria for selecting the penalty parameter (AICCs(g), BICs(g), and V̂CV (g))

compare. We look at both the accuracy of the models and the design efficiency of the

resulting estimators. In section 3.5 we present the model-based AICC and the model-based

BIC.

3.2 Main results

In section 3.2.1, we list the necessary design assumptions for the survey-weighted lasso

regression estimator and in section 3.2.2, we present its asymptotic properties. Theorem

3.1 is a central limit theorem result for the survey-weighted lasso coefficients as estimates

of the finite population coefficients and Corollary 3.1 provides the root-N consistency of

the survey-weighted lasso coefficients for the finite population coefficients. Throughout

this section, the survey-weighted lasso coefficients, β̂
(L)

s , are denoted by β̂N and the finite

population coefficients, β(OLS)
U , are denoted by βN to simplify the notation and to emphasize
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the dependence on N as we look at the asymptotic properties of these quantities. To find

the survey-weighted lasso coefficients, we use the survey-weighted residual sum of squares

plus an l1 penalty on the coefficients:

β̂N = arg min
β

(Y s −Xsβ)T Π−1
s (Y s −Xsβ) + λN

p∑
i=1

|βi|

instead of the equivalent criterion given in (3.8).

Theorem 3.2 is a central limit theorem result for the lasso regression estimator and

Corollary 3.2 provides the root-n consistency of the lasso regression estimator for the pop-

ulation total. After showing the usual variance estimator is design consistent in Theorem

3.3, Corollary 3.3 is another central limit theorem result which is immediate from Theorem

3.2 and Theorem 3.3.

In section 3.2.3, we consider the situation where the survey-weighted lasso coefficients

are estimates for superpopulation coefficients and derive the properties of the coefficient

estimates under a joint design-model framework. In both Theorem 3.4 and Theorem 3.5,

we combine standard regression theory with the results of section 3.2.2 to obtain consistency

and a central limit theorem result.

3.2.1 Design assumptions

The following assumptions pertain to the sampling design and the asymptotic behavior

of both sample and finite population quantities. We follow the asymptotic framework

presented in chapter 2, section 2.2.1.

D1. The penalty parameter is allowed to increase as N increases but only at the rate

λN = o(
√
N).

D2. As N →∞, assume nN−1 → π ∈ (0, 1).

D3. Define the survey-weighted matrix of the covariates

ĈN =
1

N

∑
i∈UN

xix
T
i

Ii
πi

(3.17)
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and the corresponding finite population matrix

CN =
1

N

∑
i∈UN

xix
T
i . (3.18)

Assume both ĈN and CN are positive definite, ĈN − CN = op(1) elementwise and

CN−C = o(1) elementwise where C is a non-singular matrix. AssumeDN−D = o(1)

elementwise for some D ∈ Rp+1 where

DN =
1

N

∑
i∈UN

xiyi.

Define β∗ = C−1D.

D4. Define the following (p+2)(p+1) vector of centered, standardized Horvitz-Thompson

estimators:

zN =


√
n
N

∑
i∈UN

xiyi

(
Ii
πi
− 1
)

{√
n
N

∑
i∈UN

xixik

(
Ii
πi
− 1
)}p

k=0

 (3.19)

where xi = (xi0, xi1, . . . , xip)
T and xi0 = 1. The finite population covariance matrix

for zN is

ΣN =



Σ
(xyxy)
N Σ

(xyxxo)
N · · · Σ

(xyxxp)
N

Σ
(xxoxy)
N Σ

(xxoxxo)
N

...

...
...

Σ
(xxpxy)
N Σ

(xxpxxo)
N . . . Σ

(xxpxxp)
N



=


n
N2

∑∑
i,j∈UN

4ij

πiπj
xiyix

T
j yj · · · n

N2

∑∑
i,j∈UN

4ij

πiπj
xiyix

T
j xip

...
...

n
N2

∑∑
i,j∈UN

4ij

πiπj
xixipx

T
j yj · · · n

N2

∑∑
i,j∈UN

4ij

πiπj
xixipx

T
j xip

 .
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The limit of the normalized finite population covariance matrix of zN ,

Σ = lim
N→∞

ΣN , (3.20)

is positive definite.

D5. Assume the following central limit theorem for the normalized, centered, Horvitz-

Thompson estimators defined in (3.19):

zN

D→ N (0,Σ).

D6. For the vector z∗N = (zN1, zNp+2, zNp+3, . . . , zN2p+3) which is a subset of the vector zN

defined in (3.19), an estimate of the covariance matrix is

Σ̂
∗
N =

Σ̂
(xoyxoy)
N Σ̂

(xoyxxo)
N

Σ̂
(xxoxoy)
N Σ̂

(xxoxxo)
N



=


n
N2

∑∑
i,j∈UN

4ij

πiπj

IiIj
πij
yiyj

n
N2

∑∑
i,j∈UN

4ij

πiπj

IiIj
πij
yix

T
j

n
N2

∑∑
i,j∈UN

4ij

πiπj

IiIj
πij
xiyj

n
N2

∑∑
i,j∈UN

4ij

πiπj

IiIj
πij
xix

T
j

 .

Assume n
(
Σ̂
∗
N −Σ∗N

)
= op(1) elementwise where

Σ∗N =

Σ
(xoyxoy)
N Σ

(xoyxxo)
N

Σ
(xxoxoy)
N Σ

(xxoxxo)
N

 .
For ease of notation write,

Σ̂
∗
N =

Σ̂
(yy)
N Σ̂

(yx)
N

Σ̂
(xy)
N Σ̂

(xx)
N

 and Σ∗N =

Σ
(yy)
N Σ

(yx)
N

Σ
(xy)
N Σ

(xx)
N

 .

Remark 1. The sample size n should be written as nN since it grows asymptotically. Both

the sample size and the population size can be used fairly interchangeably as normalizers

since assumption (D2) requires they grow at the same rate.
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Remark 2. Assumption (D3) ensures that the finite population parameter βN converges to

the vector β∗ ∈ Rp+1. It does not necessary to converge to β, the true coefficient vector.

Remark 3. Assumption (D5) allow us to obtain central limit theorem results for the lasso

coefficients and regression estimator. Without these assumptions, we would have to restrict

our attention to with replacement sampling, simple random sampling or to other special

cases with known central limit theorems.

Remark 4. Since xi contains an intercept term, assumption (D4) covers lim
N→∞

Σ
(xoyxoy)
N =

Σ(xoyxoy) where

Σ
(xoyxoy)
N = Σ

(yy)
N =

n

N2

∑∑
i,j∈UN

4ij

πiπj
yiyj

and similarly lim
N→∞

Σ
(xxoxxo)
N = Σ(xxoxxo) where

Σ
(xxoxxo)
N = Σ

(xx)
N =

n

N2

∑∑
i,j∈UN

4ij

πiπj
xix

T
j .

3.2.2 Design-based asymptotic results

The design based results for both the survey-weighted lasso coefficients and subsequently

the survey-weighted lasso regression estimator are given in this section. Under suitable

conditions, the asymptotic distribution of the survey-weighted lasso regression estimator is

the same as the asymptotic distribution of the full regression estimator.

Theorem 3.1. Under assumptions (D1) – (D5),

√
N
(
β̂N − βN

)
D→ N

(
0, π−1C−1V C−1

)
(3.21)

where the matrix V is defined by

V = Σ(xyxy) − 2

p∑
k=0

β∗kΣ
(xxkxy) +

p∑
k=0

p∑
l=0

β∗kβ
∗
l Σ

(xxkxxl)

and the terms in V are components of the limit in (3.20).
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Proof. First, define the survey-weighted lasso criterion as

AN(u) := (Y s −Xsu)T Π−1
s (Y s −Xsu) + λN

p∑
j=1

|uj | (3.22)

where β̂N = arg min
u

AN(u) and let

BN(u) := AN

(
βN − u

√
n

N

)
−AN(βN). (3.23)

Notice the minimum of BN(u) is Nn−1/2(β̂N − βN). Since βN is the OLS estimator, we

have

−2
√
n

N

∑
i∈UN

xi (yi − xT
i βN) = 0.

Now write

BN(u) =

(
Y s −Xs

[
βN +

u
√
n

N

])T

Π−1
s

(
Y s −Xs

[
βN +

u
√
n

N

])
+ λN

p∑
j=1

∣∣∣∣βNj +
uj
√
n

N

∣∣∣∣
(3.24)

− (Y s −XsβN)T Π−1
s (Y s −XsβN)− λN

p∑
j=1

|βNj|

=− uT

2
√
n

N

∑
i∈UN

xi (yi − xT
i βN)

Ii
πi

+ uT

 n

N2

∑
i∈UN

Ii
πi
xix

T
i

u
+ λN

p∑
j=1

∣∣∣∣βNj +
uj
√
n

N

∣∣∣∣− |βNj| (3.25)

=− uT

2
√
n

N

∑
i∈UN

xi (yi − xT
i βN)

(
Ii
πi
− 1

)+ uT

 n

N2

∑
i∈UN

Ii
πi
xix

T
i

u
+ λN

p∑
j=1

∣∣∣∣βNj +
uj
√
n

N

∣∣∣∣− |βNj| . (3.26)

Assumptions (D3) and (D5) imply

√
n

N

∑
i∈UN

xi(yi − xT
i βN)

(
Ii
πi
− 1

)
D→ N (0,V )
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since the variance of the centered Horvitz-Thompson estimator can be written

V arp

√n
N

∑
i∈UN

xi(yi − xT
i βN)

Ii
πi

 =
n

N2

∑∑
i,j∈UN

4ij
xi(yi − xT

i βN)

πi

xT
j (yj − xT

j βN)

πj

= Σ
(xyxy)
N − 2

p∑
k=0

βNkΣ
(xxkxy)
N +

p∑
k=0

p∑
l=0

βNkβNlΣ
(xxkxxl)
N

:= V N

and by assumptions (D3) and (D4), V = lim
N→∞

V N . This implies the first component in

(3.26) converges in distribution. The second term converges in probability to the quadratic

term uTπCu by assumptions (D2) and (D3). Also, we have

λN

p∑
j=1

∣∣∣∣βNj +
uj
√
n

N

∣∣∣∣− |βNj| = op(1) (3.27)

for each u ∈ Rp+1 since∣∣∣∣∣∣λN

p∑
j=1

∣∣∣∣βNj +
uj
√
n

N

∣∣∣∣− |βNj|

∣∣∣∣∣∣ ≤ λN

p∑
j=1

∣∣∣∣∣∣∣∣βNj +
uj
√
n

N

∣∣∣∣− |βNj|
∣∣∣∣

≤ λN

p∑
j=1

∣∣∣∣uj√nN

∣∣∣∣
=

λN√
N

√
n√
N
||u||L1

= op(1)

by assumption (D1). Therefore, we can apply the Corollary in section 1 of Hjort and Pollard

(1993) to BN(u) and obtain

Nn−1/2(β̂N − βN)
D→ N

(
0, π−2C−1V C−1

)
.

Therefore,

N1/2(β̂N − βN)
D→
√
πN

(
0, π−2C−1V C−1

)
= N

(
0, π−1C−1V C−1

)
.
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The following Corollary is an immediate consequence of Theorem 3.1.

Corollary 3.1. Under assumptions (D1) – (D5), β̂N is root-N design consistent for βN in

the sense that β̂N − βN = Op(N
−1/2).

The next results are the asymptotic design properties of the survey-weighted lasso re-

gression estimator.

Theorem 3.2. Under assumptions (D1) – (D5),

{
varp(t̂y,diff )

}−1/2
(t̂y − ty)

D→ N(0, 1).

Proof. First, by assumptions (D3) the finite population parameter vector, βN , converges to

the vector β∗ ∈ Rp+1 elementwise since

βN =

 1

N

∑
i∈UN

xix
T
i

−1

1

N

∑
i∈UN

xiyi

N→∞−→ C−1D

= β∗.

Therefore, β̂N converges in probability to β∗ since

∣∣∣β̂N − β∗
∣∣∣ ≤ ∣∣∣β̂N − βN

∣∣∣+ |βN − β∗|

= Op(N
−1/2) + o(1)

= op(1).
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From assumption (D5), we have



zN1

zNp+2

zNp+3

...

zN2p+3


=


√
n
N

∑
i∈UN

yi

(
Ii
πi
− 1
)

√
n
N

∑
i∈UN

xi

(
Ii
πi
− 1
)
 D→ N

0,

Σ(xoyxoy) Σ(xoyxxo)

Σ(xxoxoy) Σ(xxoxxo)


 (3.28)

and for ease of notation, let

Σ(xoyxoy) Σ(xoyxxo)

Σ(xxoxoy) Σ(xxoxxo)

 :=

Σ(yy) Σ(yx)

Σ(xy) Σ(xx)

 .
Define the function g(·, ·) such that g(a, b) = (a1,a

T
2b). Since β̂N converges in probability

to β∗ we can apply Slutsky’s Theorem to (3.28) and obtain


√
n
N

∑
i∈UN

yi

(
Ii
πi
− 1
)

√
n
N

∑
i∈UN

xT
i β̂N

(
Ii
πi
− 1
)
 D→ N


0

0

 ,
 Σ(yy) Σ(yx)β∗

β∗TΣ(xy) β∗TΣ(xx)β∗


 .

Now, define the function h(·, ·) such that h(a1, a2) = a1 − a2. The Jacobian of h(a1, a2) is

Jh(a1,a2) = (1,−1) and

Jh(0,0)

 Σ(yy) Σ(yx)β∗

β∗TΣ(xy) β∗TΣ(xx)β∗

JT

h(0,0) = Σ(yy) −Σ(yx)β∗ − β∗TΣ(xy) + β∗TΣ(xx)β∗.

By the Delta Method, we have

√
n

N

{
Σ(yy) −Σ(yx)β∗ − β∗TΣ(xy) + β∗TΣ(xx)β∗

}−1/2
(t̂y − ty)

D→ N(0, 1).

We can write the variance of the difference estimator as

varp(t̂y,diff ) =
N2

n

{
Σ

(yy)
N −Σ

(yx)
N βN − βT

NΣ
(xy)
N + βT

NΣ
(xx)
N βN

}
(3.29)

76



and therefore since βN converges to β∗ and by (3.20), we have

{
Σ

(yy)
N −Σ

(yx)
N βN − βT

NΣ
(xy)
N + βT

NΣ
(xx)
N βN

}
−
{

Σ(yy) −Σ(yx)β∗ − β∗TΣ(xy) + β∗TΣ(xx)β∗
}

= o(1)

⇒ n

N2
varp(t̂y,diff ) = Σ(yy) −Σ(yx)β∗ − β∗TΣ(xy) + β∗TΣ(xx)β∗ + o(1).

This gives us

√
n

N

{
Σ(yy) −Σ(yx)β∗ − β∗TΣ(xy) + β∗TΣ(xx)β∗

}−1/2
(t̂y − ty)

=

√
n

N

{ n

N2
varp(t̂y,diff )

}−1/2
(t̂y − ty) + o(1)Op(1)

=
{
varp(t̂y,diff )

}−1/2
(t̂y − ty) + op(1)

D→N(0, 1).

The design
√
n consistency of t̂y,lasso for ty is an immediate consequence of Theorem 3.2

Corollary 3.2. Under assumptions (D1) – (D5), the estimator t̂y,lasso is design
√
n-

consistent for ty in the sense that N−1(t̂y,lasso − ty) = Op(n
−1/2).

Theorem 3.3. Under assumptions (D1) – (D6),

V̂ (t̂y,lasso) =
∑∑
i,j∈s

4ij

πij

(
yi − xT

i β̂N

)
πi

(
yj − xT

j β̂N

)
πj

= varp(t̂y,diff ) + op

(
N2

n

)
. (3.30)

Proof. Similar to the variance of the difference estimator in (3.29), we can write the esti-

mated variance of the survey-weighted lasso regression estimator as

n

N2
V̂ (t̂y,lasso) =

{
Σ̂

(yy)
N − Σ̂

(yx)
N β̂N − β̂

T

NΣ̂
(xy)
N + β̂

T

NΣ̂
(xx)
N β̂N

}
.
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Therefore, by Theorem 3.1 and assumption (D6), we have

n

N2

[
V̂ (t̂y,lasso)− varp(t̂y,diff )

]
=
{

Σ̂
(yy)
N − Σ̂

(yx)
N β̂N − β̂

T

NΣ̂
(xy)
N + β̂

T

NΣ̂
(xx)
N β̂N

}
−
{

Σ
(yy)
N −Σ

(yx)
N βN − βT

NΣ
(xy)
N + βT

NΣ
(xx)
N βN

}
= op(1)

which implies (3.30).

Corollary 3.3. Under assumptions (D1) – (D6),

{
V̂ (t̂y,lasso)

}−1/2
(t̂y − ty)

D→ N(0, 1).

Proof. This result is a direct implication of Theorems 3.2 and 3.3 since

{
V̂ (t̂y,lasso)

}−1/2
(t̂y − ty) =

{
varp(t̂y,diff )

}−1/2
(t̂y − ty) + op

(√
n

N

)
Op

(
N√
n

)
=
{
varp(t̂y,diff )

}−1/2
(t̂y − ty) + op (1)

D→ N(0, 1).

3.2.3 Asymptotic results under joint design-model framework

The descriptive study of a finite population includes estimation of a finite population quan-

tity and in our case, estimation of the finite population total of y, ty. While we utilized

the model (3.1) to build the survey-weighted lasso regression estimator, we ignored the

variability induced by the model when looking at the properties of the estimator. Ignoring

the model error when conducting descriptive inference can often be justified because the

error induced by the model is of a smaller order than the design-based error and because

we are interested in constructing an estimator that has good design properties regardless of
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whether or not the model is correctly specified.

The analytic study of survey data sampled from a finite population pertains to the model

which generated the population. Typically in statistics, we have data, we assume a model

for the data and then we use the data to make statements, often in the form of hypothesis

tests and confidence intervals, about the model. In order to make inferences about a model

from a complex survey design, we need a framework which accounts for the randomness

induced by the model and for the randomness induced by the sampling design. In this

situation, the population {yi}i∈U is viewed as independent realizations from the model

(3.1) and the finite population coefficients, βN , are no longer fixed unknown quantities but

instead are estimates (albeit unknown) of the true coefficients β. The survey-weighted lasso

coefficients, β̂N , estimate the finite population coefficients βN which in turn estimate the

true coefficients β. Therefore,we can argue that the survey-weighted lasso coefficients β̂N ,

estimate the true coefficient vector β. The quality of the survey coefficients as estimates of

the true coefficients relies on how well the survey coefficients estimate the finite population

coefficients and on how well the finite population coefficients estimate the true coefficients.

With the following additional model assumption, we prove the root-N consistency of

β̂N for β and obtain a joint design-model central limit theorem for β̂N . The approximate

variance found from the central limit theorem can then be used to make confidence regions

or conduct hypothesis tests for β while ensuring both the design and model randomness

have been taken into account.

M1. The finite population is a realization from the superpopulation model,

ξ : yi = xT
i β + εi

where the errors, ε1, . . . , εN , are iid random variables with mean 0, variance σ2, and

E|ε3i | = ρ <∞. The x’s are assumed to be fixed with respect to the model.

Theorem 3.4. Under assumptions (D1) – (D5), and (M1), β̂N − β = op(1).

Proof. From assumptions (M1) and (D3), it is well established that the ordinary least

squares estimate βN is consistent for β. So βN − β = op(1). From Corollary 3.1, we have
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β̂N − βN = op(1). Therefore, we have

β̂N − β = β̂N − βN + βN − β

= op(1) + op(1)

= op(1).

Theorem 3.5. Under (D1) – (D5), and (M1)

√
N
(
β̂N − β

)
D→ N

(
0,
[
π−1C−1V + σ2

]
C−1

)
. (3.31)

Proof. From assumptions (M1) and (D3), we have the asymptotic distribution of the finite

population ordinary least squares estimator, βN because we can write

√
N (βN − β) = (N−1XT

NXN)−1 1√
N

∑
i∈UN

xiεi

and by a multivariate version of Theorem 2.7.4 in Lehmann (1999), we have

1√
N

∑
i∈UN

xiεi
D→ N

(
0, σ2C

)
.

Then applying Slutsky’s Lemma gives us

(N−1XT
NXN)−1 1√

N

∑
i∈UN

xiεi
D→ C−1N

(
0, σ2C

)
= N

(
0, σ2C−1

)
.

From Theorem 3.1, we have (3.21) conditional on the data. Applying Theorem 1.3.6 in

Fuller (2009), we can stack these two asymptotic statements to obtain (3.31).

Both Theorem 3.4 and Theorem 3.5 hold for the usual unpenalized, survey-weighted

estimator, (3.7). Therefore, the asymptotic distribution of the survey-weighted lasso co-

efficients is the same as the asymptotic distribution of the unpenalized, survey-weighted
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coefficients.

3.3 Extensions of the lasso estimator

The lasso method does have a few drawbacks in terms of model selection and parameter

estimation. Although the researcher can leave some variables unpenalized by omitting those

variables from the penalty term, the lasso method keeps or drops penalized variables on an

individual basis. Consider a set of variables, such as the dummy variables of a categorial

covariate or the higher order moments of a particular covariate. The lasso method does not

keep or drop the set as a group and therefore can produce unsensible models. In section

3.3.1, we discuss an extension which corrects this drawback by introducing a survey-weighted

version of the group lasso estimator (Yuan and Lin 2006).

Until now, we have only considered the case where the y variable is continuous. However,

there is still a need for model selection when the y is binary or represents counts. Therefore,

Park and Hastie (2007) presented a lasso estimator for generalized linear models and an

algorithm for fitting the entire regularization path for the estimated coefficients. We look

at the survey-weighted version of the lasso estimator for glms in section 3.3.2.

In the criterion for the survey-weighted lasso coefficients, the squared residual terms

are weighted by their inverse inclusion probabilities. Both Zou (2006) and Wang and Leng

(2008) modified the lasso criterion so that each coefficient in the penalty term is given a

different weight. The modified lasso is called adaptive lasso. This work was motivated by

the fact that the lasso estimates where the true coefficient is large tend to have negative

bias. Additionally, several authors have shown (Zhao and Yu (2006), Zou (2006)) that there

are many scenarios where the lasso estimates obtain parameter estimation consistency but

do not achieve model selection consistency. In the corrected penalty term, each coefficient

is typically weighted by the inverse of a root-n consistent estimator, such as the ordinary

least squares or the ridge regression estimator. In this weighting scheme, coefficients which

should be large recieve a small penalty whiel coefficients which should be zero receive a

large penalty. In section 3.3.3 we discuss the survey-weighted adaptive lasso and how to

easily solve for the survey-weighted adaptive lasso estimates using existing algorithms.
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Combinations of these lasso extensions are often appropriate and have been explored.

For example, Meier, van de Geer, and Bühlmann (2008) studied group lasso for logistic

regression and Wang and Leng (2008) presented results for adaptive group lasso. The

survey-weighted version of these extensions can also be easily derived but is not investigated

further in this thesis.

3.3.1 Survey-weighted group lasso

When variable selection should be done at a group level, not an individual variable level,

the lasso estimator is not suitable. Therefore, Yuan and Lin (2006) constructed a group

lasso estimator which either includes all or none of the variables in a particular group. The

group lasso estimator is invariant to how the dummy variables representing a particular

group are coded, a property the lasso estimator lacks. The main difference between the

lasso and group lasso criteria is the penalty term in the group lasso is a hybrid between

the l1 and l2 penalties. If there is one variable in each group, then the penalty reverts to

the usual lasso penalty. However, for groups with more than one variable, an l2 penalty

is used on the coefficients in the group. Before presenting the group lasso criterion, we

need to define some notation. Let G be the number of groups, pg the number of factors or

variables in group g, and p =
∑G

g=1 pg the total number of variables. The coefficient vector

is β = (βT
1 ,β

T
2 , . . . ,β

T
G)T where each β is of length pg and the survey-weighted group lasso

criterion is

β̂
(GL)

s = arg min
β

(Y s −Xsβ)T Π−1
s (Y s −Xsβ) + λ

G∑
g=1

p1/2
g ||βg||l2 . (3.32)

In the penalty term, each group is weighted by the dimension of the group so that the penalty

term has the same order as the degrees of freedom (Meier, van de Geer, and Bühlmann

2008). The survey-weighted lasso regression estimator is obtained by replacing the lasso

coefficients in (3.9) with the group lasso coefficients.
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3.3.2 Survey-weighted lasso for logistic regression

Until now, we have looked at multiple linear regression models where the study variable,

y, is continuous. The lasso criterion and its variants have included the residual sums of

squares subject to an l1 penalty term for the coefficient vector. Park and Hastie (2007)

extend the lasso method for independent data by constructing a criterion for generalized

linear models (glms). Instead of the residual sum of squares, they minimize the negative log

likelihood subject to an l1 penalty. Meier, van de Geer, and Bühlmann (2008) use the same

criterion for logistic regression but with the group level penalty on the coefficients, which

was discussed in section 3.3.1. Here we propose a survey version of the lasso for logistic

regression by minimizing a survey-weighted negative log likelihood subject to the l1 penalty

on the coefficient vector. These results can be extended to group survey-weighted lasso for

logistic regression using the penalty term in section 3.3.1.

When the study variable, y, is continuous, the total is a common finite population

quantity of interest. However, if we assume the study variable represents a binary variable

such as gender or presence/absence of forest, then a common finite population quantity

of interest is the population proportion of y, Py = N−1
∑

j∈U yj . Lehtonen and Veijanen

(1998) derived a model assisted logistic regression estimator for the population proportion.

We build on those results to construct a model-assisted logistic lasso regression estimator.

Consider the superpopulation model, ξ, where the finite population of the study variable,

{yj}j∈U , are independently distributed realizations from a Bernoulli random variable Y

whose distribution is an exponential family. Through the logit function we can model the

EξY = Pξ(Y = 1|x)

logit(Pξ(Y = 1|x)) = log

(
Pξ(Y = 1|x)

1− Pξ(Y = 1|x)

)
= xTβ (3.33)

where xT = (1, x1, . . . , xp) are fixed and assumed known for each j ∈ U . The expectation,

Eξ(·), is with respect to the model. Denote the number of non-zero coefficients by po and

assume the true model is sparse (po < (p+1)). In order to find the regression estimator, we
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need to estimate the Pξ(Yj = 1|xj)[= f(xj)] with the following finite population quantity

fU(xj) =
exp(xT

j βU)

1 + exp(xT
j βU)

(3.34)

where the finite population coefficient vector minimizes the negative log-likelihood of the

superpopulation model:

βU = arg min
β

[−l(β)]

= arg min
β

− log
∏
j∈U

Pξ(Yj = 1|xj)yj [1− Pξ(Yj = 1|xj)]1−yj


= arg min
β

−∑
j∈U

yj log [Pξ(Yj = 1|xj)] + (1− yj) log [1− Pξ(Y = 1|x)]


= arg min

β

−∑
j∈U

yj logit [Pξ(Yj = 1|xj)] + log [1− Pξ(Y = 1|x)]


= arg min

β

−∑
j∈U

yjx
T
j β − log

[
1 + exp(xT

j β)
] . (3.35)

Since we only have the sampled values for the study variable, we cannot solve (3.35) and

must estimate its solution with quantities based on the sample. An unpenalized estimator

for the finite population coefficient vector, βU , is found by minimizing the survey-weighted

negative log-likelihood

β̂s = arg min
β

−∑
j∈s

1

πj

{
yjx

T
j β − log

[
1 + exp(xT

j β)
]} . (3.36)

Since we assumed the true model is sparse and possibly p > n, we prefer an estimator which

performs both model selection and parameter estimation. The survey-weighted lasso coeffi-

cient estimator for logistic regression is found by minimizing the survey-weighted negative

log-likelihood subject to an l1 penalty on the coefficient vector

β̂
(L)

s = arg min
β

−∑
j∈s

1

πj

{
yjx

T
j β − log

[
1 + exp(xT

j β)
]} subject to

p∑
j=1

|βj | ≤ g
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where β̂(L)
so is unpenalized and g ≥ 0 is the penalty parameter. The finite population mean

function is estimated by the sample mean function

f̂s(xj) =
exp(xT

j β̂
(L)

s )

1 + exp(xT
j β̂

(L)

s )
(3.37)

and the survey-weighted lasso regression estimator for the population proportion is

P̂y,reg =
1

N

∑
j∈s

yj − f̂s(xj)
πj

+
∑
j∈U

f̂s(xj)

 . (3.38)

If we use the unpenalized sample coefficient vector (3.36) in the sample mean function (3.37)

instead of the survey-weighted coefficient vector, then we obtain the logistic generalized

regression estimator of Lehtonen and Veijanen (1998). Note, the survey-weighted coefficient

vector, β̂
(L)

s and sample mean function f̂s(xj) are both functions of the penalty parameter,

g. To find an appropriate value for g, one can minimize the survey-weighted AICC:

AICCs(g) = −2
∑
j∈s

1

πj

{
yjx

T
j β̂

(L)

s − log
[
1 + exp(xT

j β̂
(L)

s )
]}

+
2N(df +1)

N − df −1

or the survey-weighted BIC:

BICs(g) = −2
∑
j∈s

1

πj

{
yjx

T
j β̂

(L)

s − log
[
1 + exp(xT

j β̂
(L)

s )
]}

+ df log(N).

The methods of Park and Hastie (2007) can also be used to find the survey-weighted lasso

criterion for other variables whose distribution is an exponential family.

3.3.3 Survey-weighted adaptive lasso

Two of the drawbacks of the lasso estimator are the over-penalization of ‘large’ coefficients

and the situations where the lasso estimates do not obtain model selection consistency. More

specifically, the lasso often does not achieve the oracle properties which requires a method

to have both model selection consistency and asymptotically the optimal estimation rate.

The optimal estimation rate is defined as the estimation rate if we knew the true model
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ahead of time (Zou 2006). Model selection consistency is not achieved when the unnecessary

covariates are highly correlated with the necessary covariates because in this scenario, the

lasso criterion has trouble discerning which coefficients are non-zero (Zhao and Yu 2006).

Zou (2006) proposed a solution to these issues, the adaptive lasso. In the adaptive lasso

criterion function the coefficients in the l1 penalty are weighted by the inverse of a root-

n consistent estimator. The oracle properties are achieved by the adaptive lasso because

less weight is placed on ‘large’ coefficients and more weight is placed on ‘small’ coefficients,

making model selection easier. Also, since the ‘large’ coefficients are given a smaller penalty,

they have less negative bias.

Returning to the estimation of the finite population total, ty, where y is a continuous

variable, we can derive a survey-weighted adaptive lasso regression estimator

t̂y,alasso =
∑
j∈s

yj − xT
j β̂

(AL)

N

πj
+
∑
j∈UN

xT
j β̂

(AL)

N (3.39)

where the estimated coefficient vector based on the sample is

β̂
(AL)

N = arg min
β

(Y s −Xsβ)T Π−1
s (Y s −Xsβ) subject to

p∑
i=1

|βi|
|β̂(WLS)

i |
≤ g (3.40)

and the equation for β̂
(WLS)

is found in (3.7). To compute the survey-weighted adaptive

lasso coefficient values, we first need to transform the criterion in (3.40) to look like the

criterion in (3.2):

(Y s −Xsβ)TΠ−1
s (Y s −Xsβ) subject to

p∑
i=1

|βi|
|β̂(WLS)

i |
≤ g

⇒
(
Π−1/2
s Y s −Π−1/2

s Xsβ
)T (

Π−1/2
s Y s −Π−1/2

s Xsβ
)

subject to

p∑
i=1

|βi|
|β̂(WLS)

i |
≤ g

⇒
(
Π−1/2
s Y s −Π−1/2

s XsV
−1V β

)T (
Π−1/2
s Y s −Π−1/2

s XsV
−1V β

)
subject to

p∑
i=1

|βi|
|β̂(WLS)

i |
≤ g

⇒ (Y ∗s −X∗sβ∗)
T (Y ∗s −X∗sβ∗) subject to

p∑
i=1

|β∗i | ≤ g (3.41)

where V is the (p+ 1)× (p+ 1) diagonal matrix of the penalty vector
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(1, |β̂(WLS)

1 |−1, . . . , |β̂(WLS)
p |−1). Using the function l1ce() in R (R Development Core Team

2010), we can fit the lasso criterion in (3.41) using the transformed covariate matrix, X∗s =

Π
−1/2
s XsV

−1 and the transformed study variable vector Y ∗s = Π
−1/2
s Y s to obtain β̂

(AL)∗
N .

The survey-weighted adaptive lasso coefficient values are found by back transforming:

β̂
(AL)

N = V −1β̂
(AL)∗
N .

In section 3.7, we compare the survey-weighted lasso regression estimator and the survey-

weighted adaptive lasso estimator via simulation.

3.4 Calibration estimators

In practice, it is often the case that several, possibly hundreds or even thousands, of finite

population quantities need to be estimated from the same survey data. Therefore, it is

desirable to estimate the finite population totals with weighted linear combinations of the

sampled study variables:

t̂y =
∑
j∈s

wjyj (3.42)

where the weights, {wj}j∈s, are dependent on the sample but independent of the study

variable. Since the weights are independent of the study variable, they can be applied to

many variables of interest. For example, we can write the regression estimator as a linear

combination of the sampled study variable:

t̂y,reg =
∑
j∈s

1 + (tx − t̂x,HT )T

∑
j∈s

xjx
T
j

πj

−1

xj

 1

πj
yj (3.43)

where tx is the population total vector of the covariates and t̂x,HT is the corresponding

Horvitz-Thompson estimator vector of the covariate totals (Särndal, Swensson, and Wret-

man 1992). Although the same regression model is not appropriate for each population total

of interest, it is much less time consuming to compute one set of weights and as long as the

study variables relate even weakly with the covariates, the weights produce a more efficient
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estimator than the Horvitz-Thompson weights. It is important to rely on model-assisted

estimators, not model-based estimators, when the accuracy of the model is not checked for

each study variable.

Since the lasso method does not produce an estimator which is linear in y, the lasso

regression estimator cannot be written as a linear combination of the y values in the sample.

To obtain weights, we employ the method used by Opsomer et al. (2007) and Montanari and

Ranalli (2005). We construct a calibration estimator, which can be written as a weighted

sum of the sampled study variable as in (3.42) with the caveat that the weights do depend

on the sampled study variable, y.

The lasso calibration estimator is found by regressing the study variable, y, on the

sample mean function, f̂s(xj), over the sample (and without an intercept term). Because

the calibration step is a linear regression model, the lasso calibration estimator can be

written in the same form as (3.43) where xj is replaced by f̂s(xj) = xT
y β̂

(L)

s :

t̂y,cal =
∑
j∈s

1 +

∑
j∈U

f̂s(xj)−
∑
j∈s

f̂s(xj)

πj

∑
j∈s

f̂s(xj)
2

πj

−1

f̂s(xj)

 1

πj
yj . (3.44)

Since f̂s(xj) is dependent on {xj , yj}j∈s, the weights in the lasso calibration estimator are

dependent on the study variable, y. This dependence implies that the utility of applying

these weights to other study variables depends on how correlated the variables are with

y. The estimator is called the calibration estimator because it has the property that if we

set the regressor as the response variable, the resulting estimator will equal the population

total of the regressor. Therefore, the estimator agrees with or is calibrated on the regressor.

If we let yj = f̂s(xj) in the lasso calibration estimator, we do indeed find

t̂f̂s(x),cal =
∑
j∈s

f̂s(xj)

πj
+

∑
j∈U

f̂s(xj)−
∑
j∈s

f̂s(xj)

πj

∑
j∈s

f̂s(xj)
2

πj

−1∑
j∈s

f̂s(xj)
2

πj

=
∑
j∈U

f̂s(xj).

In section 3.7, we compare the lasso calibration estimator with various other finite popula-

tion total estimators and consider a lasso adaptive calibration estimator where the sample
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mean function in (3.44) is replaced with

f̂s(xj) = xT
j β̂

(AL)

s . (3.45)

3.4.1 Ridge regression approximation

Although the lasso coefficients do not have a closed form solution, Tibshirani (1996) ap-

proximated the coefficient estimates with a ridge regression format to derive the standard

error. We wish to use this approximate solution as another way to construct weights for an

estimator of the form (3.42). In order to utilize ridge regression, we must write the penalty

term as
∑p

i=1 β
2
i |βi|−1. This allows us to obtain the following approximate ridge regression

coefficient estimates:

β̂
(ridge)

s =
(
XT

sΠ−1
s Xs + µQ−

)−1
XT

sΠ−1
s Y s

where Q is the diagonal matrix of the vector (0, |β̂(L)

s1 |, . . . , |β̂
(L)
sp |) and Q− is the generalized

inverse of Q. The penalty parameter µ is chosen so that
∑

j∈s |β̂
(ridge)
sj | = g where g is

defined in (3.8). The survey-weighted lasso ridge regression estimator is

t̂y,ridge =
∑
j∈s

1 + (tx − t̂x,HT )T

∑
j∈s

xjx
T
j

πj
+ µQ−

−1

xj

 1

πj
yj . (3.46)

It is important to again recognize that the weights in (3.46) are dependent on the study

variable, y, because the weights are a function of the lasso coefficients, β̂
(L)

s . In section 3.7,

we compare the survey-weighted lasso ridge regression estimator to other finite population

total estimators. For both the calibration estimators and the ridge regression estimators,

we are interested in how the constructed weights compare to the weights of the regression

estimator and the Horvitz-Thompson estimator. A survey-weighted adaptive lasso ridge

regression estimator is not considered in the simulation because the adaptive lasso ridge

coefficients were a fairly unstable approximation of the adaptive lasso coefficients.
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3.5 Model-based estimators

Thus far, the estimators discussed in this chapter are model-assisted estimators because they

utilize a model but maintain good design properties regardless of the accuracy of the model.

Another class of estimators are model-based estimators which tend to be more efficient than

the model-assisted estimators if the assumed model is correct and the sampling design is

non-informative in the sense that the sample model is the same as the superpopulation

model. We wish to present the model-based counterparts to the model-assisted estimators

constructed so that we can draw comparisons between the two classes of estimators via

simulations.

First, assume the superpopulation model given in (3.1). The model-based generalized

regression estimator equals the total of the sampled study variable plus the total of the

predicted, non-sampled values [formula given in (1.5)]. For the model-based regression

estimator, the model-based lasso regression estimator and the model-based adaptive lasso

regression estimator, the fitted values are given by

f̃s(xj) = xT
j β̃s (3.47)

where β̃s is defined in (1.6) for the regression estimator,

β̃
(L)

s = arg min
β

(Y s −Xsβ)T (Y s −Xsβ) subject to

p∑
j=1

|βj | ≤ gMB (3.48)

for the lasso estimator, and

β̃
(AL)

s = arg min
β

(Y s −Xsβ)T (Y s −Xsβ) subject to

p∑
j=1

|βj |
|β̃j |
≤ gMB (3.49)

for the adaptive lasso estimator. The weights in the penalty term of the adaptive lasso

estimator are the inverse elements of the ordinary least squares coefficient vector, β̃s =
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(XT
sXs)

−1XT
sY s. Therefore, the model-based regression estimator is

t̃y,REG =
∑
j∈s

yj +
∑
j∈U−s

xT
j β̃s, (3.50)

the model-based lasso regression estimator is

t̃y,lasso =
∑
j∈s

yj +
∑
j∈U−s

xT
j β̃

(L)

s , (3.51)

and the model-based adaptive lasso regression estimator is

t̃y,alasso =
∑
j∈s

yj +
∑
j∈U−s

xT
j β̃

(AL)

s . (3.52)

To find an appropriate value for gMB in (3.48) and (3.49), we propose using model-based

versions of the information criterion presented in section 3.1.3. The model-based AICC is

ÃICCs(g) = n log

 1

n

∑
j∈s

(yj − xT
j β̃

(L)

s (g))2

+
n(d̃fs(g) + n)

n− d̃fs(g)− 2
(3.53)

where d̃fs(g) is the number of non-zero values in β̃
(L)

s (g). Simiarly, the model-based BIC is

B̃ICs(g) = n log

 1

n

∑
j∈s

(yj − xT
j β̃

(L)

s (g))2

+ n+ log(n)
[
d̃fs(g) + 1

]
. (3.54)

As discussed in section 3.4, it is often more convenient to write the estimator as the sum

of a linear combination of the sampled study variable. The model-based regression estimator

can be re-written as a weighted sum but the model-based lasso estimators suffer the same

drawback as their model-assisted counterparts since the coefficient estimates cannot be

written in closed form. Therefore, we also want to approximate the model-based lasso

estimators with a calibration estimator and a ridge regression estimator. Both the model-
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based lasso and adaptive lasso calibration estimators have the form:

t̃y,cal =
∑
j∈s

1 +

 ∑
j∈U−s

f̃s(xj)

∑
j∈s

f̃s(xj)
2

−1

f̃s(xj)

 yj (3.55)

where the sample mean function is given in (3.47) and the sample coefficient estimates are

(3.48) and (3.49), respectively. The model-based calibration estimators are calibrated on

the total of the fitted values. The model-based lasso ridge regression estimator is given by:

t̃y,ridge =
∑
j∈s

1 +

 ∑
j∈U−s

xT
j

∑
j∈s
xjx

T
j + µQ−

−1

xj

 yj (3.56)

where Q is the diagonal matrix of the vector (0, |β̃(L)
N1 |, . . . , |β̃(L)

Np |) and Q− is the generalized

inverse of Q.

3.6 Summary of estimators

We have presented several potential estimators for the total of a continuous study variable.

When no auxiliary information is present, the Horvitz-Thompson estimator is a good design

unbiased estimator for the total. When auxiliary information is present, there are several

model-assisted and model-based estimators to consider. The regression estimator utilizes

all the potential covariates. If some of the covariates are possibly extraneous, then the lasso

or adaptive lasso estimator may be appropriate since they perform model selection. When

both model selection and a list of weights are needed, then the calibration or ridge regression

approximation are desirable. Additionally, if model selection should occur at a group level

instead of on individual variables, a group lasso regression model is appropriate. When

the study variable is binary and the finite population quantity of interest is the population

proportion, then the lasso regression estimator for logistic regression is appropriate.
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3.7 Simulation

We are interested in comparing the lasso regression estimator and some of its variants

described in this chapter to other model-assisted and model-based estimators. In particular,

we want to compare the lasso estimators to the regression estimator at two extremes: the

full regression estimator which includes all covariates and the oracle regression estimator,

which includes the true subset of covariates.

3.7.1 Picking the model selection criterion

We first want to evaluate different methods for selecting the penalty parameter in the lasso

method. For the model-assisted lasso regression estimator, we denote the penalty parameter

by gMA and for the model-based lasso regression estimator, we denote the penalty parameter

by gMB. The model-assisted lasso regression estimator is given in (3.9) and the model-based

lasso regression estimator is given by (3.51).

The linear superpopulation model of (3.1) with variance σ2 = 0.16 is used to generate

the finite population. Two mean functions, both from You (2009), are considered: a sparse,

first-order mean function:

f1(x) = xT (1, 0, 1, 0, 1.5, 0, 0, 0, 1) (3.57)

where xT = (1, x1, x2, . . . , x8) and the covariates are generated to have a correlated uniform

distribution and a sparse, second-order mean function

f2(x) = xT (1.5, 0,−4, 0, 0, 8, 0) (3.58)

where xT = (1, x1, x2, x3, x
2
1, x

2
2, x

2
3) and the covariates are generated from uncorrelated

uniform random variables. To generate the correlated covariates of (3.57), we first draw

x∗ from a multivariate normal with mean 0, var(x∗i ) = 1 and cov(x∗i , x
∗
j ) = ρ for i 6= j.

The covariates are found by applying the normal cumulative distribution function to the x∗

values: x = Φ(x∗). This construction gives the covariates a correlated uniform distribution

and the strength of the correlation depends on the value of ρ. Since we are interested in
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how the correlation of the covariates affects the accuracy of the model selection criteria we

let ρ = 0, 0.2, 0.5, 0.98.

The working model used for both mean functions is the first-order model of all the

possible covariates. For the data generated by (3.57) the true model is a subset of the

working model, whereas for the data generated by (3.58) the true model is not a subset of

the working model. This model misspecification allows us to judge how the various criteria

behave when the true model is not present.

Once a single population of size N = 1000 is generated from one of the superpopulation

models, 100 samples are selected by stratified simple random sampling. Because informative

sampling is pervasive in practice, we construct the strata such that the inclusion probabilities

are correlated with the model errors. Following the method of You (2009), realizations, zj

are generated for each j ∈ U , from a random variable, Z(r) where

Z(r) =


Z∗ where Z∗ ∼ N(0, 1) for r = 0

Z∗ + ε where Z∗ ∼ N
(
0, 1−r

r

)
for 0 < r < 1

ε for r = 1

and ε is the model error defined in (3.1). The finite population data, {yj ,xj , zj}j∈U , are

sorted by zj so that the 250 smallest z values are in stratum one and the next 250 smallest

z values are in stratum two and so forth. Within each stratum, simple random samples are

collected with sample sizes n1 = 15, n2 = 20, n3 = 30, and n4 = 35. The sampling design

is unequal probability sampling because the strata are equally sized but the sample sizes

within strata differ. The sampling method is considered informative since the model errors

and inclusion probabilities are correlated when r > 0. As r increases, the sampling method

becomes more informative and we look at its effects when r = 0, 0.25, 0.75, 1.

For the model-assisted lasso regression estimator, we consider the following three cri-

teria for selecting gMA: survey-weighted AICC, survey-weighted BIC, and the design cross

validation criterion of Opsomer and Miller (2005), given in (3.14), (3.15), and (3.16) respec-

tively. For the model-based lasso regression estimator we consider the following two criteria

for selecting gMB: AICC and BIC, given in (3.53) and (3.54) respectively. For each method,
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the penalty parameter is selected by minimizing the criterion function. We compare the

selected penalty parameters to the optimal penalty parameter which is found by minimizing

the approximate design mean squared error of each estimator:

gMA,opt = arg min
g

[
MSEp(t̂y,lasso(g))

]
and gMB,opt = arg min

g

[
MSEp(t̃y,lasso(g))

]
.

Both gMA,opt and gMB,opt are found by repeatedly sampling from the single, finite population

according to the sampling design. For each sample, both the model-assisted and model-

based estimators are constructed on a grid of g values so that the approximate design mean

squared error is found as a function of g. Between g values, the approximate design mean

squared error is found by spline interpolation. The optimal penalty term is where the

approximate design mean squared error attains its minimum value.

Table 3.1 shows the optimal penalty parameter for the model-assisted estimator is fairly

stable for f1. As the sampling becomes more informative or as the correlation among the

covariates increases, the optimal value stays around 3.5, which is the sum of the absolute

value of the true coefficients (excluding the intercept term since it is not included in the

penalty). The optimal penalty parameters for the model-based estimator, shown in Table

3.2, are less consistent. The model-based estimator does not take the sampling design into

account and therefore it is naturally more affected by changes in sampling informativeness

than by changes in the correlation structure of the covariates. Both the model-assisted

and model-based estimator have trouble discerning an optimal penalty parameter when the

model is misspecified, as is evident by the last column of Tables 3.1 and 3.2.

Table 3.1: Optimal penalty parameter, gMA,opt, for the model-assisted lasso estimator

Models

f1: no f1: mild f1: moderate f1: strong f2

r correlation correlation correlation correlation

0 3.317 3.414 3.468 3.420 3.735

0.25 3.478 3.578 3.594 3.671 4.072

0.75 3.559 3.497 3.538 3.538 3.912

1.00 3.281 3.325 3.452 3.528 4.450
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Table 3.2: Optimal penalty parameter, gMB,opt, for the model-based lasso estimator

Models

f1: no f1: mild f1: moderate f1: strong f2

r correlation correlation correlation correlation

0 3.404 3.518 3.575 3.557 3.837

0.25 2.579 2.776 3.024 3.384 3.903

0.75 2.787 2.942 3.063 3.063 5.557

1.00 1.491 3.486 3.575 3.679 5.557

Tables 3.3 and 3.4 display the proportion of times a covariate was present in the model

across the replicate samples. For f1, the model has three non-zero coefficients but both the

model-assisted and model-based estimators tend to include more than three covariates in

the model. The model-based estimator builds less greedy models but usually with more

than three covariates. Both methods do an excellent job of picking the correct covariates

as long as the correlation among the covariates is not too strong. The same conclusions are

true for f2: although the model is misspecified, both methods pick the true covariate every

time but also tend to select false signals.
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In order to compare the selection criteria, we find the penalty parameters which minimize

the five criteria and then construct the corresponding five estimators for each of the replicate

samples. In Figure 3.2, we have the distribution of the penalty parameters across repetitions

for each criterion. The horizontal lines respresent to the optimal penalty parameter. Plots

are based on data generated from (3.57) with varying degrees of sampling informativeness

and varying levels of correlation among the covariates. In the first plot, where the sample

is not informative and the covariates are uncorrelated, the methods perform fairly well at

selecting a penalty parameter close, on average, to the optimal parameter. However, it is

true across all situations that the BIC criterion tends to pick a smaller penalty parameter,

which results in a smaller model than the model fit by the optimal parameter. When the

sampling becomes informative, as displayed in the plots on the right-hand side, the model-

based estimator tends to select a penalty parameter which is larger than the optimal penalty

parameter. Since the penalty term equals 3.5 for the true values, we might expect the

optimal penalty parameter to be around 3.5. The optimal model-based penalty parameter

is smaller than 3.5 and we conjecture this occurs because the model-based methods break

down as the sampling becomes more informative. The model-assisted penalty parameters

seem to be unaffected by the informativeness with the weighted BIC tending toward a

smaller value regardless of whether informative sampling is present.
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Figure 3.2: Boxplots of penalty parameters selected for each criterion

Tables 3.5 and 3.6 display the design mean squared error ratios where the mean squared

error based on the optimal penalty parameter is in the denominator and the mean squared

error based on the selection criterion is in the numerator:

MSEp(t̂y(gcrit))

MSEp(t̂y(gopt))
.
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The mean squared error ratios for the model-assisted estimator are close to one, regard-

less of the method used to select the penalty parameter. As the sampling becomes more

informative, the ratio tends to increase for the AICCs and the BICs methods whereas, the

ratio remains fairly constant for the Design CV method. Therefore, the Design CV method

seems to be slightly better at handling the effects of informative sampling. Since the im-

provement is slight and all three methods appear to be adequate, we use the the AICCs

to select the penalty parameter in section 3.7.2 when comparing the model-assisted lasso

regression estimator to other estimators. The the AICCs method is less computationally

intensive than the Design CV method.

Similarly, the ratios are also close to one for the model-based estimator. In the model

misspecification case, shown in the last four rows of Table 3.6, the mean squared errors

based on the AICCs, MB(g) and the BICs, MB(g) is slightly less than the mean squared error

based on the optimal penalty parameter. We conjecture that the criteria perform slightly

better because the optimal penalty parameter is not optimal for each sample but is optimal

overall, since it results in the minimum design mean squared error. The selection criteria,

on the other hand, pick a different ‘best’ penalty parameter for each sample and therefore

have the ability to achieve optimality for each particular sample. Again both methods yield

similar results but as shown in Figure 3.2 the AICCs, MB(g) picks a penalty term closer to

the optimal penalty term. We use AICCs,MB(g) to select the penalty parameter in section

3.7.2 when comparing the model-based lasso regression estimator to other estimators.
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Table 3.5: Ratio of MSE based on each criterion and MSE based on the optimal penalty
parameter for the model-assisted estimator

MSE ratios

Models r Weighted AICC Weighted BIC Design CV

f1 0 1.028 1.046 1.034
no 0.25 1.029 1.055 1.024

correlation 0.75 1.053 1.100 1.054
1.00 1.141 1.085 1.040

f1 0 1.038 1.031 1.059
mild 0.25 1.020 1.035 1.028

correlation 0.75 1.061 1.049 1.055
1.00 1.249 1.120 1.058

f1 0 1.045 1.034 1.051
moderate 0.25 1.020 1.022 1.018

correlation 0.75 1.048 1.021 1.051
1.00 1.244 1.237 1.054

f1 0 1.030 1.032 1.033
strong 0.25 1.016 1.030 1.020

correlation 0.75 1.048 1.021 1.051
1.00 1.148 1.144 1.069

f2 0 1.071 1.061 1.067
0.25 1.007 1.010 1.000
0.75 1.035 1.054 1.059
1.00 1.024 1.056 1.054
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Table 3.6: Ratio of MSE based on each criterion and MSE based on the optimal penalty
parameter for the model-based estimator

MSE ratios

Models r AICC BIC

f1 0 1.040 1.052
no 0.25 1.054 1.031

correlation 0.75 1.050 1.040
1.00 1.036 1.025

f1 0 1.044 1.048
mild 0.25 1.068 1.044

correlation 0.75 1.063 1.070
1.00 1.006 1.002

f1 0 1.044 1.033
moderate 0.25 1.054 1.041

correlation 0.75 1.069 1.052
1.00 1.009 1.007

f1 0 1.029 1.025
strong 0.25 1.017 1.017

correlation 0.75 1.069 1.052
1.00 1.013 1.024

f2 0 1.065 1.043
0.25 0.9859 0.9724
0.75 0.9985 0.9817
1.00 0.9997 1.0086

3.7.2 Comparing estimators

We wish to compare the model-assisted lasso regression estimator and its variants to other

survey estimators when the superpopulation model is sparse. In particular, we want to

compare each model-assisted lasso estimator to its corresponding model-based estimator

and to compare the model-assisted lasso estimators to other model-assisted or design-based

estimators. The model-assisted oracle regression estimator is the usual regression estimator

but is fit with only the true subset of covariates. This ideal estimator serves as the bench-

mark to which each estimator is compared. The following model-assisted and design-based

estimators are considered:
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LASSO.MA lasso regression estimator (3.9)

ALASSO.MA adaptive lasso regression estimator (3.39)

CLASSO.MA lasso calibration estimator (3.44)

CALASSO.MA adaptive lasso calibration estimator (3.44) with (3.45)

RLASSO.MA lasso ridge regression estimator (3.46)

REG.MA regression estimator (3.43)

ORACLE.MA oracle regression estimator (3.43)

HT Horvitz-Thompson estimator (1.1)

Since the true model is sparse, the working model contains extraneous covariates. For

the REG.MA, the model fit employs all of the working model covariates, as does the

RLASSO.MA though with a penalty on some of the covariates. For the LASSO.MA and

the rest of its variants, the model fit utilizes some of the working model covariates and

the ORACLE.MA fits utilize only the covariates found in the superpopulation model. The

ORACLE.MA cannot be found in practice but in simulation serves as a measure of how

well the estimators are performing.

The following model-based estimators are considered:

LASSO.MB lasso regression estimator (3.51)

ALASSO.MB adaptive lasso regression estimator (3.52)

CLASSO.MB lasso calibration estimator (3.55 with (3.48)

CALASSO.MB adaptive lasso calibration estimator (3.55) with (3.49)

RLASSO.MB lasso ridge regression estimator (3.56)

REG.MB regression estimator (1.5)

ORACLE.MB oracle regression estimator (1.5)
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3.7.2.1 Set-up

The following superpopulation model is used to generate the finite population study variable,

{yj}j∈U :

ξ : yj = xT
j β + εj

= (1, x1,j , . . . , x40,j)(1,0
T
10, (1.5)1T

10,0
T
10, (3)1T

10)T + εj (3.59)

where the errors have mean 0 and variance, σ2 = 1. The covariates are generated by the

same process described in section 3.7.1 where x∗j follows a multivariate normal distribution

and cov(x∗kj , xlj)
∗ = 0.2|k−l|. The signal-to-noise ratio, defined as (var(XUβ)(σ2)−1)1/2,

is 3.66. Similar to Example four in section 7.5 of Tibshirani (1996), the superpopulation

model is sparse with only 20 of the 40 covariates in the working model relating to the study

variable. The oracle regression model is built utilizing only the covariates in the true model:

{(x11,j , x12,j , . . . , x20,j , x31,j , x32,j , . . . , x40,j)}j∈U .

The population, of size N = 10, 000, is divided into four equally sized strata by the

methods discussed in section 3.7.1 with r = 0.75. From the fixed population, M = 1000

simple random samples of size nh = (15, 20, 30, 35) are taken from each strata, respectively,

with a total sample size of n = 100 for each sample. The sampling is informative since the

inclusion probabilities are correlated with the model errors.

The models are utilized to estimate the total of the particular study variable y but

often in practice, there are several study variables of interest. Therefore, we also consider

how the weights constructed for the lasso estimators perform at estimating totals for other

study variables, which have a varying degree of similarity to the study variable, y. The

five additional study variables considered are generated by the superpopulation models

presented in Table 3.7. The errors in the five superpopulation models which generate the

other study variables, εij are iid N(0, σ2) for i = 1, 2, . . . , 5 and j = 1, 2, . . . , N .
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Table 3.7: Superpopulation models for the other study variables and their relationship to
the superpopulation model for y

Model Relationship with y

z1j = (1, x1,j , . . . , x40,j)

 1
030

(3)110

+ ε1j
True model covariates are a subset of the true
model covariates for y and the covariates relate
similarly to z1 as they do with y

z2j = (1, x1,j , . . . , x40,j)

 1
(3)110

030

+ ε2j
True model covariates are a subset of the covari-
ates which are not in the true model of y

z3j = (1, x1,j , . . . , x40,j)


1

110

020

(3)110

+ ε3j
True model covariates include covariates in the
true model for y and covariates not in the true
model for y

z4j = (1, x1,j , . . . , x40,j)


1

010

(3)110

010

(0.5)110

+ ε4j
True model covariates are the true model covari-
ates for y but the covariates relate differently
with z4 than with y

z5j = ε5j Noise; no similarity to y

3.7.2.2 Design bias and design mean squared error

Since one, fixed population is generated, we can compute design quantities, such as the

design bias and design mean squared error, by averaging across the replicate samples. The

design mean is estimated by

Ep(t̂) ≈
1

M

M∑
m=1

t̂m

and the design mean squared error is estimated by

MSEp(t̂) ≈
1

M

M∑
m=1

(t̂m − t)2.
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Table 3.8 displays the percent relative design bias of the estimators,

Ep(t̂)− t
t

× 100%,

which measures how biased the estimators are under the sampling design. The model-

assisted estimators have a percent relative design bias which is less than 0.5% whereas the

model-based estimators all have a design bias which is greater than 1%. To assess the

efficiency of the estimators, the ratios of the design mean squared error of the competing

estimators to the design mean squared error of the ORACLE.MA are also given in Table 3.8.

While the difference in design bias between the model-assisted and model-based estimators

does not seem significant, it is compounded in the design mean squared errors. Although

the estimator with the lowest design mean squared error is the idealized ORACLE, which

assumes the true model is known, the model-assisted lasso estimators are almost as efficient

as the ORACLE.MA with ratio values around 1.66 and are much more efficient than the

full regression model estimator, the REG.MA. The model-assisted estimators are much

more efficient than both the purely design-based estimator, which uses no model, and the

model-based estimators, which do not account for the informative sampling. Since the

oracle estimator can never be computed in practice, it is fair to say the model-assisted lasso

estimators tend to be the most design efficient when the true model is sparse, the working

model contains the true model, and the sampling is informative.
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Table 3.8: Percent relative design bias and ratio of design MSE for each estimator to design
MSE of model-assisted oracle estimator

Percent Relative Design MSE
Estimators Design Bias Ratios

Model-Assisted:

LASSO.MA 0.37% 1.69
ALASSO.MA 0.37% 1.63
CLASSO.MA 0.37% 1.69

CALASSO.MA 0.37% 1.63
RLASSO.MA 0.38% 1.95

REG.MA 0.49% 2.38
ORACLE.MA 0.25% 1.00

HT −0.015% 13.86

Model-Based:

LASSO.MB 1.07% 6.79
ALASSO.MB 1.07% 6.70
CLASSO.MB 1.20% 8.31

CALASSO.MB 1.12% 7.31
RLASSO.MB 1.07% 7.01

REG.MB 1.08% 7.05
ORACLE.MB 1.07% 6.52

3.7.2.3 Survey-weighted model fits

To compare the accuracy of the LASSO.MA, ALASSO.MA and REG.MA fits, we study

the selected penalty parameters, the variable selection accuracy, and coefficient estimation

accuracy. The average penalty parameter selected by the survey-weighted AICC is 43.84.

Plugging the true coefficients of the superpopulation model (3.59) into the penalty of the

survey-weighted lasso (excluding the intercept since it is not penalized), the penalty term

equals 45. Since the average penalty parameter for the survey-weighted AICC is less than

45, the method slightly over-penalizes the coefficients, on average. For the survey-weighted

adaptive lasso, the average penalty parameter is 21.31. The penalty term for adaptive

lasso should be roughly equal to 20, the number of non-zero coefficients in (3.59), and

therefore the survey-weighted AICC is slightly under-penalizing, on average. Table 3.9

contains the average coefficient values for the LASSO.MA, ALASSO.MA and REG.MA

when the coefficient is included in the model. The REG.MA coefficients are approximately

unbiased whereas the LASSO.MA coefficients tend to be negatively biased for the non-
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zero coefficients. The ALASSO.MA coefficients, which were derived to correct for the bias,

do have less negative bias than the LASSO.MA coefficients. The intercept, which is not

penalized, has positive bias for the ALASSO.MA and even more so for the LASSO. We

conjecture the positive bias in the intercept coefficient is attempting to counteract the

negative bias in the penalized coefficients so that the overall fit is less biased.

Table 3.9: Average coefficient value for the survey-weighted lasso, survey-weighted adaptive
lasso, and the survey-weighted regression estimators when the covariate is included in the
model

Average Coefficient Value
β0 β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

LASSO.MA 3.02 0.03 0.03 −0.00 0.08 −0.02 −0.03 0.06 0.04 0.08 0.07
ALASSO.MA 1.88 0.03 0.07 0.03 0.16 −0.05 −0.03 0.09 0.04 0.10 0.05

REG.MA 0.99 −0.00 0.03 0.00 0.08 −0.03 −0.02 0.04 0.03 0.05 0.00
β11 β12 β13 β14 β15 β16 β17 β18 β19 β20

LASSO.MA 1.28 1.32 1.34 1.30 1.32 1.27 1.30 1.32 1.30 1.32
ALASSO.MA 1.41 1.43 1.45 1.41 1.42 1.38 1.41 1.44 1.41 1.46

REG.MA 1.54 1.51 1.55 1.48 1.51 1.48 1.49 1.51 1.49 1.55
β21 β22 β23 β24 β25 β26 β27 β28 β29 β30

LASSO.MA 0.07 0.02 −0.07 −0.09 0.04 −0.02 0.06 0.06 −0.06 0.09
ALASSO.MA −0.01 0.01 −0.12 −0.14 0.06 −0.03 0.05 0.12 −0.04 0.09

REG.MA −0.01 0.01 −0.05 −0.08 0.02 −0.03 0.04 0.04 −0.03 0.01
β31 β32 β33 β34 β35 β36 β37 β38 β39 β40

LASSO.MA 2.67 2.80 2.82 2.87 2.79 2.83 2.82 2.76 2.86 2.74
ALASSO.MA 2.85 2.93 2.98 3.02 2.92 2.97 2.97 2.90 3.00 2.92

REG.MA 2.91 2.98 3.04 3.08 2.98 3.03 3.02 2.95 3.05 3.00

Although the REG.MA appears to be superior since it has better coefficient estimation

accuracy, it estimates all the coefficients to be non-zero, even though half of the coefficients

should be exactly zero. The lasso methods are advantageous because they perform model

selection and therefore estimate some coefficients to be exactly zero. Table 3.10 displays

the average occurrence of the 40 covariates in the LASSO.MA and ALASSO.MA models.

Since coefficients which are estimated to be ‘small’ values in the regression model receive a

large penalty in the ALASSO.MA penalty term, the ALASSO.MA method is more efficient

at driving extraneous coefficients to zero. Table 3.10 shows that a particular extraneous

variable is contained in the LASSO.MA fit about 40% of the time while it is only contained

in the ALASSO.MA about 21% of the time. Both methods are very good at keeping the
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true covariates in the model with 100% accuracy for the covariates with ‘large’ coefficients

in the true model and nearly 100% accuracy for the covariates with smaller coefficients in

the true model.

Table 3.10: Average occurrence of covariates in the lasso and adaptive lasso fits

Average Occurrence of Covariates
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

LASSO.MA 0.41 0.39 0.43 0.40 0.43 0.46 0.43 0.43 0.44 0.42
ALASSO.MA 0.20 0.22 0.21 0.19 0.21 0.23 0.23 0.22 0.23 0.21

X11 X12 X13 X14 X15 X16 X17 X18 X19 X20

LASSO.MA 0.99 0.99 0.99 0.99 1.00 0.99 0.99 1.00 0.99 0.99
ALASSO.MA 0.98 0.97 0.98 0.97 0.98 0.97 0.97 0.97 0.97 0.97

X21 X22 X23 X24 X25 X26 X27 X28 X29 X30

LASSO.MA 0.43 0.42 0.44 0.40 0.44 0.42 0.41 0.41 0.40 0.45
ALASSO.MA 0.22 0.21 0.22 0.22 0.23 0.22 0.21 0.22 0.20 0.22

X31 X32 X33 X34 X35 X36 X37 X38 X39 X40

LASSO.MA 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ALASSO.MA 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

3.7.2.4 Survey weights

As discussed in section 3.4, a single set of weights is often applied to several study variables

with estimators taking the form of a linear combination of the sampled study variable (3.42).

The j-th weight, wj , roughly can be interpreted as the number of similar elements in the

population that the j-th element in the sample represents. Large differences in value between

weights is undesirable because it implies that some elements are much more influential on the

estimate than other elements. Positive weights are also preferred because a negative weight

no longer carries the described interpretation. All of the model-assisted estimators which

can be written as (3.42) have weights of the form π−1
j +w∗j , where the first component is the

Horvitz-Thompson weight and the second component is the model adjustment. Figure 3.3

displays the relationship between the weights of the Horvitz-Thompson estimator and the

regression and calibration weights across the replicate samples. The darker the hexagon, the

more concentrated the points are. Since the weights of the Horvitz-Thompson estimator only

take on four different values: {71.43, 83.33, 125, 166.67}, there are four lines on which the
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points lie. The weights of the calibration estimator and the adaptive calibration estimator

vary much less in their relation to the Horvitz-Thompson weights than the regression and

oracle regression weights. We believe the variability relates to the number of covariates on

which the estimator is calibrated since the calibration estimator is only calibrated on the

model fits whereas the regression estimator is calibrated on each of the 40 covariates and

the oracle on each of the 20 true covariates. In Figure 3.3, the red line represents the least

squares line for the model-assisted weights regressed on the Horvitz-Thompson weights.

The blue line is where the points would fall if the model-assisted weights actually equalled

the model-assisted weights. These lines reinforce the conclusion that the calibration weights

are very similar to the Horvitz-Thompson weights.
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Figure 3.3: Comparing the inverse inclusion probabilities to the regression and calibration
weights

To better understand how the weights vary within a sample, we compute the mean

variance of the sample weights:

var(w) =
1

M

M∑
m=1

var(wm) =
1

M

M∑
m=1

1

n− 1

∑
j∈s

(wmj − w̄m)2

where w̄m = n−1
∑

j∈swmj . We are also interested in how much the weight for element

j ∈ U varies from sample to sample when element j is in the sample and therefore compute
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the mean variance of the weight for sampled elements:

var(wj |j ∈ s) =
1

N

∑
j∈U

var(wj |j ∈ s)

=
1

N

∑
j∈U

1

M∗ − 1

M∑
m=1

(wjm − w̄j)2I{j∈sm}

where w̄j = M∗−1
∑M

m=1wjmI{j∈sm} and M∗ =
∑M

m=1 I{j∈sm}. Table 3.11 displays both

of these variance statistics for the weights within and across samples. The variance of the

HT weights within a particular sample is 1172.44 for all repetitions since the sampling

design is fixed size sampling from each stratum. Also since the HT weight of a sampled

element is constant under this sampling design, the variance across samples for a partic-

ular weight given the element is sampled equals zero. Shown in Figure 3.3, the variance

measures are only slightly higher for the calibration estimators than for the HT, while

the REG.MA weights have the highest variability. As intuition would suggest, since the

REG.MA weights are calibrated on twice as many covariates as the ORACLE.MA weights,

the variance statistics for the REG.MA weights are about twice the variance statistics of

the ORACLE.MA weights. The variability in the RLASSO.MA weights is between the two

regression estimators because while the RLASSO.MA is calibrated on 40 covariates, some

of the coefficients in the fit are penalized to be nearly zero. To measure the rate of negative

weights, the average percentage of negative weights is found. On average, 11.69% of the

REG.MA weights are negative, 2.82% of the ORACLE.MA weights are negative, and 5.11%

of the RLASSO.MA weights are negative. The calibration estimators produced no negative

weights.

Although the small variability in the weights of the calibration estimators is desirable,

the weights still depend on the study variable, y, as do the weights of RLASSO.MA. On the

other hand, the REG.MA, ORACLE.MA, and HT weights are independent of y and only

depend on the sample, s. Therefore, it is important to assess how well the y-dependent

weights perform, in comparison to the y-independent weights, when applied to other study

variables of interest. Table 3.12 displays the ratio of the MSE of the model-assisted estima-

tors to the MSE of the HT. We use the Horvitz-Thompson estimator as the benchmark in
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Table 3.11: Average variances for weights within and across samples for the model-assisted
and design based estimators

Weight Variances
Estimators var(w) var(wj |j ∈ s)
CLASSO.MA 1181.07 3.09

CALASSO.MA 1181.09 3.42

RLASSO.MA 4526.23 3644.04

REG.MA 7939.24 5708.55

ORACLE.MA 3655.56 2965.21

HT 1172.44 0.00

this case because its performance should be consistent for different relationships between

zi and y. The ORACLE.MA is only oracle for the study variable y, not necessarily for

the study variables zi. When the true model for zi contains the same covariates as the

true model for y, as is true for z1 and z4, the ORACLE.MA is superior whereas when the

true model for zi does not contain any of the same covariates as the true model for y, as

is true for z2, the ORACLE.MA is less efficient than the HT. The calibration estimators

are better than the HT when zi is correlated with y, as is true for z1, z3 and z4, but they

are not as efficient as the other model-assisted estimators since much of the information in

the individual covariates is lost. Similar to the ORACLE.MA, the calibration estimators

perform poorly when the true model for y contains different covariates than the true model

for zi. Since the weights of the calibration estimators are very similar to the weights of

the HT, when the study variable is completely random, as in z5, the calibration estima-

tors perform similarly to the Horvitz-Thompson whereas the others perform worse. Since

the RLASSO.MA contains all 40 covariates, the RLASSO.MA is almost as efficient as the

REG.MA for the various study variables but has the advantages of less variability in the

weights and fewer negative weights.
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Table 3.12: Ratios of the design mean squared error of model-assisted estimators to the
design mean squared error of the Horvitz-Thompson estimator

Design MSE Ratios

Study Variable z1 z2 z3 z4 z5

CLASSO.MA 0.34 1.42 0.38 0.86 1.01

CALASSO.MA 0.33 1.45 0.38 0.88 1.01

RLASSO.MA 0.14 0.21 0.12 0.19 1.29

REG.MA 0.14 0.12 0.12 0.14 1.56

ORACLE.MA 0.11 1.17 0.20 0.10 1.19

3.7.2.5 Design properties as informative sampling, covariate correlation and

model error variance are varied

Table 3.13 – Table 3.15 present simulation results when the level of informativeness of the

sample (r) is varied, when the correlation among the covariates is varied (ρ), and when the

model error variance (σ2) is varied. Table 3.13, which displays varying r, tells the usual

story: when the sampling design is not informative, the model-based estimator is slightly

more efficient than its corresponding model-assisted estimator. But, as the sampling de-

sign becomes informative, the model-assisted estimator quickly becomes more efficient than

its model-based counterpart. The efficiency across the model-assisted estimators remains

fairly consistent as the sampling becomes more informative with the ALASSO.MA and

CALASSO.MA performing the best (after the ORACLE.MA). As the correlation in the co-

variates increases, the difference in efficiency between estimators shrinks, as shown in Table

3.14. The changes in model errors does not seem to change the differences in efficiency

between estimators, as shown in Table 3.15.
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Table 3.13: Percent relative design biases and ratios of the design mean squared error of
the estimators to the design mean squared error of the model-assisted oracle estimator for
varying degrees of informative sampling.

Percent Relative Design
Design Bias MSE Ratios

Estimators r = 0 r = 0.25 r = 1 r = 0 r = 0.25 r = 1

Model-Assisted:

LASSO.MA −0.005 0.20 0.44 1.21 1.32 1.92
ALASSO.MA −0.010 0.20 0.44 1.16 1.24 1.86
CLASSO.MA −0.005 0.20 0.44 1.21 1.32 1.92

CALASSO.MA −0.010 0.20 0.44 1.16 1.24 1.86
RLASSO.MA 0.001 0.20 0.45 1.42 1.54 2.19

REG.MA −0.006 0.27 0.56 1.29 1.55 2.73
ORACLE.MA −0.009 0.13 0.29 1.00 1.00 1.00

HT 0.077 −0.05 0.01 11.58 12.61 15.68

Model-Based:

LASSO.MB −0.015 0.60 1.26 1.13 2.58 9.54
ALASSO.MB −0.017 0.61 1.25 1.06 2.55 9.41
CLASSO.MB 0.121 0.73 1.38 1.18 3.34 11.44

CALASSO.MB 0.040 0.67 1.30 1.06 2.86 10.15
RLASSO.MB −0.019 0.60 1.26 1.32 2.78 9.93

REG.MB −0.006 0.61 1.24 1.22 2.74 9.48
ORACLE.MB −0.010 0.61 1.24 0.91 2.41 9.08
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Table 3.14: Percent relative design biases and ratios of the design mean squared error of
the estimators to the design mean squared error of the model-assisted oracle estimator for
varying degrees of correlation among the covariates

Percent Relative Design
Design Bias MSE Ratios

Correlation Among the Covariates
Estimators none moderate strong none moderate strong

Model-Assisted:

LASSO.MA 0.387 0.24 0.15 1.79 1.01 1.00
ALASSO.MA 0.365 0.27 0.19 1.62 1.01 1.01
CLASSO.MA 0.387 0.24 0.15 1.79 1.01 1.00

CALASSO.MA 0.366 0.27 0.19 1.63 1.01 1.01
RLASSO.MA 0.389 0.25 0.17 1.90 1.02 1.00

REG.MA 0.460 0.36 0.36 2.25 1.02 1.02
ORACLE.MA 0.247 0.15 0.14 1.00 1.00 1.00

HT 0.024 −0.07 0.22 11.03 1.45 3.93

Model-Based:

LASSO.MB 1.044 0.94 0.96 6.86 1.10 1.10
ALASSO.MB 1.042 0.94 0.95 6.78 1.10 1.10
CLASSO.MB 1.148 1.09 1.06 8.14 1.13 1.12

CALASSO.MB 1.088 1.00 0.98 7.33 1.11 1.11
RLASSO.MB 1.049 0.96 0.96 7.03 1.12 1.11

REG.MB 1.029 0.94 0.96 6.84 1.10 1.11
ORACLE.MB 1.042 0.95 0.95 6.61 1.10 1.10
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Table 3.15: Percent relative design biases and ratios of the design mean squared error of
the estimators to the design mean squared error of the model-assisted oracle estimator as
the model variance changes

Percent Relative Design
Design Bias MSE Ratios

Estimators σ2 = 0.5 σ2 = 5 σ2 = 0.5 σ2 = 5

Model-Assisted:

LASSO.MA 0.261 0.75 1.67 1.48
ALASSO.MA 0.241 0.83 1.45 1.65
CLASSO.MA 0.261 0.75 1.67 1.48

CALASSO.MA 0.241 0.83 1.45 1.65
RLASSO.MA 0.270 0.73 1.96 1.53

REG.MA 0.326 1.03 2.26 2.26
ORACLE.MA 0.176 0.56 1.00 1.00

HT 0.029 0.03 30.23 3.41

Model-Based:

LASSO.MB 0.741 2.35 6.90 6.90
ALASSO.MB 0.734 2.33 6.69 6.84
CLASSO.MB 0.829 2.65 8.46 8.54

CALASSO.MB 0.765 2.50 7.20 7.76
RLASSO.MB 0.805 2.39 23.18 9.11

REG.MB 0.729 2.31 6.88 6.88
ORACLE.MB 0.738 2.33 6.64 6.64

3.7.2.6 Summary of estimator comparisons

Assuming some of the covariates are extraneous, the sampling is informative, and estimating

ty with precision is more important than estimating tzi with precision, the calibration

estimators or LASSO.MA and ALASSO.MA are the best estimators since they have the

smallest design mean squared error (after the fictitious ORACLE.MA) and the design bias

of the estimators is negligible. When the same weights need to be applied to several study

variables, the calibration estimators are better than LASSO.MA or ALASSO.MA since they

produce weights. The calibration estimators are more precise than the HT weights when

estimating tzi as long as zi is correlated with y. In the case where precision in the estimation

of tzi is required and zi may not be correlated with y, the RLASSO.MA is a good estimator

since its design MSE is competitive with the design MSE of the REG.MA for zi and smaller

for y.
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3.8 Applications: United States Forest Inventory and Anal-

ysis Program

For a region of Utah, we wish to estimate the proportion of tree canopy cover by modeling the

relationship between photo-interpreted data and auxiliary topographic and satellite data.

Canopy cover, which is an aerial measure of the amount of ground covered by tree crowns

(Toney, Shaw, and Nelson 2008), is an important variable because it is used to define forested

lands. We want to compare the performance of the model-assisted estimators presented in

this thesis and the Horvitz-Thompson estimator as estimators of canopy cover.

The photo-interpreted data arise from a pilot study of the Forest Inventory and Analysis

Program (FIA) in collaboration with the National Land Cover Database (NLCD). To collect

the data, a high intensity grid was placed on the region of interest and at each grid point,

which represents a 90 by 90 meter plot of land, 105 photo points were placed (Frescino

2010). At each photo point, between two and five trained photo interpreters determined

the presence or absence of a tree. For each grid point, the proportion of tree canopy cover

is the average across photo interpreters of the proportion of photo points where trees are

present. Although the high intensity grid is a sample of this region, we will treat these N =

4,151 grid points as the entire population of interest. We can find the finite population

percentage of canopy cover, N−1ty × 100% = 27.41%, and can draw replicate samples from

the population to compare the estimators to the truth.
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Fourteen auxiliary variables are considered:

Variable Description

2001 NLCD canopy cover estimates Found by the Multi-Resolution Land Character-

istics consortium with the goal of creating land

cover maps for the United States (Frescino 2010)

Compound topographic index

(CTI)

Topographic variable which measures wetness

Digital Elevation Model (DEM) Model for elevation, slope, aspect and CTI

Slope Slope in Degrees

Brightness Tassel cap transformation on Landsat satellite

bands, defined by Huang et al. (2002)

Greenness Tassel cap transformation on Landsat satellite

bands, defined by Huang et al. (2002)

Wetness Tassel cap transformation on Landsat satellite

bands, defined by Huang et al. (2002)

Normalized difference vegetation in-

dex (NDVI)

Transformation of Landsat satellite bands three

and four

Northness of aspect Cosine transformation of aspect

Eastness of aspect Sine transformation of aspect

Each of the auxiliary variables are available at a finer resolution than the photo-interpreted

data. The auxiliary variables were collected on a 30 by 30 meter grid, and therefore there are

nine observations of every covariate for each photo-interpreted observation. To collapse the

auxiliary information, the mean and standard deviation is taken of the nine observations.

For the fourteen auxiliary variables, the mean for each grid point is used as a covariate

and the standard deviation of the 2001 NLCD canopy cover, CTI, DEM, and slope is used

as a covariate. There are 18 covariates in the working model and each is standardized.

Although we conjecture that most of the covariates representing standard deviations have a

weak relationship with tree canopy cover, we include those covariates in the model so that

model selection is appropriate.
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Stratifying the region by its ten counties to ensure a good spatial distribution of the

sample, we collect 1000 replicate simple random samples of size ten from each county.

Therefore, our overall sample size is 100. Since the number of grid points differs by county,

we have unequal inclusion probabilities.

The actual design bias, the percent relative design bias and ratios of the design mean

squared error of the model-assisted and Horvitz-Thompson estimators to the design mean

squared error of the full regression estimator are given in Table 3.16. The model-assisted

estimators all slightly overestimate the true proportion of tree canopy cover but still have a

relative design bias of less than 1%. The lasso estimators have a smaller design mean squared

error than REG.MA or HT. Since the lasso estimators are more design efficient than the

full regression estimator, it appears that performing model selection is appropriate.

Table 3.16: Mean estimates of the proportion of canopy cover, percent relative design biases,
and the ratios of the design mean squared error of the model-assisted and Horvitz-Thompson
estimators to the design mean squared error of the full regression estimator

Mean Percent Relative Design MSE
Estimators Estimate Design Bias Ratios

Model-Assisted:

LASSO.MA 27.50% 0.32% 0.94
ALASSO.MA 27.50% 0.33% 0.93
CLASSO.MA 27.50% 0.35% 0.94

CALASSO.MA 27.51% 0.35% 0.93
RLASSO.MA 27.50% 0.32% 0.95

REG.MA 27.53% 0.43% 1.00

HT 27.37% −0.13% 1.94

Table 3.17 contains the proportion of times each covariate was included in the lasso

and adaptive lasso models. Both the lasso and adaptive lasso methods selected the mean

2001 NCLD canopy cover and the mean NDVI the most frequently. No covariate was

consistently dropped. The adaptive lasso method selected the standard deviation of the

CTI the least often, including it in the model 27.3% of the time. But the lasso method

selected the standard deviation of the CTI over half of the time (56%). These values exhibit

the lasso property discussed earlier: the lasso method is better at keeping true signals than

at dropping false signals. The average value of the coefficient for the standard deviation of

CTI (shown in Table 3.17) is essentially zero for each method and therefore this covariate
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should probably not be included in the model.

Table 3.17: Average occurrence of the covariates in the survey-weighted lasso and adaptive
lasso models and the average value of the coefficients when the covariate is included in the
model

Average Occurrence Average Value
of Covariates of Coefficients

Covariates LASSO.MA ALASSO.MA LASSO.MA ALASSO.MA REG.MA

Intercept 1.000 1.000 0.275 0.275 0.275

Mean Canopy
Cover 2001

0.973 0.880 0.124 0.130 0.107

Std. Dev. of
Canopy

0.737 0.445 0.024 0.034 0.019

Mean of CTI 0.779 0.576 −0.041 −0.050 −0.039

Std. Dev. of
CTI

0.560 0.273 −0.001 0.000 −0.000

Mean of DEM 0.618 0.386 −0.009 −0.015 −0.014

Std. Dev. of
DEM

0.406 0.495 −0.064 −0.072 −0.057

Mean Slope 0.433 0.518 0.070 0.083 0.058

Std. Dev. of
Slope

0.647 0.404 0.009 0.011 0.003

Brightness 0.511 0.408 0.029 0.032 0.022

Greenness 0.542 0.731 −0.180 −0.169 −0.161

Wetness 0.670 0.669 0.086 0.096 0.089

NDVI 0.927 0.919 0.161 0.193 0.210

Northness 0.686 0.434 −0.018 −0.026 −0.017

Eastness 0.651 0.301 −0.003 −0.005 −0.002

For a particular sample, the coefficient paths of LASSO.MA and ALASSO.MA are

given in Figures 3.4 and 3.5. The optimal set of coefficients is chosen by the survey-

weighted AICC criterion and is designated by the vertical black line. In both cases, the

optimal model includes only a subset of the potential covariates. The path of a particular

coefficient, which is the same color and line type for both plots, is fairly similar whether it

was found by the lasso method or the adaptive lasso method. However, the optimal set for

ALASSO.MA is a subset of the optimal set for LASSO.MA, which reinforces the conclusion

that the ALASSO.MA method is better at dropping false signals. The coefficients of this

particular sample are given in Table 3.18. The LASSO.MA and ALASSO.MA coefficient
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values tend to be more similar to one another than to the REG.MA coefficient values.

In this scenario, the model selection is beneficial since the resulting estimators have

a smaller design mean squared error. The adaptive lasso, which tends to select smaller

models, has the lowest design mean squared error.
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Figure 3.4: Standardized coefficient paths of survey-weighted lasso for US Forest Service
data
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Figure 3.5: Standardized coefficient paths of survey-weighted adaptive lasso for US Forest
Service data
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Table 3.18: Coefficient estimates for a sample modeling tree canopy cover

Coefficients

LASSO.MA ALASSO.MA REG.MA

Intercept 0.252 0.250 0.257

Mean Canopy Cover 2001 0.027 0.002

Std. Dev. of Canopy 0.048 0.053 0.050

Mean of CTI −0.008

Std. Dev. of CTI −0.013

Mean of DEM −0.058 −0.067 −0.069

Std. Dev. of DEM −0.136

Mean Slope 0.141

Std. Dev. of Slope 0.048 0.051 0.054

Brightness −0.083 −0.117 −0.104

Greenness −0.154 −0.241 −0.279

Wetness 0.032 0.035 0.052

NDVI 0.214 0.289 0.320

Northness 0.038 0.034 0.037

Eastness 0.004 0.012

3.9 Analytic inference

In statistics, it is common to use a sample to make inference about a hypothetical model.

If the sample is collected from a finite population and if the sampling design is informative,

then it is important that the inference accounts for the design. As discussed in section

3.2.3, the survey-weighted lasso coefficient vector β̂s can be viewed as an estimate of the

superpopulation coefficient vector β. In that section, we proved the root-N consistency and

a central limit theorem result for β̂s under a joint design-model framework. In the next

section, we use the survey-weighted lasso coefficients for logistic regression to estimate the

superpopulation coefficients in the model (3.33).

3.9.1 Application: Centers for Disease Control and Prevention

An outbreak of the Zika virus occurred on the island of Yap between April 1 and July

31 of 2007. To better understand the prevalence of the virus and risk factors associated

with contracting the virus, a single stage cluster sample of households was conducted.
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The virus is believed to be transmitted by infected mosquitos Duffy et al. (2009) so the

household survey included demographic information, a blood sample tested for the IgM

antibody against Zika, and questions about each household member’s activities during the

time of the outbreak. We are interested in understanding the relationship between the risk

of an infection and the covariates collected in the survey. This information could help us

determine which members of the population are at a high risk for contracting the Zika virus.

The finite population on which the data were collected are Yap residents who are three

years or older in age. The variable of interest, Y , equals one if an individual has the IgM

antibody and showed at least one of the following suspected disease symptoms, as defined

by Duffy et al. (2009), during the period of the outbreak: rash, joint pain or red eyes. The

covariates we consider are how many days an individual was crabbing during the outbreak

period, whether the perimeter of the house was clear of vegetation, whether the house

contained any air conditioning units and the age of the individual. We assume the model

(3.33) given in section 3.3.2 is appropriate. Therefore, the survey-weighted lasso coefficient

vector is

β̂
(L)

s = arg min
β

−∑
j∈s

wj
{
yjx

T
j β − log

[
1 + exp(xT

j β)
]}

+ λ

p∑
j=1

|βj |

 (3.60)

where λ ≥ 0 is the penalty parameter. If the response rate were 100%, the j-th weight

would be wj = π−1
I = NIn

−1
I , the inverse stage I inclusion probability of element j. Here,

NI equals the number of households on the island of Yap (NI = 1276) and nI is the number

of sampled households (nI = 200). For the collected survey, there are two levels of non-

response for which the weights must be adjusted. The stage I non-response represents

households included in the sample that are not enrolled in the study while the stage II

non-response represents the members of an enrolled household who chose not to have their

blood tested. Of the 200 households selected for the study, 163 households were enrolled in

the survey where at least one household member had their blood tested. Since we have no

information on the non-enrolled households, we must assume the non-enrolled houses are
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missing at random and therefore the adjusted stage I inclusion probability is

π∗I =
mI

NI

where mI =
∑

i∈UI
I{i ∈ rI} = 163. The households of Yap are enumerated by the set

UI = {1, 2, . . . , NI}, the sampled households are sI ⊂ UI , and the response set of households

is rI ⊆ sI . Of the 808 people in the 163 households enrolled, only 556 allowed their blood to

be tested. Because the response rate differed across household and even across gender within

households, we cannot assume the stage II non-response is missing at random. Therefore,

within a sampled household, we have divided the residents by gender and assume constant

response rate within these groups. For the i-th sampled household, the group of females is

UiF and the group of males is UiM . Assume the conditional first-order inclusion probability

of the j-th person in the i-th sampled house is

π∗j|i =


miFN

−1
iF for j ∈ UiF

miMN
−1
iM for j ∈ UiM

where Nig =
∑

j∈Uig
I{j ∈ Uig} is the population size of group g in population Ui, mig =∑

j∈Uig
I{j ∈ rig} is the response size of group g in population Ui, and g is either F or M .

Also, assume the individual responses are independent. Therefore, within each household,

we are essentially conducting stratified Bernoulli sampling with two strata. There are two

cases where the stratification breaks down and we must collapse the two groups into one

group: when all members of a household are the same gender or when both genders are

present but only members of one gender allowed their blood to be tested. In these cases,

the conditional first-order inclusion probability of j-th person in the i-th sampled house is

simply

(miF +miM) (NiF +NiM)−1 .

Adjusted for both levels of non-response, the weight for person j in the i-th sampled house
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is

wj = (π∗I )−1(π∗j|i)
−1.

To find the survey-weighted lasso coefficient vector, we minimize the criterion given in

(3.60) using the R function optim() (R Development Core Team 2010) and find the penalty

parameter value which minimizes the AICC. The standardized coefficient paths are given

in Figure 3.6. In this formulation of the criterion, as the penalty parameter increases, the

coefficient values decrease and therefore, the penalty parameter axis is flipped. Both the age

of the respondent and the number of days spent crabbing during the outbreak period are

retained in the model selected by AICC which leads us to believe the true model is sparse

and model selection is appropriate. The odds of contracting the Zika virus increase by 3.3%

for each additional day spent crabbing when age is held constant. The odds of contracting

the Zika virus increase by 5.5% for every ten year increase in age when the number of days

spent crabbing is held constant. Therefore, when there is a Zika virus outbreak, those who

are older and frequently go crabbing are at a higher risk of infection than those who are

younger and rarely go crabbing.
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Figure 3.6: Standardized coefficient paths for CDC data
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Chapter 4

Discussion and future work

4.1 Summary

In this thesis, we studied two model-assisted estimators for the finite population total: the

penalized spline regression estimator and the lasso regression estimator. The penalized

spline regression estimator is more efficient than the parametric regression estimator when

the superpopulation model is non-linear. When the superpopulation model is linear but

sparse, the lasso regression estimator is more efficient than the full regression estimator.

In chapter 2, we derived an asymptotically equivalent approximation of the penalized

spline regression estimator and found its asymptotic properties when the number of knots

is allowed to increase and the locations of the knots are allowed to change. We also con-

structed a consistent variance estimator for the asymptotic design mean squared error and

demonstrated its accuracy through simulations. We proposed an additional, more accurate

approximation to the penalized spline regression estimator, based on sample quantiles. To

obtain consistency of the sample quantile based estimator, we showed uniform convergence

of the sample quantiles to the finite population quantiles, a result which makes use of a

survey-weighted Hoeffding’s inequality.

In chapter 3, we considered the need for model selection when the amount of auxiliary in-

formation is vast. We proposed a survey-weighted lasso method for fitting the model, which

does both model selection and parameter estimation, and used the lasso fits to construct

a lasso regression estimator. We derived its asymptotic properties and through simula-
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tions, we showed it is more efficient than the regression estimator when the true model is

sparse. We also discussed variants of the lasso estimator when the data are grouped, the

study variable is binary, or when survey weights are needed. Additionally, we presented

an adaptive lasso regression estimator which has less negative bias for large coefficients

and has better model selection accuracy than the lasso regression estimator. We measured

the proportion of canopy cover for a region of Utah using the lasso estimator along with

other model-assisted estimators. In this scenario, the lasso estimators were more efficient

than the full regression estimator. Lastly, we discussed how to conduct analytic inference

using the survey-weighted lasso coefficients and under a joint design-model framework, we

proved the asymptotic properties of the survey-weighted lasso coefficients as estimates for

the superpopulation coefficients. We applied the joint design-model framework to estimate

the coefficients in a survey-weighted logistic regression model to assess the risk of infection

of the Zika virus on the island of Yap.

4.2 Future research

Wu and Sitter (2001) proposed a model calibration estimator for both linear and non-linear

superpopulation models and showed the generalized regression estimator is a special case of

the model calibration estimator. To extend the results of Wu and Sitter (2001) to different

assumed models, Montanari and Ranalli (2005) fit the superpopulation model with neural

networks and local polynomials while Opsomer, Breidt, Moisen, and Kauermann (2007)

fit the superpopulation model with a generalized additive model. We want to look at the

model calibration estimator when fitting the superpopulation model with penalized splines.

We wish to derive the asymptotic properties of the penalized spline calibration estimator

when the number of knots are allowed to increase.

Support vector machines (SVMs), a popular machine learning technique for classification

and regression, are computationally efficient because the procedure only uses a subset of

the data to make predictions. The sparse solutions arise from an ε-insensitive loss function,

where data points inside an ‘ε-tube’ do not contribute to predictions (Bishop 2006). To

balance desired accuracy and computational costs, one can bound the fraction of points
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outside the ‘ε-tube’. Because many complex surveys consist of very large datasets, we think

SVMs would be a cost efficient tool for modeling the regression relationships in the data.

We would, therefore, like to look at the properties of a model-assisted SVM estimator and

to compare its performance and computational costs to other model-assisted estimators.

In survey statistics, we differentiate between descriptive uses (inferences about quanti-

ties from a real, identifiable finite population) and analytic uses (inferences about model

parameters from a hypothetical infinite population from which the current finite population

is a realization). Analytic inference from survey data may be complicated by informative

sampling methods, under which standard methods of analysis (like ordinary least squares

estimation for regression models) may lead to biased and inconsistent estimators. Informa-

tive sampling can be understood as a sampling method under which the distribution of the

sampled data differs from the distribution of the population data.

The problems of informative sampling, however, extend beyond surveys and can be quite

common in observational studies. Length-biased sampling, a type of informative sampling

where the sampling probabilities are proportional to the size of the variable of interest, is

very common in a variety of applications. It is used in wildlife sampling, for example, where

the method of capture-recapture selects for longer-living individuals while the method of

line transect sampling selects for larger individuals. Under length-biased sampling, the

sample mean, a standard estimator of the true mean, is both biased and inconsistent and

therefore an inappropriate estimator. Because the usual tools can yield bad results under

informative sampling, inferential methods must be adapted for this setting.

When modeling regression relationships, parametric models are often inappropriate if

flexibility is needed to cover non-linear functions or if the goal is understanding the un-

derlying trend. In both these cases, scatterplot smoothers can be quite useful. Ruppert,

Wand, and Carroll (2003) present scatterplot smoothers in the context of mixed models for

non-informative sampling but there are only a few sources in the literature that apply scat-

terplot smoothers to data derived from informative sampling. Pfeffermann and Sverchkov

(1999) develop sample likelihood approaches when the population distribution is parametric

while Chambers, Dorfman, and Sverchkov (2003) extend the approach to the case where

the population distribution is non-parametric. Wang and Bellhouse (2009) investigated a
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semiparametric model with both a local polynomial and parametric component. We find

this area of research to be quite fascinating and there is still much work to be done to

further develop the methodology.
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