
DISSERTATION

A META-MODELING APPROACH TO SPECIFYING PATTERNS

Submitted by

Dae-Kyoo Kim

Department of Computer Science

In partial fulfillment of the requirements

for the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Summer 2004

COLORADO STATE UNIVERSITY

June 21, 2004

WE HEREBY RECOMMEND THAT THE DISSERTATION PREPARED

UNDER OUR SUPERVISION BY DAE-KYOO KIM ENTITLED A META-

MODELING APPROACH TO SPECIFYING PATTERNS BE ACCEPTED AS

FULFILLING IN PART REQUIREMENTS FOR THE DEGREE OF DOCTOR OF

PHILOSOPHY.

Committee on Graduate Work

Committee Member: Dr. James M. Bieman

Committee Member: Dr. Sudipto Ghosh

Committee Member: Dr. Daniel E. Turk

Adviser: Dr. Robert B. France

Department Head: Dr. L. Darrell Whitley

ii

ABSTRACT OF DISSERTATION

A META-MODELING APPROACH TO SPECIFYING PATTERNS

A major goal in software development is to produce quality products in less time and

with less cost. Systematic reuse of software artifacts that encapsulate high-quality

development experience can help one achieve the goal. Design patterns are a common

form of reusable design experience that can help developers reduce development time.

Prevalent design patterns are, however, described informally (e.g., [35]). This prevents

systematic use of patterns.

The research documented in this dissertation is aimed at developing a practical

pattern specification technique that supports the systematic use of patterns during

design modeling. A pattern specification language called the Role-Based Metamod-

eling Language (RBML) was developed as part of this research. The RBML specifies

a pattern as a specialization of the UML metamodel. The RBML uses the Unified

Modeling Language (UML) as a syntactic base to enable the use of UML modeling

tools for creating and evolving pattern specifications.

We used the RBML to develop specifications for design patterns in the Design

Patterns book [35] including Abstract Factory, Bridge, Decorator, Observer, State,

Iterator, and Visitor. We also used the RBML to define a large application domain

pattern for checkin-checkout systems, and used the resulting specification to develop

UML designs for a library system and a car rental system. In addition, we used

the RBML to specify access control mechanisms as patterns including Role-Based

iii

Access Control (RBAC), Mandatory Access Control (MAC), and a Hybrid Access

Control (HAC) that is a composition of RBAC and MAC. The RBML is currently

used at NASA for modeling pervasive requirements as patterns. NASA also uses the

RBML in the development of Weather CTAS System that is a weather forecasting

system. To determine the potential of the RBML to support the development of tools

that enable systematic use of patterns, we developed a prototype tool called RBML-

Pattern Instantiator (RBML-PI) that generates conforming UML models from RBML

pattern specifications.

Dae-Kyoo Kim
Department of Computer Science
Colorado State University
Fort Collins, Colorado 80523
Summer 2004

iv

ACKNOWLEDGEMENTS

I am greatly indebted to many people for the dissertation, which would not have

been possible to complete without their support, help, and patience. It is my privilege

to express my gratitude to these people for their part in completion of the dissertation.

To family and friends who have been with me since I started my journey towards

scholarship in 1995, I thank you! My deepest love and respect go to my mother who

dedicated her whole life to raise me and my sister ever since my father passed away

when I was twelve years old. My heart goes to my wife, Jin-Hee who endured many

years of hardship, but wonderfully made it. I specially thank Dr. Piatkowski and his

family for constant love and support since I met them at WMU in 1996.

I thank my committee members - Dr. Robert France, Dr. Sudipto Ghosh, Dr.

James Bieman, and Dr. Dan Turk. Special thanks go to my advisor, Dr. Robert

France. He was the person who has been a tremendous source of inspiration to this

dissertation. He’s been always available when I needed him and painstakingly edited

my coarse drafts to the point of perfection.

I am grateful to all those who have made me who I am today.

v

DEDICATION

This dissertation is dedicated to my mother.

vi

TABLE OF CONTENTS

1 Introduction 1

1.1 Problem Statement . 1

1.2 Research Overview . 3

1.3 Scope . 5

1.4 Overview of the Dissertation . 6

2 Background 7

2.1 Design Patterns . 7

2.2 Unified Modeling Language . 8

2.2.1 UML Diagrams . 11

2.2.2 The UML Metamodel . 13

2.3 Specializing the UML . 15

2.4 Related Work on Pattern Specification 15

2.4.1 Approaches Based on Formal Methods 15

2.4.2 UML-Based Approaches . 17

2.4.3 Summary . 20

2.4.4 Contribution . 23

3 RBML: Role-Based Metamodeling Language 25

3.1 Using Roles to Specify Properties . 25

3.1.1 Object Roles . 26

3.1.2 General Roles . 27

3.1.3 Model Roles . 28

vii

3.2 Specifying Pattern Solutions . 30

3.2.1 Static Pattern Specifications (SPSs) 32

3.2.1.1 SPS Notation . 32

3.2.1.2 An Example of Class Role 34

3.2.1.3 Roles and the UML Metamodel 34

3.2.1.4 Role Hierarchies . 35

3.2.1.5 An SPS Example . 39

3.2.1.6 Specifying Semantic Pattern Properties in an SPS . . 42

3.2.2 Establishing Structural Conformance to an SPS 44

3.2.3 Establishing Full Conformance to an SPS 47

3.2.4 Interaction Pattern Specifications (IPSs) 49

3.2.5 Establishing Interaction Conformance to an IPS 50

3.2.6 Statemachine Pattern Specifications (SMPSs) 53

3.2.7 Establishing Statechart Conformance to an SMPS 55

3.3 Summary . 59

3.4 Discussion . 60

4 Using the RBML to Specifying Design Patterns 64

4.1 Specifying the Visitor Pattern . 65

4.1.1 Pattern Description by Gamma et al. 65

4.1.2 The Visitor SPS . 67

4.1.2.1 Well-formedness Rules 68

4.1.2.2 Constraint Templates 69

4.1.2.3 Folded Form of SPS 70

4.1.3 Example of a Conforming Class Diagram 70

4.1.4 Example of a Non-conforming Class Diagram 70

4.1.5 The Iterator IPS . 72

4.1.6 Example of a Conforming Sequence Diagram 75

viii

4.1.7 Example of a Non-conforming Sequence Diagram 75

4.2 Specifying the Abstract Factory Pattern 77

4.2.1 The Abstract Factory SPS . 78

4.2.1.1 Well-formedness Rules 79

4.2.1.2 Constraint Templates 81

4.2.1.3 SPS Specializations 81

4.2.2 Example of a Conforming Class Diagram 82

4.2.3 Example of a Non-conforming Class Diagram 83

4.3 Specifying the Iterator Pattern . 84

4.3.1 The Iterator SPS . 84

4.3.1.1 Well-formedness Rules 85

4.3.1.2 Constraint Templates 87

4.3.2 Example of a Conforming Class Diagram 88

4.3.3 Example of a Non-conforming Class Diagram 90

4.3.4 The Iterator SMPS . 91

4.3.5 Examples of Conforming Statecharts 93

4.3.6 Example of a Non-conforming Statechart 94

4.4 Lessons Learned . 95

5 Using the RBML to Specifying Domain Patterns 97

5.1 Specifying the CICO Pattern . 98

5.1.1 CICO SPS . 99

5.1.2 CICO IPSs . 103

5.2 Building Models Using the CICO Pattern 105

5.2.1 A Library System . 105

5.2.2 A Vehicle Rental System . 108

5.3 Related Work . 109

5.4 Lessons Learned . 112

ix

6 Using the RBML to Specifying Access Control Aspects 114

6.1 Overview of Aspects . 115

6.2 Specifying Access Control Aspects as Patterns 116

6.2.1 Overview of RBAC . 117

6.2.2 Specifying RBAC . 121

6.2.3 Specifying MAC . 124

6.2.4 Specifying HAC . 126

6.3 Applying the RBAC Specification . 129

6.4 Related Work . 133

6.5 Lessons Learned . 134

7 RBML Tool Support 136

7.1 RBML Pattern Instantiator . 137

7.2 Instantiating RBML Specifications 139

7.2.1 CICO Pattern Specification 140

7.2.2 CICO Pattern Instantiation 143

7.3 Related Work . 148

7.4 Lessons Learned . 150

8 Conclusion and Future Work 153

A Design Pattern Specifications 156

A.1 The Visitor Pattern . 156

A.2 The Abstract Factory Pattern . 158

A.3 The Iterator Pattern . 159

A.4 The Observer Pattern . 161

A.4.1 SPS . 161

A.4.1.1 Well-formedness Rules 162

A.4.1.2 Constraint Templates 163

x

A.4.2 IPS . 164

A.5 The Bridge Pattern . 166

A.5.1 SPS . 166

A.5.1.1 Well-formedness Rules 167

A.5.1.2 Constraint Templates 168

A.5.2 Conforming Class Diagram . 168

A.5.3 IPS . 169

A.6 The Decorator Pattern . 170

A.6.1 SPS . 170

A.6.2 Well-formedness Rules . 171

A.6.3 Conforming Class Diagram . 173

A.6.4 IPS . 173

A.6.5 Conforming Sequence Diagram 174

A.7 The State Pattern . 175

A.7.1 SPS . 175

A.7.1.1 Well-formedness Rules 176

A.7.1.2 Constraint Templates 177

A.7.2 Conforming Class Diagram . 177

A.7.3 IPS . 178

B A Domain Pattern and Access Control Patterns 179

B.1 The CheckIn-CheckOut Pattern . 179

B.2 RBAC . 182

B.3 MAC . 183

B.4 HAC . 184

C Vehicle Rental System 185

xi

References 189

xii

LIST OF FIGURES

1.1 The Abstract Factory Pattern [35] . 2

1.2 An Overview of the Approach . 4

2.1 UML Diagrams . 9

2.2 Class Diagram, Sequence Diagram, and Statechart Diagram 11

2.3 A Part of the UML Metamodel . 13

2.4 UML Four-Layer Infrastructure . 14

3.1 RBML Metamodel . 31

3.2 Structure of a Classifier Role . 33

3.3 A Class Role . 34

3.4 Relationship between Role and UML Infrastructure 35

3.5 Role Hierarchy . 36

3.6 UML Metamodel View of MyRoleGeneralization and MyRoleRealization

Roles . 37

3.7 Conforming Models of the Role Hierarchy in Fig. 3.5 38

3.8 Partial Views of an Observer Pattern SPS and its Metamodel 40

3.9 Association Role . 41

3.10 A Structurally Conforming Observer Class Diagram 45

3.11 A Partial SPS for a Variant of the Observer Pattern and a Conforming

Class Diagram . 46

3.12 An IPS for the Observer Pattern and a Partial View of its Specialized

UML Metamodel . 49

xiii

3.13 A Sequence Diagram that conforms to the Observer IPS 52

3.14 An SMPS and a Partial View of its Specialized UML Metamodel 53

3.15 An SMPS and a Conforming Statechart Diagram 56

3.16 An SMPS Role and the UML metamodel 58

4.1 A Visitor Pattern Solution: Class Diagram 66

4.2 A Visitor Pattern Solution: A Sequence Diagram 66

4.3 A Visitor SPS . 67

4.4 A Folded Form of the Visitor SPS . 70

4.5 A Structurally Conforming Visitor Class Diagram 71

4.6 A More Complex Conforming Visitor Class Diagram 72

4.7 A Non-conforming Visitor Class Diagram 73

4.8 A Visitor IPS . 73

4.9 A Composite Part Structure . 75

4.10 A Conforming Visitor Sequence Diagram 76

4.11 A Non-conforming Visitor Sequence Diagram 77

4.12 An Abstract Factory SPS . 78

4.13 Specialized Abstract Factory SPSs . 82

4.14 A Conforming Class Diagram of the Abstract Factory SPS with Hierarchies 83

4.15 A Conforming Class Diagram of the Abstract Factory SPS with no Hierarchy 84

4.16 An Iterator SPS . 85

4.17 A Conforming Iterator Class Diagram 88

4.18 A Non-conforming Iterator Class Diagram 90

4.19 An SMPS of Iterator Role in Fig. 4.16 91

4.20 Metamodel-level Constraints . 92

4.21 Conforming Iterator Statecharts . 93

4.22 A Non-conforming Iterator Statechart 94

xiv

5.1 The CICO SPS . 99

5.2 CICO Role Hierarchies . 100

5.3 IPSs for CheckIn and CheckOut Scenarios 104

5.4 A CICO Conformant Library Class Diagram 105

5.5 The Completed Library Class Diagram 107

5.6 CICO Conformant Library Scenarios . 109

5.7 A CICO Conformant Vehicle Rental Class Diagram 110

5.8 CICO Conformant Vehicle Rental Scenarios 111

6.1 RBAC . 118

6.2 RBAC Template . 121

6.3 MAC Template . 125

6.4 HAC Template . 128

6.5 A Banking System Primary Model . 130

6.6 A Context-Specific RBAC Class Diagram 131

6.7 Composed Model . 132

7.1 RBML-PI Class Diagram . 138

7.2 Overview of Tool Use . 139

7.3 CICO SPS . 140

7.4 CICO Constraints . 141

7.5 CICO CheckIn IPS . 142

7.6 CICO CheckOut IPS . 142

7.7 Further Restiction of Pattern Property 144

7.8 An Instantiated Class Diagram for a Library System 145

7.9 Instantiated CheckIn Sequence Diagrams for a Library System 146

7.10 Instantiated CheckOut Sequence Diagrams for a Library System 146

7.11 A Library Class Diagram . 147

xv

7.12 A Library CheckIn Sequence Diagram 148

7.13 A Library CheckOut Sequence Diagram 149

A.1 A Visitor SPS . 156

A.2 A Visitor IPS . 157

A.3 An Abstract Factory SPS . 158

A.4 An Iterator SPS . 159

A.5 An Iterator SMPS . 160

A.6 An Observer SPS . 161

A.7 An Observer IPS . 165

A.8 A Bridge SPS . 166

A.9 A Conforming Bridge Class Diagram . 169

A.10 A Bridge IPS . 169

A.11 A Decorator SPS . 171

A.12 A Conforming Decorator Class Diagram 173

A.13 A Decorator IPS . 174

A.14 A Conforming Decorator Sequence Diagram 174

A.15 A State SPS . 175

A.16 A Conforming State Class Diagram . 178

A.17 A State IPS . 178

B.1 The CICO SPS . 179

B.2 CICO Role Hierarchies . 180

B.3 IPSs for CheckIn and CheckOut Scenarios 181

B.4 RBAC Template . 182

B.5 MAC Template . 183

B.6 HAC Template . 184

C.1 A Vehicle Rental Class Diagram . 186

xvi

C.2 A Vehicle Rental CheckIn Sequence Diagram 187

C.3 A Vehicle Rental CheckOut Sequence Diagram 188

xvii

Chapter 1

Introduction

1.1 Problem Statement

In recent years, software applications have dramatically grown in size and complex-

ity. A major software development goal is to produce quality software in less time.

Systematic reuse of software artifacts that encapsulate high-quality development ex-

perience can help developers reduce development time [71, 81].

Design patterns are a common form of reusable designs. A design pattern de-

scribes a family of solutions (henceforth referred to as pattern solutions) for a class

of recurring design problems [35]. Prevalent descriptions of design pattern solutions

(e.g., [16, 35, 41, 80, 92]) use typical examples to describe the structure of pattern

solutions. These descriptions are supplemented by textual descriptions of other as-

pects such as the problems targeted by the patterns, participant collaborations, the

consequences of applying the patterns, and implementation issues. Fig. 1.1 shows the

diagram used in the Gamma et al. patterns book [35] to describe the structure of

Abstract Factory pattern solutions. This diagram is a typical example of an Abstract

Factory pattern solution, and not a specification of the family of solutions covered by

the Abstract Factory pattern [66].

These structured, informal descriptions are useful for communicating design ex-

perience to developers [102]. However, the informal nature of pattern solution de-

1

CreateProductA() CreateProductA()

CreateProductB()
CreateProductA()

AbstractFactory

ConcreteFactory1

CreateProductB()

ConcreteFactory2

CreateProductB()

AbstractProductA

Client

ProductA2 ProductA1

AbstractProductB

ProductB2 ProductB1

Figure 1.1: The Abstract Factory Pattern [35]

scriptions inhibits their use as a base for the development of tools that support

the systematic use of patterns in software development. The problem with infor-

mal specifications of design patterns solutions is that they provide poor support for

the following activities:

• Verifying conformance to a pattern: Conformance is concerned with establishing

that a solution has the described pattern properties. Defining a rigorous notion

of pattern conformance requires precise specification of pattern properties.

• Developing tools to support systematic application of patterns: Examples in-

clude tools that can (1) verify the presence of pattern solutions in designs (e.g.,

[47, 95]), (2) incorporate a pattern solution into a design (e.g., [55, 83]), and

(3) generate solutions that conform to patterns (e.g., [77]). These tools require

patterns to be rigorously specified.

• Communicating pattern properties: Rigorous pattern specifications enable non-

ambiguous communication of pattern properties.

2

1.2 Research Overview

The goal of this research is to develop a rigorous and practical pattern specifica-

tion technique that supports the systematic use of patterns during design modeling.

“Practical” in this context means the technique is based on a widely known modeling

language. To achieve the goal a language, the Role-Based Metamodeling Language

(RBML), for precisely specifying pattern solutions was developed. The language has

a syntax based on the Unified Modeling Language (UML) [100]. An RBML pattern

specification defines a specialization of the UML metamodel that characterizes the

set of UML solution models for the pattern. A model that conforms to a pattern

specification satisfies the properties stated in the pattern specification.

The UML is used in this work for the following reasons:

• The UML is the de facto standard modeling language for object-oriented mod-

eling, and there is a rapidly growing UML user base in industry. Using the

UML as the syntactic base for the RBML makes it easier for UML modelers to

create, understand, and evolve pattern specifications.

• The Object Management Group (OMG), the group that maintains the UML

standard, is promoting an initiative called Model Driven Architecture (MDA)

that supports the use of models as primary artifacts of development (see

http://www.omg.org/mda). MDA raises the level of abstraction at which com-

plex systems are developed. Technology that supports transformation of mod-

els is a key enabler of MDA. There is a growing interest in developing tools

that support the transformation of models using design patterns (referred to as

model refactoring). Such tools require precise descriptions of pattern solutions

expressed in a widely used modeling notation such as the UML.

• The RBML uses UML syntax, and thus UML tools can be used to create and

evolve RBML specifications and tools. This research uses IBM Rational Rose

3

as a base for an RBML specification tool.

is_specialized

defines

M1

M2

defines

Pattern
Specification

Space
Pattern Solution

UML Model Space

UML Metamodel

Figure 1.2: An Overview of the Approach

In the approach we developed, a specification of a pattern’s solutions is obtained

by specializing the UML metamodel so that it defines only models of the pattern

solutions. This is illustrated in Fig. 1.2. M1 and M2 in Fig. 1.2 denote levels in the

UML infrastructure where UML models are defined at the M1 level and the UML

metamodel is defined at the M2 level.

An RBML specification consists of a set of role diagrams that describe pattern

properties from different perspectives. A role diagram consists of roles where a role

specifies properties of pattern participants. The role diagrams are notational variants

of UML diagrams.

An RBML specification can consist of three types of specifications - Static Pattern

Specifications (SPSs) present a UML class diagram view of pattern solution proper-

ties, Interaction Pattern Specifications (IPSs) present an UML interaction diagram

view of pattern solution properties, State Machine Pattern Specifications (SMPSs)

present a UML statechart view of pattern solution properties.

We demonstrate the utility of the RBML by using it to specify 1) Gamma et al.

4

design patterns [35]: Abstract Factory, Bridge, Iterator, Decorator, State, Visitor,

and Observer, 2) a large domain pattern for checkin-checkout systems [57, 58], 3)

and access control aspects (see [26, 91]). We developed a prototype tool for creating

UML models from RBML specifications to demonstrate the feasibility of developing

RBML-based tools that enable systematic use of patterns.

1.3 Scope

Existing descriptions of design patterns (e.g., [35]) often provide more information

on their solution spaces than their problem spaces. For this reason, we only focus on

specifying the solution spaces of patterns.

Pattern solution properties can be described from various perspectives. In this

research pattern solutions are described in terms of the views that are supported by

the UML. Specifically, we focus on UML class diagram, interaction diagram, and stat-

echart diagram views of pattern solutions. Our work on the statechart diagram view

of a pattern specification is not fully developed and we present only our preliminary

results.

Pattern solutions have a functional dimension that consists of the functional prop-

erties of the pattern and non-functional dimensions that consist of descriptions of as-

pects such as performance, fault-tolerance, and capacity. In this research, we focus on

specifying the functional properties (structural and behavioral properties) of pattern

solutions.

Patterns can be classified into general-purpose patterns and domain specific pat-

terns. General-purpose patterns describe solutions for problems that occur across

different application domains. Examples of such patterns are the Gamma et al. de-

sign patterns [35]. Domain specific patterns describe a single application domain

(e.g., telecommunication, banking systems). We show how the RBML can be used to

specify both general-purpose and domain specific patterns.

5

1.4 Overview of the Dissertation

Chapter 2 presents the background and the state of the work related to the research

documented in this dissertation. Chapter 3 describes the Role-Based Metamodel-

ing Language (RBML). Chapter 4 describes how the RBML can be used to specify

Gamma et al. design patterns. Chapter 5 describes how the RBML can be used to

specify domain patterns using a pattern in the checkin-checkout domain where appli-

cations check in and check out items. Chapter 6 describes the use of the RBML to

specify cross-cutting functionality using access control policies in a security domain.

Chapter 7 demonstrates RBML tool support. Chapter 8 concludes the dissertation

and describes future work. Appendix A collects the RBML specifications of design

patterns presented in chapter 4, and describes specifications for Observer, Bridge,

Decorator, and State patterns. Appendix B collects the RBML specifications of the

domain pattern and the access control patterns presented in chapter 5 and 6. Ap-

pendix C shows a vehicle rental system generated from an RBML tool.

6

Chapter 2

Background

This chapter presents the technical background for the research. Section 2.1 gives an

overview of of design patterns. Section 2.2 describes the infrastructure of the UML

and gives an overview of the types of diagrams provided by the UML. Section 2.3

describes how the UML metamodel can be specialized. Section 2.4 presents related

work on specifying design patterns.

2.1 Design Patterns

The notion of a software pattern is based on the notion of a pattern as defined

in the field of architecture by Alexander [4, 5]. In 1987, Cunningham and Beck

introduced a set of patterns for developing user interfaces in Smalltalk at an OOPSLA

(Conference on Object-oriented Programming Systems, Languages and Applications)

[21]. In 1995, Gamma, Helm, Johnson, and Vlissides published a book “Design

Patterns: Elements of Reusable Object-Oriented Software”, which is one of the most

popular books on design patterns. There are many other publications on patterns

(e.g., see [16, 80, 92]). Buschmann et al. [16] describes patterns that occur at several

levels of abstraction ranging from architecture level to programming level. Pree [80]

uses metapatterns to describe frameworks. Schmidt et al. [92] describes patterns in

concurrency and networking.

A design pattern describes a generic solution to a recurring design problem. Typ-

7

ically, a pattern description includes a name, a description of the problems addressed

by the pattern, diagrams and text describing the structure of the generic solution,

and descriptions of the consequence of applying the pattern.

Design patterns facilitate communication of solutions among software developers

by providing an explicit description of intent, participants, and consequences [1]. For

example, use of a self-explanatory or well-known pattern name in a design description

is often enough to communicate the details of the solution.

A typical description of a design pattern consists of two major parts [16, 35, 80, 92]:

• Usage context: This part consists of usage guidelines (including descriptions

of the problems addressed by the pattern), descriptions of solution, quality

attributes (e.g., performance, reliability, security), consequences of applying

the pattern, and implementation concerns (e.g., see examples in Gamma et al.

patterns [35]).

• Solution description: This part consists of descriptions of behavioral and struc-

tural aspects of the solutions characterized by the pattern (e.g., the Structure,

Participants, and Collaborations parts of the Gamma et al. pattern descriptions

[35]).

While it may not be possible (or desirable) to formally express all aspects of a

pattern’s usage context, it is possible to formally describe pattern solutions when their

structural and behavioral properties are well-understood. The research documented in

this dissertation focuses on specifications of pattern solutions. A pattern specification

language based on the UML is used to describe pattern solutions.

2.2 Unified Modeling Language

The Unified Modeling Language (UML) [100] is a standard modeling language for

object-oriented systems developed by the Object Management Group (OMG) (see

8

www.omg.org), a standards body for the object-oriented community. The UML

started out as a modeling language developed collaboratively by Grady Booch, James

Rumbaugh, and Ivar Jacobson. Booch and Rumbaugh unified their respective meth-

ods to produce the Unified Method v 0.8 in 1995. Jacobson joined the collaboration

in 1996 to work on UML 0.9 [63].

UML 1.0 was proposed by the UML Partners, a consortium of several organiza-

tions, in 1997 in response to an OMG’s request for proposals for a standard object-

oriented analysis notation and semantic metamodel. Several revisions have been

produced since the UML 1.0, and the most recent work, version 2.0, was recently

approved by the OMG. The UML has gained prominence and is the industry de-facto

standard modeling language in software development.

Class
Diagram

Diagram
Use Case

Statechart
Diagram Diagram

Communication

Activity
Diagram

Sequence
Diagram

Object
Diagram

Diagram
Component

Diagram
Deployment

Diagram
Package

Diagram
Timing

Diagram
Structure

Composite

Diagram
Overview

Interaction

UML Model

Figure 2.1: UML Diagrams

A UML model can consist of several diagrams as shown in Fig. 2.2. Each diagram

describes a different view of the system being modeled. The following briefly describes

each diagram supported by the UML [90, 100]:

9

• A Use Case Diagram describes required behavior of a system as it appears to

an user. It partitions the system functionality into interactions called use cases.

• A Sequence Diagram describes how instances interact to accomplish a task.

• A Communication Diagram shows the configuration of objects in an interaction

that accomplishes a task.

• A Statechart Diagram describes behavior of objects over time in terms of state

transitions triggered by events.

• An Activity Diagram describes the flow of control (and optionally data) through

steps of a computation.

• A Class Diagram describes classifiers and their relationships.

• An Object Diagram shows objects and their relationships at a point in time.

An object diagram is a particular instance of a class diagram.

• A Component Diagram depicts the components of an application and their

interfaces and relationships.

• A Deployment Diagram describes the implementation structure of a system

in terms of nodes. A node is a run-time computational resource, such as a

computer processor. A node can contain physical entities such as files.

• A Composite Structure Diagram depicts the internal structure of a classifier

(such as a class, component, or use case) including the interaction points of the

classifier to other parts of the system.

• An Interaction Overview Diagram is a variant of an activity diagram that gives

an overview of the control flow within a system or business process. Each

node/activity within the diagram can represent another interaction diagram.

10

• A Package Diagram shows how model elements are organized into packages, and

the dependencies between the packages.

• A Timing Diagram depicts the change in state or condition of a instance or a

role of a classifier over time. It is typically used to show the change in state of

an object over time in response to external events.

In general, not all diagrams are needed to model an application. Diagrams are

used depending on the aspects of the systems that are of interest. In this research,

class diagrams, sequence diagrams, and statechart diagrams are used. These diagrams

are described in more detail in the next subsection.

2.2.1 UML Diagrams

Association

Class

Generalization message()

Message

LifelineExamplesd

Sequence Diagram Statechart Diagram

sb1

State

event2

event1

Clas Digram

Trigger
Transition

ClassA

cc:ClassCca:ClassAClassA ClassC

ClassB sb2

Figure 2.2: Class Diagram, Sequence Diagram, and Statechart Diagram

Fig. 2.2 shows examples of a class diagram, a sequence diagram, and a statechart

diagram. A class diagram describes classifiers (e.g., classes, interfaces) and their rela-

tionships. A class is a classifier that characterizes a family of objects in terms of at-

tributes and operations that are common to the objects. An operation can be specified

using pre- and post-conditions expressed in the Object Constraint Language (OCL)

[99]. Associations between classes specify links between class objects. The ends of

associations, referred to as association-ends, have properties such as multiplicity and

11

navigability. The class diagram in Fig. 2.2 shows three classes ClassA, ClassB, and

ClassC, and their relationships. ClassA has a generalization/specialization relation-

ship with ClassB, which specifies that ClassB inherits the features of ClassA. The

association between ClassA and ClassB declares that there can be links between the

instances of ClassA and ClassC.

A sequence diagram describes how objects interact to accomplish a task. An

interaction is expressed in terms of lifelines and messages. A lifeline is a participant

in an interaction. In this research, participants are class objects. A message is

a specification of a class of stimuli passed between two objects. A stimulus is a

communication and can be a request to invoke a recipient’s method or a signal that

informs its recipient of the occurrence of an event. In this research, we focus on the

messages that represent operation calls. The sequence diagram notation can be used

to specify (1) alternative sets of interactions and (2) iterations over interactions. The

sequence diagram in Fig. 2.2 shows that ca, a lifeline of ClassA, sends a message to

cc, a lifeline of ClassC, to carry out a specific goal.

A statechart diagram describes behavior of objects over time in terms of state

transitions triggered by events. A state is a set of object values for a given class

that have the same qualitative response to events. A trigger specifies an event that

represents the kind of changes that an object can recognize, for example the receipt of

calls or explicit signals from other objects, a change in values, or the passage of time.

A transition is triggered by the occurrence of an associated event. In this research, we

focus on the triggers that are associated with operation calls (i.e., call triggers). The

statechart diagram in Fig. 2.2 show a statemachine of an object of ClassA that has

two states sb1 and sb2, and two transitions; one from sb2 to sb1 triggered by event1

and the other from sb1 to sb2 triggered by event2.

12

2.2.2 The UML Metamodel

The UML metamodel characterizes valid UML models. It consists of a class diagram

and a set of well-formedness rules that define the abstract syntax of the UML. Informal

descriptions of semantics are also included in the metamodel. The metamodel class

diagram consists of classes whose instances are UML model elements. For example,

instances of the metamodel class Association are UML associations. Well-formedness

rules that are not expressible in the metamodel class diagram are expressed using the

OCL where possible, and in natural language otherwise.

Feature Classifier

BehavioralFeatureStructuralFeature

Property Operation

Class

Property
12..**11* Association

Figure 2.3: A Part of the UML Metamodel

Fig. 2.3 shows a part of the UML metamodel class diagram (class attributes are not

shown) [100]. A classifier describes a set of instances that have features in common. A

class is a kind of classifiers whose features are attributes and operations. Attributes of

a class are represented by instances of Property that are owned by the class. Some of

these attributes may represent the navigable ends of binary associations. In Fig. 2.3

the multiplicity 2..* at the Property end specifies that an association must have at

least two association ends (properties).

Operations of a class are represented by instances of Operation. An operation

is a behavioral feature of a classifier that specifies the name, type, parameters, and

13

constraints for an associated behavior.

UML metaclasses may have attributes. For example, Classifier has an isAbstract

attribute that indicates whether the classifier is abstract or not.

defines

instance_of

defines

instance_of

defines

instance_of

UML Metamodel

(UML Concepts)

Object Models

(User Concepts)

UML Models

M3 Meta−Object Facility

(User Data)

M0

M2

M1

Figure 2.4: UML Four-Layer Infrastructure

The UML infrastructure is defined as a four-layer metamodel architecture as shown

in Fig. 2.4: Level M3 defines a language for specifying metamodels, level M2 defines

the UML metamodel, level M1 consists of UML models specified by the M2 meta-

model, and level M0 consists of object configurations specified by the models at level

M1.

The UML provides extension mechanisms in the form of stereotypes, tagged val-

ues, and constraints. A stereotype defines how an existing metaclass may be extended.

For example, stereotypes can be used in the business modeling area to distinguish

business objects and business processes as special kinds of modeling elements whose

usage is distinct within a given development process [90].

14

2.3 Specializing the UML

The UML metamodel defines the syntax and semantics of the concepts (metaclasses)

that are used for describing models. A model comprises application concepts and

their relationships which are instances of the metaclasses defined in the metamodel.

The UML metamodel can be constrained by specializing the metaclasses to define a

subset of the UML models. For example, models in the telecommunication domain

can be defined by specializing the UML metaclasses with telecommunication-specific

properties [25]. In this research a pattern solution is specified by specializing the

UML metamodel with pattern properties so that it defines only the UML models

that describe pattern solutions. Tool vendors can use specialized metamodels that

define pattern solutions for developing tools that allows one to build models of pattern

solutions.

2.4 Related Work on Pattern Specification

The section describes prior work on pattern specifications. The related work is cate-

gorized as formal methods-based work and UML-based work.

2.4.1 Approaches Based on Formal Methods

There has been work on formalizing design patterns using formal specification tech-

niques (e.g., [24, 65, 70]). Lano et al. treat design patterns as transformations.

In their approach, a pattern consists of a “before” and “after” specifications whose

structures are described in V DM++ [23]. The semantics of a transformation from a

“before” system to an “after” system is expressed using an extension of Object Cal-

culus [27]. The extension was chosen because it allows the use of structured actions

that corresponds to programming language statements. The semantics is used to

prove that a design pattern as a transformation is a formal refinement. For example,

the before specification of the Abstract Factory pattern defines a Client class that

15

specifies an action for creating products, and the after specification defines Client

and ConcreteFactory classes where the Client specifies an action for creating factory.

These classes are expressed in V DM++ terms. A mapping between the terms in

the before Client and the after Client is defined. The interpretation is used in the

axiomatic transformation from the before specification to the after specification. A

limitation of the technique is use of unfamiliar formalisms.

LePUS [24] was a formal language that is developed to support programming-

level use of patterns. LePUS defines patterns in terms of object-oriented program

properties. A program is said to implement a pattern if the program conforms to

the pattern constraints. LePUS consists of basic “building blocks” such as hierarchy,

totality, isomorphic, and clan. A hierarchy is a set of classes that contains an abstract

class and other classes that inherit properties from the abstract class. Totality is a

relation between two sets such that for every element in one set, there is a mapped

element in the other set. Isomorphic is a restricted totality in which there is a one-

to-one relationship or a bijection between two sets. A clan is a relationship between

abstract methods and concrete classes that implement the abstract methods.

LePUS specifications are formulae expressed in higher order monadic logic [11]. A

LePUS formula consists of variables and relations which correspond to the aforemen-

tioned building blocks. Variables (e.g., hierarchies, clans, tribes) represent program

elements of classes and functions. Relations (e.g., totality, isomorphic) are predicates

similar to PROLOG predicates, and define constraints on the variables. For example,

the specification of the Factory Method pattern consists of 1) variables for Creators

and Products hierarchies, 2) a clan for FactoryMethod in Creators, and 3) an isomor-

phic relation between FactoryMethods and Products. A program is said to be valid

for a pattern specification if it satisfies the constraints defined on the variables in the

specification. LePUS provides a visual notation that can represent the formulae as a

diagram that is semantically equivalent to the formulae, but more abstract.

16

DisCo [70] is a pattern specification language that uses Temporal Logic of Actions

[64] and UNITY [18] to formalize temporal aspects of design patterns. A DisCo

specification consists of classes and their actions and relations. A class is defined

with local variables that are used in action specifications. An action consists of a list

of participants and parameters, a condition, and the definition of state changes. A

relation defines an association between two classes. For example, the specification

of the Observer pattern contains Subject and Observer classes, Attached and Updated

relations between the classes, and Attach, Detach, Notify, and Update actions. DisCo

specifications can be combined to produce a more complex pattern specification that

can be used to develop specifications for complex systems. DisCo provides class

refinement to support the combination of the specifications defined at a different

level of abstraction. The combined specification is instantiated by binding concrete

data to pattern properties. Such a template paradigm can only capture structural

variations of pattern realizations. For example, in the Observer pattern there may

be more than one observer that observes a subject, or there may be an observer that

observes more than one subject. DisCo is not capable of specifying such variations.

2.4.2 UML-Based Approaches

Guennec et al. [44] use a UML metamodeling approach in which pattern properties

are expressed in terms of meta-collaborations. A meta-collaboration consist of roles

(e.g., classifier roles, feature roles) that are played by instances of UML metamodel

classes. A classifier role with stereotype hierarchy represents a structure of concrete

classes. Feature roles are stereotyped with clan representing a set of features that

share the same signature, and Tribe representing a set of clans. Feature roles are

associated with a classifier role through a composition relationship. For example,

the meta-collaboration of the Visitor pattern defines Element and Visitor classifier

roles and Accept and Visit feature roles. The Element role is associated with Accept

17

role, and the Visitor role is associated with the Visit role. Guennec et al. clearly

point out deficiencies in the UML notion of role models, and provide an alternative

representation in terms of meta-collaborations that utilize a family of recurring prop-

erties initially proposed by Eden [24]. However, Guennec et al. do not address how

structural features of patterns can be specified. For example, Subject in the Observer

pattern has a structural feature to store the current status of the subject, but is

not clear how the feature can be expressed. A behavioral role is described using a

class, but signatures of behavioral roles are not addressed. Patterns also describe

interactions among participants. The authors mention several possible approaches to

specify interactions of pattern roles, but no concrete solution is provided. The notion

of conformance is coarse-grained. A model element is said to conform to a role if the

model has a name matching to the role name.

Lauder and Kent [66] view pattern realization as a refinement process in which

a high-level pattern description is refined to a model realization. They use graph-

ical constraint diagrams to present patterns in three layers of models: role-model,

type-model, and class-model. A role-model describes the essential aspects of a pat-

tern in terms of highly abstract state and behavior elements. The notion of role is a

placeholder that can be substituted by types in refinements. A type-model refines a

role-model by adding domain-specific constraints. A class-model refines a type-model

by deploying concrete classes. The three models are described using a combination

of the UML and graphical constrain diagrams. For example, the role model of the

Abstract Factory pattern consists of AbstractFactory role with a dot inside to denote

an abstraction of operations, and AbstractProduct role with a star inside to denote

creation of a product instance. The dot and star are linked by a line stereotyped

with create representing that operations create products. In a type model, the dot is

refined into a set of operations, and AbstractProduct is refined into a set of types (i.e.,

products) corresponding to the operations. A class model of the type model adds

18

hierarchies of concrete classes to AbstractFactory and AbstractProduct. Behavioral

properties of a pattern are described using a variation of sequence diagram. Estab-

lishing that a model conforms to a pattern (as expressed by a role-model) involves

establishing refinement relationships across the model levels. However, the graphical

form of constraints is and is not currently integrated with the UML and it is not clear

how tools can support the notation.

The DPML [69] is a visual modeling language that provides a set of modeling

constructs (e.g., interface, dimension) to specify design pattern solutions. A pat-

tern specification consists of interfaces, implementations, methods, operations, and

attributes. These participants are linked by binary directed relations, and have con-

straints described in plain text. A pattern solution is realized by instantiating the

specification, and binding the instantiated pattern elements to UML model elements.

An instantiated diagram consists of “proxy” elements that are instantiated from the

pattern participants, and “real” elements that are application-specific added during

realization. A participant is played by more than one model element. This is specified

by a notion called “dimension”. For example, the Abstract Factory pattern is defined

with AbstractFactory and Products interfaces, concreteFactories and concreteProducts

implementations, and createOps and concreteCreateOps operations in AbstractFactory

and concreteFactories, respectively. A prototype tool is developed. The tool can be

used to build pattern specifications and UML class diagrams (what they call object

diagrams), instantiate specifications and to check consistency between specifications

and class diagrams. The pattern realization mechanism is similar to the templates

in the UML in that pattern participants are instantiated and bound to application

elements. Such a template paradigm is limited in instantiation in that they only

allow uniform instantiation. Furthermore, it is not clear why a new notation had to

be created instead of using the UML particularly when DPML is developed for UML

models.

19

Albin-Amiot and Gueheneuc [3] propose a metamodel expressed in the UML to

describe structural and behavioral aspects of design patterns for automatic code gen-

eration and pattern detection in code. The metamodel is specialized to define a

particular pattern by adding specialized classes. The specialized metamodel is in-

stantiated to produce a specification of the pattern. An instantiated specification is

expressed in two equivalent forms; visualization using a graphical notation and text

in Java. The specification is then bound to a concrete application. The resulting

specification is used to generate Java code. For example, the Composite pattern

metamodel (i.e., a specialization of the metamodel) defines PClass, PInterface, and

PDelegatingMethod metaclasses. An instance of the metamodel (i.e., a Composite

pattern specification) consists of Component class, Leaf and Composite interfaces,

and operation operation. Concrete elements of a drawing application is then bound

to the pattern participants: Graphic to Component, Line to Leaf, draw to operation.

Pattern detection is performed in code by matching the type of concrete elements

with the metaclasses in the metamodel. Based on the identified metaclasses, it is de-

termined which pattern is used in the code. They use a graphical notation to express

the instances of the metamodel. However, there is little description on the notation,

and it is not clear why the metamodel and its instances would have to be expressed in

two different notations. Like Lano et al.’s work and LePUS, the technique supports

programming-level use of patterns, not model-level use.

2.4.3 Summary

Based on the survey of related work, the following issues have been identified:

• Pattern conformance for models: In Lano et al.’s work it is not clear how the

transformation guarantees for pattern conformance. LePUS defines pattern con-

formance for programs, not for models. DisCo uses a template paradigm which

automatically ensures conformance. In Guennec’s work, conformance check is

20

simply done by matching the names between application elements and roles. In

Lauder’s approach, conformance is established by defining refinement relation-

ships between the model levels. However, refinement rules are not defined. The

DPML checks conformance by type matching between objects and instantiated

pattern elements. This is coarse-grained in that properties (i.e., features) of

pattern participants are not considered.

• Purpose of Pattern Specification: Pattern specifications can be used for 1) gen-

erating conforming artifacts (e.g., models, programs), 2) checking conformance

of an artifact, and 3) incorporating pattern properties into artifacts. The first

purpose is concerned with generating conforming artifacts from pattern spec-

ifications. The last purpose is, however, concerned with transforming designs

using patterns. Lano et al.’s work addresses the last purpose. LePUS and

Guennec’s approach address the second purpose, where programs in LePUS

and models in Guennec’s work are checked for pattern conformance. DisCO

concerns the first purpose where a system specification is generated by stamp-

ing out a pattern specification. DPML addresses the second and third purposes

where for a given object model, the model is checked to determine whether

it has pattern participants or not; if not, the missing participants are added.

Albin-Amiot’s work concerns the first and second purposes where a pattern

specification is used to generate code and to detect patterns in code. DPML

and Albin-Amiot’s work are concerned with a broader purpose than the others,

but still limited in that DPML is not concerned with generating conforming

artifacts and Albin-Amiot’s work is not concerned with incorporating pattern

properties. There is a need for techniques that can address all the three purposes

in order to facilitate the development of tools that support the three together.

• Notation: Lano et al.’s work, LePUS, and DisCo are based on formal notations.

21

While formal approaches enable rigorous reasoning, they can be difficult for

users to read and use, not because of the complexity in the approaches, but

because of the unfamiliar mathematical notations. LePUS provides a graphical

notation for visualizing LePUS expressions, but the notation is not currently

integrated with existing tools. DPML and Albin-Amiot’s work also provides

graphical notations for specifying patterns, but the syntax and semantics of the

notations are not fully described. Techniques that use a standard notation as a

base can be adopted easier, and can take advantage of existing tool support.

• Language features: Patterns involve structural and behavioral aspects. How-

ever, the previous work mainly focuses on specifying structural properties, and

lacks features for specifying behavioral aspects. LePUS cannot specify the sig-

nature of behavioral properties. DPML and Guennec’s work do not describe

how the interactions of pattern participants are specified.

• Complexity of representation: Guennec’s work and Albin-Amiot’s work specify

a pattern as a specialization of the UML metamodel. Every element in a pat-

tern specification is represented as a class. For example, specifying Subject in

the Observer pattern requires to have five metaclasses; Subject, SetState, At-

tach, Detach, Notify. Similarly, in DPML each type of pattern elements has its

own graphical symbol. For example, interfaces are denoted by hexagons and

operations are denoted by diamonds. Specifying the Subject also requires five

constructs. The specifications of such approaches quickly become complicated

even for small size of patterns.

• Pattern realization: In practice, a pattern can be realized in various forms

depending on the problems that the pattern is applied to solve. Approaches

like DisCo and Albin-Amiot’s work that rely on template paradigm are rigid

in that they only allow a uniform realization. The refinement approach in

22

Lauder’s work is more flexible than template paradigm in that the form of

refining elements can vary while it satisfies the refinement rules. However, the

refinement rules are not clearly defined.

2.4.4 Contribution

This research addresses the aforementioned aspects by developing a pattern specifica-

tion language called Role-Based Metamodeling Language (RBML). The RBML has

the following characteristics:

• Model-level use of patterns: The RBML is designed to support systematic use of

patterns at the model level. An RBML specification can be used 1) to support

generation of conforming models, 2) as a base for conformance checking, and 3)

for incorporating pattern properties into a model.

• Rigorous notion of pattern conformance: The RBML defines a set of confor-

mance rules that can be used to check structural and behavioral conformance

of models. Structural conformance rules are used to check the type of model

elements and their features (i.e., attributes, operations) and relationship. Be-

havioral conformance rules are used to check the sequence of the interactions

between model elements. A model conforms to a pattern if the model satisfies

the rules.

• Use of familiar notation: The RBML uses the UML as its syntactic base to

make it easier for UML modelers to create, understand, and evolve pattern

specifications. This also enables the use of UML modeling tools for creating

and evolving pattern specifications.

• Use of concise representation: RBML specifies a pattern as a specialization of

the UML metamodel, and the specialized metamodel is represented concisely

as a UML-like diagram.

23

• Flexible pattern instantiation: The RBML provides a special form of RBML

specifications called RBML templates. RBML templates allow one to instan-

tiate a pattern in various structures for applications through variation points

where users can provide application-specific information that determines the

structure of the application.

• Specification views: The RBML provides three types of pattern specifications;

Static Pattern Specifications (SPSs), Interaction Pattern Specifications (IPSs),

and Statemachine Pattern Specifications (SMPSs), each of which captures differ-

ent views of pattern solutions. An SPS specifies the static structure of patterns

including participants, their properties, and relationships. An IPS specifies in-

teraction constraints among the participants. An SMPS specifies the internal

behavior of the participants.

24

Chapter 3

RBML: Role-Based Metamodeling
Language

This chapter describes the Role-Based Metamodeling Language (RBML). Section 3.1

describes the notion of role used in the research to define pattern properties. Sec-

tion 3.2 describes the notation of the RBML, the types of RBML specifications, and

conformance rules for each type. Section 3.3 gives a summary of the chapter. Sec-

tion 3.4 discusses how the RBML can be used for the development of tools that

support systematic use of patterns during modeling.

3.1 Using Roles to Specify Properties

A design pattern describes a family of solutions for a class of recurring design problems

[35]. A model is said to be a member of the family if the model has elements that

“play” the roles of participants in the pattern. In this sense, it is natural to consider

use of roles to describe pattern properties, which motivates using roles in this research

as a base concept. In this section, the notion of role used in the research is defined.

The prevailing notion of role in the object-oriented community is based on objects,

that is, a role is played by objects (see [2, 22, 34, 85]). A role played by objects defines

a set of properties that must be satisfied by objects playing the role. In this research,

a different notion of role is used to support specification of design patterns at the

25

metamodel level where a role is played by model elements (e.g., classes, associations).

To define the notion of role used in this research, a general notion of role is defined

by generalizing the characteristics of roles played by objects. The general role is then

specialized to define the notion of role played by model elements.

3.1.1 Object Roles

The notion of role in the object-oriented community was introduced by Bachman and

Daya [8]. They define a role to be a behavior pattern which may be assumed by

objects of different kinds, and a particular object may concurrently play one or more

roles. This concept has been a base for the work on roles in object-oriented data

modeling [2, 22, 40, 78, 94, 97, 98, 105]. Roles can describe object behavior [78, 98],

and extended to role hierarchy [40, 94] for inheritance of role properties. More recent

work [22, 97] uses roles in modeling where roles are used to define an object-oriented

modeling language [97] and a role model [22].

The notion of role in data modeling is used in object-oriented design modeling

[34, 85, 87, 99] to describe views of design concepts (i.e., classes). Roles can describe

a particular view of the structure and behavior of objects [99] or identify a behavior

associated with an object [87]. The OOram method [85] defines a role as a set of

properties that objects must possess in order to play the role.

The following characteristics of object roles are identified from the above work:

1. A role defines a subset of objects of a type [8, 40, 105]. In other words, a role

defines constraints on a type. Only those objects that satisfy the constraints

can play the role.

2. A role has structural and behavioral properties [22, 78, 98, 105]. Properties of a

role may be inherited from other roles in a hierarchy [8, 40, 78, 94, 98, 105]. The

hierarchy suggests that an object that plays a role can also play the superrole of

26

the role. For example, a person (an object) who is a graduate teaching assistant

(a role) also plays a graduate assistant (the superrole).

3. An object may play multiple roles simultaneously [8, 78] or the same role several

times with a different state of the object during its lifetime [40, 78]. For example,

a person (an object) can be a student (a role) and/or an employee (a role).

4. An object may acquire and abandon roles several times during its lifetime [40,

78, 94]. The sequence of acquiring and abandoning roles may be restricted

[78, 94]. For example, a person can become an advisor only after being a

professor. In order for the object “person” to play an advisor role, the person

must acquire a professor role first.

5. A role is context-specific. This means that a role is meaningful only in the

context where the role is defined [2, 78, 94]. For example, if a person plays

both the student role and employee role, in the context of the employment, the

person cannot access a student’s grade [2, 40, 94].

3.1.2 General Roles

In this section, the characteristics of object roles described in Section 3.1.1 are gen-

eralized to obtain a notion of general role. The following simple generalization rules

are applied to the characteristics of object roles:

• Runtime-specific characteristics are excluded. Examples of such characteristics

are simultaneity of objects that an object can play multiple roles simultaneously

at the same time, and dynamicity that an object can change roles to play

dynamically during its lifetime. This rules out item 3 and 4 in Section 3.1.1.

• Object is replaced by instance. The term instance is more general than object

in that instance can be used at any level of modeling. For example, an object

27

of a class is an instance of the class, and a class is an instance of a meta-class.

This results in substituting object in item 1, 2 and 5 to instance.

The following characteristics are obtained by applying the generalization rules:

1. A role defines a subset of instances of a type.

2. A role has structural and behavioral properties.

3. Properties of a role may be inherited from other roles in the hierarchy. Instances

that play a role can also play the superrole of the role.

4. A role is context-specific.

Specializations of the general role inherit the above characteristics, but may also

have their own characteristics. An object role is a specialization of the general role

in that instances are objects (e.g., instances of classes). Object roles have additional

characteristics that are runtime specific. The general notion of role can be specialized

to define roles at any level (e.g., metametamodel level).

3.1.3 Model Roles

A model role is a role that is played by UML model elements (e.g., classes, associ-

ations), not by objects. Model roles inherit the characteristics of general roles, and

have their own additional characteristics. The following describes the characteristics

of model roles that include both inherited from the general role and newly added:

1. A model role has a base type which is a metaclass in the UML metamodel. Only

the instances of the base type that possess the properties defined in the role

can play the role. For example, a class role is a model role whose base is Class

metaclass, and the role is played by instances (classes) of Class that satisfy the

constraints specified in the role.

28

2. A model role defines a subset of instances of its base metaclass. For example, an

association role specifies a subset of instances (i.e., associations) of Association

metaclass. These instances are said to play the role.

3. A classifier role has structural and behavioral properties which are also roles

whose bases are StructuralFeature and BehavioralFeature metaclasses, respec-

tively. A structural feature role can be played by structural features such as

attributes or query operations. A behavioral feature role can be played by

operations.

4. Properties of a model role may be inherited from a model role called an abstract

role which is not realizable. An abstract role is simply an organizational entity

and is not meant to be played directly by an instance. Properties specified in

an abstract role are inherited by concrete roles that can be realized. A role

hierarchy describes the structure of the inheritance.

5. A model role may be played by several instances of its base metaclass. The

number of model elements that can play the role may be constrained by mul-

tiplicities. For example, A role that has a multiplicity of 1..* can be played by

one or more classes.

6. An instance of a metaclass may play several roles that have the metaclass as

their bases. For example, if a role A and role B have the Class metaclass as

their base, a class (an instance of Class) can play both roles.

7. Properties of a classifier role can only be accessed in the context of the role.

For example, consider the Visitor pattern which uses the Composite pattern

to describe the structure of elements [35]. In a solution model of the Visitor

pattern, a class that plays the object structure role in the Visitor pattern may

also play the composite role in the Composite pattern. In this case, properties

29

of the class that are specific to the context of the Composite pattern are not

accessible in the context of the Visitor pattern.

The characteristics in items 2, 3, 4 and 7 are inherited from general roles; the rest

are specific to model roles. The general role characteristic that states that “instances

that play a role can also play the superrole of the role” is specialized in model roles;

no model elements can play an abstract role (a superrole) in model role hierarchy.

3.2 Specifying Pattern Solutions

A pattern specification consists of a Structural Pattern Specification (SPS) that spec-

ifies the class diagram view of pattern solutions, Interaction Pattern Specifications

(IPSs) that specify interactions in pattern solutions, and Statemachine Pattern Spec-

ifications (SMPSs) that specify the statechart diagram view of pattern solutions. The

SPS is the core of a pattern specification. The IPSs are defined in terms of inter-

acting participants specified in the SPS. The SMPSs are defined for the participants

in the SPS that have state-based behaviors. A pattern specification consists of three

components:

• Role diagrams that specify the structure of pattern solutions using an SPS,

IPSs, and SMPSs.

• Metamodel-level constraints that are additional well-formedness rules for the

UML metamodel. Role diagrams and metamodel-level constraints together de-

fine a specialization of the UML metamodel that describes the abstract syntax

for models that conform to pattern solutions.

• Constraint templates that define the semantics of pattern solutions. Constraint

templates are used to produce constraints that conforming models must incor-

porate.

30

A UML model is said to conform to a pattern specification if it possesses the

properties defined the pattern specification.

0..*0..*
1..*1..* 1..*

Role

Realization Role

Property Role

Relationship Role

Association Role

0..*

Structural
Feature Role

Usage Role

Generalization Role

Parameter Role

Feature Role
Behavioral

Feature Role

Constraint
Template

Metamodel
Constraint

Classifier Role

Class Role

Figure 3.1: RBML Metamodel

Fig. 3.1 shows the RBML metamodel. It defines types of modeling elements for

specifying pattern solutions. The top structure of the three classes MetamodelCon-

straint, Role, and ConstraintTemplate describes that a role must have at least one

metamodel constraint and may be associated with constraint templates. The struc-

ture of the role specializations below shows role types whose instances define spe-

cializations of UML metaclasses. The instances are expressed in the UML, and thus

follow the syntax of the UML. For example, instances of Classifier Role are expressed

using Classifier notation, and instances of Association Role are expressed using As-

sociation notation. The UML syntax specifies that an association must be associated

with at least two classifiers. Thus, an association role (an instance of Association

Role) must be associated with at least two classifier roles (instances of Classifier

Role). The specialization hierarchy in the figure may be extended if other types of

31

roles are required in specifying certain patterns that have not been attempted to

specify. For example, Enumeration Role can be added to the hierarchy if the pattern

being specified involves enumeration properties.

3.2.1 Static Pattern Specifications (SPSs)

An SPS defines the part of the pattern metamodel that characterizes class diagram

views of pattern solutions. It defines subtypes of UML metamodel classes describ-

ing class diagram elements (e.g., UML metamodel classes Class, Association) and

specifies semantic pattern properties using constraint templates.

An SPS consists of a structure of pattern roles [60] (henceforth referred to as

roles), where a role specifies properties that a UML model element must have if it is

to be part of a pattern solution model. Formally, a role defines a subtype of a UML

metamodel class. The metamodel class is called the base of the role. A role with a

base B specifies a subset of instances of the UML metamodel class B. For example,

a role that has the metamodel class Association as its base specifies a subset of UML

associations. A UML model element conforms to (or plays) a role if it satisfies the

properties defined in the role, that is, the element is an instance of the subtype defined

by the role.

A role in an SPS can be classified as a classifier or a relationship role. A

role that has the base Classifier or a base that is a subtype of Classifier (e.g.,

Class, Interface) is a classifier role. A relationship role is any role that has the

base Relationship or a base that is a subtype of Relationship (e.g., Association,

Generalization).

3.2.1.1 SPS Notation

A classifier role is represented by a syntactic variant of the UML class symbol. The

structure of a classifier role is shown in Fig. 3.2.

The top compartment of a classifier role consists of three parts:

32

Role realization multiplicityp

Feature roles

|RoleName

Base Role

StructuralFeature roles

BehavioralFeature roles

Figure 3.2: Structure of a Classifier Role

• A label of the form Base Role, where Base is the name of the role’s base (i.e.,

the name of a metamodel class).

• A declaration of the form |RoleName, where RoleName is the name of the

role. The symbol “|” is used to indicate that the following string is a role name.

• A realization multiplicity, p, that can restrict the number of classifiers playing

the role in a conforming class diagram. The multiplicity can be omitted if the

number of conforming classifiers is not constrained (i.e., the multiplicity is ∗).

The other compartments consist of feature roles that specify features associated

with conforming classifiers. There are two types of feature roles:

• StructuralFeature roles specify properties represented by structural features of

conforming classifiers. A StructuralFeature role can be played by an attribute or

a query (i.e., a value-returning function with no side-effects). Structural feature

roles may be labeled using strings of the form “s#” (e.g., s1, s2, . . .), where “s”

denotes structural feature roles. The labels are used to denote the roles that

model elements play in class diagram using stereotypes 1.

1This is an informal use of UML stereotypes - the stereotype notation is used to simply label the

model elements playing the roles.

33

• BehavioralFeature roles specify behavioral properties associated with conform-

ing classifiers. A BehavioralFeature role can be played by an operation. Similar

to structural feature roles, behavioral feature roles may be labeled using “b#”

where “b” denotes behavioral feature roles.

Each feature role is associated with a realization multiplicity that can constrain the

number of features (e.g., attributes or operations) in a conforming classifier playing

the feature role. A realization multiplicity with a lower bound of 0 (e.g., ∗) indicates

that the feature may or may not be present in a conforming classifier (i.e., it is an

optional feature).

3.2.1.2 An Example of Class Role

1..*Class Role
|Subject

|SubjectState 1..*

|Attach (|o.|Observer) 1..1
|Detach (|o.|Observer) 1..1

Figure 3.3: A Class Role

Fig. 3.3 shows a class role whose base is the Class metaclass. The role specifies

that one or more classes can play the role. A class playing the role must one or more

structural features that play the SubjectState role, and exactly one feature that play

each of the Attach and Detach roles.

3.2.1.3 Roles and the UML Metamodel

Fig. 3.4 describes the relationship of a role to the UML infrastructure [99]. MyRole

is a role whose base type is the Class metaclass. MyRole defines a subset of instances

(classes) of the Class metaclass. ClassA is an instance of Class and it is a member of

the subset defined by MyRole. Thus, ClassA is said to play the MyRole. The RoleA

34

objA:ClassA

/RoleA:ClassA

M0

M1

M2
Class

plays instance of

Class Role

ClassA

|MyRole

a subclass of
defines

<<MyRole>>
defines a subset of

plays instance of

Figure 3.4: Relationship between Role and UML Infrastructure

is an UML role that defines a subset of instances (objects) of the ClassA. The RoleA

is played by an object objA which is an instance of the ClassA.

3.2.1.4 Role Hierarchies

Properties of a classifier role can be inherited from an abstract classifier role as shown

in Fig. 3.5(a). In the hierarchy, the MyRole is an abstract role that is simply an

organizational entity and is not meant to be played directly. Conforming classifiers

must play at least one of its role specialization - AbstractMyRole and ConcreteMyRole.

If there is a classifier that plays the AbstractMyRole, then there must be at least one

relationship that plays either the MyRoleRealization role or MyRoleGeneralization

role in a conforming structure. A role hierarchy can be concisely represented in the

RBML by a single construct called the folded hierarchy role. An example of a folded

hierarchy role for the MyRole hierarchy is shown in Fig. 3.5 (b).

The following are the well-formedness rules associated with the role hierarchy:

• A conforming classifier of AbstractMyRole must either be an interface or an

abstract class:

35

|MyRole
Classifier Role

|AbstractMyRole
Classifier Role

Realization Role Generalization Role
|MyRoleRealization |MyRoleGeneralization

Class Role
|ConcreteMyRole

Classifie Role
|MyRole

Hierarchy

{at least 1}

* *

* *

fold

(b) Folded Form of Role Hierarchy(a) Role Hierarchy

1..*

Figure 3.5: Role Hierarchy

context |AbstractMyRole inv

self.oclIsTypeOf(Interface) or

(self.oclIsTypeOf(Class) and self.isAbstract = true)

• A conforming class of ConcreteMyRole must be a concrete class:

context |ConcreteMyRole inv: self.isAbstract = false

• A relationship that conforms to MyRoleRealization must have an interface or a

type at its supplier end and a concrete class at its client end.

context |MyRoleRealization inv:

(self.supplier.oclIsTypeOf(Interface) or

(self.supplier.oclIsTypeOf(Class) and self.supplier.isAbstract = true) and

self.client.oclIsTypeOf(Class)

• A relationship that conforms to MyRoleGeneralization must have its parent and

child to be the same type.

36

context |MyRoleGeneralization inv:

self.parent.evaluationType() = self.child.evaluationType()

Realization RoleGeneralization Role

*

1

has−parent has−child
*

1

*

1

*

1

clientsupplier

Classifier Role Classifier Role

Generalization Role Realization Role
MyRoleGeneralization MyRoleRealization

|MyRole |MyRole

*

Classifier Role
|MyRole

|MyRoleRealization|MyRoleGeneralization

*

Metamodel View Metamodel View

*

*

Figure 3.6: UML Metamodel View of MyRoleGeneralization and MyRoleRealization
Roles

Fig. 3.6 shows the UML metamodel views of MyRoleGeneralization and MyRole-

Realization roles.

A classifier in a conforming MyRole hierarchy can be an abstract class or an

interface (i.e., a classifier plays AbstractMyRole) or it can be a concrete class (i.e., a

class plays ConcreteMyRole).

Fig. 3.7(a) shows a structure that conforms to the role hierarchy model:

• InterfaceA is an interface that plays the AbstractMyRole role,

• ClassA, ClassB, and ClassC play the ConcreteMyRole role,

• the realization relationship between InterfaceA and its class realizations plays

the MyRoleRealization role in the hierarchy, and

• the generalization relationship between ClassB and classC plays the MyRole-

Generalization role.

37

(b) Conforming Model B

<<AbstractMyRole>>
ClassP

<<MyRoleGeneralization>>

<<ConcreteMyRole>> <<ConcreteMyRole>>

<<ConcreteMyRole>>

<<MyRoleGeneralization>>

ClassQ ClassR

ClassS

<<ConcreteMyRole>>
ClassA ClassB

<<ConcreteMyRole>>

ClassC

<<Interface>>
InterfaceA

<<AbstractMyRole>>

<<MyRoleGeneralization>>

<<ConcreteMyRole>>

<<MyRoleRealization>>

(a) Conforming Model A

Figure 3.7: Conforming Models of the Role Hierarchy in Fig. 3.5

Fig. 3.7(b) is another conforming model that has a similar structure except that

the generalization relationship between ClassP and its subclasses play the MyRole-

Generalization role.

A relationship role is represented by a syntactic variant of the UML association

symbol. Like classifier roles, each relationship role is associated with a label that indi-

cates the base of the role. Association roles also have association-end roles that define

subtypes of the UML metamodel Property class (see Section 2.2.2). Association-end

roles specify multiplicity, navigability, and other properties associated with conform-

ing association-ends. An association-end role is also associated with a realization

multiplicity that can constrain the number of association-ends playing the role in a

conforming model. The realization multiplicity for an association role can be inferred

from the realization multiplicities of its association-end roles, and thus they are not

shown in the SPSs presented in this documentation. An example of an association

role is shown in Fig. 3.8.

38

Roles with realization multiplicities that have lower limits greater than 0 (e.g.,

1..*) are referred to as mandatory roles. A conforming model must have models

elements that conform to these roles. Both Subject and Observer in Fig. 3.8 are

mandatory classifier roles. Roles that have realization multiplicities with lower limits

that are 0 are referred to as optional roles. An SPS must have at least one mandatory

role. If all SPS roles are optional then the SPS metamodel characterizes all valid

UML class diagrams and thus is not a good discriminator.

Well-formedness rules for the pattern metamodel that cannot be expressed in

an SPS’s role structure are expressed in the OCL. These constraints are called

metamodel-level constraints. Examples of metamodel-level constraints are given in

Section 3.2.1.5.

Semantic pattern properties are expressed as constraint templates in an SPS. For

example, constraint templates are used to constrain the form of specifications for

operations that conform to BehavioralFeature roles. Constraint templates are de-

scribed in more detail in Section 3.2.1.6. Metamodel-level constraints and constraint

templates are defined separately from the SPS role structure to avoid cluttering the

diagram.

3.2.1.5 An SPS Example

Fig. 3.8(a) shows a partial SPS that specifies solutions of a restrictive variant of the

Observer pattern [35] (metamodel-level constraints, constraint templates, and some

feature roles are not shown). In this variant of the pattern, there can be one or more

observer classes and one or more subject classes. An observer class must have only

one Observes association with a subject class and a subject class must have only one

Observes association with an observer class.

The SPS in Fig. 3.8(a) consists of two class roles, Subject and Observer, and an

association role, Observes. The roles define subtypes (specializations) of classes in

39

1
ObsSub

1 1

1

ClassObserver

1

1
1

11

1

1

1

Parameter

Attach

Subject

Observes
1

|Observes
Association Role

|Observer
Class Role 1..*

|Update (|subj:|Subject) 1..1

|Obs 1..1

|Sub 1..1

|Attach (|obsv|Observer) 1..1

|ObserverState: |ObsStateType 1..1

|Subject
Class Role 1..*

|SubjectState: |SubStateType 1..1

(a) Example of an SPS

defines

(b) A Partial View of the Specialized UML Metamodel

StructuralFeatureBehavioralFeature

1
obsv ObserverState

Association AssociationEnd

Figure 3.8: Partial Views of an Observer Pattern SPS and its Metamodel

the UML metamodel, as shown in Fig. 3.8(b) (not all specializations are shown).

For example, the Observer role defines a subtype of Class called Observer in the

metamodel (see Fig. 3.8).

The class roles shown in Fig. 3.8 indicate that conforming class diagrams must

have at least one class that conforms to the Subject role (as indicated by the 1..∗ real-

ization multiplicity in the role), and at least one class that conforms to the Observer

role. A class that conforms to the Subject role (referred to as a Subject class) must

have exactly one structural feature (e.g., an attribute or query) that conforms to the

SubjectState role and exactly one operation that conforms to the Attach role. A

class that conforms to the Observer role must have exactly one structural feature

that conforms to the ObserverState structural feature role, and one operation that

plays the Update BehavioralFeature role.

The association role Observes specifies associations between Subject and Observer

classes. The association role is expressed in an abbreviated form of the UML meta-

40

1

1

1

1

Metamodel View

|Sub1..1

Class Role
|Subject

1..*

1

1

1

1

Obs

Sub

Observes

|Obs

1..*Class Role
|Observer

1..1

Association Role
|Observes

Figure 3.9: Association Role

model view as shown in Fig. 3.9. Each conforming association must have one

association-end connected to a Subject class and the other association-end connected

to an Observer class. In a conforming class diagram, the association-end connected

to a Subject class must conform to the Sub role and the association-end connected to

an Observer class must conform to the Obs role. The realization multiplicity on the

Sub role specifies that a Subject class must be part of only one Observes association.

Similarly, an Observer class must be part of only one Observes association.

Additional constraints on model elements that can play roles are expressed as

metamodel-level constraints. For example, a constraint that restricts Subject classes

to concrete classes is expressed in the OCL as follows:

context Subject inv: self.isAbstract = false

In the above, Subject is the Class subtype (subclass) defined by the role, isAbstract is

an attribute inherited from the metamodel class Class and self refers to an instance

41

of the Subject subtype (i.e., a Subject class). A similar constraint is associated with

the Observer role.

Relationship roles and association-end roles can also be associated with

metamodel-level constraints. The following are some of the constraints associated

with the Sub and Obs association-end roles in the Observer pattern:

• An association-end that conforms to Sub must have a multiplicity of 1..1:

context |Sub inv: self.lowerBound() = 1 and self.upperBound() = 1

• An association-end that conforms to Obs must have a multiplicity of 0 or more

(∗):

context |Obs inv: self.lowerBound() = 0 and self.upperBound() = *

Class diagrams that conform to the above constraints describe an observer system

in which subjects can attach themselves to zero or more observers, and an observer

is restricted to monitoring only one subject.

3.2.1.6 Specifying Semantic Pattern Properties in an SPS

The role structure and metamodel-level constraints of an SPS determine the syntactic

structure of conforming class diagrams. A pattern also describes semantic properties.

For example, an operation that plays the Attach feature role must have a behavior

in which the observer passed in as an argument to the operation is linked to the

subject. These semantic properties are specified by constraint templates in a pattern

specification. A constraint template is an OCL constraint expressed in terms of roles.

Constraint templates that are associated with BehavioralFeature roles constrain

the contents of specifications associated with conforming operations. These templates

are called operation templates. An operation template for the Attach BehavioralFea-

ture role is given below:

42

context |Subject::|Attach(|obsv:|Observer)

pre: self.|Obs → excludes(|obsv)

post: self.|Obs = self.|Obs@pre → including(|obsv)

The Attach operation template specifies behaviors that attach observer objects to

subject objects. The postcondition states that the observer object is attached. The

expression x@pre in a postcondition refers to the value of x before execution of the op-

eration, and thus self.|Obs@pre → including(|obsv) states that the observer parameter

playing the obsv role is added to the set of observers associated with the subject.

The Subject role is also associated with the following BehavioralFeature roles

(these roles are not shown in Fig. 3.8(a)):

• Detach specifies behaviors that remove observers from subjects.

• SetState specifies behaviors that set the subject state.

• Notify specifies behaviors that notify observers whenever a change in the sub-

ject state occurs.

• GetState specifies behaviors that return the subject state.

The operation templates for the Detach, GetState, and SetState roles are given

below. The Notify feature role is not associated with an operation template (i.e., it

does not restrict the form of pre- and postconditions associated with conforming oper-

ations). The operation template associated with the Update feature role in Observer

is given below:

context |Observer::|Update(|subj:|Subject)

pre: true

post: |ObserverState = |Function (|subj.|SubjectState)

The above template specifies behaviors in which the state attribute of an observer is

43

updated with a value that is a function of a subject state attribute. The function is

defined by the developer and plays the Function role. The identity function is used

in the cases where the subject state is assigned to the observer state.

Constraint templates can also be used to specify invariant properties in a UML

model. These templates are referred to as property templates. For example, a property

template that specifies a semantic relationship between structural features playing the

SubjectState and the ObserverState roles is given below:

context |Subject inv:

|Obs → forAll(|ObserverState = |Function (|SubjectState))

The presence of the above template in an Observer SPS requires that conforming

class diagrams have a constraint stating that each observer attached to a subject

must have a state value that is a function of the subject’s state value. If the observer

state must be the same as the subject state then the identity function plays the role

of Function.

3.2.2 Establishing Structural Conformance to an SPS

A class diagram structurally conforms to an SPS, with respect to a binding of model

elements to roles, if it satisfies (1) the structural constraints specified by the SPS role

structure and (2) the metamodel-level constraints. The following checks are carried

out when establishing that a class diagram structurally conforms to an SPS with

respect to a given binding:

• Realization multiplicity check: Check that the number of classifiers bound to a

classifier role satisfy the realization multiplicities associated with the role, and

check that mandatory roles have classifiers bound to them.

• Structural conformance check: For each classifier bound to a classifier role this

requires establishing that (1) the classifier satisfies the metamodel-level con-

44

straints associated with the classifier role, (2) the features bound to feature

roles in the classifier role satisfy the realization multiplicities of the feature

roles, and that (3) the mandatory feature roles have features bound to them.

• Relationship conformance check: Check that relationships bound to relation-

ship roles satisfy metamodel-level constraints associated with the roles and that

the relationships have ends attached to classifiers that conform to the roles at

the ends of the relationship roles. For an association role, bound associations

must have association-ends that conform to the association-end roles and to

metamodel-level constraints associated with the association-end roles.

A class diagram that structurally conforms to the Observer pattern SPS, with

respect to a binding, is shown in Fig. 3.10(a). The bindings are indicated by the

*

1..1

temp:Temp
ready:Int

AttachTempObs (o:TempObs)

Kiln

TempObs

currTemp: Temp

obsTemp

UpdateTemp (k:Kiln)

|Obs 1..1

|Sub 1..1

(a) A Conforming Class Diagram

|ObserverState:|ObsStateType 1..1

(b) Observer Pattern Specification

|Update (|subj:|Subject) 1..1

|Attach (|obsv:|Observer) 1..1

|SubjectState:|SubStateType 1..1

|Subject
Class Role 1..*

Class Role
|Observer

1..*

is_bound_to

|Observes
Association Role

Figure 3.10: A Structurally Conforming Observer Class Diagram

dashed lines between the class diagram and the SPS in Fig. 3.10 (e.g., Kiln is bound

45

to the Subject role). The class Kiln describes kiln objects whose temperatures are

monitored by TempObs objects.

A partial view of a less restrictive variant of the Observer pattern and a conform-

ing class diagram are shown in Fig. 3.11. The SPS shown in Fig. 3.11(b) specifies

pressure:Int

AttachTempObs (o:TempObs)
AttachPressObs (o:PressObs)

Kiln

temp:Int

*

TempObsPressureObs

1..1

obsPress

*

currTemp: IntcurrPress: Int

obsTemp

1..1

|Observes

|Sub 1..*

|Obs 1..1

Association Role

|SubjectState: |SubStateType 1..*

|Attach (|obsv:|Observer) 1..*

|Subject
Class Role 1..*

|ObserverState: |ObsStateType 1..1

|Update (|subj:|Subject) 1..1

1..*Class Role
|Observer

(a) A Conforming Class Diagram (b) Pattern Specification for
a Variant Observer Pattern

is_bound_to

UpdatePress (k:Kiln) UpdateTemp (k:Kiln)

Figure 3.11: A Partial SPS for a Variant of the Observer Pattern and a Conforming
Class Diagram

class diagrams in which Subject classes can have one or more structural features that

can be monitored and can be part of one or more associations connected to Observer

classes. The Observer pattern variant shown in Fig. 3.8 is a specialization of this less

restrictive pattern variant, that is, the set of class diagrams characterized by the SPS

in Fig. 3.8 is a proper subset of the set of class diagrams characterized by the SPS

shown in Fig. 3.11(b).

46

3.2.3 Establishing Full Conformance to an SPS

A class diagram fully conforms to an SPS, with respect to a binding of model elements

to roles, if (1) it structurally conforms to the SPS, and (2) the semantic properties

expressed by constraints in the class diagrams (e.g., operation specifications and class

invariants) conform to the constraint templates in the SPS. Establishing that the

semantic properties expressed in a class diagram conform to constraint templates in

an SPS involves (1) instantiating the constraint templates using the role bindings, and

(2) establishing that the constraints given in the class diagram refine the instantiations

of the constraint templates.

The result of instantiating a constraint template is an application-specific OCL

expression of the properties described by the constraint template. For example, in-

stantiating the property template given in Section 3.2.1.6 using the binding shown in

Fig. 3.10 results in the following constraint:

context Kiln inv:

obsTemp → forAll(currTemp = temp)

The identity function plays the role of Function in the property template. The class

diagram shown in Fig. 3.10 must have a constraint that implies the above instanti-

ation if it is to fully conform to the Observer SPS. In general, a class diagram that

fully conforms to an SPS containing property templates must have constraints that

imply instantiations of the property templates.

Instantiating the Attach operation template using the binding shown in Fig. 3.10

produces the following:

context Kiln::AttachTempObs(tobs: TempObs)

pre: self.TempObs → excludes(tobs)

post: self.TempObs = self.TempObs@pre → including(tobs)

47

Establishing that an operation specification conforms to an RBML operation tem-

plate involves proving that the operation specification refines the operation template

instantiation. Given an operation Op with pre- and postconditions

context Op(...): pre: preR; post: postR,

and an instantiated operation of an RBML operation template for a feature role ROp

context Op(...): pre: preM; post: postM,

Op is said to fully conform to ROp (with respect to the binding used to produce the

instantiation) if (1) preM ⇒ preR, and (2) (preM and postR) ⇒ postM .

These proof obligations must be discharged before one can assert that an operation

fully conforms to a BehavioralFeature role.

As an example, consider the following pre- and postcondition for the

AttachTempObs operation shown in Fig. 3.10:

context Kiln::AttachTempObs(tobs: TempObs)

pre: self.TempObs → excludes(tobs)

post: self.TempObs = self.TempObs@pre → including(tobs) and

ready = ready@pre + 1

The preconditions for AttachTempObs and the instantiation of the Attach constraint

template are equivalent so only the second operation proof obligation needs to be

discharged:

self.TempObs → excludes(tobs) and

self.TempObs = self.TempObs@pre → including(tobs) and

ready = ready@pre + 1 ⇒ self.TempObs = self.TempObs@pre → including(tobs)

Automated support for structural conformance checking is possible: mechanisms that

check conformance of UML models to the abstract syntax defined by the UML meta-

48

model can be extended to support well-formedness checks for patterns as defined by

SPSs. Tools that can mechanically discharge most proof obligations are not likely

to appear in the near future, but it is possible to build a tool that generates proof

obligations that can then be discharged by humans.

3.2.4 Interaction Pattern Specifications (IPSs)

An Interaction Pattern Specification (IPS) describes a pattern of interactions and

is defined in terms of roles defined in an SPS. The SPS roles are used to specify

participants in an interaction pattern. Formally, an IPS defines a part of the pattern

metamodel that specifies conforming interaction diagrams.

Fig. 3.12(a) shows an IPS that describes the pattern of interactions between a

subject and its observers initiated by the invocation of the subject’s Notify operation.

|state:|SubjStateType := |GetState()

|Update (|subj:|Subject)

|obsv[i]:|Observer

|subj:|Subject

(b) A Partial View of the Specialized UML Metamodel(a) Example of an IPS

Interaction Message

defines

1

1

1

subj
1

GetState

Update

state

|NotifyInteraction

1..*

1..*

1111

|Notify()

Lifeline

1

1..*
obsv

subj

ValueSpecification

i = 1..NumOfObservers

repeat

|NotifyInteraction 1..*

Figure 3.12: An IPS for the Observer Pattern and a Partial View of its Specialized
UML Metamodel

The expression |subj : |Subject indicates that the lifeline role subj is played by

an instance of a Subject class (i.e., a class that conforms to the Subject role defined

in the Observer SPS). The lifeline role obsv[i] is played by the ith observer in the set

49

of observers attached to the subject playing the subj role. The repeat fragment in

the IPS indicates that the enclosed interaction is repeated for each observer attached

to the subject playing the subj role. NumOfObservers is the number of observers

attached to the subject. The repeat fragment is used to concisely represent parts of

conforming interaction diagrams that have a common structure.

The IPS describes the following interaction pattern:

• Invocation of a subject’s Notify operation (i.e., an operation that conforms to

the Notify feature role) results in calls to the Update operation in each observer

linked to the subject.

• Each Update operation calls the GetState operation in the subject.

An IPS consists of an interaction role that defines a specialization of the UML

metamodel class Interaction. In the UML 2.0 an interaction is a structure of lifelines

and messages. Consequently, an interaction role is a structure of lifeline and message

roles. Each lifeline role is associated with a classifier role: a participant that plays a

lifeline role is an instance of a classifier that conforms to the classifier role.

In this research, the messages that represent operation calls are focused. A mes-

sage role is associated with a BehavioralFeature role: a conforming message specifies

a call to an operation that conforms to the BehavioralFeature role. For example, the

Update message role is associated with the feature role Update.

Part of the metamodel defined by the NotifyInteraction IPS is given in

Fig. 3.12(b). Lifeline roles define specializations of the Lifeline class and message

roles define specializations of Message.

3.2.5 Establishing Interaction Conformance to an IPS

Roles in an IPS refer to roles in an SPS. For example, a lifeline role and a message

role in an IPS refer to a classifier role and behavioral role in an SPS, respectively.

50

Therefore, before checking conformance of a sequence diagram to an IPS, there must

be a class diagram that conforms to an SPS whose roles are referred in the IPS. The

following checks are carried out when establishing that a sequence diagram conforms

to an IPS with respect to a binding:

• Lifeline conformance check:

– Check that for each object o bound to a lifeline role o:C, the object must

be an instance of the class bound to C.

– Check that for each object bound to a lifeline role, constraints associated

with the object must satisfy the constraint templates associated with the

role.

• Message conformance check:

– Check that for each message m bound to a message role M directed towards

a lifeline role o:C, the class bound to C must have the operation m.

– Check that for each message bound to a message role, the message satisfies

the metamodel-level constraints defined for the message role.

– Check that for each message bound to a message role, constraints asso-

ciated with the message must satisfy the constraint templates associated

with the message role.

– Check that the relative sequence of the bound messages in the sequence

diagram respect the order specified in the IPS.

In a conforming sequence diagram, additional application-specific participants and

messages may exist.

Fig. 3.13 shows an example of a conforming sequence diagram to the

NotifyInteraction IPS. The sequence diagram has the following binding: (s:Kiln 7→

51

s:Kiln

UpdateTemp (s:Kiln)

t2:TempObst1:TempObs

st:int := GetKilnTemp()

m:Monitor

st:int := GetKilnTemp()

UpdateTemp (s:Kiln)
LogUpdateRecd(s)

LogUpdateRecd(s)

NotifyObs()

KilnInteractionsd

Figure 3.13: A Sequence Diagram that conforms to the Observer IPS

subj:Subject), (t1:TempObs 7→ obsv[1]:Observer), (t2:TempObs 7→ obsv[2]:Observer),

(NotifyObs 7→ Notify), (UpdateTemp 7→ Update), (GetKilnTemp 7→ GetState).

The m:Monitor and LogUpdateRecd are application-specific elements. Given the bind-

ing, the sequence diagram satisfies the conformance rules as follows:

• The s, t1, and t2 are instances of Kiln and TempObs in the class diagram in

Fig. 3.10 (a) that is a base class diagram of the sequence diagram.

• The operations NotifyObs and GetKilnTemp are defined in the Kiln class and

the UpdateTemp is defined in the TempObs Fig. 3.10 (a) (NotifyObs and GetKil-

nTemp are not shown).

• The message NotifyObs, UpdateTemp, and GetKilnTemp are synchronous, which

satisfies the “synchronous” metamodel-level constraints (denoted by filled arrow

head) for the messages roles in Fig. 3.12. The repeated message groups of

UdpateTemp and GetKilnTemp satisfy the repeat metamodel-level constraint

with the variable NumOfObservers set 2.

• The relative order of the conforming messages, NotifyObs, UpdateTemp, and

52

GetKilnTemp is the same as the relative order specified in the IPS.

3.2.6 Statemachine Pattern Specifications (SMPSs)

SMPSs specify a UML statemchart diagram view of pattern solutions describing local

behavior of participants. An SMPS consists of state, transition, and trigger roles

whose bases are State, Transition, and Trigger metaclasses, respectively. The work

on SMPSs is immature. In this section, only initial work is presented.

|InitState 1..1

|Closed

CallTrigger Role |Pass 1..*

CallTrigger Role |Pay 1..*

|T2 1..*

|T3 1..*

|T1 1..1

|Turnstyle

11

(b) The Specialized UML Metamodel

defines

(a) Example of an SMPS

PayToll
State Pseudostate Transition

Turnstyle

T3Close

T2PayTollInitStateOpen

|Open

Trigger

StateMachine

PassPay

Region

Figure 3.14: An SMPS and a Partial View of its Specialized UML Metamodel

Fig. 3.14(a) shows an SMPS for turnstyle systems, for example subway or library

turnstyles. The SMPS in Fig. 3.14(a) describes the following:

• When an object of a conforming classifier of Turnstyle role is created the state

of the object moves from an initial state to a state of Closed.

• When the object in a state of Closed receives a call trigger of Pay, the state of

the object changes to a state of Open.

• The object in Open state moves back to a Closed state when a Pass event is

triggered.

53

• The multiplicities on Pay and Pass trigger roles and T2 and T3 transition roles

constrain that there should be at least one or more model elements that play

the roles.

The multiplicities specify the number of model elements that can play the roles.

For example, the multiplicy “1” on Closed constraints that a conforming statechart

must have exactly one state that plays the role. The metamodel-level constraints for

the turnstyle SMPS are defined as follows:

• Conforming state machines of Turnstyle role may be extended:

context |Turnstyle inv:

self.isFinal = false

• Conforming trantisions of T1 role may be extended:

context |T1 inv:

self.isFinal = false

Similar constraints are defined for T2 and T3 roles.

• States playing Closed and Open must be simple states and may be extended:

context |Closed inv:

isSimple = true and self.isFinal = false

Similar constraints are defined for Open role.

• States playing InitState must be initial states:

context |Inistate inv:

self.kind = #initial

Part of the metamodel defined by the Turnstyle SMPS is given in Fig. 3.14(b). In

the diagram, state roles define specializations of the State class and transition roles

define specializations of Transition.

54

Trigger roles in an SMPS refer to operations roles in an SPS. In Fig. 3.14 (a), trig-

gers that play Pay role must be call triggers activated by a MakePayment operation

call. This is specified in the following constraint template:

context |Pay inv:

self.operation.oclIsKindOf(|MakePayment)

A similar constraint template is defined for Pass role.

3.2.7 Establishing Statechart Conformance to an SMPS

Like IPSs, SMPSs refer to SPS roles, for example, a trigger role in an SMPS refer to a

behavioral feature role in the classifier role in an SPS for which the SMPS is defined.

Therefore, before checking conformance of a statechart diagram to an SMPS, there

must be a class diagram that conforms to the SPS whose roles are referred in the

SMPS. The following checks are carried out to establish conformance of a statechart

diagram to an SMPS with respect to a given binding:

• Realization multiplicity check: Check that model elements bound to roles (state,

trigger, transition roles) satisfy the realization multiplicities defined in the roles.

• State conformance check: For each state bound to a state role, check that the

state satisfies the metamodel-level constraints associated with the state role.

• Transition conformance check: For each transition bound to a transition role,

– Check that the transition satisfies the metamodel-level constraints defined

for the transition role, and

– Check that the transition has source and target states that are bound to

the source and target state roles of the transition role.

• Trigger conformance check: For each trigger bound to a trigger role,

55

– Check that the trigger satisfies the metamodel-level constraints defined for

the trigger role, and

– Check that the trigger constraints for the trigger role imply the constraint

instantiated from the trigger constraint template associated with the trig-

ger role.

In a conforming statechart, application-specific elements may exist as long as the

conformance rules are satisfied.

|Turnstyle

|InitState 1..1

|T1 1..1

|T2 1..*

|T3 1..*

(b) A Conforming Statechart Diagram

Alarm

Reset

PassBar

SubwayTurnstyle

Locked
<<Closed>>

<<Open>>
Unlocked

<<Pay>> <<Pay>>

Coin Card
<<Pass>>

PushBar

1
|Closed

PayToll

1

(a) An SMPS

 |Pass 1..*CallTrigger Role

 |Pay 1..*CallTrigger Role

|Open

Figure 3.15: An SMPS and a Conforming Statechart Diagram

Fig. 3.15(b) shows a conforming statechart of the turnstyle SMPS. The statechart

describes a turnstyle that takes coins and cards for payment and triggers an alarm for

illegal passing. The following constraints are defined for the Coin, Card, and PassBar

triggers:

• The Coin trigger is activated by a MakePaymentByCoin operation call:

context Coin inv:

self.operation.oclIsKindOf(MakePaymentByCoin)

• The Card trigger is activated by a MakePaymentByCard operation call:

56

context Card inv:

self.operation.oclIsKindOf(MakePaymentByCard)

• The PassBar trigger is activated by a PassBar operation call:

context PassBar inv:

self.operation.oclIsKindOf(PassBar)

The statechart has the following binding: (Locked 7→ Closed), (Unlocked 7→

Open), (Coin 7→ Pay), (Card 7→ Pay), (PassBar 7→ Pass). The Alarm, Pass-

Bar, and Reset are application-specific elements. Given the binding, the statechart

conforms to the turnstyle SMPS as follows:

• The given binding satisfies the realization multiplicities in the SMPS.

• The states Locked and Unlocked are simple states and can be extended, which

satisfy the metamodel-level constraints isSimple = true and isFinal = false 2.

• The transitions from the Locked to Unlocked satisfy the metamodel-level con-

straint isFinal = false defined for T2. Similar interpretations are made for the

transition from the Unlocked to Locked and the transition from the initial state

to Lockeded.

• The transitions bound to the T2 role have the source state Locked and target

state Unlocked that are bound to the source state role Closed and target state

role Open of the T2 role. Similar interpretations are made for the transitions

bound to the T1 and T3.

2The version of the UML 2.0 used in this work does not have notations for states and transitions

whether isFinal is true or false, and the default is not mentioned. In this work, the default of isFinal

is assumed to be false unless noted.

57

• An instantiation of the constraint template associated with the Pay role is given

below:

context Coin inv:

self.operation.oclIsKindOf(MakePaymentByCoin)

The instantiation is identical to the constraint associated with the Coin trigger

(i.e., the constraint satisfies the constraint template). Similar interpretations

are made for the Card and PassBar triggers.

An SMPS can be viewed as determining a constrained form of the UML meta-

model. Fig. 3.16 describes the relationship between an SMPS and the UML meta-

model. In the figure, an SMPS MySMPS to which a state machine MyGeneral-

StateMachine conforms, defines a subset of instances of UML StateMachine meta-

model class whose instances are GeneralStateMachine, MyGeneralStateMachine, and

MySpecialStateMachine.

M1

instance of
GeneralStateMachine

MyGeneralStateMachine

MySpecialStateMachine

StateMachine
StateMachine Role

a subset of
defines

instance of

conforms toinstance of

MyStateMachine

conform
may or may not

|MySMPS

M2

Figure 3.16: An SMPS Role and the UML metamodel

MySpecialStateMachine is a specialization of MyGeneralStateMachine. A state

machine can be specialized by 1) adding regions, states, and transitions, 2) extending

58

regions and states, or 3) redefining (replacing) transitions [100]. An extension of

a region and a state occurs when new states and/or transitions are added (e.g., a

simple state becomes a composite state). A redefinition of a transition occurs when

the target state of the transition is changed.

Note that in Fig. 3.16, the MySpecialStateMachine may or may not conform to

MySMPS role. If MySpecialStateMachine has a transition that is redefined to have a

different target than in MyGeneralStateMachine, then MySpecialStateMachine does

not conform to MySMPS. Therefore, given a statemachine that conforms to an SMPS,

it is possible to have non-conforming specializations of the state machine to the SMPS.

In order for MySpecialStateMachine to be a conforming state machine of MySMPS,

the isFinal meta attribute in UML meta classes must be set to true for all roles in

MySMPS whose conforming model elements are generalizable (e.g., states, transitions,

events). This constraint disallows the cases of specialization described above. In spite

of this restriction, state machines can still be extended in a limited, but conforming

way (e.g., by adding new transitions) if isFinal is set to false for MySMPS itself.

3.3 Summary

We have developed the RBML, a pattern specification language, that specifies pat-

terns as specializations of the UML metamodel to support the use of patterns in UML

system modeling. The RBML uses the UML as the syntactic base for the pattern

specification language to make it easier for UML modelers to create, understand,

and evolve pattern specifications, and to enable the use of UML modeling tools for

creating and evolving pattern specifications.

An RBML pattern specification comprises abstract syntax, metamodel-level con-

straints, and constraint templates. Abstract syntax defines the structure of pattern

solutions using the notion of roles. A role whose its base is a UML metaclass defines

a subclass of the base metaclass by defining additional constraints to the metaclass

59

called metamodel-level constraints expressed in the OCL. Constraint templates ex-

pressed in parameterized OCL define semantics of pattern solutions and can be used

to generate model constraints for conforming models. Three types of pattern specifi-

cation are developed:

• Static Pattern Specifications (SPSs): An SPS is a class diagram view of pattern

solution. An SPS consists of classifier roles and relationship roles. A classifier

role defines structural and behavioral properties of pattern participants and a

relationship role defines a relationship between these participants. If an instance

of the metaclass on which a role is based has properties as defined in the role,

then the instance is said to conform to the role.

• Interaction Pattern Specifications (IPSs): An IPS is an interaction diagram view

of pattern solution. An IPS comprises lifeline roles and message roles describing

the sequence of interactions between pattern participants. A sequence diagram

is said to conform to an IPS if the sequence diagram preserves the relative order

of the message sequence as defined in the IPS.

• Statemachine Pattern Specifications (SMPSs): An SMPS is a statemachine di-

agram view of pattern solutions. An SMPS consists of state roles and transition

roles describing the sequence of transitions between states.

3.4 Discussion

The pattern specification technique described in this chapter can be used as a base

for the development of tools that support creation and evolution of patterns, and

rigorous application of design patterns to UML models. The tool-independent UML-

based notation makes it easier to share design patterns across UML modeling tools.

The work presented in this chapter has been published [32, 33, 59, 60]. SPSs, IPSs,

60

and their conformance rules are described [32, 33], SMPSs are described [59], and the

notion of pattern role is described [60].

SMPSs need to be further developed to expand their applicability. The work

presented in this chapter only considers state, trigger, and transition roles. The notion

of activity roles needs to be defined to support specifying actions, for example states

with actions or triggers with actions. Notation and conformance rules for composite

state roles need to be developed. For example, composite state roles can be used for

patterns in the domain of component-based systems to capture state hierarchies [46].

Checking consistency between SMPSs and IPSs also needs to be investigated. For

example, composite state roles can be used for patterns in the domain of component-

based systems to capture state hierarchies [46]. Checking consistency between SMPSs

and IPSs also needs to be investigated. For example, a trigger role and an activity

role in an SMPS can respectively refer to an incoming message role on a lifeline role

and an outgoing message role in an IPS. Consistency checking involves ensuring that

the referred roles exist in an IPS. So far we have used SMPSs to specify the Iterator

pattern only, and more study is needed to improve applicability of SMPSs.

Given an RBML pattern specification, one can loosen the constraints to include

more models as conforming models (generalization of an RBML specification) or

tighten the constraints to exclude some models as conforming models (specialization

of an RBML specification). An RBML specification is a specialization (child) of

another (parent) RBML specification if it further restricts the properties specified in

the parent specification. A specialization of an RBML specification characterizes a

subset of conforming models of its parent. An SPS can be specialized by:

• specializing SPS roles,

• further restricting the multiplicities on role associations,

• reducing the number of alternatives by removing alternative structures and

61

tightening the constraints (e.g., association and realization multiplicities) to

allow only the remaining alternatives (e.g., a SPS that has generalization and

≪ realize ≫ relationship roles as alternative relationships can be specialized

by removing the alternative generalization relationship role and allowing only

≪ realize ≫ relationships), and

• by adding new roles and associations to the SPS that must be realized (i.e.,

requiring additional structure in realizations).

Examples of specializations of an Abstract Factory SPS are shown in Section

4.2. IPS and SMPSs depend on an SPS. Thus, specializing an SPS would result

in specializing associated IPSs and SMPSs. For example, specializing all classifier

roles to interface roles in an SPS results in interacting participants in associated

IPSs to be interfaces. This can be useful in Cheesman and Daniels approach [19]

for component-based software development (CBSD) where interactions between com-

ponents are specified using their interfaces. Specializing a classifier role in terms of

behavioral feature roles would result in specializing associated SMPSs in terms of

trigger roles activated by the behavioral roles. Specializing IPSs and SMPSs needs

further investiation.

It is possible in some cases to specialize a pattern specification to the point that

variations in the designs can be expressed as parameters. Then the pattern speci-

fication becomes a template. The resulting templates pave the way for automated

generation of initial designs from patterns. In this research RBML templates are used

to specify access control aspects in Chapter 6.

Specifying pattern solutions at the UML metamodel level allows tool developers

to build support for creating patterns and for checking conformance to pattern spec-

ifications. Pattern solutions can be specified at the UML metamodel level through

interfaces that allow developers to access and specialize a tool’s internal representation

of the UML metamodel. Using interfaces does not have to require direct modification

62

of the internal metamodel: the specializations can be created and managed by a layer

that sits on top of the UML metamodel layer in the tool. A new generation of UML

tools that allow software developers to specialize the UML metamodel in limited ways

are emerging (e.g., IBM Rational XDE). These tools are expected to mature to the

point where users can define pattern by specializing the metamodel as described in

this chapter.

We have developed a prototype tool, RBML Pattern Instantiator (RBML-PI),

that generates conforming class diagrams and sequence diagrams from SPSs and

IPSs. RBML-PI generates various structures of conforming class diagrams and se-

quence diagrams based on the input (e.g., association multiplicities) from developer,

A demonstration of the tool is presented in Chapter 7.1.

The popularity of the UML and the heightened interest in model-driven ap-

proaches to software development has raised interest of researchers in model trans-

formations. Techniques and tools that support systematic and rigorous application

of design patterns through model transformations can ease access to and reuse of

design experience during software development. The Software Engineering group at

Colorado State University uses the RBML to support pattern-based model transfor-

mation techniques [31, 52, 96].

63

Chapter 4

Using the RBML to Specifying
Design Patterns

This chapter describes specifications of design patterns in Gamma et al. [35] using the

RBML. The specifications presented in this chapter are based on our interpretation of

the descriptions given in the GoF patterns. The patterns specified in this chapter are

Visitor, Abstract Factory, and Iterator patterns. These patterns are chosen because

the Visitor pattern has significant interaction behavior, the Abstract Factory pattern

possesses significant structural properties, and the Iterator pattern has localized be-

havior to specify. Specifications for other patterns - Observer, Composite, Bridge,

Decorator, State, and Adapter patterns - are presented in Appendix A. The work

presented in this chapter has been published [31, 32, 59].

This chapter is organized as follows. Section 4.1 shows specifications for the

Visitor pattern solutions. Section 4.2 shows specifications for the Abstract Factory

pattern solutions. Section 4.3 shows specifications for the Iterator pattern solutions.

Section 4.4 describes a validation of the RBML based on the feedback from the

experience of the RBML in a software engineering course.

64

4.1 Specifying the Visitor Pattern

The Visitor design pattern improves understandability and maintainability of a sys-

tem where operations are distributed over the structure of classes (elements) in the

system by separating related operations from the elements and packaging them into

an object called visitor. When an element wants to perform the operation defined

in a visitor, the element sends a request to the visitor, and then the visitor sends a

request back to the element for acceptance of the visitor to perform the requested op-

eration on the element. Such a separation facilitates defining new operations over the

structure when the classes defining the structure rarely change. The Visitor pattern

enables a separation of abstraction from implementation for visitors and elements to

make it easy to change them without changing clients.

4.1.1 Pattern Description by Gamma et al.

A class diagram and a sequence diagram describing a typical Visitor pattern solution

are respectively shown in Fig. 4.1 and Fig. 4.2. This solution is used by Gamma

et al. [35] to describe the structure and behavior of Visitor pattern solutions. The

model describes a solution consisting of two types of visitors, ConcreteV isitor1 and

ConcreteV isitor2, whose instances visit elements in an element collection (instances

of ObjectStructure) consisting of two types of elements, ConcreteElementA and

ConcreteElementB.

The sequence diagram shown in Fig. 4.2 describes a typical interaction in which

the anObjectStructure object (an instance of ObjectStructure) calls the Accept op-

eration for each of its elements. The element collection consists of two elements -

aConcreteElementA is an instance of ConcreteElementA and aConcreteElementB

is an instance of ConcreteElementB. Execution of the Accept operation in an ele-

ment results in an operation call to the visitor passed in as an argument of the Accept

operation. The visitor then performs an operation on the element.

65

VisitConcreteElementA(ConcreteElementA)
VisitConcreteElementB(ConcreteElementB)

VisitConcreteElementA(ConcreteElementA)
VisitConcreteElementB(ConcreteElementB)

Visitor

ObjectStructure

Client

ConcreteVisitor1

VisitConcreteElementA(ConcreteElementA)
VisitConcreteElementB(ConcreteElementB)

ConcreteVisitor2

Element

Accept(Visitor)

ConcreteElementA ConcreteElementB

Accept(Visitor v)
OperationA() OperationB()

Accept(Visitor v)

v−>VisitConcreteElementB(this)v−>VisitConcreteElementA(this)

Figure 4.1: A Visitor Pattern Solution: Class Diagram

Accept(aConcreteVisitor)

Accept(aConcreteVisitor)

VisitConcreteElementA(aConcreteElementA)

VisitConcreteElementB(aConcreteElementB)

anObjectStructure aConcreteElementA aConcreteElementB

OperationA()

OperationB()

aConcreteVisitor

Figure 4.2: A Visitor Pattern Solution: A Sequence Diagram

A pattern specification for a variant of the Visitor pattern described by Gamma et

al. [35] is presented in this subsection. It characterizes solution models including those

involving flat sets of elements such as the one described above, and more complex

solutions that involve composite element structures.

66

4.1.2 The Visitor SPS

The class diagrams characterized by a Visitor SPS possess visitor and element clas-

sifiers that are abstract or concrete, and an object structure class associated with

Element classifiers. Among the classifiers, there are at least one concrete visitor

class, at least one concrete element class, and at least one object structure class.

|ObjStructElem
Association Role

Classifier Role
|Element

|AbstractVistor
Class Role

|ConcreteElement

Classifier Role

Classifier Role
|ConcreteVistor

|ObjectStructure

Class Role

Class Role

|Visitor

Classifier Role
|AbstractElement

1..*

|Elem 1..1

Generalization RoleRealization Role

b1 |Accept(|vis:|ConcreteVisitor) 1..1
b2 |Operation() 1..*

|ElementRealization |ElementGeneralization
{at least 1}

Generalization Role
|VisitorRealization
Realization Role

{at least 1}

b1 |VisitElem(|elem:|ConcreteElement) 1..*

|VisitorGeneralization

1..* |Obj 1..*

1..*

Figure 4.3: A Visitor SPS

Fig. 4.3 shows an SPS for the Visitor pattern. The SPS consists of V isitor and

Element role hierarchies and ObjectStructure class role. The V isitor hierarchy spec-

ifies that there must be one or more concrete classes (specified by the multiplicity

1..*) that play ConcreteV isitor role and may be abstract visitor classifiers (specified

by the default multiplicity 0..* which is not shown). Similarly, the Element hierarchy

specifies that there must one or more concrete classes that play ConcreteElement

role and may be abstract concrete elements. ObjectStructure role specifies that there

must be one ore more classes that play ObjectStructure role.

67

4.1.2.1 Well-formedness Rules

The following are some of the metamodel-level constraints for the Visitor SPS:

• A classifier that conforms to AbstractV isitor must be an interface or an abstract

class:

context |AbstractVisitor inv:

self.oclIsTypeOf(Interface) or

(self.oclIsTypeOf(Class) and self.isAbstract = true)

A similar constraint is defined for AbstractElement.

• A classifier that conforms to ConcreteV isitor must be a concrete class:

context |ConcreteVisitor inv: self.isAbstract = false

A similar constraint is defined for ConcreteElement.

• A relationship that conforms to VisitorRealization must have an interface or a

type at its supplier end and a concrete class at its client end:

context |VisitorRealization inv:

(self.supplier.oclIsTypeOf(Interface) or

(self.supplier.oclIsTypeOf(Class) and self.supplier.isAbstract = true) and

self.client.oclIsTypeOf(Class)

A similar constraint is defined for ElementRealization.

• A relationship that conforms to VisitorGeneralization must have its parent and

child to be the same type:

context |VisitorGeneralization inv:

self.parent.evaluationType() = self.child.evaluationType()

A similar constraint is defined for ElementGeneralization.

68

• An association-end that conforms to Obj must have a multiplicity of 0..1:

context |Obj inv: self.lowerBound() = 0 and self.upperBound() = 1

• An association-end that conforms to Elem must have a multiplicity of 1..*:

context |Elem inv: self.lowerBound() = 1 and self.upperBound() = *

Metamodel-level constraints for the hierarchies in the other pattern specifications

described in this dissertation can be defined similarly as in the Visitor pattern speci-

fication.

4.1.2.2 Constraint Templates

Constraint templates for the VisitElem and Accept behavioral feature roles are given

below:

• An Accept operation invokes a VisitElem operation call:

context |Element:: |Accept (|vis:|ConcreteVisitor)

pre : true

post: let elemMessage: OclMessage =

|ConcreteVisitor^^|VisitElem(|elem:ConcreteElement) → notEmpty()

• A VisitElem operation invokes an Operation operation call:

context |Visitor:: |VisitElem(|elem : |ConcreteElement)

pre : true

post: let visitorMessage: OclMessage =

|ConcreteElement^^|Operation() → notEmpty()

There are no pre- and post-conditions defined for the Operation role, which means

any operation can play the role.

69

4.1.2.3 Folded Form of SPS

A role hierarchy may be folded for a high level view of abstraction (see Section 3.2.1.4).

A folded form of the SPS in Fig. 4.3 is shown in Fig. 4.4.

|ObjStructElem
Association Role |Element

|ObjectStructure
Class Role

Class Role
|Visitor

Classifier Role
|Elem 1..1|Obj 1..* HierarchyHierarchy

1..*

Figure 4.4: A Folded Form of the Visitor SPS

4.1.3 Example of a Conforming Class Diagram

The class diagram shown in Fig. 4.1 structurally conforms to the Visitor SPS with

respect to the bindings shown in Fig. 4.5. A more complex class diagram that con-

forms to the Visitor SPS is shown in Fig. 4.6. This diagram includes an element class

structure that describes composite elements.

An instance of CompositeEquipment is a composite element structure that can

also be an element in a larger element structure (i.e., it can be visited by an instance

of the visitor class PricingVisitor). The CompositeEquipment thus plays two roles:

Element and ObjectStructure.

The semantic properties expressed in the visitor pattern concern the interactions

that take place in the context of the V isitElem, Accept and Operation behaviors.

These properties are described by the pattern’s IPS (see Section 4.1.5).

4.1.4 Example of a Non-conforming Class Diagram

Fig. 4.7 shows a class diagram that does not conform to the Visitor SPS for the follow-

ing violations. First, PricingVisitor class playing ConcreteVisitor role does not have

a generalization or realization required by the Visitor SPS. The Visitor SPS requires

70

Classifier Role
|AbstractElement |ConcreteElement

Class Role

|Visitor
Classifier Role

Class Role

Association Role
|ObjStructElem

|ObjectStructure

|AbstractVistor
Classifier Role

|ConcreteVistor
Class Role

Class Role
|Element

{at least 1}

b1 |VisitElem(|elem:|ConcreteElement) 1..*

|VisitorRealization
Realization Role

is bound to

is bound to

{at least 1}

b2 |Operation() 1..*
b1 |Accept(|vis:|ConcreteVisitor) 1..1

|Elem 1..1

|ElementRealization
Realization Role

1..*

ConcreteElementA

OperationA()

Element

Accept(Visitor)

ObjectStructure

ConcreteElementB

OperationB()

|VisitorGeneralization
Generalization Role

|Obj 1..*

1..*

Generalization Role
|ElementGeneralization

1..*

ConcreteVisitor2ConcreteVisitor1

Visitor

VisitConcreteElementB(ConcreteElementB)
VisitConcreteElementA(ConcreteElementA)

Figure 4.5: A Structurally Conforming Visitor Class Diagram

a conforming class model to have at least one generalization or realization for visitor

classes. Second, there are no operations that play Operation role in elements classes.

The Visitor SPS specifies that all classes that play elements must have operations

playing Accept and Operation roles. Third, the multiplicities at the ends of composed-

of association does not satisfy the constraints specified on Obj and Elem roles. The

constraints specify that an association end playing Obj must have a multiplicity of

0..1 and an association end playing Elem must have a multiplicity of 1..*.

71

FloppyDisk

...

...

Card

...

...

<<b2>> NetPrice():Currency
<<b1>> Accept()<<b1>> VisitFloppyDisk()

EquipmentVisitor

...
<<b1>> VisitBus()
<<b1>> VisitChassis()
<<b1>> VisitCompEquip()
<<b1>> VisitCard()
<<b1>> VisitFloppyDisk()

PricingVisitor

Total:Currency

...
<<b1>> VisitBus()
<<b1>> VisitChassis()
<<b1>> VisitCompEquip()

<<b1>> Accept()

<<ConcreteElement>>

<<ObjectStructure>>

CompositeEquipment
<<ConcreteElement>>

<<ConcreteElement>>

<<ConcreteElement>><<ConcreteElement>>

<<AbstractElement>>

<<ConcreteVisitor>>

<<AbstractVisitor>>

<<ObjStructElem>>

...
<<b2>> NetPrice():Currency
<<b1>> Accept()
RemoveEquip()
AddEquip()

<<b2>> NetPrice():Currency
<<b1>> Accept()

<<b1>> Accept()
<<b2>> NetPrice():Currency

<<b1>> Accept()
<<b2>> NetPrice():Currency<<b2>> NetPrice():Currency

<<b1>> VisitCard()

Total:Currency

<<ObjectStructure>>

Bus

...
...

...

Equipment

Chassis
...

...

...

0..1

name:String
1..*

composed−of

Figure 4.6: A More Complex Conforming Visitor Class Diagram

4.1.5 The Iterator IPS

Fig. 4.8 shows an IPS named CompositeInteraction that describes the interactions

that take place when accessing a composite element structure with a visitor.

An instance of an ObjectStructure class plays the role obj. The ith element of

the object structure plays the role elem[i]. The interaction structure enclosed in the

repeat fragment is repeated for each element in the object structure that plays the

role obj. NumOfElements is the number or elements associated with the object

structure.

An Accept message is sent to each element, elem[i], in the object structure.

If the element, elem[i], is a composite element then the interaction structure de-

fined in CompositeInteraction is recursively applied with elem[i] becoming the

72

CompositeEquipment

0..*
name:String

<<AbstractElement>>
Equipment

<<ObjStructElem>>

<<b1>> Accept()

...

0..*

RemoveEquip()
<<b1>> Accept()

...

AddEquip()

composed−of

<<ObjectStructure>>

<<b1>> Accept()

...
Card

<<ConcreteElement>>

<<b1>> Accept()

...
FloppyDisk

<<ConcreteElement>>
Bus

<<ConcreteElement>>

<<b1>> Accept()

...

<<ConcreteElement>>

<<ConcreteElement>>

<<ObjectStructure>>

Chassis

PricingVisitor
<<ConcreteVisitor>>

<<b1>> VisitBus()
<<b1>> VisitChassis()
<<b1>> VisitCompEquip()
<<b1>> VisitCard()
<<b1>> VisitFloppyDisk()

Total:Currency

Figure 4.7: A Non-conforming Visitor Class Diagram

|Accept(|vis:|ConcreteVisitor)

|Accept(|vis:|ConcreteVisitor)

|Operation()

|VisitElem(|elem[j]:|ConcreteElement)

|vis:|ConcreteVisitor

|elem[i]:|ConcreteElement

|obj:|ObjectStructure

|CompositeInteraction 1..*

[IsChildComposite]

i = 1..NumOfElements
repeat

[Else]

|obj = |elem[i]
|CompositeInteraction

alt

Figure 4.8: A Visitor IPS

73

ObjectStructure participant (i.e., |obj = |elem[i]). If the element is not a com-

posite element (i.e., it is a primitive element) then the element calls the V isitElem

operation in the visitor. This results in the visitor invoking an operation on the ele-

ment. The choice between interaction structures for primitive and composite elements

is represented by the fragment labeled alt. This fragment is divided into two regions

describing alternative interaction structures. A guard condition determines the region

of an alt fragment that is selected in a particular situation. The guard condition for

the top region is [IsChildComposite] which is true if the element is composite (i.e.,

the element is an object structure) and false otherwise. The bottom region of the alt

fragment has a guard [Else] which is true when IsChildComposite is false, and false

otherwise.

The simple interaction diagram shown in Fig. 4.2 conforms to the Visitor IPS:

• The anObjectStructure lifeline conforms to the lifeline role obj,

• Lifelines for aConcreteElementA and aConcreteElementB conform to the

elem[i] lifeline role.

• The aConcreteV isitor lifeline conforms to the lifeline role vis.

• The relative order of interactions conforms to the order specified in the IPS.

The calls to the Accept operations and the ensuing interactions are described

by interaction structures obtained by applying the Else part of the alt fragment

twice.

An example of a composite element structure described by the class diagram given

in Fig. 4.6 is shown in Fig. 4.9. The composite element EquipStructure consists of

three elements: a primitive element F loppyDisk1, a primitive element Bus2, and a

composite element Chassis1. The composite element Chassis1 consists of a primitive

element Bus1 and a composite element Chassis2. Fig. 4.10 shows a Visitor sequence

diagram that is based on the composite structure shown in Fig. 4.9.

74

FloppyDisk2:FloppyDisk

Bus2:BusChassis1:ChassisFloppyDisk1:FloppyDisk

Card1:Card

Bus1:Bus Chassis2:Chassis

EquipStructure:CompositeEquipment

Figure 4.9: A Composite Part Structure

4.1.6 Example of a Conforming Sequence Diagram

The interaction sequence involving F loppyDisk1 and the sequence involving Bus2

have the structure specified by the Else part of the alt fragment. The interaction se-

quences involving Chassis1 has the structure specified by the IsChildComposite

region of the alt fragment. Establishing this involves recursively applying the

CompositeInteraction structure: Chassis1 becomes the ObjectStructure lifeline,

Card1 becomes the primitive element involved in the interactions described by the

Else region, and Chassis2 becomes the composite element involved in the interac-

tions described by the IsChildComposite region.

The two examples of conforming sequence diagrams given in this section demon-

strate the wide range of interaction structures characterized by the concisely stated

Visitor IPS.

4.1.7 Example of a Non-conforming Sequence Diagram

Fig. 4.11 shows a sequence diagram that does not conform to the Visitor IPS for the

following violations. First, the sequence diagram does not include elements of Flop-

75

VisitFloppyDisk(FloppyDisk1)

:Client EquipStructure:CompositeStructure FloppyDisk1: FloppyDisk

Accept(PricingVisitor)

Accept(PricingVisitor)
Accept(PricingVisitor)

NetPrice()

NetPrice()

NetPrice()

NetPrice()

NetPrice()

VisitBus(Bus2)

VisitBus(Bus1)

VisitCard(Card1)

Accept(PricingVisitor)

Accept(PricingVisitor)

Bus1:Bus

Accept(PricingVisitor)

Card1:Card

:PricingVisitor

VisitFloppyDisk(FloppyDisk2)
Accept(PricingVisitor)

Bus2:Bus

FloppyDisk2:FloppyDiskChassis1:Chassis Chassis2:Chassis

EquipmentVisitsd

GetTotal()

CalcPrice(PriceVisitor)

Figure 4.10: A Conforming Visitor Sequence Diagram

pyDisk2:FloppyDisk and Card1:Card, which violates the recursion specified in the

upper compartment of alt operator in the Visitor IPS. Second, the sequence of Net-

Price and VisitFloppyDisk messages between Bus1:Bus and Pricing:Visitor violates

the sequence specified in the lower compartment of alt operator.

76

Accept(PricingVisitor)

Accept(PricingVisitor)

FloppyDisk1: FloppyDiskEquipStructure:CompositeStructure:Client

VisitFloppyDisk(FloppyDisk1)

:PricingVisitor

NetPrice()

NetPrice()

Accept(PricingVisitor)
VisitChassis(Chassis2)

Bus1:Bus

VisitBus(Bus1)

NetPrice()

Accept(PricingVisitor)

Accept(PricingVisitor)

NetPrice()

VisitFloppyDisk(Bus2)

Bus2:Bus

Chassis1:Chassis Chassis2:Chassis

GetTotal()

CalcPrice(PriceVisitor)

sd EquipmentVisit

Figure 4.11: A Non-conforming Visitor Sequence Diagram

4.2 Specifying the Abstract Factory Pattern

The Abstract Factory pattern provides a way to create families of related objects

called products without specifying their concrete classes through objects called facto-

ries. The pattern enables a separation of abstraction from implementation for prod-

ucts and factories to make it easy to change them without changing clients. Only the

abstraction is revealed to clients so that clients do not need to concern how concrete

products are created.

77

4.2.1 The Abstract Factory SPS

The class diagrams characterized by an Abstract Factory SPS have factory and prod-

uct classifiers which are abstract or concrete and a client class associated with an

abstract factory and abstract product. The abstract factory contains creation op-

erations. The client calls the operations to create products and concrete factories

perform the actual creation.

|ConcreteProduct

Generalization RoleRealization Role

|Product

|ConcreteFactory|AbstractFactory

|Client

|AbstractProduct

|FactoryRealization
Realization Role

|Factory

|FactoryGeneralization
Generalization Role

b1 |CreateProduct():|Product 1..*

|ClientProduct

Usage Role

|ProductRealization

1..*Class Role

|ClientProductDep

1..*Classifier Role Classifier Role

|Prod 1

Association Role

{at least 1}

Classifier Role

{at least 1}

|Fact 1

Association Role

{at least 1}

|ClientFactory

Usage Role
|ClientFactoryDep

|ProductGeneralization

Classifier Role

{at least 1}

1..*Class Role1..*|ConcreteDep
Usage Role

1Class Role
|Clnt 1..*|Cln 1..*

1..*

Figure 4.12: An Abstract Factory SPS

An SPS for the Abstract Factory pattern is shown in Fig. 4.12. The Factory role

hierarchy comprises of an abstract role Factory which is not realizable, and its special-

izations of AbstractFactory and ConcreteFactory. A conforming factory structure

must have at least one abstract classifier that plays AbstractFactory role, at least one

concrete class that plays ConcreteFactory role, and one relationship that plays either

FactoryGeneralization or FactoryRealization between AbstractFactory classifiers and

ConcreteFactory classes. The Product role hierarchy is interpreted similarly except

that AbstractProduct is optional.

The multiplicity on the Client role restricts that a conforming model must have

exactly one conforming class of Client. The pre-defined constraint {at least1} shown

78

between the ClientFactory and ClientFactoryDep roles constraints that there must

be at least one relationship playing one of the roles between Factory classifiers and the

Client class. Similarly, the Client class is connected to one or more Product classifiers

via association or usage dependency.

4.2.1.1 Well-formedness Rules

The metamodel-level constraints defined on the Abstract Factory SPS are as follows:

• A classifier that conforms to AbstractFactory must be an interface or an ab-

stract class:

context |AbstractFactory inv:

self.oclIsTypeOf(Interface) or

(self.oclIsTypeOf(Class) and self.isAbstract = true)

A similar constraint is defined for AbstractProduct.

• A classifier that conforms to ConcreteFactory must be a concrete class:

context |ConcreteFactory inv: self.isAbstract = false

A similar constraint is defined for ConcreteProduct.

• A relationship that conforms to FactoryRealization must have an interface or a

type at its supplier end and a concrete class at its client end:

context |FactoryRealization inv:

(self.supplier.oclIsTypeOf(Interface) or

(self.supplier.oclIsTypeOf(Class) and self.supplier.isAbstract = true) and

self.client.oclIsTypeOf(Class)

A similar constraint is defined for ProductRealization.

• A relationship that conforms to FactoryGeneralization must have its parent and

child to be the same type:

79

context |FactoryGeneralization inv:

self.parent.evaluationType() = self.child.evaluationType()

A similar constraint is defined for ProductGeneralization.

• A classifier that conforms to Client must be a concrete class:

context |Client inv: self.isAbstract = false

• An association-end that conforms to Fact must have a multiplicity of 1..*:

context |Fact inv: self.lowerBound() = 1 and self.upperBound() = *

• An association-end that conforms to Cln must have a multiplicity of 1..1:

context |Cln inv: self.lowerBound() = 1 and self.upperBound = 1

• An association-end that conforms to Clnt must have a multiplicity of 1..1:

context |Clnt inv: self.lowerBound() = 1 and self.upperBound = 1

• An association-end that conforms to Prod must have a multiplicity of 1..*:

context |Prod inv: self.lowerBound() = 1 and self.upperBound() = *

• ConcreteFactory classes are responsible for creating products:

context |ConcreteDep inv self.stereotype.name = ‘create’

• A client class uses operations defined in AbstractFactory classes:

context |ClientFactoryDep inv self.stereotype.name = ‘call’

• A client class uses operations defined in Product classes:

context |ClientProductDep inv self.stereotype.name = ‘call’

80

4.2.1.2 Constraint Templates

Factory classifiers must have one or more operations that play CreateProduct role to

create a new instance of a Product classifier. A constraint template for CreateProduct

is given below:

context |Factory:: |CreateProduct(): |Product

pre: true

post: result = p and p.oclIsNew() = true

4.2.1.3 SPS Specializations

Fig. 4.13 shows two SPSs that are specializations of the Abstract Factory SPS shown

in Fig. 4.12. Fig. 4.13(a) has the following specialized properties:

• Conforming classifiers of AbstractFactory are restricted to UML interfaces, and

conforming classifiers of Product are restricted to classes:

context |AbstractProduct inv:

self.oclIsTypeOf(Class) and self.isAbstract = true

• The relationships between AbstractFactory and ConcreteFactory classi-

fiers are restricted to UML ≪ realize ≫ dependencies conforming to

FactoryRealization, while the relationships between Product classifiers are re-

stricted to generalizations conforming to ProductGeneralization.

• The relationship between Client and AbstractFactory classifiers are restricted

to association conforming to ClientFactory.

• The relationship between Client and Product classifiers are restricted to asso-

ciations conforming to ClientProduct.

Fig. 4.13(b) specializes the Abstract Factor SPS by restricting Factory

and Product classifiers to be concrete classes. Hierarchies of Product and

81

Generalization Role

|Product

|ProductGeneralization

|ConcreteFactory

|Factory

|FactoryGeneralization
Generalization Role

|FactoryRealization
Realization Role

|ConcreteFactory|AbstractFactory

b1 |CreateProdBeh()

b1 |CreateProdBeh()

|ConcreteProduct |AbstractProduct

|Client

|ConcreteProduct

Generalization Role

|Client

|ProductGeneralization

Interface Role

Class Role

|Fact 1

(a)

1..*

(b)

1..*

|Fact 1

1..*1..*

1..*1..*

|ClientProduct
Association Role

|ClientFactory

Classifier Role

Accociation Role

|Prod 1

1..* Class Role

|Prod 1

|Clnt 1..*

|ClientProduct
Association Role

1|Cln 1..* Class Role

|ClientFactory
Accociation Role

Class Role 1|Cln 1..* |Clnt 1..*

|ConcreteDep
Usage Role

Class Role

Usage Role

1..*

Class Role

Classifier Role

1..*Class Role

|ConcreteDep

Figure 4.13: Specialized Abstract Factory SPSs

Factory classifiers are formed using generalization relationships conforming to

FactoryGeneralization and ProductGeneralization, respectively. The other aspects

of the specialization are similar to the specialization in Fig. 4.13(a).

4.2.2 Example of a Conforming Class Diagram

Fig. 4.14 shows a conforming class diagram of the Abstract Factory SPS which de-

scribes a simple maze game [35] where a maze consists of rooms with four sides of

doors and walls, and a concrete factory class MazeFactory is responsible for creat-

ing Maze product with its sub-products of Door, Wall, and Room. The operations

makeMaze, makeDoor, makeWall, and makeRoom in MazeFactory all play the Cre-

82

ateProduct behavioral role in Factory. Bold stereotypes indicate the role that the

model element plays.

<<ConcreteDep>>

<<ConcreteDep>><<create>>

<<create>><<ConcreteDep>>

<<ConcreteDep>><<create>>

4

Wall
<<ConcreteProduct>>

<<Product
Generalization>>

1

has_sides

<<ConcreteProduct>>
PlainDoor

Door
<<interface>>

<<AbstractProduct>>

<<ProductRealization>>

<<ConcreteDep>>

<<create>>

<<FactoryGeneralization>>

<<ClientFactoryDep>>

Maze
<<ConcreteProduct>> 1*1 has_maze

<<ClientProductAssoc>>

<<AbstractFactory>>
MazeFactory

1..*

has_rooms

BombedMazeFactory
<<ConcreteFactory>>

EnchantedMazeFactory
<<ConcreteFactory>>

Generalization>>
<<Product

<<ConcreteDep>><<create>>

<<create>> <<ConcreteDep>>

<<create>>

MazeGame
<<Client>>

Room
<<AbstractProduct>>

MapSite

<<ConcreteProduct>>
BombedWall PlainRoom

<<ConcreteProduct>>
RoomWithBomb

<<ConcreteProduct>><<ConcreteProduct>>
EnchantedDoor

<<b1>> makeMaze(): Maze
<<b1>> makeDoor(): Door
<<b1>> makeWall(): Wall
<<b1>> makeRoom(): Room

Figure 4.14: A Conforming Class Diagram of the Abstract Factory SPS with Hierar-
chies

Two types of mazes are produced: EnchantedMaze and BombedMaze. Enchanted-

MazeFactory is responsible for creating BombedMaze products with its sub-products

of EnchantedDoor, Wall, and PlainRoom, and BombedMazeFactory is responsible for

creating BombedMaze products with its sub-products of PlainDoor, BombedWall, and

RoomWithBomb.

4.2.3 Example of a Non-conforming Class Diagram

Fig. 4.15 shows a class diagram that does not conform to the Abstract Factory SPS

because it does not have abstract classifiers that play AbstractFactory role, which vi-

olates the multiplicity constraint (1..*) defined in AbstractFactory. This consequently

results in another violation that there should be relationships that plays FactoryRe-

alization or FactoryGeneralization roles.

83

createMaze()

MazeGame
<<Client>>

has_maze1

addRoom()

Maze
<<ConcreteProduct>>

1

<<ClientProduct>><<ClientFactoryDep>>

<<create>> <<ConcreteDep>>

<<ConcreteDep>>

MazeFactory
<<ConcreteFactory>>

<<b1>> makeRoom():Room
<<b1>> makeWall():Wall
<<b1>> makeDoor():Door
<<b1>> makeMaze():Maze

has_sides

4

1..*

1

has_rooms<<create>>
<<ConcreteDep>>

<<create>>

Wall
<<ConcreteProduct>>

MapSite

Room
<<ConcreteProduct>>

<<create>>
<<ConcretDep>>

<<ConcreteProduct>>
Door

Figure 4.15: A Conforming Class Diagram of the Abstract Factory SPS with no
Hierarchy

4.3 Specifying the Iterator Pattern

The Iterator pattern provides a way to access to the elements of an aggregate object

without exposing its internal structure by separating responsibility for access and

traversal from the aggregate and putting it into an object called iterator. Such a

separation facilitates defining different traversal policies without bloating the interface

of the aggregate object. The Iterator pattern enables a separation of abstraction from

implementation for aggregates and iterators to make it easy to change them without

changing clients.

4.3.1 The Iterator SPS

The class diagrams characterized by an Iterator SPS have structures of aggregate and

iterator classifiers that are abstract or concrete, and an item class associated with the

abstract aggregate. Aggregates are responsible for creating iterators which define a

traversal fashion.

An SPS for the Iterator pattern is shown in Fig. 4.16. The Aggregate role hierarchy

84

Generalization Role Realization Role

|Aggregate

|ConcreteAggregate|AbstractAggregate

b1 |CreateIterator(): |Iterator 1..1
s1 |Index : |Int 1..1

b4 |CurrentItem():|Item 1..*

Realization Role
|IteratorRealization

|AbstractIterator

Generalization Role
|IteratorGeneralization

|ConcreteIterator

|Iterator

b3 |IsDone():|Boolean 1..*

|Agt 1..1

|Aggr 1..1

b2 |Next() 1..*
b1 |First() 1..*

Classifier Role

|Iter 1..1

Classifier Role

{at least 1}
{at least 1}

|AggregateGeneralization

|AggrIterCreateDep

|AggregateRealization

Usage Role

Association Role

|Itm 1..1

|AggrItem

Class Role
|Item

1..*

Classifier Role Class Role 1..*

Association Role
|AggrIter 1..1

Class RoleClassifier Role 1..*

Figure 4.16: An Iterator SPS

comprises of Aggregate which is not realizable, and its specializations of AbstractAg-

gregate and ConcreteAggregate. A conforming structure of the hierarchy must have at

least one concrete class that conforms to ConcreteAggregate. A conforming aggregate

classifier must possess exactly one operation playing CreateIterator role that creates

an iterator. The Iterator role hierarchy is interpreted similarly. A conforming iterator

classifier must have exactly one attribute that plays Index role and operations that

plays First, Next, IsDone, and CurrentItem roles. There must be exactly one concrete

class that plays Item role. The AggrItem specifies that an object of a classifier playing

Aggregate is an aggregate of the objects of the item class. The AggrIterCreateDep

specifies that concrete aggregate classes are responsible for creating objects of a con-

crete iterator class. The AggrIter specifies that iterators keep track of the current

item in aggregates.

4.3.1.1 Well-formedness Rules

The metamodel-level constraints defined on the Iterator SPS are as follows:

• A classifier that conforms to AbstractAggregate must be an interface or an

abstract class:

85

context |AbstractAggregate inv:

self.oclIsTypeOf(Interface) or

(self.oclIsTypeOf(Class) and self.isAbstract = true)

A similar constraint is defined for AbstractIterator.

• A classifier that conforms to ConcreteAggregate must be a concrete class:

context |ConcreteAggregate inv: self.isAbstract = false

A similar constraint is defined for ConcreteIterator.

• A relationship that conforms to AggregateRealization must have an interface or

a type at its supplier end and a concrete class at its client end:

context |AggregateRealization inv:

(self.supplier.oclIsTypeOf(Interface) or

(self.supplier.oclIsTypeOf(Class) and self.supplier.isAbstract = true) and

self.client.oclIsTypeOf(Class)

A similar constraint is defined for IteratorRealization.

• A relationship that conforms to AggregateGeneralization must have its parent

and child to be the same type:

context |AggregateGeneralization inv:

self.parent.evaluationType() = self.child.evaluationType()

A similar constraint is defined for IteratorGeneralization.

• A classifier that conforms to Item must be a concrete class:

context |Item inv: self.isAbstract = false

• An association-end that conforms to Aggr must have a multiplicity of 1..1:

context |Aggr inv: self.lowerBound() = 1 and self.upperBound() = 1

86

• An association-end that conforms to Iter must have a multiplicity of 0..*:

context |Iter inv: self.lowerBound() = 0 and self.upperBound() = *

• An association-end that conforms to Agt must have a multiplicity of 1..1:

context |Agt inv: self.lowerBound() = 1 and self.upperBound() = 1

• An association-end that conforms to Itm must have a multiplicity of 0..*:

context |Itm inv: self.lowerBound() = 0 and self.upperBound() = *

• ConcreteAggregate classes are responsible for creating iterators:

context |AggrIterCreateDep inv self.stereotype.name = ‘create’

4.3.1.2 Constraint Templates

Constraint templates for the behavioral feature roles First, Next, IsDone, and Cur-

rentItem are given below:

• A CreateIterator operation creates an iterator:

context |Aggregate :: |CreateIterator(): |Iterator

post: result = i and i.oclIsNew() = true

• A First operation moves the index to the first index:

context |AbstractIterator :: |First()

post: |Index = self.|Aggregate.|Item → asSequence()

→ indexOf(self.|Aggregate.|Item → asSequence() → first())

• A Next operation moves the index to the next index:

context |AbstractIterator :: |Next()

pre: |Index ≥ 1 and |Index < self.|Aggregate.|Item

→ asSequence() → size()

post: |Index = |Index@pre + 1

87

• An IsDone operation checks if the current item is the last one:

context |AbstractIterator :: |IsDone(): Boolean

post: self.|Aggregate.|Item → asSequence() → at(|Index)

= self.|Aggregate.|Item → asSequence() → last()

• A CurrentItem operation returns the current item at which the index points:

context |AbstractIterator :: |CurrentItem(): |Item

pre: |Index ≥ 1 and |Index ≤ self.|Aggregate.|Item

→ asSequence() → size()

post: |index = |index@pre and result = self.|Aggregate.|Item

→ asSequence() → at(|Index)

4.3.2 Example of a Conforming Class Diagram

Fig. 4.17 shows a class diagram that conforms to the Iterator SPS describing a televi-

sion remote control application that allows viewers to surf channels through features

like channel next and previous.

ConcChannelIterator
ConcChannelList

ChannelList

<<IteratorRealization>>

*

<<s1>> idx: Integer

hasPrevious(): Boolean
previousChannel()
lastChannel()

<<b1>> firstChannel()
<<b2>> nextChannel()
<<b3>> hasNext():Boolean

ChannelIterator

<<b4>> currentChannel(): Channel

<<Interface>>
<<AbstractIterator>>

<<AbstractAggregate>>

1 1

<<AggrItem>>
consists−of

1..*

<<AggrIter>>
Channel

<<Item>>

<<b1>> createChanIter():ChannelIterator

<<ConcreteAggregate>>

<<b1>> createChanIter():ChannelIterator

<<AggrIterCreateDep>>

iterates

<<ConcreteIterator>>

Figure 4.17: A Conforming Iterator Class Diagram

Stereotypes with model elements represent the roles that the model elements play.

88

For example, createChanIter operation in ChannelList and ConcChannelList plays

the CreateIterator role in Fig. 4.16. lastChannel, previousChannel, and hasPrevious

are application-specific operations. lastChannel operation returns the last channel in

the list, previousChannel returns the previous channel of the current channel, and

hasPrevious checks if the current channel is the first channel in the list. Instantiated

by substituting role names in the SPS constraint templates to conforming model

elements, pre- and post-conditions for createChanIter, firstChannel, nextChannel,

hasNext, and currentChannel operations are given below:

context ChannelList :: createChanIter(): ChannelIterator

post: result = i and i.oclIsNew() = true

context ChannelIterator :: firstChannel()

post: idx = self.ChannelList.Channel → asSequence()

→ indexOf(self.ChannelList.Channel → asSequence() → first())

context ChannelIterator :: nextChannel()

pre: idx ≥ 1 and

idx < self.ChannelList.Channel →

asSequence() → size()

post: idx = idx@pre + 1

context ChannelIterator :: hasNext(): Boolean

post: self.ChannleList.Channel

→ asSequence() → at(idx)

= self.ChannelList.Channel → asSequence() → last()

context ChannelIterator :: currentChannel(): Channel

pre: idx ≥ 1 and

idx ≤ self.ChannelList.Channel → asSequence() → size()

89

post: idx = idx@pre and

result = self.ChannelList.Channel → asSequence() → at(idx)

Note that the multiplicity (1..*) at the end of Channel does not violate the multi-

plicity constraint (0..*) defined on Aggr role as long as its lower bound is greater than

or equal to the lower bound of the constraint and its upper bound is smaller than or

equal to the upper bound of the constraint.

4.3.3 Example of a Non-conforming Class Diagram

Fig. 4.18 shows a class diagram that does not conform to the Iterator SPS for the

following violations. First, ConcChannelList has two operations that play CreateIt-

erator role, which violates the constraint that there should be exactly one operation

playing the role. Second, ConcChannelList and ChannelIterator do not have general-

izations or realizations, which violates the constraints in the Aggregate and Iterator

role hierarchies. Third, the multiplicity (0..1) at the end of ConcChannelList does

not satisfy the multiplicity constraint (1..1) on Aggr role.

ConcChannelList

<<b1>> createChanIter():ChannelIterator

<<ConcreteAggregate>>

<<b1>> createChanIter(c:Channel):
ChannelIterator

1

<<AggrIterCreateDep>>

<<AggrItem>>
consists−of

*

0..1

<<AggrIter>>
iterates

*

Channel
<<Item>>

<<s1>> idx: Integer

hasPrevious(): Boolean
previousChannel()
lastChannel()

<<b1>> firstChannel()
<<b2>> nextChannel()
<<b3>> hasNext():Boolean
<<b4>> currentChannel(): Channel

ChannelIterator
<<ConcretetIterator>>

Figure 4.18: A Non-conforming Iterator Class Diagram

90

4.3.4 The Iterator SMPS

Fig. 4.19 presents an SMPS for the Iterator role in the Iterator pattern. The SMPS

depicts the following behavior:

CallTrigger Role|T2 1..*

|T1 1..1

|T3 1..*

|T4 1..*

|T6 1..*

|T5 1..*

|End 1..*

|First 1..*

|Next 1..*

|InitialState 1..1

|FinalState 1..1

CallTrigger Role

CallTrigger Role

|IteratorStateMachine

1 1

 |First 1..*
|Initiating |Forwarding

CallTrigger Role

CallTrigger Role

 |Next 1..*

Figure 4.19: An SMPS of Iterator Role in Fig. 4.16

• Initiating : When an object of a class playing Iterator role is created, the

object moves its state from an initial state to a state that plays Initiating role

through a transition of T1. In this state, the object has two possible transitions:

1) the object may stay its current state when a call trigger of First is received;

or 2) the object may move to a state of Forwarding when a call trigger of Next

is received.

• Forwarding : An object in this state has three possible transitions: 1) the

object may move back to a state of Initiating when a call trigger of First is

received; 2) the object may stay at the current state if a call trigger of Next is

91

received; or 3) the object terminates its lifetime at a state of FinalState when

a call trigger of End occurs.

|IteratorStateMachine
StateMachine Role Transition Role

{self.isFinal = false} {self.isFinal = false}

|Forwarding|Initiating
State Role State Role

{self.isSimple = true and
self.isFinal = false}

{self.isSimple = true and
self.isFinal = false}

|Next|First
CallTrigger Role CallTrigger Role

{self.operation.oclIsKindOf(|First)} {self.operation.oclIsKindOf(|Next)}

|T1

|End |InitialState
CallTrigger Role PseudoState Role

{self.operation.oclIsKindOf(|IsDone)} {self.kind = #initial}

Figure 4.20: Metamodel-level Constraints

Metamodel-level constraints for the Iterator SMPS are defined in Fig. 4.20. They

describe the following:

• Conforming state machines of IteratorStateMachine and transitions playing T1

may be extended (isFinal = false). Similar constraints are defined for the other

transition roles.

• States playing Initiating and Forwarding must be simple states (isSimple =

true) and may be extended.

• Triggers playing First, Next, and End roles must be call triggers that are caused

by First, Next, and isDone operation calls in Fig. 4.16.

• States playing InitialState must be initial states.

92

4.3.5 Examples of Conforming Statecharts

<<Next>> nextChannel()

<<Forwarding>>

<<T4>>

<<First>> firstChannel()

<<T3>>

<<Next>> nextChannel()

<<End>>

lastChannel()

<<T5>>

ChannelUP

lastChannel()

previousChannel()

[hasPrevious()=False]

nextChannel()

[hasNext()=False]

firstChannel() / currentChannel()

previousChannel()

ChannelDown

(b) A Specialization of the Television Remote Statechart

(a) A Television Remote Statechart

<<FinalState>>

ChannelDown

<<T6>>

nextChannel()

<<FinalState>>

<<Forwarding>>

<<Next>> nextChannel()

<<T5>>

<<T4>>

<<First>> firstChannel()

<<T3>>

<<Next>> nextChannel()

<<InitialState>>

<<T1>>

<<Initiating>>

<<T2>>

<<First>> firstChannel()

<<End>>

lastChannel()

lastChannel()

previousChannel()

[hasNext() = False]
previousChannel()

firstChannel() / currentChannel()

[hasPrevious() = False]

ChannelUpFirstChannel

<<T6>>

<<InitialState>>

<<T1>>

<<Initiating>>

<<T2>>

<<First>> firstChannel()

FirstChannel

SetToFirst

GetCurrent

[Done]

{extended}

IteratorState
ChannelIterator {extended}

ChannelIterator
IteratorState

Figure 4.21: Conforming Iterator Statecharts

93

Fig. 4.21(a) shows a statechart diagram that conforms to the Iterator SMPS in

Fig. 4.19. Model elements that play the roles in Fig. 4.19 are stereotyped. Fig. 4.21(b)

shows a case in which a specialization of the television remote state machine does

not conform to the Iterator SMPS. The simple state FirstChannel that plays the

Initiating role in Fig. 4.19 is extended to a composite state to save the current index

before resetting the iterator. This violates the constraint (isSimple = true) defined

in Initiating role in Fig. 4.20, and thus the specialization does not conform to the

SMPS. In order to disallow such cases, the constraint described in the SMPS must

hold.

4.3.6 Example of a Non-conforming Statechart

The statechart shown in Fig. 4.22 does not conform to the Iterator SMPS because

there are no triggers that play Next and End roles and no transitions that play T3

and T6 roles in the Iterator SMPS.

ChannelUp

[hasPrevious() = False]

firstChannel() / currentChannel()

previousChannel()

previousChannel()

lastChannel()

lastChannel()

<<First>> firstChannel()

<<T2>>

<<Initiating>>

<<T1>>

<<InitialState>>

<<First>> firstChannel()

<<T4>>

<<T5>>

<<Next>> nextChannel()

<<Forwarding>>

<<FinalState>>

nextChannel()

ChannelDown

FirstChannel

ChannelIterator
IteratorState

Figure 4.22: A Non-conforming Iterator Statechart

94

4.4 Lessons Learned

This chapter has described specifications of Visitor, Abstract Factory, and Iterator

design patterns using the RBML. The RBML has been presented to a graduate-level

software engineering course that has about fifteen students, and used by them to

develop specifications of design patterns. All the students were familiar with the

UML and design patterns and had used them in previous courses. Our collective

experience revealed the following about the RBML:

• The students were able to create specifications for patterns that did not involve

the use of recursion in the interaction diagrams after two lectures on the pattern

specification notation. Students who are not familiar with the UML metamodel

experienced some difficulty in presenting RBML concepts.

• Pattern behaviors that are localized in methods or in objects (e.g., see the Fac-

tory Method and the Iterator patterns) could not be fully captured by operation

templates or interaction diagrams. This was the motivation for the development

of SMPSs to specify localized behaviors of pattern participants. It is important

to note that the RBML is restricted to descriptions of structure and behavior

that can be expressed in the UML.

• Defining recursive behaviors (as required by the Visitor and Decorator patterns)

using the UML 1.4 interaction diagrams was difficult for lack of constructs,

and resulted in complicated representations of IPSs. The UML 2.0 sequence

diagram notation used in this chapter offers a richer set of constructs, including

constructs for packaging and referencing interactions. The interpretation of

these constructs needed to be adapted to fulfill the research’s needs (e.g., the

repeat construct is an adaptation of the UML 2.0 loop construct), but sequence

diagram “look and feel” in IPSs is maintained. The Visitor IPS given in this

95

chapter illustrates how these constructs can be used to represent a range of

behaviors concisely.

96

Chapter 5

Using the RBML to Specifying
Domain Patterns

Cost-effective development of large computer-based systems can be realized through

systematic reuse of application domain-specific design experience [12, 72, 82]. Such

experience can be captured by application domain-specific design patterns (henceforth

called domain patterns), that is, patterns specifying design solutions for well-defined

families of applications.

This chapter describes how the RBML can be used to express domain patterns

that define domain-specific UML sub-languages. Use of the sub-languages to build

models of applications in the domains results in reuse of design experience embedded

in the domain patterns. For example, developers can use RBML specifications of a

pattern in a domain to create UML diagrams for the applications in the domain.

The RBML is used to create a domain pattern for a checkin-checkout (CICO)

application domain. The primary purpose of applications in this domain is to provide

services for checking in and out items. Applications within this domain include video

rental, car rental, and library systems. The RBML CICO pattern is used to obtain

UML models of a library system and a car rental system. The work presented in this

chapter has been published [57, 58].

This chapter is organized as follows. Section 5.1 describes how the RBML can be

97

used to develop a CICO domain pattern, and Section 5.2 illustrates how the CICO

domain pattern is used to build UML models of a library application and a car rental

application. Section 5.3 gives an overview of related work, and Section 5.4 concludes

the chapter with the lessons learned from this case study.

5.1 Specifying the CICO Pattern

The CICO domain pattern characterizes a family of checkin-checkout applications

that manage item check in or check out. Applications within this domain include

video rental, car rental and library systems. Some features of CICO applications

characterized by the domain pattern are given below:

1. Items that can be checked out and in have unique identifiers.

2. Items are maintained in one or more collections (e.g., a library system can have

a collection of journals, a collection of references, and a collection of general

books).

3. CICO applications maintain a list of registered users, that is, users that are

authorized to check in or out items. Users can be grouped into different cate-

gories (e.g., a university library system may group users into faculty and student

categories).

4. A user can checkout an item (referred to as lending in this section) if it is

available and the check out does not violate lending policies (e.g., a policy may

constrain the number of items a user in a particular category can have checked

out at any time).

5. A checked out item can be checked in. The CICO domain pattern covers only

those applications in which an item can be checked in only if it was previously

checked out.

98

5.1.1 CICO SPS

|Description

|ColItemItem
Association Role

|OB 1..*

|OA 1..*

|ContColItem
Association Role

Association Role
|ContItem

|LendingItem
Association Role

|IC 1..*

|ID 1..*

|IB 1..*|LB 1

|LendingUser

|ContColUser

|UC 1..*

|CollectionUser

|CA 1..*

Class Role

Class Role

Class Role

Class Role
|User

Hierarchy
Class Role

Class Role
|CollectionItem

Class RoleClass Role

Association Role
|ContLending

|ContUser

Association Role
|ColUserUser

|Item

Hierarchy

|IA 1..*

|DA 1..*

|ItemDesc
Association Role

|CB 1..* |TC 1

|LA 1..*

|UB 1..*

Association Role

|UA 1..* |LD 1..*

Association Role
|ColLendingLending

|EB1..*

|EA 1..*

|Lending

|CollectionLending

|Controller

|TB 1

|TG 1

|TF 1

|TD 1

|TA 1

|LC 1..*

Association Role

Association Role

|ContColLending

Association Role

Figure 5.1: The CICO SPS

Fig. 5.1 shows the SPS characterizing static structure diagrams that conform

to the CICO domain pattern. The SPS consists of roles that specify domain-specific

concepts such as registered user (User), collection of registered users (CollectionUser),

item check out details (Lending), item (Item), item description (Description), and

checkin/checkout manager (Controller).

The folded form of role hierarchies in Fig. 5.1 is used to represent item and user

role hierarchies. Fig. 5.2(a),(b) show the unfolded forms of the User and Item role

hierarchies. These role hierarchies specify class generalization hierarchies. Fig. 5.2

also shows the CICO domain pattern classifier roles with their feature roles.

The following is an overview of the properties defined in each classifier and hier-

archy role shown in Fig. 5.1. Constraint templates for some of the more interesting

feature roles are described. Multiplicity and other properties specified in association-

99

|UserStatusEnum

e1 |ELIGIBLE 1..1
e2 |HOLD 1..1

|ItemStatusEnum

e1 |CHECKEDOUT 1..1
e2 |AVAILABLE 1..1

s2 |UserStatus : |UserStatusEnum 1..*
s1 |UserID : DataType 1..1

(b) User Role Hierarchy

(i) Enumeration Roles

(a) Item Role Hierarchy

b2 |UpdateStatus (|s : |ItemStatusEnum) 1..*
b1 |VerifyStatus() : Boolean 1..*

s2 |ItemStatus : |ItemStatusEnum 1..*
s1 |ItemID : DataType 1..1

b1 |FindItem (|iid : DataType) : |Item 1..*

(c) Lending Role

(f) CollectionLending Role

(g) Controller Role

(e) CollectionUser Role(d) CollectionItem Role

|User
Class Role

Enumeration Role

Enumeration Role 1..1

1..1

b1 |VerifyStatus() : Boolean 1..*

1..*

|CollectionUser
Class Role 1..*

b1 |FindUser (|uid : DataType) : |User 1..*

|Item
Class Role 1..*

|CollectionItem
Class Role 1..*

|Description
Class Role

|iid : DataType) 1..*

|Controller
Class Role 1..1

b2 |CheckOut (|uid : DataType,
b1 |CheckIn (|iid : DataType) 1..*

**

Generalization Role
|UserGeneralization

**

|ItemGeneralization
Generalization Role

s1 |DetailOfItem : DataType 1..*

s1 |LendingID : DataType 1..1

|Lending
Class Role 1..1

|CollectionLending
Class Role 1..*

b1 |AddNewLending (|ld : DataType) 1..*

(h) Description Role

1..*

Figure 5.2: CICO Role Hierarchies

end roles are not given in this section.

Item role hierarchy (Fig. 5.2(a)): Item role has ItemID, ItemStatus, VerifyStatus

and UpdateStatus feature roles. The ItemID role specifies a structural feature that

uniquely identifies items, and the ItemStatus role specifies a structural feature that

is used to indicate whether an item is checked in or checked out.

The types associated with structural features that conform to ItemID must be

instances of the DataType metaclass. The types associated with structural features

that conform to ItemStatus must conform to ItemStatusEnum.

100

The V erifyStatus behavioral role specifies a behavior that returns true if the

item is available for checkout and false otherwise:

context |Item :: |VerifyStatus (): Boolean

pre : true

post: if |ItemStatus = |AVAILABLE then result = true

else result = false

UpdateStatus specifies a behavior that changes the status of an item. For example,

whenever an item is checked out (or checked in), an update behavior is performed to

change the status of the item:

context|Item :: |UpdateStatus (|s : |ItemStatusEnum)

pre : true

post: |ItemStatus = |s

User role hierarchy (Fig. 5.2(b)): The User role has UserID, UserStatus, and

V erifyStatus feature roles where V erifyStatus specifies a behavior that returns true

if a user can check out an item and false otherwise.

Lending role (Fig. 5.2(c)): The Lending role characterizes classes defining in-

formation about a particular item checkin or checkout. The role has LendingID

structural feature role.

CollectionItem role (Fig. 5.2(d)): The CollectionItem characterizes classes

defining groups of items. It includes a behavioral role FindItem specifying a be-

havior that locates an item given the item’s ID.

CollectionUser role (Fig. 5.2(e)): The CollectionUser role characterizes classes

representing collections of users. It includes a behavioral role FindUser specifying a

101

behavior that locates a user given the user’s ID.

CollectionLending role (Fig. 5.2(f)): The CollectionLending role characterizes

classes describing objects that maintain a collection of checkin and checkout details.

It has a AddNewLending behavior role that characterizes a behavior that adds new

lending information to the collection.

Controller role (Fig. 5.2(g)): The Controller characterizes classes that manage

the checkin and checkout of items. The role includes two behavioral roles, CheckIn

and CheckOut representing checkin and checkout behaviors, respectively. Constraint

templates for the CheckIn and CheckOut are given below.

CheckIn Precondition: The item must have been checked out.

CheckIn Postcondition: The FindItem operation is called and if the operation re-

turns the item and if the item’s status indicates that the item has been checked out,

the item’s status is changed to indicate it is now available for checkout by calling the

item’s UpdateStatus() operation:

context |Controller :: |CheckIn (|id : |ID)

pre : item.|ItemStatus = |CHECKEDOUT

post: let message: OclMessage =

|CollectionItem^^|FindItem(|id) → any(true)

in

message.hasReturned() and message.result() = item

and item@pre.|VerifyStatus() = false

and item^|UpdateStatus(|AVAILABLE)

CheckOut Postcondition: The FindUser and FindItem operations are called. If the

retrieved user is eligible to checkout the item and the item is available, a record of the

checkout is included in CollectionLending and the item status is updated to indicate

102

that it has been checked out:

context |Controller :: |CheckOut (|uid:|ID, |iid:|ID)

pre : true

post: let itemMessage: OclMessage =

|CollectionItem^^|FindItem(|iid) → any(true),

userMessage: OclMessage = |CollectionUser^^|FindUser(|uid)

→ any(true)

in

userMessage.hasReturned() and userMessage.result() = user

and user@pre.|VerifyStatus() = true

and itemMessage.hasReturned() and itemMessage.result() = item

and item@pre.|VerifyStatus() = true

and |Collectionlending → exists (lendinfo | lendInfo.oclIsNew()

and lendInfo.|User = user and lendInfo.|Item = item)

and item^|UpdateStatus(|CHECKEDOUT)

It is important to keep in mind that the above specifications describe patterns and

no attempt is made to specify complete CICO behavior. For example, the above tem-

plates can be used to create initial specifications for checkin and checkout operations,

which can then be extended by designers to meet application-specific requirements

not captured by the pattern. This is further discussed and illustrated in Section 5.2.

5.1.2 CICO IPSs

Fig. 5.3(a) shows an IPS for a checkin scenario. The item is found in the item

collection, and its status is checked to determine whether it is checked out. If the

item is checked out the status of the item is updated.

Fig. 5.3(b) shows an IPS for a checkout scenario. An instance of a classifier that

103

|it := |FindItem (|iid)

opt

|v := |VerifyStatus()

|c : |Controller

|CheckOut(|uid, |iid)

(a) An IPS for CheckIn Scenario

|UpdateStatus (|AVAILABLE)

|e := |VerifyStatus()

|u := |FindUser (|uid)

|it := |FindItem (|iid)

|e := |VerifyStatus()

|it : |Item

|CheckIn (|iid)

opt

|c : |Controller

(b) An IPS for CheckOut Scenario

|cu : CollectionUser

|ci : CollectionItem

|UpdateStatus (|CHECKEDOUT)

create

|AddNewLending (|ld)

|ci : |CollectionItem

|it : |Item

|u : |User

|ld : |Lending {new}

|cl : CollectionLend

opt

[|v = true]

[|e = true]

[|e = false]

Figure 5.3: IPSs for CheckIn and CheckOut Scenarios

conforms to Controller invokes FindUser with the user ID uid to obtain a matching

user “u” from a collection of users. The status of the user is verified, and if the user

is allowed to checkout the item the requested item is retrieved. The status of the

item is queried to determine if it can be checked out. If the item can be checked

out, a lending record is created. The record is then added to a collection of lendings

(CollectionLending). The status of the item is updated to indicate that it has been

checked out.

104

5.2 Building Models Using the CICO Pattern

Application developers can use the CICO domain pattern to produce an initial set of

UML diagrams for a CICO application. Details can then be added to the diagrams

in order to satisfy application-specific requirements not addressed in the initial set of

diagrams. In this section, the CICO pattern is used to create UML diagrams for a

library system and a vehicle rental system. A set of diagrams is produced by binding

roles to elements representing solution concepts in the systems. The diagrams are

then extended to satisfy application-specific requirements.

5.2.1 A Library System

0..*

<<ColUserUser>>

<<ContLending>>

1

<<ContItem>>

uses

has

uses

uses

11

<<ContColLending>>

1

uses

1
<<b2>> reserve (uid : Int, iid : Int)

<<Controller>>
Controller

<<ContColUser>>

1

<<b2>> checkOut (uid : Int, iid : Int)
<<b1>> checkIn (iid : Int)

1..*

<<b1>> addLoanInfo (l : LoanInfo)

1..*

1

<<CollectionLending>>

c : Copy

<<CollectionItem>>
CollectionCopy

describes

1..*

<<s1>> copyID : Int
<<s2>> status : CopyStatus

<<b1>> verifyBorrowStatus() : Boolean
<<b2>> setStatus (s : CopyStatus)

1..* 0..* 0..*

Copy
<<Item>>

<<s1>> loanNumber : Int

<<Lending>>
LoanInfo

<<b1>> verifyStatus() : Boolean

<<b1>> findCopy (iid : Int):

CollectionLoanInfo

<<b1>> findMember (uid : Int):
m : Member

CollectionMember
<<CollectionUser>>

<<ColUserUser>>

has

1

0..*

<<s1>> memberID : Int
<<s2>> status : MemberStatus

<<ConcreteUser>>
Member

1..*

has

1

<<ContColItem>>

1uses

11

<<LendingItem>>
is currently loaned

1
<<ColItemItem>>

Book
<<Item>>

<<ItemGeneralization>>

<<b2>> setStatus (s : CopyStatus)
<<b1>> verifyReserveStatus() : Boolean

1

<<ContUser>>uses

<<s1>> name : String
<<s1>> author :String
<<s1>> producer : String
<<s1>> productDate : String

<<Description>>
Description

<<ItemDesc>>

1

0..*

<<LendingUser>>
currently has

<<Item>>
Multimedia

<<UserStatusEnum>>

<<e2>> CLR
<<e1>> HLD

MemberStatus
<<e1>> CHO

CopyStatus
<<ItermStatusEnum>>

<<e1>> RSV
<<e2>> AVAL

Figure 5.4: A CICO Conformant Library Class Diagram

105

The library system described in this section has a collection of items referred to

as copies. A copy can be a book or a multimedia item. Users that can checkin and

checkout copies are referred to as members. Fig. 5.4 shows a class diagram obtained

from the CICO SPS. The stereotypes on the diagram elements indicate the CICO

SPS roles they are bound to. Some of these bindings are described below (in the

following, the symbol 7→ is to be read “binds to”):

• The Controller role in the SPS is bound to the Controller class in the Library

class diagram. The CheckOut role is bound to an operation that checks out copies

(checkOut) and an operation that reserves copies (reserve). The bindings indicate

that the reserve operation is intended to behave as specified by the CheckOut role.

For this application, only multimedia copies can be reserved.

• The Copy hierarchy is obtained from the Item hierarchy defined in the CICO

SPS. For example, Copy 7→ Item, Multimedia 7→ Item, and Book 7→ Item are

bindings that produce the classes in the Copy hierarchy. The two generalization

relationships shown in Fig. 5.4 are bound to the ItemGeneralization role. The

copyID attribute is the only one that plays the ItemID role as required by the role’s

binding multiplicity (1..1).

• The V erifyStatus feature role in the Item role is bound to verifyBorrowStatus

in the Copy class and to verifyReserveStatus in the Multimedia class. The verify-

BorrowStatus returns true if the copy is available for checkout and false otherwise.

The verifyReserveStatus returns true if the copy can be reserved and false other-

wise. The Multimedia class has two operations that are bound to the V erifyStatus

role: verifyBorrowStatus inherited from Copy and verifyReserveStatus defined in

the class. This is consistent with the binding multiplicity (1..∗) associated with the

V erifyStatus role. The pre- and postconditions of the verifyBorrowStatus opera-

tion is obtained by instantiating the constraint template for the VerifyStatus role:

context Copy :: verifyBorrowStatus (): Boolean

106

pre : true

post: if status = AVAL then result = true

else result = false

• The following are bindings for enumeration type values:

CHO 7→ CHECKEDOUT , RSV 7→ CHECKEDOUT , HLD 7→ HOLD, CLR 7→

ELIGIBLE.

<<CollectionLending>>
CollectionLoanInfo

<<LendingUser>>
currently has

<<b1>> findMember (uid : Int):

addMember ()
removeMember ()

m : Member

CollectionMember
<<CollectionUser>>

<<ColUserUser>>

has

1

1

0..*

<<b1>> verifyStatus() : Boolean

<<s1>> memberID : Int
<<s2>> status : MemberStatus

address : String
name : String

<<ConcreteUser>>
Member

Controller

<<b1>> addLoanInfo (l : LoanInfo)

1..*

1

removeLoanInfo()

<<ContColUser>>

0..*

<<ColUserUser>>

<<ContLending>>

1

<<ContItem>>

uses

has

uses

uses

11

<<ContColLending>>

1

uses

1
<<b2>> reserve (uid : Int, iid : Int)

<<Controller>>

1..*
1..* 0..* 0..*

Copy
<<Item>>

<<s1>> loanNumber : Int

<<Lending>>
LoanInfo

loanDate : Date
0..*

has loaned

1 10..*

has loan history

is reservedhas
reservDate : Date

makeReservation ()

0..*
Reservation

0..*

<<b2>> setStatus (s : CopyStatus)

1

has

1

<<ContColItem>>

1uses
<<b1>> findCopy (iid : Int):

c : Copy
addCopy ()
removeCopy ()

<<CollectionItem>>
CollectionCopy

1
<<ColItemItem>>

describes

1..*

11

<<s1>> copyID : Int
<<s2>> status : CopyStatus

<<b1>> verifyBorrowStatus() : Boolean

<<LendingItem>>
is currently loaned

1..*

Multimedia

<<UserStatusEnum>>

<<e2>> CLR
<<e1>> HLD

MemberStatus
<<e1>> CHO

CopyStatus
<<ItermStatusEnum>>

<<e1>> RSV
<<e2>> AVAL

<<Item>>

<<ContUser>>uses

<<s1>> name : String
<<s1>> author :String
<<s1>> producer : String
<<s1>> productDate : String

<<Description>>
Description

<<ItemDesc>>

1

Book
<<Item>>

<<ItemGeneralization>>

<<b2>> setStatus (s : CopyStatus)
<<b1>> verifyReserveStatus() : Boolean

0..*

1

<<b2>> checkOut (uid : Int, iid : Int)
<<b1>> checkIn (iid : Int)

Figure 5.5: The Completed Library Class Diagram

In addition to the properties specified in the CICO pattern, the library system

is required to (1) track lending history, (2) record reservations, (3) maintain contact

information on members, (4) record the date a copy is checked out, (5) support adding

and removing members and copies, and (6) support removal of lending information

107

from the system. Additional class diagram elements are needed to address the above

requirements. Fig. 5.5 shows the completed library system class diagram (additional

elements are shown in bold typeface). Some of the elements added to the diagram

are described below:

• The “has loan history” and “has loaned” associations are added to support

tracking of lending history.

• The Reservation class and attached associations are added to support recording

of reservations.

• The attributes name and address in Member are added because this information

is used in the application to support activities that require contacting the member.

Sequence diagrams can also be obtained from the CICO IPSs by binding sequence

diagram model elements to roles. The class and feature bindings are the same as those

used to produce the class diagram. Figure 5.6 shows sequence diagrams obtained from

the CICO IPSs in Fig. 5.3.

5.2.2 A Vehicle Rental System

Fig. 5.7 shows a vehicle rental class diagram created using the CICO SPS. The dia-

gram describes a design in which customers rent vehicles. Two types of vehicles can

be rented: trucks and leisure vehicles. Unlike the library example, the Item hierarchy

is bound to a multi-level generalization hierarchy: the V ehicle class is specialized by

Truck and Leisure and Leisure is further specialized by Van and Sedan.

The class diagram also includes classifiers and other diagram elements not specified

by the CICO SPS. Like the Library system, there is a Reservation class. There is

also an InsurancyPolicy class associated with the V ehicle class. An interface class,

CollectionV ehicle, is also added to the model to act as a common interface for the

different types of vehicle collections.

Vehicle rental scenarios obtained from the CICO IPSs are shown in Fig. 5.8.

108

bs := verifyBorrowStatus()

i := findCopy (iid)b : Book

e := verifyHoldStatus()

checkIn (iid)

i := findCopy (iid)

(b) Sequence Diagram for the Library Checkout Scenario

setStatus (CHO)

addNewLoan (l)

cl : CollectionLoanInfo

create

opt

ms := verifyStatus()

checkOut(uid, iid)

m := findMember (uid)

c : Controller

opt

b : Book

m : Member

cm : CollectionMember

cc : CollectionCopy

opt

c : Controller

l : LoanInfo {new}

the Library Checkin Scenario
(a) Sequence Diagram for

setStatus (AVAL)

cc : CollectionCopy

[e = false]

[ms = true]

[bs = true]

Figure 5.6: CICO Conformant Library Scenarios

5.3 Related Work

Early work on domain-specific languages [106] tended to focus on providing language

interfaces for assembling code components into programs. These languages focus on

downstream development phases (detailed design specification and implementation in

code). Domain-specific design specification and architectural languages have begun

to appear (e.g., see [42]). We are not aware of any approaches that allow develop-

ers to specify reusable static and behavioral UML models and use them to develop

109

<<Item>>

<<Item>>

<<Item>>

Truck

<<ColItemItem>> <<ColItemItem>> hashas

has

0..*

<<ColItemItem>>

describes has

<<ItemGeneralization>>

<<Item>>

1

VehicleStatus

<<e1>> CHO : Checked Out
<<e2>> AVAL : Available

<<ItemStatusEnum>> <<Description>>
VehicleDetail

<<s1>> year : Numb
<<s1>> color :String
<<s1>> numberDoor : Strins
<<s1>> class : String

<<s1>> model : String

Vehicle
<<Item>>

Leisure

1

0..*

uses <<ContColItem>>

<<LendingItem>>

<<b2>> setStatus (s : VehicleStatus)
<<b1>> verifyStatus() : Boolean

capacity: Int
miles : Int
<<s2>> status : VehicleStatus
<<s1>> registrationNumber : String

1..*

1..*

0..*

SedanVan

0..* 0..*

<<ItemGeneralization>>

11

1..*

InsurancePolicy

Cost : Int
Company : String
IssuedDate : Date
PolicyNumber : Int

<<ItemDesc>>

1

<<b1>> findVehicle (iid : String):

removeCustomer ()
createCustomer ()

<<b1>> findCustomer (uid : Int):
1

<<ContColUser>>

has

is lent

uses<<ContColItem>>

uses<<ContUserr>>

uses

11

<<ColUser>>

0..*

mileTraveled : Number

l : Leisure

c : Customer

t : Truck

CollectionTruck
<<CollectionItem>>

addVehicle()
removeVehicle()

<<b1>> findVehicle (iid : String):

0..* 1..* 1

<<LendingUser>>

CollectionCustomer

1

1..*

<<Lending>>
VehicleRental

<<s1>> rentalNumber : Int
rentalDate : Date

1

1

1

uses

<<ContItemAssoc>>

addVehicle()
removeVehicle()

CollectionLeisure
<<CollectionItem>>

<<ContLending>>

11

<<Controller>>

1 Controller

<<b2>> checkOut (uid : Int, iid : String)
<<b1>> checkIn (iid : String)

1

1
is reserved

uses

CollectionVehicleRental

<<b1>> addNewRental (cr : VehicleRental)

<<CollectionLending>>

deleteRental ()

updateStatus (s : CustomerStatus)
hasInsurance () : Boolean

<<User>>
RegisteredCustomer

customerClass : String

<<User>>
UnresisteredCustomer

addVehicle()

CollectionVehicle
<<Interface>>

findVehicle (iid : String): c:Vehicle

<<UserGeneralization>>

<<b1>> verifyStatus() : Boolean

<<User>>
Customer

insuranceStatus : String
address : String
name : String
<<s2>> status : CustomerStatus
<<s1>> customerID : Int

has

rentalPeriod : Int
reserveDate : Date

<<ContColLending>>

uses

<<e2>> HLD : Hold

<<e1>> CLR : Clear

CustomerStatus
<<UserStatusEnum>>

Reservation

<<ColLendingLending>>

1..*

0..*

has 0..1

1

has

<<ColUserUser>>

0..1 0..*

makeReservation()

removeVehicle()

Figure 5.7: A CICO Conformant Vehicle Rental Class Diagram

applications.

Other forms of reusable experiences packaged for vertical reuse are frameworks [88]

and domain-specific architectures (e.g., see [29, 43, 67, 101]). There is a considerable

110

setStatus (AVAL)

(b) Sequence Diagram for the Car Rental Checkout Scenario

e := verifyStatus()

checkIn (iid)

i := findCar (iid)

create

setStatus (CHO)

addNewRental (cr)

opt

s := verifyStatus()

t := findCopy (iid)

cs := verifyStatus()

findCustomer (uid) : c

c : Controller

checkOut(uid, iid)

c : Controller

cc : CollectionCustomer

c : RegisteredCustomer

cc : CollectionTruck

t : Truck

cr : VehicleRental {new}

ct : CollectionVehicleRental

opt

ct : CollectionTruck

t : Truck

opt

(a) Sequence Diagram for

the Car Rental Checkin Scenario

[s = true]

[cs = true]

[e = false]

Figure 5.8: CICO Conformant Vehicle Rental Scenarios

body of work on domain engineering processes and domain modeling notations (e.g.,

see [72, 6, 43, 101, 54]). Our approach can complement the above efforts by providing

a notation for representing patterns. Tool vendors can use the pattern specifications

to create specializations of UML constructs that have the properties specified by the

patterns.

Pattern languages for specifying Business Resource Management patterns have

been developed (e.g., see [14, 15]). Braga et al. [14] use Class diagrams to describe

three patterns related to resource rental, trade and maintenance activities. They use

111

the diagrams to stamp out class diagrams describing application-specific activities

such as library service, medical attendance, video rental, and real estate rental. Their

approach supports only specification of structural properties.

5.4 Lessons Learned

This chapter has described the potential of the RBML to define a domain pattern

as a domain-specific UML sub-language that defines a family of UML models in the

domain.

Modeling tools that allow users to define and utilize domain patterns are needed

to support systematic reuse of domain-specific modeling experience. One can envis-

age a development environment in which domain engineers develop domain patterns

and embed them in modeling tools so that application developers can use them to

develop application-specific models. The RBML can be used as the base for such

modeling environments. A prototype tool, RBML-Pattern Instantiator (RBML-PI)

(see Chapter 7), that supports this approach has been developed.

Another approach would be based on the UML sub-language defined by a domain

pattern. A tool that exploits this view of a domain pattern will allow a modeler

to construct models that conform to the sub-language. Such a tool would look like

a typical modeling tool, that is, the tool would have a symbol area and a drawing

area. The symbol area includes symbols representing the elements characterized by

the domain pattern. In the case of the CICO pattern, there will be symbols for Item

and User classes (or hierarchies). Modelers would select a symbol from the symbol

area and drag it onto the drawing area. For example, dragging an Item class to the

drawing area would result in an item class being displayed with slots for features that

play the feature roles defined in the Item role. The metamodel (i.e., the specialized

UML metamodel defined by the pattern) constrains how the symbols can be connected

together in the drawing area.

112

The RBML can also be used to define lightweight UML profiles. A lightweight

profile defines an extended UML metamodel that does not add or remove UML meta-

model elements or constraints, that is, it simply extends the features associated with

existing metamodel elements. A problem with existing mechanisms used to define

UML profiles is that they are defined informally using text. Such informality be-

comes an obstacle to the development of tools. The RBML can be used to specify

profiles in a form that can facilitate the development of tool support.

113

Chapter 6

Using the RBML to Specifying
Access Control Aspects

In this chapter, RBML templates, a special form of RBML specifications that uses

parameters instead of roles, are used to specify two popular access control aspects,

Role-Based Access Control (RBAC) [26] and Mandatory Access Control (MAC) [91],

and propose a Hybrid Access Control (HAC) by merging RBAC and MAC. These

specifications can be used to incorporate the access control policies into a model.

RBML templates are used to support systematic composition of the policies with a

model.

An RBML template consists of an SPS template and IPS templates which are

restricted forms of SPSs and IPSs, respectively. An SPS template comprises of tem-

plates that correspond to SPS roles (e.g., classifier roles, association roles). For exam-

ple, a classifier template correspond to a classifier role. Templates are instantiated by

binding their parameters to application elements. In this work, only SPS templates

are used to characterize the static structure of the policies.

The rest of the section is organized as follows. Section 6.1 gives an overview of

aspects. Section 6.2.4 describes how RBML templates can be used to specify RBAC,

MAC, and HAC. Section 6.3 illustrates how the RBAC specification can be used to

develop secure systems using a banking application. Section 6.4 gives an overview of

114

related work, and Section 6.5 concludes the section with the lessons learned from this

study.

6.1 Overview of Aspects

Separation of concerns that cut across a system is essential in the development of the

system to reduce complexity. There have been programming languages and design

methods that provide useful modularity mechanisms. They have, however, limitation

for concerns that crosscut over the system. Such concerns cannot be encapsulated

in single modules. Aspect-oriented software development (AOSD) is a new software

development paradigm for separation of concerns (SOC) which provides mechanism

to localize the crosscutting concerns and weave them into the system components.

AOSD allows to improve software quality components such as understandability,

adaptability, maintainability, and reusability by localizing concerns. Realizing these

benefits requires addressing some of non-trivial questions and issues like 1) what

types of pervasive dependability concerns can be effectively encapsulated, and what

forms of encapsulations are appropriate, 2) how to resolve conflicts when a system is

required to satisfy a number of conflicting dependency goals, 3) how should weaving

(composition) be performed, and 4) how does one determine whether the woven model

meets desired goals.

AOSD is rooted from programming initiatives known as aspect-oriented program-

ming (AOP) [56]. AOP promotes code reuse by localizing the implementation of

design features that cut across multiple functional units. In AOP, an aspect is a con-

cept that cleanly encapsulates a crosscutting concern that cannot be localized to a

single class. A simple example is writing logging messages whenever certain methods

are called. Instead of manually inserting the message logging code to many classes, an

aspect that includes the code to log the message can be used for systematic insertion

to the classes using the insertion points (known as joint points).

115

Research initiatives have taken to develop techniques and mechanisms that provide

support for multi-dimensional separation of concerns in the design phase of software

development known as aspect-oriented modeling (AOM) [38]. AOM techniques al-

low developers to encapsulate dependability concerns in aspect models that can be

composed with models of functionality. While AOM techniques share many benefits

with AOP techniques, the abstraction provided by AOM techniques help designers

communicate aspects and increase traceability from design to code which can be au-

tomatically generated. In this work, design aspects are viewed as a particular type of

design patterns that addresses cross-cutting concerns.

There are many problems to be solved in AOM. One of the major problems is

to develop aspect modeling languages. Using object-oriented methods and languages

(e.g., UML) for modeling aspects can be considered as a partial solution, but not

a suitable solution since UML was not designed to provide constructs to describe

crosscutting concerns. Special support for designing aspects is needed to support the

design process and traceability in AOM.

6.2 Specifying Access Control Aspects as Patterns

An access control policy provides a set of rules, concepts, and guidelines for defining

access control policies. Two popular policies are Role Based Access Control (RBAC)

and Mandatory Access Control (MAC). In this section, RBAC and MAC are specified.

The resulting specifications are then merged to produce a Hybrid Access Control

(HAC) specification. HAC can be used when organizations have to merge policies

that are based on RBAC and MAC, or as a base for defining access control policies

in a military domain where RBAC and MAC policies are often used together.

An access control policy is described by a set of RBML templates, a restricted

form of RBML specifications that uses parameters instead of roles. Instantiating an

RBML template results in a UML model that describes an application-specific policy

116

that conforms to the access control policy.

RBAC and MAC specifications are merged to produce a HAC specification. To

merge the two access control policies, the following are first determined: (1) the

elements in the two policies that will be merged, (2) the elements that will appear

“as is” in the merged specification, and (3) the elements that will be modified or

removed in the composed specification.

6.2.1 Overview of RBAC

RBAC constraints can be organized as follows: Core RBAC, Hierarchical RBAC,

Static Separation of Duty Relations, and Dynamic Separation of Duty Relations.

Core RBAC embodies the essential aspects of RBAC. The constraints specified

by Core RBAC are present in any RBAC model. Core RBAC requires that users

be assigned to roles (job function), roles be associated with permissions (approval to

perform an operation on an object), and users acquire permissions by being assigned

to roles. Core RBAC does not place any constraint on the cardinalities of the user-role

assignment relation or the permission-role association. Core RBAC also includes the

notion of user sessions. A user establishes a session during which he activates a subset

of the roles assigned to him. Each user can activate multiple sessions; however, each

session is associated with only one user. The operations that a user can perform in a

session depend on the roles activated in that session and the permissions associated

with those roles.

Hierarchical RBAC adds features supporting role hierarchies. Hierarchies are used

to describe a structure of roles in an organization. Role hierarchies define an inheri-

tance relation among the roles. Role r1 inherits from role r2 only if all permissions of

r2 are also permissions of r1 and all users of r1 are also users of r2. The inheritance

relationship is reflexive, transitive and anti-symmetric.

Static Separation of Duty (SSD) relations are necessary to prevent conflict of

117

interests that arise when a user gains permissions associated with conflicting roles

(roles that cannot be assigned to the same user). SSD relations are specified for any

pair of roles that conflict. An SSD relation places a constraint on the assignment

of users to roles, that is, membership in one role that takes part in the relation

prevents the user from being a member of the other conflicting role. SSD relations

are symmetric, but it is neither reflexive nor transitive. SSD relations may exist in

the absence of role hierarchies (referred to as SSD RBAC), or in the presence of role

hierarchies (referred to as hierarchical SSD RBAC). The presence of role hierarchies

complicates the enforcement of the SSD relations: before assigning users to roles

not only should one check the direct user assignments but also the indirect user

assignments that occur due to the presence of the role hierarchies.

Dynamic Separation of Duty (DSD) relations aim to prevent conflict of interests

as well. A DSD relation places a constraint on the roles that can be activated in a

user’s session. If one role that takes part in a DSD relation is activated, the user

cannot activate the related (conflicting) role in the same session. Fig. 6.1 shows a

model of RBAC [26].

user_sessions session_roles

USERS
Permission Assignment

(PA)(UA)
User Assignment

Role HierarchySSD
(RH)

DSD

ROLES

SESSIONS

OPS OBS

PRMS

Figure 6.1: RBAC

118

The RBAC in Fig. 6.1 consists of: 1) a set of users (USERS) where a user is

an intelligent autonomous agent, 2) a set of roles (ROLES) where a role is a job

function, 3) a set of objects (OBS) where an object is an entity that contains or

receives information, 4) a set of operations (OPS) where an operation is an executable

image of a program, and 5) a set of permissions (PRMS) where a permission is an

approval to perform an operation on objects. The cardinalities of the relationships

are indicated by the absence (denoting one) or presence of arrows (denoting many)

on the corresponding associations. For example, the association of user to session

is one-to-many. All other associations shown in the figure are many-to-many. The

association labeled Role Hierarchy defines the inheritance relationship among roles.

The association labeled SSD specifies the roles that conflict with each other. The

association labeled DSD specifies the roles that cannot be activated within a session

by the same user.

An application that satisfies the constraints specified by RBAC is referred to as

a conforming model, otherwise it is said to be non-conforming. An example of a

hierarchical SSD constraint is given below (see [26] for a more formal definition):

• Let assigned users(r:ROLE) be the set of all users that are assigned to the

role r.

• Let SSD be the collection of all pairs (r1, r2) such that users cannot be assigned

to both role r1 and r2.

• Let inherits from(r:ROLE) be the set of all roles {r1, r2, . . . , rn} such that

permissions of rj (j = 1 . . . n) are also permissions of role r and users of role r

are also users of role rj.

• Let senior role(r:ROLE) be the set of all roles that inherit from role r.

• Let authorized users(r:ROLE) be the set of all users that are directly assigned

119

to r and any role belonging to senior role(r).

• Hierarchical SSD Constraint:

∀ (r1, r2) ∈ SSD, authorized users(r1) ∩ authorized users(r2) = ∅

Consider a banking application. The roles of interest are: FinancialSuper-

visor, AccountsReceivableClerk, and BillingClerk. The role FinancialSupervisor

inherits from the roles AccountsReceivableClerk and BillingClerk. The roles

AccountsReceivableClerk has an SSD relationship with the role BillingClerk.

Let users Finn, Adam, and Bill be assigned to the roles FinancialSupervisor,

AccountsReceivableClerk, and BillingClerk respectively. For the given application,

the following configuration is given:

• assigned users(FinancialSupervisor) = {Finn}

• assigned users(AccountsReceivableClerk) = {Adam}

• assigned users(BillingClerk) = {Bill}

• inherits from(FinancialSupervisor) = {AccountsReceivableClerk, BillingClerk}

• senior role(AccountsReceivableClerk) = {FinancialSupervisor}

• senior role(BillingClerk) = {FinancialSupervisor}

• SSD = {(AccountsReceivableClerk, BillingClerk)}

• authorized users(AccountsReceivableClerk) = {Adam, F inn}

• authorized users(BillingClerk) = {Bill, F inn}

The above is an example of a non-conforming application because it does not

satisfy the hierarchical SSD constraint:

authorized users(AccountsReceivableClerk) ∩ authorized users(BillingClerk)

= {Finn} 6= ∅

120

6.2.2 Specifying RBAC

Based on the description of RBAC given in the previous subsection, participants

of User, Role, Session, Permission, Object, and Operation are identified as classifier

templates for hierarchical RBAC with SSD and DSD as shown in Fig. 6.2. The symbol

“|” denotes parameters.

|h

|junior

|senior

|n

|SessionRoles

|q|ExecuteOn

|p

|m

|l|k

|j

|i

|Operation

|RoleHierarchy

|Role

|PermAssignment

|User

|d

|g

|UserAssignment

|c

|InvokeOperation(|obj:|Object,

|Session

|b

|op:|Operation)

|UserID: |String

|DeassignRole (|r: |Role)
|AssignRole (|r: |Role)
|DeleteSession(|s : |Session)
|CreateSession(|s : |Session)

|op:|Operation) : |Boolean
|CheckAccess(|obj:|Object,
|DropActiveRole(|r : |Role)
|AddActiveRole(|r : |Role)

|e

|SSD

|AddInheritance(|r : |Role)

|GrantPermission (|p : |Permission)

|CheckAccess (|obj : |Object,
|RevokePermission (|p : |Permission)

|DeleteSSDRole(|r : |Role)
|CheckSSD(|r : |Role): |Boolean

|AddSSDRole(|r : |Role)

|a

|UserSessions

1

{|o.lowerbound = 1} {|q.lowerbound = 1}

|f
|o

|Object

|Name: String

|Permission

|CheckAccess(|obj : |Object,
|op : |Operation) : |Boolean

|DeleteInheritance(|r : |Role)

|op : |Operation): |Boolean

Figure 6.2: RBAC Template

The User class template represents users. A user can create a new session (Create-

Session), delete a session (DeleteSession), associate self with a new role AssignRole

and remove an associated role (DeassignRole). A UserSessions link (i.e., an instance

of an association obtained by binding the parameters of UserSessions to values) is

created by a CreateSession operation (i.e., an operation obtained by binding the oper-

ation parameters to values) and deleted by a DeleteSession operation. The operation

AssignRole creates a UserAssignment link; the DeassignRole removes a UserAssign-

121

ment link.

Unlike the multiplicities on association-end roles in RBML specifications which

constraint the number of association-ends that can be attached to conforming clas-

sifiers, a multiplicity on an association-end in RBML templates specifies the multi-

plicity on the corresponding association-end in an instantiated model. For example,

in Fig. 6.2 the multiplicity “1” on the UserSessions association-end specifies the

multiplicity at an instance of the User template that a session can only be associated

with one user.

The Role class template is used to produce classes representing roles with be-

havior that associates a new permission with the role (GrantPermission), deletes an

existing permission associated with the role (RevokePermission), adds an immediate

inheriting role (AddInheritance), deletes an immediate inheriting role (DeleteInheri-

tance), adds a role to the set of conflicting roles (AddSSDRole), deletes a role from

the existing set of conflicting roles (DeleteSSDRole), checks the SSDs associated with

a role in the presence of hierarchies (CheckSSD), checks whether a role has some

permission (CheckAccess), checks whether there is a DSD relation between two roles

or not (CheckDSD), deletes a role from the existing set of roles in a DSD relation

(DeleteDSDRole), and adds a role to the set of roles in DSD relation (AddDSDRole).

The Session class template is associated with the operations: AddActiveRole (ac-

tivates a role in a session), DropActiveRole (deactivates a role in a session), and

CheckAccess (checks whether the role has the permission to perform an operation on

an object). The operations GrantPermission and RevokePermission are responsible

for creating and deleting, respectively, PermAssignment links. An SSD link is cre-

ated by the AddSSDRole operation; this link is deleted by the DeleteSSDRole relation.

The operation AddInheritance adds a link RoleHierarchy; DeleteInheritance deletes

this link.

The Permission class template is associated with one operation CheckAccess that

122

checks whether the role has the permission to perform the operation on the object.

The OCL constraints in Fig. 6.2 restrict the values that can be bound to multi-

plicity parameters. {|o.lowerbound = 1} restricts the multiplicities that can be bound

to the parameter o to ranges that have a lower bound of 1.

Each operation parameter is associated with an OCL template expression that

produces OCL pre- and post-conditions when the template parameters are bound to

values. Pre- and post-condition templates associated with the CreateSession and

GrantPermission operations are given below:

context |User::|CreateSession():(|s:|Session)

post: result = |s and

|s.oclIsNew() = true and

self.|Session → includes(|s)

context |Role::|GrantPermission (|p:|Permission)

pre: self.|Permission → excludes(|p)

post: self.|Permission → includes(|p)

RBAC constraints that restrict SSD and DSD relationships are expressed as OCL

template expressions. Examples of these constraints are given below:

• SSD constraint. A user cannot be assigned to two roles that are involved in an

SSD relation:

context |User inv:

self.|Role → forAll(r1, r2|r1.|SSD → excludes(r2))

• Hierarchical SSD constraint. There cannot be roles in an SSD relation which

have the same senior role:

context |Role inv:

123

let allSenior(r1) = r1.senior → union(r1.senior → collect(r2|allSenior(r2)))

in

self.|SSD → forAll(r1|allSenior(r1) → excludesAll(allSenior(self))

• DSD constraint. A user cannot activate two roles in DSD relation within a

session:

context |User inv:

|self.|Session.|Activates → forAll(r1, r2|r1.|DSD → excludes(r2))

6.2.3 Specifying MAC

The MAC policy used in this research is adapted from the Bell-La Padula model [91].

The Bell-La Padula model is defined in terms of a security structure (L,≥). L is the

set of security levels (e.g., top secret, secret, confidential, unclassified), and ≥ is the

dominance relation between these levels that a higher security level dominates a lower

security level. The main components of this model are objects, users, and subjects.

Objects contain or receive information. Each object in the Bell-La Padula model is

associated with a security level which is called the classification of the object. User,

in this model, refers to human beings. Each user is also associated with a security

level that is referred to as the clearance of the user. Each user is associated with one

or more subjects. Subjects are processes that are executed on behalf of some user

logged in at a specific security level. The security level associated with a subject is

the same as the level at which the user has logged in.

The mandatory access control policies in the Bell-La Padula model are specified

in terms of subjects and objects. The policies for reading and writing objects are

given by the Simple Security and Restricted-⋆ Properties.

• Simple Security Property: A subject S may have read access to an object O

only if the security level of the subject L(S) dominates the security level of the

124

object L(O), that is, L(S) ≥ L(O).

• Restricted-⋆ Property: A subject S may have write access to an object O only

if the security level of the subject L(S) equals to the security level of the object

L(O), that is, L(O) = L(S).

The static structural aspects of the MAC is described in the SPS template shown

in Fig. 6.3.

|dominator

|SecurityLevel

|Name: |String

|Dominators() : Set(|SecurityLevel)
|Dominatees() : Set(|SecurityLevel)

1

|UserClearance

|DeleteDominator(|s:|SecurityLevel)
|AddDominator(|s:|SecurityLevel)
|DeleteDominatee(|s:|SecurityLevel)
|AddDominatee(|s:|SecurityLevel)

|Dominates

|v

|u

|ObjectClassification

1

|dominatee
|c

|s

|o

|Subject

 |op: |Operation)
|InvokeOperation(|obj:|Object,
|op: |Operation):Boolean

|CheckAccess(|obj:|Object,

|ObjectOperation

|SubjectSecurityLevel |SubjectOperation

|b

|d

1

|UserSubject1

|w

|Write|Read

|Operation

|p

|sl:|SecurityLevel)
|CreateSubject(|s:|Subject,

|UserID: |String

|User

|Name: |String

|Object

|a

Figure 6.3: MAC Template

The User class template represents users. A user can create a new session (Cre-

ateSubject). The Subject class template subjects with behavior that checks whether

the requested operation can be invoked on the object (CheckAccess and executes the

requested operation on the object InvokeOperation.

125

The SecurityLevel class template represents the structure of security levels with

behavior that adds a new dominatee in the structure (AddDominatee), deletes an

existing dominatee from the structure (DeleteDominatee), adds a new dominator

in the structure (AddDominator), deletes an existing dominator from the structure

(DeleteDominator), get the set of security levels of dominatees (Dominatees, and get

the set of security levels of dominators (Dominators.

MAC constraints that restrict reading and writing objects and user access to

subjects are expressed as follows:

• Reading constraint. The security level of the subject dominates the security

level of the object:

context |Readinv:

self.|Subject.|SecurityLevel ≥ self.|Object.|SecurityLevel

• Writing Constraint. The security level of the subject equals to the security level

of the object:

context |Write inv:

self.|Subject.|SecurityLevel = self.|Object.|SecurityLevel

• User access to subjects. The security level of the user accessing the subject

dominates or equal to the security level of the subject:

context |Subject inv:

(self.|User.|SecurityLevel.|dominator → includes (self.|SecurityLevel)) or

(self.|User.|SecurityLevel = self.|SecurityLevel)

6.2.4 Specifying HAC

Situations can arise in which organizations have to merge policies that are based on

different access control policies. Examples of such situations are when organizations

126

using different access control policies are merged (through acquisitions or consolida-

tions) or when the organizations need to share protected resources in a joint endeavor.

In such cases one needs to ensure that unauthorized persons are not inadvertently

given access to protected resources, and that authorized persons are not denied access

to resources as a result of emergent properties of the merged policies.

This subsection describes how RBAC and MAC can be merged. The following

describes the steps to merge them:

Step 1 Identify the entities in each of the access control policies.

Step 2 Compare the definition of an entity in one specification to that of another

in the second specification, and determine which represent similar concepts and

which represent dissimilar concepts.

Step 3 Matched entities (those representing similar concepts as determined in the

previous step) are merged in the composed specification.

Step 4 Dissimilar entities that must be present in the composed specification are

added “as is” to the composed specification, or are modified (as determined in

step 2). Entities that have been identified for elimination are not added to the

composed specification.

The following are observed about the elements in MAC and RBAC:

• User, Object, Operation are used in both the specifications and they each refer

to the same concepts (see Section 6.2.1 and 6.2.3).

• Subject (used in MAC) and Session (used in RBAC) refer to the same concept

[?].

• SecurityLevel appears in one specification (MAC) but not in the other (RBAC).

127

Based on the above observations, the algorithm is applied to generate the hybrid

access control specification shown in Fig. 6.4.

|sl : |SecurityLevel)
|DeleteSession (|s : |Session)
|AssignRole (|r: |Role)
|DeassignRole (|r: |Role)
|AssignedRoles () : Set(|Role)
|AuthorizedRoles () : Set(|Role)

1

|UserSessions

|Operation

|f
|s|SubjectOperation |r

|t

|Session

|AddActiveRole(|r : |Role)

|Permission

|m

|PermAssignment

|k

|PermObjects
|PermOperations

|j

|senior

|junior

|b |c

|UserAssignment|CreateSession (|s : |Session,

|x

|Role

|Name: String
|g

|DropActiveRole(|r : |Role)

|Name : |String
|ObjectClassification

|SecurityLevel

|u

|dominator

|dominatee |v

1|UserClearance 1

|p

|Object
|q

|ExecuteOn

|y
|o

|Dominators() : Set(|SecurityLevel)

|CheckAccess(|obj:|Object,

|op:|Operation)
|InvokeOperation(|obj:|Object,

|op:|Operation) : |Boolean

|d

|a

|UserID: |String

|e|SessionRoles

|User

1

|AddDominatee(|sl : |SecurityLevel)
|DeleteDominatee(|sl : |SecurityLevel)
|AddDominator(|sl : |SecurityLevel)
|DeleteDominator(|sl : |SecurityLevel)
|Dominatees() : Set(|SecurityLevel)

|s

|GrantPermission (|p : |Permission)

{|o.lowerbound = 1} and {|q.lowerbound = 1}

Read Write

|RevokePermission (|p : |Permission)

|AssignedUsers () : Set(|User)

|Ascendants() : Set(|Role)

|SSDRoles() : Set(|Role)
|Descendants() : Set(|Role)

|AuthorizedUsers () : Set(|User)

|DeleteDSDRole(|r : |Role)

|DSDRoles() :Set(|Role)

|AddAscendant(|r : |Role)
|DeleteAscendant(|r : |Role)
|AddDescendant(|r : |Role)
|DeleteDescendant(|r : |Role)

|AddDSDRole(|r : |Role)
|DeleteSSDRole(|r : |Role)
|AddSSDRole(|r : |Role)

|CheckAccess (|obj : |Object,
|op : |Operation): |Boolean

|CheckAccess(|obj : |Object,|l

|n

|op : |Operation) : |Boolean

|h

|SSD

|i

|RoleHierarchy|DSD

|r

Figure 6.4: HAC Template

1. The User elements are merged in the two specifications. The attribute pa-

rameters are identical in both RBAC and MAC. The MAC specifies only one

operation CreateSubject for User. The merged element includes the operations

from the User element in RBAC and also those of MAC. The merged element

128

appears in the hybrid specification and this is referred to as User.

2. The elements Object and Operation in both the specifications are identical.

Each of these elements are added to the hybrid specification.

3. The element SecurityLevel (present in MAC but not RBAC) is added to the

hybrid specification.

4. The elements Session and Subject refer to the same concept. These elements

are merged. Since Subject is associated with SecurityLevel, the merged el-

ement is now associated with a security level. The merged element is re-

ferred to as Session in the hybrid specification. From comparing these two

elements in the two specifications, RBAC Session is found to have operations,

such as, AddActiveRole and DropActiveRole that are not present in Subject.

These operations are added in the Session element of HAC. Both Subject and

Session have CheckAccess and InvokeOperation. These operations if differ-

ent must be merged. The CheckAccess operation in HAC is changed to reflect

this. The merging of Subject and Session also affects other elements. For

instance, consider the class template User in HAC. From Step 1, the opera-

tions of User are CreateSession, DeleteSession, AssignRole, DeassignRole,

and CreateSubject. Since Subject and Session are merged, only one operation

called CreateSession is needed (because the merged entity in HAC is called

Session). Moreover, the CreateSession of RBAC must be changed because

now the security level also has to be passed as a parameter.

6.3 Applying the RBAC Specification

To illustrate application of the RBAC specification to a model, a simple banking

application is used taken from [17]. The application is used by various bank officers

129

to perform transactions on customer deposit accounts, customer loan accounts, ledger

posting rules, and general ledger reports. The transactions include 1) create, delete,

or modify customer deposit accounts, 2) create or modify customer loan accounts, 3)

modify the ledger posting rules, and 4) create general ledger report. A class diagram

(the primary model) for the application is shown in Fig. 6.5.

Account

* *

*

*

*

CustomerDeposit
Account

BankObject
* executesOn

regulatesPostingOf

isInputOf

LedgerPostingRule GeneralLedgerReport

Transaction

Create ModifyDeleteLoanAccount

Figure 6.5: A Banking System Primary Model

Access control policies are not specified in the primary model. RBAC features

can be incorporated into the primary model by composing an instance of the RBAC

template in Fig. 6.2 with the primary model. The composition is carried out as

follows:

1. Instantiating the RBAC template: To incorporate RBAC features into a pri-

mary model, the modeler must first instantiate the RBAC template by binding

parameters to model elements that represent concepts in the domain of the pri-

mary model. Some of elements in the RBAC template may be elements in the

primary model. Class diagrams obtained from the RBAC template are referred

to as context-specific RBAC instance. Fig. 6.6 shows a context-specific RBAC

instance for the banking application.

In the diagram BankRole, BankObject, and Transaction are bound to Role,

130

RoleHierarchy

BankSession

op:Transaction): Boolean

deleteSession(s: BankSession)

deassignRole (r: BankRole)
assignRole(r: BankRole)

1..*

1

checkAccess(obj:BankObject,
dropActiveRole(r: BankRole)
addActiveRole(r: BankRole)

createSession(): BankSession

1..*

1..*

deleteDSDRole(r: BankRole)
addDSDRole(r: BankRole)
checkDSD(r: BankRole): Boolean

senior

1..*

*

1..*

BankObject

1..*

*
Transaction

1..*

op: Transaction) : Boolean
checkAccess(obj: BankObject,

Permission
BankUser

1..*

1..*

**

DSD

*

SSD

1..*

deleteSSDRole(r: BankRole)

*

junior

BankRole

1..*

*

addSSDRole(r: BankRole)
checkSSD(r: BankRole): Boolean
deleteInheritance(r: BankRole)
addInheritance(r: BankRole)

op: Transaction): Boolean)
checkAccess(obj: BankObject,

* name: String

grantPermission (p: Permission)
revokePermission (p: Permission)

Figure 6.6: A Context-Specific RBAC Class Diagram

Object, and Operation in the RBAC template.

2. Merging the context-specific instance with the primary model: The view defined

by the context-specific RBAC instance is merged with the view defined in the

primary model to obtain a composed model. Elements in the instance and the

primary model are merged if and only if they have the same syntactic type

(i.e., UML metamodel class) and name. Model elements in the context-specific

RBAC instance that do not exist in the primary model are added to the primary

model.

The result of the composition is a composed model in which access control fea-

tures specified by the context-specific RBAC instance are incorporated into the pri-

mary model. The composed model for the banking system is shown in Fig. 6.7.

In the diagram, BankObject and Transaction in the context-specific RBAC instance

131

were merged with BankObject and Transaction in the primary model, and BankUser,

BankRole, BankSession, and Permission classifiers were added to the primary model.

*

*

1..*1..*

deleteDSDRole(r: BankRole)

addDSDRole(r: BankRole)

checkDSD(r: BankRole): Boolean

1..*

grantPermission (p: Permission)

SSD

createSession(): BankSession

deleteSSDRole(r: BankRole)

deleteSession(s: BankSession)
assignRole(r: BankRole)

revokePermission (p: Permission)
checkAccess(obj: BankObject,

op: Transaction): Boolean)
addInheritance(r: BankRole)
deleteInheritance(r: BankRole)
checkSSD(r: BankRole): Boolean
addSSDRole(r: BankRole)

*

*

1..*

name: String

BankRole

junior

*

*

Permission

op: Transaction) : Boolean
checkAccess (obj: BankObject,

1..*

BankSession

BankUser

1..*

**

DSD

* senior

RoleHierarchy

1..*

*

Transaction

1..*

* *
BankObject

isInputOf

regulatePosingOf

1..*

addActiveRole(r: BankRole)
dropActiveRole(r: BankRole)
checkAccess(obj:BankObject,

op:Transaction): Boolean

1..*

deassignRole(r: BankRole)

1..*

1..*

Create Modify Delete

Account General
Ledger
Report

Ledger
Posting
Rule

Customer
Account Account

Loan

*

Figure 6.7: Composed Model

The RBAC banking model supports four types of policies: 1) core policies that

conform to core RBAC, that is, policies that determine user-role and role-permission

assignments, 2) hierarchical policies that conform to hierarchical RBAC, that is, poli-

cies that determine inheritance relationships between roles, 3) SSD policies that con-

form to SSD RBAC, that is, policies that determine what roles are conflicting, and

4) DSD policies that conform to DSD RBAC, that is, policies that determine what

roles to be activated in a session.

132

6.4 Related Work

A large volume of research exists in the area of specification of access control policies.

Formal logic-based approaches [9, 10, 13, 20, 45, 51, 75] are often used to specify

security policies. They assume a strong mathematical background which makes them

difficult to use and understand. Other researchers have used high-level languages to

specify policies [48, 49, 74, 86]. Although high-level languages are easier to understand

than formal logic-based approaches, they are not analyzable.

Researchers [68, 53] have also investigated extending UML for representing access

control. Lodderstedt et al. [68] propose SecureUML and define a vocabulary for

annotating UML-based models with information relevant to access control. Jürgens

[53] models security mechanisms based on the multi-level classification of data in a

system using an extended form of the UML called UMLsec. The UML tag extension

mechanism is used to denote sensitive data. Statechart diagrams are used to model

the dynamic behavior of objects, and sequence diagrams are used to model protocols.

Several researchers have looked into integrating the mandatory access control

and role-based access control models. Osborn [76] examines the interaction between

RBAC and MAC, and discusses the possible structures of role graphs that do not vio-

late the constraints imposed by MAC. In their approach when a subject is assigned to

a role, the subject can perform all the privileges in the role. Nyanchama and Osborn

[73] discuss the realization of MAC in role-based protection systems.

Phillips et al. [79] examine the unification of MAC and RBAC into a security

model and enforcement framework for distributed applications. In their work, RBAC

is extended to include MAC to ensure that the clearance of users playing roles meet

or exceed classification of resources, services, and methods being utilized. A role is

assigned a classification, and the authorized user must possess a classification greater

than or equal to the role classification.

133

6.5 Lessons Learned

In this study, the potential of the RBML to specify cross-cutting functionality has

been evaluated using templates. Two access control policies, Role-Based Access Con-

trol (RBAC) and Mandatory Access Control (MAC), are studied. The specifications

of RBAC and MAC can be used to systematically incorporate the policies into a

model. A Hybrid Access Control (HAC) is proposed by merging the specifications of

the RBAC and MAC. HAC can be used in the domains where both RBAC and MAC

policies are needed such as the military domain.

The study has shown that RBML templates are suitable to specify the security

aspects in a form that supports systematic composition (weaving) of the aspects with

applications to incorporate properties of aspects. The template form is effective in

instantiating policies through one-to-one binding between parameters and application

elements. The instantiated model is then composed with a primary model.

When establishing the notion of RBML templates, it was found that the semantics

of association-end roles in RBML specifications needs to be adapted in RBML tem-

plates. In RBML specifications, a multiplicity on an association-end role constraints

the number of associated-ends that can be attached to a classifier. This is adapted in

RBML templates that association-ends are parameterized or specified with a constant

value. An instantiated association-end then has a value that is either the constant

value or passed through the parameter.

The work described in this chapter focuses on specifying the static structure of the

access control policies. A complete specification should also include descriptions of

behavioral aspects of the policies. These aspects characterize allowed and prohibited

behaviors by the policies. These can be specified in a template form of IPSs (see

[62, 84] for examples).

The RBAC policies for a given application can be tested against a set scenarios,

some of which can be obtained by instantiating the IPS templates of RBAC. For ex-

134

ample, in order to evaluate the impact of an RBAC policy on a system, test scenarios

that model prohibited behaviors can be obtained by instantiating RBAC interaction

patterns that describe prohibited behaviors. Such tests can be used to determine if

the manner in which the policies are addressed in the design are sufficient to prevent

unauthorized access.

A tool that allows developers to create and instantiate RBML templates has been

developed (see Chapter 7). The composition process presented in this chapter is done

manually. Subsequent work will focus on developing a tool that automates, in part,

the composition process.

The RBML has been used in other aspect research groups at CSU and

NASA/Ames Research Center. The group at CSU uses the RBML to define de-

sign aspects as crosscutting modeling concept [30, 36, 37, 50]. NASA uses the RBML

to specify crosscutting requirements of a system [7, 104].

135

Chapter 7

RBML Tool Support

This chapter describes a prototype tool named RBML Pattern Instantiator (RBML-

PI) that supports the RBML. RBML-PI allows one to generate UML models from

RBML pattern specifications. Unlike other tools [28, 69, 77] where only uniform

instantiations are allowed, RBML-PI allows structural variations of instantiations

through variation points where user can specify application information.

A major benefit of the RBML is the utilization of UML modeling tools. Since

the RBML is based on the UML, UML modeling tools can be used to build RBML

specifications. In this work, IBM Rational Rose is used to build RBML specifica-

tions. RBML-PI takes RBML specifications as input to generate class diagrams and

sequence diagrams. After instantiation, application developer completes the model

by binding application-specific elements to the generated elements in the diagrams.

In this chapter, the CheckIn-CheckOut (CICO) domain-specific pattern presented

in Chapter 5 is used to demonstrate the tool. The CICO pattern is used to generate

design models of a library system and a vehicle rental system.

The rest of the chapter is organized as follows. Section 7.1 gives an overview of

RBML-PI. Section 7.2 describes how RBML-PI can be used to generate models from

the CICO pattern. Section 7.3 discusses related work. Section 7.4 concludes the

chapter.

136

7.1 RBML Pattern Instantiator

RBML-PI is built on top of Rational Rose as an add-in component developed in C++.

Several UML modeling tools (IBM Rational Rose, Together, ArgoUML, Poseidon,

Microsoft Visio) were considered as a base tool of RBML-PI. Rose was chosen for the

following reasons:

• Full support for sequence diagrams is needed. Other tools do not support

sequence diagrams or are lack of features. For example, support for redirection

of message source and target is not allowed or very limited.

• RBML-PI was developed in collaboration with NASA/Ames Research Center

for the Air Traffic Control System project. They developed a tool based on

Rose that generates statemachines from scenarios (i.e., sequence diagrams).

Rose was chosen for the support of code generation from statemachines (using

a tool such as RoseRT) which many UML tools do not support. Code generation

from statemachines is useful for execution of generated state machines. In this

research, Rose was chosen to be compliant with their tool, so that the two

can work together. RBML-PI can generate sequence diagrams that conform to

a pattern specification, and the generated sequence diagrams can be fed to a

statemachine generator to obtain statemachines.

• Rose provides a good API called Rose Extensibility Interface that allows one to

access the UML metamodel for manipulation of UML models.

One of the limitations of using Rose is that add-ins must be COM-compliant

object which limits one to MS/Windows. Alternatively, XMI-based approaches can

be investigated to overcome the limitation.

The development of the tool benefited from the UML syntax used as a based in

the RBML. First, drawing features provided by Rose can be used to build RBML

137

specifications. Second, processing RBML specifications can be supported by the

UML modeling tool through the provided API, because RBML specifications can be

treated as UML models. Third, generated models can be manipulated in Rose like

other UML models built by Rose. For example, changing a class or an operation

in an instantiated class diagram requires corresponding changes in related sequence

diagrams. Such changes can be supported by Rose.

Figure 7.1: RBML-PI Class Diagram

The core structure of RBML-PI is shown in Fig. 7.1. It consists of Even-

tHandler, RBMLHandler, SPSHandler, IPSHandler, MetaConstraintsHandler, and

OperationInfo. EventHandler intercepts the event of clicking RBML menu and ini-

tializes RBML-PI. RBMLHandler initiates calls to the SPSHandler and IPSHandler

in sequence (because IPSs are dependent on an SPS) to generate a class diagram and

sequence diagrams. SPSHandler and IPSHandler read metamodel-level constraints

specified in the pattern specification from MetaConstraintHandler. OperatorInfo sup-

ports UML sequence diagram operators (e.g., repeat, alt) defined in the UML 2.0.

For example, if a repeat operator is defined in an IPS, RBML-PI instantiates the

messages in the repeat box until the condition defined in the repeat is met. Currently

RBML-PI supports only repeat operator.

138

Domain Engineering

Application Engineering

store
build pattern

specifications

select pattern pattern imported

instantiate pattern

model generated

RBML Pattern
Instantiator

Pattern Author

build model
from pattern

Pattern LibraryRose

Rose
Application
Developer

Figure 7.2: Overview of Tool Use

Fig. 7.2 shows how RBML-PI can be used. A pattern author uses Rose to build

RBML pattern specifications and put them into a pattern library, which is a folder

that contains pattern specifications. An application developer chooses a pattern to

use from the library and load it into Rose. After loading, the metamodel-level con-

straints (e.g., realization multiplicities) specified in the specification may be further

constrained for the application requirements. The pattern specification is instantiated

using RBML-PI to generate UML models by binding the generated model elements

to the application concepts of the system. Application-specific elements that are not

part of the pattern specification may be added to complete the model. Pattern prop-

erties that are not specified, but found to be necessary during the application of the

pattern are fed to pattern author for adjustment.

7.2 Instantiating RBML Specifications

This section demonstrates how RBML-PI can be used to develop models of a library

system and a vehicle rental system from the CICO pattern presented in Chapter 5.

139

7.2.1 CICO Pattern Specification

The CICO pattern specification is built in a package using Rose that contains an SPS

and IPSs of the CICO pattern. The package is then exported into a pattern library.

Fig. 7.3 shows the SPS of the CICO pattern. The SPS consists of roles that define do-

main concepts; registered user (User), collection of registered users (CollectionUser),

item check out details (Lending), item (Item), item description (Description), and

checkin/checkout manager (Controller).

Figure 7.3: CICO SPS

Fig. 7.4(a) shows examples of the metamodel-level constraints for the ItemGen-

eralization relationship role. They describe that the base metaclass of the ItemGen-

eralization role is Generalization and there can be zero or more (0..*) generalizations

that play the role. These constraints are used to determine the generalization /spe-

cialization structure of items in an instantiated model.

140

Constraint templates in the RBML define model-level constraints. They can

be instantiated to obtain application-specific model constraints during instantiation.

Fig. 7.4(b) shows the postcondition of the CheckIn behavior in Controller. They are

used to generate post conditions for an CheckIn operation. Currently RBML-PI pro-

vides limited support for instantiation of constraint templates that it simply copies

constraint templates into an instantiated model.

Figure 7.4: CICO Constraints

Fig. 7.5 shows an IPS for a check-in scenario. It describes that the item is found

in the item collection, and its status is checked to determine whether it was checked

out before. If the item was checked out, the return date is set and the status of the

item is updated to available.

Fig. 7.6 shows an IPS for a check-out scenario. An instance of a Controller clas-

sifier invokes FindUser with the user ID uid to obtain a matching user “u” from a

collection of users. The status of the user is verified. If the user is allowed to check out

141

Figure 7.5: CICO CheckIn IPS

Figure 7.6: CICO CheckOut IPS

142

the item, the requested item is retrieved. The status of the item is checked to deter-

mine if the item can be checked out. If the item can be checked out, a lending record

is created. The record is then added to a collection of lendings (CollectionLending),

and the status of the item is updated to unavailable.

7.2.2 CICO Pattern Instantiation

An application developers import the CICO pattern package from the pattern library

into the current project for instantiation. In Rose, the directory structure of the

project is shown on the left-hand side where the CICO package is imported under the

Logical View folder as shown in Fig. 7.7.

The instantiation process includes 1) generating an instantiated model using

RBML-PI, 2) renaming of generated model elements specific to the application, and

3) adding additional application-specific model elements to complete the model.

When generating an instantiated model, RBML-PI takes the metamodel-level

constraints specified in the specification to determine the structure of the model

being generated. For example, RBML-PI uses the lower bound of the multiplicity in

Fig. 7.4(a) to determine the number of generalizations to generate. In this example,

no generalizations are generated since the lower bound is set to zero. Upper bounds

are not used in instantiation, but they are used in checking whether the complete

model still conforms to the pattern specification (conformance checking has not been

implemented yet). For example, if the Item in Fig. 7.3 has a multiplicity of 1..3, the

complete model cannot have more than three Item classes.

Realization multiplicities can be further constrained by application developer dur-

ing instantiation, but cannot be weakened. If multiplicities are weakened, then pat-

tern conformance is broken. For example, if a library system requires at least two

types (Book and Multimedia) of Copy, then the application developer may further

restrict the multiplicity 0..* of ItemGeneralization to 2..* as shown in Fig. 7.7. There

143

Figure 7.7: Further Restiction of Pattern Property

might be situations where generated model constructs are not needed. However, it is

recommended not to remove them for the sake of conformance.

Fig. 7.8 shows a class diagram generated from the CICO SPS in Fig. 7.3. The

following are some of notable points to the diagram:

• The class DescriptionG0 contains four instantiated attributes resulted from the

multiplicity 4..* (not shown) defined in the DetailOfItem structural feature role

in Description in Fig. 7.3. The multiplicity is further restricted from the original

multiplicity 1..*.

• The class ControllerG0 contains two instantiated operations CheckOutG0 and

144

Figure 7.8: An Instantiated Class Diagram for a Library System

CheckOutG1 resulted from the multiplicity 2..* (not shown) defined in the

CheckOut role in Fig. 7.3. The multiplicity is further restricted from the original

multiplicity 1..*.

• There are two specializations ItemGC0 and ItemGC1 created in the diagram as

specified in Fig. 7.7.

• The stereotype on model elements denotes the role from which they are instan-

tiated. It can be used to verify which model elements in the complete model

map to which roles in the CICO SPS.

The sequence diagrams that are instantiated from the CheckIn and CheckOut

IPSs are shown in Fig. 7.9 and Fig. 7.10, respectively. Each instantiated message

in the diagrams has its own activation bar because the Rose API does not support

hierarchical message sequence.

145

Figure 7.9: Instantiated CheckIn Sequence Diagrams for a Library System

Figure 7.10: Instantiated CheckOut Sequence Diagrams for a Library System

The instantiation is not complete yet. The instantiated model elements have

automatically generated names, which need to be bound to application elements. For

example, in the completed library class diagram shown in Fig. 7.11, the instantiated

146

model ItemG0 is bound to Copy in the library system, and its specializations ItemGC0

and ItemGC1 are bound to Multimedia and Book.

Application developer may add application-specific model elements to the instanti-

ated class diagram. In Fig. 7.11, the Reservation class is added to provide reservation

service, the name and address are added to maintain contact information of mem-

bers. Other model elements that are not stereotyped are also application-specific.

Fig. 7.12 and Fig. 7.13 show sequence diagrams for check-in and check-out scenarios

for a library system.

Figure 7.11: A Library Class Diagram

Another example of a vehicle rental system created by RBML-PI is given in Ap-

147

Figure 7.12: A Library CheckIn Sequence Diagram

pendix C.

7.3 Related Work

Florijn et al. [28] demonstrate a tool developed in Smalltalk that supports generat-

ing program elements from a pattern template by instantiation, and integrating the

instance with the existing program by binding program elements to roles in the pat-

tern, and checking whether the resulting instance meets the properties of the patterns.

Structure of patterns is represented by a tree-like graph where a node represents a

program elements (e.g., class, association) which is associated with roles that contain

references pointing to program elements. Pattern descriptions are purely structural,

and few attention has been has been paid to behavioral aspects of patterns. Their

technique is based on non-standard notation, and thus tools that support the notation

have to be developed.

Eden [24] proposes LePUS, a formal language to define patterns in terms of pro-

148

Figure 7.13: A Library CheckOut Sequence Diagram

gram properties, and demonstrates a supporting tool developed in PROLOG that

applies patterns to programs and finds patterns. A program is said to implement

a pattern if the program conforms to the pattern constraints. LePUS focuses on

structural properties of patterns and its application to programs rather than designs,

which restricts to a particular programming language, Eiffel.

Pagel and Winter [77] present a metamodel for describing patterns using Object

Modeling Technique (OMT) [89], and a tool that implements the metamodel and

a pattern repository. Their approach lies along the same line as ours in that they

focus on the use of patterns to support the development of designs. Their pattern

descriptions are templates which are similar to RMBL templates. However, their tool

does not fully support instantiation of the templates.

149

Mapelsden et al. [69] propose the DPML, a visual modeling language, that pro-

vides a set of constructs (e.g., interface, method) to specify design patterns, and

demonstrate a tool that allows to build UML design models and pattern specifica-

tions which is described in non-standard notation and to instantiate them. A pattern

instance is a part of a UML object model that is instantiated from a UML design

model. Participants in a pattern instance are bound to objects in the object model.

In their approach patterns are defined at design level, and thus bindings are done

at object level. Like Florijn et al. using non-standard notation, the DPML requires

exclusive tool support for its notation. No mechanisms are described as to how to

specify behavioral aspects of patterns.

7.4 Lessons Learned

This chapter has evaluated the potential of the RBML to support the development of

tools that enables systematic use of patterns by developing a prototype tool, RBML-

Pattern Instantiator (RBML-PI), that generates UML models from RBML specifica-

tions.

The development of the tool benefited from the UML syntax used as a base in

the RBML. First, drawing features provided by Rose are used to build RBML spec-

ifications. Second, processing RBML specifications is fully supported by the UML

modeling tool through the provided API since RBML specifications can be treated

as UML models because they use the UML syntax. Third, generated models can be

manipulated in Rose as other UML models built in Rose. For example, changing a

class or an operation in an instantiated class diagram requires corresponding changes

in related sequence diagrams. This can be supported by Rose.

This chapter has demonstrated the use of RBML-PI to generate UML class dia-

grams and sequence diagrams of a library system and a vehicle rental system from

the RBML specification of the CheckIn-CheckOut (CICO) pattern. The same ex-

150

amples were used in Chapter 5 where the models are built manually. It was very

time-consuming and tedious. Even a small change like changing a multiplicity for a

classifier role from (1..*) to (2..*) was painstaking to find a room for the new clas-

sifier in the instantiated diagrams. Technically RBML-PI can generate models with

any number of model elements using multiplicity constraints where one can specify

the number of instantiations. However, it has not been tried with more than ten

instantiations for a single classifier role because of the clutter that would have been

created in the diagram which makes the diagram unreadable. In collaboration with

NASA, we used RBML-PI to generate a model of a weather forecasting system using

the Observer design pattern.

There is a lot of work left to be done. The following describes limitations of

RBML-PI that have to be removed in the future versions:

• It does not fully support metamodel-level constraints and constraint templates

expressed in the Object Constraint Language (OCL) [103]. For full support,

tools that can edit and parse OCL expressions are needed. OCL tools that can

be integrated with Rose are currently investigated.

• Currently RBML-PI only supports the hierarchies that have either generaliza-

tion role or realization role, but not both.

• Currently RBML-PI only supports single-level of generalizations or realizations.

• RBML-PI does not check whether user modifications violate the pattern proper-

ties or not. Currently RBML-PI lets users remove instantiated model elements,

which may violate pattern constraints.

• Currently RBML-PI only allows application of one pattern. In practice, there

may be cases where more than one pattern need to be used to solve a problem.

151

• Currently RBML-PI only supports SPSs and IPSs. Support for SMPSs is

needed.

RBML-PI is currently being used at NASA for evaluating systems behavior in

requirement analysis. Subsequent work will focus on developing tools that can ver-

ify pattern conformance, and embed patterns properties into models (pattern-based

model refactoring).

152

Chapter 8

Conclusion and Future Work

A pattern specification language, the Role-Based Metamodeling Language (RBML),

has been developed to achieve the goal of developing a rigorous and practical pattern

specification technique that supports the development of tools that enable systematic

use of patterns.

Rigor and practicality of the RBML has been demonstrated by using it to spec-

ify 1) solutions of popular design patterns, 2) an application-domain pattern, the

CheckIn-CheckOut pattern, and 3) access control aspects: Mandatory Access Con-

trol (MAC), Role-Based Access Control (RBAC), and Hybrid Access Control (HAC).

The potential of the RBML to support the development of tools that enables

systematic use of patterns has been shown by successfully developing a prototype tool,

RBML-Pattern Instantiator (RBML-PI) that generates UML models from RBML

specifications.

There is much work left to be done. SMPSs need to be further developed to

expand their applicability. The work presented in this dissertation only considers

state, trigger, and transition roles. The notion of activity roles needs to be defined to

support specifying actions, for example, states with actions or triggers with actions.

Notation and conformance rules for composite state roles need to be developed. For

example, composite state roles can be used for patterns in the domain of component-

based systems to capture state hierarchies [46]. Checking consistency between SMPSs

153

and IPSs also needs to be investigated. For example, a trigger role and an activity

role in an SMPS can respectively refer to an incoming message role on a lifeline role

and an outgoing message role in an IPS. Consistency checking involves ensuring that

the referred roles exist in an IPS.

There is increasing interest in generating state machines from scenarios described

by sequence diagrams for analysis of system behavior [93, 7, 104]. Along the same

line, SMPSs can be generated from IPSs.

Unlike the descriptions of pattern solutions that have enough information to be

codified, pattern problems are often described by just one or two motivating examples

(see [16, 35, 80, 92]). Work is planned to investigate how the RBML can be used to

specify pattern problems. This becomes especially important in pattern-based model

refactoring [31]. A specification of a problem space of a pattern can be used to check

whether a pattern is applicable to a design model (i.e., the model is a member of the

set of problem models characterized by the problem specification).

In this research, we have focused on functional properties (structural and behav-

ioral properties) of patterns. However, a complete pattern specification with respect

to pattern properties should also include specification of non-functional properties

such as reliability, performance, security, and resource usage. For example, a stochas-

tically timed extension of UML statechart diagrams that allows one to constrain time

values can be used to analyze performance of distributed systems [39]. Extending

this work to cover non-functional properties is an area of further work.

The RBML can be used to support Component-based software development

(CBSD) and UML profile definition. CBSD concerns the development of software

systems from existing components based on a plug-in/plug-out paradigm. An impor-

tant issue in CBSD is to find the components that meet the functional requirements

of the system being built. The RBML can be used to specify the requirements of

components [61]. A specification of component requirements characterizes a set of

154

components. The specification can be used to find a component in the set.

The RBML can also be used to define lightweight UML profiles by defining spe-

cializations of the UML metamodel. A lightweight profile defines an extended UML

metamodel that does not add or remove UML metamodel elements or constraints,

that is, it simply extends the features associated with existing metamodel elements.

A problem with existing mechanisms used to define UML profiles is that they are de-

fined in informal terms, and there is no support for specifying families of constraints

(e.g., families of operation pre- and post-conditions).

155

Appendix A

Design Pattern Specifications

A.1 The Visitor Pattern

|ObjStructElem
Association Role

Classifier Role
|Element

|AbstractVistor
Class Role

|ConcreteElement

Classifier Role

Classifier Role
|ConcreteVistor

|ObjectStructure

Class Role

Class Role

|Visitor

Classifier Role
|AbstractElement

1..*

|Elem 1..1

Generalization RoleRealization Role

b1 |Accept(|vis:|ConcreteVisitor) 1..1
b2 |Operation() 1..*

|ElementRealization |ElementGeneralization
{at least 1}

Generalization Role
|VisitorRealization
Realization Role

{at least 1}

b1 |VisitElem(|elem:|ConcreteElement) 1..*

|VisitorGeneralization

1..* |Obj 1..*

1..*

Figure A.1: A Visitor SPS

156

|Accept(|vis:|ConcreteVisitor)

|Accept(|vis:|ConcreteVisitor)

|Operation()

|VisitElem(|elem[j]:|ConcreteElement)

|vis:|ConcreteVisitor

|elem[i]:|ConcreteElement

|obj:|ObjectStructure

|CompositeInteraction 1..*

[IsChildComposite]

i = 1..NumOfElements
repeat

[Else]

|obj = |elem[i]
|CompositeInteraction

alt

Figure A.2: A Visitor IPS

157

A.2 The Abstract Factory Pattern

|ConcreteProduct

Generalization RoleRealization Role

|Product

|ConcreteFactory|AbstractFactory

|Client

|AbstractProduct

|FactoryRealization
Realization Role

|Factory

|FactoryGeneralization
Generalization Role

b1 |CreateProduct():|Product 1..*

|ClientProduct

Usage Role

|ProductRealization

1..*Class Role

|ClientProductDep

1..*Classifier Role Classifier Role

|Prod 1

Association Role

{at least 1}

Classifier Role

{at least 1}

|Fact 1

Association Role

{at least 1}

|ClientFactory

Usage Role
|ClientFactoryDep

|ProductGeneralization

Classifier Role

{at least 1}

1..*Class Role1..*|ConcreteDep
Usage Role

1Class Role
|Clnt 1..*|Cln 1..*

1..*

Figure A.3: An Abstract Factory SPS

158

A.3 The Iterator Pattern

Generalization Role Realization Role

|Aggregate

|ConcreteAggregate|AbstractAggregate

b1 |CreateIterator(): |Iterator 1..1
s1 |Index : |Int 1..1

b4 |CurrentItem():|Item 1..*

Realization Role
|IteratorRealization

|AbstractIterator

Generalization Role
|IteratorGeneralization

|ConcreteIterator

|Iterator

b3 |IsDone():|Boolean 1..*

|Agt 1..1

|Aggr 1..1

b2 |Next() 1..*
b1 |First() 1..*

Classifier Role

|Iter 1..1

Classifier Role

{at least 1}
{at least 1}

|AggregateGeneralization

|AggrIterCreateDep

|AggregateRealization

Usage Role

Association Role

|Itm 1..1

|AggrItem

Class Role
|Item

1..*

Classifier Role Class Role 1..*

Association Role
|AggrIter 1..1

Class RoleClassifier Role 1..*

Figure A.4: An Iterator SPS

159

CallTrigger Role|T2 1..*

|T1 1..1

|T3 1..*

|T4 1..*

|T6 1..*

|T5 1..*

|End 1..*

|First 1..*

|Next 1..*

|InitialState 1..1

|FinalState 1..1

CallTrigger Role

CallTrigger Role

|IteratorStateMachine

1 1

 |First 1..*
|Initiating |Forwarding

CallTrigger Role

CallTrigger Role

 |Next 1..*

Figure A.5: An Iterator SMPS

160

A.4 The Observer Pattern

The Observer design pattern provides a way to maintain consistency between related

or dependent objects called Observer when one object called Subject changes its state.

All the dependent observers are notified whenever a state change occurs to the subject.

Each observer then queries the subject to synchronize its state with the subject’s state.

The Observer pattern reduces coupling among observers, which increases reusability.

A.4.1 SPS

The class diagrams characterized by an Observer SPS have subject and observer clas-

sifiers that are abstract or concrete where a subject has associations with observers.

A subject class has state attributes and operations for attaching and detaching ob-

servers, notifying to observers, and getting and setting a state. An observer class has

state attributes for synchronization with the subject’s attributes and operations for

updating the attributes.

|Sub 1..*

Classifier Role
|Subject

|Observes
Association Role

|Obs 1..*

b3 |Notify() 1..*

b1 |Attach (|obsv:|Observer) 1..*

s1 |SubjectState: |SubStateType 1..*
|Observer

Classifier Role

b2 |Detach (|obsv:|Observer) 1..*

b4 |GetState(): |SubStateType 1..*

s1 |ObserverState: |ObsStateType 1..*

b1 |Update (|subj:|Subject) 1..*

{at least 1}

Generalization Role
Realization RoleGeneralization Role

|SubjectRealization|SubjectGeneralization Realization Role
|ObserverRealization|ObserverGeneralization

{at least 1}

b5 |SetState(|st:|ObserverState) 1..*

|AbstractObserver
Classifier Role Class Role 1..*

|ConcreteObserver

|AbstractSubject
Classifier Role

|ConcreteSubject
Class Role 1..*

Figure A.6: An Observer SPS

An SPS for the Observer pattern is shown in Fig. A.7. The SPS is an extension

161

of the simplified Observer SPS in Section 3.2.1.5. The extension includes Detach,

GetState, and Notify behaviors in Subject in addition to the behaviors defined in the

Subject in the simplified Observer SPS. Subject hierarchy specifies that if there is

an abstract class that plays AbstractSubject, there must be at least one relationship

playing either SubjectRealization or SubjectGeneralization. A similar interpretation is

applied to Observer hierarchy.

A.4.1.1 Well-formedness Rules

The metamodel-level constraints defined on the Observer SPS are given below:

• A classifier that conforms to AbstractSubject must be an interface or an abstract

class:

context |AbstractSubject inv:

self.oclIsTypeOf(Interface) or

(self.oclIsTypeOf(Class) and self.isAbstract = true)

A similar constraint is defined for AbstractObserver.

• A classifier that conforms to ConcreteSubject must be a concrete class:

context |ConcreteSubject inv: self.isAbstract = false

A similar constraint is defined for ConcreteObserver.

• A relationship that conforms to SubjectRealization must have an interface or a

type at its supplier end and a concrete class at its client end:

context |SubjectRealization inv:

(self.supplier.oclIsTypeOf(Interface) or

(self.supplier.oclIsTypeOf(Class) and self.supplier.isAbstract = true) and

self.client.oclIsTypeOf(Class)

A similar constraint is defined for ObserverRealization.

162

• A relationship that conforms to SubjectGeneralization must have its parent and

child to be the same type:

context |SubjectGeneralization inv:

self.parent.evaluationType() = self.child.evaluationType()

A similar constraint is defined for ObserverGeneralization.

• An association-end that conforms to Sub must have a multiplicity of 0..*:

context |Sub inv: self.lowerBound() = 0 and self.upperBound() = *

• An association-end that conforms to Obs must have a multiplicity of 0..*:

context |Obs inv: self.lowerBound() = 0 and self.upperBound() = *

A.4.1.2 Constraint Templates

The constraint templates for the behavioral feature roles are defined as follows:

• An Attach operation attaches an observer object to the subject object:

context |Subject::|Attach(|obsv:|ConcreteObserver)

pre: true

post: self.|Obs = self.|Obs@pre → including(|obsv)

• A Detach operation removes an observer object from the subject object:

context |Subject::|Detach(|obsv:|ConcreteObserver)

pre: |ConcreteObserver → includes(|obsv)

post: |ConcreteObserver@pre → excluding(|obsv)

• A GetState operation returns the current value of SubjectState:

context |Subject::|GetState():|SubjStateType

pre: true

post: result=|SubjectState

163

• A SetState operation sets the subject state:

context |Subject::|SetState(|newState:|SubStateType)

pre: true

post: |SubjectState = |newState

• An Update operation changes the value of ObserverState to the value obtained

from Subject, and invokes a GetState operation call:

context |Observer::|Update(|subj:|ConcreteSubject)

pre: true

post: let observerMessage: OclMessage =

|ConcreteSubject^^|GetState() → notEmpty() in

observerMessage.hasReturned() and message.result() = st

|ObserverState = st

A.4.2 IPS

Fig. 3.12(a) shows an IPS that describes the pattern of interactions between a sub-

ject and its observers initiated by the invocation of the subject’s Notify opera-

tion. The expression |subj : |ConcreteSubject indicates that the lifeline role subj

is played by an instance of a ConcreteSubject class (i.e., a class that conforms to the

ConcreteSubject role defined in the Observer SPS). The lifeline role obsv[i] is played

by the ith observer in the set of observers attached to the subject playing the subj role.

The repeat fragment in the IPS indicates that the enclosed interaction is repeated

for each observer attached to the subject playing the subj role. NumOfObservers

is the number of observers attached to the subject. The repeat fragment is used

to concisely represent parts of conforming interaction diagrams that have a common

structure. The IPS describes the following interaction pattern:

• Invocation of a subject’s SetState operation (i.e., an operation that conforms to

164

|o[i]:|ConcreteObserver

|s:|ConcreteSubject

|Update (|s)

|GetState() : |st

loop<NumOfObservers>

|NotifyInteraction 1..1

|SetState(|st)

|Notify()

Figure A.7: An Observer IPS

the SetState feature role) results in a call to the Notify operation in the subject.

• The call to the subject’s Notify operation results in calls to the Update operation

in each observer linked to the subject.

• Each Update operation calls the GetState operation in the subject.

165

A.5 The Bridge Pattern

The Bridge design pattern decouples an abstraction from its implementation called

Implementor so that the two can vary independently. The abstraction and implemen-

tor are connected through a relationship called Bridge. An abstraction class can be

specialized to define subclasses of abstractions. Implementor classes implement the

operations defined in the abstraction.

A.5.1 SPS

The class diagrams characterized by a Bridge SPS have abstraction and implementor

classifiers that are abstract or concrete. An abstract (or generalized) abstraction is

associated with an abstract (or generalized) implementor. Implementor classifiers

have operations that implement the operations defined in the abstraction classifiers.

|ConcreteImplementor

Classifier Role
|Implementor

1..*

|Implements
Association Role

|Imp 1..1

Class Role

|Abs 1..1

Realization Role

{at least 1}

|AbstractImplementor
Class Role 1..*

ConcreteAbstractionAbstractAbstraction

|AbstractionRealization

|Abstraction

|AbstractionGeneralization
Generalization Role

b1 |Operation() 1..*

Classifier Role

Classifier Role Classifier Role

|ImplRealization

b1 |OperationImpl() 1..*

{at least 1}

Generalization Role Realization Role
|ImplGeneralization

Figure A.8: A Bridge SPS

Fig. A.8 shows a Bridge pattern SPS that consists of hierarchies of Abstraction

and Implementation. Abstraction hierarchy specifies the structure of abstraction clas-

sifiers where there can be zero or one abstract abstraction and at least one concrete

abstraction that specializes or implements the abstract abstraction. An abstract ab-

straction may not be necessary when there is only one abstraction. This is specified

166

in the multiplicity 0..* (not shown) on AbstractAbstraction. Similarly, Implementor

hierarchy specifies the structure of implementor classifiers where there can be zero

or one abstract implementor and at least one concrete abstraction that specializes or

implements the abstract implementor. An abstract implementor may not be neces-

sary when there is only one implementation. This is specified in the multiplicity 0..*

(not shown) on AbstractImplementor. A classifier that conforms to Abstraction role

must be a concrete class and have at least one operation playing Operation role.

A.5.1.1 Well-formedness Rules

The metamodel-level constraints defined on the Bridge SPS are given below:

• A classifier that conforms to AbstractAbstraction must be an interface or an

abstract class:

context |AbstractAbstraction inv:

self.oclIsTypeOf(Interface) or

(self.oclIsTypeOf(Class) and self.isAbstract = true)

A similar constraint is defined for AbstractImplementor.

• A classifier that conforms to ConcreteAbstraction must be a concrete class:

context |ConcreteAbstraction inv: self.isAbstract = false

A similar constraint is defined for ConcreteImplementor.

• A relationship that conforms to AbstractionRealization must have an interface

or a type at its supplier end and a concrete class at its client end:

context |AbstractionRealization inv:

(self.supplier.oclIsTypeOf(Interface) or

(self.supplier.oclIsTypeOf(Class) and self.supplier.isAbstract = true) and

self.client.oclIsTypeOf(Class)

167

A similar constraint is defined for ImplementorRealization.

• A relationship that conforms to AbstractionGeneralization must have its parent

and child to be the same type:

context |AbstractionGeneralization inv:

self.parent.evaluationType() = self.child.evaluationType()

A similar constraint is defined for ImplementorGeneralization.

• An association-end that conforms to Abs must have a multiplicity of 1..1:

context |Abs inv: self.lowerBound() = 1 and self.upperBound() = 1

• An association-end that conforms to Imp must have a multiplicity of 1..1:

context |Imp inv: self.lowerBound() = 1 and self.upperBound() = 1

A.5.1.2 Constraint Templates

An Operation call must invoke an OperationImpl operation call. This is defined as

follows:

context |Abstraction::|Operation()

pre: true

post: |ConcreteImplementor^|OperationImpl()

A.5.2 Conforming Class Diagram

Fig. A.9 [35] shows a conforming class diagram of the Bridge SPS. The diagram

describes a Window application providing application windows and transient windows

that work on both XWindow and PMWindow.

Window class defines the window abstraction for client applications, and maintains

a reference to a WindowImp that declares an interface to the underlying windowing

system. Subclasses of the Window class are the different kinds of windows that the

168

<<ConcreteAbstraction>> <<ConcreteAbstraction>>

1

<<AbstractImplementor>>
<<Interface>>

WindowImp

drawBorder() drawCloseBox()

<<b1>> drawCircle()
<<b1>> drawLine()

TransientWindow

<<b1>> drawLineImp()
<<b1>> drawCircleImp()

ApplicationWindow

Window
<<ConcreteAbstraction>>

WindowImplements
<<Implements>>

1

<<ConcreteImplementor>>
XWindowImp

<<ConcreteImplementor>>
PMWindowImp

<<b1>> drawLineImp() <<b1>> drawLineImp()
<<b1>> drawCircleImp() <<b1>> drawCircleImp()

Figure A.9: A Conforming Bridge Class Diagram

application might use such as application windows, transient windows, and icon win-

dows. The WindowImp class defines an interface to the underlying window systems

such as XWindow System and IBM’s Presentation Manager.

A.5.3 IPS

Fig. A.10 shows a Bridge IPS. It specifies that a ConcreteAbstraction forwards client

requests to a ConcreteImplementor. A conforming class diagram (taken from [35]) of

the Bridge SPS is shown in Fig. A.9.

|Operation()

|OperationImpl()

|ImplementInteraction 1..1

|imp:|ConcreteImplementor|abs:|ConcreteAbstraction

Figure A.10: A Bridge IPS

169

A.6 The Decorator Pattern

The Decorator design pattern provides a flexible way to attach additional features

(e.g., attributes, operations) to an object called Component dynamically through a

class called Decorator. Components contains a hierarchy that separates abstraction

from implementation to facilitate defining new components. The abstract component

is implemented by concrete component classes to which additional features can be

attached. The decorator class maintains a reference to a component class and defines

an interface that conforms to the component’s interface.

A.6.1 SPS

The class diagrams characterized by a Decorator pattern possess component and dec-

orator classifiers that are abstract or concrete. They have a hierarchy that separates

abstract from implementation to facilitate defining new components and decorators.

An abstract component is associated with an abstract decorator to maintain a refer-

ence to a component. This allows adding features recursively. An abstract component

has a generalization/realization relationship with an abstract decorator representing

concrete decorators themselves are also components.

Fig. A.11 shows a Decorator SPS which specifies the following. There must be

one or more classifiers that play ConcreteComponent and ConcreteDecorator. There

should be at least one generalization or realization in the structure of 1) compo-

nents specified by CompRealization and CompGeneralization, 2) decorators specified

by DecoRealization and DecoGeneralization, 3) abstract components and abstract

decorators specified by CompDecGen and CompDecReal. This allows, for example,

a structure in which an abstract component is specialized by an abstract decorator

classifier, and the abstract decorator is realized by concrete decorators. A concrete

decorator must have at least one new feature in addition to the features inherited

from an abstract decorator. The abstract decorator might not be needed when there

170

Realization Role

|CompDecGen
Generalization Role

|AbsDec 1..1

|DecoGeneralization

{at least 1}

Realization Role
|DecoRealization

Generalization Role

b1 |Operation() 1..*
|AbsComp 1..*

|CompDecReal

|Component
Classifier Role

b1 |Operation() 1..*

|Decorator
Classifier Role

Class RoleClassifier Role
|AbstractDecorator

{at least 1}

1..*
|ConcreteDecorator

b1 |AddedBehavior() 1..*

s1 |AddedState 1..*

|Comp
Association Role

|AbstractComponent
Class Role

{at least 1}

{at least 1}

Realization Role
|CompRealization

Generalization Role
|CompGeneralization

1..*
|ConcreteComponent

Classifier Role

Figure A.11: A Decorator SPS

is only one feature to be added. This is specified by the multiplicity 0..* (not shown)

in AbstractDecorator.

A.6.2 Well-formedness Rules

Metamodel-level constraints for AbsComp and AbsDec roles are defined as:

• A classifier that conforms to AbstractAbstraction must be an interface or an

abstract class:

context |AbstractComponent inv:

self.oclIsTypeOf(Interface) or

(self.oclIsTypeOf(Class) and self.isAbstract = true)

A similar constraint is defined for AbstractDecorator.

• A classifier that conforms to ConcreteComponent must be a concrete class:

context |ConcreteComponent inv: self.isAbstract = false

A similar constraint is defined for ConcreteDecorator.

171

• A relationship that conforms to ComponentRealization must have an interface

or a type at its supplier end and a concrete class at its client end:

context |ComponentRealization inv:

(self.supplier.oclIsTypeOf(Interface) or

(self.supplier.oclIsTypeOf(Class) and self.supplier.isAbstract = true) and

self.client.oclIsTypeOf(Class)

A similar constraint is defined for DecoratorRealization.

• A relationship that conforms to ComponentGeneralization must have its parent

and child to be the same type:

context |ComponentGeneralization inv:

self.parent.evaluationType() = self.child.evaluationType()

A similar constraint is defined for DecoratorGeneralization.

• A relationship that conforms to CompDecReal must have an interface or a type

at its supplier end and a concrete class at its client end:

context |CompDecReal inv:

(self.supplier.oclIsTypeOf(Interface) or

(self.supplier.oclIsTypeOf(Class) and self.supplier.isAbstract = true) and

self.client.oclIsTypeOf(Class)

• A relationship that conforms to CompDecGen must have its parent and child

to be the same type:

context |CompDecGen inv:

self.parent.evaluationType() = self.child.evaluationType()

• An association-end that conforms to AbsComp must have a multiplicity of 1..1:

context |AbsComp inv: self.lowerBound() = 1 and self.upperBound() = 1

172

• An association-end that conforms to AbsDec must have a multiplicity of 1..1:

context |AbsComp inv: self.lowerBound() = 1 and self.upperBound() = 1

A.6.3 Conforming Class Diagram

A conforming class diagram (taken from [35]) of the Decorator SPS is shown in

Fig. A.12. The model describes a graphical user interface toolkit that lets one decorate

a TextView component with additional features like borders or scrolling by enclosing

the component in a decorator that add the border or the scroll feature.

<<DecGeneralization>>

<<Comp>>
Composes

<<AbstractComponent>>
<<interface>>

VisualComponent

<<CompRealization>> <<CompDecReal>>

<<ConcreteDecorator>>
BorderDecorator

<<ConcreteDecorator>>
ScrollDecorator

<<s1>> scrollPosition <<s1>> borderWidth

<<b1>> draw()
<<b1>> drawBorder()<<b1>> scrollTo()

<<b1>> draw()

<<b1>> draw()

1

1Decorator

<<b1>> draw()

<<ConcreteComponent>>
TextView

<<b1>> draw()

<<AbstractDecorator>>

Figure A.12: A Conforming Decorator Class Diagram

A.6.4 IPS

Fig. A.13 shows an IPS specifying that ConcreteDecorator forwards requests to Con-

creteComponent and may perform additional actions before or after forwarding.

173

|DecorateInteraction 1..1

|Operation()

|comp:|ConcreteComponent

|AddedBehavior()

|AddedBehavior()

{XOR}

|Operation()

|dec:|ConcreteDecorator

Figure A.13: A Decorator IPS

A.6.5 Conforming Sequence Diagram

Fig. A.14 shows a conforming sequence diagram of the Decorator IPS. The diagram

describes a sequence of adding a scroll to a text view. It first draws the text view

and then add a scroll to it. The scroll could be added first before drawing the text

view, which still conforms to the IPS.

draw()

drawScroll

sd:ScrollDecorator

draw()

scrollTo()

tv:TextView

Figure A.14: A Conforming Decorator Sequence Diagram

174

A.7 The State Pattern

The State design pattern allows an object called Context to alter its behavior when

its internal behavior changes through objects called State. When an operation in the

context is called, the context delegates the request to the current state class. The

pattern enalbes a separation of abstraction from implemention for state classes to

make it easy to change state classes without changing the context.

A.7.1 SPS

The class diagrams characterized by a State SPS have concrete context classes and

state classifiers that are concrete or abstract. Context classes have an attribute to

maintain the current state and operations being requested by other objects. State

classifiers have a structure that separates abstraction from implementation. State

classifiers have operations that handle the delegated requests from the context.

Association Role
|Delegates|Cont 1..*s1 |CurrentState: |State 1..1

b1 |Request() 1..*

Class Role
|Context

1..*

|StateRealization
Realization Role

b1 |Handle() 1..*

|St 1..1

{at least 1}

Classifier Role
|State

|StateGeneralization
Generalization Role

1..*
|ConcreteState
Class RoleClassifier Role

|AbstractState

Figure A.15: A State SPS

Fig. A.15 shows an SPS for the State pattern. It specifies that there must be

at least one context class that is associated with state classifiers. The context class

must have one or more features that play CurrentState and Request roles. The hi-

erarchy of state classifiers specifies that a structure of state classifiers must have at

175

least one ConcreteState class and relationships that play StateRealization or State-

Generalization. The multiplicities at Cont and St roles specify that a state classifier

can be associated one or more context classes, and a context class can be associated

with exactly one state classifier. State classifiers must have at least one feature that

plays Handle. When an object calls a Request operation in the context, the context

delegates the request to the state object referenced in the CurrentState attribute.

A.7.1.1 Well-formedness Rules

The metamodel-level constraints defined on the State SPS are given below:

• A classifier that conforms to Context must be a concrete class:

context |Context inv: self.isAbstract = false

• A classifier that conforms to AbstractState must be an interface or an abstract

class:

context |AbstractState inv:

self.oclIsTypeOf(Interface) or

(self.oclIsTypeOf(Class) and self.isAbstract = true)

• A classifier that conforms to ConcreteState must be a concrete class:

context |ConcreteState inv: self.isAbstract = false

• A relationship that conforms to StateRealization must have an interface or a

type at its supplier end and a concrete class at its client end:

context |StateRealization inv:

(self.supplier.oclIsTypeOf(Interface) or

(self.supplier.oclIsTypeOf(Class) and self.supplier.isAbstract = true) and

self.client.oclIsTypeOf(Class)

176

• A relationship that conforms to StateGeneralization must have its parent and

child to be the same type:

context |StateGeneralization inv:

self.parent.evaluationType() = self.child.evaluationType()

• An association-end that conforms to Cont must have a multiplicity of 1..1:

context |Cont inv: self.lowerBound() = 1 and self.upperBound() = 1

• An association-end that conforms to St must have a multiplicity of 0..1:

context |St inv: self.lowerBound() = 0 and self.upperBound() = 1

A.7.1.2 Constraint Templates

A Request operation call must invoke a Handle operation call to the current state

object. This is specified as follows:

context |Context :: |Request()

pre: true

post: |ConcreteState^|Handle()

A.7.2 Conforming Class Diagram

A class diagram (taken from [35]) that conforms to the State SPS is shown in

Fig. A.16. The diagram describes an application for TCP connection. The TCP-

Connection class represents a network connection. Objects of the class can be in

one of the states - Established, Listening, and Closed. The TCPState is an interface

representing the states of the network connection. The interface defines open, close,

and acknowledge operations which are implemented differently in each state. When a

TCPConnection object receives a request from other objects, it delegates the request

to the current state object.

177

TCPConnection

TCPDelegates
<<Delegates>>

<<b1>> open()

1

<<b1>> close()
<<b1>> acknowledge()

<<StateRealization>>

0..1<<b1>> open()

<<s1>> currentState: TCPState

<<b1>> close()

<<b1>> acknowledge()

nextState(): TCPState

changeState(s:TCPState)

<<Context>>

TCPState
<<interface>>

<<AbstractState>>

<<b1>> open()
<<b1>> close()
<<b1>> acknowledge()

<<b1>> open()
<<b1>> close()
<<b1>> acknowledge()

<<b1>> open()
<<b1>> close()
<<b1>> acknowledge()

<<ConcreteState>>
TCPEstablished

<<ConcreteState>> <<ConcreteState>>
TCPClosedTCPListen

Figure A.16: A Conforming State Class Diagram

A.7.3 IPS

Fig. A.17 shows a State IPS that specifies the delegation of an operation request from

Context to State.

|RequestStateInteraction 1..1

|cs:|State|c:|Context

|Handle()

|Request()

Figure A.17: A State IPS

178

Appendix B

A Domain Pattern and Access
Control Patterns

B.1 The CheckIn-CheckOut Pattern

|Description

|ColItemItem
Association Role

|OB 1..*

|OA 1..*

|ContColItem
Association Role

Association Role
|ContItem

|LendingItem
Association Role

|IC 1..*

|ID 1..*

|IB 1..*|LB 1

|LendingUser

|ContColUser

|UC 1..*

|CollectionUser

|CA 1..*

Class Role

Class Role

Class Role

Class Role
|User

Hierarchy
Class Role

Class Role
|CollectionItem

Class RoleClass Role

Association Role
|ContLending

|ContUser

Association Role
|ColUserUser

|Item

Hierarchy

|IA 1..*

|DA 1..*

|ItemDesc
Association Role

|CB 1..* |TC 1

|LA 1..*

|UB 1..*

Association Role

|UA 1..* |LD 1..*

Association Role
|ColLendingLending

|EB1..*

|EA 1..*

|Lending

|CollectionLending

|Controller

|TB 1

|TG 1

|TF 1

|TD 1

|TA 1

|LC 1..*

Association Role

Association Role

|ContColLending

Association Role

Figure B.1: The CICO SPS

179

|UserStatusEnum

e1 |ELIGIBLE 1..1
e2 |HOLD 1..1

|ItemStatusEnum

e1 |CHECKEDOUT 1..1
e2 |AVAILABLE 1..1

s2 |UserStatus : |UserStatusEnum 1..*
s1 |UserID : DataType 1..1

(b) User Role Hierarchy

(i) Enumeration Roles

(a) Item Role Hierarchy

b2 |UpdateStatus (|s : |ItemStatusEnum) 1..*
b1 |VerifyStatus() : Boolean 1..*

s2 |ItemStatus : |ItemStatusEnum 1..*
s1 |ItemID : DataType 1..1

b1 |FindItem (|iid : DataType) : |Item 1..*

(c) Lending Role

(f) CollectionLending Role

(g) Controller Role

(e) CollectionUser Role(d) CollectionItem Role

|User
Class Role

Enumeration Role

Enumeration Role 1..1

1..1

b1 |VerifyStatus() : Boolean 1..*

1..*

|CollectionUser
Class Role 1..*

b1 |FindUser (|uid : DataType) : |User 1..*

|Item
Class Role 1..*

|CollectionItem
Class Role 1..*

|Description
Class Role

|iid : DataType) 1..*

|Controller
Class Role 1..1

b2 |CheckOut (|uid : DataType,
b1 |CheckIn (|iid : DataType) 1..*

**

Generalization Role
|UserGeneralization

**

|ItemGeneralization
Generalization Role

s1 |DetailOfItem : DataType 1..*

s1 |LendingID : DataType 1..1

|Lending
Class Role 1..1

|CollectionLending
Class Role 1..*

b1 |AddNewLending (|ld : DataType) 1..*

(h) Description Role

1..*

Figure B.2: CICO Role Hierarchies

180

|it := |FindItem (|iid)

opt

|v := |VerifyStatus()

|c : |Controller

|CheckOut(|uid, |iid)

(a) An IPS for CheckIn Scenario

|UpdateStatus (|AVAILABLE)

|e := |VerifyStatus()

|u := |FindUser (|uid)

|it := |FindItem (|iid)

|e := |VerifyStatus()

|it : |Item

|CheckIn (|iid)

opt

|c : |Controller

(b) An IPS for CheckOut Scenario

|cu : CollectionUser

|ci : CollectionItem

|UpdateStatus (|CHECKEDOUT)

create

|AddNewLending (|ld)

|ci : |CollectionItem

|it : |Item

|u : |User

|ld : |Lending {new}

|cl : CollectionLend

opt

[|v = true]

[|e = true]

[|e = false]

Figure B.3: IPSs for CheckIn and CheckOut Scenarios

181

B.2 RBAC

|h

|junior

|senior

|n

|SessionRoles

|q|ExecuteOn

|p

|m

|l|k

|j

|i

|Operation

|RoleHierarchy

|Role

|PermAssignment

|User

|d

|g

|UserAssignment

|c

|InvokeOperation(|obj:|Object,

|Session

|b

|op:|Operation)

|UserID: |String

|DeassignRole (|r: |Role)
|AssignRole (|r: |Role)
|DeleteSession(|s : |Session)
|CreateSession(|s : |Session)

|op:|Operation) : |Boolean
|CheckAccess(|obj:|Object,
|DropActiveRole(|r : |Role)
|AddActiveRole(|r : |Role)

|e

|SSD

|AddInheritance(|r : |Role)

|GrantPermission (|p : |Permission)

|CheckAccess (|obj : |Object,
|RevokePermission (|p : |Permission)

|DeleteSSDRole(|r : |Role)
|CheckSSD(|r : |Role): |Boolean

|AddSSDRole(|r : |Role)

|a

|UserSessions

1

{|o.lowerbound = 1} {|q.lowerbound = 1}

|f
|o

|Object

|Name: String

|Permission

|CheckAccess(|obj : |Object,
|op : |Operation) : |Boolean

|DeleteInheritance(|r : |Role)

|op : |Operation): |Boolean

Figure B.4: RBAC Template

182

B.3 MAC

|dominator

|SecurityLevel

|Name: |String

|Dominators() : Set(|SecurityLevel)
|Dominatees() : Set(|SecurityLevel)

1

|UserClearance

|DeleteDominator(|s:|SecurityLevel)
|AddDominator(|s:|SecurityLevel)
|DeleteDominatee(|s:|SecurityLevel)
|AddDominatee(|s:|SecurityLevel)

|Dominates

|v

|u

|ObjectClassification

1

|dominatee
|c

|s

|o

|Subject

 |op: |Operation)
|InvokeOperation(|obj:|Object,
|op: |Operation):Boolean

|CheckAccess(|obj:|Object,

|ObjectOperation

|SubjectSecurityLevel |SubjectOperation

|b

|d

1

|UserSubject1

|w

|Write|Read

|Operation

|p

|sl:|SecurityLevel)
|CreateSubject(|s:|Subject,

|UserID: |String

|User

|Name: |String

|Object

|a

Figure B.5: MAC Template

183

B.4 HAC

|sl : |SecurityLevel)
|DeleteSession (|s : |Session)
|AssignRole (|r: |Role)
|DeassignRole (|r: |Role)
|AssignedRoles () : Set(|Role)
|AuthorizedRoles () : Set(|Role)

1

|UserSessions

|Operation

|f
|s|SubjectOperation |r

|t

|Session

|AddActiveRole(|r : |Role)

|Permission

|m

|PermAssignment

|k

|PermObjects
|PermOperations

|j

|senior

|junior

|b |c

|UserAssignment|CreateSession (|s : |Session,

|x

|Role

|Name: String
|g

|DropActiveRole(|r : |Role)

|Name : |String
|ObjectClassification

|SecurityLevel

|u

|dominator

|dominatee |v

1|UserClearance 1

|p

|Object
|q

|ExecuteOn

|y
|o

|Dominators() : Set(|SecurityLevel)

|CheckAccess(|obj:|Object,

|op:|Operation)
|InvokeOperation(|obj:|Object,

|op:|Operation) : |Boolean

|d

|a

|UserID: |String

|e|SessionRoles

|User

1

|AddDominatee(|sl : |SecurityLevel)
|DeleteDominatee(|sl : |SecurityLevel)
|AddDominator(|sl : |SecurityLevel)
|DeleteDominator(|sl : |SecurityLevel)
|Dominatees() : Set(|SecurityLevel)

|s

|GrantPermission (|p : |Permission)

{|o.lowerbound = 1} and {|q.lowerbound = 1}

Read Write

|RevokePermission (|p : |Permission)

|AssignedUsers () : Set(|User)

|Ascendants() : Set(|Role)

|SSDRoles() : Set(|Role)
|Descendants() : Set(|Role)

|AuthorizedUsers () : Set(|User)

|DeleteDSDRole(|r : |Role)

|DSDRoles() :Set(|Role)

|AddAscendant(|r : |Role)
|DeleteAscendant(|r : |Role)
|AddDescendant(|r : |Role)
|DeleteDescendant(|r : |Role)

|AddDSDRole(|r : |Role)
|DeleteSSDRole(|r : |Role)
|AddSSDRole(|r : |Role)

|CheckAccess (|obj : |Object,
|op : |Operation): |Boolean

|CheckAccess(|obj : |Object,|l

|n

|op : |Operation) : |Boolean

|h

|SSD

|i

|RoleHierarchy|DSD

|r

Figure B.6: HAC Template

184

Appendix C

Vehicle Rental System

Fig. C.1 shows a vehicle rental class diagram created using the CICO SPS. The

diagram describes a design in which customers rent vehicles. A notable difference

from the library system is that the pattern is further restricted to generate separate

collection for each type of vehicle and customer. Two types of vehicles can be rented:

trucks and leisure vehicles. Unlike the library example, the Item hierarchy is bound

to a multi-level generalization hierarchy: the V ehicle class is specialized by Truck

and Leisure and Leisure is further specialized by Van and Sedan.

The class diagram also includes classifiers and other diagram elements not specified

by the CICO SPS. Like the Library system, there is a Reservation class. There is

also an InsurancyPolicy class associated with the V ehicle class. An interface class,

CollectionV ehicle, is also added to the model to act as a common interface for the

different types of vehicle collections. Vehicle rental scenarios obtained from the CICO

IPSs are shown in Fig. C.2 and Fig. C.3.

185

Figure C.1: A Vehicle Rental Class Diagram

186

Figure C.2: A Vehicle Rental CheckIn Sequence Diagram

187

Figure C.3: A Vehicle Rental CheckOut Sequence Diagram

188

REFERENCES

[1] E. Agerbo and A. Cornils. How to preserve the benefits of design patterns.
In Proceedings of the Conference on Object-oriented Programming, Systems,
Languages, and Applications (OOPSLA), pages 134 –143, Vancouver, Canada,
1998.

[2] A. Albano, G. Ghelli, and R. Orsini. Galileo: A Strongly-Typed, Interactive
Conceptual Language. ACM Transactions on Database Systems, 10(2):230–260,
1985.

[3] H. Albin-Amiot and Y. G. Gueheneuc. Meta-Modelling Design Patterns: Ap-
plication to Pattern Detection and Code Synthesis. In Proceedings of ECOOP
Workshop on Automating Object-Oriented Software Development Methods,
2001.

[4] C. Alexander. The Timeless Way of Building. Oxford University Press, 1979.

[5] C. Alexander, S. Ishikawa, and M. Silverstein. A Pattern Language: Towns,
Buildings, Constructions. Oxford University Press, 1977.

[6] G. Arango and R. Prieto-Diaz. Introduction and Overview: Domain Analysis
Concepts and Research Directions. In R. Prieto-Diaz and G. Arango, editors,
Domain Analysis and Software Systems Modeling, pages 9–32. IEEE Computer
Society Press, 1991.

[7] J. Araujo, J. Whittle, and D. Kim. Modeling, Composing and Validating
Scenario-Based Requirements with Aspects. In Proceedings of 12th IEEE Inter-
national Requirements Engineering Conference (RE), Kyoto, Japan, September
2004.

[8] C. W. Bachman and M. Daya. The Role Concept in Data Models. In Interna-
tional Conference on Very Large Databases, pages 464–476, 1977.

[9] S. Barker. Security Policy Specification in Logic. In Proceedings of the Inter-
national Conference on Artificial Intelligence, pages 143–148, Las Vegas, NV,
2000.

189

[10] S. Barker and A. Rosenthal. Flexible Security Policies in SQL. In Proceedings of
the 15th Annual IFIP WG 11.3 Working Conference on Data and Applications
Security, Niagara-on-the-Lake, Canada, 2001.

[11] J. Barwise. An Introduction to First-Order Logic. In J. Barwise, editor, Hand-
book of Mathematical Logic, pages 5–46. North-Holland, Amsterdam, 1977.

[12] V. R. Basili and H. D. Rombach. Support for Comprehensive Reuse. Technical
Report UMIACS-TR-91-23, CS-TR-2606, Department of Computer Science,
University of Maryland at College Park, 1991.

[13] E. Bertino, P. Bonatti, and E. Ferrari. TRBAC: A Temporal Role-Based Access
Control Model. In Proceedings of the 5th ACM Workshop on Role-Based Access
Control, pages 21–30, Berlin, Germany, 2000.

[14] R. T. V. Braga, F. S. R. Germano, and P. C. Masiero. A Family of Patterns for
Business Resource Management. In Proceedings of the 5th Annual Conference
on Pattern Languages of Programs (PLoP’98), Monticello, IL, USA, 1998.

[15] R. T. V. Braga, F. S. R. Germano, and P. C. Masiero. A Pattern Language for
Business Resource Management. In Proceedings of the 6th Pattern Languages
of Programs Conference (PLoP’99), volume 7, pages 1–34, Monticello, IL, USA,
1999.

[16] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. A System
of Patterns: Pattern-Oriented Software Architecture. Wiley, 1996.

[17] R. Chandramouli. Application of XML Tools for Enterprise-Wide RBAC Im-
plementation Tasks. In Proceedings of the 5th ACM Workshop on Role-based
Access Control, Berlin, Germany, July 2000.

[18] K.M. Chandy and J. Misra. Parallel Program Design - A Foundation. Addison-
Wesley, 1988.

[19] J. Cheesman and J. Daniels. UML Components: A Simple Process for Specify-
ing Component-Based Software. Addison-Wesley, 2001.

[20] F. Chen and R. Sandhu. Constraints for Role-Based Access Control. In Pro-
ceedings of the 1st ACM Workshop on Role-Based Access Control, Gaithersburg,
MD, 1995.

[21] W. Cunningham and K. Beck. A Diagram for Object-Oriented Programs. In
Proceedings of OOPSLA, pages 361–367, Portland, Oregon, September 1986.

[22] M. Dahchour, A. Pirotte, and E. Zimanyi. A Generic Role Model for Dynamic
Objects. In Proceedings of the 14th Advanced Information Systems Engineer-
ing nternational Conference, CAiSE’02, pages 643–658, Toronto, Canada, May
2002.

190

[23] E. Durr and E. Dusink. The Role of VDM ++ in the Development of a Real-
Time Tracking and Tracing System. In J. Woodcock and P. Larsen, editors,
Proceedings of Formal Methods Europe (FME’93), Lecture Notes in Computer
Science, pages 64–72. Springer Verlag, 1993.

[24] A. Eden. Precise Specification of Design Patterns and Tool Support in Their
Application. PhD thesis, University of Tel Aviv, Israel, 1999.

[25] B. A. Farshchian and S. Jakobsson. Coupling MDA and Parlay to increase reuse
in telecommunication application development. In Proceedings of Workshop
on Software Model Engineering (WiSME) at UML 2002, Dresden, Germany,
Octorber 2003.

[26] D.F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli.
Proposed NIST Standard for Role-Based Access Control. ACM Transactions
on Information and Systems Security, 4(3), August 2001.

[27] J. Fiadeiro and T. Maibaum. Sometimes “Tomorrow” is “Sometime” Action
Refinement in a Temporal Logic of Objects. In Proceedings of the 1st Interna-
tional Conference on Temporal Logic, volume 827 of Lecture Notes in Artificial
Intelligence, pages 48–66. Springer-Verlag, 1994.

[28] G. Florijn, M. Meijers, and P. van Winsen. Tool Support for Object-Oriented
Patterns. In Proceedings of the 11th European Conference on Object Oriented
Programming, volume 1241 of Lecture Notes in Computer Science, pages 472–
495. Springer-Verlag, 1997.

[29] Software Technology for Adaptable Reliable Systenms (STARS). STARS Con-
ceptual Framework for Reuse Processes, Volume 1: Definition, Version 3.0.
Technical Report STARS-VC-A018/001/00, Unisys STARS Technology Cen-
ter, October, 1993.

[30] R. France, G. Georg, and I. Ray. Supporting Multi-Dimensional Separation
of Design Concerns. In Proceedings of the AOSD Workshop on AOM: Aspect-
Oriented Modeling at UML 2003, March 2003.

[31] R. France, S. Ghosh, E. Song, and D. Kim. A Metamodeling Approach to
Pattern-Based Model Refactoring. IEEE Software, 20(5), September/October
2003.

[32] R France, D. Kim, S. Ghosh, and E. Song. A UML-Based Pattern Specification
Technique. IEEE Transactions on Software Engineering, 30(3):193–206, March
2004.

[33] R. France, D. Kim, E. Song, and S. Ghosh. Using Roles to Characterize Model
Families. In Haim Kilov, editor, Practical foundations of business and system
specifications, pages 179–195. Kluwer Academic Publishers, 2003.

191

[34] U. Frank. Delegation: An Important Concept for the Appropriate Design of
Object Models. Journal of Object Oriented Programming, 44:13–17, June 2000.

[35] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison Wesley, 1995.

[36] G. Georg, R. France, and I. Ray. Composing Aspect Models. In Proceedings of
the 4th AOSD Modeling With UML Workshop, UML 2003, San Francisco, CA,
October 2003.

[37] G. Georg, R. France, and I. Ray. Creating Security Mechanism Aspect Models
from Abstract Security Aspect Models. In Proceedings of the Workshop on
Critical Systems Development at UML 2003, San Francisco, CA, October 2003.

[38] Geri Georg, Robert France, and Indrakshi Ray. Designing High Integrity Sys-
tems using Aspects. In Proceedings of the Fifth IFIP TC-11 WG 11.5 Working
Conference on Integrity and Internal Control in Information Systems (IICIS
2002), Bonn, Germany, November 2002.

[39] G. Gnesi, D. Latella, and M. Massink. A Stochastic Extension of a Behav-
ioral Subset of UML Statechart Diagrams. In L. Palagi and R. Bilof, editors,
Proceedings of the 5th IEEE International High-Assurance Systems Engineering
Symposium, pages 55–64. IEEE Computer Society Press, 2000.

[40] G. Gottlob, S. Michael, and B. Rock. Extending Object - Oriented Systems
with Roles. ACM Transactions on Information Systems, 14(3):268–296, July
1996.

[41] M. Grand. Patterns in Java-A catalog of reusable design patterns illustrated
with UML. Wiley, 1999.

[42] J. Gray, T. Bapty, S. Neema, and J. Tuck. Handling Crosscutting Constraints
in Domain-Specific Modeling. Communications of the ACM, 44(10):87–93, Oc-
tober 2002.

[43] M. L. Griss. Software Reuse: From Library to Factory. IBM Systems Journal,
32(4):1–23, 1993.

[44] A.L. Guennec, G. Sunye, and J. Jezequel. Precise Modeling of Design Patterns.
In Proceedings of UML’00, pages 482–496, 2000.

[45] R. J. Hayton, J. M. Bacon, and K. Moody. Access Control in Open Distributed
Environment. In Proceedings of the IEEE Symposium on Security and Privacy,
pages 3–14, Oakland, CA, May 1998.

[46] G. T. Heineman and W. T. Councill. Component-Based Software Engineering.
Addison-Wesley, 2001.

192

[47] D. Heuzeroth, T. Holl, G. Högström, and W. Löwe. Automatic Design Pattern
Detection. In Proceedings of the 11th IEEE International Workshop on Program
Comprehension (IWPC’03), Portland, Oregon, May 2003.

[48] M. Hitchens and V. Varadarajan. Tower: A Language for Role-Based Access
Control. In Proceedings of the Policy Workshop, Bristol, U.K., 2001.

[49] J. A. Hoagland, R. Pandey, and K. N. Levitt. Security Policy Specification
Using a Graphical Approach. Technical Report CSE-98-3, Computer Science
Department, University of California Davis, July 1998.

[50] Na Li Indrakshi Ray, Robert France and Geri Georg. An Aspect-Based Ap-
proach to Modeling Access Control Concerns. Information and Software Tech-
nology, 46(9):557–633, July 2004.

[51] S. Jajodia, P. Samarati, and V. S. Subrahmanian. A Logical Language for
Expressing Authorizations. In Proceedings of the IEEE Symposium on Security
and Privacy, pages 31–42, Oakland, CA, May 1997.

[52] S. Judson and R. France. Model Transformations at the Metamodel Level. In
Proceedings of the Workshop in Software Model Engineering, UML’03 Confer-
ence, October 2003.

[53] J. Jurjens. UMLsec: Extending UML for Secure Systems Development. In Pro-
ceedings of the 5th International Conference on the Unified Modeling Language,
pages 412–425, Dresden, Germany, October 2002.

[54] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature-Oriented
Domain Analaysis FODA: Feasibility study. Technical Report CMU/SEI-90-
TR-21, Software Engineering Institute, CMU, 1990.

[55] G. Karsai. Tool Support for Design Patterns. In Proceedings of New Directions
in Software Technology (NDIST) 4 Workshop, December 2001.

[56] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J-M. Loingtier,
and J. Irwin. Aspect-oriented programming. In Proceedings of the European
Conference on Object-Oriented Programming (ECOOP ’97), volume 1241 of
Lecture Notes in Computer Science, pages 220–242, Jyvaskyla, Finland, June
1997.

[57] D. Kim, R. France, and S. Ghosh. A UML-Based Language for Specifying
Domain-Specific Patterns. Journal of Visual Languages and Computing, Special
Issue on Domain Modeling with Visual Languages, 15(3-4), June 2004.

[58] D. Kim, R. France, S. Ghosh, and E. Song. Using Role-Based Modeling Lan-
guage (RBML) as Precise Characterizations of Model Families. In Proceedings
of the 8th IEEE International Conference on Engineering of Complex Computer
Systems (ICECCS 2002), Greenbelt, MD, December 2002.

193

[59] D. Kim, R. France, S. Ghosh, and E. Song. A UML-Based Metamodeling Lan-
guage to Specify Design Patterns. In Proceedings of the Workshop on Software
Model Engineering (WiSME) at UML 2003, San Francisco, CA, October 2003.

[60] D. Kim, R. France, S. Ghosh, and E. Song. A Role-Based Metamodeling Ap-
proach to Specifying Design Patterns. In Proceedings of the 27th IEEE Annual
International Computer Software and Applications Conference (COMPSAC),
Dallas, TX, November, 2003.

[61] D. Kim, S. Ghosh, R. France, and E. Song. Software Component Specification
Using Role-Based Modeling Language. In Proceedings of 11th OOPSLA Work-
shop on Behavioral Semantics: Serving the Customer, Seattle, Washington,
November 2002.

[62] D. Kim, I. Ray, R. France, and N. Li. Modeling Role-Based Access Control
Using Parameterized UML Models. In Proceedings of Fundamental Approaches
to Software Engineering (FASE/ETAPS), Barcelona, Spain, March 2004.

[63] C. Kobryn. UML 2001: A Standardization Odyssey. CACM, 10(42):29–37,
1999.

[64] L. Lamport. The Temporal Logic of Actions. ACM Transactions on Program-
ming Languages and Systems, 16(3):872–923, May 1994.

[65] K. Lano, J. Bicarregui, and S Goldsack. Formalising Design Patterns. In Pro-
ceedings of the 1st BCS-FACS Northern Formal Methods Workshop, Electronic
Workshops in Computer Science. Springer-Verlag, 1996.

[66] A. Lauder and S. Kent. Precise Visual Specification of Design Patterns. In
Proceedings of ECOOP’98, pages 114–136, 1998.

[67] T. Lewis, L. Rosenstein, W. Pree, A. Weinand, E. Gamma, P. Calder, G. An-
dert, J. Vlissides, and K. Schmucker. Object Oriented Application Frameworks.
Manning Publication Co., Greenwich, CT, 1995.

[68] T. Lodderstedt, D. A. Basin, and J. Doser. SecureUML: A UML-Based Model-
ing Language for Model-Driven Security. In Proceedings of the 5th International
Conference on the Unified Modeling Language, pages 426–441, Dresden, Ger-
many, October 2002.

[69] D. Mapelsden, J. Hosking, and J. Grundy. Design Pattern Modelling and In-
stantiation using DPML. ACM International Conference Proceeding Series,
Proceedings of the 40th International Conference on Tools Pacific: Objects for
internet, mobile and embedded applications, 10:3–11, 2002.

[70] T. Mikkonen. Formalizing Design Patterns. In Proceedings of the 20th Interna-
tional Conference on Software Engineering, pages 115–124, Kyoto, Japan, April
1998.

194

[71] H. Mili, A. Mili, S. Yacoub, and E. Addy. Reuse-Based Software Engineering:
Techniques, Organization, and Controls. John Wiley & Sons, 2002.

[72] J.-M. Morel and J. Faget. The REBOOT Environment. In Proceedings of the
Second International Workshop on Software Resuability: Advances in Software
Reuse, pages 80–88, Lucca, Italy, March 1993. IEEE Computer Society Press.

[73] M. Nyanchama and S.L. Osborn. Modeling Mandatory Access Control in Role-
Based Security Systems. In Proceedings of Database Security IX: Status and
Prospects, Spooner, Demurjian and Dobson, eds. Chapman & Hall, pages 129–
144, August 1997.

[74] OASIS. XACML Language Proposal, Version 0.8. Technical report, Organiza-
tion for the Advancement of Structured Information Standards, January 2002.
Available electronically from http://www.oasis-open.org/committees/xacml.

[75] R. Ortalo. A Flexible Method for Information Systems Security Policy Specifi-
cation. In Proceedings of the 5th European Symposium on Research in Computer
Security, Louvain-la-Neuve, Belgium, 1998. Springer-Verlag.

[76] S. Osborn. Mandatory Access Control and Role-Based Access Control Revis-
ited. In Proceedings of the 2nd ACM Workshop on Role-Based Access Control,
Fairfax, Virginia, 1997.

[77] B.-U. Pagel and M. Winter. Towards pattern-based tools. In Proceedings of
EuropLop, München, 1996.

[78] B. Pernici. Objects with Roles. In Proceedings of the conference on Office
information systems, pages 25–27, Cambridge, MA, April 1991.

[79] C. E. Phillips, S. A. Demurjian, and T. C. Ting. Toward Information Assurance
in Dynamic Coalitions. In Proceedings of the IEEE Workshop on Information
Assurance, United States Military Academy, West Point, NY, June 2002.

[80] W. Pree. Design Patterns for Object-Oriented Software Development. Addison
Wesley, 1995.

[81] R. S. Pressman. Software Engineering, A Practitioner’s Approach. 5th Edition.
McGraw Hill, 2001.

[82] R. Prieto-Diaz. Status Report: Software Reusability. IEEE Software, 10(3):61–
66, 1993.

[83] A. Radermacher. Support for Design Patterns through Graph Transformation
Tools. In Proceedings of Applications of Graph Transformations with Industrial
Relevance (AGTIVE’99), pages 111–126, 1999.

195

[84] I. Ray, N. Li, D. Kim, and R. France. Using Parameterized UML to Specify
and Compose Access Control Models. In Proceedings of the 6th IFIP TC-11
WG 11.5 Working Conference on Integrity and Internal Control in Information
Systems (IICIS), Lausanne, Switzerland, November 13-14 2003.

[85] T. Reenskaug, P. Wold, and O. A. Lehne. Working with Objects: The OORAM
Software Engineering Method. Manning/Prentice Hall, 1996.

[86] C. Ribeiro, A. Zuquete, and P. Ferreira. SPL: An Access Control Language for
Security Policies with Complex Constraints. In Proceedings of the Network and
Distributed System Security Symposium, San Diego, CA, February 2001.

[87] RM-ODP, International Standard Organisation (ISO). Information technology
- Open Distributed Processing - Reference model: Enterprise Language. Tech-
nical Report ISO/IEC, 15414, ITU-T Recommendations X.911, Amendment1:
Additional text, ISO, 2001.

[88] G. F. Rogers. Framework-Based Software Development in C++. Prentice Hall,
1997.

[89] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-
Oriented Modeling and Design. Prentice Hall, 1991.

[90] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language
Reference Manual. 2nd Edition. Addison-Wesley, 2004, To be published.

[91] R. Sandhu and P. Samarati. Access Control: Principles and Practice. IEEE
Communications, 32(9), September 1994.

[92] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Pattern-Oriented Soft-
ware Architecture: Patterns for Concurrent and Networked Objects. Wiley,
2000.

[93] J. Schumann and J. Whittle. Automatic Synthesis of Agent Designs in UML.
In Proceedings of FAABS, 2000.

[94] Edward Sciore. Object Specilazation. ACM Transactions on Information Sys-
tems, 7(2):103–122, April 1989.

[95] M. Sefikla, A. Sane, and R. H. Campbell. Monitoring Compliance of a Software
System with its High-Level Design Models. In Proceedings of the International
Conference on Software Engineering, 1996, 1996.

[96] E. Song, R. France, D. Kim, and S. Ghosh. Using Roles for Pattern-Based
Model Refactoring. In Proceedings of the Workshop on Critical Systems Devel-
opment at UML 2002, Dresden, Germany, October 2002.

196

[97] F. Steimann. On the Representation of Roles in Object-Oriented and Concep-
tual Modelling. Data and Knowledge Engineering, 35(1):83–106, 2000.

[98] L. A. Stein and S. B. Zdonik. Clovers: The Dynamic Behavior of Types and In-
stances. Technical Report CS-89-42, Department of Computer Science, Brown
University, Providence, RI, November 1, 1989.

[99] The Object Management Group (OMG). Unified Modeling Language. Version
1.4, OMG, http://www.omg.org, September 2001.

[100] The Object Management Group (OMG). Unified Modeling Lan-
guage: Superstructure. Version 2.0, Final Adopted Specification, OMG,
http://www.omg.org, August 2003.

[101] W. Tracz, L. Coglianese, and P. Young. Domain-Specific Software Architecture
Engineering Process Outline. ACM SIGSOFT Software Engineering Notes,
18(2):40–49, 1993.

[102] B. Unger and W. F. Tichy. Do Design Patterns Improve Communica-
tion? An Experiment with Pair Design. In George Stark, editor, Proceed-
ings of International Workshop Empirical Studies of Software Maintenance,
http://members.aol.com/GEShome/wess2000/unger-tichy.pdf, October 2000.

[103] J. Warmer and A. Kleppe. The Object Constraint Language, Second Edition.
Addison-Wesley, 2003.

[104] J. Whittle, J. Araujo, and D. Kim. Modeling and Validating Interaction Aspects
in UML. In Proceedings of the 4th AOSD Modeling With UML Workshop, UML
2003, San Francisco, CA, October 2003.

[105] R. Wieringa and W. D. Jonge. The Identification of Objects and Roles: Object
Identifier Revisited. Technical Report lR-267, Vrije University, Amsterdam,
1991.

[106] D. S. Wile and J. C. Ramming. Special Section: Domain Specific Languages.
IEEE Transactions on Software Engineering, 25(3):289–290, 1999.

197

