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ABSTRACT

HYPERPYCNAL FLOW DEPOSITION AND SEQUENCE STRATIGRAPHY OF A
CRETACEOUS NEAR-SHORE MUDSTONE UNIT — THE SKULL CREEK SHALE

FORMATION, COLORADO, USA

The middle shale member of the Cretaceous Dakota Group, the Skull Creek
Formation (Fm.), is a proximal mudstone unit deposited in a delta-fed system within the
Cretaceous Interior Seaway. Based on lithology, sedimentary structures, bioturbation
intensity, and TOC values, the Skull Creek Fm. was divided into twelve facies which
were grouped into five facies associations (FAs). All facies and FAs record deposition
along proximal to distal regions within an ancient mud-dominated continental shelf.
Sediment transport and deposition were strongly influenced by both river flooding and
storm events that generated hyperpycnal flows. Sediments in the Skull Creek Fm. were
transported as bed load by a combination of wave and current energy above storm
wave-base (FA 5, FA 4, and parts of FA 5) or exclusively by currents as the flow
traveled below storm wave-base (parts of FA 3, FA 2, and FA 1). Mud-rich siltstones
and sandstones (FA 4) and bioturbated siltstones and sandstones (FA 5) are the most
proximal FAs and were deposited above storm wave-base while ripple- to planar-
laminated siltstones and mudstones (FA 3) were interpreted to be “medial” expressions
of hyperpycnal flows due to the low occurrence of wave generated structures. The most
distal FA’s include massive, bioturbated mudstones (FA 1) that were deposited in a

sediment starved area, most likely located laterally or in a more distal location to the



laminated mudstones (FA 2). Laminated mudstones (FA 2) were transported as bed

load within turbulent flows below storm wave-base.

Fining-upward parasequences containing fine-grained FAs (FA 1 and FA 2)
represent decreasing energy conditions and a rise in sea level, while stacked
successions of more proximal units (FA 3, FA 4, and FA 5) are indicative of high energy
levels and lower sea levels. Based on the stacking patterns of the five FAs, the Skull
Creek Fm. was divided into five laterally traceable stratigraphic intervals. Transgressive
system tracts are observed in interval 1 and interval 2, which are fining-upward
successions composed of FA 5, FA 4 at the base and FA 1, FA 2, and FA 3 at the top.
Interval 3 contains mainly HCS sandstones and siltstones which thicken vertically and it
represents the only highstand system tract (HST) within the Skull Creek Fm. A
regressive sequence is preserved in interval 4 which is composed of the most proximal
FAs (mainly FA 5) and is abruptly overlain by interval 5, which is a fining-upward

succession, and represents a final transgressive system tract within the Skull Creek Fm.

TOC (total organic carbon) content is highest, and contains the most oil-prone
organic matter, within interval 2 which is composed of mainly laminated mudstones (FA
2). The high TOC values within FA 2 are due to low levels of bioturbation and low levels
of sediment accumulation, whereas in other FAs moderate to high bioturbation
intensities and high sedimentation rates decrease the likelihood of preserving organic
matter. “Sweet spots” within other similar, proximal mudstone units that were deposited
as hyperpycnal flows are therefore predicted to be found in distal deposits, where there

was limited sediment reworking by organisms.
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1.0 INTRODUCTION

The high productivity of oil and gas exploration from unconventional reservoirs
has led to a plethora of research focusing on fine-grained sedimentary mudstones
(Baas and Best 2002; Bohacs et al. 2014; Ghadeer and Macquaker 2011; Macquaker et
al. 2007; Schieber et al. 2007; Taylor and Macquaker 2000). Originally thought to have
been deposited exclusively by suspension settling (Potter et al. 1980), it has recently
become clear that mudstones can also be deposited from bed load processes and
produce structures similar to their coarse-grained counterparts (Schieber et al. 2007;
Schieber and Southard 2009). Many recent papers focus on deep shelf shale
depositional systems and the siliciclastic mudstones that link shallow shelf sand- to
siltstones and deep shelf mudstones have been largely left aside. For this reason, the
sedimentary processes that shape the proximal part of continental shelves are still
largely enigmatic. This study therefore aims at describing one example of such
mudstone units, the Cretaceous Skull Creek Formation, which is well-exposed within
hogbacks along the Front Range of Colorado, USA. The structures observed in this unit
are characteristic not only for the Cretaceous of the Interior Seaway but will probably
also characterize other proximal mudstone successions of all geological ages

worldwide.

Serving as an example of relatively shallow-water mudstone deposition, the Skull
Creek Fm. is interpreted to represent the distal portion of a delta system that shed
siliciclastic material from the advancing orogenic front during the Sevier orogeny

(Graham and Ethridge 1994; Weimer 1996). Within the Cretaceous Interior Seaway, the



humid environment and tectonically active margins are very favorable for producing
hyperpycnal flows during river-flooding events (Bhattacharya and MacEachern 2009).
Sediments within the Skull Creek Fm. are interpreted to have been deposited as a result
of these flooding events, which have recently been found to play a large role in
transporting mud from the delta front to the continental shelf (Friedrichs and Scully,
2007; Pattison et al. 2007; Traykovski et al. 2000). Because of changing sea level
during the development of the Skull Creek Fm., this unit reflects deposition at varying
distances from the sediment source and allows for a reconstruction of a proximal to

distal transect through this delta-fed mudstone system.

The Skull Creek Fm. study is based on detailed descriptions of four outcrops and
two cores (Fig. 1). The outcrops are arranged along two transects: one is positioned
north-south along the western edge of the Denver basin and the other extends from the
southernmost outcrop location (Turkey Creek) basinward, along an east-west transect.
Based on detailed lithology descriptions, sedimentary structures, stacking patterns,
TOC data, and bioturbation intensities, the Skull Creek Fm. was divided into 12 facies, 5

facies associations, and five distinct stratigraphic intervals.



9-31 Bass Meadow Springs

Bellvue Bome

Dixon Dam
N

¢
Spring Canyon Dam |

Legend
[: Denver Basin

Outcrop Locations

Major Highways
]E HorestoothReservoir

- states

Turkey Cresk.

Map Created by Kathleen Masterson
9/24/2014

NAD 1983 UTM Zone 13N
Sources: CDOT and Esri

0510 20 30 40
e Viles

Figure 1: Overview map of outcrop and core locations of the study area.



2.0 GEOLOGICAL SETTING

The Denver basin covers an area of 60,000 mi.? & o,
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2,519 BCFG (billion cubic feet of gas) where most of the
oil-producing units are within Upper Cretaceous formations (Fig. 3) (Dechesne et al.
2011; U.S. Geological Survey 2003). The Lower Cretaceous Dakota Group is both an
oil- and gas-producing unit and is composed of two basal sandstones (Lytle and
Plainview Fm.), a middle mudstone unit (Skull Creek Fm.) and the overlying Muddy (J)
sandstones. The Skull Creek Fm. is speculated to be the source rock for the Muddy (J)
sandstones and it is Albian in age (Weimer, 1996). The Skull Creek Fm., and other fine-
grained units of the Denver basin, were deposited within the Cretaceous Interior
Seaway, which is an inland sea that covered the interior of North America and would
periodically stretch from Canada to the Gulf of Mexico (Decelles 2004).

It is speculated that transgressions and regressions in the Cretaceous Interior

Seaway were heavily influenced by lithospheric loading along the developing foreland



thrust belt in the North America Cordillera (Jordan, 1981). This orogenic system can be
divided into two major events; the Sevier and Laramide orogenies. The Sevier orogeny
occurred from the mid-Jurassic to the Late Cretaceous, and began as the Farallon plate
subducted under the North American Plate (Ethridge and Holbrook, 1996). During this
orogenic event, the central US was affected by crustal shortening and uplift as the
Sevier foreland basin system developed (DeCelles 2004; Dickinson and Lawton 2001;
Ethridge and Holbrook 1996). Regional uplift increased subsidence in areas located to
the east of the thrust belt (e.g. Colorado and Wyoming) and during the Albian (~112-
98.5 Mya) the first major transgression of the Cretaceous Interior Seaway occurred
(Decelles 2004). The seaway was connected to the Gulf of Mexico by mid-Albian time
(Fig. 4) (Burtner and Warner 1984). During this initial transgression, sediments of the
early Skull Creek Fm. were eroded from uplifted areas in central Utah and deposited
within an estuarine to prodeltaic environment (Burtner and Warner 1984; Graham and
Ethridge 1994). The late Skull Creek and Muddy (J) sandstones were deposited mainly
from a western source (e.g. the Bear River Delta, Bow Island Delta Complex) and a
southern shoreline facies originating from the Mogollan high (Burtner and Warner 1984;
Dolson et al. 1991). The Laramide orogeny (Late Cretaceous to Eocene) began after
the Skull Creek Fm. was deposited. During the Laramide orogeny, the Sevier foreland
basin broke-up into different uplifts and basins (e.g. Raton Basin, Powder River Basin,
Crazy Mountains Basin) as a result of the flat subduction of the Farallon plate below the

North America plate (DeCelles 2004; Weimer 1996).
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3.0 METHODOLOGY

The data for this study included four outcrop locations and two cores, spanning
about 90.35 mi. (145.41 km) along a north-south and an undisclosed distance along an
east-west transect. Four outcrops and one core were chosen along the western
boundary of the Denver basin, near the western edge of the Skull Creek Seaway
(Burtner and Warner 1984). These locations are named (from north to south) 9-31 Bass
Meadow Springs (USGS core library number D313), Bellvue Dome, Dixon Dam, Spring
Canyon Dam, and Turkey Creek. The second core, located farther to the east within the
basin, was provided by ConocoPhillips and will be referred to as Well A. Detailed
stratigraphic sections were hand-drawn in the field, at the USGS core research center in
Denver, CO, and at the Weatherford core viewing rooms in Houston, TX, and include
fine-scale (mm-cm) observations recording grain size, sedimentary structures,
bioturbation index, nature of contacts, and stacking patterns. The bioturbation index (BI)
was used after Taylor and Goldring (1993), who described the level of bioturbation on a
grade of 0-6, where 0 is no bioturbation and 6 is complete bioturbation or sediment
reworking (Table 1). Representative samples were taken throughout the succession to
document composition and sedimentary structures in detail (which will give an indication
of the processes that formed the sample) and for measuring TOC values within different

sedimentary facies.

A total of fifty ultra-thin (20 um thickness) polished thin sections were prepared
with both clear and blue epoxy impregnation by Wagner Petrographic and TPS

Enterprises. Two petrographic microscopes were used (Nikon Eclipse Ci-E and Nikon
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SMZ 1500) to identify mineral composition and the degree of bioturbation from
characteristic thin sections of cores and outcrops. The blue epoxy was used to estimate
porosity of the samples. Organic matter type and composition of concretions was
recognized using a scanning electron microscope (SEM) at the United States
Geological Survey in Denver, CO. Thin sections were carbon-coated and investigated
using a Quatra 450 FEG scanning electron microscope equipped with an energy-
dispersive X-ray spectroscope (EDS) that includes a backscattered electron (BSE)

detector.

Thirty-one hand samples were collected for measuring total organic carbon
content (TOC) from proximal, intermediate, and distal facies of mudstone units. For the
TOC analysis, all of the samples were treated with hydrochloric acid to remove any
carbonate; the analyses were carried out using standard induction furnace techniques
by Weatherford Laboratories with a Leco-CS230 instrument. Five of the TOC samples
were analyzed using programmed pyrolysis to identify the maturity and kerogen type of
the mudstones on a RockEval-Il instrument. This was achieved by heating of organic

matter under an inert helium atmosphere.

Table 1: Bioturbation Index, from Taylor and Goldring, 1993.

Grade Percent Classification
Bioturbated

0 0 No bioturbation

1 1-4 Sparse bioturbation, bedding distinct, few discrete traces
and/or escape structures

2 5-30 Low bioturbation, bedding distinct, low trace density, escape
structures often common

3 31-60 Moderate bioturbation, bedding boundaries sharp, traces
discrete, overlap rare

9




61-90 High bioturbation, bedding boundaries indistinct, high trace
density with overlap common
91-99 Intense bioturbation, bedding completely disturbed (just
visible), limited reworking, later burrows discreet
100 Complete bioturbation, sediment reworking due to repeated

overprinting
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4.0 SEDIMENTOLOGY

4.1 Introduction

Detailed descriptions of macroscopic and microscopic observations from four
outcrop locations, two cores and forty-nine thin sections (Appendix 2) were used to
subdivide the Skull Creek Fm. into eleven facies and five facies associations. The facies
are distinguished based on grain size, sedimentary structures, and composition. All
eleven facies are mostly composed of siliclastic and carbonate grains, with only some
phosphatic remains of organisms. High TOC values are exclusively found within fine-
grained facies that either lack or show only rare bioturbation. Heavily bioturbated facies
have the lowest recorded TOC values in the succession. Organic matter types are both
terrestrial and marine in origin and include vitrinite (terrestrial), telalginite, bituminite,
and amorphous organic matter (identification of organic matter types based on Fishman
et al. 2012). Telalginite is orange to yellow in color, orientated parallel to bedding, and is
~1.5mm in length. Bituminite is non-fluorescent and is preserved as thin, wispy laminae.
Vitrinite is orange to red in color under plane polarized light, has well defined
boundaries, and preserved as small round clasts (~.05mm) or thin laminae. Amorphous
organic matter types are black, irregular clasts and are composed of a mixture of clay

and carbon.
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4.2 Sedimentary Facies

Facies Name

Laminae/Bed
Thickness

Feature Description

Composition

Interpretation

Massive
Mudstone
(Facies 1)

Beds: 10mm-
3500mm

Poorly sorted mudstones
of mainly clay-sized
grains with some floating
silt grains.

Rare to frequent
Planolites and
Phycosiphon isp; Bl
(bioturbation index)= 1-4,
Planolites are oval in
shape and filled with silt
Wt. % TOC: 0.31- 1.39
Contains large
concretions (up to 15cm
diameter)

Clay: 55-65%
Siliciclastic and
carbonate silt: 10-
30%

Pyrite: 0-5%
Organic matter: 0-
10%

Large “floating” quartz grains could have
originated by two processes: (1) either
they originally formed siltstone laminae,
likely deposited by bed load processes,
that were disturbed by bioturbation, and
silt grains pushed into adjacent
mudstones, or (2) the clasts were
originally deposited in the muddy matrix
from fluid mud of the upper cohesive layer
within hyperpycnal flows and are
preserved as massive mudstone deposits
(Wilson and Schieber 2014).

High levels of bioturbation intensity
indicate slow sediment deposition or
deposition in a sediment starved area
where there was ample time for
organisms to colonize the beds (Taylor
and Gawthorpe 1993).

The overall low TOC values are due to
feeding organisms (Planolites) who likely
consumed some of the organic matter.

Regularly
laminated
mudstone
(Faces 2a)

Laminae:
<1.5mm,
Beds: 100mm-
300mm

Mudstones of mainly
clay-size grains
interbedded with thin silt
laminae (<0.5mm)
Planar laminae are
normally or inversely
graded laminae

Basal scours at the base
of normally graded beds,
in places low angle
crossbeds at the base of
graded beds.

Siltstone laminae are

Clay: 40-80%
Siliclastic and
carbonate silt: 30-
8%

Pyrite:1-5%
Organic matter: 1-
20%

Siltstone laminae containing low-angle
crossbeds and a basal scour were formed
by a turbulent flow that 1) eroded into
underlying sediment 2) silt-size grains
were deposited as the flow decelerated,
formed siltstone laminae, and were partly
reworked by currents to form low angle
crossbeds 3) mud was deposited on top
of silt laminae as the flow waned to form
normally graded laminae. Alternatively, if
the flow gained energy (accelerated) it
formed inversely graded laminae (Mulder
and Alexander 2001; Wilson and Schieber




even in thickness

Rare to intermediate
Phycosiphon isp. are
lined with silt grains and
filled with mud, can be up
to Tmm in length, Bl=0-2
Wt. % TOC: 1.63-3.86

2014).

Siltstone laminae are even in thickness
since they were not disturbed by
bioturbation.

This facies was deposited in a stressed
environment due to low diversity of
ichnofossils, and rapid deposition
interpreted from low bioturbation
intensities.

Irregularly Laminae: Mudstones of mainly Clay: 40-80% Siltstone laminae are interpreted to have
laminated 0.1mm-1mm clay-size grains with thin Siliclastic and been regular originally; they are
mudstone Beds: 0.09cm- siltstone laminae that are carbonate silt: 10- envisioned to have been formed by
(Facies 2b) 0.4cm irregular in thickness 40% mixing of silt-size sediment in the lower
(<0.1mm); some floating Pyrite: 1-5% turbulent layer with the fine-grained
silt-size quartz grains Organic matter: 3- material of the upper cohesive layer of
Sharp contact between 15% hyperpycnal flows (Macquaker et al.
siltstone and mudstone 2010).
lamainae Irregularity of laminae thickness is due to
Lamellar AOM bioturbation. The floating grains may be
(amorphous organic the remnants of siltstone laminae that
matter) were disrupted by bioturbation or formed
Rare to intermediate from the upper cohesive layer (fluid mud
Planolites and layer) of the hyperpycnal flow and were
Phycosiphon, Bl=0-3 deposited within the mudstones.
Wt. % TOC: 0.7-3.86 Low diversity of ichnofossils suggests a
stressed environment.
There are in places bioturbated, <0.6 mm
thick laminae (BI=3) that represent a
break in deposition.
Mudstones with Laminae: Mudstones of mainly Clay: 50-70% Downlapping laminae are formed from
downlapping 0.1mm- clay-size grains with thin Siliclastic and lower flow regime by currents indicated by
laminae (Facies 0.7mm (<0.5mm) siltstone carbonate silt: 10- low-angle crossbeds.
3) Beds: 0.2mm- laminae 42% Uni-directional cross beds and a basal
0.4mm Low-angle, uni-directional scour suggest sediment was transported

crossbeds that downlap
onto underlying mudstone
beds. Bounded by a
basal scour.

Lamellar to rounded AOM

Pyrite: 1-5%
Organic matter:
"1 5°/o

as a traction current; the current eroded
underlying sediment, silt and mud was
deposited and reworked by currents to
form low-angle crossbeds.

Low diversity of ichnofauna suggests a




(0.1mm-0.01mm)
Contains rare
Phycosiphon isp.
BI=0-1

Wt. % TOC: 0.91-2.97

stressed environment; alternatively,
sediment was deposited rapidly and
organisms did not have time to colonize
the sediment.

Siltstones with

Laminae: less

Siltstones with mainly silt-

Clay: 20-50%

Deposited in lower flow regime by

downlapping than 0.5 mm, size quartz grains and Siliclastic and unidirectional currents indicated by

laminae Beds: 2mm- minimal mud size grains carbonate silt: 50- crossbeds.

(Facies 4) 40mm Well-preserved, uni- 70% The downlapping siltstone laminae, or
directional cross beds Pyrite: 0-5% uni-directional crossbeds, bounded by a
with alternating siltstone Organic matter: 1- basal scour suggest sediment was
and mudstone laminae 20% deposited from turbulent flows where the
Lamellar to rounded AOM incoming flow eroded into underlying
(0.1mm-0.01mm) sediment; as energy waned, siltstone was
Water-escape structures deposited and reworked by currents
and slumps common preserving low angle crossbeds.

Usually there is a sharp
contact at the base

Rare to absent
Phycosiphon isp. Bl= 0-1
Wt. % TOC: ~2.49

Laminated Laminae: less Siltstones with mainly silt- Clay: 30-50% Planar laminae that are normally and

Siltstones than 1.5mm size quartz grains and Siliclastic and inversely graded are found in “transitional

(Facies 5) Beds: 10mm- some thin (<1mm) clay carbonate silt: 50- flows” which are formed from the

90mm laminae 70% interaction of a lower, turbulent layer that

Planar siltstone laminae
are continuous in
thickness and normally
and inversely graded
Top and basal contacts
are sharp between
mudstone and siltstone
laminae.

Water-escape structures
and slumps common
Bioturbation is absent
and OM is rare

Rare to absent
Phycosiphon isp. Bl=0-1

Pyrite: 0-5%
Organic matter: 1-
15%

has a high shear component and an
upper cohesive layer that has a low shear
component. Turbulent flows erode
underlying beds and deposit silt-size
particles at the base of the flow, the
overlying mudstone laminae are
deposited as the flow decelerates (Baas
and Best 2002).

Normal grading is formed from a
decelerating (waning) flow. Inverse
grading is formed from flows that are
accelerating (waxing).




Wt. % TOC: 0- 0.44

Massive siltstone | Beds: 20mm- Siltstones with mainly silt- Clay: 10-40% There are two pieces of evidence for

(Facies 6) 6000mm size quartz grains, rare Siliclastic and sediment transport in turbulent flow: 1)
siltstone to mudstone rip- carbonate silt: 58- siltstone and mud clasts are intraclasts
up clasts, and rare, thin 80% that were eroded from unconsolidated
(<1mm) siltstone and clay Pyrite: 1-5% sediment and transported as bed load
laminae Organic matter: 1- within a turbulent flow and 2) siltstone and
Alternating, regular 5% mudstone laminae were formed as
siltstone and mudstone Porosity: 0-5% siltstone and mudstone grains were
laminae are orientated transported as bed load in a turbulent flow
parallel to bedding and that eroded underlying sediment,
have a basal scour deposited silt-size particles at the base of
Siltstone and mudstone the flow and overlying mud-size particles
rip-up clasts are in places as the flow waned.
deformed and are Sedimentary beds where structures are
0.2mm-5mm in size preserved (Bl=3) were formed in areas of
Pyrite concretions are the basin where sediment was deposited
concentrated in burrows rapidly, with frequent input from turbulent
Massive siltstone with flows, and organisms did not have
some wavy mudstone enough time to colonize the sediment.
layers, contains Heavily bioturbated (Bl=4-6) beds were
Planolites, deposited in areas that had low rates of
Chondrites, Phycosiphon, sediment input and organisms had plenty
Teichichnus, of time to rework the beds.
Schaubcylindrichnus, Heavy bioturbation suggests an overall
Skolithos, Arenocolites, oxic environment.
Zoophycos, Asterosoma, Pyrite concretions filling in burrows are
Ophiomorpha, formed from early diagenetic reactions
Thalassinoids and within mucus trails which serve as a site
Cylindrichnus. Bl= 3-6 for “microbial sulfate reduction” and
Wt. % TOC: 0-0.40 subsequent iron sulfide precipitation

(Schieber 2002).

Fossil-bearing Laminae: Composed of poorly Clay: 30-15% Shell debris is allochthonous. Because

siltstones (Facies | 0.3mm-1mm, sorted silt-size carbonate Siliclastic and shell debris is preserved as broken

7) Beds: 200mm- grains, broken shell carbonate silt: 70- pieces, it can be interpreted that they

4000mm debris, and minimal 80% were transported as bed load from

quartz grains
Shell debris is mainly
bivalves (Inoceramus)

Phosphate: 2-5%
Pyrite: 0-5%

proximal areas in the basin during high-
energy events and deposited as the flow
decelerated.




Rare phosphatic
concretions are 1.1mm-
0.5mm in diameter
(Appendix 3)

Shell layers are in places
found at the base of
hummocks.

Bl=0

Phosphate concretions are diagenetic and
nucleated by organic remains (Taylor and
Macquaker 2000; Trappe 2001).

Fine-grained Beds: 1 mm- Composed of silt to vfg e Clay: 10-40% Symmetric lenses, draping forsets,
sandstone to 38 mm (very fine grained) sand- | e Siliclastic silt to vfg internal laminations, and irregular lower
siltstone with size quartz grains sand: 55-85% boundaries suggest sediment reworking
draping laminae Shows two different e  Pyrite: 0-5% by a combination of wave and current
(facies 8) symmetrical ripple types; action and are indicative of transport in
one with undiscernible combined flow to predominately
internal laminations to low oscillatory flows (de Raaf et al. 1977).
angle bi-directional and Symmetric ripples with weak, bi-
one with uni-directional directional internal laminations are formed
cross beds. when sand or silt settles out of a flow, and
Sharp basal contact is subsequently reworked by wave action.
Beds are connected by Internal uni-directional cross beds are
draping forsets or are formed when sediment is transported in a
separated to form current-dominated flow; the upper
isolated “swollen” lenses. symmetric boundaries of the ripples
Bl=0-1 represent an oscillatory component that
affects the upper boundaries of the flow
(de Raaf et al. 1977).
Fine-grained Beds: 2mm- Composed of silt to vfg e Clay: 10-0% Bottom currents scour the sea floor; silt to
sandstone to 400mm sand-size quartz grains e Detrital siliclastic sand to silt particles are transported in

siltstone with
HCS (Facies 9)

Hummocky-bedded
sandstones are lenticular
(1cm - 38cm thick)
Sharp basal contact
Often overlain by thin
mudstone beds (facies 1)
(0.5cm-4cm)

Wt. % TOC: ~0.44

and carbonate silt to
vfg sand: 90-100%
Phosphate: 0-2%
Pyrite: 0-5%
Organic matter: 1-
10%

combined flows to waning oscillatory
flows indicated by 1) flat laminations at
the base; produced by a combination of
current and oscillatory motion 2)
hummocks and overlying high angle cross
beds with symmetrical upper boundaries
were produced by waning flows or very
strong oscillatory combined flows. Low-
angle crossbeds with symmetrical upper
boundaries were formed in low velocity
combined flows (Duke et al. 1991).
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Massive mud-rich
sandstone to
siltstone (Facies
10)

Beds: 10mm-
20mm

Composed of silt to vfg
sand-size quartz grains
with mud matrix
Sandstones and
siltstones are very well
sorted

Massive siltstones and
sandstones fill gutter
casts and sand lenses
Contains Arenicolites and
Diplocraterion

Wt. % TOC: 0-0.11

Clay: 10-0%
Siliclastic silt to vfg
sand: 90-100%
Pyrite: 0-5%
Organic matter: 0-
1%

Scours were formed by incoming currents
and after the current passed the
depression was filled with sand.

Massive beds indicate sediment was
deposited very quickly.

Presence of Arenicolites and
Diplocraterion represent pauses in
sedimentation between high energy
events (e.g. storm events) and
subsequent normal marine conditions
after the storm as passed (MacEachern et
al. 1991)
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Figure 5: 1) Massive mudstone from Bellvue Dome (BD) at 5.83m showing Planolites burrows
(facies 1) indicated by red arrows. 2) Downlapping laminae in a mudstone (facies 3) from Turkey
Creek (TC) at 14.82m. 3) Mudstone containing regular laminae (facies 2a), irregular laminae
(facies 2b), and downlapping laminae (facies 3); Dixon Dam section (DD) at 2.16m. 4) Siltstone
consisting of downlapping laminae, outlined in red (facies 4). From TC at 20.66m. 5) Inversely
graded planar laminated siltstone to mudstone facies 2a and 5) from Spring Canyon (SC) at
20.15m. 6) Siltstone containing a rip-up clasts (red arrow) and irregular mud clasts (indicated by
yellow arrows) from section TC at 20.66m (facies 6).
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Figure 5 (continued): Photos showing bioturbated siltstone (facies 6): 7) Massive siltstone
from TC at 10.6m that has been completely bioturbated by Phycosiphon isp. (some
examples outlined in black). 8) Chondrites isp. from Turkey Creek at 32.11m. 9)
Schaubcylindrichnus freyi isp. from Dixon Dam at 10.48m. 10) Zoophycosisp. from core
D313 at 7909’ 6.5” (11.37m) outlined in red. 11) Skolithos isp. from core D313 at 7924’ 8,
(6.78 m) indicated by red arrows. 12) Teichichnus isp. from D313 7911’ 4” (10.84 m)
indicated by red arrows.
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Figure 5 (continued): 13) Fish remains and Inoceramid shell debris from a lag deposit (facies 7),
from D313 at 7911’ 5.5” (10.74m). 14) Lag deposit from D313 at 7946’ 4.7” (0.06m) showing
contorted beds and shell debris (facies 7). 15) Thin section of the base of a hummock (facies 9)
from D313 7932’ (4.32m) 16) The bottom of a gutter cast from Dixon Dam at 15.895 m (facies
10). 17) Organic matter (Telalginite, indicated by a red arrow) from TC at 0.062m in massive
siltstone (facies 7). 18) Bituminite (indicated by a red arrow) from TC at 14.61m preserved in a
ripple-laminated mudstone to siltstone (facies 3 and 4).
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Figure 5 (continued): 19) Slump in planar to ripple laminated siltstone (facies 4 and 5). Sample
taken from D313 at 7928’ 4” (5.61m). 20) A scour eroding into a regular to irregular laminated
mudstone (facies 2a and 2b) overlain by a massive siltstone (facies 6). Sample taken from DD
12.83m. 21) A Water escape structure (indicated by a red arrow) in a planar to ripple laminated
siltstone (facies 5 and 4). Sample taken from DD at 11.47m. 22) Fractures preserved in a planar
laminated mudstone (facies 2a), indicated by red arrows. Sample taken from D313 at 7942’
(1.44m). 23) Two Vitrinite clasts (indicated by red arrows) from TC at 0.6m. 23) Rippled vfg
sandstone (facies 8) found at TC (17.2m).
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4.3 Facies Associations

Facies associations were defined by the co-occurrence of different facies in the same
stratigraphic interval of the succession. The five facies associations of the Skull Creek
are: (FA 1) Massive mudstone and siltstone, (FA 2) Laminated siltstone and mudstone,
(FA 3) Ripple- to planar-laminated siltstone and mudstone, (FA 4) Mud-rich sandstone

and siltstone, and (FA 5) Bioturbated siltstone to sandstone.

Facies Association Facies Observed
Massive mudstone and siltstone e Massive mudstone (Facies 1)
(FA 1) e Massive siltstone (Facies 6)
Laminated siltstone and mudstone (FA 2) e Massive mudstone (Facies 1)
e Regularly laminated mudstones (Facies
2a)
e lIrregularly laminated mudstones
(Facies 2b)
e Mudstones with downlapping laminae
(Facies 3)
o Fossil bearing siltstone (Facies 7)
Ripple- to planar-laminated siltstone and e Massive mudstone (Facies 1)
mudstone (FA 3) e Regularly laminated mudstones (Facies
2a)
e Siltstones with downlapping laminae
(Facies 4)
¢ Laminated Siltstones (Facies 5)
¢ Massive siltstone (Facies 6)
e Fossil-bearing siltstone (Facies 7)
¢ Fine-grained sandstone to siltstone with

draping laminae (Facies 8)
e Massive mud-rich sandstone to siltstone

(Facies 9)
Mud-rich sandstone and siltstone (FA 4) e Massive mudstone (Facies 1)
e Regularly laminated mudstones (Facies
2a)
¢ Siltstones with downlapping laminae
(Facies 4)

Laminated siltstones (Facies 5)

Massive siltstone (Facies 6)

Fossil-bearing siltstone (Facies 7)

Fine-grained sandstone to siltstone with

draping laminae (Facies 8)

¢ Fine-grained sandstone to siltstone with
HCS (Facies 9)

e Massive mud-rich sandstone to siltstone

(Facies 10)
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Bioturbated siltstone to sandstone (FA 5) e Bioturbated siltstone (Facies 6)
e Massive mud-rich sandstone to siltstone
(Facies 10)

4.3.1 Facies Association 1 — Massive mudstone and siltstone

FA 1 is composed of mudstone beds with intercalated bioturbated siltstone beds
(facies 1 and 6). FA 1 appears massive in outcrop, yet in thin section, it contains
mudstone and siltstone laminae that are 5 mm-10 mm thick with bioturbation intensities
ranging from 1-5. Massive mudstone beds contain Planolites with Phycosiphon isp. The
Planolites burrows are filled with coarser-grained material than the surrounding matrix,
usually silt-size quartz grains, while Phycosiphon isp. are mud-filled. It is composed of
silt-size quartz and carbonate grains (45%-25%), clay matrix (55%-75%), and contains
minimal phosphate (~1%) and pyrite (~5%). Beds with high bioturbation intensities
(BI=5) have the lowest TOC values of the facies associations (0.31- 0.40 wt. %).

Organic matter types include vitrinite and some bituminite.

4.3.2 Facies Association 2- Laminated siltstone and mudstone

FA 2 consists of massive to laminated mudstones (facies 1, 2a and 2b) that
alternate with fossil-bearing siltstones (facies 7) and mudstones with downlapping
laminae (facies 3). Regular- to irregularly-laminated mudstone beds (facies 2a and 2b)
occur frequently within FA 2 and contain siltstone laminae (<1 mm thick). Occurring less
frequently are mudstone beds that contain downlapping laminae (< 0.5 mm thick).
Fossil-bearing siltstone beds are irregular in thickness (4 cm-0.4 cm thick). Bioturbation
in FA 2 is minimal (Bl= 0-2) with Planolites and Phycosiphon isp. traces. FA 2 is

composed of silt-size carbonate and quartz grains (30-10%), clay (40-80%), pyrite (1-
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5%), and organic matter (1-20%). TOC values are high within FA 2, ranging from 0.7 to

3.86 wt. % TOC. Organic matter types include vitrinite, telalginite, and bituminite.

4.3.3 Facies Association 3 — Ripple to planar laminated siltstone

FA 3 is composed of 1.5 m-0.02 m thick beds, alternating between planar-
laminated siltstones and mudstones (facies 2a and 5), and siltstones containing
downlapping laminae (facies 4). Within FA 3, there are some bioturbated siltstone beds
(<2 cm thick) containing rip-up clasts (facies 6) with rippled siltstones (facies 8).
Bioturbated beds contain Cruziana ichnofacies (specifically Planolites and Chondrites)
ranging from a few traces (Bl=1) to a thorough reworking of sediment (BI=5). Water-
escape structures, slumps, and scour structures occur frequently at the bases of both
mudstone and siltstone layers. FA 3 is composed of quartz and carbonate silt grains
(60%-90%), clay (40%-10%), and pyrite (0-5%). TOC has a very large range of values,

from 0.06 to 2.49 wt. %. The dominant organic matter type is vitrinite.

4.3.4 Facies Association 4 — Mud-rich sandstone and siltstone

Facies Association 4 is the coarsest-grained FA in the Skull Creek Fm. It is
composed of HCS to combined-flow rippled sandstone and siltstone beds (facies 8 and
facies 9) alternating with planar-laminated siltstones and mudstones (facies 2a and 5)
and siltstones with downlapping laminae (facies 4). Siltstone and mudstone beds are
normally and inversely graded. These beds can be capped by thin (<2cm) bioturbated
siltstone beds (facies 6). Massive sandstones and siltstones (facies 10) can also contain
rare traces of Arencolites (e.g. in the Dixon Dam outcrop). Shell debris is concentrated

at the base of individual hummocks to form thin beds (0.5mm-0.1mm thick) (facies 7).
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Very thin, massive mud layers (2cm-10cm) (facies 1) are interbedded, or overlie, HCS
sandstones (facies 9) as mud drapes. Sampling from these mud-rich beds indicate

overall low TOC values (0.11-1.37 wt. %). The dominant organic matter type is vitrinite.

4.3.5 Facies Association 5 — Bioturbated siltstone and sandstone

FA 5 is composed of massive, bioturbated siltstone beds (facies 6), which have
very few remnants of bedding and contain rip-up clasts, and are interbedded with
massive sandstone beds (facies 10). Siltstones within FA 5 are heavily bioturbated
(BI=5-6) or have intermediate bioturbation (Bl=3-4). The bioturbated siltstones contain
the most diverse assemblage of ichnofossils within the Skull Creek Fm., including
Skolithos, Planolites, Chondrites, Teichichnus, Schaubcylindrichnus, Asterosoma, and
rare Arencolites, and Zoophycos traces. The most common trace fossils within this
succession are Planolites and mud-filled Chondrites. TOC is very low within this facies
association, with values ranging from 0-0.4 wt. %. Organic matter types include

telalginite and AOM.
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5.0 FACIES ARCHITECTURE

The Skull Creek Fm. is between 11 m and 35 m thick in the outcrops and cores
studied in northern Colorado. However, its thickness changes do not display a clear
thickening or thinning trend in any direction, but rather fluctuate between 11 m and 35 m
along the N-S transect. Towards the east the formation seems to slightly increase in
thickness, yet it remains unclear whether this reflects a general trend within the basin,
or is just coincidental between the Turkey Creek section and Conoco Well A. In this
study, the Skull Creek Fm. is subdivided into five stratigraphic intervals, here

successively numbered “interval 1-5” from the base of the unit to the top (Figs. 6 and 7).

The succession consists of three intervals that are composed of mainly fining-
upwards parasequences and two intervals with coarsening-upwards parasequences.
The intervals composed of fining-upwards parasequences are between 0.5m-9m thick
and comprise intervals 1, 2, and 5. Intervals 3 and 4 show distinct coarsening-upwards
trends throughout all measured sections and are 4m-24m in thickness. Fining-upwards
parasequences consist of basal laminated, wave-rippled, or bioturbated siltstones and
sandstones (FA 3, FA 4, and FA 5) with massive to laminated mudstones at the top (FA
1 and 2). The opposite is true for coarsening-upwards parasequences. Parasequences
range in thickness from 0.5m-4m and the only vertical trends within the succession are
seen within intervals 3 and 4, where parasequences thicken upwards in both intervals.
Sand content also increases upwards within interval 4. Laterally, there are no obvious
trends in the number and thickness of parasequences. Contacts of parasequences are

sharp and easily recognizable in each of the intervals. The bioturbated siltstone beds

26



(FA 5) of interval 1 are sharply overlain by the laminated or massive mudstones and
siltstones (FA 1, FA 2 and FA 3) of interval 2. The top of interval 2 is picked at high TOC
values, concretionary horizons, and where laminated siltstones (FA 3) become more
prevalent (stratigraphic sections with TOC are found in Appendix 1). There is a sharp
contact that separates the laminated to wave-rippled siltstones and sandstones (FA 3
and FA 4) of interval 3 and bioturbated siltstones and sandstones (FA 5) of interval 4.
The laminated to massive mudstones and laminated silistones (FA 1, FA 2, and FA 3)
of interval 5 abruptly overlie the bioturbated siltstones and sandstones (FA 5) of interval

4.

Lag deposits only occur in intervals 2 and 3. The thickness of the lag deposits
decreases up-section, and they are completely absent in the upper parts of interval
3. Bioturbation is generally restricted to the traces of Chondrites, Planolites, and
Phycosiphon. However, in the middle to upper parts of interval 3 traces become more
abundant in bioturbated siltstone to sandstone beds (FA 5) and comprise ichnospecies
Skolithos, Schaubcylindrichnus, Teichichnus, Asterosoma, Zoophycos and
Arenocolites. Bioturbation intensity reaches a maximum within interval 4 (Bl= 3-6) where
Planolites and Chondrites traces dominate, with minimal Teichichnus,
Schaubcylindrichnus, Skolithos, Arenocolites, Zoophycos, Asterosoma, Ophiomorpha,
Thalassinoids and Cylindrichnus. Cruziana ichnofacies is found throughout interval 4
with some traces of Zoophycos ichnofacies’ in the lower to upper parts and Skolithos

ichnofacies? in the middle parts. Within interval 5 bioturbation intensity shows a

" At 8519.2'-8521’ (26.8m-26.3m), 8530.7"-8532’ (23.1m-23.8m), and 8539.4-8541.9’ (20.1m-21.16m) in
Well A
% At 8543.2'-8544.9’ (19.7m-19.2m) and 8527°-8527.8" (24.4m-24.6m) in Well A
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decrease up-section, and is minimal (Bl=1-0) within the upper parts of interval 5. Traces
are mostly Cruziana and Zoophycos ichnofacies with some Cylindrichnus and

Schaubcylindrichnus concentrated in the siltstone beds.
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6.0 INTERPRETATION

6.1 Depositional model

The Skull Creek Fm. represents a proximal-distal transect of a deltaic mudstone
succession that was transported mainly as bed-load within hyperpycnal flows, with
minimal deposition that occurred as a result of suspension settling. It is subdivided into
five facies belts, which are equivalent to the five facies associations. Each facies
association is characteristic of a distinct suite of sedimentary processes that vary
between proximal and distal areas (Figs.8, 9 and 10). Sediment deposited in proximal
areas along the continental shelf was transported by a combination of waves and
currents to form HCS and combined flow ripples. More distal facies associations contain
current ripples, planar laminations, and show no evidence of wave reworking, since
most fine-grained sediments were deposited below storm wave base (Fig. 8). On top of
laminated to wave-rippled beds, there can be bioturbated siltstone to mudstone beds
that illustrate a break in sedimentation as a hyperpycnal flow wanes, and some fine-
grained sediment will be deposited as a result of suspension during fairweather

conditions.
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Figure 8: Core photo and thin section from FA 4 (left) and FA 3 (right) (A) The photo shows a basal
wave-to combined flow rippled siltstone overlain by current and planar laminated beds. Inverse
grading is shown by the upside-down triangles on the right and highlighted by the dashed red
rectangles. The siltstone bed is slightly bioturbated at the top (red arrow). From 9-31 BMS core at
7936.9’ (B) Normal to inversely graded siltstone with alternating current and planar laminated beds
and bioturbated beds. From TC outcrop at 20.66 m.

The most proximal units are the bioturbated siltstones to sandstones of FA 5,
which are found predominantly within interval 4. They are characteristic for an oxic,
proximal environment since these sediments are heavily bioturbated and are composed
of mainly coarse-grained sediments. Fine-grained sediments within FA 4 are preserved
as mud filling in burrows or as faint mud laminae. The depositional environment can
also be inferred from the ichnofossil suites present in these sediments that are divided
into three different ichnofacies, Skolithos, Zoophycos, and Cruziana, which are
characteristic for varying positions of the continental shelf. Skolithos is usually found
along the upper to middle shoreface, Cruziana in a variety of environments, from the
lower shoreface to the lower offshore, and Zoophycos is found in open marine
environments (MacEachern et al. 2005). Most of the traces within FA 5 belong to the

distal Cruziana ichnofacies, indicative of a lower offshore zone. Given the dominance of
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Cruziana ichnofacies, along with the appearance of Skolithos and Zoophycos
ichnofacies, FA 5 is envisioned to have been deposited in an overall oxic and proximal
environment fluctuating from the middle shoreface to the lower offshore, which is

supported by the coarse-grain size within FA 5 (MacEachern et al. 1999b).

FA 4 is composed of mainly wave-reworked siltstones and sandstones overlain
by current-rippled to laminated siltstones and mudstones, with overlying bioturbated
siltstone to mudstone beds. It is here interpreted that FA 4 sediments were deposited
basinward, but adjacent to FA 5. Bioturbation diversity decreases from FA 5 to FA 4 and
contains mostly Cruziana ichnofacies, specifically traces of Planolites, suggesting a
stressed environment (Bann and Fielding, 2004). During high energy events, most
likely induced by storms, sandstones and siltstones were transported offshore by both
currents and wave action and are reworked above storm-wave base to form combined
flow structures such as HCS sandstones and siltstones (Fig. 10.C.2) (Aigner and
Reineck 1982; Duke et al. 1991; Mutti et al. 2003). Once the storm waves subsided,
sediment was transported mainly by currents to produce structures like current-rippled
to laminated siltstones and mudstones. Intercalated with current-rippled siltstones are
siltstone beds that are slightly bioturbated, indicating a break in sedimentation between

the high-energy event during fairweather conditions (Bann and Fielding, 2004).

The laminated to rippled siltstones of FA 3 are interpreted to represent a
depositional environment that is located basinward of FA 4. Wave-rippled siltstones
serve as indications of slight wave-reworking within FA 3; however, most of the
prominent structures within FA 3 include cross-bedded to planar-laminated siltstones
and mudstones. This suggests that while there must have been episodes of wave-
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reworking, most of the sediment was transported as bed load by currents, and it was
most likely deposited at times above and at times below storm-wave base as indicated
by the partial presence or absence or wave- formed structures. Bioturbated siltstone
beds overlie wave- or current-rippled silistones and mudstones (similar to FA 4) and
most likely represent fairweather conditions. Lag deposits are also common within FA 3
and represent the coarsest fraction of the material deposited in this setting that was

concentrated into lags during events or from currents (Plint et al. 2012).

FA 2 is one of the most fine-grained units within the Skull Creek Fm. and is
composed mainly of mudstone with thin, normally-graded planar and current-rippled
siltstone beds interbedded with slightly bioturbated mudstones. The prevalence of
planar-laminated to current-rippled beds suggests that sediments were transported in a
fully turbulent to transitional flow (see facies 2a and facies 3 description) while
bioturbated beds indicate fairweather conditions (Baas and Best 2002). These flows
were introduced to the distal basin by high-energy events, which transported silt- and
clay-size sediments offshore in relatively quiet-water conditions (indicated by
bioturbated beds). FA 2 is located distally to FA 3 and was likely deposited below storm-
wave base as bed-load because it lacks any evidence of wave reworking, and shows

mainly current-generated structures.

FA 1 is composed of heavily bioturbated mudstones (Bl=1-4) with silt-size grains
that fill in burrows or are preserved as faint silt laminae. Rare remnant cross-bedding
within FA 1 suggests that this unit was transported and deposited as bed-load from
currents in a distal area of the basin, probably below storm wave-base since it lacks any
wave generated structures. High levels of bioturbation indicate deposition in a sediment
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starved zone where low levels of sediment input allow ample time for organisms to
completely rework beds (Taylor and Gawthorpe 1993). This indicates that FA 1 was
either deposited laterally or distally from FA 2, where sediment input was much less

frequent, in overall quiet water conditions.

6.2 Sequence Stratigraphy

Once each interval was described and proximal versus distal facies belts were
identified, the depositional environment for each interval was defined relating to either a
rise or fall in energy conditions, which are linked to sea level fluctuations within the
basin. Past studies have interpreted the Skull Creek as having a lower transgressive
system tract (TST) and an upper highstand systems tract (HST) separated by a
condensed section (Edwards 1999; Sutton et al. 2004). Based on new data from Well A
where the upper part of the Skull Creek is well preserved, and the revised depositional
model, the Skull Creek Fm. was divided into five different intervals instead of three.
Each of these intervals is bounded by erosional or non-depositional surfaces that reflect

the onset of changing environments.

Interval 1 is composed of mainly HCS to massive sandstones and siltstones (FA
4 and FA 5), which are interpreted to represent the most proximal facies associations
within the Skull Creek Fm. The sand and silt content decreases upwards within this
interval, which is caused by a decrease in energy, or a deepening of sea level, and is
interpreted to be a transgression, or an early transgressive systems tract (TST). At the
top of interval 1, a sharp contact separates the basal sandstone and siltstone beds (FA

5 and FA 4) and overlying fine-grained units (FA 2) of interval 2. This erosional contact
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represents a decrease in accommodation space, possibly due to a short regression
during an overriding high frequency cycle (Catuneanu et al. 2009). In relation to the
siltstones and sandstones of interval 1, the overlying fine-grained sediments and fining-
upward parasequences of interval 2 represent a decrease in energy within the basin
due to sea level deepening, or a late TST (Bohacs et al. 2002). As sea level continued
to rise, indicated by a decrease in silt content upwards, sediment accumulation
decreased as accommodation space reached a maximum to form the MFS. The MFS is
represented by the highest TOC values and along one distinct concretionary horizon,
with the high TOC values formed due to sediment starvation and a greater intensity of
localized, diagenetic reactions (Taylor and Macquaker 2000). The highest TOC values
are associated with a MFS because sediment accumulation is low, and organic matter
has a higher likelihood of being preserved in more sediment-starved environments
(Creaney and Passey 1993). Interval 3 is composed of coarsening-upwards
parasequences that thicken vertically. This indicates an overall decrease in
accommodation space combined with a successively more proximal setting and higher
sediment input, here interpreted to represent a highstand systems tract (HST). The
erosional surface separating intervals 3 and 4 reflects a transition from a slightly
stressed, offshore environment (interval 3) to a proximal, oxic environment (interval 4)
with a shift from the wave-reworked sandstones and siltstones of interval 3 to
bioturbated sandstones and siltstones of interval 4. Therefore, this erosional surface is
interpreted to represent the sequence boundary (SB). Interval 4 is composed of
proximal, bioturbated siltstones at the base and massive sandstone beds that become

more common towards the top of the interval. The increase in grain size upwards within
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interval 4 indicates an overall change to a more energetic environment due to a sea-
level fall. Based on these observations, and since interval 4 is located directly above a
SB, it is interpreted to be a LST. Between intervals 4 and 5, there is a gradual to sharp
contact separating the coarsening-upwards units of interval 4 and fining-upwards
sediments of interval 5. The contact is more gradual at the center of the basin, and is
sharp along the edge of the basin. This unconformity is interpreted to represent a
transgressive surface (TS) because it symbolizes the first stages of an increase in sea
level, which results in minor erosion due to increased wave and storm activity in
proximal areas, and a fining-upward trend in the deeper basin (Coe et al. 2002). Interval
5 shows a decrease in bioturbation intensity/diversity and grain-size from interval 4. The
decrease in bioturbation intensity and switch to a more distal expression of Cruziana
ichnofacies suggests that the environment is transitioning to a more open-marine
environment, due to a rise in sea-level, while the fine grain size is interpreted to
represent lessening energy conditions within the basin (Bann and Fielding 2004).
Interval 5 is therefore interpreted to represent a transgression of the shoreline (TST).
The HST is not preserved in the upper Skull Creek Fm. and may have been eroded

during the formation of the Muddy (J) sandstones (Weimer 1996).
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Figure 10 (A) This model illustrates the depositional environment of the Skull Creek Fm. Central Utah is
experiencing regional uplift and crustal shortening and sediments are fed into the Cretaceous Interior
Seaway by estuaries or along a prodelta. Modified from Wilson and Schieber (2014). (B) During major
flooding events, a hyperpycnal plume is generated along the sea bottom and is transported with the help
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of wave energy. Modified from Bhattacharya and MacEachern (2009). (C) Conceptual model showing the
evolution of distal and proximal facies over time. At time 4, the colored blocks represent deposits in
proximal and distal regions. As the flow becomes more dilute it will deposit current to planar laminated
siltstones and mudstones. Modified from Mulder and Alexander 2001.
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7.0 DISCUSSION

7.1 Transport mechanism of fine-grained sediments

In this study, the Skull Creek Fm. is interpreted to represent distal to proximal
expressions of hyperpycnal flows (FA 1, FA 2, FA 3, and FA 4) and prodelta deposits
(FA 5) as the shoreline first retrograded, and successively prograded. Sediments of
fine-grained FAs (FA 1 and FA 2) are here envisioned to be mainly transported as bed-
load in a turbulent flow. However, recent studies of modern mud-dominated continental
shelves (e.g. Eel River delta) show that there is a possibility of transporting fine-grained
sediments as fluid mud, due to the oscillatory wave motion during storm events
(Traykovski et al. 2000). If sediments are transported as bed load, there should be at
least some evidence of erosion of unconsolidated mud, as seen in other storm-
generated density flows, as in the Cretaceous Kaskapau Fm. (Plint et al. 2012), or
sedimentary structures indicative of bed load transport such as mudstone ripples
(Schieber et al. 2007). Fluid mud layers, in contrast, look similar to the upper portion of
wave enhanced sediment gravity flows (WESGFs), and can develop from turbulent
flows as mud content increases and the flow becomes more laminar (Macquaker et al.

2010).

In order for hyperpycnal flows to be gravity-driven, slope gradients need to
exceed 0.7°, and additional wave energy is needed to transport hyperpycnal flows along
low-gradient slopes (<0.3°; Friedrichs et al. 2000; Wright and Friedrichs 2006). Wave-

aided density flows can generate similar structures to wave-generated hyperpycnites,
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such as lag deposits, wave and combined-flow-ripples, graded beds, and were
described from the Kaskapau Formation (Plint et al. 2012). These fine-grained
sediments originated as unconsolidated mud that was remobilized by storms and
transported as bed-load, whereas sediments within the Skull Creek Fm. are interpreted
to have been transported as bed load from river discharge events. The main argument
for the remobilization of mud in the Kaskapau Fm. is the presence of intraclastic
aggregates which are mixtures of clay, coccoliths, pyrite and organic carbon. These
aggregates are a major distinguishing feature of wave-aided density flows, as
intraclastic aggregates have not been identified within wave-aided hyperpycnites.
Amorphous organic matter within the Skull Creek Fm. looks superficially similar to the
Kaskapau intraclasts, but SEM examination indicates that Skull Creek organic matter
does not exhibit the aggregate texture observed in the Kaskapau Fm. (Appendix 3).
This would suggest that mud was not remobilized from proximal areas due to storm

events, but was transported as bed load due to flooding events, possibly as fluid mud.

Within wave-aided hyperpycnal flows there are two subdivisions of the flow: an
upper cohesive layer, or fluid mud layer, that is suspended by oscillatory motion of
waves, and a turbulent basal layer where sediment is transported as bed load and
contains both silt and mud grains (Traykovski et al 2000; Wilson and Schieber 2014).
Similar structures may be produced by Wave Enhanced Sediment Gravity Flows
(WESGFs), which show a tri-partite subdivision of facies that represent turbulent,
transitional, and laminar flows (Maquaker et al., 2010). Within the Skull Creek Fm. the
succession of these three different facies is rare but present, suggesting that similar

conditions conducive to forming WESGFs persisted at least some of the time during
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Skull Creek Fm. deposition. Within the distal laminated mudstones (FA 2), there are
some thin (<1mm) normally graded siltstone laminae containing faint low-angle
crossbeds that look similar to basal siltstone beds interpreted by Mulder and Alexander
(2001) and Mulder et al. (2003) as turbulent flows with a high traction component. The
irregularly-laminated mudstone beds that overlie some Skull Creek Fm. siltstones could
represent mixing of lower coarse-grained sediments transported in a turbulent flow and
fine-grained sediments that were held in suspension as fluid mud (Macquaker et al.
2010). The alternation between cross-bedded siltstone laminae and massive to
irregularly-laminated mudstones within FA 2 suggests that these sediments could have
been transported by hyperpycnal flows during intense flooding events when sediment
on the continental shelf is remobilized as fluid mud and wave energy is high (Kinke et
al.1995; Friedrichs et al. 2000). However, the succession of these three different beds
(basal siltstone beds, irregulary-laminated mudstones, and massive mudstone beds)
does not necessarily have to be the product of WESGFs, and can be produced by the
natural progression of hyperpycnal flows as they become more dilute of silt and sand
particles (Baas and Best 2002). Flows with high clay concentrations can produce
laminated mudstones that are overlain by massive mudstones due to the sediment
interactions between the upper cohesive layer within a hyperpycnal flow and the lower
turbulent layer. The succession of these different beds is commonly seen within FA 2
and it is more likely that massive and laminated mudstones are attributed to the natural

evolution of a hyperpycnal flow and do not represent a succession formed by WESGFs.

Massive mudstones and siltstones of FA 1 contain abundant floating sand grains

which could be an important indication of transport as fluid mud in these otherwise
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heavily bioturbated mudstone units. Baas and Best (2011) found that similar “floating”
clasts within massive mudstones were deposited from laminar flows that contained high
sediment concentrations. These laminar flows are most common during high-discharge
floods, when suspended sediment concentration will be the highest (Friedrichs and
Scully 2007; Kinke et al. 1995). In contrast, the floating grains also could have originally
formed siltstone laminae that were subsequently destroyed by bioturbation, which would
support the interpretation that these sediments were transported as bed load in a
turbulent flow. It is difficult to ascertain the depositional mechanism of the FA 1
mudstones because they are generally heavily bioturbated and most sedimentary
structures have been destroyed. However, based on the presence of some
crossbedding, FA 1 is speculated to have been deposited at least partially by turbulent

flows.

7.2 Ichnofacies

Within FA 5, there are three major ichnofacies present, Cruziana, Skolithos, and
Zoophycos, which co-occur through intervals 4 and 5. The identification and
interpretation of different ichnofacies within this heavily bioturbated interval is very
important to distinguish any fluctuations in sea level, since there are very few
sedimentary structures that were preserved to help interpret the depositional
environment. Beds that contain Skolithos co-occur with minimal Planolites, Arenocolites
and Schaubcylindrichnus, but overall the beds are diminutive in other traces. The co-
occurrence of Skolithos and Cruziana ichnofacies can indicate stressed environments,
while Cruziana and Zoophycos indicate more normal marine conditions (Bhattacharya
and MacEachern 2009; MacEachern and Gingras 2007). Because of the monospecific
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trace fossil assemblage in the siltstone beds containing Skolithos, it is assumed that the
hyperpycnal flows depositing these siltstone beds also brought in brackish water from
the delta and therefore temporarily may have lowered salinity (MacEachern and Gingras
2007). The change in ichnofossil content within individual beds is therefore taken as a
reflection of salinity changes from slightly brackish to fully marine, the latter indicated by
Zoophycos, which is formed by environmentally sensitive organisms that do not thrive in

brackish-water environments (MacEachern et al. 1999).

Beds containing Skolithos, Zoophycos and Cruziana ichnofacies regularly
alternate in interval 4, with Skolithos and Cruziana being most prevalent in the middle
part of interval 4. Zoophycos and Cruziana are found in the middle to upper part of
interval 4 and the lower part of interval 5. A major shift in lithology and ichnofacies is
noted at the beginning of interval 5, where beds transition from bioturbated siltstones
and sandstones (FA 5) of interval 4 to laminated mudstones and siltstones (FA 2 and
FA 3) in interval 5. Bioturbation intensity decreases upward within interval 5, and
contains mainly Zoophycos and Cruziana ichnofacies. This change in trace fossil
assemblages in the upper part of the Skull Creek Fm. therefore shows a change in
depositional environments from proximal offshore to a distal offshore, more open-
marine environment. This trend, best seen within the cores (9-31 BMS and Well A),
indicates that relative sea-level must have been rising at the end of Skull Creek Fm.
deposition. The lithology change from FA 5 siltstones of interval 4 to FA 3, FA 2, and FA
1 mudstones and siltstones of interval 5 is only reflected in Well A, Turkey Creek, and 9-

31 BMS and are interpreted to reflect a rise in sea level. This interpretation is supported



by the ichnofossil assemblages that reflect the deepening sea level within the massive

siltstones of FA 5, even though this interval is not exposed at all locations.

7.3 TOC Content

Interval 2 at the Turkey Creek outcrop contains the highest TOC values (up to
3.84 wt.%) within the entire Skull Creek Fm. There are two possible explanations for
these high TOC values: 1) the Turkey Creek outcrop is located close to the source of
the hyperpycnal flows or 2) bioturbation intensity is much lower at Turkey Creek, so the

preservation of organic matter is higher because of less burrowing activity.

In hyperpycnal flow deposits, high TOC values can reflect either a proximity to
land, as most organic matter is derived from the terrestrial realm, or organic matter can
be eroded from the sea bottom in proximal areas. Erosion is more common in relatively
shallow rather than deep water on the shelf and is better preserved within fine-grained
sediments (Bhattacharya and MacEachern 2009). The exact location of organic matter
for the source of the Skull Creek Fm. is unknown, especially in Central Colorado, since
the shoreline of the Skull Creek Seaway is not well constrained. However, possible
paleodrainages of the Skull Creek Fm. can be estimated from the paleodrainages of the
overlying Muddy (J) sandstones that were outlined by Weimer (1990, 1996). The
paleodrainages of the Muddy (J) sandstones point to the SE of a paleohigh located near
the Turkey Creek outcrop, suggesting that the sediment source for the Skull Creek Fm.
was also close to the Turkey Creek outcrop. Therefore, sediments transported and
deposited near the Turkey Creek outcrop are more likely to have higher concentrations

of organic matter because they were not transported as far from the source compared
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to other outcrop localities. The fine-grained sediments of interval 2 are especially prone
to contain high TOC values since at proximal areas high sediment concentrations may
dilute TOC values, leading to low TOC values within coarse-grained sediments (FA 4
and FA 5), while fine-grained sediments are deposited in more quiet water
environments where the likelihood of preserving organic matter increases (Bohacs et al.

2005; Creaney and Passey 1993).

Favorable conditions for preserving organic matter are best met when sea level
has reached its maximum height, around the MFS, which is where the highest TOC
values are detected in the Turkey Creek section. Within the fine-grained sediments of
the Skull Creek Fm., bioturbation intensities range in values from 2-0, and contain
exclusively Planolites and Phycosiphon traces. At the Turkey Creek outcrop, the
laminated mudstones (FA 2) at the MFS are not bioturbated any more intensely than
similar samples taken from other outcrops. Therefore, if sediments were deposited in
close proximity to the source, and in distal locations along the continental shelf, organic

matter is more likely to be preserved and TOC values will be high.

7.4 Gutter Casts

At the Dixon Dam outcrop, gutter casts occur that are lined with massive
mudstone (facies 1) at the base and filled with massive sandstone (facies 10). Gutter
casts have been described by other authors as having a basal scour, come in a variety
of irregular shapes, and can contain wave ripples, suggesting transport within an
oscillatory flow (Aigner 1985; Myrow 1992). These structures are usually formed when a

strong current erodes the sea bottom and storm sands carried from proximal areas fill in
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these depressions. However, the presence of a basal shale layer has not been
described in literature and suggests that the gutter casts within the Skull Creek Fm.

formed in a different way.

Gutter casts in the Skull Creek Fm. originated when a strong current directed
offshore scoured the sea bottom to create a depression (c.f. Aigner 1985). After the
initial scour took place, there must have been a break in deposition during which mud
was deposited, most likely by suspension, which is shown by the thin mud layer
containing Planolites traces. The presence of Planolites traces suggests that there was
enough time for the mud to be colonized by organisms before the depression was filled
in with sand. The final event was infilling of the scour with very fine-grained sand, or silt,
which was transported from proximal regions and deposited very quickly (indicated by
the lack of structures or massive nature of the sand and silt) over the mud layers. An
example of one of these gutter casts and a diagram highlighting its variable fill is shown

below in Figure 11.



Event 3

Sea
Floor]

Event 2 Event 1

D

Figure 11: A) Gutter Cast at Dixon Dam that is lined with a thin mud layer (~0.5mm thick) at the base.
The gutter cast was at 15.85m. B) and C) Thin sections of the mud layer below the gutter cast. The mud
layer is fining upward (thin mud drape at the top) and is overlain with silt. D) Diagram showing the
succession of events to form the gutter casts; Event 1: currents scour the sea bottom and create small
depressions, Event 2: Mud was deposited from suspension in the depression as energy waned, Event 3:
Very fine grained sand to silt is carried from the nearshore and deposited over the mud.
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8.0 CONCLUSIONS

1. The Skull Creek Fm. consists of twelve different mudstone, siltstone and sandstone
facies that were grouped into five facies associations (FAs). These are massive
mudstone and siltstone (FA 1), fossiliferous mudstone and siltstone (FA 2), ripple to
laminated siltstone and mudstone (FA 3), mud-rich sandstone and silistone (FA 4), and

bioturbated siltstone to sandstone (FA 5).

2. Sediments within the Skull Creek Fm. were deposited along the continental shelf in
the distal portion of a delta system. They were transported as bed load within turbulent
flows or as suspended load during river-flooding or storm events. FA 1 was deposited in
a sediment starved-area along the continental shelf, either located distally or laterally to
FA 2. FA 2 was deposited below storm-wave base and was transported as bed-load in a
mostly turbulent flow. FA 3 and FA 4 are more medial to proximal deposits; FA 4
contains sand with minimal mud, while FA 3 is composed of silt. FA 3 was deposited at
or below storm-wave base, contains mainly current-generated structures and shows
minimal evidence of wave-reworking. FA 4 shows evidence of wave-reworking (HCS
sandstones and siltstones and wave ripples) and was therefore deposited above storm
wave base. FA 5 is the most proximal unit and was deposited along the middle
shoreface to the lower offshore with intermittently stressed conditions, indicated by the

presence of Skolithos.

3. By correlating the four outcrops and two cores along a N-S and E-W transect, the
Skull Creek Fm. was subdivided into five stratigraphic intervals. Interval 1 is composed

of proximal bioturbated to wave-rippled siltstones and sandstones (FA 4 and 5). Interval
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2 is the most fine-grained unit and contains bioturbated mudstones or laminated and
current-rippled mudstones which contain large concretions and lag deposits (FA 1, 2,
and 3). Interval 3 contains wave- to current-rippled sandstones and siltstones with very
thin bioturbated beds (FA 3 and 4). Interval 4 is composed of heavily bioturbated
siltstones and massive sandstones (FA 5) with some very thin beds of massive
mudstones or HCS sandstones (FA 1 and 4). Interval 5 is a fining-upwards unit that
consists of bioturbated mudstones and siltstones at the base, and laminated to massive

mudstones within the upper half (FA 1 and 2).

4. There are three transgressive cycles and one regressive cycle during the
development of the Skull Creek Fm. Both interval 1 and interval 2 show an upwards
decrease in grain size, which illustrates an overall decrease in energy within the basin.
Therefore, interval 1 represents an early TST and interval 2 a late TST. Interval 3 and
interval 4 are composed of the most proximal FAs and illustrate an overall decrease in
accommodation space, consequently interval 3 is interpreted to be a HST and interval 4
is a LST. Interval 5 was deposited as sea level rose again (TST) and ends at the

unconformity (or SB) between the Skull Creek Fm. and Muddy (J) sandstones.

5. TOC values within the Skull Creek Fm. are between 3.86 and 0.11 wt. %. Organic
matter types are both terrestrial and marine in origin (Type Il and Ill). Interval 2 contains

the highest TOC values and the most oil-prone organic matter.

6. This study was accomplished by relating structures seen in the Skull Creek Fm. to
structures observed by other researchers during flume experiments and along mud-

dominated continental shelves. Mud-dominated successions deposited under humid
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conditions along a tectonically active margin are conducive for producing flows with
high-sediment concentrations and are transported by a combination of wave and current
energy as wave-aided hyperpycnal flows. To identify formations that were deposited
similarly to the Skull Creek Fm., coarse- to medium-grained sediments (siltstone and
sandstone beds) should show a combination of wave-and current-generated structures
and normally and inversely graded beds, while fine-grained sediments contain mainly
current-generated structures and normally graded beds due to their more distal location

along the continental shelf (below SWB).
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Appendix 2: Stratigraphic sections
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Silty shale that fines upward to shale

laminated mud

Concretion diameter ~15cm
Large concretion, wavy laminated shale above

and below

= 16 cm thick gypsum bed

Contact with the Plainview
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Stratigraphic Interval:Plainview-Skull. Creek-Muddy.J Logged By: Kathleen Masterson  Date:9/12/2014.........
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Stratigraphic Interval:Plainview-Skull. Creek-Muddy.J Logged By: Kathleen Masterson  Date:9/4/2014
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Depth Lithology

Facies Associations

medium sand

fg sand

Structures/Fossils
Bioturbation Index
stacking patten 1

silt

Sample Taken

Description

Scale
clay

36

S~ Horsetooth member

34

32 =

30

28 :
.
|
J

HC
Gray bioturbated siltstone

v

26

v

HC

24

22
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I
!

Massive

Hummocky beds (shale with fg ss), 70% ss, 30% mud

HCS

Planar laminated shale

~ Hummocky beds, siltstone lenses interbedded with shale

| HCS Silt streaked muds,bedding is planar to wavy

50% mud, 50% silt, bedding not recognizable (massive),
very bioturbated
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Vfg ss, fossiliferous beds containing concretions, and
combinedflow ripples, possible lag deposit,
50% mud, 50% ss

hummocky cross stratification and combined flow ripples,
50%sand, 50% mud

vfg sand streaked mudstone (mud 40%), heavily bioturbated

Fissile mud, little to no visible structures

Assymetrical ripples, 60% mud, 40% silt

orange silt-vfg sand Vertical bioturbations and concretions,
low angle cross beds- oil show

Planar laminated, bioturbated mudstone

Hummocky cross bedding, rip up clasts( 1cm diameter),
and vertical bioturbations

Planar laminated silt streaked muds, bounded by a scour
surface, 90%mud, 10% silt

Lenticular beds with fine grained sand lenses, 50% silt, 50%
B silt-vfg sand, 40% shale

Planar to cross laminated gray Silt Streaked Muds
containing rip up clasts, 70-60% mud, 30-40%% silt
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Scale

Facies Associations

fg sand
vfg sand

silt

clay

Structure/Fossils

# Bioturbation Index

Description

stacking patten 1

34

32

30

28

26

24

22

84971
8498+
8499
85004
85014
8502
8503
8504+
8505
85064
8507
85084
8509——
8510
8511——
8512—
85134
85144

8515
8516-—
8517——
8518
85194
8520

1

8521

8522
8523——
8524——
8525
8526
8527-
8528
8529-%
8530
8531+
8532—
8533
8534
853!
8536

v

8507.87" fault with massive mud overlying siltstone

2.5 cm (0.98in) thick ash bed
8510.5"- 0.7m (2.8 in) thick irregular lam mud, BI=0

! Bioturbated HCS, 2cm thick

|
|

| Wavy mud layers within siltstone

T
H

|

1|
11|

I
It
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Th

fg ss with coal seams- muddy J

- Massive mud with no visible laminations- check thin sections for
structures

Silt bed with rip ups
Potential ball and pillow structures

Cy

Beds are almost homogenized, traces not recognizable
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18
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14
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85371
8538
8539
85401
8541
8542
85437
8544
8545
85461
8547
8548
8549
8550+
8551
8552—
8553
8554
8555
8556
8557—
8558—
8559
8560
8561
85621
8563—
8564~
85657
85661
8567
8568
8669
8570
8571—
8572~
8573
8574
85751
85767
85771
8578—
8579
8580
8581
8582

I —r——— T T N ST I . 1

| | | s|k 14cm long ophiomorpha burrow

Massive silt with some mud clasts

Small arencolites, and thalisinoides

h
¥ )?r? ge&fno\gntary fault
1.8 cm thick ash bed

syn sedimentary fault at 8579.7

Mantle and swirl or teichicnus

x-beds to starved ripples in mudstones



FAZ
8583 —

8584 —
8585 —-
8586 -
8587 |™2
8588 - M

8589
FA2
8590

8591 ]
85924 [eas

8593 =)
8594

4 8595. FA2

8596

85971 .

8598—
FA2

859 = p—

0.5 cm thick lag

mud drapes

mudstone contai

860
8601

2 8602

8603— =

8604—
8605——
8606
8607
8608

O 8609—

& 1 cm thicl sitbeg wit
Silt bed with mud drape through the middle
siltstone with bi-directional x-beds with 1 cm diameter pyrite

0.5 cm thick ash bed

Legend

Rip up clasts[o]

Cross Beds

Concretion
Downlapping
laminae

(current ripples)

Lamina Geometry

Hummocky Cross
Stratification =l

Planar Laminations E 3

Wave ripples = Gutter Cast
Hummocky Cross Massive
Stratification

. Fossils/Shell
Vertical Burrows  [¥] debris

Horizontal Burrows[=]
Fault

Wavy Parallel 5 Scour/irregular /—/]
laminae

=

[v]

Mud Scours [ae

==

85

syn sedimentary fault through 1.3 cm thick silt layer

:- . 0.5cm pyrites with Teichichnus and planolites

3cm thick ash bed, overlain by a 3cm thick sandstone bed with

distorted silt lense- soft sediment deformation
2.54: massive siltstone
0.2cm thick silt bed, with <1cm thick silt beds above and below.

s little scours. 1cm thick scour.
dolomite

v Alternating silt and mud beds, has ripples to planar laminae,
— thickness of silt beds (1cm-2cm thick) at the base
gray, bioturbated sandstone (Plainview)




Appendix 3: Scanning Electron Microscope (SEM) Report

EDAX TEAM foges
Author: segenhoff
Creation: 31412015
Sample Name: BD-6.12-14
Area 2

(c=x)

Notes:
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