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ABSTRACT 
 
 
 

RISK-REWARD TRADEOFFS IN THE FORAGING STRATEGY OF COUGAR (PUMA 

CONCOLOR): PREY DISTRIBUTION, ANTHROPOGENIC DEVELOPMENT, AND PATCH 

SELECTION 
 
 
 

Empirical efforts to understand the space utilization patterns of large elusive carnivores 

that forage on highly mobile prey are sparse. Investigating the patch choices made by a large 

carnivore while engaged in foraging behaviors is of particular importance to understanding their 

conflicts with humans. The over-arching goal of this thesis is to test whether the foraging 

strategies carried out by a large carnivore inhabiting an area marked by human housing 

development can be explained by classic optimal foraging theory (OFT). My research takes place 

in a portion of the Colorado Front Range, which is a foothill-montane system characterized by 

the urban-wildland interface of the greater Denver metropolitan area and surrounding cities 

(Boulder, Golden, Evergreen). A matrix of varying levels of rural, exurban, and suburban 

development are expected to drive the patch choices made by the cougar, a large obligate 

carnivore that can conflict with human interests when engaged in foraging behavior. 

Before answering questions involving patch choice, several pieces of information must be 

acquired. Specifically, Chapter 1 and Chapter 2 take an Eulerian approach to understanding the 

space utilization patterns of wild prey commonly sought by cougars in this area. Predicted 

utilization by these prey species is mapped for the study area on a fine (30 m) scale, with the 

premise that cougars may be attracted to localities where the opportunity of encountering a 

potential prey item is greater. Appendix 2 provides details on methods used to determine the 
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distribution of housing development, a patch characteristic that cougars may fear. This appendix 

also provides background discussion of anthropogenic development in the study area. Appendix 

4 provides details on the construction of various “natural” landscape variables from readily 

available data sources. 

A focus of many studies employing camera traps is to describe spatial and temporal 

utilization patterns of animals, often with a goal to obtain a population level response. In Chapter 

1, I conducted an experiment using agent based modeling (ABM) simulations to demonstrate 

how encounter rate (count of triggering events) is influenced by abundance, movement rate, 

home range size, and dimensions of the camera’s field-of-view. I demonstrate which sampling 

frequency scenarios, either by using a camera trigger delay period or with data post-processing 

steps, may result in non-linear and interacting effects between these four predictor variables and 

encounter rate. Results of the experiment generally supported previous simulation studies. 

However, intentionally imposing delay periods in sampling frequency produced biased 

inferences of habitat usage, and weakened the relationship between relative abundance and 

encounter rates; simple linear responses between biological properties (abundance and 

movement) and the underlying encounter rates were unobtainable. With a habitat explicit ABM, 

I compared camera trap encounter rates to a true measure of utilization using a perfect GPS 

telemetry system. The model demonstrated that raw encounter rates are a property of localized 

abundance and habitat utilization behaviors of all individuals, and that camera encounter rates 

measured between treatment groupings can be used to produce habitat utilization inferences at 

the population level assuming certain study design characteristics.  

In Chapter 2 I applied the methods developed in Chapter 1 to model the utilization of a 

set of six medium to large mammalian species inhabiting the Front Range study area. This was 
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done using a measure of the amount of time spent by animals within the field-of-view of 131 

camera trap sites monitored over a one-year period. The purpose of this chapter was multi-part. 

First, I assess the probability of detection within the camera trap’s field-of-view using distance 

sampling technique. Adding to previous studies, I demonstrate that false-absences are a function 

of distance to the camera codependent on site and observation level variables. A secondary focus 

was to understand the associations between animal utilization and housing development. Using 

compound-Poisson generalized linear models, I show that the utilization patterns of the six 

species with respect to housing development were generally supportive of those found in 

published studies using habitat selection, occupancy, and abundance as response variables. Some 

of the species modeled were also species commonly preyed on by cougar in the Front Range. 

Thus, for a third objective, I develop utilization distribution maps for each species using 

predictions of the compound-Poisson models. This utilization map was then used as an input data 

source for models created in Chapter 3. 

Finally in Chapter 3, using cougar as a model species, I tested whether a large carnivore’s 

foraging strategy can be explained by optimal foraging theory. Understanding how large 

carnivore foraging strategies influence space utilization decisions is important for explaining 

human-large carnivore conflicts. Seminal optimal foraging papers proposed that an animal will 

be less cautious in avoiding risks when energetically stressed. I demonstrated that cougars make 

a tradeoff between choosing locations that would yield a higher prey encounter rate with 

choosing safer patches. Cougars avoided higher housing densities, but were attracted to higher 

primary prey (mule deer) availability. Support for this tradeoff was evident in the increase in 

hunting success in higher housing densities. Inter-individual differences in foraging behavior 

existed, with some variation explainable by cougar sex and age classes. As for intra-individual 



v 

 

differences, energetic stressors mediated the foraging strategy at two temporal scales. During 

periods associated with decreased availability of and accessibility to primary prey, cougars 

became less cautious of higher housing densities. On a shorter time scale, avoidance of housing 

declined as cougar hunger levels (time since last feeding event) increased. Cougars normally 

avoided higher housing densities when conducting hunting activities. However, in the event 

where a kill was not made soon enough, the risk avoidance response dwindled until cougars 

showed no avoidance to higher housing densities when hunting. This study provides a 

mechanistic understanding of the space utilization patterns of a large carnivore in landscapes 

where human and carnivore utilizations overlap. Furthermore, it explains a carnivore’s 

occasional utilization of risky landscapes and thus potentially the occasional conflicts between 

large carnivores and humans. 
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CHAPTER 1 - INFERRING POPULATION LEVEL HABITAT UTILIZATION FROM 

CAMERA TRAP ENCOUNTER RATES 

 

 INTRODUCTION 

Camera traps are increasingly used as tools for studying animal population size, 

occupancy/distribution, and habitat use. Compared to conventional survey techniques, camera 

traps are non-invasive (Cutler and Swann 1999), cost-efficient (Silveira et al. 2003), and reduce 

human observation error as a photo record can always be referenced (Swann et al. 2011). Remote 

photography of animals is not a new concept (Shiras 1906), but recent technological advances 

have overcome many logistical challenges regarding battery life, triggering mechanisms, image 

storage, and processing. These advances have allowed acquisition efforts to move from anecdotal 

collections to intensive large scale surveys. With its increased accessibility, camera trapping has 

become a staple in species distribution modeling. 

An objective of many camera trap studies is to make ecological inferences by testing for 

differences in a state variable (e.g., abundance, occupancy) between spatial or temporal treatment 

groups. These population-level state variables are often used as currencies to infer some measure 

of importance of a particular landscape to animals (Buskirk and Millspaugh 2006) or to map the 

distribution of animals across the landscape. Despite the array of published studies that give 

direct or indirect inference to habitat usage with camera traps, habitat usage definitions are 

inconsistent; it is not certain what currency should be used to infer habitat importance. Rather 

than acquiring habitat utilization measures, camera trap platforms thus far are mainly used in 

conjunction with mark resight techniques to produce abundance estimates (Karanth 1995) or 

with occupancy modeling analysis to produce probability of occurrence (MacKenzie et al. 2006). 
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These methods may not be the most appropriate for some study objectives (e.g., habitat 

utilization study), or have some shortcomings in certain systems (e.g., animals without 

insufficient markings for a mark-resight study). Some researchers have thus turned to relative 

abundance indices (RAIs) (Carbone et al. 2001, O'Brien et al. 2003, Rovero and Marshall 2009). 

Occasionally RAIs are used to infer habitat utilization (Bowkett et al. 2007).  

RAIs are an abundance proxy that attempts to characterize directions and magnitudes of 

change in population abundances between treatment groups (i.e., habitats, seasons, years, or 

species) rather than actual abundance values. Camera trap RAIs, in their generic form, are counts 

of animals triggering the camera per camera trap location, standardized by the effort (i.e., 

number of survey days), essentially a raw encounter rate. RAIs are often justified by arguing that 

a measure of the absolute number of unique animals is unnecessary and that abundance 

differences are reflected in encounter rate. It assumes that all potentially confounding variables 

that may influence the encounter rate are standardized in the design process. Some empirical 

studies have successfully correlated RAI with actual density estimates (Carbone et al. 2001, 

Rovero and Marshall 2009), but these methods likely have unmentioned shortcomings (Jennelle 

et al. 2002) or fail in some systems (Mathews et al. 2011, Sollmann et al. 2013). Rather than a 

pure abundance effect as assumed in inferences stemming from RAI studies, what researchers 

observe with camera trap encounter rates might be a reflection of overall habitat specific 

utilization patterns of the population, or an emergent property combining the processes of 

movement and localized aggregations of individuals.  

Lagrangian habitat use and selection studies are now implementing methods that take 

advantage of the high temporal resolution that GPS telemetry can provide for individual animals, 

giving a better understanding of how long an individual uses a particular location and the choices 
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available. To gain a population level understanding, habitat selection data from many individuals 

are aggregated in analysis. Whereas telemetry studies give insight at the individual level, the 

utilization pattern for what the population does as a whole is sometimes the most important 

inference. Popescu et al. (2014) did give empirical evidence for a radio-telemetered meso-

carnivore that a camera trap’s encounter rate measure was associated with telemetered animals’ 

utilization distributions. However, telemetry studies have their own biases (Reynolds and 

Laundre 1990, Johnson and Ganskopp 2008), thus comparing camera trap encounter rate 

measures to a true utilization measure would be useful. 

One of the earliest works using camera platforms simply aimed at comparing habitat 

units by the utilization of waterfowl (using counts of individuals) in defined plots bounded by the 

camera’s field-of-view (FOV) (Cowardin and Ashe 1965). Several studies have since used 

encounter rate data to do similar habitat use assessments (Di Bitetti et al. 2006), with some 

assuming their currency for measurement is relative abundance (Bowkett et al. 2007). Whereas 

some work has demonstrated that photographic encounter rates do have a relationship with 

abundance (Carbone et al. 2001, Rowcliffe et al. 2008, Sollman et al. 2013), other factors like 

movement rates (Carbone et al. 2001, Rowcliffe et al. 2008, Rowcliffe et al. 2011, Glen et al. 

2013), home range size (Sollman et al. 2013), and FOV dimensions (Rowcliffe et al. 2008, 

Rowcliffe et al. 2011) are also important. Thus, disentangling the influence of any one factor 

from the others is difficult, but an important step for understanding which basic variables 

influence encounter rate. 

An important component to most modern passive infrared camera studies is that sampling 

frequency or photo collection rate can be determined by programming the camera’s trigger delay 

period to record pictures nearly continuously (i.e., 1 second delay) or at other user-specified 
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intervals (i.e., 30 seconds, 5 minutes, 1 hour). Alternatively, temporal re-sampling can be carried 

out in post-processing. In the case of RAI and habitat comparison studies, many rarify the series 

of photos to some arbitrary level of independence, so that the same individual animal is less 

likely to be captured repeatedly in a short amount of time (Kinnaird et al. 2003, O'Brien et al. 

2003, George and Crooks 2006, Bowkett et al. 2007, Gessner et al. 2013). Passive camera 

studies sometimes implement a time-lapse trigger to allow detections to be made at standardized 

intervals (Cowardin and Ashe 1965, Temple 1972, Hamel et al. 2013). No study has examined 

how this delay period or rarefication may influence inferences of habitat utilization. Both 

movement rate and camera delay period incorporate a time element, while movement rate 

incorporates an additional spatial element; thus, I hypothesize that interactions between 

movement rate and delay period will confound utilization comparisons between habitats. A 

simulation that manipulates camera delay period, along with abundance, home range size, 

movement rate, and camera FOV size factors in a single environment may elucidate whether 

population level habitat utilization patterns can be inferred from camera traps. 

My overarching goal is to help researchers understand the capabilities and limitations of 

passive infrared camera traps to infer habitat utilization measures at a population level. Using 

agent-based model (ABM) simulations I demonstrate how biological factors (home range, 

movement rate, abundance) and design factors (camera maximum FOV detection distance and 

camera delay period) influence encounter rate, and how these variables may have interacting 

effects. I then use a similar ABM to simulate a population of agents selectively using certain 

habitats to test if habitat specific encounter rates measured by camera traps match measurements 

of habitat usage derived from a perfect telemetry study.  
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 METHODS 

 ABM Description 

Using Netlogo 5.1.0 (Wilensky 1999) a simple temporally and spatially explicit ABM 

(CamEncounter) was created to simulate the contact between animals and camera agents. The 

spatial environment of the Netlogo “world” consisted of a plane of pixels, each one being a 

square meter. The landscape (a 200 x 200 m landscape) was overlaid by a grid of four camera 

traps with 100 m spacing (Figure 1.1). A sector radiates from the camera agent to form the FOV 

with a fixed 42° angle and a user defined FOV distance. The temporal component of the model 

was governed by time steps representing one second of true time.  

A user defined number of animal agents were generated randomly on the landscape in 

response to the parameter ABUND. Each animal was restricted to a circular home range area 

(HOME) with a user defined radius and home range center (Figure 1.1). Within each home 

range, each agent carried out a correlated random walk with an adjustable movement rate 

(MOVE) and a turning angle that was chosen from a normal distribution (mean: 0°, stdev: 5°). 

For each tick of the simulation, agents chose a turning angle, and then moved forward the 

distance specified in the MOVE parameter. When an animal reached its home range edge, the 

heading was temporarily reset to face the home range center. This effectively resulted in an 

approximate bivariate normal distribution of home range utilization intensity (Figure 1.1). The 

“world-wrap” feature of NetLogo allowed agents to move out of the world from one side and 

enter into the other side (Figure 1.1). Therefore, even with only four cameras, animals had the 

ability to come into contact with cameras as if a larger landscape and camera grid were 

examined. This also negated any study area edge effects on movement characteristics or 

inferences, while maintaining a constant animal density throughout a model run. Stochasticity 
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was introduced into the model by the random positioning of home range centers and the random 

turning angle of the correlated random walk. 

Upon initiation of the simulation, animal agents moved freely about the home range 

while the camera agents remained in an armed state. Once an animal passed within the FOV, the 

encounter was recorded, and the camera went into a delay mode in which the camera was unable 

to record any encounters. After the user specified delay period (DELAY) had passed, the camera 

agent was armed and ready to record the next contact of an animal within the FOV. If the delay 

was set to 1 second, then the camera triggered continuously given that time-steps themselves 

were one second. Camera agents tallied all animals within the FOV if multiple animals happened 

to co-occur. Counts of triggering events were tracked for each camera individually. 

 Experimental Test of Factors Influencing Photographic Counts 

An experimental design was used to test how an encounter rate response variable could 

be influenced by four independent variables: ABUND, HOME (ha), FOV (m2), and MOVE (m/s) 

in an orthogonal parameter space (Table 1.1) resulting in 1,512 combinations. To examine how 

temporal sampling design could influence the response of encounter rate to those four variables, 

scenarios were run using a trigger delay period of 1 second (DELAY1), 30 seconds (DELAY30), 

and 300 seconds (DELAY300). The model was allowed to simulate 1 day (86,400 ticks). For 

each combination of the parameters, 15 iterations were simulated in which new home range 

centers were generated, producing 22,680 sets of results. ABUND represented a range of 2-22 

animals (density of 0.5 – 5.5 animals/ha). HOME represented an aerial home range extent of 

0.28 – 5.31 ha. MOVE spanned 0.2 to 2.0 meters/second, which may represent a potential speed 

of a foraging animal to one at a fast gait. FOV represented an aerial measure of 3.3-61.9 m2 

(FOV distances: 3-13 m). The small world size (4 ha) and small home range sizes are most 
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representative of smaller mammals (e.g., lagomorphs) and less representative of mega-fauna, but 

also reduced computational requirements given the fine 1 m2 resolution used.  

For each model run, the mean number of encounters (i.e., trigger counts) across the four 

cameras was calculated. Because the duration of each model run was constant, this was a 

sufficient response variable to measure rather than encounters per unit time. The resulting 

encounter response was a non-negative continuous variable with zeros occurring in some 

iterations of the model. Therefore, a generalized linear model using a Tweedie compound 

Poisson error distribution (R package ‘cplm’) (Zhang 2013) (R Development Core Team 2013) 

was used to model the encounter rate response as a function of covariates. A separate analysis 

was conducted for each of the three delay period scenarios, as a goal was to examine which 

combination of variables explained the process observed under each scenario. Candidate models 

were created with combinations of main effects, quadratic terms, and all possible interactions 

between pairs of main covariates. Best fitting models were selected using Akaike’s Information 

Criterion adjusted for small samples size (AICc, Burnham and Anderson 2002). To help protect 

against spurious inclusion of variables, models were examined for potential “pretender variables” 

(Anderson 2008, Arnold 2010). Models in the top set (those with ΔAICc < 7) were inspected by 

assessing changes in log likelihood with the addition of potential pretending variables, along 

with 95% bootstrap confidence intervals of coefficient estimates. Coefficient estimates of 

pretender variables are near zero, have confidence intervals overlapping zero, and do not 

contribute to improving model fit; thus models with pretenders were removed. Across the three 

trigger delay scenarios, the best models were compared based on the selected set of coefficients, 

standardized coefficient estimates (covariates standardized and centered), and response plots of 

predicted values. 
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 Habitat Utilization Experiment 

To assess whether habitat-specific encounter rates could track relative habitat usage, I 

constructed a second model (CamHabitat) using a separate world (height and width: 800, 1 m x 1 

m cells) consisting of a checkerboard of two habitat types (GRASS and FOREST: each 200 x 

200 m) (Figure 1.2). Behavior of the animal agents was extended to include a “seeking” behavior 

where grassland habitats were used during the night and forest habitats during the day. A 

directed walk was made by dividing a 259,200 tick (3 day) simulation period into single days, in 

which habitat selection behaviors of animals followed user specified diel proportions for each 

day. A diel proportion of 0.25 would indicate forest habitat was sought for a 6 hour period, while 

a proportion of 0.5 and 0.75 would indicate that forest habitat was sought for a 12 and 18 hour 

period of the day respectively. Programmatically, ticks were assigned to certain behavior states 

and animals would target a certain habitat type based on the behavior state. By matching the 

mean of the distribution of potential turning angles to point toward the nearest targeted habitat, a 

basic habitat selection behavior was generated. Once an animal was inside the targeted habitat it 

would carry out a non-directed correlated random walk, unless a series of randomly selected 

turning angles happened to let it meander into the non-favored habitat, in which case the directed 

walk was re-engaged. 

A pair of camera agents was placed systematically in each of the 8 grassland and 8 

forested habitats (Figure 1.2). Placements were adjusted so that camera agents’ FOVs were 

completely contained within the targeted habitat. Fixing home range size, FOV area, and animal 

abundance (Table 1.1), animal agents were programmed to behave under three habitat utilization 

scenarios corresponding to diel-proportions of 0.25 (“FOREST<GRASS”), 0.5 

(“FOREST=GRASS”), and 0.75 (“FOREST>GRASS”). Furthermore, I programmed animals to 

behave under two movement rate scenarios, in which animals would either have a constant 
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movement rate (0.2 m/s) throughout both habitats, or a 2 m/s movement rate while occupying 

GRASS habitats and a 0.2 m/s while occupying FOREST habitats.  

For each of the three habitat utilization scenarios and the two movement rate scenarios, 

three measurement methods were tested: TRUETIME, CAMDELAY1, and CAMDELAY30. 

TRUETIME was the measure of an animal agent’s true usage of habitat, based on the amount of 

time an agent spent in each of the habitat types accumulated on an individual basis (Buskirk and 

Millspaugh 2006). In a field setting this would be analogous to measuring resource utilization 

with a GPS telemetry system continuously (i.e., 1 second GPS acquisition interval) for every 

animal of the population (a.ka., the “perfect” telemetry study). The proportion of total time spent 

in the forested habitat was then averaged among all members of the population. Because the 

landscape was composed of only two habitat types, grassland habitat usage was simply the 

compliment of forested habitat usage. CAMDELAY1 and CAMDELAY30, assuming a trigger 

delay period of 1 and 30 seconds respectively, are also proportion measures, but were derived 

from the number of photos tracked for each camera individually and then aggregated by mean 

trigger count for a given habitat type. This proportion was calculated with forested mean trigger 

count as the numerator and mean total trigger count (regardless of habitat) as the denominator. 

Analysis consisted of comparing the distribution of counts derived from the three measurement 

methods for each of the three habitat utilization scenarios and the two movement rate scenarios. 

This resulted in 18 unique combinations for each simulation, which was then replicated 100 

times. Parameter space for the input values tested is shown in Table 1.1. 

The code used in the Netlogo environment for CamEncounter and CamHabitat is 

provided in Appendix I. Digital copies of the full models’ Netlogo file and animations of the 
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models can be obtained at: < https://sites.google.com/site/wildlifecamerastudy/camera-trapping-

theory/agent-based-model-simulations >. 

 RESULTS 

 Experimental Test of Factors Influencing Photographic Counts 

True trigger counts generated by the ABM resulted in a mean (95% C.I.) of 714.7 (704.9 

– 724.5), 154.8 (152.9 – 156.8), and 82.4 (81.6 – 83.1) for the DELAY1, DELAY30, and 

DELAY300 trigger delay scenarios respectively. For DELAY1, an initial set of 94 models had 

ΔAICc <7. After removing models with pretending variables, the top model held >99% AICc 

weight. All coefficients estimates of the single best models were statistically significant 

(<0.001). For DELAY30, the two competing models held 54 and 45% of the AICc weight, with 

the first model being nested within the second. A single model could be distinguished as the best 

fitting (>99% AICc weight) in DELAY300 scenario. Confidence intervals for the parameter 

estimates of the additional variable in the second model overlapped zero, and thus it was 

removed from consideration, leaving the first model to hold >99% AICc weight. With predicted 

95% confidence intervals being nearly invisible in the response plots, variation estimates receive 

no further discussion. Coefficient estimates were reflective of log transformed predictor values, 

as this improved model fit in all model sets.  

The most parsimonious model for the DELAY1 scenario resulted in a simpler model 

(fewer terms) than the most parsimonious models selected for the DELAY30 and DELAY300 

scenarios (Table 1.2). For the three scenarios, ABUND, FOV, and HOME generally had a 

positive influence on photographic counts (Table 1.2, Figure 1.3). Counts increased linearly with 

FOV and ABUND in the DELAY1 scenario, but showed a non-linear response when delay 

periods were increased in the DELAY30 and DELAY300 scenarios (Figure 1.3). HOME (in 
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units of area) showed a small threshold relationship, with the steepest positive slope occurring 

when the home range diameter appeared to be less than the 100 m spacing of the cameras 

(HOME = 0.283 or 0.503 ha ) (Figure 1.3), especially when movement rate increased (Figure 

1.4). Although weak, the ABUND*HOME interaction indicated this relationship was most 

apparent when animal density was relatively high (Table 1.2). 

The best model for each trigger delay scenario differed mostly as a result of the MOVE 

effect. In the DELAY1 scenario, trigger counts showed no response to MOVE as indicated in the 

best model (Table 1.2), but showed a slight curvilinear response in the DELAY30 scenario and a 

stronger curvilinear concave relationship in the DELAY300 scenario (Figure 1.3). The strongest 

interactions of variables appeared to be in the terms: ABUND*MOVE, HOME*MOVE, 

ABUND*FOV, and FOV*MOVE (Table 1.2, Figure 1.4). The degree of non-linearity for the 

interactions appeared greater in the DELAY300 than in the DELAY30 scenario (Figure 1.4). For 

DELAY30, the effect of ABUND was strongest when MOVE was faster (Figure 1.4). This same 

general relationship was observed in the DELAY300 scenario, but was less predictable as a 

stronger threshold relationship between ABUND was observed as MOVE increased. A similar 

relationship was observed in the HOME*MOVE interaction and ABUND*FOV interaction 

(Figure 1.4). Although not explicitly tested, higher order interactions were likely present for the 

DELAY30 and DELAY300 scenarios. Evidence for this existed in the ABUND*FOV interaction 

term, in which the influence of ABUND was greater as FOV area increased (Figure 1.4), an 

indirect relationship likely resulting from the FOV*MOVE interaction.  

 Habitat Utilization Experiment 

For the CamHabitat model, the distribution of the observed proportions of each method, 

scenario, and behavior are depicted in the boxplots (median, interquartile range, 1.5*interquartile 
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range, outliers) of Figure 1.5. Forest utilization as measured by the TRUETIME method 

followed the expectations of the habitat selection scenario imposed when movement rates were 

equal (forest < grass: 0.261, forest = grass: 0.508, forest > grass: 0.754) and deviated only 

slightly when movement rates were habitat specific (forest < grass: 0.313, forest = grass: 0.535, 

forest > grass: 0.758). With movement rates held constant, CAMDELAY1 and CAMDELAY30 

methods approximated the TRUETIME method in the three habitat selection scenarios, with the 

mean differing by less than 0.02 for any scenario (Figure 1.5: left pane). However, when 

movement rate was slower in the forest than in the grassland, the CAMDELAY30 method 

caused an underestimation of the true forest utilization in all three habitat selection scenarios 

(forest < grass: 0.123, forest = grass: 0.215, forest > grass: 0.4) (Figure 1.5: right pane). The 

negative bias exhibited in the “forest > grass” scenario was strong enough to change the overall 

direction of the inferred relationship; forest utilization should have dominated the proportion of 

time, while cameras using a 30 second delay period indicated grassland utilization dominated. 

Implementing a 1 second delay period when movement rates were habitat specific only caused 

underestimation by less than 0.027 in any habitat selection scenario (Figure 1.5, right panel). 

 DISCUSSION 

 Factors Influencing Encounter Rate 

The CamEncounter ABM behaved as expected for mobile objects interacting with fixed 

passive sampling devices (Gurarie and Ovaskainen 2012), and my findings expand on work of 

other camera trapping studies (Carbone et al. 2001, Rowcliffe et al. 2008, Sollmann et al. 2013) 

to show that abundance, home range, FOV dimensions, and movement rate all influence 

encounter rate when manipulated in a rigorous experiment. Specifically I demonstrated that 

trigger delay settings, or even sub-sampling images in post-processing (i.e., DELAY30 or 
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DELAY300 scenarios) can mediate the relationship between trigger counts and relative 

abundance, FOV dimensions, and movement rate. By including a trigger delay period, trigger 

counts will be influenced by complex interactions between the biological processes (abundance, 

home range size, movement rate) with further non-additive or non-linear responses occurring if 

FOV dimensions change from site to site. Allowing the camera to trigger continuously defined 

the encounter rate as an actual measure of the amount of time an animal spent within the FOV, 

thus negating the movement rate effect. This is based on the idea that as movement rate 

decreases, the number of potential passes across the home range (and thus the potential number 

of unique encounters with the FOV) decreases, but is balanced by the increase in residence time 

inside the FOV. Matching the camera agent’s delay period to the smallest unit of time 

measureable by the ABM (1 tick = 1 sec) in DELAY1, essentially allowed a continuous 

representation rather than a discrete one. 

I showed a weak non-linear threshold relationship between trigger counts and home range 

size. Interestingly, simulations of Sollmann et al. (2013) showed a positive relationship between 

home range and trigger count, which likely stems from their assumption that home range size 

and movement rate are positively correlated. My simulations indicated that the effect of home 

range area on trigger counts was negligible compared to the strength of other variables tested 

(i.e., ABUND, FOV). However, the home range effect was most pronounced at the lower home 

range sizes examined, particularly when the minimum spacing of cameras (100 m) exceeded 

animal home range diameters. In the case of small home range sizes (diameter less than camera 

spacing), any increase in home range size would allow more unique individuals to come into 

contact with any camera. As home range sizes grow sufficiently large (diameter greater than 

camera spacing), modeled encounters exhibit two counteracting behaviors; repeat utilization by a 
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particular animal of any particular location within the home range decreases, while the 

probability of that individual encountering more cameras increases (i.e., each camera picks up 

encounters from more unique individual animals). The ABUND*HOME interaction indicated 

that this was less identifiable when fewer animals were present; which was likely due to animals 

being more dispersed. 

My simulation showed that increases in FOV area had a positive effect on encounter rate. 

Given a triangular-shaped FOV, this response to FOV distance from the camera would be 

positive convex or exponential. However, the process of detecting an animal within the FOV of a 

camera trap is not as error free as advertised; the probability of detection declines as distance 

from the camera sensor increases (Rowcliffe et al. 2011) thus making the FOV dimensions 

difficult to define. Although accounting for imperfect detection may be done in some cases by 

implementing time-lapse triggers (Hamel et al. 2013) or standardizing the maximum FOV with 

physical barriers (Glen et al. 2013), applying a distance sampling methods (Rowcliffe et al. 

2011) would be a better solution.  

The habitat utilization experiment (CamHabitat) revealed that relative encounter rates 

between habitat types can approximate relative habitat utilization patterns derived from a 

“perfect” telemetry study in which location acquisition is done at a fine temporal scale (1 

second) for every member of the population. Essentially, the utilization metric measured by 

cameras can be considered a true measure of the amount of time spent by any member of the 

population in any particular given aerial unit. However, as observed in the CamEncounter 

simulations, biases will likely occur if a delay period is implemented. The bias uncovered in 

these simulations is similar to the type of bias occurring with respect to location acquisition 

intervals in telemetry studies (Reynolds and Laundre 1990, Johnson and Ganskopp 2008). While 
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it may seem that delay period is strictly a temporal issue related to camera study design, it can 

interact with movement rates because they both share a time component. Considering movement 

rate (m/s) has an element of time and space, any purely spatial factor (i.e., FOV area) can in turn 

be influenced indirectly, as a non-linear (less predictable) influence on encounter rate was 

observed. Given the increasing complexities in relationships as delay period increased from 1 to 

30 to 300 seconds in the CamEncounter simulation, bias would likely increase as some function 

of delay period in addition to biological characteristics of targeted species or population.  

 Guidance for Future Studies 

Many past studies attempting to understand animal utilization with respect to treatment 

groups (habitat types or seasons) have made efforts to program camera delay periods or rarify 

data to assumed “independent” events of individual usage or activity (George and Crooks 2006, 

Bowkett et al. 2007, Gessner et al. 2013). Given sampling units are based on spatial (the camera 

location) or temporal (i.e., diel periods, seasons) units of effort, where an encounter rate is 

derived by pooling observations across a sampling unit, it is uncertain why independence within 

a site is deemed necessary. If localized abundance is the habitat utilization currency, then 

perhaps distinct events of individual animals are important. However, the simulations show that 

relative abundance can be difficult to infer when faced with delay periods and dynamic 

movement rates. Future study designs should abandon the common practice of arbitrarily defined 

delay periods and allow cameras to trigger nearly continuously or employ video recording 

(Scheibe et al. 2008) to track the amount of time spent within the FOV. Technological advances 

in data storage, battery capacity, and data processing techniques are making this more achievable 

than ever before. 
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The influence of movement rate and habitat selection heterogeneity found in the 

simulations has implications toward the importance of placing cameras probabilistically (i.e., 

random sampling or stratified random sampling) throughout a study area. Placing cameras on 

micro-habitat features such as “game trails” or bait sites is commonly done in camera trap 

studies when occupancy modeling is an objective (Thornton et al. 2011, Rovero et al. 2013, 

Bender et al. 2014) or near baits (O'Connell et al. 2006, Hamel et al. 2013, Robinson et al. 2014). 

Placing cameras only on trails would be akin to placing cameras on only the grassland habitats 

(habitat with higher movement rate) in my habitat utilization experiment (CamHabitat). Given 

the effects of movement rate and habitat selection found in the utilization measure, there is no 

reason to believe a habitat feature like game trails would give a representative utilization for the 

non-game trail micro-habitats available to animals. This is supported by several studies 

examining the probabilistic camera placement of versus the placement of cameras on game trails 

or bait sites (Harmsen et al 2010, McCoy et al. 2011, Wearn et al. 2013, Sollmann et al. 2013). 

Restrictions on inferences may be required for species that can escape from the camera’s 

view (e.g., animals resting in cavities or underground). Conducting surveys using camera traps 

that are triggered using infrared may be biased because movement within the FOV is needed for 

an encounter to be counted; which is a requirement shared with recent studies using camera traps 

to assess animal activity patterns (Bridges and Noss 2011, Oliveira-Santos et al. 2013, Rowcliffe 

et al. 2014). The habitat utilization measure discussed here is more concerned with residency 

time, while the activity pattern treatments only consider initial contact with the FOV. Residency 

time is important for making spatial utilization inferences on the intensity of usage. Tracking 

FOV residency time capitalizes on the fact that camera trap survey platforms are capable of 

operating continuously. Animals more often at rest within the FOV may not trigger the camera 
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frequently enough to ensure an accurate count of time spent. While time lapse methods would 

free the dependency of a trigger on the animal’s behavior, it essentially introduces a trigger delay 

period, which I showed to be problematic. Technological advances, such as improved triggering 

systems, video recording (Scheibe et al. 2008) and automated image recognition (Yu et al. 2013, 

Swinnen et al. 2014), may help solve some of these issues. 

 Conclusion 

From a research methods standpoint, population level encounter rates can have various 

utilities. For instance, a grazing impact study, assessing the influence of a particular ungulate 

species on stream bank erosion, aims at assessing the combined effect of local ungulate 

abundances and the average utilization pattern made by the constituent individuals. Retrieving a 

similar measure with telemetry would require monitoring every individual (or a representative 

sample of individuals) relative to the underlying distribution pattern of individuals on the 

landscape. Collecting an abundance measure alone to make habitat usage inferences on the 

stream would be of little use for inference at larger scales (i.e., km2) typically employed in 

ungulate studies. Another example is when assessing predation risk of a rare species, where the 

combined effect of predator numbers and individual selection behaviors of hunting sites are of 

importance. 

Raw encounter rate measures can be a fruitful alternative to occupancy modeling 

inferences (Thornton et al. 2011, Bender et al. 2014, Robinson et al. 2014) or abundance 

inferences (Bowkett et al. 2007) for judging habitat utilization with passive camera trap designs. 

Assuming probabilistic placement of survey stations, continuous monitoring of animal residency 

within the FOV, and detection probability within the FOV is known or constant, a population 

level measure of habitat utilization can be inferred. Continuously monitoring plots allows for the 
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animal residency time to be accounted for. Future studies should take advantage of the 

continuous temporal data provided by camera platforms, an attribute unmatched in most human 

based surveys and even current GPS telemetry studies. 
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 TABLES AND FIGURES 

Table 1.1. Input parameter space for the encounter rate model for multivariate tests and the 

habitat utilization model. Results were simulated using all combinations of the given values in 

the CamEncounter ABM model and then for the CamHabitat ABM model. 

 

 

 

 

 

 

 

 

 

 

Parameter CamEncounter Model CamHabitat Model

ABUND (animals) 2, 6, 10, 14, 18, 22 20

HOME (ha)* 0.283,  0.503,    1.131,   2.011,  3.146,  4.155,  5.310 -

FOV (m2)ƚ 3.299,   9.163,  17.959,    29.688,   44.348,   61.942 93.829

MOVE (m/s) 0.200,   0.56,   0.92,   1.28,   1.64,   2.00 -

MOVE (GRASS) (m/s) - 0.2, 2

MOVE (FOREST) (m/s) - 0.2

Turning Angle (°) 5 5

Forest Seeking Proportion - 0.25, 0.5, 0.75

ƚFOV area measures correspond to maximum FOV distances of 3, 5, 7, 9, 11, and 13 m respectively.

*HOME area measures correspond to home range diameter of 60, 80, 120, 160, 200, 230, and 260 m   
respectively.
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Table 1.2. Beta coefficient estimates (95% confidence intervals in parenthesis) for variables of 

the best fitting model developed under the scenarios using a 1 second (DELAY1), 30 second 

(DELAY30), and 300 second (DELAY300) trigger delay. 

 

 

 

Coefficient DELAY1 DELAY30 DELAY300

β0 5.931 ( 5.914, 5.948 ) 4.519 ( 4.503, 4.534 ) 4.078 (  4.064,  4.090 )

βABUND 0.812 ( 0.804, 0.821 ) 0.848 ( 0.819, 0.876 ) 0.952 (  0.930,  0.973 )

βFOV 0.992 ( 0.983, 0.999 ) 0.672 ( 0.651, 0.692 ) 0.636 (  0.622,  0.651 )

βHOME 0.134 ( 0.026, 0.224 ) 0.196 ( 0.106, 0.284 ) 0.714 (  0.644,  0.784 )

βMOVE NA 0.626 ( 0.619, 0.632 ) 0.444 (  0.439,  0.450 )

βFOV^2 NA  -0.116 ( -0.136, -0.096 )  -0.242 ( -0.256, -0.229 )

βABUND^2 NA  -0.060 ( -0.083, -0.036 )  -0.297 ( -0.313, -0.281 )

βMOVE^2 NA NA  -0.104 ( -0.108, -0.101 )

βHOME^2  -0.122 ( -0.213, -0.021 )  -0.158 ( -0.240, -0.073 )  -0.609 ( -0.674, -0.544 )

βABUND*FOV NA  -0.012 ( -0.018, -0.007 )  -0.068 ( -0.072, -0.065 )

βABUND*HOME -0.008 ( -0.016, 0.000 )  -0.009 ( -0.017, -0.001 )  -0.048 ( -0.054, -0.041 )

βABUND*MOVE NA  -0.023 ( -0.028, -0.018 )  -0.087 ( -0.091, -0.082 )

βFOV*HOME NA 0.008 ( 0.002, 0.013 )  0.015 (  0.011,  0.018 )

βFOV*MOVE NA  -0.024 ( -0.028, -0.020 )  -0.045 ( -0.048, -0.043 )

βHOME*MOVE NA 0.022 ( 0.017, 0.027 ) 0.021 ( 0.018, 0.025 )
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Figure 1.1. CamEncounter world depictions of four scenarios with camera FOV agents (yellow 

cones) and animal agents (brown arrowheads). Animal agents are shown at their home range 

centers superimposed over the observed joint utilization pattern tracked for pixel “patch” agents 

(display purposes only). Home ranges spanning the edges continue onto the opposite side of the 

world (“world wrapping”). Top and bottom panes represent a home range diameter of 60 and 140 

m (HOME: 1 and 1.53 ha) respectively. Left and right panes represent an ABUND of 4 and 22 

animals (density: 1 and 5.5/ha) respectively. 
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Figure 1.2. CamHabitat world depiction (800m x800 m) with camera FOV agents (red cones in 

FOREST and black cones in GRASS) and animal agents (brown arrowheads). Animal agent 

movements are able to respond to FOREST (green) and GRASS (yellow) patch agents.  
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Figure 1.3. Trigger count response plots as a function of animal abundance (ABUND), field of 

view area (FOV), home range area (HOME), and movement rate (MOVE) for scenarios when 

the camera is programmed with 1 (DELAY1), 30 (DELAY30), and 300 (DELAY300) second 

trigger delay periods. 
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Figure 1.4. Trigger count responses to ABUND and HOME for the four MOVE rates and trigger 

count responses to ABUND for the four FOV areas for scenarios when camera is programmed 

with 30 (DELAY30) and 300 (DELAY300) second trigger delay periods. 
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Figure 1.5. Box-whisker plots of distributions comparing three measures (TRUETIME, 

CAMDELAY1, CAMDELAY30) of the relative forest utilization (y-axis) for three scenarios in 

which animal agents were programmed to carry out three behaviors (x-axis) which included 

seeking forests 25% of the time (FOREST < GRASS), 50% of the time (FOREST = GRASS), 

and 75% of the time (FOREST > GRASS), with an additional factor specifying whether animal 

movement rates were equal between habitats (left pane) or greater in the grasslands than in the 

forests (right pane). 
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CHAPTER 2 - MODELING ANIMAL UTILIZATION WITH CAMERA TRAP SENSORS: 

URBAN-WILDLAND CASE STUDY 

 

 INTRODUCTION 

A primary goal in many ecological studies is to assess interactions determining the 

distribution of organisms (Krebs 1994). Animal distribution modeling often requires discerning 

the response of an animal state variable (i.e., occupancy, abundance, resource selection) to fixed 

spatial variables, such as topography, flora communities, or anthropogenic development. An 

underlying thread to these state variables is the rate of encounter between animals and the fixed 

landscape feature. Two parameters essential to understanding encounter rate with landscape 

features are animal population size and movement/utilization patterns of the individuals 

comprising a population (Gurarie and Ovaskainen 2012, Chapter 1).  

It can be argued that raw encounter rate measures are a useful response in animal 

utilization distribution modeling at fine spatial scales. Generally, field and analytical methods, 

such as GPS telemetry (Cagnacci et al. 2010) and mark-recapture statistics (Williams et al. 

2002), have allowed detailed inferences on animal abundance and animal movement/utilization 

to be obtained as two separate components. However, in broader ecological studies focused on 

understanding all the interactions between flora, fauna, abiotic, and anthropogenic components, 

resources are not always available to conduct sophisticated telemetry and mark-recapture 

techniques on the animal component. In some instances, disentangling the influence of animal 

abundance and individual animal utilization patterns are not required for assessing the 

interactions between animals and spatial features (e.g., vegetation communities). For a study of 

plant-animal interactions, it may not matter whether the animals occur at high density if very few 
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animals use the focal plant community. For a soil erosion study, it may not matter if a large 

number of animals use a stream bank for a short period of time or if few animals used it for a 

long period of time. 

Remote camera trapping is a method for measuring animal utilization of landscape 

features (Chapter 1). Camera encounter rate studies have been primarily focused on relative 

abundance (O'Brien et al. 2003, Bowkett et al. 2007, Gessner et al. 2013) or activity measures 

(George and Crooks 2006, Rowcliffe et al. 2014) to infer importance or utilization of discrete 

habitat features. Encounter rates may be better inferred as a product of the amount of discrete 

temporal units spent by animals within the camera’s field-of-view (FOV: the area visible by a 

camera’s lens and triggering system) and the number of animals within some large area around 

the camera (Chapter 1). Two requirements are that plots be monitored continuously, if animal 

movement rates are habitat specific, and that FOV size is accounted for (Chapter 1). Camera 

traps are a natural platform for fulfilling the first requirement as infrared systems (Cutler and 

Swann 1999) with continuous triggering capabilities or continuous video monitoring (Scheibe et 

al. 2008) are becoming more accessible. To gather the same inference with conventional animal 

utilization measurement techniques, individual animal locations of all members of the population 

would need to be monitored continuously (i.e., with GPS telemetry). If all animals cannot be 

monitored, then a sample of animals, representative of the population’s density distribution on 

the landscape must be available. Depending on the system and species, executing either GPS 

telemetry and abundance estimation methods can be difficult and costly.  

One limitation with infrared triggered platforms is that detectability within the field of 

view is imperfect (Kelly and Holub 2008, Swann et al. 2010, Hamel et al. 2013). Rowcliffe et al. 

(2011) showed with distance sampling methods that the probability of detecting an animal 
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decreases with increasing distance and angle from the camera’s sensor; a relationship influenced 

by biological and environmental covariates. Integration of the probability density function for 

distance (Burnham et al. 1980) and angle can be used to define effective dimensions of the 

survey plot for a sampling location (Rowcliffe et al. 2011). An alternative parameterization of 

the problem may be to use coefficients from a modeled probability density function that provides 

detection probability estimates given an observed detection distance, site or observation level 

covariates, and a suitable truncation distance. Detection probability can then be used to directly 

correct count data (Marques and Buckland 2003, Marques et al. 2007) for a fixed plot size.  

The overarching goal of this chapter is to give an empirical demonstration on inferring 

habitat utilization with raw encounter rate measures produced by camera traps. The methodology 

demonstrated here is two-part: detection probability modeling and utilization modeling. First, I 

use the distance sampling techniques of Rowcliffe et al. (2011) to correct encounter rate 

measures on a site level and encounter specific (observation level) basis. I shed additional light 

on variables thought to influence detection probability in camera trapping studies. Second, using 

the corrected encounter rate measures, I used a generalized linear model (GLM), to examine 

habitat features that influence the utilization of a set of six medium – large terrestrial mammal 

species (mule deer [Odocoileus hemionus], raccoon [Procyon lotor], elk [Cervus elaphus], red 

fox [Vulpes vulpes], domestic cat [Felis catus]), and coyote [Canis latrans]), inhabiting a 

foothill-montane system. The effects of human housing development is emphasized, which is 

well studied for some species (i.e., coyote), but less for others (i.e., mule deer and elk) (Table 

2.1). Although this chapter is primarily focused on serving as a methodological case study, a 

desired side product of this study is to develop utilization distribution maps at the population 

level for the six species, which are potential prey species of cougar (Puma concolor). Other 
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studies ongoing in the same study area are interested in understanding whether cougars select for 

certain locations characterized by a higher likelihood of encountering a potential prey item 

(Chapter 3). A higher likelihood of encountering a prey item is dependent on the combined effect 

of the time spent by a prey animal and the number of prey individuals potentially using a 

location. Thus, camera trapping encounter rates (Chapter 1) are an ideal measure. 

 METHODS 

 Study Area 

Methods were approved by IACUC protocol of Colorado Parks and Wildlife (84-R0045 

#09-2011). Camera traps were placed within a 2700 km2 study area in the Colorado Front Range 

adjacent to the Denver metropolitan area (Figure 2.1). This area spans west-east from the 

continental divide to the foothills and the urban-wildland interfaces (i.e., of Boulder, Golden, and 

Denver), and south-north from the South Platte to the Big Thompson Rivers. A patchwork of 

private and public land makes up 43% and 57% of the study area respectively. Private land is 

characterized by a gradient of rural-exurban-suburban development, interspersed with small 

towns. Rural areas have a few smaller developments related to mining, hobby ranching, and 

tourism based industries. Public land is managed by federal, state, and municipal governments 

primarily for consumptive and non-consumptive recreational activities or purely as open space. 

A full discussion of anthropogenic development present in this Front Range region can be found 

in Appendix 2. 

 Camera Deployment 

A sample of 131 camera traps (Reconyx HyperFire PC800; Holmen, WI, USA) were 

deployed following a stratified random sampling design in which the study area was gridded into 

25 m cells, each classified into one of seven major vegetation strata as determined by digital land 
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cover data (Table 2.2). Additional strata were defined by three levels of housing density and 

three levels of structure proximity (Table 2.2). Upon visitation to a sampled cell by a field 

technician, the camera was only installed if the vegetation appeared to fit the respective a-priori 

defined strata level.  

Placement of the camera unit within the 25 m site was chosen by randomly generating a 

point location and azimuth (1-360º). Cameras were mounted on a steel post driven into the 

ground at the point, or on the closest tree or permanent structure within 5 m of the generated 

point. FOV angle for this particular camera trap model was 40.5°. If the camera’s FOV was 

severely limited by boulders or micro-terrain features, it was adjusted to a new randomly chosen 

azimuth. If no alternative azimuth was available because of complete 360º obstruction, then the 

camera was moved to an alternative random location within the 25 m cell. Cameras were placed 

without regard to the presence of any apparent game trails or wildlife sign. No baits or attractants 

were deployed. Small handheld pruning shears were used to remove some shrubbery/branches 

within the first 1-3 m inside the FOV, but carried out in a way to minimize alterations to the site, 

by only removing specific “stray” pieces that may trigger the camera if blown in the wind. 

Cameras were elevated 0.5 – 1 m from the ground. To help alleviate false triggering events, this 

height was occasionally allowed to be higher to accommodate snow accumulation and growth of 

low lying vegetation. Cameras were mounted so that the FOV’s horizontal radius was parallel 

with the contour of the ground. Units were programmed with sensitivity set to “high”, with each 

trigger corresponding to a burst of 5 pictures (1 picture/second) to aid in species identification. 

Each trigger was followed with a 30 second delay or “quiet period” where the camera was unable 

to be triggered. Camera units automatically recorded time and temperature in the digital metadata 



37 

 

for each photo. Each camera remained in its designated site from initial installation period 

(November 2011- February 2012) until removal (December 2012-January 2013). 

 FOV Detection Probability 

The utilization measurement technique seeks the amount of time spent by an animal 

within the camera’s field of view, where a detection event corresponds to the smallest unit of 

time set by the study. Events are recorded once an animal is detected by the camera’s triggering 

system within the field of view. Multiple detections of the same animal may occur if the same 

animal resides within the plot for multiple 30 second triggering intervals. Detection events are 

suspected to decline as a function of increasing distance to the camera (Buckland et al. 2001), 

thus it is of interest to account for this decline in detection within the FOV (Rowcliffe et al. 

2011). Assuming movements within the FOV are random with respect to the observer’s position 

(the camera in this case), movement within is inconsequential, as it is the location of detection by 

the camera that is modeled. The initial location of detection is of concern for typical radial point-

count distance sampling (i.e., animals moving in and out will only be detected near the outer 

limits of the plot); but is of less concern given the sector shaped plot typically used by camera 

traps as animals are allowed to enter the FOV in very close proximity to the observation platform 

(Rowcliffe et al. 2011). 

The assumption of random plot placement is critical at two scales. In general cameras 

must be placed disregarding any prior knowledge of animal micro-habitat selection within a 

habitat or patch of interest. On a finer scale, placement of the camera’s FOV must be done in a 

way so that animal movement paths within the FOV are random with respect to distance from the 

camera sensor. It is likely that micro-utilization of space within a single camera’s FOV will show 

clustering (Figure 2.2), thus violating this assumption for any particular camera. However, a 
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sufficient sample of cameras allows detection probability to be modeled with observations from 

a pool of sites (Figure 2.2) in order to dilute aggregation effects (i.e., “pooling of robustness”) 

(Buckland et al. 2001). 

Preferably, cameras would have been allowed to trigger continuously or at 1 second 

intervals in order to minimize utilization measurement biases related to habitat specific 

movement rates (Chapter 1). However, the 30 second trigger delay was chosen to alleviate data 

processing and memory requirements. Only the initial picture from the sequence of five was 

retained for analysis of a detection to ensure that the picture record was dependent on the 

camera’s infrared trigger. Distance and angular measures within the FOV were mapped for the 

initial picture using the methods described in Appendix 3. The number of individuals present for 

a particular event was determined by the minimum number of known animal individuals of a 

particular species visible in the photo. 

Distance and angle measurements were collected on 31,456 photo records of small 

(rodent sized) to large (domestic equids) mammals and birds, spanning 33 mammalian 

(Appendix 3) and 33 avian species. Ideally, detection functions would be derived for each site 

and species separately, but some sites lacked a sufficient number of observations or exhibited a 

non-stationary spatial pattern within the FOV (Figure 2.2). Pooling the mammalian data for all 

sites, histograms of detection distances were inspected to assess whether data may adequately 

follow assumptions of distance sampling theory (i.e., a stationary process where detection 

probability is 1.0 at the surveyor’s origin). Smaller sized species (<5 kg) appeared to 

occasionally pass close to the camera undetected as a result of camera mounting height, and thus 

were removed from further analysis. Species were classified into one of four groupings based on 

size and movement characteristics: Meso-slow (i.e., felids, procyonids), Meso-fast (i.e., canids), 
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Large (i.e., Odoicoileus spp. and large carnivores), and Xlarge (i.e., large ungulates) (Appendix 

3). Depending on the grouping, histograms (1 m cut points) exhibited evidence of heaping at the 

furthest distance intervals (>10 m), which was expected given that distance measurement 

methods were less precise as distance increased. Therefore, distance sampling functions were 

created with custom distances bins (Appendix 3). 

After pooling across sites, applying the species groupings, and setting appropriate 

binning distances, distance data behaved as expected; intensity of detection declined with 

increasing distance from the camera. A right truncation distance (w) was set so that the 

probability of detection for the furthest distance interval approximated no less than 0.1 once the 

key function was selected (Buckland et al. 2001). Right truncation standardized the plot sizes 

among camera locations but resulted in approximately10-26% of the observations being 

removed. If the plot area had been set based on the maximum distance observed for any animal, 

this truncation corresponds to retaining a plot area proportion of only 0.16, 0.20, 0.05, and 0.04 

for the Meso-slow, Meso-fast, Large, and Xlarge groupings respectively (Appendix 3).Using 

program DISTANCE 6.0 (Thomas et al. 2010), hazard-rate and half-normal key functions, along 

with cosine and polynomial adjustment terms, were examined using chi-square goodness of fit 

tests and AIC model selection. A hazard-rate key function with no adjustment terms provided the 

best fit in all species groupings. Detection function g(x) was modeled with a multi-covariate 

hazard-rate model (Marques and Buckland 2003).   

Candidate model sets included site and observation level covariates thought to influence 

detection probability. Site level covariates only concerned visual obstruction measures. 

Vegetation strata of the cameras sampling strata were used as an indirect visual obstruction 

factor, after collapsing the “MIX” into the “DEC” strata (Table 2.2). Exploratory analysis 
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indicated these two strata yielded similar detection distance data. A direct visual obstruction 

measure (BANDMAX) was obtained as the maximum distance at which a technician could 

trigger the camera (Appendix 3). 

The remaining were observation level covariates that may change from one detection 

event to another. The angular measure relative to the FOV center line (ANGLE) was used to 

index whether animals were detected closer to edges of the FOV. With this particular camera 

make, the triggering mechanism consists of an array of sensors arranged horizontally, and thus it 

is expected that animals near the left and right edges of the camera would have fewer 

opportunities to be triggered by multiple sensors, especially when a portion of the animal’s body 

is outside the FOV. Ambient temperature (TEMP) was included because it could influence 

trigger probability given the use of a passive infrared sensor that detects differences in thermal 

energy between a target and the surroundings. Snow cover presence was indicated with a dummy 

factor (SNOWP) (Appendix 4). Other covariates included the calendar season (SEAS) and 

whether the infrared illuminator flash, which turns on automatically during night-time period, 

was used (NIGHT). Other covariates included the counts of individuals in each photo (INDIV) 

and species average weight (MASS) (Appendix 3). High co-linearity between some pairings of 

variables (BANDMAX with VEG and SEAS with TEMP or SNOWP) required inclusion into 

models separately. All additive combinations of variables were tested using Akaike information 

criterion (AIC) model selection techniques. From program DISTANCE, variance in overall 

detection probability never exceeded 2% (SE = 0.00965) for any species grouping. 

The methods of Marques et al. (2007) were then employed for calculating a detection 

probability estimate conditional for covariates of each camera site k and each observation event i 
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(���,�). Assuming a selected truncation distance (w) and parameter values of the best fitting model 

of g(x), ���,� is derived by equation 3 described in Marques et al. (2007). 

 Habitat Utilization Model 

Typically, distance sampling analyses produce a time-specific snapshot of the number of 

unique individual animals per unit area, correcting for the probability of detection (Buckland et 

al. 2001). For this study, I used a more asymptotic measure: the number of encounters over space 

and time rather than abundance of individuals. Space is the FOV area (ak) represented by a sector 

with radius equal to the truncation distance (w) and central angle equal to the camera’s fixed 

FOV angle (40.5°). Estimated encounter rate or usage by a single animal or group of animals per 

site k is: 

    ��� = 	

�

∑ 	

��,� 

��
��	     

The temporal effort component of the rate enters as an offset term described in the 

statistical model below. If animals occur in groups, ��� can be multiplied by the expected mean 

group size (Sk) for that site to give ��� � for the overall encounter rate in terms of animals per 

square meter per day. In the event that a site did not have any detections, ��� existed simply as a 

zero value, as this method must have at least one triggering event to incorporate ���,� .  

The site specific encounter rate (��� �) was input as a response variable in a GLM with the 

number of days functioning, ηk, as an offset term. For some species (i.e., domestic cat and 

raccoon), inspection of the response variable indicated a high proportion of sites with zero values 

(animal absence) (Table 2.3). The non-zero utilization response values ranged from 0.02 to 156 

depending on species (Table 2.3). To allow response values to contain exact zero values and 

continuous non-integers, while accounting for potential over-dispersion, a compound-Poisson 

(Tweedie) error distribution was used within a GLM (R package ‘statmod’ or ‘cplm’). This uses 
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an exponential dispersion model of the form ���� =  � =  ����� with variance expressed as 

�� ��� =  !�". The ϕ is a dispersion parameter and p is an estimated power or “index” 

parameter (Dunn and Smyth 2005) fit by calling a profile likelihood function (R package ‘cplm’ 

or ‘tweedie’) (R Development Core Team 2013). An index value of 0, 1, 2, or 3 would indicate a 

normal, Poisson, gamma, and inverse Gaussian distribution respectively. In this case, the index is 

expected to take on a value between 1 and 2, which is a Poisson mixture of gamma distributions 

supporting all non-negative reals with a mass at zero (Bar-Lev and Stramer 1987, Smyth and 

Jørgensen 2002). 

Covariate values of the design matrix X′ were based on topography, vegetation structure, 

and measures of human housing development. For covariates derived at more than one spatial 

scale, all scales were tested when forming the best fitting global model. The number of covariate 

terms b allowed in each model was limited to n/10, where n is the number of camera sites with a 

non-zero count. Pairs of main effect terms with correlation coefficients > 0.6 were removed from 

consideration in the same model. A full list of the covariates, derivation methods, and scales 

examined, are described and mapped in Appendix 2 (housing development) and Appendix 4. 

Models were ranked with AIC model selection using ΔAICc and AICc weight values 

(Burnham and Anderson 2002). To help protect against spurious inclusion of variables, 

coefficient estimates were examined of models with potential “pretender variables” (Anderson 

2008, Arnold 2010). Models in the top set (ΔAICc < 7) were inspected by assessing changes in 

log likelihood with the addition of potential pretending variables, along with 95% bootstrap 

confidence intervals of coefficient estimates. Pretender variable coefficient estimates are near 

zero, have confidence intervals overlapping zero, and do not contribute to improving model fit; 

thus models with pretenders were removed. Any erroneous removal of these variables will have 
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little effect on prediction estimates as their standardized coefficient estimates were near zero. 

After recalculating AICc weight for the revised model set, if high model selection uncertainty 

was evident (top model held < 90% AICc weight), all models with ΔAICc < 7 were reported. A 

general sense of model fit was obtained by a Pearson correlation coefficient (ranging: -1 to 1) 

using the observed vs. predicted values. Model fit was graphically assessed using the quantile 

residuals, which can be approximated with a chi-square distribution (Dunn and Smyth 1996, 

Dunn 2009), to create residual versus predicted values, and q-q theoretical plots. Confidence 

intervals (0.95) were created for all models in the top set using a nonparametric bootstrap with 

10,000 iterations. Plots of the predicted response are given with respect to the housing covariates 

(i.e., distance to structure and housing density) while holding all other variables at their observed 

mean or median values. Maps of the utilization predictions were created using the best model (if 

AICc weight > 0.9) or the model averaged predictions of the set of models with ΔAICc < 7. 

These maps were created based primarily on interpolation (rather than extrapolation), thus 

predictions were only made for covariate values falling within the domain sampled. 

Spatial autocorrelation is a pervasive theme in species distribution and population 

distribution studies (Legendre 1993). To test for residual spatial autocorrelation, response data 

was scaled and transformed to integer values so that models can be fit under a simpler negative 

binomial GLM using the same covariate structure. Neighborhood contiguity calculations were 

made using a specified minimum distance to ensure that all sites had at least one neighbor. This 

informed the creation of a row-standardized spatial weights matrix. First permutation based 

(drawing from a negative binomial distribution) global and localized (using varying 

neighborhood lags) Moran’s I statistics were calculated. A non-significant and low Moran’s I 

statistic (< 0.1) was found in all models. Pearson’s residuals from a null (intercept only) model 
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and the residuals from the model with covariates, were used as input for separate Moran’s I tests. 

Directional and omni-directional robust (Cressie’s) semi-variograms were inspected for a variety 

of distances again using the residuals as input. These Moran’s I tests and semi-variograms 

revealed no additional spatial structure once the covariate structure was considered. Fortunately, 

much of the spatial autocorrelation was accounted for with the landscape covariates chosen in 

this study. However, it is noted that the covariate UTM_Y improved the fit of the mule deer 

usage model for reasons unexplained by any actual landscape measure. Lack of additional 

residual spatial autocorrelation may have resulted from: the stratified random sampling scheme 

conducted on highly heterogeneous sampling strata, the widely dispersed sampling sites (average 

nearest neighbor: 2277 m), and/or the nature of animal utilization at the small grain size 

measured.  

 RESULTS 

The dataset included a total of 41,740 functioning camera trap nights of effort. Given the 

site specific installation and employment dates, the mean duration a camera could function was 

334 nights. However, errors found during maintenance checks and removal (i.e., full memory 

card, camera malfunction, or dead batteries) resulted in a mean 318 nights of effort, ηk. After 

applying the species groupings, 25,237 observations remained with 1,534 Meso-slow, 2,547 

Meso-fast, 17,380 Large, and 3,776 XLarge observations. 

 FOV Detection Probability 

Model selection results of the detection probability models and respective coefficient 

estimates are shown in Table 2.4. AIC weights for the candidate set of models indicated that a 

single best parsimonious model could be chosen for the Meso-slow, Meso-fast, and Large 

groupings (weights > 96%). For the Xlarge grouping, the top model carried 79% of the weight, 
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while the second best model (nested within the top model) carried 15% of the weight. The top 

models for each grouping always included ANGLE and one of the visual obstruction covariates, 

BANDMAX or VEG. The covariates NIGHT, SNOW, or TEMP did not appear in any of the top 

models. SEAS was included in the best models for all the groupings. INDIV was included in the 

Large and XLarge groupings, but was not tested in the Meso-slow and Meso-fast groupings, as 

most observations in these groupings were photos of only one individual. The MASS covariate 

was important in the Meso-fast and Meso-slow groupings. Exemplary detection curves for the 

Large grouping are shown in Figure 2.3. 

 Utilization Model 

Model selection results of the habitat utilization models (eq. 5) are shown in Table 2.5 for 

each species. The most parsimonious model for any species held > 0.45 AICc weight. A single 

most parsimonious model (AICc weight > 0.9) was found for raccoon while two to five models 

were found for mule deer, coyote, red fox, domestic cat, and elk with a ΔAICc < 7. Much of the 

model uncertainty was caused by the inclusion of a single additional covariate (e.g., models 

nested within one another). Model diagnostics using the quantile-theoretical plots and residual 

vs. fitted plots indicated that quantile residuals were approximately normal, thus model fit was 

assumed to be sufficient (Appendix 5). Pearson correlation coefficients of the fitted and observed 

values were > 0.5 for any particular animal grouping (Table 2.5).  

The top models for each species always contained a human development covariate. 

However, the type of response differed from species to species (Figure 2.4). Mule deer appeared 

to have a quadratic concave relationship with housing density (HDM250); utilization peaked at 

high exurban or low suburban housing density levels (~2.5 houses/ha) while tapering off to the 

lowest predicted levels as housing density increased (Figure 2.4). Raccoon utilization was 
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positively associated with HDM250, with a dramatic increase observed once housing density 

reached mid-suburban (5 houses/ha) levels. Elk utilization showed some response to the kernel 

density housing intensity measure at a large spatial scale (bandwidth = 1500 m: KD1500). 

However, the interaction with ELEV indicated that a positive response was only observed at 

higher elevations (Figure 2.4). ELEV and KD1500 were also somewhat correlated (r = 0.51); a 

correlation expected to increase as elevation increased. Coyote utilization showed a clear 

decrease with housing density (HDM_pnt) (Figure 2.4). Domestic cat and red fox utilization 

decreased as distance to nearest structure (STRUC) increased, but showed a clear threshold once 

distances reached approximately 200 and 1000 m respectively (Figure 2.4). For red fox, an 

interaction with distance to nearest forest edge (FOREDGE) and STRUC indicated that a 

stronger response to STRUC was observed as FOREDGE increases (Figure 2.4).  

Topographic covariates were important explanatory variables in the candidate sets of all 

species but raccoon (Table 2.5). Elevation (ELEV or ELEV_12k) appeared in top models of all 

other species except domestic cat. Topographic position index (TPI_150 or TPI_50) was in top 

models of mule deer and coyote utilization. Deer utilized positions relatively higher on hillsides 

rather than in drainages. Coyote’s quadratic relationship with TPI indicated highest usage was at 

mid-slope or non-sloping positions. SLOPE was important in models for elk, coyote, and 

secondary top models of domestic cat, where utilization decreased as slope increased. However, 

in domestic cat, a modest amount of co-correlation (r = 0.44) was observed between SLOPE and 

human housing covariates such as STRUC. Solar aspect, ASP_NW and ASP_E, was important 

for mule deer and red fox respectively.  

Vegetation structure covariates were important for predicting utilization of mule deer, 

elk, red fox (FOREDGE*STRUC interaction discussed above), and coyote (Table 2.5). 
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However, mule deer utilization models were only marginally better with the SHRUB covariate 

(Table 2.5). Elk utilization was lower where forest was the predominant vegetation type 

(FOREST3). The interaction between canopy cover and distance to forest edge observed in the 

coyote models demonstrated higher utilization further from forest edge in areas more devoid of 

trees (i.e., open grass or shrubs) (Table 2.5) 

A full listing of coefficient estimates and bootstrap 95% confidence intervals for the top 

model set of each species are given in Appendix 6. Predicted utilization cast to the entire study 

area for each species is given in Appendix 7. 

 DISCUSSION 

The detection probability function analysis demonstrated here supports the findings of the 

pioneering camera trap distance sampling study (Rowcliffe et al. 2011) and demonstrates some 

additional site and observation level variables influencing detection probability. This case study 

verified that encounter rates derived from camera trap surveys can be a useful measure of habitat 

utilization of a landscape unit by the population, which is a property of the number of animal 

individuals and the utilization patterns of those individuals (Chapter 1). When the metric is 

modelled with the appropriate landscape covariates, model predictions across a spatial domain 

can be viewed as the joint utilization distribution of all members in the population, in units of 

animal-time expended at any location. Model selection indicated that the utilization of animals 

was influenced by anthropogenic variables, but the response differed by species. Utilization by 

mule deer, raccoon, elk, and red fox was generally associated with increased measures of 

housing development, while coyote utilization was generally negative. 

As found in Rowcliffe et al. (2011), seasonality and species differences influence 

probability of detection within the FOV as a function of camera to animal distance. Body mass 
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was especially important when considering the smaller groupings (Meso-fast and Meso-slow). 

Additionally, I demonstrated that measures of visual obstruction are associated with detection 

distance in all species groupings. Although cumbersome, the six vegetation factors appeared to 

contribute to a more parsimonious model for the Meso-fast and XLarge groupings. However, the 

actual interpretation of the coefficient estimates for these habitat levels was less intuitive. 

Ranking the six levels from smallest to largest influence on detection probability resulted in 

grasslands (assumed to have lowest visually obstructed FOV) to have lower detectability than 

some woodland types. The more intuitive and simple continuous BANDMAX covariate 

contributed to a more parsimonious model for the Meso-slow and Large grouping. As expected, 

the number of individual animals within the FOV corresponded to an increased detection 

probability.  

In contrast to findings in a follow-up analysis of data from Rowcliffe et al. (2011) by 

Rowcliffe et al. (2014), my analysis indicated detectability was not affected by whether photos 

were collected at night or during the day. Using over 25,000 detections and a gradient of 

temperatures ranging from -17 to 37 °C, I found no direct influence of ambient temperature on 

detectability; despite being a concern for certain camera trap models (Swann et al. 2010). The 

presence of accumulated snow did not have any discernable effect on detection either. 

Interestingly, calendar season was an important factor in all models. Besides the fact that snow 

presence and temperature are variables correlated with season, the exact mechanism for season’s 

influence on detection probability is unknown. 

My analysis indicated that detection distance is reduced as detection angle increases 

(observations located more toward the left or right edges of the FOV). The basis for this 

relationship is unclear, but may stem from the particular sensor alignment of the camera. Using 
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angle as a covariate in the distance detection model was a slightly different approach than 

Rowcliffe et al. (2011), who modelled detection distances and detection angles separately in 

different models. However, their objectives were to obtain estimated dimensions of the camera’s 

FOV, which differed from my goal to estimate detection probability given a truncation distance. 

Unlike the distance parameter, the angle parameter’s maximum is already set by the alignment of 

the sensor. Besides giving a more robust fit in the tail of the detection function (Buckland et al. 

2001), a maximum truncation distance allows plot sizes to be standardized, which simplifies 

interpretation of the response when making predictions on the landscape.  

 Population Level Habitat Utilization Patterns in Relation to Housing 

 For the six species examined, population landscape utilization appears to be influenced 

by human housing developments. Except for deer and elk, the species-specific responses 

generally fit that of previous studies (Table 2.1). For a species like coyote, housing developments 

appear to be utilized relatively less. For mule deer, a quadratic effect indicated utilization peaked 

at high exurban – low suburban levels (~2.5 houses/ha). For raccoon, utilization increased 

precipitously with housing densities > 2.5 houses/ha. Red fox and domestic cat utilization 

generally increased as distance to structure decreased. A threshold of ~ 250 m to nearest 

structure was observed with domestic cats; no animals were observed further than this. The 

association between structures and domestic cats was expected, as many of the individuals 

observed in the photos had signs of being non-feral (i.e., collars present). For elk, utilization with 

respect to housing development was less clear, but it appeared that housing development was 

utilized more when in relatively higher elevations (>2200 m). The high temporal and spatial 

heterogeneity of elk herding behavior and the historic utilization of certain areas (as indicated by 

the presence of the ELK_conc variable) makes elk utilization hard to predict. Adding a seasonal 
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effect would likely improve predictions for species like deer and elk, as a proportion of their 

populations are migratory (Kufeld et al. 1989, Huwer 2007). For any species, the exact shape of 

the response was difficult to predict in the parameter space concerning suburban housing 

densities. Including additional sites in the suburban housing density range (1.6 – 10 units/ha) 

would likely have resulted in improved predictions. However, including more samples in the 

suburban class was hard to justify during study design steps as suburban densities corresponded 

to only 3% of the study region’s land area (Appendix 2). 

Natural (topographic and vegetation) variables, such as elevation, were important given 

the strong east-west elevation gradient present in the study area. Seasonally, the higher 

elevations on the western edge contain steep terrain and deep snow pack (present for half of the 

year), a formidable movement barrier to almost all species examined. Topography underlies the 

utilization patterns for many of the species, even if it was not explicitly found as an important 

predictor variable. For instance, the strong affinity of raccoons to the presence and density of 

human dwellings is likely related to the food sources humans provide (Prange et al. 2003). 

However, the presence of human dwellings on the landscape has some relationship to topography 

as parcelization of the land has strong roots in historic land accessibility for resource extraction 

and ranching (Appendix 2). Additionally, the placement of modern housing sites in this region 

appears related to the proximity of natural amenities (Riebsame et al. 1996), land features also 

more or less favored by wild animals. Topography also influences the vegetation types present. 

As elevation increases, low-elevation conifer forests dominated by ponderosa pine (Pinus 

ponderosa) and douglas fir (Psuedotsuga menziesii) transition to lodgepole pine (Pinus contorta) 

and aspen (Populus tremuloides) (Peet 1981). Grasslands appear more prevalent where slopes 

are more gradual. Vegetation structure did appear important for all but raccoon and domestic cat.  
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Employing the three strata in the sampling design and the correlation coefficient tests 

helped alleviate co-dependence between predictor variables. However, it would be hard to make 

conclusive inferences on the utilization patterns of independent variables not used as a sampling 

stratum. The six vegetation strata (Table 2.7) merely served as a way to spread the sampled 

locations out so that a wide variety of localities could be surveyed. This sampling strategy was 

beneficial for making prediction maps (Appendix 7) over a heterogeneous landscape (Appendix 

4), but less beneficial for drawing inferences on relationship types and effect sizes.  

 Suggestions for Future Studies 

Using the hazard rate distance function, the assumption that animals are detected 

perfectly at close distances may have been violated with the smaller animals (Meso-fast and 

Meso-slow classes) that could possibly pass within a close range underneath the FOV. One 

possible solution for this would be to employ a mixture model to deal with imperfect detection at 

close distances (Rowcliffe et al. 2011). Another solution would be to utilize multiple camera 

sensors or even platforms with a greater vertical FOV range to adequately cover the region 

closest to the camera. 

The heaping of detection distance measures occurred despite field measures being 

marked at 1.5 - 3 m intervals (Appendix 3). Distances between these could be estimated in the 

photo to some degree, but it became more difficult as distance increased. Fortunately, 

inaccuracies in the distance measures collected in the tails of the distance function have less of 

an effect on the outcome. However, distances near the shoulder and inflection points of the 

detection curves do have a greater proportional effect, and it is in these locations that additional 

efforts should be made to obtain the most accurate measurements. Future technologies will likely 

allow measurements to be more automated and precise, and perhaps even be integrated with the 
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camera platform to give three-dimensional maps of the cameras field of view (Azzari et al. 

2013).  

The model I employed to correct detection probability (eq. 3) was only valid for sites 

producing at least one detection event. It is logical that some utilization could have occurred in 

sites with zero observations, as a few animals may have passed through undetected at the furthest 

distance intervals. However, having no detections when heavy usage was indeed happening 

would be highly unlikely; the truncation distances were selected so that detection probability was 

at least 0.10 for the furthest distance interval.  

Encounter rate data was addressed at a fine temporal scale (30-second delay). However, 

this interval may have been too long. As demonstrated in Chapter 1, it is important to realize that 

photographic rate is a measure of the amount of time spent by animals within the FOV. Using the 

30-second delay period, utilization measures can be biased low in habitats where movements are 

slower (Chapter 1). Habitats where animal movements were slowest may have yielded utilization 

measures that were biased low. Future studies measuring utilization should take advantage of the 

ability of modern camera traps to record data continuously (i.e., 1 second delay or less); the 

temporal effort of human based observations is unmatched to that put forth by remote cameras.  

Although not required, a larger spatial effort would likely improve results. Additional 

sites would have allowed a larger array of independent variables to be examined, thus potentially 

decreasing spatial prediction biases. The number of sites sampled ultimately depends on the 

degree of heterogeneity in utilization exhibited across the study area. The 41,740 trap-days of 

effort employed here is currently one of the highest reported among camera studies. 

Implementing additional sites, while not decreasing the study period length or total trap-days, 
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would require additional camera platforms. Camera cost, and the resources to maintain sites, can 

be limiting factors. The ability to maintain 131 camera sites continuously for nearly one year, 

with minimal human effort, was attributable to recent technological advances of the camera 

platforms themselves. The long battery life and large memory capacity only required a mean 2.5 

(range: 1-7) visits per site in the approximate year long period between installation and removal. 

It is assumed that cameras are able to survey the spatial domain used by animals; animals 

cannot hide from the camera. This is an assumption also shared with recent activity measurement 

techniques (Rowcliffe et al. 2014). For instance, arboreal or fossorial animals may only spend a 

portion of their time on the two-dimensional landscape where camera traps are commonly 

deployed. An example for this study would be the utilization patterns exhibited by domestic cats, 

as a portion of their time is spent in a location impenetrable by a camera’s FOV (inside houses). 

Photographic detections of the large ungulates (mule deer and elk) revealed a large range of 

behaviors (i.e., resting, foraging, and travelling). Thus, large non-illusive animals are most likely 

to fulfill this assumption by being unable to hide from cameras.  

I question the mismatch between the scale at which covariates were measured (i.e., 30 m 

grain size) and the fine scale at which utilization was derived (FOV area ranging from 18 – 75 

m2). However, the fine scale of the FOV is not the issue. Utilization heterogeneity occurs at 

scales much smaller than what most conventional resource selection/utilization studies on 

animals have measured. In the extreme case, fine scale utilization heterogeneity likely occurs at 

less than 1 m spatial scale. This is evident in the fact that animals utilize game trails (< 1 m 

wide). Technological advances in remote sensing are allowing covariates to be derived from 

finer spatial resolutions, as done in a GPS telemetry study that incorporated 1.12 m resolution 
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LiDAR to uncover resource selection behaviors of a large carnivore in relation to ground level 

woody vegetation (Loarie et al. 2013).  

 Conclusion 

Using camera traps to derive an encounter rate response variable is not a new idea. 

However, using camera traps to derive an encounter rate response for modeling population-level 

utilization across the landscape is novel. Whether this metric is useful to researchers depends on 

the objectives. The utilization measure should not be relied on if both fine scale abundance and 

individual level resource utilization/selection measures are obtainable. Future practitioners are 

reminded that two processes comprising population level utilization (resource utilization at the 

individual level and relative abundance) cannot be inferred separately with this approach. 

Researchers conducting broad studies on a multitude of taxa to understand ecological 

relationships will likely find it of most use.  
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 TABLES AND FIGURES 

Table 2.1. Review of scientific literature on the response (positive, negative, quadratic) found in 

relation to human housing development for six mammalian species. Studies included those 

examining housing or structure density, parcel size, or proximity to housing developments, using 

a variety of survey techniques (camera traps, track plates, mark-recapture, and telemetry). 

       

              

Study 
Mule 
Deer 

Raccoon Elk 
Red 
Fox 

Domestic 
Cat 

Coyote 

       

Smith et al. 1989  NegΕ           

Vogel 1989  NegΕ           

Riley et al. 1998    Posλ         

Gloor et al. 2001       Posψ     

Grinder and Krausman 2001            NegŦ 

Crooks 2002   PosΕ     PosΕ   

Odell and Knight 2002       NegΕ PosΕ NegΕ 

Gosselink et al. 2003       PosŦ    NegŦ  

Prange et al. 2003   Posλ         

Atwood et al. 2004           NegŦ 

Wait and McNally 2004     NegŦ       

Hebblewhite et al. 2005     PosΕ       

Kays and Dewan 2006         Posψ   

Randa and Yunger 2006   Posψ       Negψ 

Gehrt et al. 2009           NegŦ 

Ordenana et al. 2010   Posψ       Neg/Posψ 

Horn et al. 2011         PosŦ   

Jantz 2011           NegŦ 

Cleveland et al. 2012     Neg/QuadŦ       

Cove et al. 2012       Posψ     

Goad et al. 2014 PosΕ     Posψ   Negψ 
              

Εrelative encounter rate study (camera trapping, pellet survey, track plate), λanimal density study, 

ψoccupancy study, Ŧtelemetry resource selection/movement/habitat utilization study 
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Table 2.2. Description of camera site sampling strata. Factorial combinations were created 

between the levels of each strata, which led to 3-4 sites being sampled per each unique 

combination. Not all combinations were realized in nature (i.e., level “House 3” never occured 

within “Suburban/Urban” levels).  

 

 

 

 

 

 

 

Strata Level Description # of Sites

DEC Deciduous trees present 19
GRS Site dominated by grassland 20
HEC Dominated by coniferous forest >2400 m elevation 20
LEC Dominated by coniferous forest <2400 m elevation 27
SHR Dominated by scrub/shrub 20
MIX Located in a mixture of two of the above vegetation 8
URB Located within suburban densities but undefined by a vegetation level 18

Rural Housing density >16.18 ha/unit (<0.0618 units/ha) 67
Exurban Housing density 0.68-16.18 ha/unit (0.618 - 1.4706 units/ha) 47

Suburban/Urban Housing density <0.68 ha/unit ( >1.4706 units/ha) 18

House 1 Site located < 200 m of house 61
House 2 Site located within 200-700 m of house 50
House 3 Site located >700 m from house 21

*
 Levels collapsed from BASINWIDE Colorado Vegetation Classification land cover (CDOW 2003).

†
 Determined by SERGoM of year 2000 housing density (Theobald 2005) and HDM (Appendix 2)

‡
 Determined by digitization of all structures in 2008 USGS 0.6 m ortho-photo (Appendix 2).

Major   

vegetation*

Proximity to 

dwelling‡

Housing 

density†
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Table 2.3. Summary of the observed encounter rate measure, ��� �, as derived by eq. 4, for the 

six focus species.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Species Proportion of Sites 
with zeros

Minimum 
Non-zero Max Mean

Mule Deer 0.03 0.086 137.41 20.28
Raccoon 0.82 0.285 156.12 1.68

Elk 0.41 0.020 36.21 1.32
Red Fox 0.39 0.039 13.90 1.02

Domestic Cat 0.87 0.301 36.04 0.80
Coyote 0.31 0.073 15.43 0.94

*Response values are in units of: 30 second time intervals per m
2

Encounter Rate Response*
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Table 2.4. Summary of the top candidate model selected via AIC model selection for Meso-

slow, Meso-fast, Large groupings, and top models for XLarge grouping. Corresponding 

coefficient estimates are in parenthesis, along with an overall estimate of detection probability 

(p) and estimated detection radius (EDR) in meters. Vegetation factor coefficients (DEC, GRS, 

HEC, LEC, and SHR) are relative to the URB background level. 

 

 

 

 

Grouping β0(scale)

Shape Par. 
(b ) Scale Function p EDR Parameters

Delta    
AIC

AIC 
weight

Meso-fast 7.896 3.612

  β0* Exp
( DEC (-0.496) + GRS (-0.464) + HEC (-0.557) +   

LEC (-0.416) + SHR (-0.768) +                                                 

FALL (-0.076) + SPRING (0.039) + SUMMER (-0.114) +                                           

MASS (0.025) )  + ANGLE (-0.070) )

0.39 6.83 12 - 0.97

Large 2.267 2.325

β0* Exp
( BANDMAX (0.008) +                                           

FALL (0.145) + SPRING (0.263) + SUMMER (0.247) +                              

INDIV (0.117) +  ANGLE (-0.149) )

0.19 5.97 8 - 1.00

8.953 2.619

 β0* Exp
( DEC (-0.099) + GRS (-0.087) + HEC (-0.279) +       

LEC (0.220) + SHR (0.129) +                                                         

FALL (-0.072) + SPRING (-0.277) + SUMMER (-0.143) 

+ANGLE (-0.144) + INDIV (0.031) )

0.35 7.94 12 0.0 0.79

9.964 2.542

 β0* Exp
( DEC (-0.127) + GRS (-0.1384) + HEC (-0.341) +     

LEC (0.237) + SHR (0.091) +                                                    

FALL (-0.085) + SPRING (-0.292) + SUMMER (-0.187) +  

ANGLE (-0.157) )

0.34 7.83 11 3.3 0.15

Meso-slow 2.839 9.066

 β0 * Exp
( BANDMAX (0.018) + FALL (-0.026) +                

SPRING (-0.092) + SUMMER (-0.021) +                                            

MASS (-0.023) + ANGLE (-0.028) )

0.38 4.11 8 - 0.99

Xlarge
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Table 2.5. AICc model selection tables for each species, where k = number of parameters, 

logLik = deviance, ΔAICc, w = relative AICc model weight, and r = Pearsons correlation 

coefficient (observed vs. fitted values). 

 

 

 

 

Species Ranking Covariate Structure k logLik AICc ΔAICc w r

1 ASP_NW + ELEV_12k + HDM250 + HDM2502 + TPI_150 + 
UTM_Y + SHRUB

8 -480.9 978.9 0.00 0.48 0.56

2 ASP_NW + ELEV_12k + HDM250 + HDM2502 + TPI_150 + 
UTM_Y

7 -482.3 979.5 0.53 0.37 0.54

3 ASP_NW + ELEV_12k + HDM250 + HDM250
2
 + TPI_150 + 

SHRUB
7 -484.0 982.9 3.91 0.07 0.53

4 ASP_NW + ELEV_12k + HDM250 + HDM2502 + TPI_150 6 -485.8 984.4 5.41 0.03 0.50

5 ASP_NW + ELEV_12k + HDM250 + HDM2502 + UTM_Y 6 -486.5 985.7 6.76 0.02 0.49

Raccoon 1 HDM250 + STRUC 3 -83.3 172.7 0.00 0.98 0.99

1
ELEV + FOREST3 + SLOPE + KD1500 + ELEV*KD1500 + 

ELK_conc 
7 -181.9 378.8 0.00 0.85 0.63

2 ELEV + FOREST3 + SLOPE + KD1500 + ELEV*KD1500 6 -185.0 382.7 3.93 0.12 0.53

1 ELVE_12k + ELVE_12k2 + FOREDGE + HDM250 + HDM2502 + 
STRUC + FOREDGE*STRUC + ASP_E

9 -160.7 340.9 0.00 0.81 0.55

2 ELVE_12k + ELVE_12k2 + FOREDGE + HDM250 + HDM2502 + 
STRUC + FOREDGE*STRUC

8 -163.5 344.1 3.21 0.16 0.61

1 STRUC + HDM250 3 -69.6 145.3 0.00 0.45 0.61
2 STRUC + SLOPE 3 -69.9 146.0 0.67 0.32 0.73
3 STRUC_yard + SLOPE 3 -70.5 147.2 1.86 0.18 0.71

1 SLOPE + TPI_50 + TPI_502 + FOREDGE + CC_avg90 + 
CC_avg90*FOREDGE + HDM_pnt + ELEV

9 -151.0 321.5 0.00 0.66 0.49

2 SLOPE + TPI_50 + TPI_502 + FOREDGE + CC_avg90 + 
CC_avg90*FOREDGE + HDM_pnt

8 -152.8 322.9 1.39 0.33 0.50

Mule Deer

Coyote

RedFox

Domestic 
Cat

Elk
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Figure 2.1. The 131 camera sites (red points) overlaid on the study area (blue polygon). County 

boundaries, 2010 Census Bureau Urban Areas (yellow shading) and digital elevation model 

(gray shading) (3,090 – 1,610 m west to east) are shown. 
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Figure 2.2. Observed locations of animals at detection mapped onto the camera FOV to 

demonstrate spatial clustering of observations when three sites (names coded by color: “dec-R-

2_4”, “tie-R-2_2”, and “U-St3-9”) are considered individually (left pane). Pooled observed 

locations at initial detection from all camera sites follows typical distance sampling stationarity 

assumptions (right pane). Y-axis and x-axis distance values only reflect quantities of the aerially 

mapped FOV, rather than the measures (radial distance and sector angle) collected in photos.  
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Figure 2.3. Detection probability curves for select values or levels of covariates (INDIV: 

number of individuals in a group within FOV, BANDMAX: maximum distance camera can be 

triggered, SEAS: four calendar seasons, ANGLE = angular difference from FOV center line) 

from the best fitting candidate model for the Large grouping.  
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Figure 2.4. Modeled utilization for the six species to human housing covariates (HDM_pnt: 

Housing density at 1 ha scale, HDM_250: Housing density at 1 ha scale averaged over a 250 m 

radius, KD1500: kernel density index of housing density with 1500 m bandwidth, STRUC: 

Euclidean distance to nearest structure in meters). Rug plots (red ticks) indicate camera trap 

sampling intensity of the covariates domain. 
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CHAPTER 3 - RISK-REWARD TRADEOFFS OF A LARGE CARNIVORE FORAGING IN 

THE URBAN-WILDLAND INTERFACE 

 

 INTRODUCTION 

Across anthropogenically modified landscapes, human-large carnivore conflicts (here 

after referred to as HLCCs) can directly or indirectly affect both species (Madden 2004). 

Understanding the indirect effects of HLCCs on carnivores is difficult (Shochat et al. 2006), but 

they appear to arise when habitat modifications and fragmentation result in reductions in genetic 

connectivity or foraging efficiency (Storfer et al. 2007, Shochat et al. 2010). For human losses, 

an indirect conflict occurs when carnivores compete for the same prey targeted for recreational 

and subsistence uses (Reynolds and Tapper 1996, Nilsen et al. 2005, Fa and Brown 2009). Direct 

losses to humans are often associated with carnivore feeding events, such as predation on 

livestock (Kaczensky 1999), pets (Torres et al. 1996), or humans (Beier 1991, Löe and Röskatt 

2004). The offender can also suffer a loss when it is persecuted (Balme et al. 2009, Inskip and 

Zimmermann 2009, Maclennan et al. 2009). The most noticeable effect from HLCCs is the 

apparent association between increased anthropogenic development and the regional extirpations 

of some carnivores over the past century (Woodroffe 2000, Crooks et al. 2011). 

Empirical explanations for the spatial patterns of HLCCs is that they occur where human 

and carnivore utilization overlaps the most, codependent on suitable carnivore habitat (Torres et 

al. 1996, Nyhus and Tilson 2004, Kertson et al. 2011) or the type of human activity (Baruch-

Mordo et al. 2008, Balme et al. 2009). Foraging strategy, with respect to patch choice, has direct 

implications for understanding landscape utilization patterns (Brown 1988, Dupuch et al. 2009, 

Laundré 2010). Thus far, mechanistic explanations for patch choice are relatively simple and 
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one-dimensional for large carnivores. Explanations rooted in energy maximization principles 

indicate attraction toward prey availability or catchability for some species (i.e., cougar, Puma 

concolor) (Pierce et al. 1999). The same carnivore species may also engage in risk avoidance 

behaviors related to human development (Burdett et al. 2010). Studies focusing on either energy 

maximization (Pierce et al. 1999) or risk avoidance (Burdett et al. 2010, Wilmers et al. 2013) 

alone give contradictory predictions in the scenario where reward potential is positively 

correlated with increased risks near humans. Understanding whether a carnivore balances energy 

acquisition behaviors with risk avoidance behaviors may help reveal under which conditions an 

animal utilizes high risk locations when feeding, thus providing biological mechanisms for 

explaining HLCCs. 

Classic optimal foraging theory (OFT) predicts that an organism makes choices when 

feeding to acquire a maximum level of energy gain per unit effort (MacArthur and Pianka 1966, 

Emlen 1968) where behavioral tradeoffs are made at the individual level between acquiring 

energy (McNamara and Houston 1987) and expending energy (Charnov 1976), ensuring 

offspring survival (Mangel and Clark 1986), avoiding mortality risks (Brown 1992), or avoiding 

injury risk (Berger-Tal et al. 2009, Embar et al. 2014). It is assumed that maximizing foraging 

efficiency results in a release of time constraints (Jeschke 2007) for the successful reproduction 

and rearing of offspring (Mangel and Clark 1986, Houston and McNamara 2014). However, all 

can be quickly lost if energy maximization choices are associated with increased mortality risk 

(McNamara and Houston 1987). For consumers (i.e., herbivores) at least, patches of lower food 

availability may be selected to avoid spatially mediated risks imposed by predators (Lima and 

Dill 1990). 
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Optimum foraging theory may also help explain space use patterns of a predator when 

faced with its own spatially mediated risks (i.e., housing development). In this scenario, the 

herbivore now serves as a mobile resource and the large carnivore is the mobile forager that in 

turn receives pressures from humans (Ordiz et al. 2011). Very little information is available on 

whether OFT can be useful for explaining the distribution of a mobile predator feeding on a 

mobile prey resource (Sih 1984, Lima 2002, Laundré 2010, DiRienzo et al. 2013), especially in 

three-way community-level interactions (i.e., herbivores, predators, humans). To judge whether 

or not a predator utilizes an optimal strategy with respect to balancing energy acquisition and 

human related risk, three assumptions must be fulfilled: 1) The forager places a reward value on 

certain patch types, 2) Certain patches are perceived as costly or risky by the forager, 3) Patch 

reward value must be correlated positively with risk of mortality in a portion of patches available 

to the forager. 

Whether an animal can cope with and exploit the modifications associated with 

anthropogenic development is dependent on its species’ characteristics (Noss et al. 1996, Johst 

and Brandl 1997, Crooks et al. 2011) and individual phenotype (Wilson et al. 1994, Reale et al. 

2003, Nussey et al. 2007). Although the aim in many animal ecology studies is to provide an 

expected value for a population, patch-use choices are made at the individual level. Risk 

avoidance behaviors influencing patch selection are expected to vary inter-individually (Sih et al. 

2004, Wolf and Weissing 2012). A tenet of OFT is that individuals can respond to energetically 

stressful temporal periods (i.e., age class, season, hunger) by increasing their foraging efficiency 

and subsequently choosing to make riskier patch selection choices (Berger-Tal et al. 2009, 

Embar et al. 2014). In other words, animals may be less selective when energy reserves are low 

(Emlen 1966). Testing for intra-individual differences related to temporal periods (periods of 
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stress experienced by all animal individuals) may reveal whether energetic stressors indeed 

influence foraging strategy. 

The objective of this study was to test which foraging strategy best explains patch 

utilization in a model system with a top predator foraging in its own landscape of fear (Laundré 

et al. 2001). I used cougar foraging on mobile wild prey (i.e., mule deer [Odocoileus hemionus], 

meso-carnivores) in a patchwork of varying housing densities ranging from rural to suburban, 

which serve as a stationary human mediated risk. Similar to other large carnivores, various 

management and conservation concerns involving HLCCs with cougars exist (CMGWG 2005, 

Sweanor et al. 2008). Thus, understanding biological mechanistic explanations for cougar space 

use is of importance. While never tested directly for patch selection, large scale utilization 

patterns appear to be correlated with that of their prey (Pierce et al. 1999, Allen et al. 2014) or 

habitats known to be used by prey (Kertson et al. 2011), evidence for an energy maximization 

strategy. Other studies point out cougar aversion to human mediated risks (Burdett et al. 2010, 

Wilmers et al. 2013). I aim to provide a mechanistic understanding of space utilization of an 

apex predator foraging in human dominated landscapes on mobile prey by testing some optimal 

foraging theory predictions, especially concerning energetic stressors. 

This study was carried out in a foothill-montane system of Colorado’s Front Range 

situated between the continental divide and the Denver metropolitan area. The area is 

characterized by a patchwork of varying housing densities (Figure 3.1). Using a step-selection 

function (SSF) movement model, I tested whether cougar patch selection while foraging was 

influenced by: 1) an aversion to relatively higher housing density (risk avoidance), 2) an 

attraction to higher availabilities of prey (energy maximization), or 3) both risk aversion and 

prey attraction (optimal foraging). I also addressed whether cougars were motivated to utilize 
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risky habitat by testing whether housing density and/or prey availability influenced the 

probability of a hunting event manifesting into a feeding event (hunting success). Finally, I 

examined whether these foraging strategies were conditional on inter- and intra-individual 

factors concerning the individual animal, gender, age, season, and hunger level.  

 METHODS 

 Housing and Prey Distribution 

A housing density distribution map was developed under a dasymetric approach (Wright 

1936) combining information on the locations of man-made roofed structures with U.S. census 

bureau block-group housing density estimates (Appendix 2). Using the classifications given by 

Theobald (2005) it was found that rural (<0.068 housing units/ha) and exurban levels (0.068 – 

1.47 housing units/ha) comprise a vast majority (69.7% and 27.3%, respectively) of the study 

area. 

Unlike cursorial predators (Husseman et al. 2003), a stalking predator like the cougar 

(Banfield 2012) must get within a close distance (i.e., < 25 m) to prey before launching a 

successful attack (Beier et al. 1995, Holmes and Laundré 2006). An expected measure of prey 

availability should come from a similar scale in which hunting activities are carried out (Fraker 

and Luttbeg 2012, Birk and White 2014). Under a stratified random sampling design with 

varying levels of housing density, housing proximity, and natural landscape categories, 131 

camera trap stations collected photographic encounter rate data of mule deer (the primary prey) 

and other alternative cougar prey species (i.e., raccoon (Procyon lotor), domestic cat (Felis 

catus), elk (Cervus canadensis)) over an annual period (2011 – 2012) (Chapter 2). The small 

confines of the field-of-view (FOV) of camera traps allowed the response to be interpretable for 

a fine spatial scale (< 30 m). Generalized linear models were used to associate encounter rate 
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data to various landscape covariates (Appendix 4), with special emphasis placed on various 

housing measurements (Appendix 2). It was found that the best utilization model for mule deer 

was one with natural variables (Appendix 6) and a quadratic housing density effect. Utilization 

increased as a function of increasing housing density when in the rural and exurban density range 

(the dominant housing types) but decreased once in the low suburban range (~2.5 houses/ha) 

(Figure 2.4). Raccoon and housecat utilization were positively associated with increasing 

suburban housing densities and decreased Euclidean distance to structure (Figure 2.4). For elk, 

utilization increased with higher housing when in higher elevations, but remained neutral in 

lower elevations (Figure 2.4). 

Prey model predictions were interpolated to all 30 m pixels within the study area 

(Appendix 7). The resulting prediction at each location was used as an approximation for a 

population level utilization metric for a patch, which is the product of the number of individuals 

and the amount of time spent by any individual, given that certain study design components were 

adhered to (Chapter 1). Detailed field and model methods can be found in Chapter 2. Detailed 

spatial utilization results (model selection, coefficient estimates, and prediction maps) for these 

species can be found in Chapter 2, Appendix 6, and Appendix 7. 

 Defining Cougar Hunting and Feeding Locations 

A sample of cougars (n = 54, 34 Female and 20 male) were captured (IACUC: 16-2008 – 

Colorado Parks and Wildlife USDA Registration # 84-R0045) and fit with GPS collars 

programmed to record locations every 3 hours at night and 3 or 4 hours during the day 

(Appendix 8). To identify feeding events, GPS locations were grouped into discrete clusters 

based on spatio-temporal characteristics using a customized algorithm (Appendix 8). The long 

duration of handling events (small prey: 3-24 hrs, large prey: 24 hrs to several weeks) made 
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identification of feeding events possible. For every cougar and month of the study period 

monitored (Jan 2008 – Dec 2012), a random sample of clusters was ground-truthed in the field 

(total visits = 1718) to confirm presence or absence of prey remains, which informed the creation 

of a GLM (binomial family) for predicting the locations of feeding sites (Anderson and Lindsey 

2003). All prey types and sizes (lagomorphs – cervids) were included in the model. Cross 

validation indicated that the model predicted feeding events well (88.6% - Receiver Operator 

Characteristics: Area Under Curve measure). Detailed methods for the clustering algorithm, 

ground-truthing, and prediction model can be found in Blecha and Alldredge (in prep) and 

Appendix 8. 

A total of 5,766 kill locations were identified with the prediction model, leaving non-

feeding clusters and single GPS locations to remain. These remaining locations were identified 

as potential hunting locations by defined rules (details given in Appendix 9), but were mainly 

based on whether they occurred during the night (cougars are primarily nocturnal hunters) and 

whether they occurred at a time when no other prey handling activities were ongoing. This 

yielded a total of 39,268 potential hunting locations. Hunger level was assigned to each location 

as the amount of time that had passed since the commencement of the prior feeding activity, 

binned into one of 11 interval groupings (0-1 days,…, 9-10 days, 10+ days). Cougar age was 

assigned as a dynamic variable that incremented appropriately with time based on the estimated 

age at capture (Laundré et al. 2000). 

 Foraging Strategy Model 

All single GPS locations and centroids of the identified clusters were used as input into a 

SSF analysis (Fortin et al. 2005, Thurfjell et al. 2014). The SSF used here incorporates the 

observed distribution of step distances and turning angles to inform the generation of matched 
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available locations (Appendix 9). To assess landscape choice, each “use” location is compared to 

the matched available locations (e.g., as in a case control design) (Figure 3.2) based on landscape 

covariates (Appendix 4 & Table A9.1) using a mixed effect conditional logistic regression model 

(Duchesne et al. 2010). Fixed effect coefficient estimates (β’s) are given on their linearized scale 

along with confidence intervals (95% Walds). A positive β would indicate cougar selection for 

increasing values of a covariate, while a negative β would indicate selection against an 

increasing value of a covariate. Confidence intervals (C.I.) overlapping zero would indicate a 

lack of selection (neutral response) for the covariate. A detailed description of the model is found 

in Appendix 9. 

To test which patch selection foraging strategy best described cougars, a candidate set of 

hypothesized models was examined using an information theoretic approach to find the most 

parsimonious model (Burnham and Anderson 2002). While focus was placed on the fit provided 

by the housing and prey covariates, other natural landscape covariates (Appendix 9) were 

included in the model as well. Because selection patterns can be scale specific (Wilmers et al. 

2013, Zeller et al. 2014), a range of spatial scales was tested (Appendix 4). To indicate the 

presence risk-reward tradeoff, both a housing density (HDM) and the prey availability covariate 

(MDEER) must be in the most parsimonious model with coefficient signs aligned so that βHDM is 

negative and βMDEER is positive. A mixed effects parameterization with random slope terms, 

where the response to HDM and MDEER covariates were allowed to vary according to the 

individual animal (banimal_ID) or calendar month (bMonth) should ensure that this interpretation 

supports a tradeoff, rather than it being the result of some animals responding solely to βHDM and 

other animals solely to βMDEER (Duchesne et al. 2010). Additional models specifying 

combinations of banimal_ID or bMonth and natural landscape covariates as random slopes were also 
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examined. All mixed effect candidate models were assessed by model fit and the overall 

variation contributed (σ2) for the combination specified. A low σ2 near zero would indicate that 

the random slope term did not vary with respect to the b term. Models were limited to three 

random effect terms to reduce computation load, but were also required to have random slope 

terms corresponding to both the HDM and MDEER covariates. Candidate model sets using 

various combinations of fixed effects terms and random slope terms were critiqued based on the 

model building and selection methods given in Appendix 9. 

 Hunting Success Model 

Knowing whether a hunting location is more likely to be manifested into a successful kill 

, as a function of housing density or prey availability, is important for identifying drivers for why 

cougars may make the decisions revealed in the SSF model. In another case control analysis, I 

compared the attributes of kill locations to those of the hunting locations immediately preceding 

kills (Figure 3.2). In this case, “hunting success” is the joint probabilities of encountering a 

potential prey item, choosing to launch an attack, and successful submission of the prey. Any kill 

location not preceded by at least one hunting locations was removed (i.e., kills made back to 

back). Again using a mixed effect conditional logistic regression model (Appendix 9), it was 

determined if the probability of making a kill along a given hunting path was influenced by the 

landscape characteristics of the point locations (GPS locations) visited. 

 Inter- and Intra-individual Differences 

In this system, several environmental and animal specific factors can introduce inter- and 

intra-individual differences. For cougars, inter-individual differences in foraging behaviors can 

arise based on sex and age classes (Knopff 2010) or possibly from individual traits such as the 

degree of boldness or shyness. It is hypothesized that older age classes (more experienced 
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cougars) will be more efficient at foraging and show a stronger degree of avoidance toward 

housing development and be able to capitalize on localities with a lower availability of prey. 

Intra-individual differences can be characterized as temporally changing. Availability of primary 

ungulate prey may vary seasonally, as a surge of ungulate prey availability occurs in relation to 

the summer ungulate birth pulse (June – July). Thus, in the months prior to the pulse, prey 

availability is likely at its nadir, especially considering over-winter ungulate deaths. On a shorter 

time scale, hunger level may influence foraging strategy. To examine whether the response to 

houses and prey availability depended on the above factors, the most parsimonious foraging 

strategy model was applied to subsets of the SSF data for each cougar, gender, age (yearly age 

classes), month, and hunger level. Random effects corresponding to the subset being analyzed 

were removed. For each subset, the β’s and 95% confidence limits were assessed and compared 

among levels (e.g., across cougars, across age classes, etc). Standardized β’s (covariate values 

centered and scaled by standard deviation) are given in all analyses. 

Pertaining to the influence of hunger level on foraging strategy, it would be important to 

know at which hunger level kill events normally occurred. Thus, I characterized the distribution 

of the kill event timing with respect to hunger level by the mean and median. 

 RESULTS 

 Test of Foraging Strategy 

For each cougar, 121 to 3087 locations (kill and hunting combined) were obtained for 

“use” locations (45,034 total use locations). The best fitting SSF model demonstrated an 

avoidance of locations with increased housing density (βHDM150 = -0.769) and a slight attraction 

to locations with increased mule deer utilization (βMDEER = 0.086) (Table 3.1). A positive 

response (attraction) was also shown with respect to increased canopy cover, and increased 



81 

 

slope, and a negative response (avoidance) was shown to increased elevation (βELEV), forest edge 

(βFOREDGE), and increasingly north facing aspects (βASP180) (Table 3.1). A general attraction 

toward edge was shown (βFOREDGE), but the strength of the relationship was dependent on canopy 

cover (interaction with βCC_avg90). Accounting for random effects with respect to individual and 

month as single random slope terms improved (Table 3.2), but the most inter-individual variation 

in site selection was related to housing density (HDM) (banimal_id: σ2 = 0.818). 

 Hunting Success Model 

A total of 4,312 kill locations and 38,245 hunting locations were used for comparing the 

kill location to its respective preceding hunting locations. Hunting success was positively 

associated with increased housing density (βHDM400 = 0.122). Other natural covariates possibly 

associated with increased stalking cover, such as a decreasing topographic position index 

(locations closer to small drainages) (βTPI_100 = -0.384) were also found in the top model. Little to 

no inter-individual or intra-individual variation in success was related to HDM (Table 3.1). 

 Inter- and Intra-individual Differences 

With the SSF model, examining the response to increased housing density after applying 

the best model (after removing the random effect for individual) to each individual revealed that 

26 of the 54 cougars displayed a clear (β 95% C.I. < 0) negative response with βHMD ranging 

from -2.178 to -0.169 (Figure 3.3). Another 26 indicated a neutral response (95% C.I. overlapped 

zero) (Figure 3.3) with βHDM ranging from -0.315 to 0.043. The remaining two individuals 

indicated a slight but clear attraction (β 95% C.I. > 0) with βHDM <= 0.120 (Figure 3.3). 

Applying the SSF model to sex class indicated that males showed a clear and stronger 

avoidance of housing (βHDM = -1.35) than shown by females (βHDM = -0.41) (Figure 3.4.A). For 

age classes, no discernable difference was shown in 12-60 month age classes (βHDM ranged: -
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0.282 to -0.605) (Figure 3.4.B). A stronger avoidance to housing was exhibited for the two 60+ 

month classes (βHDM: -1.157 and -1.225) over the 12-60 month age classes, but the confidence 

limits nearly overlapped the mean βHDM in all age classes (Figure 3.4.B).  

The response to housing density varied greatly by month. From January - May, housing 

avoidance appeared to increase from moderate (βHDM = -0.807) to very little avoidance (βHDM = -

0.070). In June, avoidance behavior increased intensely (βHDM = -1.279), and then dropped off 

(βHDM increased) throughout the remainder of the year (Figure 3.4.C).  

As hunger increased, cougars became less selective when hunting. The strongest 

avoidance to houses was observed at 0-1 days post feeding (βHDM = -0.779). The estimate 

showed a general increase in βHDM the following 3 days, until leveling off and appearing the 

most neutral (βHDM = -0.07 to 0.008) by 4-7 days post feeding (Figure 3.4.D). Hunting locations 

representing kill events occurred at a mean and median of 1.99 and 1.38 days (Figure 3.5). 

 DISCUSSION 

I demonstrated that a large carnivore can balance the acquisition of energy with the risks 

imposed by its own predators. I provided much needed empirical knowledge of the influence of 

foraging strategy on landscape utilization patterns of a mobile predator seeking mobile prey (Sih 

1984, Lima 2002). Support is provided for the foraging strategy being dependent on inter- and 

intra-individual differences. The heterogeneity observed in foraging strategy can occur at very 

fine temporal scales and can be directly linked to the predator’s hunger level; cougars were more 

likely to take risks when hungry. Furthermore, cougars were more likely to utilize risky 

landscapes when numerical prey availability was assumed to be at its lowest. 
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 Study Design 

The SSF model used here explicitly accounts for animal choices conditional on what is 

available to an individual animal and the specific situation faced at the time. Standard tools for 

testing patch choice behaviors to understand predation costs and optimality behaviors rely on 

time allocation measures (i.e., “giving-up densities”) (Krebs et al. 1974, Brown and Kotler 2004) 

or behavioral observations of vigilance (Roberts 1996, Bednekoff and Lima 1998), but are 

difficult to conduct for predators that intentionally avoid human detection. Recent attempts to 

understand cougar risk avoidance, from the perspective of foraging time on carcasses using GPS 

telemetry (Smith et al. 2015), reflect choices made during the handling process rather than the 

decisions for choosing that feeding location. 

This study examines prey availability at any location based on an expected encounter rate 

for a prey animal at a small patch perspective. If faced with no risks, predators should choose 

patches with a higher baseline encounter probability with a potential prey item (Charnov 1976, 

Norberg 1977, Jaksić et al. 1981). The expected encounter rate for a potential prey item depends 

on the localized abundance for some area around the patch and the expected temporal utilization 

of the patch by any prey individual (Chapter 1). Previous studies assessing space utilization by 

the mule deer (Pierce et al. 2000, Laundré 2010) did so with sampled telemetry locations from 

individuals on the landscape that do not explicitly incorporate animal abundance. Passive camera 

trapping techniques have the potential to correctly quantify space utilization by prey (but not 

patch choice) at the level of the population more accurately than simple radio telemetry analysis 

(Chapter 1) alone, especially considering that telemetry sampling frequency can induce 

utilization inference biases (Reynolds and Laundre 1990, Johnson and Ganskopp 2008). Studies 
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using animal density alone to infer baseline encounter rates may have difficulties making 

inferences at fine spatial scales perceived by large predators (Holmes and Laundré 2006). 

 Tradeoff Assumptions 

For the risk aversion – energy acquisition tradeoff to occur, the assumption defined 

earlier says that certain patch types are perceived as more rewarding to the predator. It was 

demonstrated here that cougars hunting success was improved in higher housing densities, which 

could imply that cougars are more likely to encounter prey in these habitats, or are simply more 

apt to make a kill based on improved ambush cover associated with housing. It appears that 

cougars were more successful in lower topographic positions (drainages or ditches with 

improved ambush cover) despite these localities having a lower availability of primary prey 

(Chapter 2). Since initial conceptions (Charnov 1976), much empirical support has been given 

for landscape utilization by large carnivores being positively associated with prey availability 

(Murray et al. 1994, Spong 2002, McPhee et al. 2012). However, hunting success did not 

improve with respect to the availability of primary prey species (mule deer), thus supporting the 

notion that accessibility can be more important than pure availability (Pierce et al. 2004, 

Hopcraft et al. 2005, Balme et al. 2007). Furthermore, demonstrating that prey availability is the 

single factor responsible for a predator making a successful kill would not validate a patch’s 

reward value, as a predator engaged in simple Brownian motion would more likely encounter 

prey in areas where prey congregate. In this study, cougars may be placing reward value on 

certain landscape variables associated with some combination of the availability of prey and 

stalking cover.  

The second assumption is that the predator must perceive humans as imposing a risk. 

While a few failed hunts may only result in a few missed meals, a single underestimation of the 
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predation risk present while foraging may result in instant injury or mortality, thus predation risk 

would be expected to have strong selective forces (Lima and Dill 1990, Bouskila and Blumstein 

1992). Risk can be measured as the probability of being killed (Lima and Dill 1990) or possibly 

just injured (Brown and Kotler 2004, Berger-Tal et al. 2009) given exposure. Landscape of fear 

theories predict that animals will adjust their temporal or spatial utilization patterns based on fear 

of these risks (Brown et al. 1999, Altendorf et al. 2001), and has been applied to large carnivore 

response to foci of human mediated risks on the landscape (Burdett et al. 2010, Northrup et al. 

2012, Valeix et al. 2012). Besides habitat selection studies indicating a general cougar avoidance 

to housing development (Burdett et al. 2010, Wilmers et al. 2013), a driver for avoidance is 

likely HLCCs, which can be a common mortality source of subjects in this study (approximately 

33% of mortalities observed) (unpublished data) in other studied populations (Anderson et al. 

1992, Torres et al. 1996, Cunningham et al. 2001, Orlando 2008, Burdett et al. 2010, Thompson 

et al. 2014). 

Finally, patch reward value must be correlated positively with risk of mortality in some 

cases in order to demonstrate a tradeoff. Results of the camera study indicate that primary prey 

species availability is positively associated with increased housing density up to 2.5 houses/ha, 

and even more so for alternative prey species such as raccoon and domestic cat in suburban 

housing developments. A growing body of evidence supports these predictions (see review in 

Table 2.1). For the tradeoff to be tested, it is assumed that all combinations of relatively high and 

low housing development and relatively low and high prey availability are available, such as 

would be the case if using a factorial experimental design. However, defining what is considered 

low versus high levels of risk or prey availability is debatable. Positive risk-reward associations 

tend to occur when prey alter their distribution on the landscape to avoid the predator, especially 
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if that means seeking cover perceived as risky to the predator (Berger 2007). In this system, deer 

are faced with multiple predation pressures (Sih et al. 1998), such as those imposed by human 

hunting in rural localities and those by black bear and coyote on young deer (Pojar et al. 2004), 

additional forces that may drive deer to utilize exurban cover.  

 Conditions 

The inter-individual heterogeneity found in cougar hunting behaviors is supported by 

others (Kertson et al. 2011, Wilmers et al. 2013, Zeller et al. 2014). However, additional testing 

needs to be carried out to understand if this was a reflection of personality (boldness/shyness) or 

resource availability at a larger scale. Understanding the latter could lead to a deeper 

understanding of the home range selection process (e.g., 2nd order selection; Johnson 1980). 

Some differences could be attributable to gender, considering males showed more risk-avoidance 

than females. Differences may also occur with respect to age, although the simple analysis done 

here was less clear. Age can also be viewed as an intra-individual influence, as age (to the 

nearest month) was allowed to increment throughout the study, with some cougars being 

monitored within all five years of the study.  

On an intra-individual level, the waning risk-avoidance as a function of hunger level was 

most interesting, supporting the predictions of optimal foraging theory that decisions regarding 

trade-offs were actively being made. This phenomenon has rarely been tested in higher trophic 

levels (Berger-Tal et al. 2009, Embar et al. 2014) and with even fewer tests conducted on wild 

animals. Generally, kills are made at an expected hunger level of 1.99 days (median 1.34 days), 

while still exhibiting clear risk avoidance. After four days, little to no risk avoidance was 

exhibited. Over the longer timescale of the year, risk avoidance decreased with decreasing 

availability of prey (late winter through pre-ungulate birthing pulse). During periods with lower 
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primary prey availability, cougar may better able to capitalize on prey associated with human 

density by simply lowering their guard. 

Besides being a novel demonstration of physiological state influencing large predator 

behavior, various ecological applications for this knowledge exist. Many studies have examined 

predator avoidance response to anthropogenic development (Burdett et al. 2010, Kertson et al. 

2011, Wilmers et al. 2013). Yet these studies have done little to explain an animal’s occasional 

(or generally rare) utilization of these inherently risky landscapes, which leads to a potential 

human-wildlife conflict. Decreases in risk avoidance would convey a higher overlap with 

humans, and thus a higher probability of conflict. Thus, any factor causing an increased level of 

hunger may also be a driver of increased conflicts. These factors include the sudden reduction in 

primary prey species (Inskip and Zimmerman 2009), and factors suggesting decreased hunting 

efficiency, such as younger age, sick, injured, or maternal status (Linnell et al. 1999).  

 Conclusion 

An objective of this study was to place cougar space use of anthropogenically developed 

lands (and thus HLCCs) within the context of broader ecological theories to provide more 

generalizable applications. My findings demonstrate that a large carnivore can balance the 

acquisition of energy with the risks imposed by its own predators. I provide much needed 

empirical support for theoretical predictions concerning foraging strategies and their influence on 

landscape utilization patterns of a mobile predator seeking mobile prey. The intra-individual 

heterogeneity in foraging strategy can occur at very fine temporal scales and can be directly 

linked to the predator’s physiological state. Reduced behavioral avoidance towards human 

development, as a function of physiological state, serves as a building block for understanding 

the influence of other energetic stressors when determining landscape utilization patterns. 
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 TABLES AND FIGURES 

 Table 3.1. Fixed effect beta coefficient estimates, standard errors, and lower (LCL) and upper 

(UCL) 95% Walds confidence intervals for the most parsimonious mixed effect step-selection 

function (SSF) and hunting success models. Variance estimates σ2 of random slope terms (Entity 

or Month), corresponding to the fixed covariate are given.  

 

 

 

Fixed Effects

Model Covariate β est. SE LCL UCL banimal_ID bmonth

ASP180* -0.148 0.006 -0.159 -0.137 - -

ELEV -0.278 0.012 -0.302 -0.254 - -

FOREDGE
†

-0.202 0.007 -0.216 -0.188 - -

CC_avg90
‡

0.204 0.007 0.190 0.218 - -

FOREDGE x CC_avg90 0.038 0.007 0.025 0.050 - -

HDM150
§

-0.769 0.134 -1.032 -0.506 0.802 0.010

MDEER
¶

0.086 0.017 0.053 0.118 0.008 -

ASP45* -0.071 0.018 -0.106 -0.035 - -

ELEV -0.282 0.084 -0.448 -0.117 0.109 0.034
TPI_100** -0.384 0.039 -0.461 -0.307 0.014 0.010

FOREDGE
†

-0.001 0.021 -0.042 0.040 - -

FOREST*** 0.007 0.021 -0.033 0.048 - -

FOREDGE x FOREST -0.106 0.023 -0.152 -0.060 - -

HDM400
§

0.122 0.016 0.090 0.154 - -

* corresponds to decreasing southerly (180°) or northeasterly (45°) solar aspect  
† 

Increasing Euclidean distance to forest edge
‡ 

average canopy cover percentage within 90 m radius
§ 

Housing density within 150 or 400 m radius respecitvely 
¶ 

Mule deer utilization at 30 m grain size 
** Topographic position index for for 100 m radius
***Binary indicator of forest presence at 30 m grain size

Kill Success 

SSF 

Random Slope Effects σ
2
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Table 3.2. SSF mixed effect model selection table with single random slope terms corresponding 

to each covariate random effect animal (animal_ID) or calendar month factors (“covariate | 

animal_ID” or “covariate | Month”). Accounting for individual animal variation (σ2) in patch 

selection with respect to housing density (HDM150) by individual animal (Entity_ID) 

dramatically improved parsimony and greatly altered the HDM fixed effect coefficient estimate 

(-0.107 to -0.755). Other random slope terms improved model fit as well, but did not contribute 

greatly to explaining heterogeneity (σ2 <= 0.025).  

 

 

 

 

 

 

Random Effect Term 
(covariate z | random factor b)

Random 

Slope σ
2 ASP ELEV SLOPE FOREDGE CC

FOREDGE 
* CC 

HDM MDEER df logLik ΔAICc
AICc 
weight

(HDM150 | animal_ID) 0.818 -0.146 -0.275 0.004 -0.201 0.205 0.038 -0.755 0.089 53.5 -105041.5 0.0 1

 (ASP180 | Month) 0.024 -0.086 -0.270 0.021 -0.193 0.220 0.037 -0.110 0.052 19.8 -105148.6 147.0 0.0

(SLOPE | animal_ID) 0.025 -0.150 -0.264 0.077 -0.192 0.203 0.035 -0.103 0.069 54.7 -105155.9 231.4 0.0

(ELEV | animal_ID) 0.081 -0.153 -0.252 0.023 -0.196 0.216 0.036 -0.132 0.069 52.2 -105204.4 323.2 0.0

(CC_avg90 | animal_ID) 0.017 -0.151 -0.266 0.013 -0.191 0.205 0.037 -0.112 0.069 51.0 -105264.6 441.2 0.0

(FOREDGE | animal_ID) 0.021 -0.149 -0.259 0.012 -0.218 0.202 0.025 -0.108 0.068 50.5 -105269.1 449.4 0.0

(SLOPE | Month) 0.006 -0.150 -0.264 0.014 -0.192 0.205 0.035 -0.107 0.069 18.4 -105363.4 573.7 0.0

(MDEER | animal_ID) 0.010 -0.152 -0.267 0.013 -0.193 0.203 0.034 -0.109 0.059 44.0 -105345.9 589.9 0.0

(MDEER | Month) 0.005 -0.150 -0.264 0.014 -0.192 0.204 0.035 -0.107 0.064 18.0 -105402.0 650.3 0.0

(CC_avg90 | Month) 0.004 -0.150 -0.262 0.014 -0.193 0.207 0.035 -0.108 0.068 18.0 -105405.1 656.2 0.0

(HDM150 | Month) 0.021 -0.149 -0.266 0.012 -0.194 0.205 0.036 -0.160 0.072 18.2 -105409.6 665.9 0.0

(ASP180 | animal_ID) 0.005 -0.151 -0.265 0.013 -0.189 0.206 0.036 -0.107 0.071 42.5 -105389.0 673.1 0.0

(FOREDGE | Month) 0.002 -0.150 -0.264 0.014 -0.194 0.204 0.034 -0.107 0.069 16.5 -105441.9 726.9 0.0

(ELEV | Month) 0.004 -0.150 -0.263 0.014 -0.192 0.205 0.035 -0.108 0.068 16.1 -105445.2 732.7 0.0

Null - -0.150 -0.264 0.014 -0.192 0.205 0.035 -0.107 0.069 8.0 -105462.1 750.4 0.0

Cofficient Estimates β of Fixed Covariate x Model Selection
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Table 3.3. Hunting success mixed effect model selection table with single random slope terms 

corresponding to each random effect (identified as “covariate z| animal_ID” or “covariate z| 

Month”). Accounting for variation (σ2) in hunting success with natural covariates as a function 

of individual cougar (Entity_ID) or calendar month (Month) appears to improve in parsimony 

(lower AICc) over the null model (in grey) in a few cases. Very little heterogeneity in housing 

avoidance (HDM400) (σ2 < 0.015) was observed with respect to the factors. 

 

Model Selection

Random Effect Term 
(covariate z | random factor b)

Random 

Slope  σ
2 ASP45 ELEV TPI_100 FOREDGE FOREST

FOREDGE 
* FOREST

HDM400 df logLik ΔAICc
AICc 
weight

(ELEV | animal_ID) 0.102 -0.071 -0.268 -0.374 -0.001 0.011 -0.102 0.124 32.5 -8014.2 16093.5 1.00

(TPI_100 | Month) 0.011 -0.070 -0.196 -0.391 -0.004 0.000 -0.108 0.143 15.2 -8040.5 16111.4 0.00

(ELEV | Month) 0.037 -0.070 -0.221 -0.378 -0.005 0.003 -0.108 0.140 15.0 -8045.5 16121.0 0.00

(ASP45 | Month) 0.007 -0.067 -0.198 -0.377 -0.005 0.003 -0.107 0.142 13.9 -8049.8 16127.5 0.00

(TPI_100 | animal_ID) 0.012 -0.070 -0.199 -0.376 -0.004 0.001 -0.108 0.140 25.7 -8040.1 16131.6 0.00

(FOREDGE | Month) 0.004 -0.070 -0.198 -0.378 -0.009 0.002 -0.108 0.141 12.2 -8055.1 16134.6 0.00

Null - -0.070 -0.198 -0.377 -0.004 0.003 -0.107 0.141 8.0 -8060.5 16135.0 0.00

(FOREST | Month) 0.000 -0.070 -0.198 -0.377 -0.004 0.003 -0.107 0.141 7.0 -8060.5 16135.0 0.00

(HDM400 | Month) 0.000 -0.070 -0.198 -0.377 -0.004 0.003 -0.107 0.141 7.0 -8060.5 16135.0 0.00

(HDM400 | animal_ID) 0.002 -0.071 -0.196 -0.378 -0.003 0.002 -0.107 0.151 11.5 -8056.4 16135.9 0.00

(ASP45 | animal_ID) 0.002 -0.067 -0.198 -0.377 -0.004 0.003 -0.106 0.141 11.8 -8057.7 16138.8 0.00

(FOREDGE | animal_ID) 0.003 -0.070 -0.197 -0.377 -0.007 0.006 -0.099 0.142 12.8 -8056.6 16138.8 0.00

(FOREST | animal_ID) 0.009 -0.070 -0.197 -0.377 -0.007 0.013 -0.103 0.141 21.5 -8048.0 16139.0 0.00

Cofficient Estimates β of Fixed Covariate x
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Figure 3.1. Colorado Front Range study area adjacent to the Denver metropolitan area with mule 

deer utilization gradient and patchwork of housing development marked by an exurban density 

(0.068 houses/ha) or greater. 
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Figure 3.2. Processing steps for deriving kill-sites (red points) and hunting locations (yellow 

points) to be used as input into the SSF (step-selection function) and hunting success Models. 

The SSF compares the patch attributes at used locations (kill and hunting locations) to that of a 

set of generated matched locations (gray) based on the movement characteristics of the time 

steps. The hunting success model compares the kill site attributes to that of the preceding hunting 

locations within the respective hunting sequence. 
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Figure 3.3. Responses of individual cougars to housing density (top pane) and prey (mule-deer) 

availability (bottom pane). Cougars are ordered by their effect sizes. Error bars represent 95% 

Walds lower and upper confidence limits. Error bars not overlapping zero indicate clear selection 

(if coefficient is positive) or avoidance (if coefficient is negative). 
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      A)  B)  

C)  D)  

 

Figure 3.4. SSF (step-selection function) coefficient estimates (with lower and upper 95% Walds 

confidence intervals) with respect to housing density (red) and mule deer availability (blue) by 

levels of: A) gender, B) age class, C) calendar month, D) hunger level (days post feeding). 
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Figure 3.5. Histogram of kill events with respect to hunger level (days since last feeding event). 

Median and mean of the distribution are indicated with the solid and dashed lines respectively. 
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APPENDIX 1: NETLOGO PROGRAMMING CODE 

 

Code used in the NetLogo environment for “CamEncounter” (I) and “CamHabitat” (II) agent-
based models for generating the theoretical datasets used in Chapter 1. 
 
I. “CamEncounter”  
 
;”CamEncounter” 
;NetLogo 5.1.0 
;Blecha K.A. and R.B. Boone 
;October 2014 
;Natural Resources Ecology Laboratory 
;Department of Ecosystems Science and Sustainabilit y 
;Colorado State University 
 
;************* INPUT PARAMTERS ******************** *************************** 
;Enter values for parameters of interest: 
;Alternatively these could be included as sliders i n the GUI 
to input-parameters 
  set MOVE 1 
  set ABUND 5 
  set DELAY 1 
  set FOVDIST 13.0 
  ;Study length of on normal day = 86,400 ticks (ti ck = 1 sec),  
  ;while a week would equal 604,800 ticks.  
  set study-length 86400  
  set turning-stdv 5 
  set  HOMERAD 50 
  ;Displaying the patches utilization counts will m ake the model run slower.  
  ;Utilization will discontinue being tallied when this is toggled off. 
  set display-utilization-distribution FALSE 
end 
;************************************************** ************ 
breed [ cameras camera ] 
breed [ animal one-animal ] 
breed [ rangecenters one-rangecenter ]  
patches-own [ centroid  
              x-edge-pixel 
              y-edge-pixel  
              usage] 
globals [ ;other 
          display-utilization-distribution  
          xpos  
          ypos  
          seconds 
          ;response variables: 
          total-triggers   
          mean-triggers  
          cam0triggers 
          cam1triggers 
          cam2triggers 
          cam3triggers 
          ;parameters to test: 
          MOVE ABUND DELAY FOVDIST HOMERAD study-le ngth turning-stdv ] 
cameras-own [ triggers waiting lag currentcount enc ounter-rate] 
animal-own  [ center-xpos center-ypos current-dista nce ] 
;************** SETUP ***************** 
to setup 
  clear-all 
  input-parameters 
  setup-cameras 
  setup-patches 
  setup-agents 
  reset-ticks 
end 
 
;************** SETUP-AGENTS *************** 
to setup-agents 
;: generate home range centers  
 ask n-of ABUND patches with [ pcolor = black ] [set pcolor blue ] 
  ask patches with [ pcolor = blue ] [ 
    sprout-animal 1 [ 
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      set size 7 
      set color brown  
      set center-xpos pxcor 
      set center-ypos pycor ] 
  ] 
end  
;************** SETUP-CAMERAS *************** 
to setup-cameras 
  let camcoordinates  [ 
    [ 50 50 ][ 150 50 ] 
    [ 50 150 ][ 150 150 ] ] 
;make the number of forest cameras created the leng th of the respective coordinate list above 
create-cameras length camcoordinates   
( foreach ( sort cameras) camcoordinates [           ;not sure exact ly how this line works... 
  ask ?1 [ setxy item 0 ?2 item 1 ?2              ;not sure exactly how this line wor ks... 
           set shape "camera"  
           set heading 0 
           set size 7 
           set color blue ] 
])  
end  
;************** SETUP-PATCHES *************** 
to setup-patches 
  ask cameras [ 
     ask patches in-cone ( FOVDIST ) 42  [  
       set pcolor yellow  
     ] 
  ] 
end  
;************** GO ************** 
to go 
  if ( study-length <= ticks ) 
    [  
      ask patches [ set pcolor scale-color ( red -  5)  usage 0 10 ] 
      stop ] 
  travel   
  assess 
  tick 
end  
;************** MOVE **************** 
to travel 
      ask animal [ 
         ifelse (current-distance > HOMERAD )  
            [ facexy center-xpos center-ypos  
              set heading heading + random-normal 0 20  
              forward (MOVE)]       
            [ let tangle  random-normal 0 turning-stdv 
              set heading  heading +  tangle 
              forward ( MOVE )] 
         set current-distance distancexy center-xpos center-ypos 
         if display-utilization-distribution = TRUE [ set usage usage + 1] 
      ] 
end  
;*************** ASSESS **************** 
to assess 
  ask cameras  
  [ if lag <= 0 and waiting = FALSE  
    [ set triggers triggers + ( count animal in-cone FOVDIST 42) 
      set currentcount (count animal in-cone FOVDIST 42) 
      ifelse currentcount >= 1 
        [ set lag DELAY                             
         ask patches in-cone FOVDIST 42  
           [ set pcolor red ] ] 
        [ ask patches in-cone FOVDIST 42  
           [ set pcolor yellow ] 
        ]  
    ]   
   ifelse lag > 1 
      [ set waiting TRUE ] 
      [ set waiting FALSE ] 
   set lag lag -  1 
   ] 
  ; report the counts and encounter rate 
  set total-triggers ( sum [ triggers ] of cameras )      
  if display-utilization-distribution = TRUE [ ask  patches [ set pcolor scale-color ( red - 5)  usage 0 15 ] ] 
  set mean-triggers ( mean [ triggers ] of cameras ) ;averages the snaps across cameras for this camera type      
  ask camera 0 [ set cam0triggers triggers] 
  ask camera 1 [ set cam1triggers triggers] 
  ask camera 2 [ set cam2triggers triggers] 
  ask camera 3 [ set cam3triggers triggers] 
end  
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II. “CamHabitat”  
;”CamHabitat” 
;NetLogo 5.1.0 
;Blecha K.A. and R.B. Boone 
;October 2014 
;Natural Resources Ecology Laboratory 
;Department of Ecosystems Science and Sustainabilit y 
;Colorado State University 
 
extensions  [ gis ] 
globals  [ thematic euc_forest euc_grass 
           sec day  
           movement-type? camera-id-list g-xlist g- ylist 
           mean-gsnaps  
           mean-fsnaps  
           camera_forest_utilization 
           actual_forest_utilization 
           half-fov-width 
           x-right-offset ] 
patches-own [ code forest-dist grass-dist] 
breed [ gcameras gcamera] 
breed [ fcameras fcamera] 
breed [ deer ] 
gcameras-own [ gsnaps gdelay gwaiting gcurrentcount ] 
fcameras-own [ fsnaps fdelay fwaiting fcurrentcount ] 
deer-own [ ftime gtime f_utilization ] 
;;************** SETUP **************************** ************************************************* 
to Setup-Habitat 
  clear-all  
  __clear-all-and-reset-ticks 
;;load appropriate asci layers 
  set  thematic gis:load-dataset "input/habitat.asc"  
  set  euc_forest gis:load-dataset "input/euc_forest.asc"   
  set  euc_grass gis:load-dataset "input/euc_grass.asc"  
  gis:set-world-envelope gis:envelope-of thematic 
  display-thematic-in-patches 
  display-euc_forest-in-patches                                                  
  display-euc_grass-in-patches                                             
  ask n-of ABUND patches with  [ pcolor = green ]  
       [ 
       sprout-deer 1  
         [ set size 8 
          set color brown ]  
       ] 
  set half-fov-width round (( tan ( 0.5 *  FOVANGLE)) *  FOVDIST  ) 
  set x-right-offset round (( 100  -  half-fov-width))    
  setup-cameras 
  set day 1 
end  
;;************** Habitat ************************** *************************************************** ******** 
to display-thematic-in-patches                  
;;assigns raster values to the patches by "lining u p" the raster with the world settings, 
;;world settings in this case need to match the num ber of pixels in the raster 
 let min-code gis:minimum-of thematic                                
  gis:apply-raster thematic code 
  let max-code gis:maximum-of thematic 
  ask patches 
    [ if (code = 1) [ set pcolor yellow ]   ;;grassland 
      if (code = 2) [ set pcolor green ] ]   ;;forested                 
end  
to display-euc_forest-in-patches 
  gis:apply-raster  euc_forest forest-dist 
  let min-forest-dist gis:minimum-of euc_forest 
  let max-forest-dist gis:maximum-of euc_forest 
 
end  
to display-euc_grass-in-patches 
  gis:apply-raster  euc_grass grass-dist 
  let min-grass-dist gis:minimum-of euc_grass 
  let max-grass-dist gis:maximum-of euc_grass 
end  
to check-display 
  ifelse show-euclidean-distance-rasters? 
      [  gis:paint euc_forest green  
         gis:paint euc_grass yellow ] 
      [ clear-drawing   ] 
end  
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;;************** SETUP-CAMERA ********************* *************************************************** ***** 
to setup-cameras 
;;enter a list of the coordinates where the forest- cameras should be placed,  
;;the number of xy sets will be the number of camer as created 
let fcoordinates [ 
[ 0   0 ][ 400 0 ][ 200 200 ][ 600 200 ][ 0   400 ][ 400 400 ][ 200 600 ][ 600 600 ] 
[ 100 100 ][ 500 100 ][ 300 300 ][ 700 300 ][ 100 500 ][ 500 500 ][ 300 700 ][ 700 700 ]  ] 
let  gcoordinates [ 
[ 200 0 ][ 600 0 ][ 0 200 ][ 400 200 ][ 200 400 ][ 600 400 ][ 400 600 ][ 0 600 ] 
[ 300 100 ][ 700 100 ][ 500 300 ][ 100 300 ][ 300 500 ][ 700 500 ][ 500 700 ][ 100 700 ]  ] 
;;make the number of forest cameras created the len gth of the respective coordinate list above 
;;not sure exactly how this line works... 
create-fcameras length fcoordinates               
( foreach ( sort fcameras) fcoordinates [   
    ; limits the x and y camera positions so that F OV does not overlap adjacent habitats             
     ask ?1 [  

setxy  (( item  0 ?2) + half-fov-width)  
+ random ( ( ( item  0 ?2) + x-right-offset ) -  (( item 0 ?2) + half-fov-width) )  

         ( item 1 ?2) + random ( 100 - FOVDIST )     
         set shape "camera" 
         set shape "camera"  
         set heading 0 
          set size 15 
          set color blue ] 
          set heading 0 
          set size 15 
          set color blue ]  ]   ) 
create-gcameras length gcoordinates                
( foreach ( sort gcameras) gcoordinates [ 
;; limits the x and y camera positions so that FOV does not overlap adjacent habitats   
  ask ?1 [  

setxy  (( item  0 ?2) + half-fov-width)  
+ random ( ( ( item  0 ?2) + x-right-offset ) -  (( item 0 ?2) + half-fov-width) )  

         ( item 1 ?2) + random ( 100 - FOVDIST )     
         set shape "camera" 
         set shape "camera"  
         set heading 0 
         set size 15 
         set color blue ] ] ) 
ask gcameras 
    [ ask patches in-cone  FOVDIST FOVANGLE 
       [set pcolor black ] ] 
ask fcameras 
     [ ask patches in-cone  FOVDIST FOVANGLE 
       [set pcolor red ] ] 
end 
;;************** GO******************************** *************************************************** ******* 
to go 
    if ( study-length-days *  day-length <= ticks ) 
        [ stop ] 
    set sec sec + 1 
     
    if ( sec >= 0 and  sec < (forest-seeking-proportion *  day-length ) ) 
       [ set movement-type? "forest-seeking" ] 
    if (sec >= (forest-seeking-proportion *  day-length ) and sec < ( 1 *  day-length ) ) 
       [ set movement-type? "grass-seeking" ] 
    if ( sec >= ( 1 * day-length ) ) 
       [ set sec 0 
        set day day + 1] 
    assess-cameras 
    assess-deer-patch-selection 
    move 
    check-display 
    tick     
end  
;;************** MOVE ***************************** *************************************************** ********* 
to move 
  ask deer 
     [ if  (movement-type? = "forest-seeking" ) 
        [  ifelse  pcolor = yellow  
          [downhill-forest-code 
            forward  f-move-rate] 
          [random-walk]  ] 
      if  (movement-type? = "grass-seeking" ) 
        [  ifelse  pcolor = green  
          [downhill-grass-code 
            forward  g-move-rate] 
          [random-walk]  ]  ]    
end  
to random-walk 
       let  tangle  random-normal 0 turning-stdv 
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        set  heading  heading + tangle 
        ifelse  (movement-type? = "forest-seeking" ) 
             [  forward  f-move-rate ] 
             [  forward  g-move-rate ] 
end 
;;  deer will turn toward a lower patches with rela tively lower crop-euclidean distance values 
to downhill-grass-code 
   ;;  sets the scent- ahead parameter to the patch the deer is currently facing:                                                                   
 let scent-ahead grass-dist-at-angle 0 
   ;;  sets the scent-right parameter angle to 45 d egrees (right and ahead):                                                      
  let scent-right grass-dist-at-angle 45 
  ;;  sets the scent-right parameter angle to -45 d egrees (left and ahead):                                                      
  let scent-left grass-dist-at-angle -45  
  ;;  determines if there is a difference between s cent-right and scent- left:                                                     
   if ( scent-right < scent-ahead ) or ( scent-left < scent-ahead ) 
   ;;  if crop euclidean distance is lesser value t o the right, then turn towards the right:  
   ;;  if crop euclidean distance is lesser value t o the left, then turn towards the left:                           
    [ ifelse scent-right < scent-left                                                        
        [ rt random-normal 45 turning-stdv]                                                           
        [ lt random-normal 45 turning-stdv]   ] 
end  
to downhill-forest-code 
 let scent-ahead forest-dist-at-angle 0  
 let scent-right forest-dist-at-angle 45  
 let scent-left forest-dist-at-angle -45 
   if ( scent-right < scent-ahead ) or ( scent-left < scent-ahead ) 
      [ ifelse scent-right < scent-left 
        [ rt random-norma l 45 turning-stdv] 
        [ lt random-normal 45 turning-stdv]   ] 
end  
to-report grass-dist-at-angle [ angle ] 
    let p patch-right-and-ahead angle 1 
      if p = nobody  [ report 0 ] 
     report [ grass-dist ] of p 
end  
to-report forest-dist-at-angle [ angle ]                     
    let p patch-right-and-ahead angle 1 
       if p = nobody  [ report 0 ] 
      report [ forest-dist ] of p 
end  
;;*************** ASSESS ************************** *************************************************** ******** 
to assess-cameras 
  ask fcameras [ 
    if fdelay <= 0 and fwaiting = FALSE [ 
      ask deer in-cone FOVDIST  FOVANGLE  
          [ set color white ] 
      set fsnaps fsnaps + ( count deer in-cone FOVDIST  FOVANGLE) 
      set fcurrentcount ( count deer in-cone FOVDIST   FOVANGLE) 
      if fcurrentcount >= 1 
        [ set fdelay DELAY]    ] 
    ifelse fdelay > 1  
      [ set fwaiting TRUE ] 
      [ set fwaiting FALSE ] 
    set fdelay fdelay – 1     ]   
 ask gcameras [ 
    if gdelay <= 0 and gwaiting = FALSE [ 
      ask deer in-cone FOVDIST  FOVANGLE  
          [ set color white ] 
      set gsnaps gsnaps + ( count  deer in-cone FOVDIST  FOVANGLE) 
      set gcurrentcount ( count  deer in-cone FOVDIST  FOVANGLE) 
      if gcurrentcount >= 1  
         [ set gdelay DELAY]   ]  
    ifelse gdelay > 1  
      [ set gwaiting TRUE ] 
      [ set gwaiting FALSE ] 
    set gdelay gdelay – 1     ] 
  ask deer [ 
    if pcolor = green or pcolor = yellow  
     [ set color brown ] 
  ] 
  ;;averages the snaps across cameras for this came ra type 
  set mean-fsnaps ( mean [ fsnaps ] of fcameras )            
  set mean-gsnaps ( mean [ gsnaps ] of gcameras )             
  if mean-fsnaps > 0 and mean-gsnaps > 0  
      [ set camera_forest_utilization ( mean-fsnaps / (mean-fsnaps + mean-gsnaps ) ) ] 
end  
to assess-deer-patch-selection 
  ask deer [  
   if pcolor = green  
        [ set ftime ftime + 1 ] 
      if pcolor = yellow  
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        [ set gtime gtime + 1 ] 
      if ftime > 0 and gtime > 0 [ 
      set f_utilization ( (ftime / (ftime + gtime) ) )    ]    ] 
  set actual_forest_utilization ( mean [ f_utilization ] of deer ) 
end    
;;***************** RESTORE-DEFAULTS ************** *************************************************** ********* 
to restore-defaults 
  set FOVANGLE 42 
  set g-move-rate 0.8  
  set f-move-rate 0.8  
  set turning-stdv 5.0 
  set ABUND 20 
  set turning-stdv 5.0 
  set FOVDIST  20.0  
  set day-length 86400 
  set study-length-days 1 
end  
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APPENDIX 2: QUANTIFICATION OF HOUSING DEVELOPMENT ACROSS AN URBAN 

TO RURAL LANDSCAPE 

 

 SUMMARY 

This appendix gives the methods for deriving the Housing Density Model used in 

Chapters 2 and Chapters 3. This appendix provides: 1) detailed methods for derivation of the 

HDM and discussion on how this model is an improvement over other published models, 2)  

detailed methods for derivation of a data layer depicting distance to man-made roofed structures 

(STRUC), 3) an additional description and discussion on the anthropogenic development nature 

of the section of the Front Range foothills for which the HDM and STRUC were initially created 

for.  

 INTRODUCTION 

Identifying the presence and intensity of anthropogenic development is an important 

component in ecological studies whose goal is to understand whether anthropogenic 

development is perceived by the organism(s) of interest to be a behavioral disturbance or related 

to the population- or community- level perturbation of organisms. Consistently defining and 

quantifying what a human modified site actually is has been met with only little success in early 

models (Theobald 2004). Housing development is frequently measured as a potential 

anthropogenic disturbance as it is where most human activities take place. It is important that the 

human component be identified in a quantitative manner that provides measures meaningful to 

the system of interest. How housing developments are measured and the spatial scale of which 

measurements are gathered (Turner et al. 1989, Levin 1992) will likely influence analysis. For 

instance, if specific housing locations are known, distance based analysis can be conducted to 
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test influences of spatial proximity. In other cases, human or housing densities can be mapped on 

the landscape to give true areal density estimates on a per pixel basis.  

When choosing a modeled dataset to represent the extent and intensity of human density 

on the landscape, one must consider several aspects; the spatial extent of the dataset, quantitative 

versus qualitative measures, accuracy, and grain size (Li and Wu 2004, Linke and Franklin 

2006). Widely available datasets such as the National Land Cover Dataset (NLCD) (Homer et al. 

2007) may be attractive to a researcher studying some forms of anthropogenic development at 

the national scale, but a poor choice for a study interested in housing intensities as it merely 

provides a qualitative depiction of human influence. For instance, NLCD defines four land cover 

types indexing the intensity of development, two landcover types indexing agricultural lands and 

one indexing natural or human modified barren land (no vegetative cover). Land cover maps 

such as NLCD and Southwest GAP (Prior-Magee et al. 2007) utilize measures of non-permeable 

surfaces or other remote sensing data to depict a qualitative classification of human development 

at fine scales (~30 m). While it is likely that housing development is correlated with more 

impervious surfaces, this relationship does not hold within the range of rural or even exurban 

(also known as “ranchette” or “exurbia”) housing densities (Theobald 2001). Readily available 

landcover datasets perform poorly when quantifying the distinction between areas of little 

development (i.e., rural) and exurban developments (Theobald 2001, Theobald 2005). A vector 

based representation, such as the U.S. Census Bureau’s Topographically Integrated Geographic 

Encoding and Referencing (TIGER) data gives distinct counts of housing units for a hierarchy of 

subsettable geographic scales (i.e., census tract, block-group, and block) to provide information 

for chloropeth mapping, but is subject to the modifiable areal unit problem (Jelinski and Wu 

1996). Parcel polygons can also be converted into depictions of housing based on expected 
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parcel size (Thomas et al. 2009) and the premise that zoning regulations of rural areas are often 

limited to one housing unit per parcel.  

A vast improvement from using land cover, census data, or parcel tract data alone, is the 

use of dasymetric mapping techniques (Wright 1936). With this approach, count data derived for 

a larger mapping unit, such as that provided by census data, is redistributed for a smaller 

mapping unit using ancillary data such as land cover (Yuan et al. 1997), roads (Reibel and 

Bufalino 2005, Theobald 2005, Shrestha and Conway 2013), or parcel data (Tapp 2010). The 

Spatially Explicit Regional Growth Model (SERGoM) (Theobald 2005) is one example using 

census bureau block level counts and road density, which provides a housing density map for a 

nationwide extent at a 1 ha grain size (100 x 100 m cell). Although SERGoM maintains 

pycnophylactic properties (Tobler 1979) down to the spatial scale of the census block, accuracy 

of cells within a block is questionable based on the assumption that housing densities are 

perfectly correlated with road densities. While this assumption is reasonable with respect to 

correlations between road density and housing density (Shrestha and Conway 2013), it is 

unreasonable to assume that housing densities are equivalent along the same linear stretch of 

road within the census block (Reibel and Bufalino 2005). 

Spatial proximity to sources of disturbance is a common measure to represent the 

potential risk perceived by an organism. Measures and indices incorporating spatial proximity 

have become important in connectivity and meta-population analysis (Lima and Zollner 1996). 

The quantity may be measured in the field with survey equipment, but is increasingly measured 

with computerized spatial analysis techniques. Remote imagery can often provide housing 

locations with the aid of trained observers or automated imagery classification software. If all 

structure locations are obtained within a region of interest, Euclidean distance maps created on a 
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cell by cell basis provide areal quantities that may be further described by the inherent spatial 

patterns they exhibit across a landscape. A quantity that incorporates both the intensity of human 

development and the spatial proximity may also be of interest, such as that provided by kernel 

density estimation techniques. 

The Rocky Mountains of Colorado have been a host to many studies on anthropogenic 

development. This area is particularly interesting as an influx of immigrants over the last few 

decades (Manfredo and Zinn 1996) appears to be driven by recreational opportunities or the 

charismatic landscape itself rather than economic opportunities associated with natural resource 

extraction (i.e., agricultural, mining) or large urban centers (Riebsame et al. 1996). Like much of 

the Rocky Mountain west, mining, logging, ranching, and provisions of the 1862 Homestead Act 

initially drew people to the Front Range region. However, the more rugged areas were 

inaccessible to the transportation methods of the time. These areas, mostly in higher elevations, 

remain under federal ownership to this day. Anthropogenic development of the rural Front Range 

region is driven not only by the charismatic landscape reasons mentioned above, but also by the 

proximity to larger urban centers (i.e., Denver), allowing people to take advantage of both 

natural and metropolitan amenities (Davis and Nelson 1994). Public lands occur as a result of the 

historic federal land holdings and more recent acquisitions by local government agencies to help 

curb urban sprawl. The matrix of public lands can influence the placement of housing sites, as 

housing sites located immediately adjacent to the public lands are preferred (Irwin 2002, Wade 

and Theobald 2010, Hannum et al. 2012). A characteristic of this patchwork of public and 

private land is the abrupt changes in housing density observed within a small area; thus 

presenting a challenge when quantifying spatial patterns of development. 
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The overarching goal for this project was to yield meaningful quantity-based data layers 

to represent the extent of anthropogenic development in a foothills ecosystem of the Colorado 

Front Range marked by a rural to urban gradient. The first objective was to create a vector based 

depiction of structure locations (point map) within the study area. The second objective was to 

create a flexible and accurate housing density model (HDM). The HDM was created with a 

dasymetric mapping technique (Wright 1936, Mennis 2003) similarly implemented for 

SERGoM, but instead utilized the density of man-made roofed structures rather than the density 

of roads to allocate housing units across a census block. The HDM was produced at a baseline 

grain size of 1 ha, but was intended to be utilized at more sensible aggregation of 1 ha cells (i.e., 

200 x 200 m, 300 x 300 m, etc.). The third objective was to summarize model outputs of housing 

density and the housing proximity.  

 METHODS 

 Study Area 

The study area (6,424 km2) focuses on a selection of 266 U.S. Census Bureau block-

groups situated in the eastern slopes of the Colorado Front Range, bordered by the continental 

divide on the west and the urban fringes of the urban census areas of Denver, Boulder, and Fort 

Collins - Loveland on the east (Figure A2.1). Topography is similar along the longitudinal 

gradient, but transitions from 1,500 m elevation in the eastern fringes with plateaus and historic 

prairies to rugged peaks greater than 3,800 m in the west. Vegetation cover, as determined by 

Southwest GAP landcover types (Prior-Magee et al. 2007), is a mix of Introduced Perennial 

Grasslands and Forbs, Short Grass Prairie, and Agriculture in the prairie transition zone just 

below the foothills on the eastern fringe. Inside the foothills, Lower Montane Foothill 

Shrublands and Ponderosa Pine (Pinus ponderosa) woodlands in lower elevations give way to 
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Subalpine Mesic Spruce-Fir Forest and Woodlands as elevations increase above 2,500 m. 

Elevations above 3,300 m are described by Alpine Bedrock and Scree with interspersed Sub-

alpine Montane Riparian Shrublands. Population size was 345,200 persons with a total of 

158,727 housing units in 2010 and a mean 1,323 persons and 608 housing units per block-group 

(U.S. Census Bureau 2010). When referring to housing densities in this area, I used the levels 

defined by Theobald (2005): urban (< 0.1 ha per unit), suburban (0.1 – 0.68 ha per unit), exurban 

(0.68 – 16.18 ha per unit), and rural (> 16.18 ha per unit) housing density levels (equivalent 

housing units per ha: >10 units/ha, 1.47 – 10 units/ha, 0.0618 – 1.4706 units/ha, and <0.0618 

units/ha respectively). 

 Structure Locations 

To create a point location map of man-made roof structures, heads-up digitization was 

done using USGS high resolution (0.6 m) aerial ortho-imagery (2008) obtained for the study 

area. Using vector point layers, technicians assigned the approximate center of all man-made 

roofed structures with at least two sides greater than 3.5 m across. This distance would usually be 

sufficient to ensure that large trucks and recreational vehicles were not mistaken for a more fixed 

structure. All digitization was done within ArcMap 10.0 (ESRI, Redlands, CA) with the map 

scale set to 1:1,500. Three trained technicians were assigned a random subset of 4 km2 quadrats 

(~2,400 total quadrats) superimposed over the study area along with a 2.5 km buffer of the 

perimeter. Quadrats were digitized in a randomized order to ensure that effort and potential 

errors were distributed evenly. If the identification of any particular structure was questionable, 

USDA Farm Service Agencies: National Aerial Imagery Program, which has 1 m resolution 

aerial photos (2006, 2009 and 2011 collection years) were consulted. 
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Ideally, each man-made roofed structure would equally represent one housing unit. 

However, a large number of uninhabited man-made roofed structures (out-buildings, barns, 

detached garages) were apparent in rural and exurban areas. To address this issue, parcel data 

was used to restrict the number of man-made roofed structures to just one randomly chosen 

digitized structure location per parcel. This was possible as local zoning regulations of the 

counties composing the study area only allow one housing unit per parcel, aside from parcels 

deemed multiple family units. This restriction was only applied to parcels lying within census 

block-groups where the housing unit density for the overall block-group was characterized by 

either rural (< 0.068 housing units / ha) or exurban quantities (0.068 – 1.47 housing units / ha) 

(Figure A2.1). In block-groups characterized by an overall suburban or urban density (> 1.47 

units / ha) (Figure A2.1), a structure may actually hold multiple housing units (i.e., duplexes, 

apartment complexes, etc). However, the size of the suburban and urban block-groups (mean: 

1.51 and 0.45 km2) are much smaller than that of the rural and exurban block-groups (mean: 

263.04 and 25.47 km2), thus rendering less potential intra-block-group spatial error. 

 Housing Density Model Creation 

Dasymetric processing steps using the parcel restricted point locations of man-made 

roofed structures and the TIGER polygon census block group boundaries containing the housing 

unit counts are shown in Figure A2.1. Dividing the study area into 1 ha cells, the count of man-

made roofed structures (from the restricted layer created above) for cell ( i ) was identified as mi. 

For each cell ( i ), the respective census block-group polygon ( j ) containing the cell’s center 

was identified. Dividing the number of man-made roofed structures identified in a particular cell 

and block-group ( mij ) by the summation of all ( k ) man-made roofed structures in the block-

group allowed a weighting factor for each cell of the block-group ( ψij ) to be calculated. This 



120 

 

weighting factor was then multiplied by the total housing unit count of the block-group ( nj ) for 

an estimated housing unit density (di ) for each cell in units of “housing units per ha”: 

#�$ = %�$
∑ %�$�&�	

 

'� =  #�$ ∗ )$   

Output of the 1 ha cell size was then aggregated to form other raster layers with multiples of the 

1 ha (i.e., 200 m, 400 m, 600 m). Housing densities were classified into four discrete quantities, 

as defined by Theobald (2005). I assessed the effect of cell size choice on the measured areal 

extent of the four housing development levels with a simple scatter plot. A schematic of the 

processing steps is given in Figure A2.2 

 Spatial Proximity Layer Creation 

Using the unrestricted man-made roofed structure layer, the Euclidean distance was 

measured for every cell within the study area boundary and its associated 2.5 km buffer. Because 

the algorithm searches all cells within the spatial extent defined, this buffer region was important 

to include for the more remote areas of the study area, whose quantities are easily influenced by 

the inclusion of just a single housing location. The 2.5 km buffer for the final product was then 

removed to ensure accuracy near the edges. To preserve the distance based measure from being 

too coarse while balancing processing time and accuracy associated with structure digitization, a 

10 m grain size was retained in the final output. A summary of the final mapped product (layer: 

STRUC) using descriptive statistics is given. 
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 RESULTS 

A total 156,565 man-made roofed structures were manually digitized. Retaining one 

random man-made roofed structure for each parcel in the rural and exurban block-groups, 

132,348 man-made roofed structures remained for the restricted structure layer. After creating 

the HDM at a range of grain sizes, the proportion of land area classified as rural, exurban, and a 

combined suburban-urban level varied depending on the scale chosen (Figure A2.3). The 

proportion of rural land was very high (>0.9) while the proportion of exurban land appeared low 

(<0.1) at the native grain size of 100 m. The proportion of suburban (~0.03) and urban (0.003) 

areas were relatively low and were thus combined for further analysis. In general, the rural areas 

were more apt to be classified into exurban as grain size increased, with a threshold appearing to 

be reached past 400 m, where proportions of rural and exurban areas leveled out, in terms of the 

rate of change, near 0.75 and 0.22 respectively. Output of the HDM classified into rural, 

exurban, suburban, and urban levels at an aggregated grain size of 500 m is shown in Figure 

A2.4.  

The output Euclidean distance to man-made roofed structure raster (STRUC) is 

summarized using a histogram of the areal proportion and 400 m break points in Figure A2.5. 

The distribution follows a negative exponential pattern, where the most commonly encountered 

distance class was less than 400 m. Classifying the observed Euclidean distance into three 

natural quantiles (given the distribution of values produced for the study area) results in bins of 

0-250 m, 250-1085 m, and 1085-10,640 m (Figure A2.4). 

 DISCUSSION 

Having a full understanding of anthropogenic development is crucial for ecological 

studies attempting to assess the influence of humans on a species or system of interest. 
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Ecological studies generally incorporate anthropogenic spatial data as explanatory covariates in 

statistical models. Too often, landcover data is grabbed haphazardly from GIS libraries without 

an understanding of what is actually being represented. This project demonstrates a model of 

housing unit density produced from dyasmetric techniques combining remotely sensed aerial 

imagery depicting man-made roofed structures to spatially allocate counts of housing units 

throughout polygons provided by census data. The HDM is an improvement over previously 

published land cover models by providing a quantitative measure of human disturbances 

associated with housing developments. Specifically, the goals were to produce a model that 

maintained the ability to characterize abrupt changes in housing density across small spatial 

domains, to be spatially accurate at sensible grain sizes, and scalable to other resolutions of 

interest. 

 Abrupt Spatial Heterogeneity 

 Using man-made roofed structures as the fine-scale data source seems to be an 

improvement over past dasymetric models in the ability to depict abrupt spatial changes in 

housing densities. The fine-scale data source used to scale census counts in the SERGoM was 

derived using a moving neighborhood (a form of aggregation) with a search radius of 800 m 

when calculating road densities. This moving average approach produces a smoothed spatially 

autocorrelated quantity that obscures any spatially abrupt heterogeneity. Like many other 

cartographic works, the SERGoM used a binary mask informed by the presence of water bodies 

and public lands to define areas of zero housing densities. While these land features are a 

common source of abrupt housing density heterogeneity in much of our study area, they are 

unlikely to capture the source of heterogeneity in all localities (i.e., between high density 

exurban and adjacent rangelands). 
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 Sensible Grain Size and Rescaling 

The HDM model was created for a relatively small spatial extent, typical for ecological 

studies interested in large mammalian movement studies of individuals. If one were to develop 

this for a larger extent, it would be preferred that consistent aerial imagery is utilized. When 

examining the possible imagery sources available for this Front Range study area, obvious 

differences were apparent among the sources with respect to resolution, snow and cloud cover, 

and overall visual contrast between structures and the surrounding cover. For instance, if the 

HDM were to be created at the national scale, the USDA Farm Service Agencies: National 

Aerial Imagery Program provides this for the conterminous United States at a grain size of 1 m. 

Most importantly, caution should be given when interpreting models of housing density 

giving output at small grain sizes (i.e. 1 ha). Users of the HDM presented here should take post-

processing measures to aggregate the data to a larger grain size greater than 400 m to ensure that 

a more accurate representation of housing density is given at a per cell basis. Alternatively, one 

could take a moving window approach to calculate mean housing density from a specified search 

radius. If finer scales are needed (< 100 m grain), then a kernel density approach may be taken 

that accounts for the structure count within a specified search radius from focal points of interest 

(sampling points, animal locations, nesting or feeding sites) while also accounting for the 

number of structures within the radius. Other dasymetric modeling efforts, such as the SERGoM, 

give a misleading quantity for rural and exurban areas at the cell level given its native grain size 

of 100 m (1 ha). This small scale was implemented to ensure that the mapped areas conformed to 

the boundaries of blocks whose edges follow landscape features that often control the 

distribution of housing units. However, this scale is unable to characterize a gradient of densities 

within the rural setting, as a 1 ha cell of this size will usually only contain 0 or 1 house. If a 

single house is realized, then the density is automatically classified to be 1 house per ha, a 
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quantity that would automatically classify the cell to be of the exurban level rather than the rural 

level (assuming classification to levels is carried out). Given the processing steps related to 

binary masking of uninhabitable areas and the 800 m moving neighborhood approach, it is 

uncertain whether SERGoM output could be aggregated safely to larger more sensible grain 

sizes. 

 Suggested Future Improvements 

While a human observer based digitization approach was used to identify the man-made 

roofed structures, future efforts could implement a more automated approach using supervised 

image classification. A total of 240 man hours of volunteer and student labor time was used to 

digitize the structures, which was more cost efficient than purchasing image classification 

software and professional time required for training an image classification algorithm, even if the 

volunteer time had been compensated with paid labor. However, if the spatial extent was any 

larger or covered more suburban and urban areas, then automated approaches would likely 

become more cost efficient. While inter- and intra-observer error was controlled for to ensure 

that these errors were not aggregated at any region of the study area, it is likely that some 

structures were missed in areas of high topographic relief where shadows were prone to occur. 

After structure digitization was complete, a cursory scan of other imagery sources (i.e., USDA 

NAIP imagery, ESRI, and Google Earth [accessed Dec 2010 – Dec 2012]) was made of privately 

owned, north-facing, steep hillsides where shadows were more likely to occur. No gross 

digitization errors, such as the complete exclusion of a small neighborhood or subdivision, 

appeared to have been made.  

The HDM could have been produced using census counts from the block level, the 

smallest unit used by the Census Bureau, rather than the larger block-group, to further ensure a 
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high level of accuracy. However, polygons can be very small at the block level, and thus 

problematic to fit any 1 ha cells within the polygon when it has an odd or linear shape. Even with 

the block-group data, odd linear shapes sometimes occurred near the boundaries, thus some error 

may have been introduced when assigning the 1 ha cells to the appropriate polygons.  

Future studies may also benefit from utilizing detailed data derived from parcel data 

attributes that may provide clues to the number of occupants, the zoning type (i.e., residential or 

rural), and the number of structures. One could generate parcel centroids in all residential parcels 

to derive a proxy for housing locations, and forego aerial photo digitization. However, error 

would be expected to increase as parcel size increases, as there is no reason to believe that 

housing locations are more likely to occur in the center of every parcel, especially in the case of 

long linear parcels. Given that our study area covered several counties, parcel attributes, such as 

those concerning the presence or absence of structures were not consistently available. 

 Anthropogenic Development Characteristics in the Front Range 

For this foothill system, rural densities characterized a vast majority (0.765) of the study 

area at the 500 x 500 m resolution. This was expected as 59% of the study area is public land 

(COMaP; Theobald et al. 2010), which is generally free of housing unless associated with the 

management and maintenance of those public lands. Despite the areal majority being composed 

of rural housing densities, after visually inspecting the HDM output of the mapped exurban 

areas, it appears that development in the foothills is sprawling, but relatively concentrated to 

bands and certain vicinities bounded by the public lands. Suburban and urban developments 

(e.g., towns or cities) were relatively scattered and present for only a small proportion of land 

area (0.033). The housing density model revealed that exurban levels represent a large areal 

proportion (0.202) of the east slope of the foothills of this Front Range system. Exurban housing 
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developments were clustered in localities far from incorporated towns, with densities 

occasionally reaching suburban levels. The relative areal ratio of suburban/urban to exurban 

housing of 0.16 approximated that reported for a nationwide trend (Theobald 2005). However, it 

is important to recognize that the composition measure is sensitive to where study area 

boundaries are drawn. 

While various efforts have studied the influence of cities (suburban/urban) on animals 

(McKinney 2002, Ditchkoff et al. 2006), the influence from exurban development is 

understudied with the exception of a few published case studies (Hansen et al. 2005). It is 

possible that exurban development will be viewed negatively by some species, but positive by 

others (Goad et al. 2014). For this foothill region, I revealed that relatively few areas exist distant 

from a man-made structure. The sprawling nature of the exurban developments and the scattered 

single houses composing the rural extent create a situation where one third of this area is within 

250 m of a housing unit, a distance within line of sight of many fauna.  

The major roadways of the Front Range foothills appear to be highly correlated with 

canyon bottoms and drainages. On these roadways, housing developments have sprung up 

immediately adjacent to or completely within the canyon bottoms (Riebsame et al. 1996). In 

some canyons, recreation opportunities such as fishing, kayaking, rafting, and trail development 

are increasing. The rugged terrain and streams characterizing some of these canyons alone can 

exist as geographic barriers for some species. Combining the natural barriers, roadways, 

recreational areas, and housing developments, it is likely that fragmentation will eventually 

increase given future human population and development projections (Theobald 2005). Further 

exploration of the HDM and STRUC data may include formal statistical tests to gain a deeper 



127 

 

understanding into which natural, social, and historic factors may contribute to the placement of 

housing developments at the landscape and site scales. 
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 FIGURES 

  
Figure A2.1. Study area depicted by U.S. Census Bureau’s TIGER block-group delineations and 

chloropeth representation of overall housing density levels. Blue polygon delineates the block-

groups where inferences (HDM model and STRUC) were made. Labels indicate “urban areas” as 

defined by 2010 TIGER shapefiles. 
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Figure A2.2. Diagram depicting daysmetric approach of the housing density model from aerial 

photo interpretation of man-made roofed structures and U.S. Census Bureau block-group 

housing counts. 
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Figure A2.3. Proportion of study area composed of rural (red), exurban (blue), and combined 

suburban/urban levels (green), derived from the HDM with grain sizes ranging from 100 m to 

1000 m. 
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Figure A2.4. Left pane: Resulting output of the HDM at the aggregated 500 m grain size, 

displayed with four levels of housing unit density. Right pane: Resulting output of the nearest 

distance to man-made roofed structure (STRUC) displayed by classifying into three quantiles of 

equal area. 
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Figure A2.5. Histogram describing the composition of the study area, classified by the distance 

to nearest (Euclidean) digitized man-made roofed structure, at 400 m intervals.  
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APPENDIX 3: MEASUREMENT AND PROCESSING STEPS FOR DISTANCE SAMPLING 

WITHIN CAMERA TRAP FIELD-OF-VIEW 

 

This appendix provides supplementary methods for Chapter 2 for the detection 

probability component. To acquire approximate distance measurements between animals 

appearing in images and the camera’s mounting point, reference measurements were collected 

upon installment of the camera and/or at the time of camera removal. First, a tape measure was 

aligned down the center of the camera’s field of view. Pictures were allowed to be recorded by 

the camera while a technician walked in perpendicular passes to the tape measure at every 10 ft 

(3 m) to a maximum distance of at least 100 ft (30 m) (Figure A3.1). In some cases, 5 ft (1.5 m) 

intervals were marked. Several attempts (5-10 passes) were made for each distance interval to 

trigger the camera and record an image of the technician. Additional passes (>5) were sometimes 

required at the furthest distance intervals to trigger the camera. Using the resulting photos of the 

technician, reference locations of the horizontal distance intervals were determined from the 

point of contact of the technician to the ground while making the passes. These locations were 

compiled with image processing software (Adobe Photoshop CS6: Adobe Systems Inc, San Jose, 

CA, USA) into a single digital layer for each respective site (Figure A3.1). If cameras position 

moved at some point during the deployment (camera “bumped” by animal), separate reference 

overlays were made for the corresponding time period. An additional layer was created to 

designate eight equally spaced vertical line intervals spanning the cameras 42 degree FOV (every 

5.25 degrees), with lines indexed relative to being either left (negative value) or right of the 

center line (positive value) (Figure A3.1). Assuming that the manufacturer had aligned the 

infrared trigger mechanism accurately with the cameras FOV and distortion from the camera lens 

was minimal, it was not necessary to measure these angular interval lines in the field. The 
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respective horizontal distance and vertical angular line overlay were then transferred to actual 

images with animals (Figure A3.2) using batch image processing techniques. 

Aided by the overlay, an observer iterated through the images to visually assess the point 

of contact between the animal and the ground to measure distance (Figure A3.2). Distances 

between horizontal bands were visually approximated to the nearest foot. The angular 

measurement was approximated as the center of the animal’s body visible in the picture, which 

was usually mid-thoracic region (Figure A3.2). Only the distance to the closest animal was 

recorded in photos with multiple individuals.  

Photos where species identification was known (~99.9% of the photo records) were 

grouped based on body mass accounts (Armstrong et al. 2011) into one of three size groups: 

Meso, Large, and XLarge (Table A3.1). A fourth group was made by splitting Meso into fast 

moving (“MesoFast”: canids) and slow moving (“MesoSlow”: felids, procyonids). Distances 

were binned into intervals appropriate for each grouping (Table A3.2) to alleviate issues related 

to heaping of measurements (Buckland et al. 2001). A large proportion of the sector’s area was 

cut off after applying the truncation distance; only 0.04 – 0.2 of the FOV area (given a maximum 

observation distance) was retained (Table A3.2). Fortunately, this still corresponded to 0.76 – 0.9 

of the observed detection events being retained (Table A3.2). 
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Table A3.1. Mammalian species photographed, and their respective size groupings and body 

mass. 

 

Size Class Common Name Latin Name Mass (kg)

Minimum Maximum Average*

Domestic cow Bos taurus 22.0 1361.0 692.0
Horse Equus caballus 54.0 998.0 526.0
Moose Alces alces 380.0 550.0 465.0

Elk Cervus elaphus 220.0 450.0 335.0

Unknown ungulate Cervid spp. 70.0 450.0 260.0
Mule Deer Odoicoileus hemionus 70.0 200.0 135.0
Black Bear American black bear 90.0 113.0 102.0

Human Homo sapien 50.0 100.0 75.0
Cougar Puma concolor 36.0 103.0 70.0

Domestic Goat Capra spp. 18.0 91.0 55.0

Domestic Dog Canis lupus familiaris 1.00 79.0 40.0
Unknown canid Canidae spp. 3.00 70.0 37.0

Coyote Canis latrans 8.00 20.0 14.0
Bobcat Lynx rufus 5.00 14.0 9.50

River Otter Lontra canadensis 5.00 14.0 9.50
Raccoon Procyon lotor 3.00 9.00 6.00

Domestic Cat Felis catus 2.30 9.00 5.65
Gray Fox Urocyon cinereoargenteus 3.00 7.00 5.00
Red Fox Vulpes vulpes 3.00 7.00 5.00

Unknown fox Vulpes or Urocyon spp. 3.00 7.00 5.00

Yellow-bellied Marmot Marmota flaviventris 1.60 5.20 3.40
Striped Skunk Mephitis mephitis 1.80 4.50 3.15

Unknown Lagomorph Lepus or Sylvilagus spp. 0.50 5.00 2.75
Snowshoe Hare Lepus americanus 1.00 1.50 1.25

Unknown Sylvilagus Sylvilagus spp. 0.50 1.50 1.00
Mountain Cottontail Sylvilagus nuttallii 0.90 1.10 1.00

Rock Squirrel Otospermophilus variegatus 0.65 1.00 0.83
Fox Squirrel Sciurus niger 0.40 1.10 0.75

Mink Neovison vison 0.53 0.78 0.65
Aberts Squirrel Sciurus aberti 0.55 0.75 0.65

Unknown squirrel Sciurus or Tamiascirus spp. 0.19 1.10 0.65
Western Spotted Skunk Spilogale gracilis 0.40 0.70 0.55
Bushy-tailed woodrat Neotoma cinerea 0.27 0.29 0.28

Golden-mantled Ground Squirrel Spermophilus lateralis 0.17 0.29 0.23
Red Squirrel Tamiasciurus hudsonicus 0.19 0.26 0.23

Unknown Weasel Mustela spp. 0.03 0.30 0.17
Unknown Chipmunk Tamias spp. 0.03 0.09 0.06

Unknown Bat Chiroptera spp. 0.00 0.03 0.02

*Average Mass calculated as mid-point of minimum and maximum values given by Armstrong et al. (2011).

Xlarge

Large

Meso

Small

Micro
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Table A3.2. Summary of maximum observed distances, post processed distance interval 

assignments, and the areal proportion of sector retained after right-truncation for each species 

grouping. 

 

 

 

 

 

 

 

Grouping

Maximum 
observed     

distance (m)
Interval 

1
Interval 

2 
Interval 

3
Interval 

4
Interval 

5 
Interval 

6

Proportion 
of sector 
retained

Proportion of 
events retained

Meso-slow 16.8 3.05 3.96 4.88 5.79 6.71* - 0.16 0.76
Meso-fast 24.4 2.44 4.57 6.71 8.84 10.97* - 0.20 0.90

Large 45.7 1.98 3.96 5.94 7.92 9.91 13.87* 0.05 0.89
Xlarge 67.1 4.48 6.71 8.95 11.18 13.42* - 0.04 0.74

* Corresponds to the right truncation distance
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Figure A3.1. Compiled layer of horizontal and vertical measurement liens (red) overlaid on a 

photo of a technician making passes at the distance intervals. Horizontal lines indicate 

approximate distance intervals at 10 – 100 ft (3 – 30 m) in 10 ft (3 m) intervals. This particular 

example image has distance intervals marked at 10 ft intervals with a maximum distance of 80 ft. 

Vertical lines indicate the center or 0° (index 0), 5.04° (index 1), 10.08° (index 2), 15.11° (index 

3), and 20.15° (photo edge) to the left (negative index) or right (positive index) of the center line. 
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Figure A3.2. Example of photograph with the overlaid horizontal distance intervals (ft) and 

vertical angle intervals. The distance and angle index approximated for the bobcat (Lynx rufous) 

in this photo would be 18 ft and 0.1 respectively. 
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APPENDIX 4: LANDSCAPE COVARIATE MEASUREMENT METHODS 

 

This appendix gives detailed information for the various landscape covariates utilized in 

Chapter 2 and Chapter 3 of this thesis. A complete listing of the covariate naming conventions 

and short covariate descriptions can be found in Table A4.1. 

 Topographic Measures 

Topographic measures were derived from a 1/3-arc-second (~10 m) digital elevation 

model (USGS: National Elevation Dataset). Aggregating the elevation model to a 30 m grain 

size gave the primary elevation measure (ELEV) (Figure A4.1). For a coarse scale metric, a 

moving window average was calculated on ELEV with a radius of 6, 9, and 12 km. Using the 30 

m ELEV data, solar aspect (ASP) was calculated for the four cardinal directions (N: 315 – 45°, 

E: 45 – 135°, S: 135-225°, W: 225 – 315°) and the four ordinal directions (NE: 0-90°, SE: 90-

180°, SW: 180-270°, NW: 270-360°). Using the scale of the original elevation model, slope 

(SLOPE) was measured in degrees (Figure A4.2). A topographic position index (TPI) (Jenness 

2006) was calculated from the original elevation model at scales ranging from 50 – 500 m radius 

windows in 50 m intervals at a 10 m grain size. A TPI with a 50 m window (TPI_50) would be 

able to capture any narrow deviation such as a ditch or knoll. A 500 m window (TPI_500) 

(Figure A4.3) would be able to capture any larger valley or ridge while averaging smaller 

deviations. A more negative TPI index would indicate that the location was a narrower or more 

“enclosed” drainage, while a more positive TPI index would indicate a narrower or more 

pronounced ridge line. A TPI near zero would indicate a flat location or mid-slope.  
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Hydrological Measures: 

Hydrological features were derived from the U.S. Geological Survey’s National 

Hydrological Dataset using flow-line and water-body datasets. Flow-lines were classified as 

either perennial or intermittent water sources, while all water bodies were classified as perennial 

sources. Euclidean distance layers were created using a 10 m grain size considering the perennial 

(NHD_per) (Figure A4.4) and intermittent (NHD_int) sources separately and then jointly 

(NHD_int_per). 

 Vegetation Measures 

Vegetation data was derived using the readily available land-cover models: National 

Land Cover Dataset (U.S. Geological Survey), LANDFIRE (U.S. Forest Service), Southwest 

Regional GAP (U.S. Geological Survey) and BASINWIDE (Colorado Parks and Wildlife). All 

four of these datasets were derived from models combining imagery from various remote sensing 

platforms. Validation steps were conducted by the dataset’s respective source entities with 

ground-truthing measures. However, it would be expected that certain land-cover types are more 

easily distinguishable by certain models; thus performance of these models to give a true 

characterization would vary spatially across the domain (i.e., NLCD: national level, 

BASINWIDE: state level). Therefore, I conducted a validation analysis specific to the vicinity of 

the Front Range Cougar Project study area in order to choose the best data source. 

First, each of the four data sources were collapsed into three basic vegetation structure 

types (forest, shrub, and open) based on attribute data included with each data set. For Landfire, 

this corresponded to the “NVCSOrder”. For BASINWIDE, it was the “Class_Names” and 

“Description” fields. For SWRGAP, the “NVC_CLASS” and “NVC_SUBCL” fields provided a 
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breakdown. For NLCD, reclassification was done simply by using the descriptions of the 17 

classes found in the study area (http://www.mrlc.gov/nlcd11_leg.php). Land cover types depicted 

as grasses, open (barren), forbs, cropland, and snow were considered as the “open” vegetation 

type. For each of the data sources, three separate binary raster layers were created indicating the 

presence/absence of the vegetation structure (forest, shrub, open). Pixels related to human 

development (i.e., NLCD’s “Developed”, SWRGAP’s “Developed & Other Human Use”) were 

set to null values. Because not all layers shared the same grid resolution or spacing, I resampled 

with a regular grid of points spaced in 30 m intervals. For each of the three vegetation structure 

types, the union of the binary datasets was calculated across various combinations of the four 

data sources to create new binary datasets. Combining binary datasets allowed a more liberal 

estimate of the presence of a vegetation structure type, while also allowing a particular location 

to be classified by more than one vegetation structure type.  

Next, ground-truthing data were collected for 2371 point locations visited in the field by 

human observers while conducting surveys for other ecological studies ongoing in the Front 

Range. These locations spanned all vegetation types, but forested vegetation types were likely 

overrepresented (versus a completely randomized sampling scheme). During these visits, the 

major vegetation form was recorded by an observer within a 50 m radius of the sampled point. 

To rank the performance, ground-truthed point locations were spatially matched to the 

datasets’ (individual and union of multiple) binary classification. Receiver Operator 

Characteristics (ROC) analysis was conducted with Area Under the Curve (AUC) as the primary 

ranking argument. AUC measures range from 0 – 1, with 1 yielding a perfect binary prediction 

(all 0’s and 1’s matching), and 0 yielding a completely opposite prediction. An AUC near the 

mid-point (0.5) indicated that the data source did not yield predictions of presence/absence any 
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better than a random binary assignment. Sensitivity (true-positive rate) and specificity (true-

negative rate) are also given.  

Performance measures for each data set (or union of multiple data sets) are given in Table 

A4.2. For the forest structure, NLCD alone gave the highest AUC score (0.803). For the open 

type, the union of NLCD, SWRGAP, and BASINWIDE data sets gave the best AUC score 

(0.753). Shrub type was best described by the combination of NLCD and SWRGAP data sets 

(AUC = 0.794). Using the top ranked individual or combined data source, final binary 

presence/absence raster layers were created to represent the basic FOREST, SHRUB (Figure 

A4.5), and OPEN presence/absence covariate. These layers were then used to calculate a moving 

window “majority” focal statistic layer. These “majority” layers represented whether the 

vegetation type was the predominant vegetation type in a 3x3 pixel or 5x5 pixel (pixels = 30 m) 

rectangular window. 

The FOREST binary layer was used to create a layer for depicting the distance to nearest 

forest edge (FOREDGE). After resampling FOREST’s native 30 m grain size to a 10 m grain 

size, a moving window “smoothed” the hard edges, resulting in an interpolated representation of 

FOREST. This new 10 m resolution layer was then used to create forest edge lines, which then 

was put into a simple Euclidean distance calculation for all locations on the landscape. 

Canopy cover estimates are available separately from the LANDFIRE data source (year 

2010 version) given canopy cover percentages in increments of 10 for a 30 m grain size. Using a 

moving window approach, the mean canopy cover percentage was calculated across a 90 m 

radius (CC_avg90) (Figure A4.6). 
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 Human Development Measures 

Appendix 2 gives a detailed description of methods employed to obtain housing density 

and Euclidean distance to man-made roofed structure layers (HDM_pnt [Figure A4.7] and 

STRUC respectively). Additionally, the man-made roofed structure point layer was summarized 

by density of structures as well as spatial proximity in a single covariate (KD). KD was 

calculated with a Gaussian kernel density analysis (grain size of 10 m) for a moving window 

defined by a radius of h, which took on a range of values from 100 – 2500 m. See Figure A4.8 

for a kernel density conducted on structures at a 1500m radius (KD1500).  

Roadways were depicted with the 2013 U.S. Census Bureau TIGER roads data set. After 

removing all off-road trails and private roads a Euclidean distance layer was created using a 10 

m grain size (RDS_euc). 

 Snow Accumulation 

Data pertaining to the accumulation of snow on the ground was obtained using the Snow 

Data Assimilation System (SNODAS) (Barrett 2003). At a 1 km2 grain size, SNODAS predicts 

snow depth with a RMSE of 15 cm in forested landscapes of the Colorado mountains (Clow et 

al. 2012) on a daily basis. I considered snow depth as a continuous measure (SNOWD), and as a 

categorical presence/absence covariate with any snow depth measure > 0 given as binary 

presence “1” (SNOWP). 

 Other Landscape Measures 

While elk are a species potentially found anywhere within the study area, concentrations 

of populations are evident. Agency biologists have compiled expert opinions to develop 

generalized polygons depicting known areas with higher probability of having elk. This 

population range information is available for elk across the state of Colorado (“Species Activity 
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Mapping”: Colorado Parks and Wildlife) for the summer and winter season. Additionally, 

seasonal concentration maps are provided for areas with a higher probability of usage. The 

summer concentration and winter elk concentration map were converted to binary raster layers 

(30 m grain size) individually (ELK_sumconc and ELK_winconc) and as the union of the two 

layers (ELK_conc) (Figure A4.9). 
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 TABLES AND FIGURES  

Table A4.1. List of covariate naming conventions, grain size, and description. 

 

…Continued 

 

 

Type Covariate Grain Size Description

ELEV Digital elevation model  at native 10 m scale
ELEV_1k Moving window average for a 1000 m radius
ELEV_6k Moving window average for 6000 m radius
ELEV_9k Moving window average for 9000 m radius
ELEV_12k Moving window average for 12000 m radius

SLOPE 10

TPI_50 Topographic position index with 50 m radius window
TPI_100 Topographic position index with 100m radius window
TPI_150 Topographic position index with 150 m radius window
TPI_200 Topographic position index with 200 m radius window
TPI_250 Topographic position index with 250 m radius window
TPI_500 Topographic position index with 500 m radius window

ASP_N
ASP_E
ASP_S
ASP_W
ASP_NE
ASP_SE
ASP_SW
ASP_NW

ASP135 Continuous measure indicating solar aspect absolute difference from a azimuth of 135 degrees
ASP45 Continuous measure indicating solar aspect absolute difference from a azimuth of 45 degrees

NHD_per Distance to any perrenial water source
NHD_int Distance to intermittent stream
NHD_int_per Distance to intermittent and perrenial water sources (streams or water bodies)

OPEN Binary presence of union of NLCD, GAP, and BASINWIDE open landcover types
SHRUB Binary presence of the union of NLCD and GAP shrub landcover types
FOREST Binary presence of NLCD forest landcover types

OPEN3 Binary indicator of whether OPEN veg structure is dominate class within a 90x90 m window
OPEN5 Binary indicator of whether OPEN veg structure is dominate class within a 150x150 m window
SHRUB3 Binary indicator of whether SHRUB veg structure is dominate class within a 90x90 m window
SHRUB5 Binary indicator of whether SHRUB veg structure is dominate class within a 150x150 m window
FOREST3 Binary indicator of whether FOREST veg structure is dominate class within a 90x90 m window
FOREST5 Binary indicator of whether FOREST veg structure is dominate class within a 150x150 m window

FOREDGE 10 Distance to forest edge (smoothed edge of NLCD forest layer)

CC_pnt Point estimate of percent canopy cover from LANDFIRE (v. US110) dataset
CC_avg90 Average of percent canopy cover within a 90m radius

Topographic

Hydrological

Vegetation

30

30

Solar aspect (90 degree window, i.e.: SE = 90 - 180 degrees)

10

30

10

10

30

30
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Continued from previous page 

 

 

 

Type Covariate Grain Size Description

HDM_pnt Housing density 100 m cell size (Appendix 2)
HDM100 focals statistics on HDM_pnt layer with a 2x2 window
HDM150 focals statistics on HDM_pnt layer with a 3x3 window
HDM200 focals statistics on HDM_pnt layer with a 4x4 window
HDM250 focals statistics on HDM_pnt layer with a 5x5 window
HDM300 focals statistics on HDM_pnt layer with a 6x6 window
HDM350 focals statistics on HDM_pnt layer with a 7x7 window
HDM400 focals statistics on HDM_pnt layer with a 8x8 window
HDM450 focals statistics on HDM_pnt layer with a 9x9 window
HDM500 focals statistics on HDM_pnt layer with a 10x10 window

STRUC Euclidean distance (m) of the closest man-made roofed structure (Appendix 2)
STRUC_yard From STRUC, indicating whether it is within 50 m (1 = < 50, 2 > 50) of a structure or not

KD20
KD50
KD100
KD200
KD300
KD400
KD500
KD600
KD700
KD800
KD900
KD1000
KD1500
KD2000
KD2500

RDS_prlo_euc Euclidean distance within a primary or local road
RDS_euc Euclidean distance to nearest road 

SNOWD Snow depth as determined by SNODAS daily data
SNOWP Presence of snow (SNOWD > 0) as determined by SNODAS daily data.

ELK_sumconc
ELK_winconc
ELK_conc Union of ELK_sumconc and ELK_winconc

UTM_X
UTM_Y

Housing / 
anthropogenic 
development

Other

As determiened by Colorado Parks and Wildlife "SAMs" database

Universal Transverse Mercator coordinate (Zone 13)

Kernel density (measured in ha) of the structures layer, within a search radius equal to the 
distance (m) given in the suffix.

10

10

30

30

1000

100

10

Snow 
accumulation
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Table A4.2. Classification performance of various land cover data sources to depict three major 

vegetation structure types in the Front Range Cougar Project study area. Data sources were 

ground-truthed with 2,371 field visits. Table rows indicate a single source or combined data 

sources (dataset presence indicated with “1”). Area under the curve (AUC) is derived from 

receiver operator characteristics analysis as an overall accuracy measure.  

 

 

 

 

NLCD LANDFIRE SWRGAP BASINWIDE Sensitivity Specificity AUC

1 1 1 1 0.982 0.275 0.275
 - 1  -  - 0.932 0.429 0.681
 -  -  - 1 0.661 0.773 0.717
1  -  - 1 0.860 0.674 0.767
 -  - 1  - 0.830 0.749 0.789
1  -  - 1 0.830 0.749 0.789
1  -  -  - 0.776 0.830 0.803

 - 1  -  - 0.196 0.966 0.581
1  -  -  - 0.282 0.948 0.615
 -  - 1  - 0.400 0.925 0.662
 -  -  - 1 0.573 0.872 0.722
 -  - 1 1 0.671 0.834 0.752
1  - 1 1 0.698 0.808 0.753

 -  -  - 1 0.367 0.768 0.567
 - 1  -  - 0.291 0.942 0.617
 -  -  -  - 0.558 0.876 0.717
1 1 1 1 0.912 0.578 0.745
 - 1 1  - 0.657 0.837 0.747
1  -  -  - 0.749 0.796 0.772
1  - 1  - 0.853 0.735 0.794

Land Cover Data Sources ConsideredMajor Vegetation 
Structure

Performance Measure

Forest

Open

Shrub
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Figure A4.1. Elevation at 30 m grain size in units of meters above sea level (ELEV)  

 

Figure A4.2. Slope in units of degrees (SLOPE)  



153 

 

 

Figure A4.3. Topographic Position Index (TPI_500) 

 

Figure A4.4. Perennial water sources Euclidean distance (NHD_per). Blue lines indicate 
perennial waterbodies or flow lines. 
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Figure A4.5. Binary depiction of SHRUB as derived from the union of NLCD and SWRGAP 

data sources shrub classes. 

 

Figure A4.6. Canopy cover percentage averaged over 90 m radius window (CC_avg90).  
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Figure A4.7. Housing density model in housing units/ha (see Appendix 2) discretized into rural, 

exurban, suburban and urban housing density levels (levels defined by Theobald (2005)). 

 

Figure A4.8. Structure kernel density map for a bandwidth of 1500 m (KD1500). 
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Figure A4.9. Colorado Parks and Wildlife’s “Species Activity Maps” for winter (ELK_winconc) 

and summer (ELK_sumconc) concentration areas of elk. 
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APPENDIX 5: CAMERA TRAP UTILIZATION MODEL DIAGNOSTICS 

 

This appendix gives model diagnostics of the compound-Poisson GLM used in Chapter 2. 

Left panel: Normal Q-Q plots using the quantile residuals. 

Right panel: Fitted (x-axis) vs. quantile residual plots (y-axis). 

Mule Deer:  

Raccoon:  

Elk:    
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Red Fox:   

Domestic Cat:  

Coyote:  
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APPENDIX 6: UTILIZATION MODEL COEFFICIENT ESTIMATES 

 

This appendix gives β estimates for the utilization models of Chapter 2. Bootstrap 

coefficient estimates, standard errors, and 95% confidence intervals for the best model rankings 

given in Table 2.5. Values are reflective of covariate values centered and standardized by one 

standard deviation. Power (p) and dispersion (ϕ) profile likelihood estimates are also provided. 
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…Continued 

 

Species Ranking Parameter Estimate
Standard 

Error
Lower 95% 

C.L.
Upper 95% 

C.L.

(Intercept) -3.166 0.123 -3.387 -2.916
ASP_NW -0.304 0.086 -0.487 -0.139
ELEV_12k -0.728 0.113 -0.950 -0.501

HDM250 0.889 0.317 0.315 1.569

HDM2502
-1.230 0.429 -2.411 -0.586

UTM_Y -0.216 0.090 -0.390 -0.040
SHRUB 0.148 0.089 -0.020 0.334
TPI_150 0.292 0.094 0.115 0.486
Power 1.727

Dispersion 1.920

(Intercept) -3.155 0.121 -3.381 -2.912
ASP_NW -0.328 0.087 -0.503 -0.170
ELEV_12k -0.793 0.097 -0.992 -0.608

HDM250 0.817 0.298 0.253 1.456

HDM2502
-1.195 0.408 -2.340 -0.568

UTM_Y -0.230 0.090 -0.415 -0.059
TPI_150 0.264 0.095 0.087 0.446
Power 1.728

Dispersion 1.943

(Intercept) -3.141 0.123 -3.359 -2.871
ASP_NW -0.313 0.091 -0.496 -0.141

ELEV_12k -0.636 0.107 -0.837 -0.406

HDM250 0.971 0.305 0.439 1.679

HDM2502
-1.304 0.426 -2.555 -0.671

SHRUB 0.173 0.096 0.000 0.380
TPI_150 0.323 0.097 0.147 0.554
Power 1.732

Dispersion 1.966

(Intercept) -3.124 0.124 -3.349 -2.870
ASP_NW -0.344 0.088 -0.526 -0.183
ELEV_12k -0.705 0.091 -0.879 -0.523

HDM250 0.896 0.287 0.369 1.506

HDM2502 -1.272 0.415 -2.517 -0.651
TPI_150 0.289 0.099 0.113 0.508
Power 1.735

Dispersion 1.997

(Intercept) -3.125 0.122 -3.347 -2.872
ASP_NW -0.352 0.085 -0.530 -0.192
ELEV_12k -0.811 0.103 -1.022 -0.612

HDM250 0.806 0.304 0.241 1.462

HDM2502
-1.183 0.415 -2.386 -0.563

UTM_Y -0.258 0.096 -0.451 -0.074
Power 1.741

Dispersion 1.993

1

2

3

5

4

Mule Deer
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Continued from previous page 

…Continued 

 

Species Ranking Parameter Estimate
Standard 

Error
Lower 95% 

C.L.
Upper 95% 

C.L.

(Intercept) -8.692 1.197 -10.930 -7.636
HDM250 0.834 0.194 0.513 1.322
STRUC -3.025 2.145 -7.815 -0.958
Power 1.360

Dispersion 2.651

(Intercept) -5.800 0.340 -6.334 -5.055
ELEV 1.113 0.363 0.466 1.912

ELK_conc 0.385 0.171 0.010 0.679
FOREST3 -0.600 0.249 -1.144 -0.156

SLOPE -0.776 0.205 -1.161 -0.349
KD1500 0.726 0.545 -0.166 2.015

ELEV*KD1500 1.443 0.587 0.586 3.353
Power 1.665

Dispersion 2.915

(Intercept) -5.617 0.291 -6.136 -4.908
ELEV 0.742 0.359 0.098 1.470

ELK_conc 0.343 0.227 -0.052 0.674
SLOPE -0.820 0.201 -1.222 -0.418
KD1500 0.675 0.515 -0.377 1.784

ELEV*KD1500 1.445 0.561 0.541 3.062
Power 1.670

Dispersion 3.055

(Intercept) -6.527 0.306 -6.865 -6.097
ASP_E 0.277 0.136 0.018 0.544

ELEV_12k 10.255 2.893 5.479 16.633

ELEV_12k2 -10.386 2.893 -16.909 -5.619

FOREDGE 0.174 0.163 -0.200 0.445
HDM250 1.642 0.688 0.773 3.561

HDM2502 -1.351 2.021 -6.789 -0.310
STRUC -0.826 0.254 -1.428 -0.397

FOREDGE*STRUC -0.762 0.313 -1.623 -0.342
Power 1.540

Dispersion 1.625

(Intercept) -6.475 0.270 -6.846 -5.958
ELEV_12k 10.356 2.734 6.093 17.164

ELEV_12k2
-10.520 2.712 -17.282 -6.442

FOREDGE 0.184 0.156 -0.129 0.475
HDM250 1.620 0.667 0.787 3.645

HDM2502 -1.300 1.516 -7.664 -0.308
STRUC -0.837 0.269 -1.577 -0.419

FOREDGE*STRUC -0.792 0.301 -1.788 -0.386
Power 1.548

Dispersion 1.703

2

1

1

2

1

Elk

Red Fox

Raccoon
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Continued from previous page 

   

 

 

 

Species Ranking Parameter Estimate
Standard 

Error
Lower 95% 

C.L.
Upper 95% 

C.L.

(Intercept) -14.267 7.723 -32.343 -10.232
HDM250 0.449 0.156 0.209 0.860
STRUC -13.247 11.605 -42.437 -5.931
Power 1.408

Dispersion 4.099

(Intercept) -15.863 7.283 -31.240 -11.155
SLOPE -1.648 0.671 -3.310 -0.629
STRUC -15.134 10.876 -40.869 -7.126
Power 1.412

Dispersion 4.177

(Intercept) -9.355 4.967 -11.522 -8.044
SLOPE -2.088 0.654 -3.698 -1.042

STRUC_yard 1.647 2.403 0.982 2.886
Power 1.399

Dispersion 4.147

(Intercept) -6.612 0.250 -7.000 -6.160
CC_avg90 -0.423 0.199 -0.805 -0.016

ELEV 0.280 0.150 -0.007 0.588
FOREDGE -0.164 0.155 -0.567 0.072
HDM_pnt -0.585 0.264 -1.238 -0.289
SLOPE -0.817 0.171 -1.187 -0.513
TPI_50 -0.747 0.253 -1.358 -0.333

TPI_502 -1.475 0.752 -4.300 -0.594
CC_avg90*FOREDGE -0.400 0.147 -0.812 -0.179

Power 1.485
Dispersion 1.112

(Intercept) -6.598 0.258 -6.996 -6.110
CC_avg90 -0.241 0.179 -0.559 0.139
FOREDGE -0.188 0.160 -0.608 0.056
HDM_pnt -0.677 0.280 -1.409 -0.358
SLOPE -0.866 0.172 -1.247 -0.564
TPI_50 -0.724 0.260 -1.301 -0.262

TPI_502 -1.554 0.778 -4.398 -0.632
CC_avg90*FOREDGE -0.375 0.147 -0.817 -0.158

Power 1.483
Dispersion 1.129

Coyote

3

2

1

2

1

Domestic Cat
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APPENDIX 7: STUDY AREA PREDICTED UTILIZATION MAPS 

 

This appendix gives the output utilization maps derived in Chapter 2, which are 

considered independent variables for the resource selection models of Chapter 3. Predicted 

utilization (30 second intervals used per square meter per day) is derived from the best or model 

averaged generalized linear model for mule deer (Figure A7.1), raccoon (Figure A7.2), elk 

(Figure A7.3), red fox (Figure A7.4), domestic cat (Figure A7.5), and coyote (Figure A7.6) over 

one year period (Chapter 2). The figures below can be compared visually to the underlying 

covariates (Appendix 4) and municipal boundaries (Figure 2.1). 

Utilization values were mapped with a 30 m grain size. The range of utilization values 

predicted by the model is indicated on the gradient scale bar (legend). For variation to be visible 

across the mid-range of predicted values (rather than the extreme values), the color gradient was 

scaled linearly where the extremities are clipped (+/- 2.5 standard deviations from the minimum 

and maximum). Predictions were only allowed to occur in locations fitting the domain of 

landscape attributes sampled by the camera traps. Additionally, the location had to fall within 6.8 

km of any camera, which is one half of the maximum nearest neighbor distance between pairs of 

cameras. For the western edge of the study area, this usually resulted in an elevation boundary of 

approximately 3100 m a.s.l, a geographic barrier of snow pack in the winter. The eastern border 

of the study area represented the transition zone between the mountains and plains, but was more 

precisely defined by U.S. highway 36, state highways 93 and C-470, and Broadway Avenue 

(Boulder City), which are major transportation routes thought to represent a geographic barrier to 

some animal movements. Water bodies (U.S.G.S. National Hydrological Dataset) were masked 

from predictions. 
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Figure A7.1. Mule deer utilization prediction map from model averaging. 
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Figure A7.2. Raccoon utilization prediction map from the single best model. 
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Figure A7.3. Elk utilization prediction map from model averaging. 
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Figure A7.4. Red fox utilization prediction map from model averaging. 
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Figure A7.5. Domestic cat utilization prediction map from model averaging. 
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Figure A7.6. Coyote utilization prediction map from model averaging. 
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APPENDIX 8: GPS LOCATION ACQUISITION, CLUSTER IDENTIFICATION, AND KILL-

SITE PREDICTION MODEL 

 

This appendix provides detailed methodology for defining cougar kill and non-kill sites 

in Chapter 3. Cougar GPS collar data used in this study represent a portion of a larger parent 

project on cougar ecology led by Colorado Parks and Wildlife. 

 GPS Location Acquisition 

Cougars were outfitted with one of three GPS collar models over the course of the study 

(Table A8.1). Collar data was retrieved via satellite uplink, UHF/VHF data transmission, or by 

flash-memory recovery. Each individual was monitored 2 to 57 months (median and mean - 14 

and 18 months). Average monthly fix success rate of GPS collars (the percentage of scheduled 

fixes acquired) was 77.5% across animals. 

 Cluster Identification Algorithm 

Unique clusters of GPS locations logged by the collars were identified using a 

customized algorithm (Alldredge et al. 2008) that utilizes spatial and temporal proximity 

characteristics to classify GPS locations into discrete clusters. For a given individual animal, 

GPS points containing a time stamp and UTM coordinates are chronologically synced with the 

predetermined GPS location acquisition schedule. Time steps correspond to the scheduled fix 

acquisition intervals (Table A8.1). Time step assignments reflect any missed GPS locations (i.e., 

time step 114 followed by 115 followed by time step 117, in which the 116th scheduled 

acquisition was missed by the collar).  

The algorithm classifies aggregations of two or more points within a specified distance 

and time interval. Placing all points into a matrix, an association measure Aij was used to identify 
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unique pairings (points i and j) that were potentially considered a cluster based on distances in 

time tij (in time steps) and space dij (distance meters) simultaneously: 

      *+, =  -

.
/012 /+,3

4- −  6+,
6012

7 

The temporal and spatial window that a pairing could be considered a cluster was defined by tmax 

which was set at 28 time steps (4 days) and with a dmax of 200 m. The formulation weighted dij 

heavier than tij while ensuring that Aij was negative for any locations outside the temporal 

window. Upon completion of the Aij calculations for all matrix elements, the largest element 

value corresponded to the tij points that are spatially and temporally closest. If the tij of the 

pairing of points was within dmax, the mean of the point pairs’ UTMs was calculated as a centroid 

seed. All other points were then compared to this seed with an association vector 89::::; using the Aij 

formulation. The point within 89::::; with the highest nonnegative Aij value, and within dmax, was 

then added to the cluster and a new centroid UTM was calculated. The procedure was reiterated 

until all points within tmax and dmax are exhausted. After a cluster was formed, the constituent 

points were removed from the next iteration of association matrix creation before proceeding. 

Points not a member of any S1 cluster were then considered as S2 cluster types, which are any 

two consecutively logged points within 500 m but separated temporally by one scheduled GPS 

fix, missed by the collar. Although the true proximity of the missing location to the temporally 

neighboring points was unknown, the expected probability of it being < 250 m would be 

relatively high given a straight-line path of travel.  

The remaining points not considered as S1 or S2 (multi-point cluster types) were then 

classified as single-point “clusters”. The observed proportion of feeding activities occurring at 
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single point clusters was only 0.03 – 0.06. Since predicting these rare events proved difficult 

(unpublished data), all single points were automatically classified as non-kill sites.  

 Ground-truthing Field Methods: 

Algorithm processing was conducted in each of the 36 monthly intervals. While GPS 

locations were accumulating for a monthly interval, ground-truthing visits for the previous 

month were conducted. In the field, ground-truthing observers were directed to be unbiased 

within a monthly period with respect to cluster type, cougar, or habitat, unless inclement winter 

weather hindered access to a particular area. Observers were assigned to cougars and geographic 

sub-regions on a monthly rotation to account for differences in observer abilities. Novice 

observers were trained and accompanied by an experienced observer for 2-4 weeks prior to 

ground-truthing on their own to aid the development of a search image for prey remains and 

sign. Each sampled cluster site was exhaustively searched within a radius of 50 meters around 

each GPS location composing the cluster. Detailed searching commenced once prey remains 

were discovered. However, all spatially outlying GPS locations were eventually visited. Clusters 

were classified with a binary presence/absence indicator of a feeding event. In the case of 

feeding event presence; prey species, age, and sex were identified. It was assumed that all 

feeding events were actual kill events made by the cougar in question, even though in a few 

instances it was evident that the prey item was killed by a different cougar or from other sources. 

 Kill Prediction Model 

GPS locations recorded within seven days of capture or locations spatially and temporally 

associated with a natal den were truncated. I used a generalized linear model (R Development 

Core Team 2013) with a logit link function to model the binary response of the presence (1) or 

absence (0) of feeding remains at a cluster using a suite of covariates hypothesized to influence 
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the probability of presence of prey remains. Covariates, as defined below, were grouped into 

three major classes: GPS spatio-temporal characteristics, activity sensor measures, and gound-

truthing error attributes.  

 GPS spatio-temporal characteristics: 

GPS location spatio-temporal characteristics of the cluster take advantage of the fact that 

cougars partake in particularly long handling times when feeding. However, cougars also exhibit 

movement behaviors to and away from clusters over the course of consumption. The number of 

GPS positions (POSCOUNT) collected at the cluster is a proxy for the amount of time 

potentially consuming the carcass. Most feeding activities take place during the night, while day-

time resting activities often occur outside of the cluster defined spatial extent; thus the proportion 

of GPS positions within the cluster were collected during the night time (NIGHTPROP). An 

interaction between POSCOUNT and NIGHTPROP was included to help distinguish between 

repeat usage of day-bed sites and that of feeding sites. Spatial dispersion of GPS locations within 

a cluster (CENTR) was measured as the average distance from geometric center of each cluster 

to each constituent GPS position. 

 Activity sensor measures: 

Additional bio-telemetry data is increasingly being incorporated with animal movement 

data for the remote identification of certain behaviors (Nams 2014). For cougars monitored with 

GPS PLUS collar models (Table A8.1), activity data logged by the collar’s on-board activity 

sensor was used to derive metrics that may enhance the discrimination of feeding activities from 

non-resting and travelling activities. The sensor’s X-axis measures the relative amount of 

forward-backward and head tilting movements, while the Y-axis measures the relative amount of 

side to side and head-rolling movements. ACCX was calculated as the mean of all 5 minute 



175 

 

activity intervals recorded on the x-axis within a 1.5 hr window of all locations constituting the 

cluster. This measure was recorded for the y-axis activity sensor as well (covariate: ACCY). 

ACCX and ACCY measures showed significant positive correlation (Pearson corr. coef. = 0.92). 

Despite this, I retained both measures and calculated the difference between the two 

(ACCXYDIFF), while never combining ACCX and ACCY main effects in any model. 

Specifically, ACCXYDIFF was the average difference within a 1.5 hr window; in which 

exploratory examination of the data seemed to indicate more positive vs. more negative values at 

confirmed feeding events. It is anticipated that a more positive ACCXYDIFF would indicate 

movements associated with feeding, while a more negative ACCXYDIFF would indicate 

movements not associated with feeding activities. 

 Ground-truthing error attributes: 

Several covariates were included to assess the effect of false-absence sources while 

ground-truthing. The GPS fix acquisition success rate (FIXRATE) was calculated on a moving 

window for a 96 hr time period for each GPS location logged, which then was averaged among 

all GPS locations in the cluster. The proportion of positions downloaded successfully via satellite 

linkage (FIELDPROP) was calculated for each cluster, where lower FIELDPROP would be 

related to a lower probability of finding carcass remains, as observers had a higher potential to 

miss feeding remains caused by a slightly miss-focused investigation just outside the search 

radius. Because clusters were ground-truthed anywhere from 1-60 days post feeding, the search 

lag time (SEARCH) was used as a continuous variable to characterize an increasing false 

negative classification rate associated with carcass degradation over time. Tambling et al. (2010) 

found that the percentage of clusters ground-truthed containing kills declined within the first four 

weeks, but was constant within the following 16 weeks. Other studies were successful at locating 
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at least some prey remains with time lags of 6-12 months (Anderson and Lindzey 2003, 

Tambling et al. 2010). Therefore I tested transformations where a negative exponential decay 

function would be expected in addition to a simple linear term. The season (SEAS) (SUM: Jun 1 

– Sep 30, NON-SUM: Oct 1 - May 31) was used as a proxy for general seasonal differences 

between carcass decay rates associated with summer temperatures. Smaller prey would be 

assumed to degrade and/or be displaced away from the feeding site quicker than larger prey.  

Spatio-temporal covariates described above were chosen a priori based on results found 

in the other studies discussed, thus all combinations of the a priori chosen main effect covariates 

were used to create candidate models. All two-way interactions and quadratic terms were also 

specified, unless pairings of variables were not allowed to occur in the same model based on 

obvious co-linearity (Pearson corr. coef. > 0.6). Using AICc model selection (Burnham and 

Anderson 2002), the most parsimonious model held 29.7% of the AIC weight while the second 

and third (27.4% and 17% AIC weights respectively) were nested within the top model. 

Coefficient estimates and 95% confidence intervals for these estimates of the most parsimonious 

model are given in Table A8.2. 

Performance of the best model was assessed by reapplying the model predictions back to 

the input dataset of clusters but by discretizing the predicted probabilities to a binary indicator 

for the presence or absence of feeding evidence by determining a probability cut-off value. If 

prediction is the goal, this cut-off value should be chosen to balance sensitivity (true-positive 

rate) and specificity (true-negative rate) (Hosmer and Lemeshow 2000, Knopff et al. 2009). 

Optimizing sensitivity and specificity resulted in a cut-off value of 0.372. Receiver Operator 

Characteristics (ROC) analysis (Sing et al. 2005) was carried out to calculate the area under the 

curve (AUC). An AUC of 0.893 was achieved, which indicates excellent discrimination. To 
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protect against potential over-fitting, the average AUC measure using K-fold cross validation 

with 20 hold out sets (k=20) was calculated (Boyce et al. 2002, Knopff et al. 2009). If this K-fold 

cross validation AUC measure exceeded the simple direct AUC measure then a simpler model 

structure may have been warranted. However, this resulted in a cross-validation measure of 

0.886, which did not cause much concern.  

Finally model predictions, along with appropriate feeding (kill event) vs. non-feeding 

(non-kill event) classification (based on the cut-off value) were applied to all clusters identified 

by the clustering algorithm (visited or not visited by an observer). 

 

 

 

 

 

 

 

 

 

 

 

 

 



178 

 

 TABLES 

Table A8.1. GPS collar models, acquisition schedules, fix acquisition scheduling, fix rates, and 

count of cougar subjects. 

 

 

 

 

 

 

 

 

Date Range Monitored GPS Collar Manufacturer Model
Scheduled GPS 

Location Aquistion 
Times

GPS 
Location 

Acquisition 
Success 

# of 
Cougar 
Subjects 

Monitored

Jan 1, 2008 - ca. Jan 1, 
2009

Lotek Wireless, Inc, 
Newmarket, ON, CAN

4400s
00:00, 03:00, 06:00, 
09:00, 12:00, 15:00, 

18:00, 21:00
75.6% 15

ca. Jan 1, 2009 - ca. Jan 1, 
2010

Northstar Science and 
Technology, LLC, King 

George, VA, USA
D-cell

00:00, 03:00, 06:00, 
09:00, 12:00, 15:00, 

18:00, 21:00
69.2% 17

ca. Jan 1, 2010 - Dec 31, 
2012

Vectronics Aerospace, GmbH, 
Berlin, DE

GPS 
PLUS

02:00, 05:00, 8:00, 
12:00, 16:00, 20:00, 

23:00
79.9% 38
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Table A8.2. Coefficient estimates for the most parsimonious model for predicting the occurrence 

of feeding events given a cluster location. 

 

 

 

 

 

 

 

 

Covariate Estimate Std. Error z - value Pr(>|z|) 95% LCL 95% UCL

(Intercept) -9.0745 1.87833 -4.83 <0.0001 -12.8092 -5.4512
ACCX 0.1483 0.02234 6.64 <0.0001 0.1054 0.1934

ACCX
2

-0.0007 0.00022 -3.28 0.0010 -0.0012 -0.0003
ACCXYDIFF -0.0128 0.04572 -0.28 0.7787 -0.1013 0.0783
ACCXYDIFF*log(POSCOUNT) 0.1145 0.04427 2.59 0.0097 0.0289 0.2027
ACCXYDIFF*CENTRDIST -0.0006 0.00017 -3.53 0.0004 -0.0010 -0.0003
log(POSCOUNT) 1.5205 0.43582 3.49 0.0005 0.6745 2.3866
NIGHT_PROP -1.5152 0.85217 -1.78 0.0754 -3.1820 0.1661
log(POSCOUNT)*NIGHTPROP 2.1555 0.66515 3.24 0.0012 0.8693 3.4824
CENTRDIST -0.0161 0.00814 -1.98 0.0478 -0.0319 0.0001

CENTRDIST
2

0.0001 0.00003 4.51 <0.0001 0.0001 0.0002
SEAS (base level: summer) 1.0210 0.21343 4.78 <0.0001 0.6063 1.4442
SEARCH -0.0184 0.00812 -2.27 0.0235 -0.0345 -0.0026
FIELD_PROP 7.9887 4.66176 1.71 0.0866 -1.1515 17.1168

FIELD_PROP
2

-4.6638 3.12911 -1.49 0.1361 -10.7860 1.4810
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APPENDIX 9: STEP SELECTION FUNCTION ANALYSIS AND HUNTING SUCCESS 

MODELS 

 

This appendix provides detailed methodologies for carrying out step-selection function 

(SSF) data processing and statistical model for inference on patch-selection and hunting success. 

 Assigning Matched Available Locations 

For the step-selection function, movement steps were defined as the pairing of locations 

used by the cougar consecutively in time, which could be either a GPS location or a location 

cluster if multiple locations occurred within a temporal-spatial window of 200 m and 4 days 

(Appendix 8). For single GPS locations, time stamps and UTM x- and y-coordinates generated 

by the GPS collar were used. For clusters, the time stamp for the initial GPS location constituting 

the cluster and mean UTM x- and y-coordinates were used. For each cougar and step, the length 

and turning angle (angle relative to the previous step) was calculated. 

For each cougar, the observed step lengths were fit to a set of candidate distributions 

(Poisson, Gaussian, normal, negative binomial, exponential, geometric, and log-normal), where 

the best fitting distribution of these step lengths was chosen using maximum likelihood (R 

package ‘MASS’) (R Development Core Team 2013). The log-normal distribution provided the 

best fit in all cougars. For each step, a new distribution of step lengths were generated, with a 

mean set to the observed length of the step in question, and standard deviation set by the fitted 

log-normal distribution (Figure A9.1). Other studies generate one global distribution from which 

new steps are drawn (Fortin et al. 2005). Generating a new distribution for each step allows the 

displacement of the generated available locations to correspond closer to the length of the actual 

step. However, the variance of the generated distribution increases with mean step length (Figure 
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A9.1). Because this inevitably results in some extreme step lengths being generated, a new 

random step distance was selected if it was greater than 10 km, as very few steps (if any for most 

animals) were observed to be greater than this distance. This resulted in fewer generated steps 

being projected outside the study area, especially on the east and west boundaries which are 

historically less suitable to cougar utilization. The observed turning angles for each cougar were 

fit to a wrapped normal distribution (R package ‘circular’) using maximum likelihood. This 

produced a concentration parameter ρ that was used, along with the observed turning angle, to 

generate a distribution of potential turning angles specific to that step (Figure A9.2). 

For each step, 10 step lengths and turning angles were drawn from the generated log-

normal and wrapped normal distributions, respectively, to project a set of matched locations for 

each step using standard trigonometric functions. These new locations were employed as 

available locations matched to the following observed GPS location (Figure 3.2). Thus, given the 

temporal interval of the steps, these available locations were ones that the cougar could have 

chosen at the end of the step, but simply did not (Thurfjell et al. 2014). Any matched point 

generated outside the study area was truncated (2.06% of the matched points being removed), 

which only causes an imbalance in the number of available locations per “use” location. 

Like other studies, an arbitrary number (10) of matched locations were generated. 

Unfortunately, additional matched points significantly increased computational time given the 

model fitting procedures and statistical package utilized (as described below). Considering a 

large number of usage locations are collected with GPS collar studies, the influence of the 

number of locations is probably minimal (Thurfjell et al. 2014) as demonstrated by Northrup et 

al. (2013), but see Fortin et al. (2005) in the case of rare landscape features. Sensitivity of 

coefficient estimates, as given by the best model (described below), was assessed by comparing 
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the estimates when using all 10 matched locations to those derived with a random subset of 

fewer matched locations (1,…9). For most covariates, (i.e., MDEER), very little difference in 

coefficient estimates was found. For housing density (HDM), there was likely a positive bias 

associated with including fewer matched locations (Figure A9.3). However, this bias was most 

noticeable when only one matched location was implemented, and became progressively less 

discernable when more than four were implemented (Figure A9.3). Therefore, the 10 matched 

locations seemed like a reasonable compromise between bias and computation time. 

 Defining a Successful Hunt and Hunting Locations 

After defining which clusters were highly probable kill events (Appendix 8), hunting 

locations were defined from all non-kill sites. Considering cougars are generally nocturnal 

hunters (Elbroch et al. 2013, Ruth et al. 2010, Sweanor et al. 2008), all day-time non-feeding 

clusters and day-time single GPS locations (and generated matched points) were removed. 

Results from the cluster prediction model used here (Appendix 8), and that of other studies (Ruth 

et al. 2010, Elbroch et al. 2013) indicate that an increasing percentage of day-time locations 

constituting a cluster significantly decreases the probability the cluster was a feeding event. Thus 

any cluster identified or single GPS location recorded completely during the daytime were likely 

day-bed locations. I also removed any GPS locations (or clusters) that coincided temporally with 

another cluster in which prey handling activities were already ongoing to avoid having the 

situation where travelling locations between kill-sites and resting sites were mistaken as hunting 

locations. Thus, the remaining locations predicted as non-feeding events (and generated matched 

points) were ones occurring entirely between the commencement of a feeding event and the start 

of another feeding event. It is assumed that these locations represented potential hunting events 

for the next prey item.  
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All kill locations are technically hunting locations, as they are the manifestation of a 

successful hunting location. Defining the kill and hunting locations separately allowed naturally 

defined “hunting sequences” when viewed chronologically (Figure 3.1). For the hunting success 

model, each hunting sequence was used as a strata level to be conditioned on when assessing 

which landscape factors contribute to the probability of a successful kill at a hunting location. In 

reality this probability is the joint probabilities of encountering an actual prey animal, launching 

an attack, and successfully subduing the prey. Decoupling all processes and decisions leading up 

to making a successful kill by a predator would be interesting (Hebblewhite et al. 2005, Hilborn 

et al. 2012, McPhee et al. 2012), but not practical given the data collected here. If kill events 

occurred back to back with no hunting points occurring in the inter-kill interval, then the second 

kill site was discarded for the hunting success model input. 

 Mixed Effect Conditional Logistic Regression Model 

Inferences concerning patch choice can be classified as a third- or fourth-order resource 

selection problem (Johnson 1980). For the SSF analyses, a conditional logistic regression model 

(Manly et al. 2002, McDonald et al. 2006) can be harnessed to assess whether the probability of 

a free-ranging animal choosing a location over alternative available locations is determined by a 

certain landscape attribute x or set of certain landscape attributes (let x′ = x1,…xm landscape 

attributes). Considering the attributes of alternative available locations change as animal n (let n 

= 1,…,N for multiple animals) moves about the landscape, conditioning on a choice set, one can 

account for this changing availability. Let choice set t correspond to each multiple discrete 

movement event unique to animal n (tn = 1,…Tn) as wild animals would be unlikely to share the 

same choice set. Choice set t is composed of a j single location actually used, and the location or 

multiple locations available to be chosen from, i, (so let j = 1, and i = 2,…J). J usually will equal 
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11 given that 10 available points were generated in the SSF processing, unless extreme outlying 

available locations were discarded. A starting point for understanding whether the choosing of 

location itn over location(s) jtn is influenced by landscape covariates x′ can be done by estimating 

a corresponding set of coefficients β = β1,… βm, by acquire maximum likelihood estimates for β 

coefficients using: 

<�=� =  ∏ ?@A �BCDEF G�
∑ ?@A �B�DEF G�H

�IJ

KEL�	       eq. A9.1 

An intercept term does not exist given this conditioning on the strata. It is assumed that random 

errors are independent and identically distributed, all animals respond the same, and sampling 

intensity of jtn is proportional to the animal’s time spent in the population. To relax homogeneity 

in sampling intensity and in the response, random effect terms can be added (Gillies et al. 2006, 

Duchesne et al. 2010, Zeller et al. 2014, Merkle et al. 2015). I followed the conditional logistic 

mixed effect model given in Duchesne et al. (2010):  

<�=, M� = ∏ N ∏ ?@A �BECDF �O PECDF Q�
∑ ?@A �BE�DF �O PE�DF Q�H

�IJ

KEL�	R��	  S�Q; U�dQ  eq. A9.2 

where random effect b is independent and identically distributed N(0,σ2). θ of the density f(b;θ) 

is a vector of unknown parameters to be estimated, which follow the categorical levels provided 

by animal identifiers (banimal_ID) (corresponding to the N animals) or a segments of time 

(calendar month = bMonth). These random effect terms were included as random regression 

coefficients as they allow the inter-individual responses to vary according to a set of covariates, 

z′ which will often correspond with some or all of the covariates given in x′.  
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Employing conditional logistic mixed effects models in step-selection function analysis is 

fairly recent (Thurfjell et al. 2014). The likelihood of the standard conditional logistic regression 

(eq. 1) is often fit with a Cox proportional hazards model with defined strata (Gail et al. 1981, 

Manly et al. 2002, McDonald et al. 2006) (all right censoring times set equal). The likelihood of 

the mixed effect conditional logistic regression (eq. 2) can be fit by extending either a Poisson 

log-linear, Poisson nonlinear, or a stratified proportional hazard model to incorporate random 

effects (Chen and Kuo 2001). Here, a mixed effect Cox-proportional hazard model, with strata 

terms indicating the choice set tn, was used (R package ‘coxme’) (Therneau 2012, R 

Development Core Team 2013, Merkle et al. 2015). Estimated β coefficient values of the fixed 

effects on their linearized scale indicate the degree of selection, where more negative β 

coefficients or more positive β coefficients respectively infer increased selection against or 

selection toward an increasing value of some covariate x of interest. For purposes of this study, 

assessing which combination of covariates are most parsimonious (i.e., through model selection), 

for explaining the patch-selection process and the population level coefficient estimates β (on the 

linear scale), are of primary interest. Of secondary interest is the amount of variation, σ2, 

explainable by the random effects banimal_ID or bmonth. The amount of heterogeneity imposed by b 

on β1,…,βm can be measured with a variance estimate σ2 , obtained from the square root of the 

diagonal of the variance-covariance matrix of the estimated random effect parameters (b;θ), 

Actual estimates of θ are obtainable for a given random coefficient as conditional modes, but are 

not examined further given that the basic parameterizations available in the employed software is 

subject to a unit-sum constraint of zero (i.e., from b being N(0,σ2)) when concerned with 

population level inference.  
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The mixed effect model presented here relaxes inter-animal autocorrelation, but does not 

account for within animal autocorrelation (Duchesne et al. 2010), which could inflate Type I 

errors. However, the processing steps discussed in the preceding section and in Appendix 8 

related to defining clusters and removing likely non-hunting locations would reduce much of the 

spatial autocorrelation exhibited with raw GPS locations alone, especially considering the long 

handling times of the largest prey items (> 3 weeks).  

Parameterization of the above model is focused on comparing the used and generated 

matched locations. However, it can also be extended to assessing the landscape variables 

attributing to hunting success in a similar manner. Again eq. A9.2 is used, but with tn = 1,…Tn 

corresponding to the unique hunting sequence of animal n. All locations J then correspond to 

those actually visited by the animal (rather than generated available locations) where j 

corresponding to the kill location (j = 1), and i corresponding to 2,…,J hunting locations 

immediately preceding a kill location within that hunting sequence. Across cougars, J 

corresponded to a mean 8.87 locations per hunting sequence t. 

Alternatively, a two-step estimation method was explored (Craiu et al. 2011) which fits 

separate ordinary conditional logistic regression models (under the cox proportional hazard 

approach) to each individual animal in an initial step. The second step combines the coefficient 

estimates from individual animals using restricted maximum likelihood implemented with an 

EM-algorithm (R package ‘TwoStepCLogit’) (Craiu et al. 2011;2014). Implementing this 

method with the SSF analysis produced similar results (not shown) in terms of direction and 

relative coefficient strengths (when comparing among variables in the same model). However, 

this software can’t account for multiple sources of heterogeneity in the same model (i.e., nested 

random effects, random effects for both animal identifiers and temporal periods). 
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 Model Parameterization Strategy 

Several landscape variables may be important for determining the patch choice decisions 

revealed in the SSF or hunting success models. Four major classes of covariates were used: 

topographic, vegetation, anthropogenic, and prey availability. These covariates were drawn from 

a variety of prior radio telemetry studies devoted to understanding the habitat selection patterns 

of cougar (Table A9.1). To account for scale dependent habitat effects (Wilmers et al. 2013, 

Zeller et al. 2014), a priori selected covariates were measured at a range of spatial scales 

(Appendix 4). In other cases, two separate covariates could be used to measure similar 

phenomena (i.e., the presence of open habitat and forest habitat were inversely correlated). The 

anthropogenic class is of particular importance for this study to define potential risk to cougars. 

Finally, mule deer encounter rates (MDEER), as measured by the utilization of mule deer with 

camera traps (Chapter 2 and Appendix 7), was the single covariate comprising the prey 

availability class.  

The model building strategy entailed choosing the fixed effect structure first (applying 

Eq. A9.1), followed by the random effects (applying Eq. A9.2). Candidate models were critiqued 

based on log-likelihood scores, delta AIC, and AIC weights (Burnham and Anderson 2002). 

Selecting a parsimonious model is a difficult task when a large candidate set (many possible 

combinations of landscape covariates) is available. Examining all combinations of β1,…,βm fixed 

effects and banimal and bmonth random slope terms was not computationally efficient given the 

software and hardware utilized. Extra care must also be taken to ensure separating any collinear 

covariate combinations (i.e., ELEV_3k and ELEV_9k or FOREST and CC_avg90). Collinearity 

of covariate pairings in the SSF and hunting success data were checked using Pearson’s 

correlation coefficient ( r ), where collinearity was suspected if it lied outside the critical range of 
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-0.6 and 0.6. This was conducted at the scale of the overall dataset (all locations combined) and 

at the strata scale. At the overall-data scale, this was used a priori in model building steps to 

avoid having collinear variables appearing in the same candidate model. At the strata scale, r was 

calculated for each individual stratum (SSF stratum = 45,034 use locations, hunting success 

stratum = 4,312 hunting sequences) post-hoc for only the covariate pairings used in the final 

selected models to ease computation burden. These within-stratum r’s were summarized by their 

median and inner-quartile range, which was then examined against the critical range. It was 

found that a majority of the calculated within-strata r’s for any covariate pairing did lie inside the 

critical range (Figure A9.4).  

 Withholding any random effect terms in the model, the fixed effect structure for the SSF 

and hunting success models were chosen (using eq. A9.1). This was conducted by narrowing 

down the covariates to a parsimonious set for the topographic vegetation, and finally 

anthropogenic development and prey availability in a series of three steps. First, all combinations 

of topographical covariates (Appendix 4) were examined, retaining only the best (ΔAICc > 7) 

spatial scale or measurement method for a given covariate type (i.e. one elevation measure, one 

aspect measure, etc.). In the second step, vegetation covariate types were added to those retained 

in the topographic selection step, again running all combinations of covariates and retaining the 

best (ΔAICc < 7). Finally, covariates in the best fitting model of the vegetation step were 

retained for inclusion in a candidate set of models focusing on anthropogenic development 

(Appendix 2, Appendix 4) and prey availability, specific to mule deer (MDEER) (Appendix 7). 

For the final fixed effect candidate model set (topographic, vegetation, anthropogenic and prey 

availability combined), all models within 7 ΔAICc were kept as a top set for closer inspection. 
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This process was conducted for the SSF model (Table A9.2) and for the hunting success model 

(Table A9.3). 

To help reduce spurious inferences within the top set, change of log-likelihood values 

were inspected of nested models that differed by the addition of a single covariate. An increase 

in log-likelihood of less than one or two may indicate that the covariate has a spurious effect, or 

is an uninformative “pretending” variable (Anderson 2008, Arnold 2010). Additional 

confirmation of a suspected pretender included assessing whether confidence intervals of the 

coefficient estimates overlapped zero (Anderson 2008). Models with uninformative variables 

were removed from consideration in order to simplify the model set (Arnold 2010). 

Using the final SSF model with the best fitting fixed effect structure, a candidate set of 

mixed effect models were created (eq A9.2), each based on a single random slope term 

corresponding to one of the β coefficients of the model and either banimal_ID or bmonth as levels 

(Table 3.2). It appeared that including any single random slope term would improve model fit. 

Other combinations of random effects, such as nesting Month inside animal_ID, would be 

interesting. But given the modeling package employed, adding multiple random slope terms 

greatly increased computation time. For the final model I limited the random slope terms where 

the HDM150 and MDEER coefficients were allowed to vary by animal_ID and where HDM150 

was allowed to vary by Month (Table 3.1). Examining the coefficient estimates and 

corresponding confidence intervals of the final SSF mixed effect model, it was apparent that the 

coefficient corresponding to topographic slope (βSLOPE) no longer contributed to improving 

model fit. Comparing the final model to a reduced version of the model (without the suspected 

coefficient) with a likelihood ratio test (χ2 = 0.245, df = 1, P > 0.621) supported this, and was 

thus removed from the model. 
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Using the final hunting success model with the most parsimonious fixed effect structure, 

a candidate set of mixed effect models were created; each based on a single random slope term 

corresponding to one of the β coefficients of the model and either banimal_ID or bmonth to identify 

the levels. The four single random slope terms that contributed to a more parsimonious model 

and yielded σ2 estimate > 0.01 (Table 3.3) were combined (non-nested) into a single final model 

(Table 3.1). This final model was used to draw the population level inferences of the influence of 

landscape covariates on hunting success. 
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 TABLES AND FIGURES 

Table A9.1. Landscape covariates of importance found in published cougar radio-telemetry 

studies categorized into topographic, vegetation, and anthropogenic classes. This is not an all-

inclusive survey of studies nor is it an all-inclusive list of the variables found within a study. 

Various derivations and modifiers exist within each study. 

 

 

 

 

Class Covariate Description

Logan 
& Irwin 

1985

Pierce 
et al. 
2004

Dickson 
et al. 
2005, 

Dickson 
& Beier 

2006

Holmes 
& 

Laundre 
2006

Burdett 
et al. 
2010

Kertson 
et al. 
2011

Elbroch 
et al. 
2012

Elbroch 
et al. 
2013

Wilmers 
et al. 
2013

Knopff       
et al. 
2014

ELEV Elevation X X X X X X

TPI Topographic position X X X

ASP Solar aspect X

SLOPE Slope X X X

OPEN Open or grasslands X X X X X X X

SHRUB Shrublands X X X X X

FOREST or 
CC

Forest or canopy 
cover

X X X X X X X X

FOREDGE
Euclidean distance to 

(Forest) edge 
X X X X

HDM
Housing density or 

other urbanized 
landcover

X X X X

RDS_euc Road density X X

STRUC Structure proximity X X

PROT.PUB Protected public X X

Anthropogenic

Vegetation

Topographic
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Table A9.2. Step Selection Function AIC model selection tables (fixed effect terms only) with 

the baseline topographic covariates alone, after adding the vegetation covariates, and after adding 

the anthropogenic and prey availability covariate (MDEER). Only the models, and constituent 

covariates, within the top seven delta AICc points are displayed. 

  

  

 

 

 

 

 

SSF Models - Baseline Topographic Covariates:

ASP180 ELEV SLOPE TPI_100 df logLik ΔAICc
AICc 
weight

-0.1309 -0.1705 0.0615 - 3 -106340 0 0.73
-0.1309 -0.1705 0.0615 -0.0002 4 -106340 2.0 0.27

SSF Models - AddingVegetation Covariates:

ASP180 ELEV SLOPE FOREDGE CC_avg90
FOREDGE * 

CC_avg90
df logLik ΔAICc

AICc 
weight

-0.157 -0.235 0.027 -0.190 0.192 0.031 6 -105626.1 0 1

SSF Models - Adding Anthropogenic & Prey Covariates

ASP180 ELEV SLOPE FOREDGE CC_avg90
FOREDGE 
* CC_avg90

HDM150 MDEER df logLik ΔAICc
AICc 
weight

-0.150 -0.264 0.014 -0.192 0.205 0.035 -0.107 0.069 8 -105462.1 0 0.883
-0.150 -0.266 - -0.193 0.208 0.035 -0.111 0.068 7 -105465.1 4.04 0.117
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Table A9.3. Hunting success AIC model selection tables for the baseline topographic covariates 

alone, after adding the vegetation covariates, and after adding the anthropogenic and prey 

availability covariate (MDEER). Only the models, and constituent covariates, within the top 

seven delta AICc points are displayed. 

 

 

 

Kill-Success Model - Baseline Topographic Covariates:

ASP180 ASP45 ELEV SLOPE TPI_100 df logLik AICc ΔAICc
AICc 
weight

- -0.070 -0.281 -0.030 -0.363 4 -8111.8 16231.6 0.0 0.54
- -0.073 -0.282 - -0.363 3 -8113.18 16232.4 0.8 0.37

0.059 - -0.280 -0.036 -0.364 4 -8114.05 16236.1 4.5 0.06
0.060 - -0.282 - -0.364 3 -8115.98 16238.0 6.4 0.02

Kill-Success Models - Adding Vegetation Covariates:

ASP45 ELEV SLOPE TPI_100 FOREDGE CC_pnt FOREST SHRUB SHRUB3
CC_pnt * 

FOREDGE
FOREDGE
*FOREST

FOREDGE 
* SHRUB

FOREDGE 
* SHRUB3

df logLik ΔAICc
AICc 
weight

-0.074 -0.263 -0.028 -0.365 -0.012 - 0.009 - - - -0.098 - - 7 -8099.7 0.0 0.40

-0.077 -0.264 - -0.365 -0.012 - 0.009 - - - -0.098 - - 6 -8100.9 0.4 0.34

-0.077 -0.249 -0.031 -0.363 -0.003 - - - 0.068 - - - 0.083 7 -8101.8 4.1 0.05

-0.068 -0.288 -0.036 -0.361 -0.026 0.060 - - - -0.044 - - - 7 -8101.9 4.5 0.04

-0.075 -0.259 -0.029 -0.365 -0.003 - - 0.030 - - - 0.098 - 7 -8102.0 4.5 0.04

-0.078 -0.260 - -0.366 -0.004 - - 0.029 - - - 0.099 - 6 -8103.2 5.0 0.03

-0.080 -0.251 - -0.363 -0.004 - - - 0.066 - - - 0.084 6 -8103.2 5.0 0.03

-0.072 -0.288 - -0.361 -0.027 0.056 - - - -0.044 - - - 6 -8103.9 6.3 0.02

Kill-Success Models - Adding Anthropogenic & Prey Covariates:

ASP45 ELEV SLOPE TPI_100 FOREDGE FOREST
FOREDGE 
* FOREST

HDM300 HDM350 HDM400 HDM450 HDM500 df logLik ΔAICc
AICc 
weight

-0.070 -0.198  - -0.377 -0.004 0.003 -0.107  -  - 0.141  -  - 7 -8060.5 0.00 0.22

-0.070 -0.196  - -0.378 -0.004 0.003 -0.106  -  -  -  - 0.145 7 -8060.8 0.53 0.17

-0.070 -0.199  - -0.377 -0.004 0.003 -0.106  -  -  - 0.141  - 7 -8060.9 0.53 0.17

-0.070 -0.198 -0.001 -0.377 -0.004 0.003 -0.107  -  - 0.141  -  - 8 -8060.5 0.78 0.15

-0.070 -0.197 -0.001 -0.378 -0.004 0.003 -0.106  -  -  -  - 0.145 8 -8060.8 2.00 0.08

-0.070 -0.199 -0.001 -0.377 -0.004 0.003 -0.106  -  -  - 0.141  - 8 -8060.9 2.52 0.06

-0.070 -0.202  - -0.377 -0.004 0.002 -0.106  - 0.136  -  -  - 7 -8062.0 2.78 0.05

-0.071 -0.201  - -0.376 -0.004 0.002 -0.107 0.136  -  -  -  - 7 -8062.2 3.05 0.05

-0.070 -0.202 -0.002 -0.377 -0.004 0.002 -0.106  - 0.136  -  -  - 8 -8062.0 3.46 0.04

-0.071 -0.201 -0.001 -0.376 -0.004 0.002 -0.107 0.136  -  -  -  - 8 -8062.2 5.04 0.02
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Figure A9.1. Observed distribution of step distances (bars) and the fitted log-normal step 

distance distribution set to a mean of the observed (blue), 2 km (yellow), 4 km (orange), and 6 

km (red) for cougar individual “AF01”. 
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Figure A9.2. Observed distribution of turning angles for cougar individual “AF01”. 
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Figure A9.3. Selection coefficient estimates for housing density (βHDM) and prey availability 

(BMDEER) using the final step-selection function model with an incremental number of 

matched location (x-axis). Error bars indicate 95% confidence intervals. 
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Figure A9.4. Pearson correlation coefficients, r, summarized for the “within strata” scale by 

each covariate pairing (covariates selected in final most parsimonious SSF and hunting success 

models) by the median and inner-quartile range (error bars). A majority of the observed r’s for 

any covariate pairing lie within the critical range of -0.6 and 0.6 (red vertical lines). 

 

 

 

 

 



200 

 

LITERATURE CITED 

 

Anderson, D. R. 2008. Model Based Inferences in the Life Sciences: A Primer on Evidence. 

Springer Science & Business Media, New York, NY, USA. 

Arnold, T. W. 2010. Uninformative parameters and model selection using Akaike's Information 

Criterion. Journal of Wildlife Management 74:1175-1178. 

Burdett, C. L., K. R. Crooks, D. M. Theobald, K. R. Wilson, E. E. Boydston, L. M. Lyren, R. N. 

Fisher, T. W. Vickers, S. A. Morrison, and W. M. Boyce. 2010. Interfacing models of 

wildlife habitat and human development to predict the future distribution of puma habitat. 

Ecosphere 1:art4. 

Burnham, K. P., and D. R. Anderson. 2002. Model selection and model inference: a practical 

information-theoretic approach. 2nd edition edition. Springer-Verlag, New York, NY, 

USA. 

Chen, Z., and L. Kuo. 2001. A note on the estimation of the multinomial logit model with 

random effects. The American Statistician 55:89-95. 

Craiu, R. V., T. duchesne, D. Fortin, and S. Baillargeon. 2011. Conditional logistic regression 

with longitudinal follow-up and individual-level random coefficients: a stable and 

efficient two-step estimation method. Journal of Computational and Graphical Statistics 

20:767-784. 

_____. 2014. TwoStepCLogit: conditional logistic regression: A two-step estimation method. R 

package version 1.2.3. 



201 

 

Dickson, B. G., J. S. Jenness, and p. Beier. 2005. Influence of vegetation, topography, and roads 

on cougar movement in Southern California. Journal of Wildlife Management 69:264-

276. 

Duchesne, T., D. Fortin, and N. Courbin. 2010. Mixed conditional logistic regression for habitat 

selection studies. Journal of Animal Ecology 79:548-555. 

Elbroch, L. M., P. E. Lendrum, J. Newby, H. Quigley, and D. Craighead. 2013. Seasonal 

foraging ecology of non-migratory cougars in a system with migrating prey. PLoS One 

8:e83375. 

Gail, M. H., J. H. Lubin, and L. V. Rubinstein. 1981. Likelihood calculations for matched case-

control studies and survival studies with tied death times. Biometrika 68:703-707. 

Gillies, C. S., M. Hebblewhite, S. E. Nielsen, M. A. Krawchuk, C. L. Aldridge, J. L. Frair, D. J. 

Saher, C. E. Stevens, and C. L. Jerde. 2006. Application of random effects to the study of 

resource selection by animals. Journal of Animal Ecology 75:887-898. 

Hebblewhite, M., E. H. Merrill, and T. L. McDonald. 2005. Spatial decomposition of predation 

risk using resource selection functions: an example in a wolf-elk predator-prey system. 

Oikos 111:101-111. 

Hilborn, A., N. Pettorelli, C. D. L. Orme, and S. M. Durant. 2012. Stalk and chase: how hunt 

stages affect hunting success in Serengeti cheetah. Animal Behaviour 84:701-706. 

Johnson, D. H. 1980. The comparison of usage and availability measurements for evaluating 

resource preference. Ecology 61:65-71. 

Kertson, B. N., R. D. Spencer, J. M. Marzluff, J. Hepinstall-Cymerman, and C. E. Grue. 2011. 

Cougar space use and movements in the wildland-urban landscape of western 

Washington. Ecological Applications 21:2866. 



202 

 

Knopff, A. A., K. H. Knopff, M. S. Boyce, and C. C. St. Clair. 2014. Flexible habitat selection 

by cougars in response to anthropogenic development. Biological Conservation 178:136-

145. 

Manly, B. F. J., L. L. McDonald, D. L. Thomas, T. L. McDonald, and W. P. Erickson. 2002. 

Resource Selection by Animals: Statistical Design and Analysis of Field Studies. Second 

edition. Kluwer Academic Publishers, Dordrecht, the Netherlands. 

McDonald, T. L., B. F. J. Manly, R. M. Nielson, and L. V. Diller. 2006. Discrete-choice 

modeling in wildlife studies exemplified by northern spotted owl nighttime habitat 

selection. Journal of Wildlife Management 70:375-383. 

McPhee, H. M., N. F. Webb, and E. H. Merrill. 2012. Hierarchical predation: wolf (Canis lupus) 

selection along hunt paths and at kill sites. Canadian Journal of Zoology 90:555-563. 

Merkle, J. A., S. G. Cherry, and D. Fortin. 2015. Bison distribution under conflicting foraging 

strategies: site fidelity versus energy maximization. Ecology in press. 

R Development Core Team. 2013. Vienna, Austria. 

Ruth, T. K., P. C. Buotte, and H. B. Quigley. 2010. Comparing Ground Telemetry and Global 

Positioning System Methods to Determine Cougar Kill Rates. Journal of Wildlife 

Management 74:1122-1133. 

Therneau, T. 2012. coxme: Mixed Effects Cox Models. R package version 2.2-3. R package 

version 2.2-3. 

Thurfjell, H., S. Ciuti, and M. S. Boyce. 2014. Applications of step-selection functions in 

ecology and conservation. Movement Ecology 2:4. 



203 

 

Wilmers, C. C., Y. Wang, B. Nickel, P. Houghtaling, Y. Shakeri, M. L. Allen, J. Kermish-Wells, 

V. Yovovich, and T. Williams. 2013. Scale dependent behavioral responses to human 

development by a large predator, the puma. PLoS One 8:e60590. 

Zeller, K. A., K. McGarigal, P. Beier, S. A. Cushman, T. W. Vickers, and W. M. Boyce. 2014. 

Sensitivity of landscape resistance estimates based on point selection functions to scale 

and behavioral state: pumas as a case study. Landscape Ecology 29:541-557. 

 


