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ABSTRACT 

ON-LINE ADAPTIVE CONTROL FOR COMBINED SEWER SYSTEMS 

Urban stormwater management and, in particular, the control of 

storm runoff within combined sewer systems, is an area of serious en­

vironmental concern. The use of in-line or auxiliary storage in con­

junction with treatment, has been proposed as a viable solution to the 

problems of polluting discharges into receiving waters and local street 

flooding. These overflows result from sewer systems and treatment 

facilities which are inadequate to effectively contain and treat com­

bined flows during storm events. 

On-line computer control for the mechanical features (i.e., pumps, 

valves, gates, etc.) of a large system of storage facilities is required 

due to: the highly stochastic storm inputs, the rapid response times 

of the system, and the high interdependence of control decisions in 

time and space. Current approaches to the control of urban stormwater 

are largely reactive or myopic in nature. These approaches may not 

always be the most suitable for achieving the goal of cost effective 

control of pollution from combined sewer overflows. An adaptive control 

algorithm is proposed here which anticipates future values of the sto­

chastic inflows, rather than simply reacting to a current measurement 

of inflows, and which also deals with the complex large-scale nature 

of the control problem. 

A hierarchical approach to the control problem is proposed here, 

where the urban area is divided into a number of subbasins which are 

essentially independent except for their contributions of storm runoff 

to a common interceptor and treatment facility. The controls for each 

subbasin are derived separately by the use of a stochastic dynamic 



programming formulation. Each subbasin problem, however, is constrained 

by an upper limit on its releases to the interceptor, which is determined 

by a master control problem. This master control problem, which ties 

together the separate subbasin problems, decides how interceptor and 

treatment capacity should be allocated to the subbasins. It uses a 

modified cyclic coordinate search algorithm. The inflows are forecasted 

using an autoregressive-transfer function model which can be updated in 

real time to respond to new information on the storm event. 

A portion of the San Francisco Master Plan for Wastewater Management 

was used as a case study. The control algorithm was tested for selected 

design storms which were based upon the historic record. The tests 

were conducted on a batch-mode computer, but a hierarchy of minicomputers 

appears to be a more efficient approach to effecting the multilevel 

optimizations proposed herein. 

The results of this work indicate that the large-scale algorithm 

can converge within the time frame anticipated for real-time control. 

Controls based upon the stochastic models appeared superior to those 

based upon forecasts which were assumed deterministic. The adaptive 

aspects of the model appear to be justified by the superior distribution 

of the overflows which resulted when overflows were unavoidable. That 

is, the maximum rate of overflow was lowest for this model. This result 

is notable in that the forecasting model was deliberately designed to be 

relatively inaccurate. Total overflows were, however, minimized to a 

higher degree by a reactive model which was also tested, though the 

maximum overflow rate was higher. The overall conclusion appears to be 

that even though the adaptive model with risk is highly dependent on 

the accuracy of the forecasting model, at least some stormflow antici­

pation will reduce maximum overflow rates. 
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Chapter I 

INTRODUCTION 

A. COMBINED SEWER AND STORMWATER POLLUTION CONTROL 

The water pollution potential of combined sewer and stormwater 

overflows has been well documented [2,3]. Combined sewers, though 

originally considered an efficient solution to the problem of urban 

wastewater removal, present a dilemma to those faced with the imple­

mentation of the Federal Water Pollution Control Act Amendment of 1972, 

(PL 92-500) [1]. The z~o ~c~ge statement describing a national 

goal of the total elimination of wastewater discharges into navigable 

waters by 1985, as well as a 406~ened interim goal of safe habitat for 

aquatic life and human recreation by 1983, has provided additional 

impetus for research into possible solutions. These amendments speci­

fically set the goal of secondary treatment for all sewage effluent by 

1977. 

The implication of this is clear; cost-effective alternatives 

must be developed for the control and treatment of urban stormwater 

runoff, whether alone or combined with dry weather flow. Initially, 

the alternatives proposed to solve this problem included large-scale 

treatment of the combined effluent, sewer separation, or treatment com­

bined with storage. The first alternative implies the design of treat­

ment plants capable of handling the combined flows resulting from a 

large design storm such as a 50 or 100 year storm, but appears to be 

highly unrealistic from a technical viewpoint. 

The alternatives to large-scale treatment have focused on two 

primary areas. The first concerns the improvement of the quality of 

the overflows. Sewer separation, bulk primary treatment of storm flows 

1 
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prior to overflow, and local storm flow treatment plants constitute the 

major thrust in this area. The second area deals with the improvement 

in the staging of flows to the treatment plant. Traditional flood con­

trol techniques which decrease peak flows by decreasing total runoff, 

in-line storage (ambient storage), and off-line storage (auxiliary 

storage) are the general techniques in this category. The separation 

of stormwater systems from sewage systems is a viable alternative only 

where the systems are not very extensive or, ideally, where they are 

still in the planning stage. The expense and urban disruption involved 

in converting a combined sewer system into two independent systems is 

normally prohibitive, as is the expense of having a multiplicity of 

treatment plants at all locations where sewer overflows are discharged 

into receiving waters. 

McPherson [4] and Lager [5] have extensively discussed advantages 

of system controls using in-line and/or auxiliary storage, and the U.S. 

Environmental Protection Agency (EPA) has been supporting considerable 

research in this area [6]. The idea is to utilize storage in such a 

way as to temporarily detain the peak flows, while the computer based 

control phases their subsequent release in order to achieve the system 

objectives. This is illustrated in Figure I-I in which the use of 

auxiliary storage is demonstrated for a single basin. McCuen [20] has 

discussed the effectiveness of auxiliary or detention storage when used 

with an individual 4lte control strategy which regards the operation of 

each detention basin independently of any others, versus operation of 

an entire system of detention basins through a coordinated regional 

approach. He claims that the individual 4lte operation can often lead 
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Figure I-I. Overflow Reduction with Auxiliary Storage [21]. 

to an increased flood threat due to the unintentional in-phase arrival 

of uncontrolled discharges and independently controlled releases. 

Computer control, which appears necessary for a coordinated 

regional approach to the control of stormwater and combined sewer 

systems, is new to the field of urban storrnwater management, as it is 

to many other areas of water resources management. As Labadie [7] 

states, "There is a critical need to take full advantage of current 

advances in computer technology (hardware and software) and systems 

engineering." Of primary importance for the establishment of such 

computer-based control systems is the programmed control logic. Such 

a control strategy should recognize the interdependence of the system 

controls in time and space and derive a control policy which achieves, 

to the highest possible degree, the overall system objectives. These 

overall system objectives are to: minimize the detrimental impacts 

of urban runoff on receiving waters, minimize local flooding due to 
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the conveyance limitations of the system or, simply, to minimize the 

number of overflow events in order to avoid penalties. Without com­

prehensive strategies, the best the system can do is make decisions 

based only on local conditions at a particular point in time and space. 

Systems of this kind may be called reactive or myop~e, thereby 

alluding to their short-sightedness. 

The work described herein addresses these system objectives and 

sets sub-objectives which recognize unique features of the situation. 

These sub-objectives are to: (1) develop and test an algorithm oriented 

for real-time use which recognizes the interdependence in time and 

space of system controls; (2) deal with the complexity and large-

scale nature of the control problem; (3) attempt to anticipate future 

behavior and effectively respon~ to it; and (4) deal with the sto­

chastic nature of the probler. The real-time orientation of the 

desired algori tIllil affects the level of attainment possible for all the 

objectives. This limitation is further accentuated by an implicit 

constraint upon computer hardware available. 

B. REACTIVE VERSUS ADAPTIVE CONTROLS 

Adaptive control techniques, which learn from previous errors and 

thereby, hopefully, improve the subsequent control decision, may provide 

the needed advantage over reactive methods and enable the development of 

the desired comprehensive strategies. Current work in the area of com­

puter control for combined sewer systems appears to be mostly reactive 

rather than adaptive. The Seattle "CATAD" control system, although 

essentially reactive, does use a simple look ahead approach which 

achieves an advantage over purely reactive systems [19]. This look 

ahead is a rudimentary forecasting of the system inflows in future 
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time periods. Such forecasts are the essence of the adaptive control 

techniques described herein. 

Myopic, set point, or purely reactive-type computer control 

systems may, in some cases, be an acceptable control approach when 

viewed from a cost-effectiveness perspective. An adaptive control 

technique, which uses more extensive forecasts of system inflows to 

generate control decisions, is illustrated, along with a reactive 

approach, in Figure 1-2. An attempt has been made in this work to 

offer an initial comparison between these two approaches. 

REACTIVE 

Measure Inflow Measure System t0o- l--
Status at time t at time t 

t I t + t + I I 

~1ake Cont ro I 
Decision for -time t 

I 
I 

Execute 

To 
System 

) 
Control for 

time t 

I 
----------------------

ADAPTIVE 

Predict 
Make Control 

Measure System Measure Actual r--. Subsequent -. Decisions for 
Status at time t ~ Inflow at time t All Subsequent 

Inflows Time Periods 

1 1 1 
Compare Measured Update/ 

I t+t+ll 
Inflows with Correct Execute Control 

Previous - Prediction Only for time t 
Prediction Model 

J 
\TO 
System 

Figure 1-2. Reactive Versus Adaptive Derivation of Controls. 

Sy~tem identi6ication techniques, which have been used extensively 

within the theoretical electrical engineering discipline, can provide 

insight into the problem of utilizing the differential distribution 
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in time and space of storm flows for the derivation of extensive 

forecasts. An optimization of controls based entirely on forecasts 

from averaged hydrologic data (typical depth-duration-frequency 

curves) will result in controls which cannot anticipate and take 

advantage of nonuniformities in the rainfall distribution. On-line 

control would in that case simply react to the current state, and 

not properly anticipate and take advantage of the characteristics of 

the event being experienced. System identification and signal theory 

reduce the problems inherent in the uncertainty of short increment 

small scale rainfall distribution by permitting the identification of 

a mathematical structure in the event being experienced, as well as 

using the historic data as the starting point for the forecast. 

A real-time computer control system has been defined as that 

which "controls an environment by receiving data, processing them, 

and taking action or returning results sufficiently quick to affect 

the functioning of the environment at that time" [8]. Adaptive con­

trol, or updatable control that benefits from a learning process, 

can be assumed to be included in the data processing part of the 

above definition. The term Management Inno~on and Co~ol SY4~emo 

(MICS) has been used to describe control systems associated with 

industrial and business problems. The term M~opolitan Watet Intel­

ligence SY4~em¢ (MWIS) [4] has been coined to describe those MISC 

which are applicable to urban water systems. 

Figure I-3 illustrates the application of a MWIS to the 

wastewater collection system of a city. The adaptive aspects of 

such a model would be included in three parts of such a configuration; 
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COMPUTER CONTROL SYSTEM 

*A* ..... --------. 
Off-line Models .....------

t 1 
*A* 

Forecasting 
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Manual 
Interrupt 

J "'" ~ /' 
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System 

COMBINED SEWER SYSTEM 

Combined Sewer System 

*A* 
On-line 
Control 

Algorithms 

Control 
Elements 

(May include treatment plants ~ 
'-----I as well as collection, transmission, ..... -­

storage and overflow facilities) 

*A* = Adaptive Elements 

Figure 1-3. Flow Diagram for Combined Sewer System in Automatic Control 
Mode [17]. 
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off-line models, forecasting models, and on-line control algorithms. 

Long range adaptation would be incorporated into the off-line methods, 

which analyze past events in a computational framework independent of 

the physical system and not restricted by time. These models attempt 

to learn, in an iterative fashion, which can be updated after every 

event, exactly what forecasting model structure (based on historic 

data) is best for deriving the initial parameters of the on-line fore­

casting model. The on-line forecasting model learns from and adapts 

to the features of the event on hand. Furthermore, the on-line con­

trol algorithms, which iteratively calculate the optimal controls, 

respond to the hopefully improving forecast and converge, as a storm 

progresses, to the best controls that can be derived on-line in real­

time during the limited time available for reaching control decisions. 

Real-time control of a system permits changes in decision policies 

up to and until the control is effected. As more information becomes 

available, the optimum policy may change. Iterative optimization as a 

component of adaptive control provides a means of learning the appro­

priate optimal control for the particular storm being experienced. The 

storm and resultant system inflows are, however, never fully known 

until the entire event passes. Consequently, the uncertainty (actually, 

a better word is ~k) associated with forecasting, although hopefully 

decreasing as the event passes, must be incorporated into the optimiza­

tion, along with the consideration of the risk implicit in the various 

control policies. It is the problem of on-line adaptive control as 

compared to reactive control, of the storage capability within a large 

combined sewer system, to which this report is addressed. 
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C. SAN FRANCISCO MASTER PLAN AS A CASE STUDY 

Bradford (9] has summarized the stormwater projects underway in 

the u.s. which utilize either on-line or auxiliary storage. Table I-I 

compares the current status of these projects and indicates where auto-

matic computer control is anticipated. 

Table I-I. Some Cities Considering Combined Sewer 
Storage Control Systems [9]. 

Minneapolis-St. Paul 

Detroit 

Seattle 

San Francisco 

Cleveland 

Chicago 

Washington, D.C. 

Type of Storage 

On-line 

On-line 

On-line 

Auxiliary (0.10-0.63 inches 
of runoff in many small 
underground reservoirs) 

On-line 

Auxiliary (3.14 inches of 
runoff in three large basins) 

Auxiliary (4.31 inches of 
runoff in deep tunnel storage, 
or 1.58 inches at Kingman 
Lake) 

Representative 
Reference 

[10]* 

[11,12]* 

[2,13,14)* 

[2,15]* 

[18]* 

[2] 

[2] 

*Literature explicitly states that computer control is actively being 
considered. 

In particular, the San Francisco Master Plan for Wastewater 

Management is unique in many respects. The City's often steep topo-

graphy required a plan which recognized that the resultant short system 

response time would demand rapid decisions for flow and storage con-

trol. The Master Plan calls for a large number of detention basins 

with an amount of total storage that is relatively low when compared 

to the systems considered for Chicago and Washington, D.C., as described 

in the table above. The factors of short system response and low 
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total storage capacity result in the need for effective and efficient 

control of this proposed highly complex system. It is this proposed 

system which has been selected as the case study used here. 

There are a number of reasons for basing the research reported 

herein on an actual case study such as the San Francisco Master Plan. 

The principal ones are as follows, as reported in reference [17]: 

"1. A wealth of real data and sophisticated analysis of the 
system is available. 

2. The San Francisco DPW (Department of Public Works) has an 
innovative automatic rainfall-runoff data collection facility 
in operation. 

3. The San Francisco physical system breaks neatly into total 
city or subbasin packages. 

4. Environmental constraints on the Plan are extremely stringent. 
(Although derived from poorly defined environmental criteria 
and objectives.) 

5. Public acceptance is an extremely critical factor in 
San Francisco. 

6. The developers of the Master Plan have thoroughly thought 
out the details of planning, designing, and operating their 
conceived system and are able to react to suggestions and 
questions about control strategy." 

Each of these factors motivated this research in positive 

directions. The first two, relating to data availability, has enabled 

the research to be based from the outset in a real world system descrip-

tion. In particular, actual rainfall-runoff records from significant 

past events which resulted in flooding and overflows were available. 

This facilitated the evaluation of the control strategies since these 

actual events could be used as test cases. 

The subbasin packages referred to in point No. 3 above suggest the 

development of control strategies for portions of the city, culminating 

in the eventual integration of these strategies for the entire city. 
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The intuitive appeal of decentralized or decomposed solution techniques, 

which are suggested by the system configuration proposed in the San 

Francisco Master Plan for Wastewater Management, increases the potential 

for acceptance of automated system control; thus, interaction between 

researcher and project management is encouraged. The factors of 

environmental constraints and public acceptance have had a direct 

effect upon the entire development since they both have an impact on 

the performance criteria needed for the system's evaluation. Defined 

environmental constraints, rather than the elusive goal of defining 

economic efficiency, has permitted the solution of the problem indepen­

dently of nebulous environmental economics. Public acceptance demands 

the achievement of the environmental goals not only at the minimum 

cost, but also with minimum total urban disruption. 

For a comprehensive report on the proposed San Francisco system, 

the reader is directed to reference [18], while reference [9] contains 

a brief overview of the system in its Appendix. 

The San Francisco Master Plan presents several alternatives, 

consisting of various sizes and locations of facilities as well as 

different plans for staging construction. Alternative C was chosen 

for study since it contained all the complexity of the largest alter­

native D, with only 63 percent of the storage capacity of that alter­

native. It therefore posed a greater challenge, its solution being 

readily adaptable to lesser plans as well as the larger alternative. 

Also, since the objectives of this study parallel and extend the work 

of Bradford [9], the system description used in that study was adapted 

for this. The Alternative C system is presented in Figure 1-4. 
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D. OBJECTIVES 

The proper real-time control of the diversions into and out of 

auxiliary storage within a combined sewer system during storm occur­

rences over urban areas is the point of concern here. The overall 

system objectives include: 

(1) Minimization of the effect of overflows of untreated sewage 

into receiving waters, 

(2) Elimination or reduction of localized street flooding, and 

(3) Full and efficient utilization of the existing and planned 

conveyance and treatment facilities. 

Management of the control system designed to meet these objectives must 

be carried out within the physical, environmental, economic, and socio­

political constraints imposed by the larger encompassing system; namely, 

the entire urban center. The amount of computer hardware which a 

city can dedicate to the on-line, real-time control of a combined 

sewer system is limited. The sophistication of the computer control 

is consequently constrained by the realities of the urban budget. 

Recognizing this limitation and working within it has been a basic 

theme of the development presented herein. 

In this study, the real-time control problem is formulated as an 

optimization problem. Since storm forecasting is not considered to be 

deterministic, the optimization is carried out under risk. Within the 

optimization problem the general system goals listed above are repre­

sented mathematically in terms of an objective function. The physical 

constraints of the system, such as the capacities of the treatment 

plant, the sewer lines, and the detention reservoirs, as well as the 

laws of physics such as conservation of mass, are modeled explicitly 
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as mathematical constraints. Environmental constraints are, however, 

handled in an indirect manner due to a lack of definitive models for 

predicting wastewater quality and its impact on receiving waters. 

Economic and socio-political constraints, although of great importance 

within the design phase of the total control system, are of lesser 

importance in the operational phase since their impact would (hopefully) 

have already been incorporated in the selection of alternatives for 

consideration. Once the alternative is selected, system control or 

operation can only recognize these constraints to the extent that they 

can be represented as operational guidelines. For example, discour­

aging the possible adverse hydraulic impacts of repeated and abrupt 

gate or valve position changes would be an example of an operational 

guideline reflecting an economic constraint on system maintenance. 

It should be noted that the San Francisco Master Plan for 

Wastewater Management is still a plan, subject to update, review, and 

design changes. Changes in the political, economic, and environmental 

climates have potential impacts upon the finalized approved plan of 

action. It is, therefore, essential that the control strategies 

developed be flexible and capable of model configuration alterations 

and parameter changes. Such flexibility in control strategy algorithms 

would provide an additional tool for the system planners who could 

then evaluate the actual expected performance of various alternatives 

and design changes. 

There are several factors which contribute to the difficulty of 

meeting total system objectives. First, the system is large-scale, 

consisting of many components related in a complex network with controls 

needed for each component at each point of time. Second, modeling the 
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rainfall, runoff, storage, and transport processes is difficult, 

particularly when attempting to integrate them into optimal control 

strategy developments. Third, as the desired system is to operate in 

real time, the control system response must be rapid. Finally and 

possibly most important, is the factor of the stochastic nature of the 

storm flow input. 

With these factors in mind, the objectives of this research study 

were to: 

(1) Derive a methodology for achieving control of the flows 

within a combined sewer system which has controllable 

storage facilities, in view of the stochastic nature of 

the stormwater inflows. 

(2) Develop a control strategy capable of being implemented in 

an on-line, real-time mode and one which adapts to an evolv­

ing storm pattern by reacting to current data and anticipating 

future inflows, and compare with reactive-type control. 

(3) Develop an overall control strategy integration for the 

large-scale, city-wide system which permits iterative adjust­

ment of system components to incoming data, where the compo­

nent solutions taken together will convergent1y achieve an 

overall, city-wide optimal control. 

(4) Derive control strategies which meet the overall system 

objectives of minimizing overflows and street flooding while 

maximizing the use of existent facilities for a wide range 

of probable events. 

As mentioned previously, the San Francisco Combined Sewer System 

is used here as a case study though there is considerable potential 

for application of these techniques and methodologies to other cities. 
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E. SUMMARY OF CHAPTERS 

The control of discharge from combined sewer systems is a problem 

of great concern in many large cities. Recent legislation has created 

additional pressure for the solution of this problem. The use of 

auxiliary storage has been suggested as a viable solution. The oper­

ation of complex systems of auxiliary storage facilities present a 

challenge to those who operate these auxiliary storage facilities in 

a manner which best meets the designed purpose. Computer based control 

algorithms are suggested which adapt to the evolving situation by 

attempting to anticipate, with the use of a constantly evolving model, 

the future inflows to the system. Such techniques may overcome some 

of the problems inherent in myopic strategies. A forecast~ however, 

involves risk and the control algorithm must consider this factor. 

The San Francisco Master Plan for Wastewater Management provides 

an opportunity to develop such adaptive control strategies. The system 

is complex but fully described with an adequate supply of data for 

realistic demonstrations. The objectives of this work include the 

development of adaptive control strategies which use large-scale anal­

ysis techniques incorporating risk. These objectives directly address 

the system goal of minimizing overflows and local flooding. 

Chapter II of this work reviews the literature relating to the 

component areas of adaptive on-line control of combined sewer systems. 

These areas include: rainfall simulation and forecasting, stochastic 

optimization, and adaptive on-line control. The literature evidences 

the convergence of these areas and suggests that this work is in fact 

timely. 
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The large-scale problem is posed in Chapter III in which 

decomposition is chosen as the most worthwhile approach for addressing 

this large complex problem. The master control problem linking the 

separate decomposed subproblems is developed and an efficient technique 

is found for its solution in light of an anticipated subproblem solution 

strategy. 

Chapter IV continues the general development of the subproblems 

and various deterministic solution strategies are proposed. These 

subproblem solutions assume a forecasted inflow sequence and solve the 

control problem without considering the risk of error. 

The risk involved in a forecasted inflow sequence is subsequently 

addressed in this same chapter. Two stochastic optimization techniques 

are presented for use as subproblem solution strategies. A compari­

son is then made between the performance of a deterministically derived 

control policy and a stochastically derived control policy for an 

example system experiencing equally likely variants of a forecasted 

event. The stochastically derived policies were seen to be superior 

by their meeting the objectives to a higher degree, for an illustrative 

experiment that was developed. 

Chapter V describes the adaptive forecast models used for 

deriving the storm inflow sequences needed. System identification 

techniques are incorporated for the estimation of parameters needed in 

the autoregressive-transfer function models used in the forecast. 

The entire on-line, real-time process is demonstrated in Chapter VI, 

where the adaptive forecast model, master control problem, and sub­

problem algorithms are integrated. Hypothetical events are used for 

the model identification phase while a historically based event is used 
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as the 4eai event. Controls are thus derived for the entire 

large-scale system by artificially simulating the passage of real-time 

on the computer. The total algorithm was exercised four times to 

permit comparisons between system performance for four different 

approaches to detention basin operation. These approaches ranged from 

a purely myopic approach, to a stochastic treatment of data forecasted 

for an entire event. The results indicated that a stochastic optimiza­

tion over forecasted values was worthwhile for control of the distribu­

tion in time and space of system overflows but may not be worthwhile 

if total overflow reduction is the sole criterion for system 

performance. 
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Chapter II 

REVIEW OF LITERATURE 

A. INTRODUCTION 

The subject of adaptive on-line control of a combined sewer system 

has many facets and consequently, many areas for literature survey. 

Some of these are: 

1. Control of linked storage facilities. 

2. Adaptive control systems. 

3. Rainfall forecasting. 

The literature associated with the first two areas has been 

reviewed by Labadie [1], Bradford [2], and Grigg, et al., [3], with 

emphasis on the intersection of these areas with the problem of com­

puter control of combined sewer systems. The use of mathematical pro­

gramming techniques for solving discrete time formulations within the 

entire large-scale optimization framework, rather than the application 

of optimal control theory (maximum principle of Pontryagin) to discrete 

and continuous time formulations, is suggested in much of this work 

for a number of reasons. Continuous time formulations are those in 

which the desired control policy is expressed as a continuous function 

of time. The system control policy would result from an analysis 

of: a continuous inflow function, continuity relationships expressed 

as differential equations, and the system objective which (in this 

case) would be expressed as an integral. Such formulations have been 

approached by the direct application of optimal control theory [1]. 

They have proven, however, to be difficult to solve for control prob­

lems of the type considered here [2]. Their application to on-line 

work seems to be still in the future, although recent efforts by 

21 
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Bell [57] and Winn and Moore [58] show promise. In addition, the inherent 

inaccuracies of the system considered herein obviate the advantage of 

exact continuous solutions. The discrete form of the forecasting 

models to be developed in a following chapter provide a further 

rationale for the use of discrete time formulations. Discrete time 

optimal control theory has been applied by Chan [54], and is discussed 

later. However, the large-scale approach developed here, despite its 

reliance on discrete time formulations, could incorporate any viable 

solution strategy within its structure. 

Much of the literature reviewed fails to address the full 

stochastic nature of the problem, as well as prospects for computer 

control in an adaptive mode. The stochastic nature of the problem 

arises from the random distribution in time and space of rainfall and 

consequent inflows to the combined sewer system. An adaptive capabil­

ity within a computer control system may enable the on-line control 

algorithms to dynamically respond to the evolving storm situation by 

learning from the storm history in real-time. 

Both of these features (small-scale spatial and temporal rainfall 

distributions and adaptive control) come together to the extent that 

there is a discernible structure associated with the stochastic nature 

of storm activity. The degree to which the rainfall producing system 

is understood, both from historic events and information gathered 

during a particular event, is the extent to which an adaptive learning 

process or system identification can lead to accurate forecasting. A 

brief review of the literature relating to the modeling of the internal 

structure of rainfall events (purely statistical or statistical­

conceptual models) is, therefore, worthwhile. This is followed by a 
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review of the state-of-the-art in finding operational strategies for 

linked reservoir systems where the stochastic nature of the system 

inflows is considered. Finally, a review of vanguard efforts at effect­

ing full adaptive control for certain water resource systems is 

presented. 

B. RAINFALL MODELING 

Research concerned with synthetic generation of the distribution 

in time and space of small-scale rainfall has evolved dramatically in 

the past few years. This evolution has taken place in the separate 

areas of purely statistical modeling and physical process modeling, 

as well as combinations of these. Purely statistical modeling includes 

those attempts to statistically simulate the occurrence and distribu­

tion of rainfall accumulations on the ground with no regard for the 

physical characteristics of the phenomena. Physical process modeling, 

however, attempts to model known relationships describing the mechan­

isms within rainfall generating events. The combination of these 

research directions has resulted in the complete stochastic modeling 

of the three major types of rain storms that exhibit the rapidly vary­

ing properties which have frustrated attempts to predict runoff from 

small urban basins. These three rain storm types are: the squall 

line resulting from the passage of a cold front; shower activity 

found in the prewarm frontal area (with these latter two associated 

with cyclonic activity); as well as the air mass thunderstorm. 

Two major obstacles have hampered purely statistical approaches 

to modeling small-scale and short time increment rainfall. The first 

is the dramatic change in statistical properties which occur if the 

time increment considered drops below one hour. Le Cam [4], Pattison 
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[5], and Grace and Eagleson [6] have demonstrated the complex nature 

of persistence phenomena found in short time increment rainfall. Their 

models, relying on Markov chains, have encountered difficulties in 

simulating both the internal structure of an event and time between 

events simultaneously. This problem has been addressed by breaking 

it into various ~ndependent parts (i.e., time between storms and 

variation of point rainfall within an event). These parts, modeled 

separately using Markov chains or Monte Carlo techniques, have enabled 

many of the problems associated with simulating point rainfall vari­

ability to be partially overcome. Time increments in the range of 

ten minutes were, however, found to be unsuitable for modeling by 

Markov chains. Thus, other techniques were suggested to simulate 

serial correlations. 

The second major obstacle to statistical modelers has been the 

simulation of small-scale spatial variability of point rainfall. 

Wilkinson and Tavares [7] have described the difficulties of trying to 

use Markov-type models to describe point rainfall variability for more 

than one location at a time, while properly maintaining appropriate 

cross correlations. They have proposed the use of a Monte Carlo-type 

simulation constrained by suitable descriptions of cross and serial 

correlations of storm parameters. Since the number of correlations 

needed equals the number of possible combinations of storm parameters, 

their model was limited to only three statistical descriptors of a 

storm for each point chosen. This limited description of point rain­

fall performed adequately for the longer time increments and larger 

spacings of the three gages found on the modeled river reservoir net­

work. It is doubtful, however, that it would suffice for more densely 
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spaced gages of an urban raingage network with sampling carried out in 

short increments of time. This is because the number of correlation 

terms increases rapidly with each additional location and time period 

desired, as well as with the number of needed statistical descriptors. 

Within the past ten years, various researchers have begun to 

incorporate the growing body of knowledge concerning the atmospheric 

processes associated with rain storm activity. Building on the funda­

mental work of the Thunderstorm Project [8] a variety of researchers 

have identified a multitude of statistical descriptors for distributed 

rain cell parameters. The rain cell, which is the basic source of 

erratic rainfall patterns, can be simulated via its orientation, size, 

growth, and decay cycle, as well as the internal distribution of 

intensity along its axes. 

Sorman and Wallace [9] have developed a model which uses eight 

statistically based descriptors of rain cell activity in which cells 

are generated, grow, decay, move (relative to the wind direction), and 

contribute definable distributed rain intensities. Coordinate frames 

which move with each major cell sequentially, as well as a stationary 

frame which relates meteorological activity to raingages on the ground, 

are utilized. This model has adequately simulated the internal 

spatial and temporal variability of thunderstorms. It uses assumed 

probability distributions of the relevant parameters, as well as 

regression relations with an added white no~e random component. 

Grayrnan and Eagleson [10] have adopted a more simplified approach 

to modeling rain cell movement and activity than in the above study_ 

They have designed a model consisting of squares representing distinct 

discrete levels of more intense rain cell activity. These are in turn 
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nested within larger squares associated with less intense levels of 

rain. Simple multiples of discrete activity levels are used to 

approximate the intensity of activities in lower level squares selected 

by probabilistic switches. This simplified model is capable of simu­

lating the band-like nature of fronts and squall lines which were not 

considered by Sorman and Wallace. The model also uses a moving frame 

of reference, though it moves with the entire storm rather than a 

particular cell. The various levels of activities are probabilisti­

cally ~witehed on and off according to the assumed distributions and 

correlations. The passage of a cell is therefore represented as a 

square wave with discrete steps simulating the rainfall distribution. 

More recently, the work of Wu [11] has also simulated the band 

structure associated with large areas of less intense rainfall in a 

storm front, as well as the clusters of short-lived rain cells that 

make up the cyclonic storm systems typical in northern California. 

This model gives a more accurate description of rainfall intensity 

variation in a cell than the square wave effects of Grayman and 

Eagleson's model. It also overcomes the computational disadvantage 

of the Sorman and Wallace model which sequentially follows one cell 

at a time. The model developed by Wu uses continuous distributions of 

rainfall intensities within each cell. These cells are generated, live, 

and die independent of other cells. In addition, these randomly gen­

erated cells can overlap. This creates a full range of intensity pat­

terns which simulate the varied shapes and intensity distributions 

actually encountered in real data. 

Each of the three major modeling attempts described above are 

simply illustrated in Figure II-I. 
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These simulation models, although capable of generating storm 

patterns based on a history of past events, seem to be unwieldy for 

use as on-line forecasting models. Such on-line models would l~n 

the patterns of a particular event in real-time and project it forward. 

Learning models extrapolate known data into the future rather than 

using data solely as initial conditions in a random generation of 

equally likely events. In other words, for real-time control it is 

not desired to generate an equally likely event, but rather to fore­

cast the actual event taking place. Statistical properties of the 

particular event on hand must be uncovered in real-time and used with­

in a model capable of some degree of forecasting. 

These models are useful for synthetically augmenting inadequate 

historical data so as to develop an initial predictive model. Their 

practical application, however, remains primarily in planning studies 

since the data requirement for modeling physical parameters of rain 

cells is quite large. 

C. RESERVOIR CONTROL WITH STOCHASTIC INPUTS 

C.l Background 

Operating policies for complex systems of reservoirs have been 

derived by intuition, logic and/or experience, and tested on line, or 

by historic or synthetic data for several years. Simulation, classical 

statistical approaches, and more recently Bayesian decision theory have 

been applied to the problem of determining optimal operating policies 

while considering the uncertainties involved in reservoir operation. 

The work of Russell [12] is notable for its attempt at integrating 

Bayesian decision theory into a reservoir operation algorithm. There 
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has, however, been a recent trend toward utilizing mathematical 

programming techniques for the development of needed operating poli­

cies. This is particularly true for large, complex systems. The 

problem of control for reservoir systems on rivers is similar to the 

control problem presented by complex networks of detention basins for 

urban stormwater management. The former, however, are usually multi­

purpose, whereas the latter are single purpose. A brief review of 

recent developments in the field of reservoir control through use of 

mathematical programming is therefore worthwhile. 

Mathematical programming techniques for reservoir control have 

proceeded through three phases of evolution. The first phase involved 

the derivation of optimal controls for a complex system with assumed 

inflows and demands. The second phase considered the stochastic nature 

of the inflows and demands, but often ignored interrelationships in 

time and space between them. And finally, the most recent efforts 

comprising the third phase have attempted to consider serial and cross 

correlations present in time series of random variables. Figure 11-2 

illustrates these three phases. 

The goals of many of the examples to be cited here are different 

from the goals of this work. They can, however, provide insights 

contributing to the solution of the problem considered here. For 

example, some reservoir operation planning studies may seem irrelevant 

to the desired on-line real-time application considered herein. The 

mathematical modeling techniques embodied in the development may, 

however, be applicable. The applicability of a related work in 

general depends upon various factors. The computational complexity 

and problem size potentially resulting from a techniquefs application 
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Figure 11-2. Three Phases of Reservoir Control Modeling 

is of primary importance. Off-line work in which there is no real-time 

physical interfacing with the system to be operated can utilize tech-

niques too time consuming or computationally involved for considera-

tion in an on-line real-time framework. Similarly, long range, or 

steady state operating policies are of little direct value here. Long 

range techniques typically derive controls independent of others far 

removed in time. In the situation considered here, all controls in 

the limited number of time intervals are highly related. Steady state 

controls obviate the entire motivation of real-time control, designed 

to respond to a changing system impact. 

The situation modeled here is complex and multi-faceted, embodying 

large-scale analysis, stochastic optimization, adaptive forecasting, 
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and hydraulic considerations. A technique seemingly irrelevant 

because of an assumption or limitation in one area may provide the key 

insight for another. For example, a planning study for the derivation 

of long range system controls may provide insight into the problem of 

maintaining the serial and cross correlative structure in the random 

system inflows. The related literature is reviewed, therefore, in 

light of these various factors. 

The first phase of these efforts (the deterministic case) is 

well documented and references cited at the beginning of this chapter 

refer to many of these purely deterministic techniques. Texts on 

water resources systems engineering, such as Hall and Dracup [13], 

introduce linear and dynamic programming techniques available for 

reducing large-scale deterministic problems into a number of smaller 

deterministic problems linked together by a master problem are also 

discussed. 

The relative merits and difficulties of using linear programming 

or dynamic programming for linked reservoir problems have been dis­

cussed by Butcher and Fordham [14]. They also mention the less profit­

able attempts at using steepest ascent methods. Becker and Yeh [15] 

have recently proposed an approach based on the conjunctive use of 

dynamic programming and linear programming for efficiently solving the 

multiple-reservoir deterministic problem. Dynamic programming is used 

for the selection of an optimal storage policy path through a specified 

number of policy periods and linear programming is used for the deter­

mination of intermediate policy decisions within each period. 

The real challenge to researchers in the area of reservoir control, 

however, has been the inclusion of adequate representations of the 
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stochastic nature of the system inflows. The methods associated with 

the last two phases of reservoir control modeling (which recognize 

the stochastic aspects of the problem) can be categorized into explicit 

and implicit techniques. Explicit techniques are those stochastic 

techniques which use probability distributions within the optimization, 

while implicit techniques are those which use some form of sampling 

from the distributions (Roefs [16]). The essential differences between 

these techniques is illustrated in Figure 11-3. 
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Figure 11-3. Implicit Versus Explicit Stochastic Programming 

C.2 Implicit Techniques 

Implicit techniques are characterized by methodologies such as 

Monte Carlo Dynamic Programming; first suggested by Hall and Howell 

[17] and explored further by Young [18]. In this approach, dynamic 

programming techniques are used to deterministically derive controls 

for each of a series of simulated inflow sequences. The solutions are 
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then analyzed by regression techniques in order to establish causal 

factors influencing the optimal policy. This technique permits the 

use of complex probability distributions of inflows at each point in 

time and the Monte Carlo type sampling incorporating conditional prob­

ability distributions permits the re-creation of the relevant correla­

tions between the elements of the inflow time series. These serial 

correlations may, thereby, extend beyond the simple one time period 

correlation implied by often used Markovian relations in which an event 

in a series is linked to only its predecessor. 

Askew, et al., [19] have indicated that Monte Carlo Dynamic 

Programming techniques are equally applicable to multipurpose multi­

reservoir systems. The excessive time required to simulate a suffi­

ciently large set of samples, however, seems only to be justified for 

off-line planning studies and would not be feasible for use within 

an on-line system. Regression results could, however, be used for 

developing on-line control strategies based on rule-curve type 

algorithms. 

An implicit solution to a multireservoir problem which also 

employs the three steps of streamflow synthesis, deterministic optimi­

zation, and regression analysis, has been attempted by Roefs and Bodin 

[20]. Their work differs from the above approaches, however, in that 

the solution of the problem was attempted using linear programming. 

The resulting large-scale linear programming problem was partially 

solved by Dantzig-Wo1fe decomposition. It appears that the work was 

not completed due to computational intransigence. Fordham [21], taking 

a similar approach, first summarized the logical development which led 

from attempts at explicit solutions by stochastic dynamic programming 
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through implicit solutions using Monte Carlo Dynamic Programming. He 

ultimately rejected dynamic programming all together in favor of a 

problem framed as a network flow linear programming problem and solved 

by the out 06 kLtt~ algorithm. 

A real-time technique in which forecasts are repeatedly updated 

using current hydrometeorological data as starting points for simula­

tion was developed by Windsor [22]. The ultimately implemented control 

policies were a combination of the various control policies derived 

from each simulation. The optimizations employed linear programming 

modifications consisting of separable programming and mixed integer 

programming. Although the simulation is repeated at every decision 

point, parameters in the simulation remain unchanged. The evolving 

storm event is, therefore, not capable of influencing the simulation 

model, and hence the forecast, until the entire event passes. 

The above implicit techniques appear to be usable in either of 

two modes. They can be used for the derivation of steady state con­

trol policies, or control policies dependent upon local conditions. 

For the problem considered herein, the second use is of greater value 

than the first. Techniques which can adapt to the evolving storm 

event by iteratively forecasting the inflows are, however, desired 

for the real-time application considered here. 

Croley [23) has developed a modified implicit stochastic 

optimization technique which can include a degree of this desired 

adaptation. In this approach, control policies are derived determin­

istically for simulated sequences. The mean or mode decision for a 

particular stage or time period is then implemented and the distribu­

tions for the random variables updated based upon new available data. 
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This process repeats itself for the next decision point or time period. 

This form of repetitive implicit solution strategy is somewhat similar 

to that of Windsor, though both appear too time consuming for on-line 

use in systems with short (e.g., minutes) control intervals. 

C.3 Explicit Techniques 

Explicit techniques, which incorporate probability distributions 

directly into the optimization, typically use linear programming or 

dynamic programming as their optimization tools. The orientation of 

these techniques toward either the derivation of steady state or short 

range policies determines (as was the case with the implicit tech­

niques) their relevance for on-line real-time control. 

C.3.l Stochastic Linear Programming. There are basically three 

stochastic linear programming approaches. The method developed by 

Loucks [26], and Linear Programming Under Uncertainty [40], have been 

compared and tested by Butcher and Fordham [14] for certain water 

resources applications. The third method, Chance Constrained Tech­

niques, overcome, to some extent, the extensive computational require­

ments of the first two approaches. These stochastic linear program­

ming techniques recognize the random aspects of the system inflows, 

but usually require them to be independent or mildly correlated. They 

appear to be infeasible for deriving multireservoir operating policies 

in real time with limited computer hardware since the number of var­

iables and constraints tends to become excessive. 

Thomas and Watermeyer [24] were among the first to apply stochastic 

linear programming to a short range reservoir control problem. Since 

they used coarse discretizations for the state variable in order to 
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limit the problem size, the usefulness of the solution has been 

questioned. Dietrich and Loucks [25] developed a stochastic linear 

programming model which included the serial correlation of the inflows 

for deriving the optimal control policies for a single multipurpose 

reservoir. Later, Loucks [26] continued the effort. Operating 

policies were sought which tended to increase the probabilities of the 

resultant state being close to the optimum state at that time as 

defined by the system objectives. 

Explicit techniques for the derivation of other than steady state 

controls seem to begin with the work of Danzig [40] who derived a 

multistage formulation for a stochastic linear programming model. 

Research has followed attempting solutions for a simpler form of these 

multistage programming problems. Linear programming under uncertainty 

(LPUU), as described by Wets [41], solves such a two stage problem. 

The first stage problem is a simplified problem without the stochastic 

constraints, while the second stage deals with the uncertainty. The 

objective of the two stage problem is to find a vector of decisions 

which minimizes the first stage costs, plus the expected penalty costs 

related to the probabilities of constraint violation in the second 

stage problem. This type of solution strategy has the advantage of 

using standard linear programming codes as subroutines while consider­

ing stochastic aspects of the problem. Correlation structure between 

the random variables is lost, however, unless it is so strong as to 

permit a reduction in possible combinations of random variables. 

Chance constrained programming (CCP), originally conceived by 

Charnes, et al. [42], is similar to LPUU in that stochastic constraints 

can be violated, but differs in that no penalty for the violation is 
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assigned in the objective function. Instead, the probability of a 

particular level of violation is defined. For problems with more than 

one random variable, the joint probability (no~ the conditional prob-

ability) of all the violations is used as the measure of risk. In 

general, its advantage in water resource systems analysis is that pen-

alty functions for constraint violations need not be explicitly defined. 

In some cases, where demand happens to be the stochastic variable, this 

could be a disadvantage. The CCP formulation, however, need be no 

larger than the corresponding deterministic case. Also t most CCP 

techniques become excessively large if serial (or cross) correlations 

between random variables exist and must be incorporated in the optimi-

zation model. 

The problem of maintaining serial and/or cross correlations in 

the random variables has been discussed by Revell et al., [43], Revell 

and Kirby [44], and Loucks [45]. Their work, however, does not direct-

ly address the problem of defining actual conditional probabilities 

associated with particular levels of constraint violation. They simply 

maintain that the computational advantage of using decision rules will 

facilitate incorporation of correlations when expressed as conditional 

constraints. The linear decision rules suggested by these researchers 

enable the determination of the optimal control only at that point in 

time for which the control is needed. The actual control or quantity 

b 1 d · h th . d . h '1 h d . fl to e re ease ln ten perlo lS not c osen untl t e ran om ln ows 

in periods 1 through n-l are observed. This is problematic if all 

future planned releases are needed for evaluation purposes. 

A conditional chance constrained model (CCCP), which incorporated 

these correlation considerations for the control of a single reservoir, 
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has been developed by Lane (46]. Simply stated, it includes statements 

about conditional probability distributions, as well as individual (or 

marginal) probability distributions, in the form of constraints. 

Handled similarly to the way simple chance constraints are utilized in 

CCP techniques, CCCP provides a probability of a particular level of 

total constraint violation for each pOlicy. Again, linear programming 

is used as the solution tool and as in other techniques, the formula­

tion size increases dramatically with the number of reservoirs. 

Lane suggests a variety of ways for reducing the number of 

constraints caused by the combinatorics of considering joint probabil­

ity of all combinations of all random variables. Since, however, each 

suggested technique decreases the solution space in an arbitrary way, 

their impact on the optimality of the decision is not clear. 

One assumption used by Lane is the arbitrary limitation of the 

effect of random variables to a limited number of time periods. This 

reduces the number of decision rules and hence the number of primal 

variables. The further suggestion of solving the dual is of interest, 

but in general, the strategies still remain too large for on-line use. 

As a planning tool, however, the technique seems valuable. Curry, 

et al., (47J have extended chance constrained approaches to systems of 

reservoirs, and have indicated how serial correlations can be implicit­

ly maintained in the formulation. The chance constraints relate a 

control at any point in time to the original state (i.e., storage 

levels), all previous controls (i.e., discharges), and the 4um of all 

previous inflows (the random variables). The probability of any such 

sum implicitly contains serial correlation information. These authors 

maintain that the chance constrained technique is computationally 
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hampered by the size of the objective function; however, the 

formulation contains no more constraints than does the deterministic 

model of the same system. "A primary advantage of the model would be 

in real-time operation of a linked system of mUltipurpose reservoirs. 

If both inflow and water demands could be anticipated through fore­

casting procedures, the model would provide operational guidelines 

which could either minimize or maximize the selected objective func­

tion" [47]. Assuming computer power is available to model such large 

systems deterministically, chance constrained techniques of this type 

add little to the computer load. Cross correlations between the random 

inputs to the separate reservoirs can also be maintained. This is 

done by constructing conditional probability distributions against 

which particular combinations of constraint violations may be measured 

as in CCCP. Non-linear routing links between reservoirs must, however, 

be sacrificed and large computers are required for the implementation 

of these conditional chance constrained techniques. 

C.3.2 Stochastic Dynamic Programming. The application of Stochastic 

Dynamic Programming to reservoir operation was first proposed by Little 

[27] and later applied by Hall [28], Hall and Buras [29], Hall, Butcher, 

and Esogbue [30], and Buras [31]. This approach yields the sequential 

operating policy that will maximize the total expected benefit of the 

system. Butcher and Fordham [14] extended the work of Fiering [32] 

and developed a variant of stochastic dynamic programming which main­

tains the cyclic or periodic behavior of the inflow series as well as 

the correlation with the previous event. This overcomes some of the 

problems associated with (stationary) lag one Markov chains which 

ignore the cyclic behavior in stream records. The sequence of monthly 
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flows is regarded as connected by twelve separate sets of translational 

probabilities forming a nonstationary (cyclic) Markov Chain. Modeling 

base flow as deterministic and the residual as a simple Markov Chain 

also overcomes some of the problem of maintaining a cyclic phenomena 

with simple recursive relationships. 

Dudley and Burt [33] have developed an integrated intraseasonal 

and interseasonal stochastic dynamic programming approach for design 

and operation. As applied to a single reservoir system, it functions 

as a long range planning tool as well as a short range operational 

tool. 

Askew [48] has incorporated the basic idea of CCP into a dynamic 

programming formulation which incorporates chance constraints as typi­

cal dynamic programming constraints and/or as penalty functions within 

the objective function. In previous work (Askew [49]) it was indicated 

that, in many cases, optimal operating policies designed to maximize 

expected net benefits would, if they are followed strictly, allow the 

system to fail on an appreciable number of occasions. Askew has over­

come this gambl~'~ ~uln p~oblem, prevalent in typical stochastic 

dynamic programming, by the inclusion of risk. It is admitted, how­

ever, that an additional computational load imposed by these modifica­

tions can cause difficulties, as they did in CCCP. 

Explicit techniques which yield steady state controls, although 

not immediately relevant here yield insight into methods of handling 

the uncertainties within a mathematical programming effort and are 

consequently worth a brief review. Bellman [34], Buras [35], and 

Hall [28] are the first to have utilized a value iteration algorithm 
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for modifying steady state control strategies via stochastic dynamic 

programming. 

The Policy Iteration Models of Howard [36] consist of separate 

value determination and policy improvement stages. They are methods 

which apply when there are many time periods or cycles and the system's 

condition at any particular point in time is independent of the parti­

cular time period. Such a system is described as etgodic, and the 

derivation of steady state policies is the desired result. The first 

stage of this two stage process, the value iteration stage, selects 

an initial value for a penalty cost associated with the total violation 

of the chance constraints. The second stage seeks a steady state pol­

icy which achieves the selected penalty cost. In this technique, the 

penalty cost is continually decreased (value iteration) while the con­

trol strategies improve (policy iteration) until the problem converges 

to a solution for which no improvement can be found. The advantage 

of Howardts techniques lie in an ability to solve problems with many 

time periods more efficiently than other techniques which must model 

each time period explicitly. Its value as a technique is increased by 

studies which have extended its application [14] to problems of more 

than one reservoir via a decomposition approach. Schweig and Cole [37] 

were the first to develop such techniques fully for more than one reser­

voir. This work recognized the serial correlations of month to month 

flows and represented them in a distribution free way by classifying 

inflow data according to whether an inflow was preceded by an inflow 

higher or lower than mean for the antecedent month. Cross correlations 

between locations were not modeled. Iterative dynamic programming in 
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the form of policy improvement, was the characteristic optimization 

technique used. 

D. ADAPTIVE CONTROL OF LINKED RESERVOIRS 

The effectiveness of adaptive computer based forecasting models 

has been demonstrated by Hu and Root [50]. An adaptive learning model 

was created which was to simply forecast ~n or no ~ain conditions in 

the San Francisco Bay area for three successive 12 hour periods (today, 

tonight, and tomorrow). This model provided a percent probability for 

any forecast, with a rain probability of 50 percent or higher consid­

ered as ~n. The objective of this decision format was to provide a 

forecast in the same form as the Weather Bureau forecasts in order to 

compare the performance of the two approaches. 

The adaptive model developed in their work was a simple linear 

model in which meteorologic data, as system inputs, were related to 

the forecasted output by coefficients that were adjusted over time in 

proportion to the error encountered in the series of forecasts. Such 

a linear input-output model, relating meteorologic measurements to a 

forecast, requires no elaborate thermodynamic models of weather pro­

ducing systems. It does, however, recognize the meteorologic factors 

involved, and is capable of a better forecast than that which a simple 

time series analyses of rainfall events could produce. 

Although many researchers have pointed out the need for detailed 

knowledge of time and space variability of precipitation for urban 

water problems, Thomasell [51] may have been one of the first to sug­

gest an adaptive or learning-type pattern extrapolator model. In 

outlining research needs for improved operation of urban water drain­

age systems, he notes the importance of real-time forecasting of 
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precipitation while also describing so-called objeetive analY4~ 

techniques in existence that are capable of data ~n6lation. These 

data translation techniques, derived by Thomasell and Welsh [52] for 

the prediction of temperature fields in the ocean, are suggested for 

use by urban hydrologists. A discussion of computer graphics and data 

translation techniques lead to the suggested use of forecasting error 

in updating the data translation models. Automatic updating or learn­

ing capability can be called adaptive modeling. However, since the 

simulation studies (especially those by Sorman and Wallace, Grace and 

Eagleson, and Wu) had not as yet identified the relevant linkages 

between parameters in the rainfall process, the suggestion may have 

been premature. (The mechanisms of heat transfer in the ocean, compli­

cated as they may be, are more understood than are the meteorologic 

mechanisms producing rainfall patterns.) It is again worth noting that 

the adaptive forecasting model developed by Hu and Root needs no such 

process model despite its reliance on relevant physical parameters. On 

the other hand, the Thomasell model looks for a process model for 

small scale forecasting purposes. Both models, however, point in the 

direction of on-line adaptive models for forecasting. 

More recent work by Moore and Brewer [53] describes the general 

application of 6itt~ng techniques to water resources systems. Filter­

ing techniques imply the identification of correlative structures 

between inputs and outputs of a system model. The model, however, 

need not incorporate known physical linkages. That is, the model need 

not be a pknee64 model. On the other hand, the model need not be a 

simple time series analysis of an isolated record. Models based on 

filtering techniques can grow in order and complexity until the error 



44 

series generated by a comparison between the model's forecasted output 

and the actual measured data is reduced or 6ilteted to white no~e. By 

this, it is meant that all of the information available in the input 

for deriving the output has been identified. The model developed by 

Hu and Root was a simple filtering attempt. Advances in identification 

theory now enables researchers to develop models which can incorporate 

more data in an on-line adaptive mode. 

Chan [54] has modeled a small urban combined sewer network using 

optimal control theory in conjunction with an estimator model. Limited 

to only two subcatchments, the storm inflows were modeled as Gaussian 

white noise with a time varying mean. The inflow sequences for the 

two subcatchments were assumed independent. Modeling inaccuracies and 

measurement error were considered as uncorrelated random variables. 

The separation theorem was applied to divide the problem into two 

parts: estimation and control. Using a Kalman-type filter as the 

basis for random variable estimates, the control objective of optimally 

utilizing the system capacities while minimizing overflows is similar 

to the problem addressed herein. The disregard of any cross correla­

tive structure in the inflows and the extensive analysis of a rather 

small system decrease the usefulness of this work for the application 

considered here. 

Real-time forecasts of the stochastic aspects of a system in 

conjunction with the derivation of controls for that system brings 

together the two major features of the work considered herein. Such a 

blending was incorporated in the development of Jamieson and Wilkinson 

[56]. Building on previous efforts (Jamieson, Wilkinson and Ibbitt 

[55]), the use of identification procedures for the on-line derivation 
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of a rainfall forecasting model was demonstrated. The parameters of 

the autocorrelative model used were modified by the error series 

describing the differences between previous forecasts and subsequent 

measurements. The forecasted rainfall was then used as inputs to a 

watershed model for the prediction of system inflows. In the subse-

quent study, a short time control strategy for mUltipurpose reservoir 

systems was derived for a network of reservoirs on a river system. 

Their work differs from the large body of literature concerning 

reservoir operation in three ways that are of significance here. First, 

the time horizon of the control strategy and consequently the control 

intervals are much shorter, being days and hours respectively, than 

that of most reservoir control studies. Second, the computer algorithm 

is used in an on-line manner, adapting to experienced conditions, 

rather than in the off-line preparation of rule curves or operational 

guides. Third, a forecasting model is incorporated to extrapolate the 

trends identified in the rainfall. Commenting on other studies (inc1ud-

ing Moore and Brewer [53] mentioned above) which used filtering tech-

niques to simulate or predict system inputs (runoff) solely on the 

bases of te1emetered rainfall, the authors (Jamieson, Wilkinson and 

Ibbitt [55]) state: 

"If the forecast (of system inflows) is based solely on 
te1emetered values of rainfall, the implicit assumption 
is that there will be no subsequent rainfall from the 
time of forecasting; this assumption must be the worst 
one possible in the middle of a severe storm. Clearly, 
some other assumption is desirable, but in the absence 
of quantitative rainfall forecasts it is not obvious 
what it should be. An attempt has been made to fit a 
typical storm to assess the possibility of using such an 
approach in forecasting rainfall amounts. The analysis 
followed the methodology of Box and Jenkins (1970)." 
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Using a first order linear autoregressive model, subsequent inputs to 

a watershed runoff model were forecasted. The resultant runoff was 

then routed down the tributaries and through the reservoirs. Dynamic 

programming, incorporating a multi-objective return function, was used 

to derive the controls at each reservoir. The routed releases from 

each reservoir were used as inflows to downstream reservoirs. This 

large-scale complex system, while very similar in outward appearances 

to the detention storage problem addressed herein, has some significant 

differences despite its on-line use of (1) realistic non-linear water­

shed and routing models, (2) forecasting of rainfall, and (3) multi­

objective return functions. These differences all addressed in the 

chapters to follow are as follows: 

1. The models used for forecasting rainfall were simple 

autoregressive models based on each separate location's 

history. The parameters, although initially based on 

historic events, were modified by the real incoming data. 

This resulted in a learning or adaptive model similar to 

those developed herein. No consideration of the spatial 

distribution of the rainfall was, however, made. More 

comprehensive models similar to the ones developed here 

could relate the rainfall (or inflow) at one location to 

the measured previous values at a number of other locations, 

as well as possibly other related meteorologic phenomena. 

The efficient algorithms needed for the on-line evolution of 

such comprehensive models have only recently been developed, 

however, and may not have been available for use by Jamieson 

and Wilkinson. 
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2. The realities of the system considered and its existent 

operational constraints reduced the dimensionality of the 

resultant dynamic programming strategy considerably. The 

operation of the entire system pivoted around two main reser­

voirs. Thus, operating policies of these determined the 

solution of the other components. The problem as originally 

formulated included two decision variables and five state 

variables. This was then further reduced by the adoption of 

fixed operational policies for the upstream reservoir. This 

reduced the size of the decision algorithm considerably. 

These simplifications enabled the researchers to avoid any 

need for large-scale analysis techniques (i.e., decomposition) 

which have been unavoidable in the work described herein. 

3. The risks of the forecasted flows being in error were not 

taken into account in the decision phase of the model. The 

dynamic programming algorithm developed regarded the inflows 

as deterministic values rather than as stochastic values. 

An attempt at dynamic programming under risk is incorporated 

here. 

The above comments, not intended to criticize Jamieson and 

Traveres, are meant, rather, to illustrate the state of the art in this 

area and the advances attempted in the work described here. 

Adaptive on-line control has also been applied in water 

distribution systems with some success. The differences in the prob­

lems encountered, however, seriously reduce its applicability to the 

problem addressed herein. Pressure flow is easier to model than is 

open channel flow. The demand, although stochastic, is very periodic 
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and hence easier to forecast. System response times are very fast and 

consequently, controls and their effects are readily measurable for 

feedback purposes. The problem, then, is similar to a complex elec­

trical network for which much directly applicable theory is available 

for use in system control (i.e., network analysis). 

E. S~RY 

The concept of on-line adaptive control of a combined sewer system 

is well supported by the developments described in the literature. The 

deterministic and stochastic control of linked storage facilities has 

evolved to the point where on-line applications are feasible. Their 

use in the past was generally restricted to planning efforts. Rainfall 

simulation studies have progressed through the three phases of purely 

statistical modeling, process simulation modeling, and now, adaptive­

forecast modeling. Adaptive modeling produces forecasts which can be 

iteratively generated from current conditions. Previous forecast 

errors are subsequently used for modifying the model. 

The combination of the advances in stochastic approaches to the 

control of linked storage facilities, and adaptive forecast modeling, 

has enabled the development of a system for the on-line adaptive control 

of combined sewer system using detention storage facilities. Such a 

system is described in the chapters to follow. 
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Chapter III 

DECOMPOSITION OF THE LARGE-SCALE CONTROL PROBLEM 

A. INTRODUCTION 

The development of a total algorithm designed to derive needed 

controls for a linked reservoir system as large and complex as that 

proposed for San Francisco's planned wastewater system (illustrated in 

Figure 1-4) is a challenging goal. The challenge is amplified further 

by the assumption of limited computer hardware. Under this restric­

tion, the techniques discussed in the previous chapter are generally 

limited to a small number of system components. Methods must therefore 

be applied which can decompose the large-scale system of reservoirs 

into a number of mildly linked subsystems of manageable size. Such 

methods are available [1,2], and their use in water resources problems 

are increasing (3]. The goal of this chapter is, therefore, to 

describe such a methodology which allows the resulting subproblems for 

each subsystem to be solved by the techniques discussed in Chapter II. 

The intent here is to demonstrate the feasibility of large-scale 

adaptive control by simulating the real-time environment envisioned as 

the prototype. The algorithm developed can be applied to the entire 

city, but it was decided that it would be more efficient to focus on a 

portion of the city for computational experience. It will be demon­

strated how the derived techniques can be extended to the entire city. 

Figure 111-1 illustrates conceptually the total strategy for 

on-line real-time hierarchical computer control of the entire system 

that will be developed here. Four separate levels of control are 

identified. The highest level is the conceptual juncture of three 
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separate master control problems for the three major regions of the 

city: Richmond Sunset, North Point and South East. It may, however, 

be possible to reduce this to one level in which one master control 

problem manages and integrates all the subbasins within the city. The 

Richmond Sunset area will be isolated in order to more conveniently 

illustrate the use of the large-scale systems techniques envisioned 

for the entire city. It provides a physically discrete subsection 

which is large enough to necessitate the multi-level decision making 

which characterizes the city-wide approach. The techniques developed, 

consequently, are applicable to the entire city. 

Associated with the Richmond Sunset area is a master control 

problem which integrates and influences the demands put upon the inter­

ceptor sewers and treatment plant by the component subbasins. Each 

subbasin has two subproblems identified with it. The interactive sub­

problem is shown directly below the master control problem in 

Figure III-I. It provides tentative performance data based upon 

parameters provided by the master control problem. The performance 

data, in turn, influence subsequent values of the parameters chosen 

by the master control problem. The emphasis in this interactive sub­

problem is computational speed, at the expense of high accuracy, since 

many iterations between the master control and interactive subproblem 

may be required within a control time interval. Since the control 

interval may be as short as five minutes in length, the need for fast 

communication is clearly evident. A more detailed subbasin control 

problem lies below this interactive subproblem in the illustration. 

It carries out the detailed computations necessary for finding the 

actual system controls to be implemented, but need be run only once 
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per control time interval, after necessary information from the above 

interactive process has been obtained. 

The Richmond Sunset area of the city is divided into ten separate 

subbasin areas, which are illustrated in Figure 111-2. This division 

was motivated by the need to create many small subproblems suitable 

for independent solution. As divided, each subbasin area contributes 

directly to the interceptor. In this way, upstream interconnections 

between subbasins or subproblem areas are avoided, thereby facilitating 

the formulation of the master problem. Although not all of the sub­

basin areas so delineated have overflow bypass facilities, each is 

modeled as having a distinct overflow point. This representation is 

by no means unique, and there are many other possibilities for decom­

posing a large-scale sewer system. In most other cities, however, it 

should be possible to define tributary subareas or subbasins to the 

interceptor sewers in much the same way as done here. A full variety 

of subbasin configurations are represented in this division. Three 

subbasins consist of only one detention basin, while others contain 

as many as seven. Also represented are subbasins with differing 

hydraulic characteristics caused by the range of slopes encountered 

within this part of the city. 

This multi-level or hierarchical approach to the total system 

was motivated by the need to provide optimal control algorithms for a 

large-scale system constrained by both the demands of a real time 

operating environment as well as an implicit limitation on total 

computer hardware. 

Decomposition represents a class of techniques whereby a large 

system to be optimized in some way is decomposed into several mildly 
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interlinked subsystems. The subsystems are treated independently and 

then recombined by a master control program in such a way as to 

achieve an overall optimum strategy. Decomposition as applied to a 

sewer system of this type involves the separate determination of opti­

mal controls for each subbasin. The master problem then checks to see 

if the interlinking constraints and optimality conditions are satisfied. 

If they are not, another iteration of the master problem takes place 

in which the constraints, or influence, imposed by the master problem 

on the subbasin problems would be adjusted. Iterations continue until 

an optimal solution for the entire system is determined. Three impor­

tant advantages of decomposing a large-scale system have been listed 

by Labadie [3]: 

1. Greater conceptual understanding of the behavior of the 

system is attained when subsystems or subparts of the 

large-scale system are identified and analyzed separately. 

2. Mathematical programming techniques are available [1] which 

enable subsystems to be temporarily severed from the total 

problem, optimized as smaller problems, and recomposed by 

an iterative master problem which achieves overall system 

objectives. 

3. Required computational storage (e.g., rapid-access core 

memory) is decreased at the expense of total required 

computation time. 

It is noted, however, that the impact of the additional time can 

be lessened by using a hierarchy of computers capable of simultaneous, 

or parallel, optimizations of the various subsystems defined for each 

particular level. 
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B. DEFINITION OF THE LARGE-SCALE CONTROL PROBLEM 

The major objective for real-time control of the entire system 

is to minimize the expected effect of overflows, as well as localized 

flooding, for any storm event which might occur. The variation in 

quality of overflows and their consequent impact on receiving waters 

greatly complicates this objective. Adequate water quality models 

are, however, as yet unavailable and would be difficult to incorporate 

into the necessary control algorithms if they were available. Further­

more, since control decisions must be made before the storm event is 

realized, some measure of risk, or the probability of the forecasted 

inflows and, hence, controls being in error, must also be reflected 

in the objective used for comparing various control strategies. Thus, 

for the analysis, the objective is to minimize total expected detri­

mental overflow impacts. The use of expectation is justified by the 

noncatastrophic nature of an overflow event. Were this not the case, 

expectation would be an inappropriate measure. 

Figure III-3 illustrates schematically the ten subbasins 

identified within the Richmond Sunset area of the San Francisco system. 

In this figure, OiCk) represents the overflow anticipated from sub­

basin i during period k. This overflow is either conveyed directly 

to the receiving waters by a suitable bypass structure, or results in 

local street flooding where no bypass conveyance exists. The distinc­

tion between these two will be made later when the effects of these 

overflows are considered. 
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The total forecasted runoff into the sewer system of subbasin i 

during time period k is represented as RiCk), while QiCk) repre-

sents the quantity of flow to be discharged into the interceptor sewer 

from the subbasin. The random nature of RiCk) is discussed in sub­

sequent chapters where methods of forecasting RiCk) are developed 

and where the risks associated with the forecast are considered. The 

variable Q is the upper limit on total interceptor flows delivered Tmax 

to the treatment plant from the Richmond Sunset area. As noted in the 

previous section, the Richmond Sunset area is only one of three major 

regions of the city contributing to the treatment plant. It has been 

assumed, therefore, that the capacity of the treatment plant will 

somehow be allocated among the three branches. This allocation, con-

ceptually the supra problem, would be based upon either discrete real-

time decisions or entire policies based on on-line optimizations and 

would be carried out, at least conceptually, by the supra problem. 

B.1 Control Decision Criterion 

The enneet of overflows from each subbasin on the receiving water 

may not be the same and consequently their relative impact must be 
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gaged for the derivation of optimal controls. Weighting factors are 

used to establish this relative impact for: (1) various time periods 

defined within the storm event, (2) various locations throughout the 

city, and (3) differing quality of sewer flows. These weighting fac-

tors relate the detrimental impact of overflows to the quantity of 

overflows. The effect of an anticipated overflow event of quantity 

Oi(k) from subbasin i during time period k is assumed directly 

proportional to that volume of overflow. The weighting factors wiCk) 

are defined for each time period and subbasin. Overflow effect is, 

therefore, represented as: wiCk) x Oi(k). 

Measuring the effectiveness of a control policy for the imminent 

and developing event requires a forecast represented in probabilistic 

terms. Operating policies may then be judged using the expected over-

flow measure. That is, at any point in real time, the expected sum 

of the weighted overflows for a forecasted inflow sequence under risk 

for the remainder of the event can be used as an objective function 

for the selection of controls: 

10 M. . 
E[ 2 2 w1 (k) 01Ck)] 

i=l k=l 

where E is the statistical expectation and M represents the 

(1) 

expected number of time periods required for the effects of a current 

event to cease, where k=l corresponds to any point in real time. 

The system, however, has not been planned to minimize overflows 

for an isolated storm event, but rather to minimize overflows occur-

ring from any sequence of events. If a single event criterion was 

used, there would be danger that the operating policies would not 

effectively utilize storage, interceptor, and treatment capacity in 
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such a way that a rapidly following storm event would be properly 

anticipated. 

Initial experience with techniques designed to solve the control 

problem indicates that derived controls for simple overflow minimiza­

tion do not fully utilize the capacities of the interceptor sewer and 

treatment plant [5]. The unnecessary storage of storm flows in deten­

tion basins throughout the entire modeled time horizon often results 

when such a criterion is used. This has occurred despite available 

system capacity for the transport of these flows. The rapid drainage 

of detention basins is seen as an important system operating policy. 

This rapid drainage can be encouraged by favoring control policies 

which maximize throughflow into the interceptor sewer. This enables 

the system to be at a maximum state of readiness for subsequent events 

which may rapidly follow the immediate event. 

An improved criterion for selection of controls was, therefore, 

required in which the order of priority of allocation of sewage would 

be: (1) send discharge to the treatment plant until capacity is 

reached, (2) divert as much of the excess as possible to temporary 

detention storage, and then (3) overflow any necessary quantities at 

the least sensitive location and at an appropriate time, based on 

anticipation of future storm flows [4,5]. A simple addition to the 

previous expression of overall system performance enables the attain­

ment of these control decision priorities. Letting yiCk) be a 

weighting factor (or credit) for throughflow allows the criterion to 

be written as: 
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10 M. . . . 
E[ L L w1 Ck) 01Ck) - y1 Ck) Q1(k)] 

i=l k=l 

10 M 
L E[ L wiCk) OiCk) - yi(k) Qi(k)] 

i=l k=l 

The detrimental impact of overflows may, however, not be best 

represented in terms of total overflows. For example, a surge of 

(2) 

overflow may be more harmful than a continuous flow. Adding an appro-

priate exponent to the first term would encourage operating policies 

generating less variable overflow discharge rates over time: 

10 M.. .. 
L E[ L w1(k) (01(k))n - y1(k) Q1(k)] 

i=l k=l 
(3) 

With the criterion thus formulated, it is now assumed that given 

a forecasted inflow sequence in probabilistic terms, an operating 

policy for a subbasin can be found which minimizes the criterion for 

that subbasin as a function of some specified maximum subbasin release 

~axCk) to the interceptor sewer for k=l, ... ,M. The optimal value 

of the subbasin criterion, as a function of this local release limit, 

can be designated for subbasin i as: 

(4) 

where iii ~ax = CQmax(l),···,Qmax(M)). 

The algorithms for finding the subbasin operating policies needed 

to achieve these minimal weighted overflows are discussed in the fol-

lowing chapter. A release relating to the actual optimal inflow to 

the interceptor, for given ~ax' can be designated as Q*iC~ax,k) 
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for a particular time period. With the details of the subbasin 

control strategy which results in these releases relegated to another 

chapter, the overall criteria relating to the expected overflow impact 

and throughflow credit may be simply represented by: 

10 *" . I 6 1 (~ ) 
i=l ax 

(5) 

B.2 System Constraints 

Having derived a measure of system performance, models are now 

needed to predict the system behavior. Such models incorporating the 

system constraints must, however, remain simple for real-time use. It 

has been noted that the major cause of overflows at the subbasins is 

the limited allocated quantity of treatment plant capacity QTmax 

which has been assigned to the section of the city being considered 

here for purposes of illustration. Therefore, any model of system 

performance must consider the routing or translation of subbasin dis-

charges into the interceptor down to the treatment plant. 

Routing techniques available from the field of fluid mechanics 

and open channel hydraulics cover a wide spectrum of accuracy vs. 

facility. The full solution of the St. Venant equations describing 

unsteady flow is approached using techniques such as the method of 

characteristics and various finite difference schemes. These equa-

tions, which include continuity, momentum, and energy principles, 

require significant quantities of information describing the flood 

wave, boundary conditions (upstream and downstream depth), and the 

physical characteristics of the channel. Assuming availability of 

this information, these techniques would still be inappropriate for 



66 

on-line work due to the excessive amounts of computer time and 

capacity required for their solution. The iterative nature of the 

optimizations, in both the master control problem and the subbasin 

analysis, considerably compounds the problem of the excessive time 

needed for these routing algorithms. 

Kinematic wave techniques, such as those used for operational 

studies on the Seattle CATAD stormwater management system [6], describe 

the essence of wave propagation using only continuity considerations, 

so that they are a significant departure from the solution of the full 

equations. Computational advantages over the more complex techniques 

tends to compensate for any loss in accuracy_ Computational require­

ments of this technique still, however, appear large when viewed in 

the context of the repeated computations anticipated during real-time 

optimizations. 

Empirical routing techniques depart further from the full 

equations. They result, however, in more rapid methods for routing 

a hydrograph or sequences of reservoir releases downstream and are 

amenable for use in optimization schemes [7]. Successive averaging 

approaches based upon concepts of wedge and prism storage, such as 

the Muskingum method, are widely used. Such methods approximate the 

attenuation and dispersion of natural flow waves. Simpler approaches, 

which simply lag flows by an appropriate travel time are compared 

to successive averaging techniques in Figure 111-4. In this figure, 

Qu(t) represents the upstream hydrograph, while QD(t) represents 

the downstream routed hydrograph. The discretization of time, t, is 

represented by the interval ~t. Simple lag techniques may, however, 

suffice where slopes are high and reaches are short. These conditions 
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C1QD(t ~t) + C2QU(t) + C3QU(t - dt) 

Where: C1 + C2 + C3 = 1 

Figure I11-4. Lag and Successive Average Routing 
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are particularly prevalent in the San Francisco sewer system, where 

the steep gradients tend to decrease the time available for the 

release profile to change its shape significantly. Successive average 

routing can be generally represented by 

T 

L amQU(t-m6t) 
m=O 

where am' m=O, ... ,T, are routing coefficients, and T6t < t. 

A number of factors inhibit the use of sophisticated routing 

techniques within this large-scale, real-time control problem. Of 

(6) 

primary importance to all levels of optimization is the computer time 

required for the selected technique. A real-time application with 

limited computer hardware demands a fast routing technique. Many 

control policies are generated during the search for optimal controls, 

resulting in many different release sequences to be routed. 

The availability of data is an additional factor affecting the 

selection of the routing technique. More sophisticated techniques 

demand certain data for calibration purposes that are difficult to 

obtain, such as boundary conditions (upstream and downstream flow 

levels), physical and hydraulic characteristics of the sewer system, 

as well as a full description of the flow sequence to be routed. 

Successive averaging techniques do not require boundary data, while 

lag techniques permit the routing of parts of flow sequences indepen-

dently of the entire sequence. Despite the lack of elegance in the 

methods, such features are important for facilitating the use of opti-

mization techniques for finding control policies. Routing is obvious-

ly critical, and considerably more research is required for evaluating 
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tradeoffs between computational speed and accuracy for the various 

methods. For our purposes, it will be assumed that empirical tech-

niques are adequate. 

In order to represent routing effects upon the interceptor 

capacity constraint in a simple straightforward manner, and to facil-

itate the following developments, two assumptions are made. First, it 

is assumed that the predicted flows from each subbasin contributing to 

the interceptor can be routed independently of the others. Therefore, 

downstream flows are the superposition of separately routed upstream 

flows. Second, it is assumed that routed flow quantities during fin-

ite intervals are linear functions of previous flow quantities. 

Representing time by discrete intervals k, a back shift 

operator Bm is defined such that 

(7) 

It is convenient to represent a release from subbasin i routed to a 

downstream release point for subbasin j (where the subbasins are 

ordered consecutively downstream, as shown in Figure 111-3) as 

[for l ~ k-l]: 

(8) 

where l is the number of time intervals for which the effects of an 

upstream release at a particular time significantly affect the flow at 

point j. Therefore, the summation of all upstream releases routed to 

point j is [where 

(for j=I, ... ,IO) 

and = a jj = 0]: 
l 

(9) 
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At each point j along the interceptor, the flows are constrained by 

-i the interceptor capacity at that point ~ax. This interceptor capa-

city is the physical upper limit on flows at that point. This con-

straint can be written as 

? [Qi(k)]j -i 
l ~ q;ax 

i=l 
(10) 

(for j=l, .•. ,lO) 

In addition, an upper limit exists on total flows to the treatment 

plant, represented as point T, which is downstream from the release 

point of subbasin 10. This results in the additional constraint 

(11) 

The complete large-scale optimal control problem may now be 

written using the above constraints and the criterion function of 

Equation (5) presented previously. The flows that are routed, how­

*i i ever, are the Q C9;ax,k) computed by the subbasin control problems. 

Assuming forecasted inflow sequences with probabilistic information 

for each subbasin are given, as well as a treatment capacity alloca-

tion Q
Tm 

by the supra problem, the large-scale control problem can ax 

be expressed in a convenient, concise way as 
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Minimize 
10 *. . I 6 1(01 ) 
. 1 -1iax 1= 

(12) 

Subject to: 

(13) 

(14) 

(j = 1, .•• , 10; k= 1, ••• , M) 

The above formulation assumes that the subproblems have properly 

allocated their releases in such a way that the minimum weighted over­

flow O*i(Oi ) is obtained for a given oi . It is obvious that it 
~ax ~ax 

would be nonoptimal for more capacity oi to be allocated than is 
~ax 

needed. Thus, in general, when the assigned capacity is fully util-

ized, 

Q*i(Oi k) = oi (k) 
~ax' "'max 

The constraints could therefore be equivalently written as 

J. i j-i 
.2 [~ax(k)] 2 ~ax 
1=1 

(15) 

and 

10. T 
.L [~ax(k)] 2 QTmax 
1=1 

(16) 

(j = 1 , . . . ,1 0 ; k = 1 , • • • , M) 
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C. DECOMPOSITION INTO MASTER AND SUBBASIN PROBLEMS 

Reconsidering the large-scale problem formulated in the previous 

section, it is evident that decomposition is implicit in its structure. 

The constraints on total flows routed or translated through the inter-

ceptor and treatment plant constitute the only link between the sub-

basins in the mathematical formulation. If this constraint were elim-

inated, each subbasin would minimize its criterion by releasing as 

much water as available or physically possible. The result would be 

no subbasin overflows; however, the imposed limit on interceptor and 

treatment capacity would be exceeded. The subbasin problems have, 

however, been presented as solved for given values of oi . The 
~ax 

-*i i solution of these subbasin problems yields not only 0 cg;ax)' but 

also Therefore, using the i 
g;ax terms as decision var-

iables in the master problem and the routed values of the releases 

[Q*i(Oi ,k)]j, for use within the linking constraint, results in the 
..:::max 

needed decomposition. 

Figure 111-5 illustrates the decomposed nature of the large-scale 

problem previously formulated, where it is divided into independent 

subproblems tied together by a master control problem. The master 

control problem trades off the subbasin solutions to achieve optimal-

ity. Optimality for the large-scale problem is simply seen as filling 

the assigned capacity with flows that carry the most penalty, as deter-

mined by the criterion functions. 

To facilitate the rapid search for optimal controls on-line, 

perhaps at the expense of finding the best or global optimal controls, 

the following assumptions are made: 



SuBBASIN PROBLEMS 

SUBBASIN 1 

SUBBASIN 2 

SUBBASIN 10 

1 
~ax 

Q*l(~ax,k) 
(k=I, ... ,M) 

2 
~ax 

Q*2(~ax,k) 
(k=I, ... ,M) 

0 10 
~ax 

0*10(010 ) 
~ax 

Q*10(~~X,k) 
(k=I, .... M) 
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MASTER CONTROL PROBLEM 

SELECT AND SEND TO 
SUBPROBLEM 
Oi . 
~ax FOR 1 = 1, ... ,10 

CHECK CONSTRAI~r: 

f [Q*i(~ ,k)lj~q! 
1.=1 ax - ax 

10 *.. T? 
.HQ 1L~ax,k)] ~QTmax 
1=1 
FOR j = 1, ... ,10 

k=I, ... ,M 

I 
YES 

~ 
DO CURRENT Qi 

max 
VALUES MINIMIZE 
10 . 

. r 6(~ax) ? 
1= 1 

I 
YES 

DETERMINE 
DETENTION BASIN 
CONTROLS GIVEN 

*i 
~ax 

Figure 111-5 Interaction between Master Control Problem 
and Individual Subbasin Problems. 

NO 
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1. Since new optimal control problems are solved during 

succeeding time intervals, there is the opportunity to 

i change the values of Q during each control interval. 
~ax 

Thus, it would seem reasonable to use a time invariant 

i 
0- for the master control at any particular time interval, 'max 

since it will be updated with each succeeding time interval 

k when new master controls are computed. 

2. It has been noted by Bradford [5] that the upstream capacity 

constraints for the interceptor are unnecessary for the case 

study being considered. They are, therefore, eliminated 

from further consideration in this study, though the follow-

ing algorithm can be modified to include them if necessary. 

These assumptions simplify the master control problem and 

considerably reduce the number of decision variables, thus facilitat-

ing solution of the master problem on the limited hardware of a real-

time computer system. The result is the following problem: 

Master Control Problem 

10 *. . 
M· .. \' 0- l. (ol. ) l.nl.ml.ze L 'm 

i=l ax 
(17) 

1 10 
q;ax' ... , Qmax 

Subject to: 

(18) 

(for k=l, ... ,M) 

Decomposition of the large-scale problem has been achieved by 

use of individual constraints upon the maximum release from each sub-

basin. The values of the constraint are then used as the decision 
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variables in the master control problem. It is important to note that 

under the above assumptions, the alternative constraint of Equation (16) 

no longer applies. The actual flows must be used, as in Equation (14), 

since it is no longer assured that This is illus-

trated in Figure 111-6. 

D. ALGORITHM FOR MASTER CONTROL PROBLEM 

The optimization which has been applied to the master problem 

stated above is a discrete direction steepest descent technique. The 

form of the master problem is suitable for solution by dynamic pro-

gramming CDP) but the discrete direction steepest descent method 

CDDSD) requires fewer iterations to achieve an improved, though not 

necessarily global, solution. This is important, since the real-time 

environment may demand that a reasonable solution be implemented before 

a global solution can be found. In the DDSD method, improvements in 

the total objective function are sought by modifying the upper limit 

on releases i 
q;ax for the subbasin problem which yields the best 

improvement in the total objective function. This subbasin problem 

will have its constraint on releases relaxed until it no longer pro-

duces the greatest improvement in the objective function. At that 

time, another subbasin problem is selected and its constraint is 

relaxed. This process continues until the total assigned level 

Q is reached. Tmax 

Steepest descent methods, all traceable to the original work by 

Cauchy [2], are based upon the fact that the gradient of the objective 

function at any point is a vector in the direction of the greatest 

local rate of increase in that objective function. Therefore~ the 

negative of that gradient will be the direction of steepest descent. 
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SYSTEM CONSTRAINT [Q
1

Ck)]T + [Q
2

Ck)]T ~ QTmax 

- -
SUBBASIN 

1 

- --
SUBBASIN 

2 

I ~ TO TREATMENT 

QTmax = 5 

Q1 Ck) 
3 ------------- ~ax = 3 
2 
1 

time k=l 2 3 4 

Q2
Ck) 2 

3 --------------- ~ax = 3 

2 
1 

time k=l 2 3 4 

UNUSED 
CAPACITY 

NOTE: 

1 2 
~ax + Qmax > QTmax 

BUT: 

[Q
1

Ck)]T + [Q
2

Ck)]T < QTmax 
DOWNSTREAM SUMMATION 
ASSUMING UPSTREAM 4 ~'"'-T-~~::::r---'~~ 
FLOWS ARE LAGGED BY 1 

Figure 111-6. 

3 

2 

1------~------~--~ 
time k=l 2 3 4 5 

1 Illustration of Suboptimality of \ Q < Q 
L max - Tmax as System Constraint 
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Let 

Particular values of the components of the vector at any iteration t 

can be represented as Furthermore, let represent 

the total value of the objective function at that point. That is, 

F(O(t)) = r 6*i(0(i)i) (20) 
~ax . 1 'max 

1= 

The direction of steepest descent would then be defined as 

and proceeding in that direction, a new point is reached, 

where 

O(t+l) = oCt) + AS(t) 
~ax ~ax -

O(t+l) 
~x ' 

(21) 

(22) 

where step size is chosen such that F(O(t+l)) < F(O(t)). 
~ax ~ax 

Attempts 

* can be made to find an optimal step size A along the direction 

~(t), but this process can be computationally time consuming on-line. 

In addition, since the gradient VF(O(t)) 
~ax 

cannot be determined analyt-

ically, it must be estimated numerically. This is also computationally 

time consuming, since perturbation around oCt) must be carried out in 
~ax 

all component directions, implying that all subbasin control problems 

must be solved simply to find the gradient direction. All of them 

would again have to be solved in order to move along the gradient 

direction determined. Of course, the actual direction chosen would be 

that direction closest to the numerically approximated gradient direc-

tion such that the step size A along that direction falls on a 
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discrete point. In addition, it must be a feasible direction such that 

there exists a A > 0 such that Eq. (18) is not violated. 

A less time consuming approach would be to choose as the next point 

an adjacent feasible point which lies in a coordinate direction yield-

ing the fastest rate of change of the objective, as illustrated in 

Figure 111-7. That is, choose a coordinate direction m £ {l, ... ,lO} 

(corresponding to a particular subbasin m) such that 

O(R,+l) = o(R,) + e ~Om (23) 
~ax ~ax..:..m 'max 

where 

F(Q(R,) + ~Qm) _ F(Q(R,)) 
....);ffiax ~ max ....);ffiax 

~Om 
'max 

(24) 

(for all j=l, ... ,lO; j#m, 
such that (24) is valid) 

where 

0 

e. = 0 
(. th ) -J 1 ] component (25) 

0 

0 

so that A ~ ~~ j=l, ... ,lO. ax' 



o 

79 

DISCRETE DIRECTION STEEPEST DESCENT METHOD 

Lj 
I1Ql 

max 

Contours represent equal valued 

combinations of 0 1 and 'max 

1 
~ax 

within the total objective function 

of the Master Control Problem 

Figure 111-7. Illustration of the Master Control 
Search Algorithm 



80 

This method requires only one subproblem evaluation (subbasin 

optimization) for each step since each coordinate direction is related 

to a particular subproblem parameter. In addition, no calculation is 

necessary to locate the next feasible point along the gradient 

direction. 

For the ten subbasin system used for illustrative purposes here, 

the objective function is the summation of the results of ten subbasin 

optimizations. Therefore, it is a ten variable (or dimension) master 

control problem. The discretization used for a subproblem associated 

with a particular subbasin or equivalently, the step size used in each 

of the directions relating to each dimension of the master problem, 

was chosen to be one-tenth of the upper physical limit 

releases from that particular subcatchment. That is: 

flO i 
'max 

-i 
~ax 

=10 

-i 
o;ax on 

(26) 

This was chosen to correspond roughly with the anticipated precision 

of control in the actual system, as well as for facilitating the sub-

problem solution. The next adjacent point in the search routine is 

determined by a simple comparison of objective function improvements 

for each of the ten subproblems. Computational experience with the 

algorithm is given in Chapter VI. It is shown that convergence of the 

technique was quite rapid, despite the simplifying assumptions used. 

Figure 111-8 illustrates the algorithm. 

A formulation for the city-wide optimal control problem is now 

easily developed. Let the three major sections of the city be repre-

* sented by an index s = 1,2,3. Assume that optimal o have been 
~ax 
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START -----.... INITIALIZE ALL COORDI­
NATE DIRECTION GRADIENT 

COMPONENTS S i TO ZERO. 

YES 

SET Si=O i·I •...• IO 

INITIALIZE ~X 
FOR i·I •...• IO 

CALCULATE INITIAL COORDINATE 
DIRECTION GRADIENT COMPONENTS 

Si FOR i·I •...• IO 
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F(~ax+~~ax) - F(~ax) 
Si • ~oi 

"'max 

SELECT STEEPEST COORDINATE 
DIRECTION; THAT IS. SELECT 
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Sj ~ Si ~ 0 FOR ALL j ~ i 

YES~ 

INCREMENT ~ax. THAT IS. 

oj + oj + ~oj 
'max ~x ~x 

RECALCULAT~ Sj .FOR SELE~ED 
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S. = 'max "'max ~ 
J 

SUM (ROUTED) RELEASES 
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k=l •...• M 
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Figure 111-8 Master Control Algorithm Flow Chart 
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found for each section of the city, which will hereafter be represented 

*s as 0 , for specified levels of total treatment plant capacity 
1ax 

s Q Using the definition of Equation (20), let Tmax· 

N 
s *. * I 0 1(0 S ) 

. 1 -4nax 
1= 

(27) 

It is now possible to write the supra problem for the entire city as: 

Supra Problem 

3 
Minimize I FS(Q~max) 

s=l 
(28) 

Q~max' s=1,2,3 

Subject to: 

3 * 
I Qt~ta1 (Q;max,k) ~ QTmax 

s=l 
(29) 

(for k=l, ... ,M) 

where 

(30) 

(for k=l, ••• ,M) 

QTmax = total treatment plant capacity 

The index N indicates the number of subbasins found in section s. s 

This problem is solvable by the application of the same assumptions 

and methods used for the master control problem for Richmond-Sunset. 

Such a formulation, however, may not be capable of finding the 

global optimal solution for the entire city. The assumption that each 

s Q term is time invariant puts an additional constraint upon the Tmax 
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total solution. Such a constraint may eliminate a possibly better 

solution which is based upon time varying s 
QTmax terms. Replacing 

each s 
QTmax term with a vector s 

gTmax containing values of s 
QTmax 

for each period of time would permit the retention of the basic form of 

the above supra problem formulation. That is let QS = (Qs (1) , -Tmax Tmax' 
s ... ,Qr (M). If this was done, however, the dimensionality of the max 

master problem would be increased significantly since separate i 
q;ax 

values would then have to be derived for each time period within each 

subbasin as well as for each subbasin location. For this development, 

therefore, a time invariant Q term has been assumed for the Tmax 

master problem while the solution of the city wide problem was not 

attempted. 

E. IMPACT OF ALGORITHMS UPON COMPUTER HARDWARE 

It has been mentioned earlier that an implicit constraint upon the 

choice of control algorithms has been the computer power available. In 

the past, computer process control has been most often carried out in a 

centralized manner using a single computer. "The trend now, however, 

seems to be toward using many small scale computers, perhaps tied to-

gether by a large central processor, rather than to centralize all com-

puter control operations for an entire plant within a single large-

scale process computer" [7]. In research efforts directly related to 

work presented herein, Trimble [8] has summarized the basic advantages 

of distributed computer power. Some of the more significant points 

are as follows: 

1. Studies have indicated that a distributed computer system, 

equivalent in computer power to a single large-scale computer, 

can cost 20 to 30 percent less than the large-scale system [9]. 
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2. The cost impact of necessary system redundancy is more 

severely felt with a single. large-scale computer facility 

than with a distributed system. A single computer must be 

duplicated for redundancy whereas with distributed facilities, 

a local failure does not threaten the entire system, and 

consequently, the system requires a lower total level of 

redundancy. 

3. Distributed computational power permits parallel 

computations. The possibility of having separate computers 

for each subsystem enables the simultaneous solution of 

subsystem problems. To duplicate the resultant speed of 

convergence for the master control problem within a large 

central computer facility would require a memory larger than 

the total memory of an equivalent distributed system. Com­

puter word size and processor speed would need to be increased 

to manage this larger core and match the speed of the distri­

buted system. 

4. Distributed processing configurations to achieve hierarchical 

control may either be geographically distributed or central­

ized. Tradeoffs between the necessary system communications 

costs (which are greater with a centralized facility) and 

vulnerability-backup considerations (which are more signifi­

cant with a geographically distributed system) must be made. 

For additional, more specific recommendations on computer hardware 

configurations and further discussion on the implications of hierarchical 

computer control, the reader is referred to Grigg, et ale [7]. 
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Based upon the above discussion, the decomposition techniques 

developed here, although probably not the only way of disassociating 

various parts of the control strategy problem for the San Francisco 

master plan. seem well suited for distributed computer control. Some 

reasons for this are as follows: 

First, the division into distinct levels of optimization is 

paralleled exactly by the physical divisions found in the system. In 

addition, the hierarchical strategy presented in the previous pages is 

ideally suited for inclusion within a distributed computer system. The 

dendritic cascade of problems and subproblems down to the level of 

detailed decisions determining the actual system physical controls, 

points to a parallel computer hardware hierarchy. A large-scale 

approach based on temporal aggregations, for example, in which finer 

solutions corresponded to increasingly finer divisions of time, would 

not lend itself to a parallel physical differentiation; hence, its 

intuitive appeal would be less. 

Second, since the divisions correspond to physical subsections of 

the city, the possibility exists for the optimizations to be carried 

out locally by computer hardware located at or near the subbasin. This 

will decrease the extent of the needed data link systems between the 

components being optimized and the computer doing the optimization. 

This is of particular importance to a system as large as that planned 

in San Francisco and for one in which constant remote sensing of system 

status is needed for efficient real-time control. 

Third, as each subbasin could have its own computer, failures in 

components are easier to handle. The remainder of the system can 

continue to operate despite a local failure. 
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Fourth, the decision speed necessary in a real-time control 

environment will demand that optimizations be carried out in parallel 

across the entire system and not in series. That is, with the distri­

buted computational power suggested above many phases of the total 

system optimization can go on simultaneously. This would effect a 

tremendous time savings over other large-scale approaches which 

sequentially optimize the entire system using first large time incre­

ments (or flow discretizations) and then finer divisions for the final 

solution. 

And finally, the hierarchical control suggested above will permit 

the tailoring of computer needs to the exact job to be done. Simple 

minicomputers are envisioned for many of the lower levels of 

optimization. 
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Chapter IV 

SUBBASIN CONTROL ALGORITHMS 

A. INTRODUCTION 

In the previous chapter, it was shown how the large-scale control 

problem could be decomposed into master problems and subbasin problems. 

It is the solution of these subbasin problems in a manner amenable to 

on-line use that is to be considered in this chapter. The system 

inflows are again assumed to have been previously forecasted, with 

probabilistic information on the forecasts also given. The risks inher­

ent in these forecasts are, therefore, considered. Two subbasin opti­

mal control algorithms are presented. One is a rough, aggregated 

approach intended to be used for purposes of dialogue with the master 

control problem. It is required for facilitating the discrete direc­

tion steepest descent procedure. It enables rapid interaction with 

the master control problem so as to obtain an approximate city-wide 

control within the time allotted. The solution of this simplified 

problem then forms the basis for a more detailed algorithm for deriva­

tion of the needed system controls, which need only be computed once 

per time interval. Stochastic dynamic programming is used to solve 

the simplified (aggregated) problem, while it is proposed that the 

detailed subbasin control algorithm use a stochastic linear programming 

approach. 

A typical subbasin problem is formulated first as a dynamic 

programming (DP) problem and then as a linear programming (LP) problem 

in order to illustrate the rationale for the above described division 

of roles and to justify the selection of techniques for each role. 

Both techniques are subsequently extended to include the consideration 

88 
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of risk and the resultant formulations are compared. Methods capable 

of reducing the problem size are applied to both techniques and the 

effect upon the solution is observed. 

In general, the completely detailed DP formulation is too time 

consuming for on-line work, with or without the consideration of risk. 

The completely detailed LP formulation is, however, often too large 

for the limited computer facilities envisioned. A ~impli6ied stochastic 

DP which considers the inherent risk is consequently developed which is 

fast enough to permit the interaction needed with the master control 

problem. This interactive stochastic optimization is illustrated in 

Figure IV-I. The final solution of this problem, after convergence of 

the master control problem, decreases the number of unknowns in the 

total detailed problem. This reduced problem can then be effic.iently 

solved once by a stochastic LP algorithm, yielding the needed system 

controls. The detailed stochastic optimization is illustrated below 

the interactive stochastic optimization in Figure IV-I. The communica-

tion of the interactive problem with the master control problem was 

illustrated 

INTERACTIVE 
STOCHASTIC 
OPTIMIZATION 

DETAILED 
STOCHASTIC 
OPTIMIZATION 

in Figure 111-5 in the previous 

i *i i *. i 
Qmax Q (Qmax' k) 6 1(~ ) ax 

\ t t 
SIMPLIFIED OR AGGREGATED 

STOCHASTIC DYNAMIC 
PROGRAMMING ALGORITHM 

STOCHASTIC 
LINEAR PROGRAMMING 

ALGORITHM 

chapter. 

Q:i(k) 
J 

(for j=I, ... ,Ni k=l, ... ,M 
N.=Number of Upstream 

1 Controls for Subbasin i) 
Figure IV-I. Subbasin Analysis Hierarchy. 
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B. EXAMPLE SUBBASIN CONTROL PROBLEM 

A typical subbasin consisting of four detention basins is chosen 

to facilitate the exposition of the general optimal control problem 

pertinent to all the subbasins. Figure IV-2 illustrates the configura-

tion of detention basins found in subbasin 10 defined in Figure 111-2. 

It is located at the southernmost extreme of the Richmond-Sunset area 

along Brotherhood Way, south of Lake Merced. The component detention 

basins have been labeled 1, 2, and 3 for simplicity; however, 

Table VI-5 provides the corresponding identification used in the San 

Francisco Master Plan. 

R
2

(k) 

O(k) 

Figure IV-2. Example Subbasin. 

In the above figure, the superscript indicating the particular 

subbasin has been dropped in order to facilitate the following discus-

sion. The subscripts indicate the element within the subbasin to 

which the variable refers. The variables shown in the above figure 

have the following meanings: 
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S. (k) 
J 

[Q.(k)]t 
J 

-------+-
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= Average rate of throughflow during period k 
from detention basin j wi!h Ql(k) entering 
the interceptor sewer as Q1(k), from sub­
basin i 

= Storage in detention basin j at beginning 
of time k 

= Average rate of routed or translated through­
flow from detention basin j during time k 

= Average rate during time k of stormflow 
inflow (runoff) to detention basin j 

= Average rate of overflow to receiving waters 
from detention basin j during time period 
k 

= Releases routed downstream 

= Routed flows summed at juncture 

"[' < k-l 

Each of these above variables has an upper limit determined by 

the design of the physical system. Table IV-l shows the upper limits 

Sjmax and Qjmax for variables Sj(k) and Qj(k) respectively, which 

are derived from the description of Alternative C of the San Francisco 

Master Plan. 

Table IV-I. Data for Subbasin #10. 

Detention 
Sjmax Qjmax 

Basin No. ft 3 x 10-6 cfs 

1 0.24 107 

2 0.27 380 

3 0.36 432 
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The system dynamics for such a configuration are easily expressed 

by the continuity relationships for each detention basin, which link 

the reservoir contents in time. 

Continuity Relationships: 

S3(k+1) = S3(k) + R3(k) 

(k=l, ... ,M) 

where there are also 

Initial Conditions: 

Sj(l), Qj(l), [[Q2(1)]' + [Q3(1)1'1' 

(j=l, ... ,N) 

and, 

Upper and Lower Bounds: 

o < S. (k) < S. 
-- J - Jmax 

o ~ QJ' (k) < Q. - Jmax 
(j=1,2,3; k=l, ... M) 

o < [Q.(k)]' < Q. - ] - Jmax 

O(k) ~ 0 

The general control problem for such a subbasin would be to 

(1) 

(2) 

(3) 

minimize the expected effects of overflows from the sewer system while 

satisfying as much as possible the interceptor capacity, Q;ax' for that 

subbasin. Such an objective has been formulated in the previous section 

as the total subbasin objective function. The problem, then, is writ-

ten 
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M 
Minimize L [w(k) (O(k))n - y(k)QI(k)] 

k=l 

k=l, ... ,M; j=I,2,3 

subject to: the continuity constraints, Equation (1); initial 

conditions, Equation (2); and limits on appropriate variables, 

Equation (3). 

C. INTERACTIVE STOCHASTIC OPTIMIZATION 

(4) 

Dynamic programming is a mathematical programming technique that 

can be valuable for solving sequential decision problems where the 

objective function and the constraints are nonlinear and/or when the 

solution space is nonconvex. The subbasin control problem belongs to 

this class of problems since it involves sequences of decisions in time 

and space. More important for this study, however, is that dynamic 

programming is valuable in some cases for solving certain linear prob-

lems when an approximate discretized solution is adequate. That is, 

LP will find exact solutions, whereas DP involves discretization of the 

variables, which may save computer time considerably. If the objective 

function can be framed as a series of separable terms, each term of 

which depends on at most one state variable, and the process dynamics 

can be described by a first-order Markovian relationship, then the 

problem may be solved as a one-dimensional problem despite the possible 

existence of many control variables. Furthermore, constraints do not 

add to the complexity of the problem, but rather often tend to reduce 

the computational load by eliminating the consideration of infeasible 

solutions. Figure IV-3 conceptually illustrates sequential decision 

problems of this type. 
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DECISION 1----1 t---------INPUTS 

ALTERED STATE 

DECISION 2---~ ------INPUTS 

. ALTERED STATE 

DECISION M TIME OR .----INPUTS 
----t SPACE M 

FINAL STATE 

Figure IV-3. Sequential Decision Problem. 

A general format for initial-value sequential decision problems 

solvable by dynamic programming is: 

N 
Min L f. (x.,u.) + ~(x~T+1) i=l 1 -1 -1 ~'4 

~i' ~i+1 

i=l, ... ,M 

where: ~1 = £ (given) 

h.(x.,u.) < 0 
-1 -1 -1 

(i=l, ... ,N) 

In the above formulation, ~i represents a vector of decision 

variables at stage i and ~i represents the vector of state var­

iables at stage i; however, stage may be defined in time or space. 

(5) 

(6) 
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The initial state xl is assumed given as some constant vector c. 

The effect of the decision vector on the subsequent state vector is 

while h.(x.,u.) 
-1 -1 -1 

represents constraints 

upon ~i and ~i in combination. Sets U and X simply specify 

the sets individually constraining the decisions and states considered. 

Associated with such sequential decision problems are recursive 

relations which enable an optimal solution to be found in a systematic 

way, thereby avoiding the necessity of searching through all possible 

sequences of decisions. Such a relationship in general form is [12]: 

where 

F.(x.) = min {f.(x.,u.) + F. lex. I)} 
J -J J -J -J J + -J + 

u. £ U. 
-J J 

h. (x. , u .) < 0 
-J -] -] -

FN+I(~+I) = ~(~+l) 

F. (x.) 
J -J 

is the optimal (or minimum) objective value for the 

(7) 

(8) 

sequential decision process, starting with decision point (stage) j 

and a known state vector x· at that stage. It will now be shown 
-J 

that the above terms have equivalent terms associated with the sub-

basin control problem: 

i 

x· -1 

In the above standard format, the index i signifies the 
~tage of the decision making process. For the control of 
the linked detention reservoirs, this can be either the 
particular time interval k in which the control decisions 
are made for all locations O~ the location of a particular 
detention reservoir for which decisions for all time inter­
vals are made. 

The state vector xi in the above formulation has direct 
counterparts in the subbasin problem; namely ~i' repre­
senting contents for all times at location i, O~ a vector 
S(k), representing contents for all locations at a parti­
cular time k. 
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g. 
-1 
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The control vector variable ~i' like the state vector, takes 
on slightly different meaning, depending on the definition 
of the state variable. Again, as with the states above, this 
variable is a vector of release decisions in a multi­
detention basin subbasin problem, represented as vectors ~i 
or ~(k). 

The terms in the objective function fi are expressed above 
as a function of the state and control vectors. In the sub­
basin problem, the objective function described previously 
is recalled as being a linear function of the downstream 
release QI(k), which is the subbasin release to the inter­
ceptor, and O(k) represents overflows. If a new QI(k) 
is defined as the previous QI(k) plus O(k), and O(k) is 
defined as, 

and O(k) = Q (k) Q I - lmax 

then the objective function can be expressed in terms of 
control variable QI(k). 

(9) 

The dynamic relationship £i relates the state vector at 
one stage to that at the next. If stages are chosen as 
steps in time, then the continuity equations as expressed 
earlier suffice. If, however, the stage is chosen as loca­
tion, different equations must be written relating the 
reservoirs in space. 

represent the sets of all possible state levels and control 
decisions, respectively. For the subbasin problem, they are 
upper and lower bounds on storage and release, respectively. 

The previous discussion has left open the question of which stage 

definition to use. In problems with many detention basins and rela-

tively few time periods, it is better to use location as stage and 

thereby reduce the dimensionality of the state vector, which would then 

extend in the time domain. The number of stages affects problem solu-

tion linearly, while the number of states has an exponential effect on 

solution time requirements. For subbasin analysis in general, it 

appears that the number of time periods will usually exceed the number 

of detention basins, so that time is best considered as stage. This 
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permits the retention of the original argument k as the stage 

indicator. That is 

~(k) = vector of all detention basin levels at time period or 
stage k within a particular subbasin 

Q(k) = vector of all release decisions at time or stage k within 
a particular subbasin. 

The criterion function for stage k is now easily defined as: 

and 

if Ql(k) > Ql max 

if Ql(k) < Ql - max 

The total objective function then becomes, 

M 
Min L fk(Ql(k)) 

k=l 
~(k) ~(k+l) 

k=l, ... ,M 

(10) 

(11) 

(12) 

The dynamic relationship relating the state vector at one stage to the 

state vector at the subsequent stage remains to be defined for the 

completion of the dynamic programming formulation. Its functional 

form in the no routing case is simple: 

~(k+l) = ](~(k), ~(k), ~(k)) (13) 

The actual form of the component functions, however, are dependent 

upon the subbasin configuration chosen for analysis, and if routing 

effects are considered. The continuity relationships developed earlier 
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for the example problem Equation (2) can be rewritten in the no routing 

case as: 

SlCk+l) = SICk) + RICk) + Q2Ck) + Q3Ck) - QlCk) - O(k) 

S2Ck+l) = S2Ck) + R2Ck) Q2(k) 

S3(k+l) = S3(k) + R3 (k) - Q3(k) 

(14) 

Again, redefining the downstream release decision Ql(k) as the sum 

of the release to treatment and the overflow amount, the first equation 

can be rewritten as: 

(15) 

This is a simple Markovian relationship well suited for dynamic 

programming. The recursive relation for the dynamic programming solu­

tion to the optimization problem can then be written (omitting the 

constraints on Q(k) to simplify the presentation) as: 

FkC~(k)) = Min [fkCQl(k)) + Fk+l(~(k+l))] 

~(k) 

(16) 

The inclusion of even simple routing, however, adds significantly 

to the problem size. Consider a simple routing in which the inflow to 

reservoir 1 from the upstream detention basins during time k is not 

simply Q2(k) + Q3(k) , but actually the weighted average of the 

releases at time k and the previous time k-l. The inflow into 

detention basin 3 would then be, 

(17) 

where, a1 + a2 = 1 
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The dynamic relationship for the first detention basin is therefore 

(18) 

or, in general, for the entire subbasin 

~(k+l) = Bk(~(k), ~(k), ~(k-l), R(k)) (19) 

This non-Markovian relationship spanning three time periods complicates 

matters. In order to overcome the linking of three time periods, an 

added state vector is defined. 

fCk) ~ ~(k-l) (20) 

This enables the creation of two first-order Markovian dynamic 

relationships replacing the previous relationship. They take the form, 

~(k+l) = ~(~(k), ~(k), fCk), ~(k)) (21) 

fCk+l) = ~(k) 

The dimensionality of the problem, therefore, grows with even simple 

linear routing techniques. As demonstrated here, a new state variable 

is added for each routed flow and for each step back in time the 

routing includes. The recursive relation for such a formulation is 

therefore written as: 

FkC~(k), ~(k)) = Min [fkCQ(k) + Fk+lC~(k+l), P(k+l))] (22) 

~(k) 

The consistent simplicity of the control terms, despite the 

growing list of state variables, suggests the application of some form 
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of incremental dynamic programming [5] with its requirement of 4Y4tem 

-LnveJLtabUA..ty. That is, there must exist functions ,[-1 such that 

~(k) = Bkl (§.(k), §.(k+l), f.(k), R(k)) (23) 

The recursive relation in this case would take the form: 

Fk(§.(k), f.(k)) = Min [fk(~(k) + Fk+l(§.(k+l) f.(k+l))] (24) 

§.(k+l) 

Without this, time consuming successive approximation procedures 

are required. Such a formulation, however, depends on the existence 

and uniqueness of ,[-1 Flow hydraulics indicate that -1 
£ is often 

not easily defined, since it includes upstream routing or the recon-

struction of an upstream hydrograph from its downstream counterparts. 

Thus, incremental dynamic programming is difficult to apply when rout-

ing is included. 

Heidare, et al., [6] have applied a more general form of 

incremental dynamic programming called ~~ete dl66~ential dynaml~ 

p~gnamming to a linked reservoir problem. They overcome the inverta-

bility problem by neglecting routing in their demonstration problem 

while suggesting an iterative successive approximation method for 

cases where invertibility does not exist. 

The dimension of the resultant DP subbasin problems formulated 

to solve this sequential decision problem has remained a problematic 

area for on-line considerations. The ~e 06 dimen4~onatity has been 

approached by attempts to further decompose the subbasin problems into 

separate one-dimensional problems through use of orthogonal polynom-

ials which approximate the upstream releases. A master or out~ opti-

mization problem adjusts the coefficients of the polynomials until 
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convergence to the separately derived control policies (releases) is 

achieved. This nlow ~ojection ~eehnlque suggested by Labadie et al., 

[7] is, however, still too time consuming for on-line work. 

C.I Aggregated Subbasin Solution 

Various techniques are available for disassociating complex 

systems into sets of smaller problems. The two approaches used in 

this work are decomposition and aggregation. They differ basically 

in the orientation and purpose of the subproblems. Decomposition has 

been successfully applied when a means exists to decouple the system 

elements, thereby enabling individual solutions to subproblems. Such 

a means exists when considering subbasin interaction based entirely 

upon the interceptor constraint. Such considerations led to the 

master problem developed in the previous chapter. Within the indivi­

dual subbasins, however, there is an intimate relationship between 

all the control and state variable. No efficient means has been found 

for decoupling the individual elements of such systems. Aggregation, 

however, provides a way for solving increasingly more detailed prob­

lems by using the solution of simpler less detailed system models as 

overall solution envelopes. 

Bradford [8] applied an aggregation technique, based in part on 

the theoretical work of Aoki [9], for operation of the entire system 

of reservoirs associated with the San Francisco Master Plan. Aoki 

provides a mathematical basis for the intuitively clear concept of 

solving more finely detailed problems based on the solutions of higher 

level agg~egated problems. Bradford applied aggregation repeatedly in 

a multi-level procedure for determining the control for this large 

system of reservoirs considered here. The storage capacities of 
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detention basins in localized areas were aggregated to create larger 

conceptual detention basins for which controls were more easily derived. 

Mathematically, the initial step of aggregation is straightforward. 

Letting ~(k) be the complete vector of state values or detention 

reservoir contents at time k, with a dimension N, the aggregation is 

achieved by multiplying this vector by a constant matrix C of dimen­

sion LxN, where L is the dimension of the aggregated state vector, 

represented by ~(k). Therefore: 

~(k) = C ~(k) (2S) 

For example, aggregating a six reservoir system illustrated in 

Figure IV-4 into a three aggregated reservoir system is accomplished 

by defining Cas, 

10100 0 

C ~ 0 I 000 0 

000 I 1 1 

Multiplying the six element state vector ~(k) results 

element aggregated state vector ~(k) . That is, 

Zl(k) Sl (k) + S3(k) 

~(k) = Z2(k) = S2(k) 

Z3(k) S4(k) + SS(k) + S6(k) 

(26) 

in the three 

(27) 

Note that one of the aggregated systems contains only one of the 

original system components while another contains three. The choice 

of the aggregation matrix C would be determined by the system con­

figuration as well as the strategy anticipated for the disaggregation 
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of the solution. In this example, once a control policy is derived 

for each of the aggregated detention basins, an additional strategy 

must be developed for deriving controls for the actual distributed 

(disaggregated) system components if, of course, they have more than 

one element. 

Dynamic programming was chosen for the overall subbasin analysis 

problem since a one detention basin stochastic DP problem is readily 

solvable on-line. This requires the complete aggregation of subbasin 

components into a single conceptual reservoir. 

DISTRIBUTED SYSTEM WITH CONCEPTUAL AGGREGATIONS 

,----1 
J S2(k) 
I 
L ___ .J 

AGGREGATED SYSTEM 

Figure IV-4. Aggregation of System Components. 
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This approximation, although rough, is justified by its use for 

interaction or dialogue with the master control problem. The detailed 

solution for the component releases is achieved by the use of an addi-

tiona1 optimization after the interactive phase is completed. In the 

example above, the needed aggregation is illustrated by using a C 

matrix defined as, 

C ~ [1 1 1 1 1 1] 

Therefore, only one aggregated detention basin results, which is 

synonymous with the entire subbasin. Its state and control, after 

again dropping the subbasin designation superscript, are defined by 

S(k) ~ 

(28) 

where 

j = index on particular detention basin within the subbasin 

N = number of detention basins in the subbasin 

A dynamic programming solution to this aggregated problem is easily 

carried out. Since routing effects between the detention basins are 

neglected in this aggregation, the entire problem is simply a one-

dimensional DP that is identical to the previous developments, with 

the vector notation dropped. The objective function is identical, 

being simply 



M 
Minimize L fk(Q(k)) 

k=l 

S(k+l), Q(k) 

k=l, ... ,M 

Subject to 
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a < Q(k) < Qi ,k=l, ... ,M - - max 

The dynamic relation becomes simply 

(29) 

S(k+l) = S(k) - Q(k) + R(k), k=l, ... ,M (30) 

since all upstream effects are contained in the solution. And, the 

recursive relation is 

Fk(S(k)) = Min [fk(Q(k)) + Fk+l(S(k+l))] 

Q(k) 

(31) 

The solution of this one-dimensional dynamic programming problem 

yields the sum of the weighted overflows and the optimal 

subbasin release pattern Q*i(~ax,k) i for a given value of 0- . The 'max 

superscript indicating the particular subbasin has been restored to 

emphasize the relationship between this subbasin problem and the decom-

position approach discussed in the previous chapter. 

The aggregated solution assumes instant availability of upstream 

inflows. This then eliminates the advantage of in-system delays of 

flows caused by upstream storage and routing effects. The maximum 

release from the actual system will, therefore, be less than or equal 

to that maximum release derived for the aggregated system. The actual 

solution, then, of the total subbasin problem will be within the 

envelope of the aggregated subbasin solution described above. 

The derivation of the actual system controls for the aggregated 

problem is addressed in a following section. 



106 

C.2 Aggregated Stochastic Dynamic Programming 

In the previous formulations describing dynamic programming 

approaches to subbasin analyses, the risk inherent in a particular 

control decision has not been included. The dynamic programming solu-

tion to the detailed subbasin problem has been shown to be unsuitable 

for on-line use due to the excessive time requirement implied by the 

dimensionality of the resultant problem. The inclusion of risk would 

tend to accentuate this problem. 

The smaller, aggregated or lumped parameter model, however, is 

well suited for on-line use. Simple considerations of risk can, 

therefore, be introduced into this model. 

The original subbasin objective was to minimize the expected 

value of weighted releases (i.e., throughflows and overflows). This 

is simply included in the DP objective function for the aggregated 

problem as 

M 
Min E [I fk(Q(k))] 

Q(k), S(k+I)R(k) k=l 

k=I, ... ,M 

The recursion relation is 

= Min E [fk(Q(k)) + Fk+I(S(k+I))] 
Q(k) R(k) 

(32) 

(33) 

The expectation is now seen to be taken over the various values of a 

particular random component of the inflow series. The random compo-

nents of the inflow series have thereby been considered independent. 

It has been assumed that the forecasting of inflows has incorporated 

the correlation in time and space between the various inflows. With 
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the basic correlative structure between the random variables thereby 

built into the forecast, it has been further assumed that the residual 

randomness in the individual inflows is independent. 

The expectation can be explicitly written in terms of the 

probabilities of the possible inflow variations around the forecasted 

value. 

where 

m . 
Fk(S(k)) = Min I [P.(RJ(k))(fk(Q(k) + Fk+l(S(k+l))] (34) 

Q(k) j=l J 

j = index on possible discrete outcomes of the random variable 
R(k) 

m = number of discretizations used in probability distributions 
describing random variable R(k) 

P. = probability of the inflow being within the discretized range 
J of RJ (k) 

The probability distribution has been assumed known for the random 

variables at each location and time. The description of the probabil-

ity distribution is based upon the assumed accuracy of the forecast. 

For example, if a particular forecasted value is only assumed to be 

within 50 percent of the actual value, then a flat (uniform) distribu-

tion between 1/2 and 1-1/2 of the forecasted value would be a suitable 

distribution describing the probabilities. It can be seen that the 

criterion function term at stage k, for a known state and selected 

release, is independent of the random variable R(k). The resultant 

state is not, however, independent of R(k), being related through the 

dynamic relationship. That is, 

S(k+l) = S(k) - Q(k) + R(k) (35) 
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Therefore, since the expected value of the sum of a random term and a 

deterministic term is simply the expected value of the random term added 

to the deterministic term, Equation (7) can be rewritten as: 

Fk(S(k)) = Min [fk(Q(k)) + E Fk+l (S(k+l))] 
Q(k) R(k) 

(36) 

* Such a formulation will only yield optimal Q (1), assuming S(l) is 

* given. The optimal Q (k), k=2, ... ,M, cannot be determined because 

succeeding values of S(k), k=2, ..• ,M, are not known, a priori. That 

* is, even though optimal Q (k) have been stored as a function of S(k), 

the values of S(k) for k=2, ... ,M are only known probabilistically. 

The master control problem determining oi for each subbasin must, 'max 

however, check the downstream summation of flows for all remaining 

time periods. Consequently, a tentative control decision for all remain-

ing times k=2, ... ,M must be made within the subbasin analyses. These 

tentative decisions can be seen as very short range planning tools and 

need not be the actual controls which will be effected. The necessary 

intermediate states can all be observed prior to choosing or applying 

any actual control. These tentative subsequent controls can be calcu-

lated by using the expected value of the subsequent states. 

For a particular intermediate stage, the expected resultant state 

may be written as 

or 

E[S(k+l)] = E [S(k) - Q(k) + R(k)] 
R(k) 

E[S(k+I)] = S(k) - Q(k) + E[R(k)] 

(37) 

(38) 
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* Thus, having computed Q (1) by the stochastic DP algorithm, and 

* stored all Q (k) policies as a function of S(k), for k=2, ... ,M, 

* the value of Q (k) associated with E[S(k)] (k=2, ... ,M) is found 

using Equation (38) and these stored optimal policies. Even though 

* these Q (k), k=2, ... ,M, are not stochastically optimal in the true 

sense, they serve to aid the master controller in allocating treatment 

capacity, in anticipation of forecasted inflows. They are, of course, 

updated as the stochastic control process continues. The algorithm 

developed to solve this stochastic DP problem is illustrated in 

Figure IV-S. 

C.3 A Note on Simple Operating Rules 

The subbasin control policy obtained by the application of 

dynamic programming may at times be identical to the policy derived 

using simple operating rules. If the credit on throughflows and the 

penalty on overflows are time invariant, in addition to the exponent 

n used in the subbasin criterion being equal to one, then a simple 

operating rule can replace the aggregated stochastic DP. In this case, 

anticipation of inflows carries no advantage, and reactive or myopic 

policies using such operating rules work just as well as adaptive 

policies. 

Consider any aggregated subbasin (we can, therefore, delete the 

superscript i) with a forecasted (or measured) inflow sequence 

R(k), k=l, ... ,M. If the credit for throughflow is time invariant and 

the total penalty for overflows is linear with overflow, then the 

optimal decision at any decision point is to release as much as 

possible until i 
~ax is reached. That is, 
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SYSTEM DATA DEFINE PROBLEM PARAMETERS 
FROM MASTER ----I: ... FOR PARTICULAR SUBBASIN i 
CONTROL ALGORITHM 

MASTER OBTAIN Qi FROM MASTER 
CONTROL --------1 max 
PROBLEM CONTROL PROBLEM 

DYNAMIC 
PROGRMf·fING 
SECTION 

DEFINITION 
OF CONTROL 
SEQUENCE 

MASTER 
CONTROL 
PROBLEM 

--

~-----------~.--------------~ 
INITIALIZE OPTIMAL 
RETURN FUNCTION F FOR 
ALL TIME PERIODS AND STATES 

t 
--.., FOR EACH TIME PERIOD k 

i.e., k=I, ... ,M 

t 
FOR EACH POSSIBLE STATE 

rI'- LEVEL Si (k) 

FIND OPTIMAL CONTROL 
Q*i(k) 

SUCH THAT, 

Fk(Si(k)) = ~IN E[f(Qi(k)) + Fk+1(Si(k+l))] 
Ql(k) 

r 

FOR EACH TIME PERIOD 

DERIVE CONTROLS FOR CURRENT STATE 

SiCk) AND FUTURE EXPECTED STATES 

• 
RETURN OBJECTIVE FUNCTION VALUE 
AND TENTATIVE CONTROL SEQUENCE TO 
MASTER CONTROL PROBLEM 

i.e., O*icoi ) 'max 
and 

Figure IV-S. Stochastic DP Algorithm for Subbasin Problems 
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* Q (k) = 0 'max 

* 
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if S(k) + R(k) > 0 - 'max 

Q (k) = S(k) + R(k) 

if S(k) + R(k) < 0 'max 

* S(k+l) = S(k) - Q (k) + R(k) 

S(l) given. 

When credits and penalties are time invariant, storage is used only 

(39) 

(40) 

when overflows are imminent. Consequently, overflows occur only when 

storage is exhausted. That is, 

* o (k) = 0 

if Smax - S(k) + ~ax ~ R(k) (41) 

where Smax - S(k) represents the remaining storage capacity; and, 

* o (k) = R(k) - ~ax - (Smax - S(k)) (42) 

if Smax - S(k) + Qmax < R(k) 

Such simple control rules, which treat each time period 

independently, are equally suited for: the short range planning of 

controls based upon forecasted inflow values, or real-time, on-line 

control based upon actual data. 

However, time varying credits and penalties, although not used 

in the demonstration, are anticipated in the proposed system. In 

addition, it may ultimately be decided that surges of overflows are 

more dangerous than a moderated level over a longer time. Consequently, 
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n may be greater than one. The DP algorithm is well suited· for 

solving the subproblems with time varying weighting factors and a 

non-linear objective function. 

D. LINEAR PROGRAMMING APPROACHES TO DETAILED SUBBASIN SOLUTIONS 

The subbasin technique discussed in the previous section results 

only in the overall release pattern for the subbasin. The aggregated 

or lumped dynamic programming approach was chosen for the on-line 

interactive portion of the subbasin analysis because of its speed. 

Once, however, the master problem in communication with the aggregated 

problems selects 
*. 1 

~ax for each subbasin, then the individual controls 

for each detention basin must be derived. The techniques capable of 

working out these desired detention basin controls are identical to 

the techniques originally considered for the interactive role. Dynamic 

programming was, however, judged infeasible for the detailed subbasin 

analysis due to the resultant dimensionality of the multi-detention 

basin DP formulations. Alternatively, LP techniques with the inclusion 

of risk appear adequate for the noninteractive role. 

The passive role of the detailed solution may be viewed in 

several ways: 

1. The desired *i 
~ax for a subbasin can be used as a constraint 

on the downstream releases for the solution of the complete 

subbasin problem. 

2. The selected subbasin controls Q*i(~!x,k) derived in the 

aggregated problem for the given *i 
~ax can be used as upper 

bounds for the controls to be derived in the detailed solu-

tiona Or, 
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3. The selected subbasin controls derived in the aggregated 

problem can be assumed fixed as constants and consequently 

are no longer subbasin variables. 

Figure IV-6 illustrates these three alternatives. In this figure, 

subscript 1 indicates the furthest downstream control point in a 

particular subbasin i while the subscript j refers to upstream 

control points in subbasin i. Releases from this control point enter 

the interceptor. The number of detention basins in a particular sub-

basin is indicated by Ni • 

Each of these methods, however, modifies the needed LP problem 

only slightly. Modifications of the basic LP formulation are discussed 

following the general LP development for detailed subbasin control. 

LUMPED STATE DP o*i DETAILED PROBLEM TO SYSTEM 
SUBBASIN PROBLEM !-- 'max --.... INCORPORATING -*i . *. Q. (k) 

Q1
1

(k) < 0 1 k=l, ..• ,M J k=l, ... ,M - 'max . 
J=1, ••• ,N. 

1 

LUMPED STATE DP ~i DETAILED PROBL~1 
SUBBASIN PROBLEM *_:~ INCORPORATING 

i'-...Q 1 (0 1 k) . * * 
'max' i_ Q~(k) ~ Q (~ax,k) 

k=l, ... ,M 

TO SYSTEM 
-*. 

Qj1(k) 
k=l, ... ,M 
j=l, •.• ,Ni 

LUMPED STATE DP ~i DETAILED PROBLEM TO SYSTEM 
SUB BAS IN PROBLEM 1---*. a!. USES Q: i (k) 

Q 1C~~x,k)-. QiCk) = Q*iC~!x,k) J k=l, ... ,M 

k 1 M j=l, ... ,N. = , ..• , *. 1 
~ _____________ Q11 (k) 

k=l, •.. ,M 
Figure IV-6. Alternative Relationships between Aggregated 

and Detailed Problems. 
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0.1 Deterministic Linear Programming Formulations 

The problem presented in the previous sections can be formulated 

in a manner which leads directly to a set of linear equations solvable 

by the well-known simplex method for linear programming problems, and 

its variant. 

The linear programming approaches explored here were originally 

derived in [10] and [11]. The basic linear programming (LP) problem in 

standard form can be expressed as: 

Minimi ze z (.!) = £. !. 

Subject to A x = b (43) 

and x > 0 

where 

o 

o 

A = x = b = o = (44 ) 

o 

and 

For the subbasin analysis desired, the problem must be expressed in 

this form for application of linear programming (LP) techniques. 

The variables in the LP formulation include the needed controls 

Qj(k) as well as the states or contents of each detention basin 

S.(k). The subscript j indicates a particular detention basin 
J 
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within the subbasin area which is being considered as an example in 

this development. Overflows can be considered at each detention basin 

or only at the downstream control point where flows enter the intercep-

tor. It was assumed for the purpose of this work that the subbasins 

were adequate for deferring any overflows to the downstream interceptor 

bypass. Overflows at this location are simply designated as O(k). As 

this development could be for any subbasin, the superscripts indicating 

the particular subbasin have been deleted. Each of these variables 

must be represented for each time period modeled. The vector of var-

iables for the LP formulations is therefore represented by (with super-

script T denoting transpose) 

x = [Q.(k), S.(k), O(k): j=l, ... ,N; k=l, ... ,M]T 
- J J 

(45) 

The state and control variables for each time period and location 

have upper limits. That is, 

Qj (k) ~ Qjmax } 

S. (k) < S. J - Jmax 

for j=I, ... ,N; k=I, ••. ,M (46) 

The overflow variable may also have an upper limit expressed as a 

constraint. Although conceptually there is no limit to overflow, there 

may be an upper limit on the bypass conveyance. Using this as a con-

straint insures the distribution through time of any needed overflows 

which would otherwise be too large for the overflow conveyance. Such 

an event, although unlikely, would have disproportionally greater 

environmental impacts and is therefore modeled as infeasible. Each of 

the above constraints can be expressed in equality form by the addition 
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of slack variables which represent the difference between the constraint 

value and the variable value. The top half of the A matrix desig-

nated as At can therefore be represented as 

A'x = b' (47) 

where b' is the vector of values representing the constraining values 

of the variables. 

In a similar manner, the continuity relationships can be written 

as constraints. Rewriting Equation (1) with the inflows on the right 

side, results in a formulation which can be expressed in matrix form 

as: 

D x = R (48) 

where R is a vector of all inflows for all locations and times. That 

is, 

R ~ [R.(k): j=I, ... ,N; k=I, ... ,M]T 
- J 

(49) 

D is a matrix of constants representing the continuity relationships. 

D ~n6nO~ the selected values of controls, states and overflows 

for each time period into inflows consequent from mass balance consid-

erations. These values are constrained to equal the particular 

forecasted Rj(k) to which they correspond. 

If some form of linear routing is included, the coefficients which 

represent the fraction of each previous upstream release that contrib-

utes to the particular downstream control release are included in D. 

The objective function, Equation (4), is also written in terms 

of decision variables and constants and can, hence, also be written 

in vector form as 
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z(!J = £!. (50) 

where c is a vector containing the values of w(k) and y(k) for 

each time period. Considering the stochastic nature of the problem, 

this is written as 

z (x) = E [£ !.] (51) 

In deterministic solutions, however, the first form is used. The 

entire subbasin problem can now be written as 

Minimize z (!J 

Subject to A'x = b 

and D x = R 

(52) 

The At and D matrices have been developed separately here to 

facilitate the exposition of the linear programming under uncertainty 

technique which follows the discussion of the deterministic approaches 

to the subbasin problem. If the forecasted inflow sequence can be 

assumed a deterministic variable, the two constraint equations can be 

combined, resulting in the desired standard LP form. That is, in the 

deterministic case, let 

A = C] (53) 

and 

(54) 



118 

The constraints therefore can be written as: 

A x = b (55) 

The size of the resultant LP solutions for subbasin analysis becomes 

apparent by considering the chosen example subbasin with three deten­

tion basins modeled for ten time periods. The three dynamic equations 

developed in the previous section for the example subbasin can be 

written explicitly for each time period. This results in 30 equations 

with 70 variables representing the system continuity. If some form of 

linear routing scheme is considered, it can be incorporated, as 

described earlier, directly into these continuity relationships. The 

30 equations derived for the modeled system are illustrated as lines 

72 through 101 in Table IV-2, which illustrates the total LP problem 

format. Initial states, assumed zero, are implicit in these equations. 

In addition to these dynamic equations, upper bounds for each 

original variable (i.e., Qj(k), Sj(k), j=I,2,3 and O(k) for all 

k=l, ... ,IO) must be explicitly represented for each time period. This 

creates 70 additional equations. These 70 equations are represented 

in Table IV-2 as lines 2 through 71. The objective function is repre­

sented as the first line where the w(k) and y(k) terms are weight­

ing factors on overflows and throughflows respectively. The original 

system variables are tabulated across the top of the matrix chart along 

with the slack variables. The upper bounds for the constraints along 

with the system inflows are represented in the right-hand column as 

the b vector. 

Solving this problem using standard LP codes requires the use of 

the deterministic objective function Equation (50) and an a priori 

knowledge of the inflows. The deterministic use of the forecasted 
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TABLE IV-2 

EXAMPLE SUBBASIN IN STANDARD LP FORMAT FOR SOLUTION USING SIMPLEX 
DETAILED COEFFICIENT 

OBJECTIVE 
FUNCTION 

70 UPPER BOUND 
CONSTRAINTS 

30 CONTINUITY 
CONSTRAINTS 

I I 

Time Period 
kal 

yell well 

-I 1 I 

-1 I I 1 

-I 

-1 

MATRIX 

2 ••• 

y (2) w(2) 

o 
[0] [0] 

1 1 

-1 1 1 [01 

-1 -1 1 I 1 

'. 
[01 [0] 

[OJ [OJ 

10 .70 
0' :;- 0' :;- 0' 0':;- Slack ~ 
=.. =.. =.. =.. =.. =.. =..Variable! J 

.., .., N N .... .... ... 
O'r./)O'r./)O'Or./) 

y(lO) w(IO) 

o 

[0] 

[0] 

[0] 

1 1 

-1 1 1 

-1 1 1 1 

I 

I 
Qmax3 

Smax3 

1\ Qmax2 
Smax2 

Qmax1 

°maxl 

Smaxl 

R
3

(I) 

[0] R
2

(1) 

RI (1) 

R
3

(2) 

(0) R2 (2) 

R
I

(2) 

[OJ 

R3 (10) 

[0] R
2

(10) 

Rl (10) 
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inflows implies an important assumption. It is assumed that the 

optimal solution based upon the expected inflow sequence (i.e., the 

forecasted inflows) is equivalent to the solution which minimizes the 

expected value of the objective function. This assumption is discussed 

in the section to follow where control strategies which incorporate 

this assumption are compared to ones derived without it. 

D.2 Compacted LP Techniques 

The LP problem size for a typical subbasin tends to be large. 

For the example problem presented in the preceding section, the matrix 

of coefficients contained 14,000 elements. The modeling of larger 

subbasins or more time periods quickly expands this storage require-

mente The selection of the total number of time discretizations (M) 

is the most obvious source of problem size once the number of reser-

voirs (N) is established for a particular subbasin. In addition, 

the objective function contains a term describing the overflow and 

throughflow for each time and location. The unknowns in the problem 

are the releases and the states (i.e., detention basin contents) for 

each location and time period; as well as the overflow from the sub-

basin for each period. Therefore, the total number of variables in 

the LP is calculated as follows: 

Number of State Variables for Each Period N 
+ Number of Control Variables for Each Period +N 
+ Number of Overflow Variables for Each Period + 1 

= Total Number of Variables for Each Period 2N + 1 

x Number of Time Periods xM 

= Total Number of Variables (2N+l) x M (56) 

The total number of constraints can be calculated in a similar 

manner. 
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Number of Variables Needing Upperbound 
Constraints (all variables) 

+ Number of Continuity Relationships 
as Constraints 

= Total Number of System Constraints 

(2N+l) x M 

+ N x M 

(3N+l) x M (57) 

Considering the example subbasin with three reservoirs discussed 

previously illustrates these points. We have in the example problem, 

M = 10 and N = 3 

Applying Equation (56) above for the total number of variables yields 

70, while Equation (57) describing constraints yields 100. Adding an 

equivalent number of slack variables results in the 140 variables 

defined earlier, and an A matrix with dimensions 100 x 140. 

These relationships help in understanding the dimensionality 

problem associated with linear progra~ing solutions, and in devising 

ways to overcome the problem. Considering for on-line analysis a 6-hour 

storm for which controls are desired every 15 minutes demonstrates how 

not uncommon problems can get out of hand. Such a problem with 24 

control periods (i.e., M = 24) results in an A matrix with over 

40,000 elements. 

It has probably been observed that the vast majority of the 

elements in these A matrices are zero values. This feature leads to 

the suggestion of utilizing techniques which capitalize upon this 

feature and more efficiently use computer space for solving large LP 

problems. Product form LP and upper bounding codes, which eliminate 

much of the storage requirements, still require large amounts of com-

puter space and often trade off computer space for computer time. In 

the on-line real-time problem considered here, neither of these can 
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be spared and additional techniques are, therefore, sought which reduce 

the entire problem to a size manageable on-line within, possibly, a 

mini-computer. 

In efforts to reduce the problem size without significantly 

compromising the solution, the following simplifications are possible. 

They incorporate aggregations of time periods, control intervals, total 

reservoirs, or reservoir states. 

1. The size of the matrix of constraint coefficients is directly 
proportional to the square of the number of time increments 
(M). That is, 

(3NM + M) x (2NM + M) = M2(6N2 + 5N + 1) (58) 

Constraints x Variables 

Hence, the most direct simplification is to increase the 
length of the time increments and therefore reduce the number 
of increments, M. 

2. A less direct simplification produces a smoother control by 
decreasing the number of control intervals while maintaining 
the number of time intervals. In this technique, a control 
is assumed to be constant for two or more periods of time. 
This technique permits the a priori assignment of control 
sensitivity by permitting more control intervals per unit of 
time during certain phases of the event and less during others. 

Aggregation of controls is simply carried out by assuming: 
Qi(k+l) = Qi(k) for L different values of k. The number 
of original variables is, therefore, decreased by L. The 
size of the matrix of coefficients is then equal to: 

(Total Number of Original Constraints - L) 

x (Total Number of Original Variables - L) 

or 

[(2N + 1) x M - L] x [(3N + 1) x M - L] (59) 

which is quadratic in L. In this manner, a decrease in the 
number of control intervals decreases total problem size, but 
not as quickly as does the total number of time intervals 
discussed above. 
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3. Aggregations of reservoirs with the consequent aggregation of 
controls (in space, not time) has an effect similar to reduc­
tions in the number of time intervals. This technique was 
discussed in the previous section on OP approaches and was 
chosen for use within the interactive portion of subbasin 
analysis. In the logical limit, a one-reservoir problem is 
rather small. That is, considering Equation (58) it is 
obvious that when N = 1, the A matrix decreases in size to 
12M2. 

4. Aggregations of state values, with the maintenance of 
independent controls for the separate detention basins has 
an effect upon the problem size which is similar to the effect 
of control aggregations. The number of state values aggre­
gated in time or space decreases the size of the coefficient 
matrix in a way fully described by Equation (56) where L 
represents the total number of state variables removed from 
the formulation. 

Aggregation of states in time is simply carried out by 
assuming: Si(k+l) = SiCk) for various values of k. Aggre­
gations in space assume: SiCk) = a x Sj(k) for selected 
values of i and j. Where 'at is a constant valued ratio 
relating the state at one location to another. Once such 
dependence is established between state values, one can be 
substituted for the other, reducing the number of variables 
to be explicitly represented in the formulation. 

The aggregation of states in space achieved by assuming a constant 

valued ratio between the state values of the various detention basins 

within a subbasin was selected for further considerations for two rea-

sons. The detention basins within the San Francisco system are sized 

equally proportionally to their respective drainage areas, which sug-

gests their equally proportional use. And, the locally defined subbasin 

areas are small enough that the assumption of uniform rainfall over the 

entire basin, is acceptable. 

To gain insight into the effect of these aggregation techniques 

upon the attainment of the system objectives, the example subbasin 

problem was solved considering two different storm inflow sequences 

and three levels of state aggregation. 
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The two storms differed significantly. The first assumed uniform 

rain over the entire subbasin resulting in system inflows equally 

proportional to the detention basin sizes. The second storm assumed 

inflows which were not equally proportional to the drainage areas with­

in the subbasin. 

The three levels of aggregation were none (i.e., the full problem), 

state aggregation only (i.e., independent controls), and total state 

and control aggregation (i.e., lumped ~et~). 

The results of this experiment indicated that a totally lumped 

p~amet~ problem can be expected to result in the optimal solution 

only if the inflows are equally proportional to the detention basin 

capacities. It was observed that with uniform inflows, all three 

techniques resulted in the same controls. The distributed control 

problem with the distributed storm (i.e., nonuniform inflows) yielded 

an equivalent, though different solution than the full problem, while 

the totally aggregated problem yielded an inferior policy. Figure IV-7 

illustrates these equivalent but different solutions which resulted in 

a smoother control policy for the lumped state problem. 

It appears then that the use of a totally lumped parameter 

subbasin solution strategy is adequate for use within on-line work if 

and only if the assumption of locally uniform rain is made. 

The need for drastic reductions in subbasin problem size has been 

reduced by the solution framework chosen in this work. The additional 

time and storage requirements imposed by the use of stochastic LP 

techniques discussed in the following sections, however, maintain the 

importance of such reductions. Time constraints upon the solution for 

the actual detention basin controls (i.e., the detailed problem) are 
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Lumped state control policies 

Distributed state control policies (full problem) 

Q;Ck) 
[1] 

* Q2(k) 
[1] 

* QI(k) 
[ 1 ]!-Ct~:2t 

0.06 

~­
I 

-

0.06 

Detention Basin 
#3 

0.07 

Detention Basin 
#2 

Detention Basin 
#1 

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 

NOTE: [1] values indicate maximum releases in ft 3x10- 6 

over 20 minute control intervals. 

Figure IV-7. Comparison between Full Problem Control Policies 
and Lumped State Control Policies. 

relieved by the noninteractive mode of the detailed solution algorithm 

and by the possibility of distributed computer power which would enable 

parallel subbasin solutions. Computer storage requirements, however, 

remain problematic. The availability of computer power at the various 

optimization levels determines the degree of problem size reduction 

ultimately needed. 

D.3 Linear Programming with Risk and Uncertainty 

Thus far, the linear programming techniques developed have assumed 

that the use of the forecasted inflow values within a determjnistic 

optimization framework were sufficient for the derivation of control 

policies. These forecasted inflow sequences, the expected values of 

complexly related random variables, are however only imperfectly known. 
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An adequate consideration of the uncertainties involved in these 

forecasts could result in operating policies which more closely 

achieve the goal of minimizing the expected impact upon the environ­

ment. The following chapter describes how an on-line forecast of these 

inflow sequences is made, however, it is the subbasin analysis which 

must take into account the risk of these forecasts. It has been 

pointed out that the uncertainty of a forecast increases as the time 

in the future to which it applies increases. Considering the discrete 

forecasts used in this development, this increasing uncertainty can be 

represented as illustrated in Figure IV-B, in which the distributions 

assumed to describe this uncertainty are seen to flatten out with 

increasing variance as the forecast moves further into the future. 

It is desired then, in light of the uncertainty, to develop 

operating policies which, while addressing this uncertainty, minimize 

the risk inherent in the selected policy. That is, a trade-off has to 

be made between policies which achieve to a lower degree the system 

objectives, but are reliable and can be counted upon to perform at this 

level for a wide variety of events, versus policies which achieve a 

high degree of the system objectives, but for only a narrow range of 

possible events. 

The development in this section assumes that only the probability 

distributions are known for each inflow at each point in time, and 

demonstrates how these probability distributions may be incorporated 

into the optimization, replacing the expected inflow values used in the 

previous section. The process of controlling this system, in light of 

the uncertainty inherent in the forecasts and the risk involved, may 

be called a dlh~ete 4~oeha6tie p~ee64. Bellman [12] has defined the 
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Figure IV-B. Increasing Prediction Uncertainty. 

term fuCJtete .6tOc..hMtic.. pll.oc..e6.6 in which discrete "signifies a process 

in which the transformations occur at a finite, or, at worst, enumerable 

set of time," and where stochastic implies that a decision "determines 

not a unique outcome, but a set of possible outcomes." This can be 

extended to multistage processes in which decisions are to be made at 

various points within the ongoing process. It follows that given an 

initial state of the subbasin where an initial decision is made con-

cerning controls, the resultant state is a stochastic state, with a 

known range of values. The range of values in subbasin problem is 

determined by the inflows. Bellman continued to differentiate between 

two classes of ~CJtete .6toehMtie pll.oee6.6e6. The first class is that 

type of process for which the initial state at each decision stage is 

known. That is, although the resultant state is a stochastic variable, 

it is assumed that it will be shortly defined and each subsequent 

decision will in turn have known initial state conditions. The second 

class which Bellman identifies are those in which the state of the 

system is only imperfectly known at each stage of the process. This 
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more complicated second class contains the subbasin problem developed 

herein, once the inflow is treated as a stochastic variable. 

Wets [13] has developed an algorithm for solving linear 

programming problems with stochastic constraints known as LPUU, Linear 

Programming Under Uncertainty. It can be applied directly to the 

discrete stochastic process described by the subbasin problem as the 

transformation from one state to the next can be expressed as a con-

straint containing a stochastic variable. It addresses the complete 

problem in linear programming under certainty in which the risk 

involved is included by the use of penalty terms for errors in policy 

decisions, and in which the stochastic nature of the continuity 

constraints is considered. Wets presents the standard form of the 

two stage linear program as: 

Minimize 

Subject to Ax = b 

1
++ 

Dx + I. - II. =! (60) 

where 

A is a matrix m x n 

D is a matrix m x n 

R is a random vector (with a continuous distribution function) 

E is the statistical expectation 

+ y and y 
values for 

are the errors implied by the selection of a set of 
x which can be represented as: 

Dx (61) 
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The above equation simply relates the fact that the error term is a 

+ vector, some parts of which are positive r and some are negative 

r. Disaggregated into two equal dimensional vectors with positively 

signed components in mutually exclusive locations the penalty for error 

can be assigned according to the individual sense of the error components. 

That is, 

+ + 
q r + q r = error penalty function 

where 

+ + 
~ = penalty vector for under anticipating inflow by amount ~ 

~ = penalty vector for over anticipating inflow by amount r 
The development also requires the following definition and assumptions: 

Define RO = Dx 

Assume: 

(1) The initial problem, Equation 60, is solvable 

(2) 

(3) 

+ -
~ + ~ > 0 

K = {~ I A~ = £, x > O} 

Has a non empty interior 

(62) 

(4) ER{~} exists (expected value of the distribution) 

also, for this subbasin problem, the following are needed. 

RO represents the transformation of the decision variables into 
anticipated inflow via strict mass balance considerations. 

Ra represents the vector of actual inflows that will be 
experienced. 

R represents a random vector of possible inflows. 

+ r & r- represent the error, the difference between the actual 
experienced inflows and the anticipated inflows based on the 
transformation of solution variables. 
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The original problem may, however, be rewritten as: 

or simply 

Minimize z{~) = c x + ER{min q+y+ + q-~-} 

where 

z(~) = c x + ER{min q+~+ + q-~-I~a} 

subject to Ax = b 

Dx = Ra 

(63) 

This new problem formulation has simply removed the term c x from 

the expectation operation as this term is not directly dependent upon 

stochastic variable. The above problem is however, still impossible 

to solve in the h~e and now as the error terms can only be known after 

the considered event passes and Ra is known. Also, the x values 

cannot be solved for directly as they must satisfy the transformation 

constraint matrix, 

Dx = R 

where R is a random vector. An attempt can be made, however, to 

achieve a set of values for x which minimize a combination of the 

original objective and a new component reflecting a penalty for a 

solution based on a partially incorrect assumption about Ra • This 

type of formulation is called the complete problem of linear program­

ming under uncertainty because the chance constraints (i.e., the equa­

tions equated to the random variable) when violated are reflected in 

the objective function. The following formulation, developed by Wets 

has been proved to have an identical set of feasible solutions to the 

original problem. However, it is independent of the a priori unknowable 
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error; including, rather, probabilities of various levels of error. 

First defining: 

(64) 

Wets formulates a new linear program as: 

Minimize (c - n(~o)) ~ 

A 

Subject to Ax = b (65) 

A 

X > 0 

Using this problemts solution and an initial feasible point a direction 

of descent is defined and a one-dimensional search along this line 

results in the next improved solution. A feasible point in the solu-

tion space containing any better solution and bounded by a hyperplane 

containing the initial point as its minimum will yield a new direction 

along which a new, better solution will be encountered. This iterative 

process is continued until no new directions are encountered which 

yield an improvement over the base point solution. 

This technique worked adequately for small unaggregated subbasins, 

but consumed excessive time, 3-4 minutes, for detailed problem formu-

lations. It uses, however, an initial solution based upon the deter-

ministic formulation discussed in a previous section. Each iteration 

thereafter is an improvement over previous solutions. Convergence of 

this technique, therefore, is not judged to be essential. Intermed-

iate solutions are available for system control should computation 

time constraints prohibit convergence. The tradeoff between 
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intermediate solutions of the detailed problem and a final solution of 

a simplified problem was not addressed in this work, although this 

author favors the former. Such an intermediate solution forms the 

basis of the following discussion. 

D.4 Stochastic Versus Deterministic Control Str~tegies 

Control strategies based upon optimization techniques, which 

recognize the uncertainties in the forecasted inflows, are superior in 

many cases to control strategies based on the assumption of a deter-

ministic knowledge of the inflows. This has been demonstrated for a 

simplified problem based on real San Francisco subbasin data and using 

a limited number of time intervals. Figure IV-3 presented earlier 

illustrates the subbasin configuration chosen for the demonstration and 

Figure IV-9 illustrates the forecasted inflow sequence chosen for the 

demonstration. 

Detention Basin I Detention Basin 2 Detention Basin 3 
0.2* 0.2* 0.2* 

1 2 3 4 1 2 3 4 1 2 3 4 
time period time period time period 

* Inflow Levels x 10-6 ft 3/20 min 

Figure IV-9. Forecasted Inflow Sequences. 

This inflow sequence was purposely chosen to create a situation 

where overflows could be avoided entirely but for which mass balance 

considerations indicate the system is at or near its capacity. That 
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is, the sum of all the inflows was slightly less than the total 

available storage combined with the maximum possible release (without 

overflows) for the four time periods. Table IV-I presents the system 

data and 20 minute control intervals were used. The above described 

situation can be represented as: 

3 4 
I I R·Ck) -

j=l k=l 1 

4 

I S]-max + 4(Qlmax) 
j=l 

This tight situation enhances the demonstration of control strategy 

(66) 

superiority. The policy which avoids the most overflows for equally 

likely variants of the forecasted inflow sequence is judged to be a 

superior policy. 

First, the forecasted inflows were assumed to be deterministically 

known values and the entire problem was modeled and solved via linear 

programming. Second, the forecasted inflows were used as the means of 

a uniform probability distribution (i.e., the forecasted value is the 

expected value of the distribution, but events higher and lower are 

equally likely). Thus, the assumption that the real value of inflow 

will be within 50 percent of the forecasted inflow, and that all values 

within that margin of uncertainty are equally likely is easily expressed 

as a probability distribution. Such a probability distribution is 

illustrated below in Figure IV-IO. These distributions were then used 

in the LPUU algorithm for the determination of the stochastic policies. 

Third, the resultant policies were applied to the modeled subbasin 

using inflow sequences which were equally likely variants of the ori-

ginal sequence. The resultant overflows were then compared. 
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1.0 1.5 x R.(k) FORECASTED 
1 

Figure IV-IO. Assumed Probability Distribution. 

Figure IV-II illustrates the mass balance summary of the analysis. 

The abscissa indicates the ratio of the average total inflows for the 

variants to the total forecasted inflow. The ordinate indicates the 

percent ~eduction of overflows for all variants with the same average 

total inflow. For example, assume each of the 12 elements in the 

rainfall inflow sequence (i.e., 3 retention basins, 4 time periods, 

therefore 12 forecasted inflow values) is 40 percent greater than pre-

dieted (i.e., FI = 0.4) with a 0.5 probability. The average of the sums 

of all the combinations of the 12 elements possibly increased by up to 

40 percent is 20 percent higher than the sum of the forecasted inflow 

sequence. Figure IV-II shows that on the average, sequences of this 

sort resulted in approximately 70 percent less overflows when controlled 

by the stochastically derived policy than when controlled by the deter-

ministically derived policy. 

This situation is only one of many different subbasin 

configurations and overall storm patterns, however it illustrates the 
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lOs 
% OVERFLOW REDUCTION = 100(1 - -) 

IOn 
lOs = Total overflow using stochas­

tically derived policy 

Total overflow using determinis­
tically derived policy 

1 2 

FACTOR OF INCREASE FI 

Figure IV-II. Performance of Stochastically Derived Control versus 
Performance of Deterministically Derived Controls for 
Variants of Original Inflow Forecast. 

increased safety of stochastically derived control policies. These 

equally likely sequences were generated in an exhaustive manner using 

the forecasted storm as a basis. As the control policies derived by 

both techniques eliminated overflows completely when the forecasted 

storm was used, storms of lesser total magnitude were not considered. 

A uniform fraction of the forecasted inflow was added to all combina-

tions of from 1 to 12 of the inflow values. For a particular fraction 

used, therefore, there were 4096 (i.e., 212) different combinations of 

the sequence in which some elements might have been increased by the 

fraction. As each element in the series had a 0.5 probability of being 

increased by the fraction, on the average the entire storm inflow was 

increased by 0.5 times the fraction. The process then can be represented 

as: 

R ~v) (k) 
J 

= (1 + FI x RN) x R~f)(k) 
J 

(67) 
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(v) indicates variant of inflow value 

(f) indicates forecasted inflow value 

FI = Factor of Increase 

RN - Random Number = 0.0 or 1.0 with uniform p.d.f. 

Using this technique, all the variants of storms with factors of 

increase ranging from 0 to 2 were used to compare the two techniques 

for the derivation of the system control policies. 
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Chapter V 

STORM INFLOW FORECASTING 

A. PREDICTION VERSUS FORECASTING MODELS 

The previous chapters have made liberal reference to 6o~eca6ted 

in6Io~. The model generating these forecasts are to be addressed in 

this chapter. A distinction is often made, however, between prediction 

and forecasting, but there seems to be little agreement on what the 

distinction is. Johnson [1] describes prediction as being those 

attempts at anticipating the future value of a time series which include 

subjective, qualitative estimates of future system perturbations and 

their effect upon the time series. According to this definition, pre­

diction requires skill, experience, and judgment, as well as quantita­

tive information. On the other hand, the output of mathematical models 

simulating the behavior of dynamic systems is often referred to as a 

p~edicted output. The distinction, based upon the use of either quanti­

tative or qualitative judgments, between forecasting and prediction is, 

consequently, unclear. Of greater use for descriptive purposes is a 

distinction based upon the degree of knowledge assumed about the system. 

Using the nature of the model developed as the basis for the choice 

of terms results in a clearer division. This basis enables a clearer 

distinction between system models attempting to describe the underlying 

physical phenomena and those which regard the system as a blaek box. 

Black box models simply analyze time series and trends. They attempt 

no modeling of the internal process structure. They are, henceforth, 

referred to as forecasting models in this development. 

Stream records are often analyzed with such time series analysis 

techniques which regard the causal process as a black box. Such models 
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are used to: forecast extreme events and their probabilities, generate 

missing records, and synthesize future records. 

Process models which attempt to incorporate mathematical 

descriptions of the phenomena are referred to as prediction models in 

this development. Such models attempt to predict the outcome of an 

event by describing the relevant mechanisms and system inputs, which 

taken together constitute a mathematical simulation model. River flow 

routing models discussed earlier, are such process models used for pre­

diction of downstream flows. The upstream hydrographs are used as 

model inputs. The mathematical relations describing conservation of 

mass, energy, and momentum are incorporated into the model, simulating 

the phenomena which govern the process. 

With the above distinction between forecasting and prediction 

having been made, it is evident that subjective or qualitative inputs 

can be incorporated into either forecasting models or prediction models. 

Such subjective judgments tend to compensate for omissions in either 

the process model (i.e., prediction) or black box statistical models 

(i.e., forecasting). 

The storm-related inflows into a sewer system are a consequence of 

two complex phenomena. Both the rainfall process itself, resulting from 

the storm activity; and the conveyance of the rainfall to the sewer 

system, as affected by the topography of the area, influence the char­

acter in time and space of the storm-related inflows. Both of these 

phenomena influence the form of the model chosen for anticipating the 

system inflows. 

It was pointed out in Chapter II that the complex meteorologic 

processes relating to the distribution of rainfall in time and space 
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make the development and use of a p~edlction type model difficult, 

particularly for on-line use. Forecasting models, based on time series 

analyses are, however, adequate for on-line work, despite their omission 

of the mechanics of the process. Forecasting models can be sized 

according to the needs and requirements of the system they are designed 

to serve. The justification for these models is based upon the assump-

tion that the highly correlated storm inflows can be conceived as 

being generated by a series of statistically independent ~~bance6. 

Such a sequence of disturbances is called a white no~e process. This 

white noise is then assumed responsible for the error series between the 

actual realized values of the variables and the forecasted values. 

Previous values of the time series are considered as inputs in such a 

forecasting model. This is illustrated in Figure V-I, where the entire 

TIME SERIES 

time k 

TIME SERIES 
---. PREDICTION 

MODEL 

FORECASTED 
__ ..... V~LUE OF 

1 
R (k+l) 

Figure V-I. Time Series Forecasting Model. 

time series describing the inflow at a point in time is used as the 

input to a model which forecasts the subsequent value of the time series. 

The analysis of a time series and the use of that analysis for a fore-

cast can be followed by qualitative judgments about the impact of other 

variables upon the series. The inflow at a particular location may be 
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related to other local inflows. The inclusion of this information, 

either qualitatively or analytically, adds additional degrees of accur-

acy to a forecast based upon time series analysis. The derivation of 

the relevant parameters, however, is complicated. Figure V-2 illus-

trates a forecasting model where the time series representing inflows 

to each of the ten subbasins considered in this work are used to forecast 

subsequent values of inflow for each of these locations. 

~fULTIPLE 

TIME 
SERIES 

MODEL 

R1(k+l) 

Figure V-2. Multiple Input Multiple Output Model. 

The use of mUltiple time series analysis for deriving information 

about the future of one or all of the time series is the subject of a 

large body of literature. Various techniques are available for identi-

fying the relevant structure of the forecasting model. Identification 

algorithms are available for finding or identifying the needed fore-

casting model parameters in an on-line setting, as well as updating 
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them as needed. Such an algorithm will be discussed in a subsequent 

section of this chapter. 

Since a storm event is a limited duration phenomenon, there is no 

opportunity within its short time span to develop an adequate forecast­

ing model capable of fully anticipating the storm behavior. That is, 

the fact that storms always end is not apparent in the developing time 

series of a particular event. A model capable of duplicating this 

behavior must learn the pattern from a history of past events of like 

character. Such a simulation model based entirely upon past events 

would, however, be only capable of forecasting the average storm based 

upon past records. The variation in such records is significantly 

high, rendering the use of average storm data a very risky endeavor [4]. 

The resultant dilemma between the use of historic records 

resulting in average storms and use of developing records incapable of 

forecasting the characteristic storm behavior is resolved by blending 

the two. A model derived in such a way that historic storms form a 

basis of prediction embodying the characteristic storm behavior, while 

the occurring event changes the model to a moderate degree, is an 

on-line adaptive model. 

Such a model is illustrated in Figure V-3. In the illustration, 

the current data are shown influencing the baseline model as well as 

the on-line adaptive model. The base-line model integrates all past 

events while the adaptive model dynamically responds to the occurring 

situation. As time goes on, data from the evolving event are used to 

modify the model. This in turn results in an updated forecast on future 

system inputs. These inputs are then used for the next iteration of 

the entire large scale analysis process described in the previous two 
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Figure V-3. On-Line Adaptive Forecasting Model. 

chapters and illustrated in Figure III-I. This then results in a 

totally on-line adaptive control system. 

B. RUNOFF VERSUS RAINFALL FORECASTING 

Many adequate models are available for calculating an estimate of 

runoff from a mathematically simulated basin or catchment, and given 

rainfall hyetographs as inputs. With such models available, it might 

appear that the missing part of the complete system control is a rainfall 

forecasting model. It is, however, the well developed nature of avail-

able deterministic models that predict runoff from given rainfall (or 

rainfall-runoff models) that enables a more accurate forecast of system 

inflows to be carried out directly. 

Any real-time operating policy derived from stochastic optimizations 

based upon statistical properties of historic events, would seem to be 

suboptimal in proportion to the degree of variability found in the his-

toric events. The variance of parameters describing micro-scale rainfall 

hydrologic events have been shown to be significant [2,3,4]. It is 

well known, however, that a catchment or watershed can have a convolut-

ing or smoothing effect on the rainfall input, as evidenced by the 
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smoother output hydrographs. This, of course, assumes that there are 

no major discontinuities in the storage-outflow relation for the catch-

mente Consequently, it appears that runoff data may be more amenable 

to the statistical analysis required for forecasting. Figure V-4 illus-

trates this natural smoothing effect of the runoff process. 

There are many ways of smoothing data. A simple example would be 

the averaging of adjacent measurements, or the using of the log of the 

data as a surrogate measure. These smoothing techniques could then be 

applied to historic rainfall data, thereby resulting in significantly 

lower variances. These averaged data could then be used for the deriv-

ation of a rainfall forecasting model. The output forecasts of this 

model could be then applied to a rainfall runoff model, resulting in the 

needed inflow forecasts. Such a process, however, ignores important 
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Figure V-4. The Rainfall Runoff Smoothing Process. 
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information in the rainfall record, thereby ultimately resulting in 

less accurate forecasts. The approach taken here is to use the full 

record of runoff generated by the entire rainfall record as the basis 

for a forecasting model. It is assumed that this results in a more 

accurate model, which capitalizes only upon the natural smoothing effect 

of the basin. 

Figure IV-s illustrates these two approaches to inflow forecasting. 

The basic structures of the forecasting models used in each approach 

are identical. The only difference is that one predicts rainfall, and 

then uses a deterministic rainfall-runoff model to predict runoff, while 

the other receives rainfall data which has been transformed by a 

rainfall-runoff model, and then directly predicts runoff. The latter 

approach was chosen for this study, though considerably more research 

is required to determine which approach is superior. 
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C. AUTO-REGRESSIVE TRANSFER FUNCTION MODEL 

Successive observations or measurements of the time series 

describing runoff are highly correlated. Time series regression anal-

ysis techniques, which attempt to account for dependencies between time 

series elements, are available and are generally referred to as Box-

Jenkins [5] models. 

As stated previously, such models assume that a time series in 

which successive observations are dependent can be modeled as a linear 

combination of independent random disturbances or ~hoek6 drawn from a 

stable distribution. Such a series of disturbances is called a white 

noise process, as previously mentioned. Let u(k), u(k-l), u(k-2), ... 

represent these random components and aO' aI' a2, ... represent the 

weighting coefficients associated with them. The dependent sequences 

of inflows Ri(k) at location i and time k can then be represented 

i 
R (k) = aO uCk) + al u(k-1) + a2 u(k-2) + 

Such a stochastic model process is usually called a line~ 6itt~. 

Successive observations of RiCk) are dependent because they are 

(1) 

drawn from the same previous realizations of u(k). Such a time series 

model transforms a dependent time series into a white noise process [6]. 

Models of this sort are gaining wide acceptance for use as forecasting 

models. 

Models derived from such white noise process models are capable 

of representing both ~tatio~y and nOn6tatio~y time series. Station-

ary processes are those in which the series fluctuates around some con-

stant mean level while nonstationary processes have no such mean level. 
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The above model has, however, an infinite number of terms in its 

definition and consequently is of little use. Various approaches are 

available, however, to find an efficient or pak4imonioUh model which 

adequately represents the process for the purpose of forecasting. Box 

and Jenkins have defined a moving av~ge forecasting model of order 

q which is called an MA(q) model as, 

i R (k) = aO u(k) + a1 u(k-l) + ••• aq u(k-q) (2) 

where the coefficients are unique for each location: This model differs 

from the previous in that only a finite number of terms are necessary 

for the forecast. Defining a back shift operator B
j 

such that 

• b. 
BJu(k) = u(k-j) (3) 

and the function weB) defined as 

weB) + ••• + (4) 

permits a simple representation of the MA(q) forecast model as 

RiCk) = weB) u(k) (5) 

Auto~eg~eh~ive models assume that the independent random variables 

are the previous members of the considered series or their deviation 

from a constant. Such a model using p terms back in time is abbre-

viated as AR(p). It is written as 

i 
+ ••• + bpR (k-p) + u(k) (6) 

where u(k) is white noise and the coefficients are again unique. 

Using back shift notation again and the function $(B) defined as 
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+ ••• + b BP 
p+l 

(7) 

enables the AR(p) forecast model to be written as 

(8) 

Another type of model which can be used for forecasting might be 

termed a ~n6n~ 6unction or input-output model. In this case, Ri(k) 

is not correlated with past values of itself or independent random 

shocks, but rather to oth~ mea4unable in~. For the situation con-

sidered herein, these other measurable inputs might be inflow measure-

ments at each location j adjacent to location i, for various past 

times. The structure of such a forecasting model would be: 

(9) 

where the coefficients are unique for each location, and 

J(i) = set of pertinent locations adjacent to i. The number of 
elements in each set is assumed equal to r. 

S = number of time periods backward which the model considers. 

Introducing the back shift function 9(B) such that 

(10) 

enables a simpler representation of the forecasting model. That is, 

Ri(k) = L ej(B)Rj(k-l) 
j EJ (i) 

The order of this model, which describes the total number of terms 

considered, is then r x s. 

(11) 
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Finally, a mixed auto~eg~e~~~ve moving-ave~ge t~an~6~ 6unct~on 

model would combine the features of the above three models and take the 

form: 

RiCk) = ~(B) RiCk_I) + L ej(B) Rj(k-l) + ~CB) u(k) 
j£J(i) 

(12) 

Such a model is needed for each location. Assuming the parameters 

are available, or can be derived, it is a straightforward matter to use 

such a model for forecasting purposes. The model used within this work 

does not include random disturbances or ~hoek6 and hence, does not incor-

porate the moving average terms. They could, however, be incorporated 

readily. Seasonal factors and some nonstationarities could be dealt 

with by the use of a differencing operator VdRiCk) where 

(13) 

This technique, however, was not incorporated in the model used herein. 

The variance of a forecast made by linear models of the type 

described above has been shown by Brown [7] to generally increase as a 

linear function of the forecast time interval. This increasing risk of 

a poor forecast must, therefore, be incorporated into the optimization 

model which uses the forecast to derive the system controls. Graupe [8] 

has derived probability limits for these risks based upon the length 

and variance of the historic record. 

An inflow forecasting model such as the one derived above should, 

if it is based upon the optimal set of previous measurements and linear 

coefficients, converge to the best forecast possible. The error series 

generated by the difference between the best forecast and the actual 

occurrence will then be white noise if a sufficient number of terms 
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are included in the model. Various techniques are available for 

deriving the best order. Graupe [8] as well as Box and Jenkins [5] 

have discussed techniques for identification of the most efficient model 

order. 

The above linear models have assumed that the random noise system 

inputs, which are responsible for the error series between the fore­

casted and observed inflows, are normally distributed. In the future, 

better models may be developed which will incorporate nonlinear terms 

if the assumption is proven false. If such an improved model were 

necessary and used, the error series generated by its forecast would 

not only be white noise but statistically independent as well. (Note 

that in the Gaussian case, any white noise is statistically independent.) 

There is now no way, however, to find the optimal nonlinear forecasting 

model without extensive a priori knowledge of the general nature of the 

system. Hence, a linear optimal forecasting model or a nonlinear sub­

optimal forecasting model must be used. The linear optimal model will 

result in an error series which is white noise despite the fact that it 

may be larger than the possibly non-white error series which the non­

linear suboptimal model produces. 

Once it is established that such models are useful for forecasting 

the subsequent events in a time series, the question arises concerning 

how to identify or estimate the needed parameters. In the work addressed 

herein, the question is extended further to considering how to identify 

the parameters in an adaptive, on-line model. 

The model used in the case study considered herein was constrained 

by the implicit limitations on computer power as well as by data avail­

able for parameter estimation. The model used takes the form 
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RiCk) = ~(B) RiCk-I) + L ej(B) Rj(k-l) (14) 
jEJCi) 

for all locations i = 1, ... ,10. 

It is noted that each location for which a forecast is needed requires 

a separate model. 

It was decided to include the data from each of the other nine 

locations as the oth~ mea4~ble inputh within the transfer function 

part of each of the ten models. This decision was based in part upon 

the small scale, and hence close proximity of the ten subbasin locations, 

as well as the lack of any sound criteria for excluding locations. Data 

from each location for the time periods corresponding to the time per-

iods used in the autoregressive part of the model were included. This 

decision was based upon the assumption that due to the dynamic nature 

of a storm event, the previous measurements at adjacent or local loca-

tions were probably as important for the forecast as the previous mea-

surements of the location being considered. Therefore, the order rs 

of the transfer function part of the model was 9 p. There were nine 

locations (r = 9), and s equals the order of th~ AR model p. 

The order p of the autoregressive part of the model was, 

therefore, selected while considering its impact upon the total model 

size. For each model needed, there were consequently 9p + p or lOp 

parameters to be estimated. For ten locations, this resulted in lOOp 

parameters. With the data available, it was observed that when p=l, 

the model failed to forecast the consistent aspects of the data. With 

p=2, the forecasts improved considerably. The limited further improve-

ment in forecasts with p=3, however, did not seem to warrant the addi-

tional 100 parameters. For the demonstration, therefore, p=2, which 

resulted in the need to identify 200 parameters. 
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In future work, it should be possible to eliminate extraneous model 

components while adding other relevant measurements (i.e., windspeed, 

direction, temperature change, etc.) to the transfer function part of 

the model. In addition, an increase in the data base used for parameter 

estimation might enable further significant improvements with an 

increase in the AR order above 2. 

D. ON-LINE IDENTIFICATION OF MODEL PARAMETERS 

If a priori knowledge of the process to be forecasted is not 

available, then the identification of the needed parameters is a pre­

requisite to forecasting. For on-line work in which the evolving 

situation is a unique section of the continuous time serie~, the identi­

fication of parameters may be an ongoing process corequisite with pre­

diction. A theory of identification has been developed which deals 

with the estimation of system parameters from a history of measurements 

in which the identification is updated as additional data are obtained. 

Forecasting errors generated by the identified model are employed to 

improve the model. Graupe [9] distinguished six categories of systems 

that call for different techniques of parameter identification, 

(1) linear vs. nonlinear, (2) stationary vs. nonstationary, (3) discrete 

or continuous, (4) single vs. multiple input, (5) deterministic vs. 

stochastic and (6) degree of prior knowledge about the system's struc­

ture. The various combinations of these descriptors determine not only 

the method to be used, but are also indicators of the degree of diffi­

culty to be expected in the subsequent identification. It was decided, 

for the scope of the work undertaken, that the assumption that any 

parameter nonstationarities in the inflow forecast model would be small 

compared to the lead time used within the model. Lead time refers to 
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the distance into the future for which a forecast is desired. This 

assumption, in turn, permits the identification to proceed in a sequen­

tial manner, with the avoidance of the matrix inversions typical of 

parameter identification. The sequential nature of the identification 

lends itself well to the real world problem faced in which new data are 

constantly becoming available and their incorporation into the identi­

fication is desired with the least possible computational effort. The 

elimination of the need for matnix invenhion in these approaches permits 

faster updating of the model with less computer power required and con­

sequently a more comprehensive model can be designed with the same 

computer facilities. 

Since the data base upon which the sequential regression 

identification is constantly growing, one might expect that the process 

may be restricted only to purely stationary processes. However, as 

sequential regression estimates converge to those of nonsequential 

regression techniques after a number of iterations of the order of the 

number of parameters being identified, stationarity must be assumed for 

only that number of intervals. As ~low no~tation~e6 will cause 

different parameters depending on which section of data are used from 

a continuous record, it would be worthwhile to disaggregate the data 

record into categories that reflect fairly obvious shifts in systems 

structure. For the case at hand, the inflow forecasting model could be 

broken into a series of models to reflect the more obvious hydrologic 

nonstationarities of seasons, storm types and perhaps prevailing wind 

direction categories. Other factors which could cause less obvious 

nonstationarities could be measured and incorporated into the regression 

model as additional parameters. Again, for this study, barometric 



155 

pressure, relative humidity, air temperature as well as possibly radar 

derived data (e.g., rain cells) might illustrate this point. 

The identification or parameter estimation of the previously 

described model is carried out as follows. For notational convenience, 

let all the variables assumed to be correlated with forecasted inflows 

be designated as u., i=I, ... ,20, where the model order equals 10 (i.e., 
1 

ten locations where p is assumed to equal two) discussed previously 

when p equals two. These 20 variables, it is recalled, are AR model 

component terms plus transfer function component terms. Recalling 

Figure V-6, it is seen that the multiple time series analysis discussed, 

and subsequently developed above, uses all the relevant time series 

data as inputs for a particular forecast. Since a separate forecasting 

model was needed to each location, the index i is added and the total 

model written as 

RI(k) = 

= (15) 

a lO lUI + .•• a IO .u. + ••• a IO 20u20 , ,J J , 

or, in vector form: 

~(k) = Au (16) 

where 

a l 1 , 
(17) 
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The a .. 's then are the coefficients to be identified. Isolating 
1J 

the jth row, it may be written as: 

(IS) 

where 

i T II 
Ia] = Ia· l a· 2·· .a ..... a. 20] 
- 1 1 1J 1 

(19) 

Hence, 10 separate identification problems are thereby isolated with 

each set of parameters, (~i), being identifiable by sequential regres-

sion methods. The estimation of parameters is performed such that the 

estimated parameter vector, ii, minimizes the cost index Js (the s 

denoting the estimation iteration) defined by the equation: 

J s = 

where qk are weighting factors on measurement error. 

An algorithm has been developed and is presented by Graupe for 

the sequential identification of the parameters, and the reader is 

(20) 

referred to his text for its full development. It is shown that for 

each model (dropping the index on the parameters indicating location): 

,.. iT'" 
a = -sa -1 + P q u (R (s) - u a 1) -s s s-s -s -s- (21) 

where 

(22) 

"Hence," according to Graupe, tt ~ may be derived sequentially 

from the previous estimate 

i 
R (s), ~, qk' provided that 

,.. 
a -s-l 

P 
s 

and from the measurements and weights 

may also be sequentially obtained." 

The matrix P is shown to be sequentially obtained according to the s 

relation: 
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where 

Instead of inverting the matrix Ps ' the matrix inversion lemma (14) 

is used to facilitate the recursive derivation of Ps ' yielding: 

T -1 T P = P - P v (1 + v P v) v P s s-l s-l s -s s-l -s -s s-l 

where 

~ fqu such that T T v Vs v = qs Us Us s s s s 

As T 
(1 + v P 1 v ) -s s- -s is scalar no matrix inversion is involved 

" deriving P and consequently a . s -s 

(23) 

(24) 

(25) 

in 

Looking back on the .th 
1 row of Equation (15) , it is evident that 

the form of each of the ten separate forecasting models mentioned can 

be illustrated by the same illustration presented in a previous section 

as Figure V-2. 

E. ON-LINE AND OFF-LINE IDENTIFICATION/FORECASTING MODELS 

The inflow forecasting model has three main parts, the off-line 

historic base line parameter identification model, the on-line adaptive 

(present event) parameter modification model, and the inflow forecasting 

model. The relationship between these functions is illustrated in 

Figure V-6. 

The off-line, historic, base line parameter identification model 

analyzes past storm records and estimates the parameters of the inflow 

forecasting model. These parameters could be estimated in such a way 
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that more relevant storms are given a higher weighting. Relevance, in 

this case, would be defined by the newness of the record and the simi-

larity of current meteorologic conditions to those existent at the time 

of the historic event (e.g., season, wind direction, barometric pres-

sure, etc.). The off-line, base line parameter identification model 

would, consequently, be run periodically to adjust the base line param-

eters to more currently relevant conditions. In the algorithm demon-

stration, within this work, ten variations of a pantie~ historic 

event were used as the historic data. Equal weighting was assigned to 

all the simulated inflow events. 
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Figure V-6. Inflow Forecasting Model 



159 

As data describing the current storm event in progress becomes 

available, the on-line parameter estimation model can modify the base 

line parameters. The weighting of this data will depend upon the 

sensitivity of the model. A weighting factor on current data which is 

too high will result in an erratic model which ignores trends identi­

fied in the historic data. Weighting factors on current data which 

are too low will, however, ignore the evolving structure of the storm 

currently being experienced. The determination of the proper balance 

will require extensive testing on a prototype system. 

The pattern predictor simply uses the previously identified 

parameters and available data which describes the unfolding event and 

forecasts the subsequent inflows for the chosen lead time. The esti­

mated coefficients of the autoregressive transfer function forecasting 

model are simply multiplied by the appropriate value of the previous 

inflows (or previously forecasted inflows) to obtain the forecasted 

inflow for the desired location. 

For the demonstration development, data from the ten locations 

were used to generate ten separate forecasting models. The identifi­

cation model which identified the parameters needed for each forecast­

ing model was the same algorithm used in the on-line parameter modifi­

cation system since they both must be of the same order or dimension. 

They are illustrated as separate, however, to accentuate the fact that 

the off-line identification may be used experimentally by the systems 

operators. The off-line use facilitates the search for the most effi­

cient model configuration. The off-line model must, however, retain 

in some storage facility the appropriate information needed by the 

current on-line model to be used during storm events. Except for the 
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order and dimension, then, the logic flow for both models can be 

illustrated as shown in Figure V-7. The algorithm developed simply 

effects the iterative identification procedure developed in the previous 

section after appropriately arranging the needed data into prediction 

model inputs and outputs. In this figure model inputs are again desig­

nated as a vector u., indicating the jth value of the vector repre­
-J 

senting inflows. It includes previous RiCk) values for the ith 

location as well as for the other locations. After the parameters 

have been defined to the extent possible using the historic data and 

any data available on the current event, the inflow forecast part of 

the model then forecasts the remainder of the event at a particular 

location. This is accomplished by the repeated application of the 

model generated for that location. Recalling Equation (18) that model 

is simply: 

(26) 

a. and u. are the model parameters and inputs (both vectors). The 
-1 -1 

parameters are the updated parameters from the identification model, 

and the inputs are the real values of inflows as measured and/or those 

inflows which were previously forecasted. The algorithm which accom-

plishes this is illustrated in Figure V-8 below. 
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Chapter VI 

COMPUTATIONAL EXPERIENCE 

A. OVERVIEW 

The approach discussed in the previous chapters for the on-line 

real time control of the complex system used herein as a case study 

(i.e., the system described in the San Francisco Water Plan for 

Wastewater Management) consists, essentially, of three parts. In their 

order of anticipated on-line application they are: an adaptive inflow 

forecasting model, a master control algorithm, and subbasin control 

algorithms. 

The adaptive inflow forecasting model forecasts the system inflows 

based upon previous off-line analyses which estimate base line param-

eters, as well as any available data describing the event in progress. 

Chapter V described the forecasting model used in this study and dis-

cussed the sequential parameter identification model which permits 

efficient on-line real-time adaptation of the model to the event in 

progress. 

The master control algorithm simply allocates the treatment 

capacity among the subbasins. The decisions of the master control 

algorithm are based upon subbasin performance and are limited by a con-

straint upon the total releases selected by the subbasins. Chapter III 

described the discrete direction steepest descent method adopted for 

this decision level. The optimal values of the assigned subbasin 

* release limits, represented by the vector o ,result in subbasin 
~ax 

controls which yield the minimum expected total weighted overflow, 

while they tend to maximize total expected throughflows to the 

treatment plant. 

164 
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Subbasin control is achieved by the use of two complementary 

algorithms which were discussed in Chapter IV. The overall release 

pattern of each subbasin as a whole is worked out iteratively by a 

continuous interaction with the master control problem. The technique 

chosen for this repetitive subbasin optimization was the aggregated 

stochastic dynamic programming technique. The overall solution achieved 

by the aggregated problem is then applied as a series of guidelines 

(constraints) to noniterative, detailed solutions of the subbasin 

control problems. This is done after convergence of the master prob­

lem is achieved or as the necessities of the real time operating 

environment demand. Thege detailed solutions are then to be solved 

by the use of linear programming or t if time permits, stochastic linear 

programming. 

These three major control components interact in a real-time 

setting and adapt to current conditions and new data. With each 

iteration of the master control problem, the subbasin problems are 

provided with current system characteristics (i.e., actual subbasin 

contents). In addition, with the passage of real time, the forecasting 

model receives more data with which to make its forecast. Thus, the 

forecasts should improve as time goes on. 

B. SYSTEM DESCRIPTION 

The system which was used for the demonstration is based upon the 

San Francisco Master Plan for Wastewater Management, as was previously 

mentioned. In particular, the Alternative C plan has been adopted for 

this demonstration. It contains all the complexity of the largest plan 

(Alternative D) while having somewhat less total storage. Table VI-l 

presents relevant system data which describes the component detention 



166 

TABLE VI-l 
SUBCATCHMENT AND DETENTION RESERVOIR DATA 

smax[2] ~ [i) 
Reservoir [5] 

Sub- Drain- Routing Dry 
basin [1] Alternate 

~£3J 
ax Constant, Weather Overflow ~x C age 

Smax No. SFMP 
(106 ft 3) 

Area IC. Flow Capacity 
(i) No. (cfs) (acres) (ALTC) (hrs) (cfs) (cfs) cfs 

16-6 .66 530 456 691 .1239 4.6 

5 1.09 240 748 686 .1586 7.5 

4 .24 260 168 700 .0752 1.7 

.16 295 112 700 .0614 1.1 

8 .30 226 204 680 .0828 2.0 

2 .13 370 ~ 676 .0544 ~ 
TOTALS 2.58=SI max 1776 17.8 416 370 

2 
.22=Smax 18 90 409 .0550 0.9 18 

3 7 . 18=S3 
max 25 124 688 .0646 1.2 54 25 

4 14-1 .14 63 60 428 .0449 .6 

.79 119 ~ 684 .1349 2:..1. 
TOTALS . 93=S!ax 601 6 119 

13-11 .57 155 387 678 .1141 3.9 

10 .23 190 153 665 .0717 1.5 

9 .25 140 165 660 .0745 1.6 

8 .21 250 145 690 .0698 1.5 

.15 95 101 673 .0583 1.0 

6 .23 185 154 669 .0720 1.5 

5 1.45 419 1012 697 .1845 !Q.:.! 
TOTALS 3.09=S5 

max 2117 21.1 960 419 

6 4 .18 110 126 700 .0651 1.3 

3 .18 200 122 677 .0641 1.2 

.27 85 ~ 688 .0791 ~ 
TOTALS ~=S6 434 4.4 230 85 max 

7 1.13=S~x 151 770 681 .1609 7.7 151 

8 12-3 .19 82 129 678 .0659 1.3 

.40 165 276 695 .0964 2.8 

4 .32 170 222 693 .0864 2.2 

2 .95 253 ~ 689 .1484 ...i:! 
TOTALS ~=s!ax 1282 12.9 960 253 

9 .S4=S;ax 73 370 685 .1116 3.7 73 

10 .27 380 182 674 .0782 1.8 

.36 432 246 683 .0910 2.5 

.24 107 ~ 687 .0745 ..!.:.! 
TOTALS ~=SlO 593 5.9 107 max 

NOTES: 

[1 ] Corresponding numbering of component detention basins in the San Francisco master plan. 

[2] Smax storage capacity of associated detention basin i 
Smax total storage capacity of subbasin i. 

[3] ~ax maximum flow capacity into collector sewer from associated detention basin i 
Q;;ax maximUil flow 

capacity into interceptor from subbasin. 

[4] Ratio between maximum release and detention basin capacity illustrates a design consistency tending 
to justify aggregation techniques. 

[51 Inflow forecast models used dry weather flows as minillUll values. 
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basins as well as the total storage available within each encompassing 

subbasin. The capacities of overflow bypass facilities have been 

included where such facilities exist for subbasin locations. These 

limits were modeled explicitly in the LP formulations, but not in the 

DP as used. The distribution of necessary overflows in time and space 

is, however, influenced by the weighting coefficients on overflows. 

These coefficients can be easily modified within the optimization to 

reflect onto the decision framework the exceedance of various thresholds 

(i.e., capacity of a bypass facility). The criterion function which 

considers the squared overflows will, in addition, tend to distribute 

overflows through time and space and will have much the same effect as 

constraining limits on overflows at particular locations. 

The maximum subbasin release was assumed to be the maximum 

detention basin release from the detention basin located at the most 

downstream location in the subbasin. This is consistent with the 

development of the aggregated dynamic programming algorithm, presented 

earlier, as well as the method chosen for interaction between it and 

the detailed subbasin problem. These developments assumed that the 

control policy for the aggregated subbasin was identical to the control 

policy for the last or lowest (i.e., furthest downstream) detention 

basin. In situations where this may not be the case (e.g., two or more 

detention basins which contribute to a sewer below the lowest detention 

basin in the subbasin), the maximum subbasin release would be either 

the capacity of the connecting sewer, or the combined maximum release 

of both (or all) contributing downstream detention basins, whichever 

is less. In such a case the detailed subbasin problem would recognize 

the planned subbasin release as a constraint on the summation of these 
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downstream detention basin releases. The discretizations used within 

the subbasin problems, as was noted in Chapter IV were based upon these 

maximum releases. 

C. PROCEDURE FOR TOTAL ALGORITHM DEMONSTRATION 

The simulation of this adaptive approach for on-line use was 

carried out on the noninteractive batch mode computer facility at 

Colorado State University. The simulation proceeded as follows: 

1. Ten variants of the inflows from a historic storm were 

generated by multiplying each inflow value by a random factor 

between 0.5 and 1.5. These synthetic storms were fed through 

the parameter identification procedure to establish the base 

line forecast model parameters. 

2. Based upon this same historic inflow sequence, which actually 

caused significant overflows in the existent system, one 

additional inflow sequence was established in the same manner 

and is referred to as the ~eat event to be considered. 

3. Data representing the ~eat inflows for the first control 

interval were supplied to the forecast model for forecasting 

subsequent inflows. For this first time period, then, it was 

assumed that actual data describing the ~eat inflows were 

available for that time period. Inflows for the first time 

period could have been based upon an average historic storm 

for initiating the forecast. In the context of the demonstra­

tion as conducted, however, there would have been little dif­

ference between these average initial storm values and the 

~eat values which were used. For control periods subsequent 

to the first, the forecast model was supplied with data 
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describing the ~eat inflows experienced up to but not 

including, that control period. 

4. The actual states of the subbasins were generated to simulate 

real data from the measuring devices located at the subbasins. 

For the first time increment the initial storage levels were 

assumed to be zero. For subsequent time intervals the actual 

states were determined by applying the continuity relationships 

for subbasin storage using the selected controls and the ~eat 

inflow data (not the forecasted inflow data). 

5. The total control algorithm (master problem and subproblems) 

* then established the optimal o vector, given the initial 
~ax 

states of the subbasins, the treatment plant capacity assigned 

to the Richwood Sunset area 

assumed to be imminent. 

Qr ,and the control period max 

6. The subbasin controls derived for the first of the remaining 

control intervals for each iteration of the entire control 

algorithms were assumed operative. That is, they would be 

used as the actual controls for the furthest downstream 

control point of each subbasin. The detailed subbasin 

problems were not, consequently, necessary for the demonstra-

tion of the adaptive aspects of the proposed procedure. 

7. This process was repeated by returning to step three until the 

entire ~eal storm event had passed and a complete set of 

operative optimal controls had been derived for the subbasins. 

This general procedure is illustrated in Figure VI-I, as the total 

algorithm demonstration flowchart. It is worth repeating that although 

controls were derived for all remaining time increments, the total 
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control algorithm was exercised every time increment. This was a 

conservative decision. In the actual operational system, it is 

envisioned that the control algorithm will be exercised only on demand. 

That is, if actual and forecasted inflows diverge beyond a tolerable 

threshold and/or measured states depart significantly from anticipated 

states, then it is assumed that the previously derived control strategy 

is suboptimal for the conditions being experienced. In such a case an 

updated control strategy is necessary which is based on updated fore­

casts and relevant system measurements. 

In the actual operational system, a forecast of the number of 

control intervals necessary for the occurring event will need to be 

made. This forecast may also need to be updated as the event 

progresses. For the demonstration described here it was assumed that 

ten control intervals would be sufficient. Each control interval repre­

sented 20 minutes. The selection of 20 minute time intervals was based 

upon the availability of 20 minute inflow data for an overflow-causing 

event. The ten control intervals were then adequate to exceed the 

two hour duration of the considered event. It is anticipated that 

the control intervals for an actual system would be much shorter, 

possibly in the range of five minutes, and that the number of control 

intervals capable of being included in the optimizations would, hence, 

need to be greater. The speed of the algorithms will influence the 

choice of control interval size, and hence, the number of control inter­

vals needed within the optimization. Experience with a prototype 

system will be needed to ascertain the proper balance between control 

interval size and the number necessary for desired system sensitivity. 
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It is noted, however, that despite an increased number of time 

intervals and the need for greater computer time which accompanies a 

shorter control period, the algorithm is capable of on-line real-time 

optimization for an event of any length. This is possible because of 

the forward moving time horizon or lead time possible within the 

optimization. That is, as real time progresses, the lead time need 

not shorten, thereby modeling a limited duration event, but may remain 

constant. 

In the real-time on-line system this demonstration is attempting 

to illustrate, the sensors in the detention basins will be reporting 

the actual storage levels to the control center. These actual states 

of the subbasins will then be used as the initial conditions for the 

next iteration of the forecasting model and master control procedures. 

These actual levels are a result of the actual inflows encountered 

and the previously effected controls. Therefore, in the simulation, 

the values which represent the measured states are calculated from 

the inflow data modeled as the ~eat event and the derived releases 

which were based on the forecasted event. In this way each iteration 

of the master control procedure starts from co~ect initial conditions 

rather than derived states based on the forecasted storm inflows and 

calculated releases. 

The inflow value which has been selected to be the ~eat inflow for 

the demonstration is represented as Rai(k) for location i and time 

period k. The simple continuity relationship used to derive the 

actual state level subsequent to the selection of a control which is 

henceforth assumed operative is simply written as 
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where kr indicates the current real time period for which the derived 

optimal control is assumed to have operated. This continuity relation­

ship, it is recalled, differs from the one used within the optimization. 

In the optimization, the control decision must be made prior to the 

actualization of the real inflow. Only forecasted inflow values are, 

consequently, available for estimating the resultant state. 

It is obvious that since the release from each aggregated subbasin 

flows directly to the interceptor, there is no situation in which the 

routing of upstream releases t into a downstream subbasin is needed. 

Further, routing effects between the actual detention basins which 

constitute a particular subbasin have also been ignored within this 

phase of the total algorithm. A justification for this is based upon 

the net effect of routing. Routing, in general, delays and attenuates 

flow profiles. The aggregated problem which lumps together all inflows 

assumes instant availability of flows for subbasin control decisions. 

The actual detailed control of the subbasins which is derived subse­

quent to the solution of the aggregated problem may be incapable of 

delivering the planned subbasin release if routing is included in the 

model. In the first time periods this may prove to be a built-in 

margin of safety. In subsequent time periods, however, the advantage 

may be reversed, resulting in a greater threat of overflow. Further 

experimentation with this aspect of the problem will need to be 

conducted. 

Flow routing effects have a somewhat similar effect within the 

interceptor. Routing in the interceptor will modify the phasing of 

the downstream arrival of release patterns for the various subbasins. 

This will alter the total flows in any particular time period. 
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These altered total flows, which are then compared to the upper limit on 

flows to the treatment plant QT will hence influence the allocation max 

by the master problem of treatment capacity to the various subbasins. 

Within the algorithms, as developed, routing can easily be applied to the 

interceptor flows prior to their summation. Each time the constraint is 

checked tentative releases from all subbasins and time periods are 

available. Therefore, with the physical characteristics of the various 

interceptor reaches known and all inflows available, interceptor routing 

can be as accurate (hence complicated) as time permits. In this demon-

stration, however, since all calculations were performed sequentially by 

one central computer, routing was deleted. It is noted, however, that 

the parallel computations possihle within the anticipated hierarchy of 

mini-computers or microprocessors should compensate sufficiently for 

their slower speeds so that simple routing models may be incorporated 

into the total on-line algorithm without necessitating longer control 

intervals. 

D. IDENTIFICATION OF FORECASTING MODEL 

0.1 Selection of Synthetic and Historic Inflows 

The demonstration of the identification procedure required a 

degree of compromise with reality due to the limitations of available 

data. The number of intense storms which resulted in significant over-

flows from the existent system, and for which complete inflow records 

were available, was limited. To statistically simulate additional 

inflow sequences based on this limited sample and then attempt to 

identify parameters for a forecast model from the augmented sample 

would bias the forecast directly in the direction of the limited 

sample. In order to create a sample of storms large enough for the 

identification of the forecasting model parameters without this 
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inherent but unknown bias, it was decided to artificially preordain a 

particular bias by constructing a set of synthetic, apparently diverse 

storms which maintained pre-selected characteristics. If the identifi­

cation model detected this planned bias, and it was reflected in the 

forecasted events, the identification technique would be verified to 

some degree. The bias introduced was in the form of a constant phasing 

of the inflow hydrograph peaks. The difference in times of concentra­

tion within a subbasin, as well as the effects of the spatial and tem­

poral distribution of the causal rainfall, results in different times 

to peak for the inflow hydrographs. A series of artificial storms were 

created which maintained, to a rough extent, this phasing. The simu­

lated inflow sequences were produced by taking each inflow value of the 

original historic overflow producing event and multiplying it by a ran­

dom number between 0.5 and 1.5. This resulted in a sample of storms 

with a planned bias. This bias would then, hopefully, be identified 

and reflected in the subsequently forecasted inflows. The identifica­

tion process would ideally filter out the random component, leaving a 

base line model which is based, essentially, on the original event. 

A series of autoregressive transfer function models were then 

derived, one for each subbasin, using the subbasin inflows from the 

augmented sample of inflow events. It is noted that the historical 

event upon which these simulated inflow events were based caused con­

siderable street flooding and overflows within the existing system. 

The inflow at a particular point was related to the two previous in­

flows at the other ten locations as explained in Chapter V. Table VI-2 

presents the historic detention basin inflows as reported by 



Subbasin 
No. 
(i) 

2 

3 

4 

5 

6 

7 

8 

9 

10 

NOTES: 

Detention 
Basin No. 

(j) 

2 

3 

4 

5 

6 

TOTAL 

7 

TOTAL 

8 

TOTAL 

9 

10 

TOTAL 

11 

12 

13 

14 

15 

16 

17 

TOTAL 

18 

19 

20 

TOTAL 

21 

TOTAL 

22 

23 

24 

25 

TOTAL 

26 

TOTAL 

29 

30 

31 

TOTAL 

k=l [3] 

5. 

8. 

2. 

1. 

2. 

1. 

19. 

1. 

1. 

1. 

1. 

1. 

5. 

6. 

4. 

2. 

2. 

2. 

1. 

2. 

10. 

23. 

1. 

1. 

10. 

12. 

8. 

8. 

20. 

3. 

2. 

150. 

175. 

75. 

75. 

41. 

40. 

40. 

121. 

5. 

8. 

2. 

1. 

2. 

1. 

19. 

1. 

1. 

1. 

1. 

10. 

100. 

100. 

65. 

51). 

55. 

35. 

35. 

60. 

350. 

650. 

40. 

50. 

27. 

117. 

250. 

250. 

41. 

10. 

17. 

307. 

366. 

147. 

147. 

83. 

79. 

79. 

241. 
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TABLE VI-2 

HISTORIC INFLOW DATA 

3 4 

125. 249. 

200. 402. 

65. 135. 

50. 101. 

85. 169. 

40. 81. 

565. 1137. 

40. 

40. 

20. 

20. 

32. 

210. 

242. 

145. 

117. 

128. 

74. 

74. 

133. 

701. 

1372. 

83. 

108. 

164. 

355. 

517. 

517. 

100. 

170. 

190. 

378. 

838. 

249. 

249. 

119. 

186. 

105. 

410. 

81. 

81. 

111. 

111. 

36. 

356. 

392. 

268. 

55. 

56. 

40. 

40. 

37. 

341. 

837. 

59. 

27. 

22. 

108. 

300. 

300. 

7. 

135. 

46. 

60. 

248. 

27. 

27. 

8. 

16. 

5. 

29. 

R. (k) [2] 
J 

5 6 

247. 

381. 

51. 

16. 

54. 

8. 

757. 

17. 

17. 

10. 

10. 

1. 

51. 

52. 

30. 

2. 

3. 

2. 

1. 

2. 

64. 

104. 

2. 

1. 

2. 

5. 

47. 

47. 

1. 

10. 

3. 

12. 

26. 

5. 

5. 

2. 

3. 

2. 

7. 

26. 

64. 

3. 

1. 

4. 

1. 

99. 

1. 

1. 

1. 

1. 

1. 

9. 

10. 

5. 

2. 

2. 

2. 

1. 

2. 

18. 

32. 

1. 

1. 

2. 

4. 

13. 

13. 

1. 

3. 

2. 

7. 

13. 

4. 

4. 

2. 

3. 

2. 

7. 

7 

6. 

14. 

2. 

1. 

2. 

1. 

26. 

1. 

1. 

1. 

1. 

1. 

6. 

7. 

4. 

2. 

2. 

2. 

1. 

2. 

11. 

24. 

1. 

1. 

2. 

4. 

8. 

8. 

1. 

3. 

2. 

7. 

13. 

4. 

4. 

2. 

3. 

2. 

7. 

8 

5. 

8. 

2. 

1. 

2. 

1. 

19. 

1. 

1. 

1. 

1. 

1. 

5. 

6. 

4. 

2. 

2. 

2. 

1. 

2. 

10. 

23. 

1. 

1. 

2. 

4. 

8. 

8. 

1. 

3. 

2. 

7. 

13. 

4. 

4. 

2. 

3. 

2. 

7. 

9 

5. 

8. 

2. 

1. 

2. 

1. 

19. 

1. 

1. 

1. 

1. 

1. 

5. 

6. 

4. 

2. 

2. 

2. 

1. 

2. 

10. 

23. 

1. 

1. 

2. 

4. 

8. 

8. 

1. 

3. 

2. 

7. 

13. 

4. 

4. 

2. 

3. 

2. 

7. 

[1] Corresponding numbering of component detention basin in the San Francisco master plan. 

[2] All flows are in cfs. 

[3] Time intervals are 20 minutes. 
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1. 

1. 

1. 

1. 

1. 

5. 

6. 
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2. 

2. 

2. 

1. 

2. 

10. 

23. 

1. 

1. 

2. 

4. 

8. 

8. 

1. 

3. 

2. 

7. 

13. 

4. 

4. 

2. 

3. 

2. 

7. 

SFMP[l] 
No. 

16-6 

5 

4 

3 

8 

2 

16-1 

16-7 

14-1 

2 

13-11 

10 

9 

8 

7 

6 

5 

13-4 

3 

13-1 

12-3 

5 

4 

2 

12-1 

11-2 

5 
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Bradford [1] and the lumped subbasin inflows used in the base-line 

parameter identification procedure. 

0.2 Results of Identification Algorithm 

A total of ten inflow events were generated with this planned 

bias. Since each inflow event was described by the inflow into each 

of the ten locations and ten periods of time, there were thus 80 pieces 

of data available for each of the ten models generated. This was due 

to the autoregressive aspect of the model in which each inflow value 

was related to the previous two vectors of inflows which supplied the 

needed autoregressive and transfer function terms. Convergence to the 

base-line parameters was achieved within seven seconds on the COC 6400 

for many of the models. The parameter convergence for a typical trans­

fer function term which relates the inflows at one location to those 

at another is illustrated in Figure VI-2. The convergence trends of 

the autoregressive parameters were generally of the same nature as the 

transfer function terms. Initial erratic behavior which yielded to 

the establishment of a trend after five or six simulated inflow events 

seemed to be the most frequent convergence pattern. 

0.3 Results of Forecasting Model 

Table VI-3 presents the inflow data for the storm event that was 

assumed to be the Aeai event experienced. Although derived from 

historic inflow sequence it exceeded the historic inflow in total 

inflow volume by two percent. 

The relationship between the various forecasts and the Aeat 

inflow sequence for two subbasins that ultimately experienced the 

largest portion of overflows is illustrated in Figure VI-3. The 
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error trends in these two series of forecasts were similar to those 

of the other eight subbasins. In all cases the initial forecasts were 

lower than the 4eat event. This was due in part to the nature of the 

model. It was derived by assuming that the inflows were related to 

the previous ~o measurements at all locations. For the demonstration, 

the first two forecasts were based entirely upon the first set of 

inflow measurements representing only one period of time. Half of the 

model was, consequently, unable to contribute to the forecast, since 

the measurements previous to the first were assumed zero. 

Forecasts subsequent to the first two showed a significant 

improvement. The full magnitude of the peak was, however, not reasonably 

forecasted until the control interval previous to it was reached. At 

that time the total remaining inflows were, however, generally predicted 

to be greater than the 4eat event. 

Table VI-3. Inflows from Simulated Real Storm RiCk) 

Subbasin 
No. Time (k) = 1 2 3 4 5 6 7 8 9 10 

2 

3 

4 

5 

6 

7 

8 

9 

10 

19.00 30.00 400.00 1400.00 600.00 120.00 50.00 19.00 19.00 19.00 

1.00 

1.00 

6.00 

23.00 

12.00 

8.00 

150.00 

50.00 

90.00 

5.00 35.00 70.00 25.00 10.00 1.00 1.00 1.00 1.00 

1.00 30.00 90.00 20.00 1.00 1.00 1.00 1.00 i.OO 

50.00 300.00 250.00 100.00 20.00 10.00 6.00 6.00 6.00 

450.00 1500.00 1000.00 204.00 50.00 24.00 23.00 23.0U 23.00 

150.00 300.00 120.00 5.00 4.00 4.00 4.00 4.00 4.00 

200.00 570.00 250.00 100.00 50.00 8.00 8.00 8.00 8.00 

400.00 800.00 300.00 30.00 13.00 13.00 13.00 13.00 13.00 

175.00 250.00 25.00 8.00 4.00 4.00 4.00 4.00 4.00 

270.00 370.00 60.00 20.00 7.00 7.00 7.00 7.00 7.00 
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Figure VI-4 illustrates the error series between the assumed 

~eat inflows and the final forecast available. The final forecast 

available is the inflow forecasted in each immediately following con-

trol period for each value of real-time. The control decisions for 

these subsequent time periods are assumed to be implemented in the 

system since no further opportunity exists to refine the forecast 

prior to the application of the needed controls. For control algorithms 

based upon a simple one step ahead forecast this error series is of 

primary importance. For control algorithms which recognize the 

interdependence in time of the control decisions the importance and 

impact of this error series is shared by the error series between ~eal 

inflows and forecasted inflows for all subsequent time periods. This 

forecast error is illustrated in Figure VI-S which compares the total 

remaining forecasted inflows to the total remaining assumed ~eal inflows 

for subbasins one and five. It is noted that for subbasin five, initial 

underestimations of individual subsequent inflows (Figure VI-4) is 

accompanied by a moderate underestimation of total inflows 

(Figure VI-S). For subbasin one, however, an initial overestimation 

of individual subsequent flows is accompanied by a general under-

estimation of total subsequent flows. 

E. CONVERGENCE PROPERTIES OF MASTER CONTROL PROBLEM 

The master control problem allocates the assigned interceptor 

capacity, QT ' to the subbasins. The capacity is assigned increment max 

by increment. The increments are based upon the discritization used 

in the particular subbasin considered. The subbasin which results in 

the best improvement in the total objective function without causing a 
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violation of the interceptor capacity constraint is incremented before 

all others. The interceptor capacity is thereby utilized with more 

important flows first. The convergence to the upper limit QTmax of 

total interceptor flows for each time period (k) is illustrated in 

Figure VI-6a. In this demonstration QTmax was arbitrarily set equal 

to 780 cfs which represents approximately one-half the total available 

treatment capacity for the plan considered. In the demonstration to 

follow, a much smaller limit was used (300 cfs) , and consequently, the 

convergence was more rapid. This demonstration, however, illustrates 

more dramatically the priorities of overflow minimization followed by 

throughflow maximization (where capacity permits), which characterizes 

this entire development. Total interceptor flows are shown for 

various intermediate steps of the master control problem. Figure VI-6b 

illustrates the total interceptor utilization over all time periods as a 

function of the number of master problem iterations. The final value of 

89 percent indicates that although flows were not available to fully 

utilize the capacity for all time periods the final attained utiliza­

tion was still high. 

Figure VI-7 illustrates the corresponding convergences of the 

total objective function and anticipated overflows to their ultimate 

values. Anticipated overflows are those overflows which are used with­

in the optimizations to plan the control strategy_ They are based upon 

the control decisions being considered and the forecasted inflows. 

They relate to the actual overflows to the degree that the forecasted 

inflows are accurate. Within the optimization, however, these over­

flows are seen as planning tools only. Each step of the master control 

problem involves a subbasin evaluation. The time taken for each step 
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consequently depended upon the subbasin considered and its 

discretization. On the average, however, each step in the demonstra­

tion took approximately six seconds on a CDC 6400 computer with total 

convergence achieved in approximately 180 seconds or three minutes. 

A control strategy which essentially eliminated anticipated 

overflows was achieved with 12 steps or approximately 72 seconds. 

(Complete elimination of overflow was obtained after 20 steps or 

120 seconds.) The balance of the master control procedure resulted 

in a maximization of throughflows subsequent to the elimination of 

overflows. This is evident in Figure VI-7 by the continued decrease 

in the objective function after the elimination of overflows. Addi-

tional throughflow minimization after overflow elimination accounted 

for 23 percent of the final objective function value and required 

approximately 60 additional seconds. 

F. ALLOCATION OF TREATMENT CAPACITY 

As the Richmond-Sunset section of the system is only one of three 

major branches of the total system, it is assumed that another level of 

decision making will divide the total available treatment plant capacity 

among the three branches. The maximum flow to treatment QTmax was, 

however, selected arbitrarily for this demonstration. A value of 

Q was selected such that significant overflows would occur in the Tmax 

system if an operation rule like the one presented in Chapter IV was 

used for subbasin control purposes. This selection of Q would Tmax 

then permit the comparison of system performance between control policies 

generated by the operating rule, using a one step ahead forecast, and 

the aggregated dynamic programming, using forecasted inflow for the 

entire remaining time horizon. 
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The total treatment capacity to be available for the entire city 

in the modeled plan is 1560 cfs. Considering the Richmond-Sunset area 

to represent approximately one-third of the area of the city results 

in an average allotment of 520 cfs of capacity. This level, however, 

was too high to assume significant overflows for the system when 

controlled either by policies derived using simple operating rules or, 

policies derived using aggregated dynamic programming. For the 

demonstration, therefore, the value of Qr was fixed at 300 cfs. max 

This resulted in significant overflows for the system and hence 

enabled a comparison between techniques to be made. 

G. RESULTS OF THE INTERACTIVE OPTIMIZATION 

The master control problem and iterative forecasting model were 

tested using four different subbasin control algorithms for the pur-

pose of testing and comparison. The four subbasin control strategies 

used were as follows: 

1. The aggregated dynamic programming technique using a 

criterion which squared the weighted overflows and assumed 

that risk was associated with each forecast value. 

2. The aggregated dynamic programming technique using a 

criterion which squared the weighted overflows and assumed 

that no risk was associated with the forecast values. 

3. The aggregated dynamic programming technique using a 

criterion which increased linearly with the weighted over-

flows and assumed risk. 

4. A simple operating rule, previously discussed in Chapter IV, 

which assumed no risk and which used a linear criterion. 
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These four approaches, although not providing an exhaustive 

selection of alternatives, were used to gain insight into the following 

considerations: 

1. How much advantage if any does a complete forecast of future 

inflows yield? 

2. How much does the consideration of the inherent risk in 

these forecasts influence the ultimate performance? 

3. How will the nature of the criterion (i.e., weighted overflows 

squared or not) effect the distributions in time and space of 

overflows? 

Controls for the previously described system of subbasins were derived 

using each technique and the same master control problem and forecasting 

models (with the lead time for the simple operating policy limited to 

one increment). 
*" 

Figure VI-8 illustrates the values of 0 1 for each subbasin 'max 

and control interval. The o*i policies for the four techniques are 'max 

also presented on the same graphs to highlight their differences while 
*. 

continuing to illustrate the interrelationships of particular ~~ 

values in time and space for each individual technique. Figure VI-9 

repeats the above information for subbasins one and five for which 

significant differences in total overflows were encountered between the 

four methods. This figure, in particular, illustrates the interdepen­

dence in time and space of the allocated o*i terms. 'max 

Table VI-4 presents and summarizes the overflow quantities 

experienced within the subbasins and time periods for which overflows 

were encountered. The summary table on the bottom presents the total 

overflows experienced and indicates their distribution in time and 
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TABLE VI-4 
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Overflows in CFS/20 ain 
for policies derived by 

TilDe Period K=3 

A B C 0 A 
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o. O. O. o. O. 
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o. o. o. o. O. 

O. O. O. O. O. 
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14.6 14.6 14.6 O. O. 

21.4 21.4 21.4 0 10.7 

186.8 68.0 149.8 132.4 226.3 

1.0 .16 • 9 1.0 2.4 
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space by summing the square values of the individual overflows. It is 

noted that the simple operating rule (A) resulted in 10 percent less 

total overflow when compared to the seemingly second best method which 

used inflow anticipation risk and a quadratic criterion (C). The 

squared overflow, which is 24 percent larger for the rule curve, 

indicates, however, that this technique resulted in an inferior distri­

bution in time and space of overflows. This can be seen by noting that A 

produced a maximum overflow rate (per 20 min. interval) of 148 cfs (over 

all subbasins and time periods), whereas the maximum rate produced by C 

was 125 cfs. Thus, C performed better under a criterion of minimizing 

the maximum rate of overflow. 

H. DISCUSSION 

The results presented in the preceding section provide insight into 

the three considerations mentioned earlier. These considerations deal 

with the potential advantage of: (1) long range forecasts, (2) the 

consideration of risk, and (3) the value of an exponent on the criterion 

used for influencing the distribution of overflows. 

The results also yield information on the feasibility of using 

on-line control which is based upon the total system approach chosen in 

this work (i.e., adaptive optimization of a decomposed system). 

Figure VI-7, which demonstrated the convergence properties of the total 

algorithm for one real-time period, also provides data on required 

computer time. This computer time, it is noted, is roughly comparable 

to the anticipated time required for a distributed computer system to 

accomplish the same tasks. This is due to the countervailing impact 

of the larger time requirements of the individual mini-computers, and 

the advantage of parallel computations which are feasible when using a 
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dendritic hierarchy of mini-computers. NOting the essential elimina­

tion of anticipated overflows within 75 seconds, and the continued 

improvement of throughflows for the duration of the three minutes 

needed for final convergence, it is seen that a wide range of potential 

real time control intervals can be used. Time intervals ranging from 

three to five minutes seem quite feasible in spite of the additional 

number of intervals which would consequently need to be modeled if 

shorter intervals were to be used. 

Figure VI-6 demonstrates the utilization of treatment plant 

capacity. Although 80 percent utilization was achieved within approx­

imately the same 75 seconds needed for overflow elimination, improvement 

thereafter was significantly slower. A full three minutes was required 

to achieve the ultimate utilization possible for the situation modeled. 

This is, again, well within the anticipated real time control interval 

range. 

The convergence of the base-line parameter identification, 

illustrated in Figure VI-2, demonstrates the feasibility of using 

stationary parameters for the forecasting model, although, this in fact 

may be a weak assumption. The erratic behavior of the parameter trends 

within each event indicate possible nonstationarity of parameters within 

events. This erratic behavior seemed to dampen out, however, after 

five or six events. 

The subsequent forecasts of storm inflows, although initially 

demonstrating significant error as illustrated in Figures VI-4 and VI-5, 

were seen to improve dramatically as the ~eat event progressed. It is 

noted that the use of a finer discretization within the forecast model 

may yield an improvement of the forecasted flows which are needed for 

the chosen control interval used within the optimizations. 
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The above points appear to demonstrate the feasibility of the 

entire proposed on-line algorithm. The comparison of performances for 

the proposed system under the various subbasin considerations, discussed 

above, is provided in the balance of the computational results. 

The advantage of long range forecasts (and, consequently, 

optimizations over the entire horizon) over short range forecasts (and, 

consequently, myopic control policies), is still uncertain. The per­

formances of the control policies derived for each of the four subbasin 

assumptions have been compared by calculating the total overflow and 

the total of the individual overflows squared. The total squared over­

flow value indicates the dispersion of the overflows through time and 

space. Table IV-4 summarizes the performance of the various policies 

which were illustrated in Figure VI-g. It was noted that the full 

forecast model (with risk) yielded a lower maximum rate of overflow 

at the expense of total overflow. Total overflows were less, it is 

recalled, for the myopic based policies. 

The performance of the full forecast model without risk was judged 

inferior to the same general approach with risk, and to the myopic 

based policies. This seems to indicate that risk is an important 

co-requisite to long range forecasting when used within an optimization 

model. 

Table IV-4 also illustrates the superiority of policies derived by 

using a criterion function with an exponent on weighted overflows which 

is greater than one. Such a nonlinear criterion may also be an essential 

part of an optimization scheme based upon a full forecast of events. 

The full, or long range, forecast spans many control intervals and the 
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nonlinear criterion accentuates the dependence in time and space of the 

various control decisions. 

In general, it seems that the full forecast optimization model with 

risk and a nonlinear criterion, is a worthwhile tool. Its effectiveness 

is hampered, although, by the accuracy of the inflow forecast model 

which, this author believes, can be greatly improved upon. 



A. SUMMARY 

Chapter VII 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 
FOR FUTURE RESEARCH 

An important source of water pollution, which has been frustrating 

plans for achieving a national goal of cleaning up natural waterways, 

is urban stormwater runoff. Achieving the national goal demands the 

control of urban stormwater runoff either by itself or, as it is often 

found, in combination with sanitary sewage, so that development of many 

promising alternatives has been stimulated. 

The use of ambient and/or auxiliary detention storage has emerged 

as both technically feasible and economically advantageous when compared 

to other schemes for achieving the needed control. Such in-line stor-

age would have numerous control features for which remote operation is 

a fairly obvious necessity. This would require the utilization of 

field information and a capability for rapid execution of control. 

The control of complex systems of such auxiliary detention 

storage facilities has been approached herein by the on-line use of 

computerized information and control algorithms. The proposed control 

system would sense the current state of the system as well as the 

characteristics of the pollution threatening event, and telemeter 

this data to the computer control center. A forecasting model within 

the computer would then utilize the inflow data to generate a forecast 

of the future system inputs. These forecasts, along with the system 

status would be subsequently used by the optimization model to deter-

mine the controls to be exercised. The controls would then be tele-

metered to the system components where they would be effected. As the 

196 
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forecast is updated, or as the system status demands, the entire process 

would be repeated until the pollution threatening event passes. 

The development of this adaptive on-line control algorithm for a 

computer controlled system of combined sewers is the problem to which 

this dissertation was directed. It is an adaptive system in that the 

event in progress is monitored and its future aspects are forecasted. 

The control algorithm is constantly updated with current data. It 

still, however, recognizes the uncertainty in the forecast and derives 

controls which will minimize expected weighted overflows and street 

flooding while efficiently utilizing the existent facilities. 

A review of adaptive approaches to the problem of linked 

reservoir optimization was presented along with a discussion of rain­

fall simulation, with a view towards its application to the forecasting 

problem. The application of adaptive learning processes to the problem 

of forecasting was seen to be thoroughly justified by the literature, 

although the detail required in the problem addressed here had not yet 

been considered. 

It was concluded in Chapters III and IV that a large-scale 

optimization technique, which reduces the excessive dimensionality of 

the original problem formulation, was required for the control of the 

large complex systems considered. This conclusion, then, formed the 

basis for the entire approach. Decomposition was the characteristic 

technique chosen for most of this work while aggregation was also 

applied in situations where the time required for detailed solutions 

was too great for iterative on-line interaction. 

The large-scale decomposition approach chosen within this work 

relied upon a master control problem which derived needed data for 



198 

independent subproblems. These subproblems were formed to correspond 

to physical subsections or subbasins. The use of decomposition 

encouraged the development of a variety of subbasin analysis techniques 

because the general procedure could thereby incorporate a mix of tech­

niques for subbasin analyses. This permits the use of detailed 

techniques where necessary and shortcut methods where permissable. 

Various detailed subbasin analysis techniques were developed under 

the categories of deterministic subbasin techniques and stochastic 

subbasin techniques. The difference between the two approaches 

centered around the assumptions concerning the accuracy and reliability 

of the inflow forecasts. In each category, routing effects were 

addressed and those methods capable of incorporating both the risk of 

the forecasted inflows and routing effects were developed. These tech­

niques are then proposed as detailed subbasin techniques to be used 

subsequent to an interactive phase of optimization. The algorithms 

used within the interactive phase were by necessity very simple, although 

they still considered risk. Basically, all the subbasin techniques 

considered were variants of linear programming and dynamic programming. 

As a separate system function, techniques were developed to 

analyze historic storms for the derivation of parameters for a base­

line forecast model. The model could then be modified during a partic­

ular storm to forecast the future inflows of that event being con­

sidered. The techniques used, based on parameter identification theory 

for multiple time series analyses and forecasting were adopted for on­

line use within the large scale optimization framework. 

The totally on-line real-time framework for the complete computer 

control system was simulated on a central computer by the a-priori 
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selection of a particular event. It was subsequently utilized 

sequentially as the ~eat system inflows during the optimizations. As 

more ~eat data became available to the program, simulating the passage 

of real-time, the entire large-scale optimization technique was repeated 

and new controls supplanted older controls where necessary. 

The simulated on-line, real-time demonstration of the total 

algorithm was repeated four times using different assumptions within 

the subbasin problem. The assumptions dealt with: 

1. The advantage of long range forecasting techniques over 

short range myopic techniques. 

2. The advantage of considering the risk inherent in long range 

forecast data. 

3. The advantage of recognizing the interdependence in time and 

space of control decision impacts. 

B. CONCLUSIONS 

Several of the more significant conclusions based on the results 

of this work are discussed below: 

1. The general format of the performance criterion used 

throughout the various techniques is judged to be an adequate descrip­

tion of the actual control objectives. 

The control objectives of decreasing ~eat overflows and street 

flooding while efficiently utilizing the existent facilities was readily 

achieved. This was accomplished by crediting the expected value of 

anticipated throughflows while penalizing the expected value of antici­

pated overflows for releases resultant from a potential control policy 

and forecasted inflows. 



200 

Street flooding events which resulted from ~eal inflows which 

exceeded the forecasted values, although not eliminated, were proven 

controllable to a degree. Experiments conducted prior to the final 

demonstrations which used a high penalty weighting factor on anticipated 

storage overflows influenced the decisions on planned (control based) 

overflows. Such penalty factors often resulted in lower subsequent ~eat 

storage overflows. If such controlled overflows were selected in an 

early period, but subsequent ~eat inflows were lower than forecasted 

inflows, it was seen that the controlled overflow previously selected 

was unnecessary. Without a priori knowledge concerning the error of the 

forecast, the weighting factors on controlled overflows and uncontrolled 

storage overflows (i.e., street flooding) should, in general, remain 

equal (unless unequal overflow impact is known to exist or can be 

assumed). 

An exponent greater than one on anticipated overflows of either 

type will tend to balance both types of overflows. And, if forecast 

error is unbiased, overflows will in the long run be more evenly dis­

tributed. A secondary goal of achieving evenly distributed overflows 

is seen to be attained, in part, at the expense of total overflow 

reduction. The balance between these goals remains to be determined. 

When a quadratic criterion was used, which squared the weighted over­

flows, a 22 percent increase in total overflows in time and space was 

achieved. (That is, squared overflows were 23 percent less when the 

quadratic criterion was used in an otherwise identical formulation.) 

The use of the expected value of the anticipated weighted 

overflows and throughflow as a criterion for selecting controls 

appears to be well justified. When risk was considered, and a 
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stochastic optimization used to select subbasin controls, and 18 percent 

reduction in total ~eat overflows was achieved in the demonstration. 

This reduction is based on a comparison of performance with an other­

wise identical formulation which assumed that the forecasted inflow 

values each had a probability of unity. 

Control policies based upon the total expected value of 

anticipated weighted overflows and throughflows compared well with 

myopic policies which were based upon a one step ahead forecast and 

simple operating roles. The myopic technique did, however, achieve 

the lowest total overflow. It was 10 percent less than the overflow 

achieved by the stochastic problem using a full forecast of future 

inflows and a quadratic objective. But, its distribution was inferior. 

The sum of the squared overflows was again 23 percent higher and was 

comparable to the full forecast problem with no risk, and to the full 

forecast problem with a linear criterion. 

2. The forecasting of inflow values for the remaining time 

periods of an event is a feasible approach to the on-line real-time 

derivation of system controls which are dependent to each other in 

time and to a random inflow factor. The parameters for a set of auto­

regressive transfer function models (one for each location) were 

derived in a sequential manner amenable to on-line adaptation. The 

resultant models were subsequently used in a simulated real-time 

environment to sequentially forecast future inflows. The inflows were 

based upon a previously derived base line model which reflected historic 

trends, and current data describing the event in progress. By limiting 

the values of the forecasted inflows to values under the maximum 

expected inflows, based upon historic data, the forecasted values were 
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kept within the range considered in the stochastic optimization. The 

stochastic optimization, it is recalled, set the forecasted inflow value 

as the mean of a distribution ranging up to this same historic maximum. 

The forecasted values were seen to converge to the simulated 4eat event 

after three or four iterations of the forecast model. This convergence 

however, was preceded by large errors in the forecasts of subsequent 

and total subsequent inflows. These errors may have influenced the 

control algorithms, resulting in additional overflows. The discreti­

zations of time within the forecast models was identical to that used 

in the optimization models. A much finer division of time in the 

forecasting model may yield an improved performance. since more data 

will be available prior to the arrival of the 4eai peak inflows which 

the system was most sensitive to. In particular, an underestimation of 

immediate inflows coupled with an overestimation of total flows (or 

vice versa) may be responsible for the total overflow superiority of 

the control policies derived by using an operating rule. Such an 

operating rule only reacts to the forecast of immediate inflows. 

3. A large-scale problem can be reduced to manageable 

dimensionality by the application of decomposition techniques. 

Decomposition as a characteristic approach yields four distinct 

advantages. (1) Decomposition permits the independent solution of low 

dimensional problems either sequentially or in parallel. (2) Decom­

position permits the use of the appropriate subbasin technique for each 

particular location. (3) Decomposition permits the use of nonlinear 

functions within the overall system constraints; i.e., routing. 

(4) Decomposition lends itself well to distributed computational power, 

possibly in the form of a hierarchy of mini-computers, since the 
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subproblems correspond to physical subsections of the system. The 

decomposed problem, which is amenable to distributed computer power, 

will then be capable of achieving the same total computational speed 

when applied to a hierarchy of slower minicomputers. The slower 

computational speed of the minicomputers and microprocessors proposed 

herein is compensated by the possibility of parallel computations, and 

also by the advantages of shorter computer word length. This shorter 

word length requires less memory and data handling for a realistic 

level of system precision. 

4. Decomposition and aggregation techniques used in a 

complimentary fashion appear to be a worthwhile approach to the 

solution of large scale problems. 

Although decomposition is the characteristic large-scale approach 

adopted here, the interactive subbasin problem used aggregation to 

further reduce the problem size. Decomposition and aggregation, when 

used in conjunction, enable large systems to be analyzed without the 

multiplicity of optimization levels needed if repeated system decompo­

sition is used and also without the loss of solution flexibility 

inherent in solution via gross aggregations of components. If the 

proper balance is struck an efficient solution algorithm results. 

C. RECOMMENDATIONS FOR FUTURE RESEARCH 

The research outlined herein has generated many questions while 

hopefully answering a few. The work can be categorized into three 

major areas of concern: (1) the master control problem and the overall 

solution strategy, (2) the forecasting model used for the estimation of 

the inflow sequences, and (3) the subbasin analysis techniques with 
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and without uncertainty and risk. Each has evolved its own questions 

which will be treated separately below. 

Master Control and Overall Solution Strategy 

1. Decomposition permits routing within subbasin problems as well 

as within the interceptor. The routing technique chosen must 

be quick and simple for iterative use but accurate enough to 

fully represent the attenuation and lag encounter by flows 

within the considered reach. Efforts to find a transfer 

function representation for the various reaches of a system 

could enable the inclusion of routing directly within the 

distributed system computer system while necessitating little 

additional software. 

2. The discrete steepest descent method worked adequately for 

use with discretized subbasin parameters (i.e., solution via 

dynamic programming) but would be unnecessarily limiting for 

subbasin analysis techniques which can be solved with con­

tinuously arrayed values. The development of an efficient 

steepest descent method for use with either all continuously 

arrayed subbasin techniques or a mix of continuous and dis­

crete techniques should be considered. 

Inflow Forecast Models 

1. Further research is desirable in efforts to discover the 

sufficient forecast model for the expressed purposes. 

Computer time, storage requirements, as well as data needs, 

increase with the order and degree of the model. However, 

diminishing improvements in forecasting ability may also 

attend such increases in model size. An optimal model size 
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should, therefore, be sought which, in conjunction with the 

stochastic subbasin analyses techniques, yields an efficient 

forecast and optimization procedure combination. 

2. The analysis of historic inflow (or rainfall) data, in an 

effort to discover seasonal or storm type subgroups which 

exhibit a higher degree of stationarity, should be pursued. 

Such subgroups would aid in the forecast of inflows since they 

would result in greater model stationarity. The subgroup 

identifiers such as season, wind direction, storm type, etc., 

could be used to define which sufficient model is necessary 

for the forecast of the remainder of the event in progress. 

3. The derivation of the be6~ weighting factors for the data 

being used in the parameter identification procedure is a 

subject which would be worthwhile pursuing. The available 

data can be weighted according to its perceived importance 

both within the on-line real-time modification of the base 

line model, and in the off line establishment of the base 

line model. Older storms or storms from other logical sub­

groups (e.g., seasons) might be weighted lower than newer 

storms or storms whose patterns seem close to the emerging 

pattern of the storm being considered. Care must be taken, 

however, since to weight the newest data far greater than the 

historic data would yield an erratic model; while weighting 

the historic data too highly would yield a constrained model, 

unable to adapt or learn the current pattern. 

4. In general, more basic work to establish the value of 

forecasting for the derivation of system controls (either 
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deterministically or stochastically) is needed. Systems 

affected by random disturbances must still be controlled. 

If tentative control policies are needed prior to the realiza­

tion of an event, forecasting seems valuable. However, in 

view of the performance of the policies derived from a simple 

operating rule the value of forecasting over an entire 

planning horizon remains unclear. 

Subbasin Analysis Techniques 

1. Experiments were conducted to ascertain the advantage of 

using stochastically derived controls when compared to 

deterministically derived controls for variants of the 

forecasted storm inflows. These experiments indicated the 

superiority of stochastically derived controls for simple 

random variants of the forecasted storm. However, a full 

demonstration of this superiority would entail the considera­

tion of all relevant cross and serial correlations in the 

generation of probable variants. The weighting of these 

variants with their probability would enable a more compre­

hensive evaluation of the advantage of a control strategy_ 

Such a study would provide needed data for analyzing whether 

or not stochastic policies are worth the additional computer 

power that may be required, considering their advantages. 

2. The use of upper bounding linear programming codes, either 

independently in the deterministic case, or built into the 

LPUU code in the stochastic case, would overcome the dimen­

sionality problem encountered using simple LP approaches. 

Such codes would eliminate much of the computer storage 
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needed to explicitly represent an upper bound constraint for 

each variable and time period. This, in conjunction with 

other sparse matrix handling methods (diagonalization), could 

facilitate the application of LP to much larger subbasins and 

system subsections. This could possibly lead to the elimina­

tion of the aggregated intermediate problem used for interac­

tion with the master problem. 

3. Tradeoffs between solution optimality and speed, considering 

the inherent risk in the forecast, should be made. Faster 

subbasin analysis techniques may be needed if the control 

interval is to approach five minutes. The increased oppor­

tunity for updating and correcting provided by a smaller 

control interval, combined with greater forecast risk for 

such short intervals, increases the advantages of simplified 

solution strategies such as the myopic operating policy. The 

further comparison of the large scale approach outlined 

herein with an approach using such simplified subbasin 

analysis techniques is a worthwhile endeavor. 
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