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Abstract

Error Correcting Optical Mapping Data

Optical Mapping is a unique system that is capable of producing high-resolution, high-

throughput genomic map data that gives information about the structure of a genome

(Schwartz et al., Science 1993). Recently it has been used for scaffolding contigs and as-

sembly validation for large-scale sequencing projects — for example, the maize (Zhou et al.,

PLoS Genetics, 2009), goat (Dong et al., Nature Biotech. 2013), and amborella (Chamala

et al., Science 2013) genomes. However, a major impediment in the use of this data is the

variety and quantity of the errors in the raw optical mapping data, which are referred to

as Rmaps. The challenges associated with using Rmap data—and thus, optical mapping

data—is analogous to dealing with insertion and deletions in the alignment of long reads.

Moreover, they are arguably harder since the data is integral and susceptible to inaccuracy.

We develop cOMet to tackle error correct Rmap data, which to the best of our knowledge

is the is the only non-proprietary error correction method. Our results demonstrate that

cOMet has high accuracy on simulated E. coli (str. K-12 substr. MG1655) genome.

ii



Acknowledgements

I am very thankful to my adviser, Dr. Christina Boucher for the time, insight, motivation,

and kindness she rendered to me. I also want to thank her for providing me an opportunity

to work as teaching and research assistant. She will be an inspiration to me for her diligence

and passionate attitude towards work. I would especially like to thank a friend-cum-mentor,

Martin Muggli for helping me throughout my research and suggesting the edits in my thesis.

I would like to express my gratitude towards my co-advisors Dr. Sangmi Lee Pallickara for

always being very supportive and teaching me Big Data. I am grateful towards Dr. Tai

Montgomery for accepting to be on my committee and providing his precious time. I have

been fortunate to work with Dr. Christos Papadopoulos. I want to thank him for believing

and supporting me through this journey. I am very thankful towards Rumpal Kaur, Melinda,

Nikhil Agnihotri and Dev for proofreading my thesis. Last but not the least, I would like to

express my gratitude towards my family and friends who always help me to become a better

person.

iii



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Chapter 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Our contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2. Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Chapter 2. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1. Definitions and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2. Optical Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 3. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1. Quantization of Fragment Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2. Construction of Related Rmap Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3. Rmap Alignment and Error Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.4. Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Chapter 4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1. Performance on Simulated E.coli Rmap Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Chapter 5. Discussion and Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

iv



List of Tables

4.1 An illustration of the change in the performance of cOMet with simulated E.coli

genome in response to varying values of k with 200 copies of the E.coli (str. K-12

substr. MG1655) reference genome, d equal to 2, m equal to 2. . . . . . . . . . . . . . . . . . . . 15

4.2 An illustration of the change in the performance of cOMet with simulated E.coli

genome in response to varying values of m with 200 copies of the E.coli (str. K-12

substr. MG1655) reference genome, k equal to 3, d equal to 2. . . . . . . . . . . . . . . . . . . . 18

4.3 An illustration of the change in the performance of cOMet with simulated E.coli

genome in response to varying values of d with 200 copies of the E.coli (str. K-12

substr. MG1655) reference genome, k equal to 3, m equal to 2. . . . . . . . . . . . . . . . . . . . 19

4.4 An illustration of the change in the performance of cOMet with default

parameters in response to an increase in the number of copies of the genome. All

data was simulated using the E.coli (str. K-12 substr. MG1655) reference genome.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

v



List of Figures

3.1 An example illustrating the alignment between the base Rmap Ri and the target

Rmap Rj generated using Valouev et al. method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 One of the rows from the multiple alignment grid of the base Rmap Ri used for

storing the alignment between Ri and Rj generated using Valouev et al. method.. 10

4.1 Plot of the quality scores of the Rmaps before versus after error correcting

simulated E.coli genome using cOMet. Here we ran cOMet with default

parameters and simulated Rmaps using 500 copies of the E.coli genome.. . . . . . . . . . 22

4.2 An histogram illustrating the ratio of the quality score of the simulated Rmap

after error correction with cOMet and before error correction with cOMet. Here

we ran cOMet with default parameters and simulated Rmaps using 500 copies of

the E.coli genome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

vi



CHAPTER 1

Introduction

In 1993 Schwartz et al. [17] developed a system, referred to as optical mapping, for

creating an ordered, genome-wide, high-resolution restriction map of a given organism’s

genome. Genome-wide optical maps have been used for discovering structural variations

and rearrangements [18] as well as for scaffolding and validating contigs for several large

sequencing projects. These include those for various prokaryote species [15, 22, 23], rice [24],

maize [26], mouse [7], goat [8], parrot [9], and Amborella trichopoda [6]. However, even though

their use has increased in popularity in the past several years, there is still a lack of publicly

available tools for analyzing this data, a point further empathized by Mendelowitz and Pop

[12] in 2014: “There is, thus, a critical need for the continued development and public release

of software tools for processing optical mapping data, mirroring the tremendous advances

made in analytical methods for second- and third-generation sequencing data..”

The raw optical mapping data is generated by a biological experiment in which large

DNA molecules cling to the surface of a microscope slide using electrostatic charge and are

digested by using one or more restriction enzymes. The fragments formed by digestion are

‘painted’ with a fluorescent dye, to allow visibility under laser light and a CCD camera.

Restriction enzymes cut the DNA molecule at restriction sites creating smaller fragments.

The consolidated intensity of fluorescent dye is used in conjunction with the distance between

fragment ends in estimating fragment length. The length of the fragments is determined by

image processing and machine learning techniques. The resulting data from an experiment

are in the form of an ordered series of fragment lengths [25]. The data for each single

molecule produced by the system is referred to as an Rmap. Rmap data has a number of

1



errors due to the experimental conditions and system limitations. In an optical mapping

experiment, it is very hard to get uniform fluorescent staining. This leads to an erroneous

estimation of fragment sizes. Also, restriction enzymes often fail to digest all occurrences of

their recognition sequence across the DNA molecule. This creates missing restriction sites.

Due to DNA’s fragile nature, additional brakes can masquerade as false restriction sites. The

limitations of the imaging component of the optical mapping system and the propensity for

the DNA to ball up at the ends introduces more error sizing error for smaller fragments.

Because of all these erroneous experimental conditions, optical mapping data generated

through optical mapping experiment has insertions and deletions of cut sites along with

fragment size substitution errors.

Nonetheless, in order to use optical mapping data for further analysis (scaffolding, variant

calling, etc.) the Rmaps have to be assembled into a genome wide optical map. This is

because the single molecule maps need oversampling to improve the accuracy in the presence

of the aforementioned errors, and because single molecule maps only span on the order of 500

Kbp [19]. The first step of this assembly process involves aligning one Rmap to another. In

order to accomplish the challenge of dealing with missing fragment sizes has to be overcome,

one that is analogous to dealing with insertion and deletions in the alignment of long reads—

in fact, it is arguably harder since the data is integral (where every element is a substitution

relative to its aligned element, unlike the 4 symbol categorical alphabet of DNA). At the

present moment, the only non-proprietary algorithmic method for pairwise aligning Rmap

reads is dynamic programming based methods the method of Valouev et al [19]. SOMA [14]

also accommodates the full range of experimental errors present in the data. These methods

are inherently computationally intensive. However, if the error rate of the Rmap methods
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could be significantly improved, then subsequent, non-dynamic-programming based methods

that are orders of magnitude faster (such as Twin [13]) could be used for alignment. This

would inadvertently have the effect of improving the time required to assemble Rmap data

into a genome-wide optical map.

1.1. Our contribution

Even though there exist methods for correcting short-read data, and Pacific Biosciences

(PacBio) data that has a 15% insertion and deletion error rate, they cannot be used to

correct Rmap data because each Rmap is a sequence of numerical values rather than a string

of biological characters. We present cOMet, a method that error corrects Rmap data. To

the best of our knowledge, this is the first such method and thus, we cannot compare against

any other existing tool. Our experimental results are demonstrated on simulated Rmaps

from the E.coli K-12 reference genome showing high percentage of error corrections.

1.2. Related work

Many optical mapping tools exist and deserve mentioning, including AGORA [11], SOMA [14],

and Twin [13]. Twin [13] is an index-based method for aligning contigs to an optical map.

Due to its use of an index data structure it is capable of aligning in silico digested contigs

orders of magnitude faster than competing methods based on dynamic programming algo-

rithms, however, it is not suitable for aligning raw optical mapping data. SOMA [14] is a

scaffolding method that uses a consensus optical map and is specifically designed for short-

read assemblies. SOMA includes an alignment method for scaffolding. It is a O(n2m2)-time

dynamic programming algorithm. Gentig [2], and software developed by Valouev et al. [19]
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also use dynamic programming to address the closely related task of finding alignments be-

tween optical maps. Gentig is not available for download. BACop [26] also uses a dynamic

programming algorithm and corresponding scoring scheme that gives more weight to contigs

with higher fragment density. Antoniotti et al. [3] consider the unique problem of validating

an optical map by using assembled contigs. This method assumes the contigs are error-free.

Optical mapping data was produced for Assemblathon 2 [5].

Although there has been a plethora of work on error correction of short read data [21],

these methods are not appropriate for optical mapping data because they do not handle

insertions and deletions appropriately (n.b. In the event of a mismatched site, the span of

DNA between matched sites remains the same.) The error profile of PacBio reads is more

similar to that of optical mapping data, i.e., the pervasiveness of insertions and deletions,

and hence, the methods for error correcting PacBio reads, such as LSC [4], PBcR [10] and

Coral [16], are more relevant to correcting Rmaps. LSC uses short read information to

correct PacBio data. LSC applies a well-proven technique of homopolymer compression

transformation on long and short reads in order to increase the sensitivity of short read-

long read alignment. LSC also filters out compressed short reads of poor quality before

aligning long reads to short reads using Novoalign [1]. Finally, the consensus information

from the aligned short reads is used to fix the errors of PacBio reads. PBcR computes

all-versus-all alignment between quality accuracy short-reads and PacBio long-reads sharing

seed sequences of 14 bp (by default). In the next step, PBcR tiles overlapping short-reads

along each long-read sequences to generate the multiple-alignment of short-read sequences.

Lastly, PBcR employs the AMOS consensus module to create a new consensus sequence for

each long-read sequence from multiple-alignment generated in the previous k -mer in common
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with one specific read which is referred to as a base read. For a next step, Coral computes

the multiple alignments between the k -mer neighbourhood of the base read to generate a

consensus sequence. Coral then uses these consensus sequences to correct errors in the reads.

Although these methods are more relevant than short read error correction methods, the data

in optical mapping is numerical which adds an increased level of complexity. PacBio error

correction methods are not suitable for Rmap error correction for this reason.
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CHAPTER 2

Background

2.1. Definitions and Notation

Throughout we consider a string X = X[1..n] = X[1]X[2] . . .X[n] of |X| = n symbols drawn

from the alphabet [0..σ − 1]. For i = 1, . . . , n we write X[i..n] to denote the suffix of X of

length n− i+1, that is X[i..n] = X[i]X[i+1] . . .X[n]. Similarly, we write X[1..i] to denote the

prefix of X of length i. X[i..j] is the substring X[i]X[i+ 1] . . .X[j] of X that starts at position

i and ends at j.

k -mer: All possible substrings of a string X[1..n] of length k are called as k -mers of X.

There are n− k + 1 k -mers possible for X.

Related Rmaps: If two Rmaps have at least one k -mer common in between them, then

we refer to them as related Rmaps.

2.2. Optical Mapping

From a very basic viewpoint, optical mapping can be seen as a process that takes in two

strings: a genome A[1, n] and a restriction sequence B[1, b], and produces an array (string)

of integers R[1,m]. The array R is an Rmap corresponding to A. We note that millions of

Rmaps are produced for a single genome since optical mapping is performed on many cells

of the organism (not a single cell) and for each cell there are thousands of Rmaps. This is

analogous to next generation shotgun sequencing. The Rmaps can be assembled to produce

a genome wide optical map M, which we define as follows: M[1,m] where M[i] = j if and

only if A[j..j + b] = B is the ith occurrence of B in A. For example, if we let B = act and

A = atacttactggactactaaact then we would have M = 3, 7, 12, 15, 20. Hence, each Rmap is
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an array of distances—corresponding to the fragment sizes—between occurrences of B in A

(equivalently differences between adjacent values in M). More formally, we define a Rmap

R[1,m] where R[i] = (M[i] −M[i − 1]), with R[1] = M[1] − 1. Continuing with the example

above, we have R = 2, 4, 5, 3, 5.

There are three types of errors that can occur in optical mapping: (1) missing cut sites

which are caused by an enzyme not cleaving at a specific site, (2) additional cut sites which

can occur due to random DNA breakage and (3) inaccuracy in the fragment size due to the

inability of the system to accurately estimate the fragment size. Continuing again with the

example above, a more representative example Rmap would include these errors, such as

R
′ = 7, 6, 3, 4. There is a 15% probability that a cut site is missing, i.e., error type (1) occurs

in Rmap. For every 400 KB of Rmap, there is about 1 random break appearing as a cut site,

i.e. error type (2). The inaccuracy of the fragment sizes, i.e., error type (3), follows a normal

distribution with standard deviation (σ) which depends on actual length of the fragment.

For example, if L is an actual length of a fragment, then length measured by the optical

mapping system shows a normal distribution across L with standard deviation σ given by

σ2 = f(L) (1)[20]. One significant challenge in aligning one Rmap to another is overcoming

missing cut sites. Continuing on from our example above, we need to be able to at minimum

align the error containing R
′ = 7, 6, 3, 4. to our unobservable perfect map R = 2, 4, 5, 3, 5. In

practice, a pair of Rmaps will have twice the pairwise error rate since each will deviate from

the genomic map by the above parameters.
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CHAPTER 3

Methods

Given a set of Rmaps R = {R1, ..,Rn}, where n is a number of Rmaps, the error correction

problem aims to detect and correct all three types of errors in each of them. Our method

consists of the following steps: quantization of fragment sizes, construction of an Rmap index

for storing related Rmaps, construction of multiple alignments between Rmaps, and error

correction of Rmaps.

3.1. Quantization of Fragment Sizes

Before running error correction, Rmaps need preprocessing to remove the first and the

last fragment from each of the Rmaps. This is done because these fragments have one of their

edges sheared by artifacts of the DNA prep process preceding the optical mapping process

and not restriction enzymes. Thus, they can misguide alignment between two Rmaps during

the error correction process. Rmaps need to contain a minimum number of fragments in

order to have enough information contained in the general pattern of fragment lengths to

overcome the inherent errors. Thus, the next step in this preprocessing stage is to remove

very short Rmaps, i.e., ones that have less than ten fragments. These are commonly removed

before assembling or analyzing this data further [5].

Lastly, in the preprocessing stage, we quantize the data to account for sizing errors. As

previously discussed in Subsection 2.2 each fragment size is subject to sizing error that skews

the size by a random amount. The sizing error follows a normal distribution with mean of

µ and standard deviation of σ. Therefore, we use nonlinear quantization to address this

problem by creating bins of variable sizes, where the upper bound of bin m is given by
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U(s) = U(s− 1) + 2δs, where δs = w ∗ σ and w is a multiplier for how wide bins should be

in terms of standard deviation. σ is calculated using equation (1) for a fragment of length

U(s− 1). We note that U(0) = 0.5 kbp. For example, the second bin would range from 0.5

kbp to 0.5 + 2δ1. All fragment sizes in the range of U(s− 1) to U(s) are replaced with the

value s. This is done for each fragment size and each Rmap. Hence, using this model we

can see that the bin size increases with the fragment length since the standard deviation is

dependent on the fragment length. We note that a copy of original, un-quantized Rmap is

stored for later analysis.

3.2. Construction of Related Rmap Index

Rmaps originating from the same segment of the genome will likely have a number

of quantized fragment k -mers in common. In order to avoid computing the edit distance

between all pairs of Rmaps, we use the number of these common k -mers to discriminate

between pairs of Rmaps which are related and those that are not. When a pair is classified

as related, we assume they originate from the same segment of the genome. In order to

correct errors from each Rmap Ri in R, we first find a list of related Rmaps of Ri. In the next

step, we generate an alignment between Ri and each Rmap in the list related Rmaps of Ri.

These alignments are stored with respect to Ri which are then used to create a consensus

map to correct errors from Ri.

To accomplish this efficiently, we first extract all unique k -mers occurring in quantized

Rmaps and their reversed Rmaps. We construct a hash table that stores each unique k -mer

as a key with the list of Rmaps containing occurrence of that k -mer as the value. We call

this hash table the k-mer index. Next, we generate the related Rmap index using the k -mer

index. For each pair of Rmaps that have at least one k -mer in common, we store the count

9



Figure 3.1. An example illustrating the alignment between the base Rmap
Ri and the target Rmap Rj generated using Valouev et al. method.

Figure 3.2. One of the rows from the multiple alignment grid of the base
Rmap Ri used for storing the alignment between Ri and Rj generated using
Valouev et al. method.

of the k -mers that the Rmaps have in common. We consider Rmaps Rj, Rk, ..., Rl to be the

related Rmaps of Rmap Ri havingmj,mk, ...,ml k -mers in common respectively. The related

Rmap index is an array where each entry is a hash table. The ith entry in the related Rmap

index represents the collection of related Rmaps of Ri. Each hash table stores the number of

k -mers that are common between Ri and its related Rmaps. So the keys in this hash table

are the related Rmaps of Ri i.e. Rj, Rk, ..., Rl and the values are the count of the k -mers

in common between Ri and its related Rmaps, i.e. mj,mk, ...,ml. In order to minimize the

memory requirement, all common k -mers between a pair of Rmaps are recorded only once

in the related Rmap index. For example, if a k -mer kx is shared by Ri and Rj and i < j

then the related Rmap index will have an entry for Ri specifying that kx is shared with Rj;

however, the reverse is not true.
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3.3. Rmap Alignment and Error Correction

For each Rmap Ri in R, we use the related Rmap index to find all Rmaps that have m or

more k -mers in common with Ri. We denote this set of Rmaps as Ri. We refer to Ri as the

base Rmap and every Ramp in R
i as the target Rmap. Next, we use the method of Valouev

et al. [19] to find all pairwise alignments between Ri and each Rmap in R
i. The Valouev

et al. method outputs an alignment only when the optimal alignment generated satisfies

the S-score and T-score threshold [19]. If the Valouev et al. method produces an alignment

between Ri and any Rmap in R
i, then it is stored in a multiple alignment grid. The multiple

alignment grid is a two dimensional array of integer values. The number of rows of the

multiple alignment grid is equal to the number of Rmaps in Ri for which the Valouev et al.

method produced an alignment and the number of columns is equal to the number fragments

in Ri. Basically, a row in the multiple alignment grid represents an alignment between Ri

and one of the Rmaps in R
i, which we denote as Rj.

Figure 3.1 shows an example of an alignment produced by the Valouev et al. method

when we align the base Rmap Ri and the target Rmap Rj. We store this alignment in one

of the rows of the multiple alignment grid and we identify that row as rij. Each cell in rij

corresponds to a fragment in a Ri. In our example, figure 3.2 shows rij used to store the

alignment between Ri and Rj. We categorize the alignment generated by the Valouev et

al. method between Ri and Rj as one of four types: (1) one fragment of Ri can align with

one fragment of Rj, (2) one fragment of Ri can align with y fragments of Rj where y ≥ 2,

(3) x fragments of Ri can align with y fragments of Rj where x = y and x ≥ 2, y ≥ 2, and

(4) x fragments of Ri can align with y fragments of Rj where x 6= y, x ≥ 2 and y ≥ 1. In

order to minimize the memory requirement, every alignment is stored with respect to the
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base Rmap using integer values. In the example shown in figure 3.1, the second fragment of

Ri (value 3.625) aligns with the first fragment of Rj (value 3.311); This type of alignment

is of the type 1 alignment produced by the Valouev et al. method. In order to store such

alignments, we store a 1 in second cell of rij. This implies that the second fragment of Ri

aligns with a single fragment of Rj. We also store the alignment starting point for every

target Rmap in Ri for which the Valouev et al. method generates an alignment. So from our

example, we store the alignment start point for Rj which is 1 because the alignment between

Ri and Rj starts from the first fragment for Rj. The seventh fragment of Ri (value 24.824)

aligns with two fragments, the fifth and sixth fragments of Rj (values 10.314 and 13.391).

This alignment is of the type 2 alignments generated by the Valouev et al. method. In this

alignment, y = 2. In order to represent such alignments in rij, we store a 2 in seventh cell of

rij, which implies that seventh fragment of Ri aligns with 2 fragment from Rj. It also implies

that there are y − 1, i.e. one missing cut site in Ri as compared to Rj, i.e. deletion error.

The two fragments of Ri, tenth and eleventh (values 12.578 and 2.358) align with the two

fragments of Rj, ninth and tenth (values 8.448 and 5.921). So x = 2 and y = 2. Such type

of alignments are of type 3 alignments generated by the Valouev et al. method. In order to

represent such alignments in rij, we store an 8 in x cells of rij. Hence, we store 8 in the tenth

and eleventh cells of rij, which represent that the tenth and eleventh fragment of Ri align

with the two fragments of Rj. By default the Valouev et al. method can output a maximum

of seven fragment of one Rmap aligning to some number of fragments of the other Rmap,

hence 8 is the minimum number available to use which can distinguish type 3 alignments

form others. The third and fourth (values 2.092 and 2.164) fragment of Ri align with the

second fragment Rj (value 4.464). Such alignments are of type 4. For this alignment x = 2
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and y = 1. In order to record such alignments in rij, we store a -1 in rij for x− 1 cells and

y in the following cell. Hence, we store a -1 in the third cell of rij and a 1 in forth cell of

rij. In this alignment x > y hence we can say that there are x− y extra cut sites in Ri (i.e

insertion error as compared Rj). Similarly, when the fourteenth and fifteenth fragment of Ri

(values 8.955 and 22.943) align with the thirteenth, fourteenth and fifteenth fragment of Rj

(values 13.795, 4.143 and 6.119), then we store -1 at fourteenth cell and 3 at fifteenth cell in

rij which implies that the two fragments, fourteenth and fifteenth of Ri, align with the three

fragments of Rj. In this alignment, because x = 2, y = 3 and x < y, we can infer that there

are y − x = 1 one missing cut sites in Ri (i.e. there are deletion errors as compared to Rj).

The first fragment of Ri does not align with any fragment of Rj. In order to represent such

alignment in rij, we store a 0 in the first cell of rij. (n.b. Careful readers may note that this

encoding cannot distinguish runs of four or more fragments matched from consecutive sets

of two or more, however we favor this approach over more complex and precise ones because

such patterns are rare.)

The multiple alignment grid helps in correcting errors from the base Ramp. For every

fragment in the base Rmap, we first generate a consensus using the multiple alignment grid

which we call a consensus map. In order to generate a consensus map, we iterate through

each column of the multiple alignment grid. Every column of the multiple alignment grid

corresponds to a fragment in the base Rmap. For every column, the frequency of occurrence

of the values is counted and the value which occurs most frequently is consider to be the

consensus for that fragment. In order to deem that alignment as the final consensus, we use

a threshold value d. A threshold is important in cases where the base Ramp has a small

number of target Rmaps aligning to it. In such cases, it is more probable that we will make
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a mistake and distort a correct value rather than correcting an error. In the case of a tie

for the majority alignment, we chose one of the alignments randomly, expecting that we will

make a correct choice half the time; ties happens very rarely.

3.4. Complexity

We define ℓ to be the length of the longest Rmap in R. Quantization of the Rmaps can be

accomplished in O(ℓn)-time since there are n Rmaps and each has length at most ℓ. In order

to construct the hash table containing all k -mers and their lists of associated Rmaps, each

k -mer has to be indexed twice—once for the k -mer in the forward direction and a second

time for the k -mer in the reverse direction. Hence, the construction of the k -mer index can

be accomplished in O(ℓn)-time. Next, to generate the related Rmap index, we scan through

all ℓn k -mers and record related Rmaps. In the worst case, a k -mer can be common to all

Rmaps, making all of the input Rmaps appear related to each other, thus this is n2 related

Rmaps. The related Rmap index is an array of hash tables so each related Rmap pair can

be stored in constant time. Hence, the time required to create the related Rmap index is

O(ℓn2). Valouev et al. method takes O(ℓ2) to generate the alignment between two Rmaps.

In the worst case, cOMet need to find n2 alignments. It can be accomplished in O(ℓ2n2)-

time. The alignment generated using Valouev et al. method can be stored in the multiple

alignment grid in constant time. It may take O(ℓn2) to generate the consensus maps for n

Rmaps. Thus, the runtime of cOMet is O(ℓ2n2)
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CHAPTER 4

Results

The performance of cOMet was evaluated on simulated optical mapping data for E.coli

genome. All the experiments were performed on Intel x86-64 workstations with sufficient

RAM to avoid paging, running 64-bit Linux. The performance of cOMet was compared

for the different values of k (k -mer value), m (the number of k -mers needed to be conserved

between two Rmaps), d (the minimum number of Rmaps having agreed to form consensus),

and the number of copies of E. coli genome. To evaluate the performance of cOMet, a

variety of statistics are reported including the number of simulated Rmaps in the input file.

The number of deletion and insertion errors introduced while simulating the Ramps are

also reported. The results contain the percentage of the total number of the deletion and

insertion errors corrected by cOMet. In order to evaluate the accuracy of the corrections,

the percentage of accurately corrected errors are reported. This percentage is refereed to

as the percentage of true positive corrections. The true positive percentage of corrected

Table 4.1. An illustration of the change in the performance of cOMet with
simulated E.coli genome in response to varying values of k with 200 copies of
the E.coli (str. K-12 substr. MG1655) reference genome, d equal to 2, m equal
to 2.

k 2 3 4 5 6 7 8

Number of Rmaps in input file 995

Total number of deletion errors 4,515

% of corrected deletions errors 83.72% 82.66% 73.47% 57.56% 40.11% 23.41% 11.52%

True positive % of corrected deletions errors 83.78% 84.03% 82.97% 81.26% 78.52% 77.01% 73.65%

Total number of insertion errors 1,924

% of corrected insertions errors 79.16% 78.17% 79.00% 73.28% 59.30% 39.92% 20.43%

True positive % of corrected insertions errors 84.04% 83.44% 79.08% 71.49% 64.24% 58.59% 52.67%

Number of Rmaps aligned before running Comet 990

Avg quality score of Rmaps before running Comet 69.59

% of Rmaps aligned after running Comet 98.89% 97.88% 97.37% 96.77% 96.36% 97.78% 99.39%

Avg quality score of Rmaps after running Comet 70.66 70.59 68.31 65.66 65.29 66.11 67.63

Number of Rmaps showing improved quality score 625 610 506 347 247 131 72

Run-time in CPU seconds 2,043.71 950.97 337.23 153.98 72.79 33.9 15.66

Peak memory usage in MB 25.18 13.67 10.56 10.7 10.71 11.31 11.51
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deletion and insertion errors are recorded in the results. The improvement of the quality

scores of the corrected Rmaps was assessed. This was performed by first generating the

error-free maps of E.coli reference genome, and then the errors were introduce to form the

simulated Rmaps. These resulting Rmaps were aligned to the corresponding error-free maps

using Valouev et al. [19]. For each alignment produced by Valouev et al., it also generated

an alignment score. This score is referred to as a quality score of the Rmap before error

correction. See Valouev et al. [19] for a complete description of the scoring function. Next,

cOMet was run on erroneous Rmaps to correct errors. Each corrected Rmap was then

aligned to the corresponding error-free map to obtain an improved alignment score i.e. the

quality score of Rmap after error correction. The average of the quality scores along with the

number of Rmaps aligned before and after running cOMet are reported in the results. In

order to assess the improvement in the quality of an individual Rmap, the number of Rmaps

having improved quality score after running cOMet are reported in the results. The default

scoring parameters of the Valouev et al. scoring function were modified based on the error

model described in section 2.2. In the results, we also reported the peak memory usage and

the runtime for each run. Peak memory was measured as the maximum resident set size as

reported by the operating system with sufficient RAM to avoid paging. Runtime is the user

process time, also reported by the operating system.

4.1. Performance on Simulated E.coli Rmap Data

The E. coli reference genome is one of the smallest genomes and likely to contain the

fewest errors and thus, is the one used for verifying the improvement in the quality scores. We

simulated Rmap data using the reference genome for E. coli (str. K-12 substr. MG1655). The

Rmaps were simulated first by locating ten uniformly distributed random loci within each

16



copy of the genome which are taken to be breakpoints. These breakpoints form the ends of

single molecule that would undergo in silico digestion. Molecules smaller than 250 Kbp were

discarded. The cleavage sites for the XhoI enzyme were then identified within each of these

simulated molecules. The map generated for each simulated molecules due to the cleavage

sites is refereed to as a error-free map. The error-free maps are later used for validating the

output of our method. Next, the deletion, insertion and sizing errors were incorporated in the

error-free maps to simulate Rmaps. The deletion errors, i.e., missing cut sites were simulated

by removing one cut site randomly for every 6.66 cut sites. The insertion errors, i.e., adding

an extra cut site, were simulated by randomly adding an extra cut site every 400 kbp.

Finally, the sizing errors were added to each fragment size by first computing the standard

deviation using equation 1 and then sampling from an appropriately parameterized Gaussian

distribution. This method of simulating Rmaps was based on the error model described in

section 2.2. Our earlier experiments show that w = 4 gives quantization accuracy of more

than 85%, meaning the two fragments originating from the same part of genome will be

quantized in the same bins. We use w = 4 for all other experiments.

cOMet was ran for the different values of k, m, and d. The best results were obtained

when k was equal to three, m was equal to two, and d was equal to two. These values are

used as the default parameters for our software. Table 4.1 illustrates the performance of

cOMet for varying values of k when all the other parameters are kept constant. To conduct

this experiment, the value of k was varied from two to eight. The minimum value of k was

chosen to be two because k equal to one is very small and generates too many related Rmaps

for each base Rmap that are not incepted from the same location in the genome . This

depreciates the purpose of filtering Rmaps originating from the same part of genome using
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Table 4.2. An illustration of the change in the performance of cOMet with
simulated E.coli genome in response to varying values of m with 200 copies of
the E.coli (str. K-12 substr. MG1655) reference genome, k equal to 3, d equal
to 2.

m 2 3 4 5 6 7 8

Number of Rmaps in input file 995

Total number of deletion errors 4,515

% of corrected deletions errors 82.66% 78.80% 78.80% 71.47% 71.47% 62.97% 62.97%

True positive % of corrected deletions errors 84.03% 83.02% 83.02% 82.34% 82.34% 81.46% 81.46%

Total number of insertion errors 1,924

% of corrected insertions errors 78.17% 77.70% 77.70% 76.92% 76.92% 71.88% 71.88%

True positive % of corrected insertions errors 83.44% 81.74% 81.74% 78.51% 78.51% 75.42% 75.42%

Number of Rmaps aligned before running Comet 990

Avg quality score of Rmaps before running Comet 69.59

% of Rmaps aligned after running Comet 97.88% 98.08% 98.08% 96.26% 96.26% 97.07% 97.07%

Avg quality score of Rmaps after running Comet 70.59 69.9 69.9 69.15 69.15 68.14 68.14

Number of Rmaps showing improved quality score 610 560 559 507 505 409 409

Run-time in CPU seconds 950.97 525.89 523.17 321.35 319.69 207.65 208.66

Peak memory usage in MB 13.67 10.92 10.92 9.92 9.79 9.36 9.37

k -mer value. Similarly, k equal to or greater than nine generates very few related Rmaps for

each base Rmap, thus, making these values insignificant to consider. The results indicate

that cOMet corrects fewer errors and with less accuracy as the value of k increases. It is

due to the fact that the optical mapping data has high insertion and deletion error rates (an

extra cut site for every 400 Kbp of Rmap and 15% missing cut sites). Therefore, finding a

k -mer common between a pair of Rmaps for a large value of k is more difficult than finding it

for a small value of k. Statistically, when a value of k is large, cOMet can find fewer related

Rmaps for each of the base Rmaps. Also, fewer k -mers could be generated if the value of k

is large. Due to these reasons, cOMet finds fewer target Rmaps for each of the base Rmaps

when value of k is large and thus, it corrects fewer errors with less accuracy. For k equal

to two and three, cOMet approximately corrects the same number of errors. For k equal

to two the run-time is 2,043 seconds and the peak memory usage is 25 MB. For k equal to

three, the run-time is 951 seconds and the peak memory usage is 14 MB. For k equal to two,

cOMet generate many alignments for dispensable target Rmaps. The run-time and the

peak memory usage is approximately double for k equal to two compared to k equal to three
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Table 4.3. An illustration of the change in the performance of cOMet with
simulated E.coli genome in response to varying values of d with 200 copies of
the E.coli (str. K-12 substr. MG1655) reference genome, k equal to 3, m equal
to 2.

d 2 3 4 5 6 7 8

Number of Rmaps in input file 995

Total number of deletion errors 4,515

% of corrected deletions errors 82.66% 80.44% 78.05% 75.66% 73.75% 71.72% 69.50%

True positive % of corrected deletions errors 84.03% 84.28% 84.48% 84.54% 84.47% 84.59% 84.61%

Total number of insertion errors 1,924

% of corrected insertions errors 78.17% 75.52% 73.54% 71.78% 70.32% 68.50% 66.94%

True positive % of corrected insertions errors 83.44% 84.86% 85.58% 86.02% 86.10% 86.12% 86.49%

Number of Rmaps aligned before running Comet 990

Avg quality score of Rmaps before running Comet 69.59

% of Rmaps aligned after running Comet 97.88% 98.69% 98.69% 98.48% 98.59% 98.69% 98.79%

Avg quality score of Rmaps after running Comet 70.59 70.60 70.63 70.77 70.74 70.77 70.89

Number of Rmaps showing improved quality score 610 598 597 588 578 570 565

Run-time in CPU seconds 950.97 953.27 949.67 944.69 951.8 958.58 948.37

Peak memory usage in MB 13.67 13.82 13.67 13.7 13.82 13.69 13.81

while the number of error correction is approximately the same. Hence, we can conclude

that k equal to three produces the best results. For k equal to three, cOMet corrected 83%

deletion errors out of which 84% were accurate corrections. Similarly, cOMet corrected

78% of insertion errors out of which 83% were accurate corrections. Also, when k was equal

to three, cOMet improved the average quality score of the Rmaps from 69.59 to 70.59. We

found the improvement in the quality score for 610 Rmaps out of 990 Rmaps.

Table 4.2 shows the performance of cOMet for varying values of m when other parameters

such as the number of copies of the genome (equal to 200), k (equal to three), and d (equal

to two) are kept constant. For this experiment, the value of m was varied from two to

eight to observe the behavior of cOMet. Here, we discuss only the minimum and maximum

extreme values to analyze the performance. The experiment results show that as the value of

m increased, the error correction percentage decreases for both deletion and insertion errors.

Larger value of m entail that more k -mers need to be in common between related Rmaps to

be able to consider them as a target Rmap for give base Rmap. Statistically, for a larger

value of m, we can find fewer such related Ramps for given base Rmaps. Hence affecting the
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total number of corrections. For m equal to eight, cOMet can find fewer target Rmaps for

given base Rmap as compared to m equal to two. Hence, cOMet can correct fewer errors for

m equal to eight as compared to m equal to two. For m equal to two, cOMet is able to correct

approximately 83% of deletion and 78% of insertion errors with the accuracy of 84% and

83% respectively. While for m equal to eight, cOMet is able to correct only 63% of deletion

and 72% of insertion errors with the accuracy of 81% and 75% respectively. Generating an

alignment between Rmaps using the Valouev et al. method is the most time consuming stage

of cOMet. Hence the larger number of target Rmaps there are for a given base Rmap, the

greater run-time required by cOMet will be. cOMet took 950 CPU seconds to complete

execution for m equal to two, while 209 CPU seconds for m equal to eight. Similarly, storing

all unique related pairs consumes most of the memory in cOMet. Hence the peak memory

usage for m equal to two is 14 MB while 9 MB for m equal to eight.

Table 4.3 illustrates the effect of different values of d when all other parameters such as

number of copies of the genome (equal to 200), k (equal to three), and m (equal to two) are

kept constant. In this experiment also, the value of d was varied from two to eight so as to

observe the behavior of cOMet. We chose the minimum value of d to be two because it is the

minimum value required to form a consensus. We ran cOMet for values of d greater than

two and found a pattern in the behavior. d equal to eight seemed to be a reasonable value

to stop. Results show that as the value of d increases, cOMet is able to correct fewer total

deletion and insertion errors but with approximately the same accuracy. These results show

that even though the larger value of d promises more accurate correction, it significantly

impacts the overall number of corrections. We analyze the trend in the performance of

cOMet by discussing the minimum and maximum value of d. For d equal to two, cOMet
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Table 4.4. An illustration of the change in the performance of cOMet with
default parameters in response to an increase in the number of copies of the
genome. All data was simulated using the E.coli (str. K-12 substr. MG1655)
reference genome.

Copies 100 200 300 400 500

Number of Rmaps in input file 498 995 1,501 1,978 2,511

Total number of deletion errors 2,256 4,515 6,764 9,042 11,322

% of corrected deletions errors 74.25% 82.66% 82.73% 83.59% 84.76%

True positive % of corrected deletions errors 84.24% 84.03% 83.58% 83.75% 84.14%

Total number of insertion errors 956 1,924 2,850 3,828 4,768

% of corrected insertions errors 78.03% 78.17% 79.30% 78.00% 78.73%

True positive % of corrected insertions errors 82.71% 83.44% 83.94% 84.39% 83.7%

Number of Rmaps aligned before running Comet 498 990 1,497 1,974 2,504

Avg quality score of Rmaps before running Comet 68.9 69.59 68.85 69.96 68.84

% of Rmaps aligned after running Comet 95.78% 97.88% 97.86% 98.23% 98.64%

Avg quality score of Rmaps after running Comet 68.59 70.59 70.5 71.74 70.93

Number of Rmaps showing improved quality score 272 610 981 1,319 1,763

Run-time in CPU seconds 239.94 950.97 2,149.22 3,935.36 6,018.46

Peak memory usage in MB 7.42 13.67 23.3 36.49 53.86

is able to correct 83% deletion and 78% insertion errors while for d equal to eight, cOMet

is able to correct only 70% deletion and 67% insertion errors. Also, note that the runtime for

each of these experiments is approximately the same because the total number of the target

Rmaps aligned to the given base Rmap remains the same. Similarly, the peak memory usage

for each of these experiments is approximately the same because the size of related Rmap

index which require most of the memory remains the same. From table 4.3, we can conclude

that setting d to two maximizes the correction percentage.

Table 4.4 shows the performance of cOMet in response to varying the number of copies

of the simulated E.coli genome. As the number of copies increases, the number of Rmaps in

the input file also increases. More copies of Rmaps also implies a greater number of target

Rmaps for every base Rmap and thus gives rise to improved results. For 100 copies of the

genome, cOMet corrected approximately 74% deletion and 78% insertion errors. These

correction percentages were improved when the number of copies of the E.coli genome were

increased. For 500 copies of E.coli genome, cOMet corrected approximately 85% deletion and

79% insertion errors. For 100 copies of the genome, the average quality score of Rmaps before
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Figure 4.1. Plot of the quality scores of the Rmaps before versus after error
correcting simulated E.coli genome using cOMet. Here we ran cOMet with
default parameters and simulated Rmaps using 500 copies of the E.coli genome.

correction was 68.90 which later reduced to 68.59 after running cOMet. It implies that

the cOMet was introducing the new errors instead of correcting them for some simulated

Rmaps. This is because of the small number of copies of the reference genome used in

simulating the Rmaps. The small number of copies implies lower coverage and hence affects

the accuracy of correction for some simulated Rmaps. With an increased number of copies,

the number of target Rmaps for each base Rmaps also increases. It results in increased

number of alignments to be generated, thus, increasing the run time and memory usage.

The results in table 4.4 shows that the cOMet finished execution in approximately 240

seconds for 100 copies, while it took 6018 seconds for 500 copies. Similarly, cOMet had

peak memory usage of 54 MB for 500 copies but it took only 7 MB for 500 copies.
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Figure 4.2. An histogram illustrating the ratio of the quality score of the
simulated Rmap after error correction with cOMet and before error correction
with cOMet. Here we ran cOMet with default parameters and simulated
Rmaps using 500 copies of the E.coli genome.

In order to show the improvement in the quality scores, we ran cOMet on the Ramps

simulated using 500 copies of the E.coli reference genome. We kept all other input parameters

such as k, m and d at their default values (i.e. k equal to three, m equal to two and d equal

to two). Results of this experiment are shown in table 4.4. It shows the improvement of

approximately two points in the average quality score for simulated Rmaps after running

cOMet. We found improved quality score for 1,763 Rmaps out of 2,504 Rmaps. Figure 4.1

compares the quality score for each Rmap before and after running cOMet. The alignment

score produced by the Valouev et al. method is proportional to the length of the Rmap [19].

Figure 4.1 shows that cOMet performed better for longer Rmaps and improved the quality

scores for most of them. Subsequently, the improvements in the quality score for each Rmaps
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was analyzed by finding the ratio of the quality scores after running cOMet divide by the

quality score before running it. Figure 4.2 demonstrates a histogram of such ratios for all

Rmaps. From this histogram we infer that, cOMet improved the quality score by 0%-20%

for most of the Rmaps. Our results show that cOMet improves the overall quality of optical

mapping data by fixing a large number of errors with high accuracy.
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CHAPTER 5

Discussion and Conclusions

We present the first non-proprietary error correction method and demonstrate that it

significantly improves the quality of optical mapping data. Our method utilizes redundant

information present in the optical mapping data to correct all types of errors in it. In order

to accomplish this efficiently, our method generates an index of Rmaps which are possibly

originating from the same part of the genome. We also presented a unique and efficient data

structure for storing the multiple alignments between the Rmaps which we refer to as the

multiple alignment grid. We used the simulated optical mapping data generated using E.coli

(str. K-12 substr. MG1655) reference genome to parameterize and evaluate the performance

of our method.

During the process of error correction, cOMet may also introduces new errors. This

primarily occurs when there are a large number of indel errors (i.e. insertions and deletions

error) occurring throughout the given Rmap making it impractical to find the precise related

Rmaps and thus, the precise target Rmaps for the given Rmap. Due to this, the consensus

map generated for the given Rmaps in the final stage of error correction process is inaccurate.

This leads to the introduction of new errors in the given Rmap instead of correcting them.

We note that the Rmaps present towards the end of an input Rmap data file have lower

correction percentage. This is attributed to the fact that all common k -mers between a pair

of Rmaps are recorded only once in the related Rmap index as stated in section 3.2. Due

to this, the Rmaps present towards the end of an input Rmap data file have fewer related

Ramps leading to a lower error correction percentage.
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Lastly, optical mapping is a relatively new technology and we expect it to improve over

time, resulting in the smaller standard deviations in fragment sizes. A smaller sizing error

could facilitate better quantizing accuracy (i.e. fragments from the same part of the genome

being quantized to the same bin.) This would lead to more precise identification of related

Rmaps, thus improving the accuracy, run-time and memory usage of cOMet. The number

k -mers shared between a pair of Rmaps is a good indication that those Rmaps were originated

from the same location in the genome. However, there is scope of improvement in this area.

If a pair of Rmaps share non-overlapping k -mers, then it is a stronger indication that those

Rmaps are originating from the same location in the genome, as compared to overlapping

k-mers,. It remains an area to be explored in the future to prefer non-overlapping k -mers

over overlapping k -mers when deciding the target Rmaps for given base Rmap.
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[16] L. Salmela and J. Schröder. Correcting errors in short reads by multiple alignments. Bioin-

formatics, 27(11):1455–1461, 2011.

[17] D. C. Schwartz, X. Li, L. I. Hernandez, S. P. Ramnarain, E. J. Huff, and Y.-K. Wang. Ordered

restriction maps of saccharomyces cerevisiae chromosomes constructed by optical mapping.

Science, 262(5130):110–114, 1993.

[18] B. Teague et al. High-resolution human genome structure by single-molecule analysis. Pro-

ceedings of the National Academy of Sciences, 107(24):10848–10853, 2010.

[19] A. Valouev, L. Li, Y.-C. Liu, D. C. Schwartz, Y. Yang, Y. Zhang, and M. S. Waterman.

Alignment of optical maps. Journal of Computational Biology, 13(2):442–462, 2006.

[20] H. VanSteenHouse. personal communication, 2013.

[21] X. Yang, S. P. Chockalingam, and S. Aluru. A survey of error-correction methods for next-

generation sequencing. Briefings in bioinformatics, 14(1):56–66, 2013.

[22] S. Zhou et al. A whole-genome shotgun optical map of yersinia pestis strain KIM. Applied

and Environmental Microbiology, 68(12):6321–6331, 2002.

[23] S. Zhou et al. Shotgun optical mapping of the entire leishmania major Friedlin genome.

Molecular and Biochemical Parasitology, 138(1):97–106, 2004.

[24] S. Zhou et al. Validation of rice genome sequence by optical mapping. BMC Genomics,

8(1):278, 2007.

[25] S. Zhou, J. Herschleb, and D. C. Schwartz. A single molecule system for whole genome analysis.

Perspectives in Bioanalysis, 2:265–300, 2007.

28



[26] S. Zhou, F. Wei, J. Nguyen, M. Bechner, K. Potamousis, S. Goldstein, L. Pape, M. R. Mehan,

C. Churas, S. Pasternak, D. K. Forrest, R. Wise, D. Ware, R. A. Wing, M. S. Waterman,

M. Livny, and D. C. Schwartz. A Single Molecule Scaffold for the Maize Genome. PLoS

Genetics, 5(11):e1000711, 11 2009.

29


	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Chapter 1. Introduction
	1.1. Our contribution
	1.2. Related work

	Chapter 2. Background
	2.1. Definitions and Notation
	2.2. Optical Mapping

	Chapter 3. Methods
	3.1. Quantization of Fragment Sizes
	3.2. Construction of Related Rmap Index
	3.3. Rmap Alignment and Error Correction
	3.4. Complexity

	Chapter 4. Results
	4.1. Performance on Simulated E.coli Rmap Data

	Chapter 5. Discussion and Conclusions
	Bibliography

