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ABSTRACT

TOPOLOGICAL TECHNIQUES FOR CHARACTERIZATION

OF PATTERNS IN DIFFERENTIAL EQUATIONS

Complex data can be challenging to untangle. Recent advances in computing capabilities

has allowed for practical application of tools from algebraic topology, which have proven to be

useful for qualitative and quantitative analysis of complex data. The primary tool in compu-

tational topology is persistent homology. It provides a valuable lens through which to study

and characterize complex data arising as orbits of dynamical systems and solutions of PDEs.

In some cases, this includes leveraging tools from machine learning to classify data based on

topological characteristics. We see a unique pattern arising in the persistence diagram of a class

of one-dimensional discrete dynamical systems–even in chaotic parameter regimes, and con-

nect this to the dynamics of the system in Chapter 2. Geometric pattern structure tell us some-

thing about the parameters driving the dynamics in the system as is the case for anisotropic

Kuramoto-Sivashinsky equation which displays chaotic bubbling. We will see this in Chapters 3

and 4. Defects in pattern-forming systems be detected and tracked and studied to characterize

the degree of order in near-hexagonal nanodot structures formed by ion bombardment, which

will be developed in Chapter 5.
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Chapter 1

Persistent Homology

1.1 Introduction

(a)

(b)

(c)

(d)

(e)

(f)

Figure 1.1: Examples of visually similar patterns appearing in different contexts, driven by different
mechanisms and at vastly different scales. (a) Mineral pattern formation in soil, Somalia [58], (b) X-ray
of ferrofluids under a magnetic field [49], (c) vegetation pattern in drylands, Ethopia [58], (d) nanodots
on GaSb surface that has been bombarded with ions [35], (e) Faraday waves, silicone oil droplets in wa-
ter [10], (f) spotted trunnkfish [51].

Much of applied mathematics is concerned with discovering patterns and structure from

the world around us. As Robert Ghrist puts it “applied mathematics concerns the incarnation

of mathematical objects and structures” [47]. Figure 1.1 shows visually similar patterns arising

in vastly different settings, caused by vastly different mechanisms. In attempting to model such

phenomena, many different models give rise to visually similar patterns, but mathematically

incorporate very different mechanisms. See Figure 1.2, for example. How then might one com-
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(a) (b) (c) (d) (e) (f)

Figure 1.2: Visually similar patterns arising from models which incorporate different physical mech-
anisms. (a) Gray-Scott reaction-diffusion model [1], (b) Bradley-Shipman equations of ion bombard-
ment, couples surface topography and sputter yield [7], (c) Benard Maragoni convection [120], (d) Swift-
Hohenberg model [42], (e) Brusselator (modified recation-diffusion model) [24], (f) modified Swift-
Hohenberg equation [121]

pare visually similar patterns and models to better understand parameters and mechanisms

that give rise to these patterns?

While there are many approached to this question, we will approach from the perspective of

algebraic topology. Algebraic topology is a classical branch of mathematics that uses tools from

abstract algebra to compare and characterize geometric objects. Computational implemen-

tations of the tools of algebraic topology have only recently become feasible due to massive

increases in computing capabilities. The tools of computational topology allow for qualita-

tive and quantitative analysis of complex data sets [11]. One of the primary tools is persistent

homology (PH). This will be the main topological tool that we leverage in this thesis. PH has

successfully been used to characterize complex structure in a number of data-driven applica-

tions such the neural code [21], biological swarms [113], and periodic signals [92], among many

others. We will use PH as a way to exploit topological structure in complex data that arises as

orbits of dynamical systems or solutions to partial differential equations (PDEs).

We start with a brief introduction to homology, and building to persistent homology, first

on point cloud data and then in a functional setting. In chapters 3, 4 and 5, we will see each

perspective lends itself naturally to different applications.

2



1.2 Homology

To leverage abstract algebra to compare and classify geometric spaces, we use algebraic in-

variants such as the fundamental group, which qualitatively describes our space.1 We can com-

pute the fundamental group of our space. The fundamental group is the number of classes of

loops with a fixed based point that can be continuously deformed into each other along the

surface of our object. This provides information about the number of holes in our space, which

is topologically invariant. The natural higher-dimensional analog of the fundamental group

are homotopy groups. If we wish to compare two different spaces, comparing their associated

fundamental groups.

However, higher dimensional homotopy groups are very difficult to compute in general in

part because these holes can interact with each other in complex ways. Homotopy groups are

not directly computable from a cell structure [54], which is one way to handle discretized data.

Homology serves a similar purpose. Although not quite as intuitive, it is much more com-

putable.Homology groups are finitely-generated abelian groups. We will be concerned with

cycles, rather than the loops of homology groups, which are indeed loops, without a chosen

base point. The dimension of the homology group will indicate the number of connected com-

ponents, holes and higher dimensional voids of our object.

In this setting, we are after a way to characterize connected components, holes and higher

dimensional voids of point cloud data, but to make any sense of this for a discrete sampling of

points, we will need to take our discrete space and give it some additional structure. Instead of

looking at deforming paths into each other, we will look at interesting boundary cycles of the

structure we put on the data.

1In broad strokes, we use homotopy to motivate homology. For a thorough introduction to homotopy, see
Chapter 1 of Hatcher. [54]
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1.2.1 Homology of Simplicial Complexes

We will assume some basic notions of algebra, but will take a moment to establish a few of

the more technical building blocks of simplicial complexes. A (k+1)-tuple of points (x0, x1, · · · , xk )

in Rn is affinely independent if the set of vectors given by {x0 − x j |1 ≤ j ≤ k} is linearly inde-

pendent. A p-simplex σ is the convex hull of p+1 affinely independent points and is denoted

σ= conv{x0, · · · , xp }. The convex hull is the solid polyhedron determined by the p +1 vertices.

For example, a 0-simplex is a vertex, a 1-simplex is an edge, a 2-simplex is a triangle and a 3-

simplex is a tetrahedron.

A face of a simplex is the convex hull of the set of points forming the simplex, minus one.

For example, the faces of a triangle are each of the three edges and the face of an edge is the set

of two vertices that were connected to create that edge.

A simplicial complex X is a finite collection of simplices where any face of a simplex is itself

a simplex in X . Further the intersection of any two simplices in X is either empty or a face of

both simplices. Any simplex is uniquely determined by its vertices. For example, the object in

Figure 1.3 is a simplicial complex consisting of the simplices

{a,b,c,d ,e, f ,ba, ac,cb,bd ,dc,ce,e f ,ea, acb,cbd}.

Notice the face of every simplex is included; for example the face of the 2-simplex acb is the set

of 1-simplices {ac,cb,ba}. When simplices non-trivially intersect, their intersection is included

a

bc

d

e

f

Figure 1.3: An example of a simplicial complex given by {a,b,c,d ,e, f ,ba, ac,cb,bd ,dc,ce,e f ,ea, acb,cbd}
with an imposed orientation.
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in the complex and is itself a face of the two intersected simplices. Choices in the construc-

tion of a simplicial complexes will be discussed later. We impose an ordering on the vertices

which imposes an orientation on the simplex. In our example, the triangle acb may be given

by any one of the equivalent names: {cba,bac,−cab,−bca,−abc}. The topology of a simplicial

complex does not change under a consistent shuffling of the orientations of the simplices.

A p-chain is a subset of p-simplices in a simplicial complex. p-chains can also be thought

of as formal sums, c = Σriσi where ri is in Z/2Z, σi is a p-simplex in X . For example if our

simplicial complex is a tetrahedron, each of the four triangle faces are 2-simplices. A 2-chain

is any subset of these triangles. Similarly subsets of the edges and vertices form 1-chains and

0-chains respectively.

The set of p-chains of a simplicial complex form a p-chain group, called Cp . In fact, Cp is

a free abelian group. It should be noted that when adding p-chains, the duplicate p-simplices

cancel out. In our example the p-chain groups are

C0(X ) = {λa a +λbb +λc c +λd d +λe e +λ f f |λi ∈Z} =Z6

C1(X ) = {λac ac +λcbcb +λbaba +λdc dc +λbd bd +λde de +λe f e f +λeaea|λi j ∈Z} =Z8

C2(X ) = {λacb acb +λbdc bdc|λi j k ∈Z} =Z2

Now we define the boundary operator on chain groups. The boundary of a p-simplex is the

set of (p−1)-simplices’ faces. Mathematically this is a formal sum of (p−1)-simplices in the sim-

plicial complex. Starting with 0-simplices, the boundary of a vertex is zero. The boundary of an

edge is δ(ab) = b−a. This extends to higher dimensions. For a k-simplex: (v0v1...vk ) the bound-

ary is the alternating sum δ(v0v1...vk ) =∑
j = 0n(−1)k (v0v1...v̂ j ...vk ) where (v0v1...v̂ j ...vk ) is the

k − 1-simplex with the v̂ j vertex removed. This can be extended to a the entire chain group

by linearly extending the operator on all chains. The boundary of a p-chain is the sum of the

boundaries of its simplices modulo 2. That is, faces shared by an even number of p-simplices

will cancel out.
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Let’s look at the boundary operator on a path in our example:

δ(ac + cb +bd) = δ(ac)+δ(cb)+δ(bd) = (c −a)+ (b − c)+ (d −b) =−a +d

and if we take the boundary of this result,

δ(−a +d) =−δ(a)+δ(b) = 0

In general δn ◦δn+1 is zero, that is, the boundary of a boundary is zero. If the path is a loop,

then the boundary of the path is zero. This is noteworthy if we are looking for “holes” in our

simplicial complex.

Taking the boundary of a simplicial complex is a group homomorphism δp from Cp to Cp−1.

In 3-dimensional space, this gives us a mapping like this:

· · ·→;→C3
δ3−→C2

δ2−→C1
δ1−→C0

δ0−→;

which is a chain complex. In our example we get

0 →Z2 δ2−→Z8 δ1−→Z6 δ0−→Z→ 0

p-cycles are p-chains in the kernel of the boundary operator. The p-chains form a subspace

Zp of Cp . Zp is by definition the kernel of δp . The p-chains that form the boundary of (p +1)-

chains, are called p-boundary-cycles. In other words, the p-boundaries are the image of δ.

These p-chains form Bp , a subspace of Cp , and Bp ⊂ Zp . Bp is by definition the image of the

(p +1)-boundary map. This can be visualized in Figure 1.4.

Geometrically, holes are loops which don’t arise as boundaries of higher dimensional sim-

plices. Algebraically, this is the quotient group. The p-th simplicial homology group of X is the

quotient group

Hp = Zp /Bp = ker(δp )/Im(δp+1).
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C3 C2
C0=Z0

C1

Z3=B3

B2

Z2 Z1

B1 B0

Figure 1.4: Schematically, the images of chain, cycle and boundary groups under the boundary operator.
[32]

The p-th Betti number βp is the rank of Hp and is intuitively the number of p-dimensional holes

in the object.

1.3 Persistent Homology

Homology provides the algebraic structure needed to be able to begin to characterize geo-

metric features of the data. However, to access homology, preprocessing of the data might need

to occur. For example, if you are working with point cloud data sampled from some topologi-

cal object, you may try to reconstruct an approximation by connecting proximate points with

a simplicial complex. The homology of the resulting simplicial complex provides a snapshot

of the homology of the original object. However, because this depends on a choice of thresh-

old, homology is scale dependent in this case and provides limited information. Tracking how

the homology changes as the proximity parameter increases gives a picture of the topological

features that persist across many thresholds, this idea is called persistent homology [11, 30, 46].

Persistent homology is an algebraic method of computing topological features of spaces

[30, 54]. It finds its utility in describing the multiscale topological structure of smooth func-

tions, point cloud data or other geometric objects. What follows is a brief overview of the main

concepts of persistence. ( [31, 46, 54, 114] are good introductions to persistent homology.)

Consider a parameterized family of filtered spaces:
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0 ⊆X1 ⊆X2 ⊆ . . . ⊆Xεm ⊆X

equipped with the inclusion map [46]. The inclusion map on spaces Xi ⊆X j for i < j induces a

homomorphism on the homology groups ϕi , j
k : Hk (Xi ) → Hk (X j ) for each dimension k.

Rather than considering the homology of individual spaces, consider the homology of in-

duced maps. Homology classes can then be described by the index at which they are born and

the index at which they die. A homology class γ ∈ Hk (Xi ) is born at Xi if it is not in the image of

ϕi−1,i
k and dies enteringX j ifϕi , j−1

k (γ) is not in the image ofϕi−1, j−1
k butϕi , j

k (γ) is in the image of

ϕ
i−1, j
k . A homology class persists if its image under the induced map is nonzero. The difference

between these two indices gives the persistence of the homology class. The multiset of birth-

death pairs for each homological dimension can be represented in a barcode or a persistence

diagram.

A common and concrete way to create this parameterized filtration is by building simplicial

complexes on point cloud data. Given point cloud data of a sampled space, connect proximate

points according to a chosen scale parameter by building a simplicial complex by putting sim-

plices on top of points within the proximity parameter εi . The homology of the simplicial com-

plex only changes at a discrete set of proximity parameters. We ensure that our choices of εi ’s

are between such thresholds. This creates a parameterized nested sequence with the natural

inclusion map.

0 ,→Xε1 ,→Xε2 ,→ . . . ,→Xεm ,→X

Applying the homology functor to the filtration, we get a persistence module.

H∗(Xε1 ) → H∗(Xε2 ) → . . . → H∗(Xεm ) → H∗(X)

The information in the persistence module is summarized in a persistence diagram or barcode

(which is shown in Figure 1.5). The persistence diagram is the multiset of birth-death pairs
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H0

H1

H2

Figure 1.5: A Vietoris-Rips complex built on point cloud data (top) in R3 and the corresponding barcodes
for H0, H1 and H2 for the entire filtration (bottom).

describing homological features. It should be noted that if we impose a partial ordering on the

vertices, these computations can be done with matrix algebra. See [30] for details.

1.4 Building Simplicial Complexes

To compute persistence homology of a set of point cloud data, one might be to build a fil-

tration of simplicial complexes on the data. This becomes a combinatorial problem, because

a simplicial complex formed from a set of discrete data points is far from unique. There are

several common methods for building a simplicial complex from discrete data which we will

introduce before we discuss choosing an appropriate simplicial complex to represent the data

contained in the point cloud.

Let X be a finite set of points in Rd . Bx(r ) is the ball with radius r and center x. To build the

associated Čech complex, add a d-simplex when there is a common point of intersection of all

d (ε/2)-balls.

Čech(r ) = {σ⊆ X | ⋂
x∈σ

Bx(r ) �=�}

The resulting simplicial complex depends on the choice of scale parameter. For s < t we have

Čechs(X ) ⊆ Čecht (X ) so a series of Čech complexes with increasing radii induces a filtration

X with the natural inclusion map. The Čech complex does not necessarily have a geometric

realization in Rd , but we can treat it as an abstract simplicial complex without any problem.
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Figure 1.6: The Čech, Vietoris-Rips and alpha complexes respectively of a noisy sampling of an annulus.
The difference between the two complexes is highlighted by the three points equidistant apart from each
other. In the Čech complex, they are connected by 1-simplices, but not a 2-simplex. In the VR complex,
we include the 2-simplex. We can see Čech(ε) ⊆V R(ε) ⊆.

Storage of the Čech complex is expensive and in the case of larger data sets, can be computa-

tionally prohibitive. The Vietoris-Rips complex is similar to the Čech complex, but less memory

intensive and therefore more readily computable. To build the Vietoris-Rips (VR) complex, add

a d-simplex when all of the vertices have nonempty pairwise intersections.

VR(r ) = {σ⊆ X |diamσ≤ 2r }

The resulting simplicial complex depends on the choice of scale parameter. For s < t we have

VRs(X ) ⊆ VRt (X ) so a series of VR complexes with increasing radii also induces a filtration X

with the natural inclusion map.

The distinction between these a Čech complex and Rips complex on the same point cloud

is seen clearly in the example of a set of three vertices that are equidistant apart. There is a

small range of radii for which, the balls centered at each vertex intersect pairwise, but do not

mutually intersect. In the Čech simplicial complex there will be edges connecting the vertices,

but no 2-simplex. The Vietoris-Rips complex will include the 2-simplex, seen on the left side of

the complex in Figure 1.6.

It is not immediately clear how accurately the Vietoris-Rips complex actually captures the

topological features of a discrete sampling of a topological object. A Vietoris-Rips complex built

on a point cloud sampled from a manifold can include features that are artifacts of the complex
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Figure 1.7: Let X be a point cloud in R3. Three Čech complexes formed at increasing values of ε are
shown. Each simplicial complex includes into the one to the right, which is formed by increasing the
radius of the balls. We can see that the topological signature of our complex changes with each different
value of ε.

and are not representative of the topology of the manifold from which points were sampled [47].

However, the Čech complex is a reasonable representation of the homology of the underlying

object due to the Nerve Lemma in algebraic topology, which claims that given a covering of

the space with balls and the associated Čech complex associated to the covering is homotopy

equivalent [31].

Further, can “squeeze” a VR complex between two Čech complexes with appropriately cho-

sen radii. [31]

Čech(r ) ⊆V R(r ) ⊆ Čech(
�

2r )

This allows us to proceed with building a filtered sequence of spaces using either the Čech com-

plex of the VR complex. We will see in Chapter 5 that in different applications, it is advantageous

to use one complex over the other.

1.5 Discrete Morse Theory

If we have a point cloud, building an appropriate filtration of simplicial complexes is a natu-

ral approach. However, if we wish to compute homology a surface u(x, y, ·) which is the solution

to a PDE, we need to consider filtrations on functions. This will take the form of filtrations on

cell complexes first, and then we will extend to a more computable version.
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Classical Morse theory (see [77]) allows one to study the topology of a manifold by study-

ing differentiable functions on the manifold. Given M a compact differential manifold and a

function f : M → R which is smooth with critical points that have a non-singular Hessian (this

is called a Morse function) consider the negative gradient flow of f . We use the function f

to build a cell complex. A cell complex consists of cells (e.g. vertices, edges, and quads) and

boundary maps that represent the neighborhood relationship of these cells. Cells in the Morse

complex will be defined by regions that exhibit the same low behavior. Following [100], think of

a landscape with hills and valleys. The regions where rain flows into the same basin correspond

to cells in the Morse complex. They are divided by ridge lines which pass through saddle points.

The isolated points where multiple such basins touch are maximas. Mathematically these are

the stable manifolds of the critical points. Think of the unstable manifolds in a similar way,

partitioning the surface by common points of origin of flow rather than termination. The inter-

section of the stable and unstable manifolds is the Morse-Smale complex [100]. This encodes a

gradient or vector field in the combinatorial structure of a cell complex [96].

We can define a filtration on a well-behaved function on a compact manifold from the lower

level cuts (that is, the sublevel sets) of f . From Morse theory, we know that the topology of

the sublevel sets only change when we pass through a critical point. It has be shown that the

persistent homology of the sublevel set filtration is the same as the persistent homology of the

abstract cell complex defined by critical points and gradient flow lines [98].

The function f is called a filtering function. Cohen-Steiner et al. [12] proved that for any

two filtering functions f and g , the difference of their persistence is bounded by the L∞ norm

of their difference. From this stability theorem, we can say that when the persistence of two

functions is sufficiently different, the functions themselves are different. That is, we can use

persistence as a signature of functions!

Robin Forman extends Morse theory to a combinatorial analog, called discrete Morse theory

in [40,41], considering functions on CW complexes. (Cells in a CW complex are homeomorphic

to Euclidean balls.) A discrete Morse function assigns a single value to each cell, which imposes
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partial ordering on cells. Robins et. al describe how to construct a discrete Morse function on

a discretization of a manifold so that the critical cells exactly match changes in topology of a

sublevel set filtration of cubical complexes [100]. We can think of this as combinatorial gradient

paths between critical cells. We first define cubical complexes.

1.5.1 Cubical Homology

Cubical complexes allow us to avoid triangulating the space and computing persistence on

the resulting simplicial complex (as has been done, for example in [31]). Wagner, Chen and

Vuçini propose an efficient algorithm for the computation of persistent homology of cubical

data that can be extended to higher dimensions. [117]

Cubical complexes are highly computable [79]. They are similar to a simplicial complex, but

instead of nodes, edges, triangles and tetrahedrons, cubical complexes consist of nodes, edges,

pixels squares and cubes. For example, see Figure 1.8. Consider the solution surface u(x, y, ti )

for some fixed value of time ti on an n × m spatial domain (i.e., the solution is given as an

n ×m matrix). The value of each pixel is interpreted to be the value of a vertex of the complex.

Building cubical complexes on the sublevel sets of the height function produces a filtration.

The filtration is built as follows: for a threshold ε a vertex is included if the function value at that

node is less than or equal to ε. An edge between nodes is included if both vertices are included,

and a square is included if all four associated vertices are included. In the 2D framework, each

vertex can connect to four neighbors, this is called 4-connectivity. In general, in dimension d,

we use 2D-connectivity. When all possible components of the cubical complex are included,

we will have nm nodes, (n −1)m +n(m −1) edges and (n −1)(m −1) squares.

In the same way as was done for simplicial complexes, we can define the boundary map,

p-cycles, chain complexes and homology groups. The homology of the resulting cubical com-

plex will change for a finite set of ε values, which can be used to parametrize the filtration. We

compute persistent homology on the resulting filtration. Conceptually, this gives a notion of

the magnitude of peaks and valleys present in a surface.
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Figure 1.8: Example of a filtration of cubical complexes built on the matrix containing surface height
information on the left (blues are low values and yellows are high values).

As an analogy, think of the sea and the surface of landmass. At some sea-level, there are

components that are under the water, there are islands of land, and on these islands, there may

be valleys whose lowest point falls below the sea level and so these valleys fill with water. (Here

we are assuming the surface of all water is at a fixed height, a small diversion from real topo-

graphical land features.) If we restrict our vision to the land that is under the surface of the water

(sublevel sets), the islands cut holes in the land that we can see, and the lakes introduce addi-

tional components of underwater land. We could also think of the superlevel set, that is, all of

the land that is above the surface of the water. Here the islands are each their own component,

and the lakes cut holes in these components.

We would like to study topological structure present in the solutions to PDEs. The solution,

to a two-dimensional spatio-temporal system will be a surface u(x, y, ·). In most cases, the so-

lution is not analytic, so numerical methods are used in simulation. The result is a discretized

solution on a spatial grid (of desired resolution). Cubical complexes are a natural choice for a

filtration here and we can think of it as a discretized version of the sublevel set filtration of a

function [11]. There is a choice in using discrete data on a grid whether to treat the function

values as vertices or cubes in the cubical complex. We will treat them as cubes, however the

two approaches are dual and so they encode the same topological information [100]. In higher
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Figure 1.9: A motivating example for choosing 4-8 connectivity. The value of each discrete point is indi-
cated by the color of the square on which it sits. If we use 4-neighbor connectivity for all points, then the
light points are totally disconnected, but still partition the dark points into two components. If we use
8-neighbor connectivity for all points, then the light points form the discrete analog of the Jordan curve
theorem but do not separate the inside dark point from the rest. [62]

dimensions, this method has been used to study plant root structure [34], and x-ray micro-CT

data of rock cores [26].

Cubical complexes have been used to study grayscale images, for example see [26, 34, 100],

by creating a filtration of thresholded images. We think of a numerical simulation of the solution

of a PDE in the same way. Kovalesky [63] shows that a cubical complex is the only topologically

consistent representation of a thresholded image. However, the resulting persistence diagrams

do not satisfy the fundamental symmetries that are implied by Lefshetz and Alexander duality

[34]. We carefully adjust our notion of connectivity so that we achieve a representation that

maintains fundamental topological symmetries.

For a binary representation of a thresholded image, one assigns a value of 1 if a pixel is below

some threshold and 0 if it is above the threshold. In order to construct cubical complexes of a

thresholded image, the values of the 4 neighboring pixels were considered for. However, this

leads to challenges with connectivity and duality if we build two cubical complexes, one on the

vertices with value 1 and one on the vertices with value 0. Instead, we create a dual complex

with 8 neighbor connectivity on the vertices with value 0 [34]. This was a basic convention

in the field of digital topology, which was concerned with 2D and 3D digital images and their

topological properties. A nice survey is given by Kong and Rosenfeld [62].

In order to be discrete analog of the Jordan curve theorem [62] (which states that every sim-

ple closed curve divides the plane into an interior connected component and an exterior con-
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nected component) we use 4 neighbor adjacency to construct complexes of sublevel sets and 8

neighbor adjacency to construct complexes of superlevel sets. This allows us to avoid paradoxes

such as the one pictured in Figure 1.9. We center a vertex on each pixel, the value of which is in-

dicated by the color of the pixel on which it sits. If we use 4-neighbor connectivity for all points,

then the light points are totally disconnected, but still partition the dark points into two com-

ponents. If we use 8-neighbor connectivity for all points, then the light points create a discrete

analog of a Jordan curve, but the dark points are connected as a single component as well. The

Jordan Curve Theorem generalizes to Lefshetz duality [34]. Lefshetz duality connects the ho-

mology of a manifold with boundary to the relative homology of the manifold and its boundary.

In the next section, we briefly introduce relative homology.

1.5.2 Relative Homology

Produce a filtrations of complexes on a data set X, given by 0 ⊆ X1 ⊆ X2 ⊆ . . . ⊆ Xεm ⊆ X
Applying the homology functor,we get the persistence module:

0 = Hk (X0) → Hk (X1) → . . . → Hk (X0)

However, the module is not necessarily exact. Each death will correspond to a unique birth,

but not every birth will correspond to the death of a feature. Hk (X0) possibly ends with nontriv-

ial homology groups that never die [33]. The consequence here is that we lose valuable infor-

mation on the duration of such classes. We follow [13] to extend the sequence of homology.

0 = Hk (X0) → Hk (X1) → . . . → Hk (X0)

Duality implies that in this formulation, we get each birth-death pair twice.

Relative homology makes precise the idea of the homology of X modulo a subspace A [33].

Given a space X and a subspace A ⊆ X , define Cn(X , A) to be the quotient group Cn(X )/Cn(A).

The boundary map on δ : Cn(X ) → Cn(X ) will also map Cn(A) → Cn(A) and induces the quo-
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tient boundary map δ : Cn(X , A) → Cn(X , A), which gives a sequence of boundary maps. The

homology groups of this chain complex are Hn(X , A). Elements in Hn(X , A) are represented by

n−chains, α ∈ Cn(X ) with the boundary δα ∈ Cn−1(A) ⊂ Cn−1(X ). Think of this as an n-thing

whose boundary, which is an n−1 thing, lives in A [54]. That is, relative homology is concerned

with the part os X outside A.

Relative homology groups fit into the long exact sequence

. . . → Hn(A) → Hn(X ) → Hn(X , A) → Hn−1(A) → Hn−1(X ) → . . . → H0(X , A) → 0

and measures the difference between groups Hn(X ) and Hn(A) [31]. Here, every class that is

born also dies. Duality implies that in this formulation, we get each birth-death pair twice for

homology groups that appear in the original persistence module of our filtration [12]. In fact

this duality is exploited in [52]. All persistent homology computations in this thesis are done

using [110] and [52]. We return now, with more robust topological properties, to computing

persistence of a function.

1.5.3 Persistent Homology of a Function

In the functional setting, we will compute persistence using a discrete sublevel set Morse

filtration on the height. That is, we build a sublevel set filtration [30]. Let f :X→R, whereX is a

geometric object and f is a smooth function. Consider the nondegenerate critical points, that

is, when f ′(x) = 0 and f ′′(x) 6= 0. For each ε ∈R the sublevel set is Rε = f −1 (−∞,ε]. Increasing ε

produces a filtration of sublevel sets:

f −1((−∞,ε1]) ⊆ f −1((−∞,ε2]) ⊆ . . . ⊆ f −1((−∞,εm]).

Here we are concerned with the connectivity of sublevel sets, which changes only as ε passes

through a critical value. Computing the homology of this filtration involves keeping track of
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Figure 1.10: Persistence of the sublevel sets of a one-dimensional function. The gold line indicates a
choice of a threshold. Below the function in teal are the sublevel sets associated with the height of the
gold line. Tracing this height to the persistence diagram, the four components can be counted as points
in the shaded gold region.

the filtration parameter ε for which connected components appear and merge, that is, when a

feature is born and dies. See Figure 1.11.

There is a connection here to the point cloud perspective of persistence. Given X ⊆ Rn , we

define the distance function dX : Rn →R to be

dX (a) = inf
x∈X

‖a −x‖

This function encodes the Čech complex persistent homology as functional persistent homol-

ogy [114]. This function is illustrated for a 1-dimensional point cloud in Fig. 1.11, and extends

naturally to higher dimensions.

The higher dimensional analog of this method is computing a discrete sublevel set Morse fil-

tration on the height function of a discretized samplings of a surface. We have a function value

associated to each point on a grid. From the function values, we build a sublevel set filtration

and compute persistent homology. See Figure 1.8 for example. We find numerous applications

of this computational technique. Ultimately this allows us to exploit topological features of data
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Figure 1.11: Consider a 1-dimensional point cloud. We draw the distance function as cones emanating
out from each point. The infimum of these distances is the function of distances to the entire set. This
encodes Čech homology in the functional setting.

to study and characterize complex patterns. These patterns often arise as solutions to PDEs,

and are dependent on a number of parameters, so we need a good way to compare the result-

ing persistence diagrams. We discuss several techniques to quantitatively compare persistence

diagrams in the next section.

1.6 Persistence Images as a Classification Tool

Information about topological features is captured in persistence diagrams. To enable quan-

titative comparisons, the space of persistence diagrams can be endowed with a metric struc-

ture. The most common metrics are the p-Wasserstein distance and the Bottleneck distance,

which are both stable with respect to small perturbations of the underlying data [12].

The p-Wasserstein distance, defined between two persistence diagrams B and B ′, is given by

Wp (B ,B ′) =
(

inf
γ:B→B ′

∑
u∈B

||u −γ(u)||p∞
)1/p

,

where 1 ≤ p <∞ and γ ranges over bijections between B and B ′. Taking the limit as p →∞ gives

the bottleneck distance.

W∞(B ,B ′) = inf
γ:B→B ′sup

u∈B
||u −γ(u)||∞,
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Figure 1.12: Illustrated above is the pipeline for generating a persistence image. The persistence diagram
is computed from data, transformed to birth-persistence coordinates, weighted 2-dimension Gaussian
distributions are placed on top of each persistence point to create a surface, and the surface is gridded
and integrated to create a stable matrix representation of the persistence diagram. (Figure from Adams
et al. [2])

which can be thought of as minimizing the “cost” of pairing points in two different persistence

diagrams (including the option of pairing as many times as needed with the diagonal). While

there are some nice stability properties [14], these distances can be computationally expensive

as the number of points increases. While recent strides in algorithms [61] have significantly

decreased computation time for the bottleneck distance, there are machine learning algorithms

that don’t just require a metric space structure, but a vector space structure.

There have been an number of attempts recently to create representations of persistence

diagrams that allow for wider use of machine learning techniques. Several representations in-

clude persistence landscapes [9], which provides a functional representation of a persistence

diagram with a unique mean, using tropical coordinates [115], which creates a feature-vector

representation that can be used for machine learning tasks, and kernel methods [97], which in-

volves taking the sum of positive Gaussians centered on each persistence point with a negative

Gaussian centered at the reflection of each point over the diagonal. While these techniques are

useful in certain contexts, here we will use our representation, persistence images, [2] because it

provides a stable vector representation that is interpretable and flexible.

We create a persistence image of a persistence diagram B , in the usual birth-death coordi-

nate system. Consider T : R2 → R2 the change of coordinates to a birth-persistence coordinate

system, that is T (x, y) = (x, y − x). Then T (B) is the multiset of birth-persistence points. Let

φu : R2 → R be a differentiable probability distribution with mean u = (ux ,uy ) ∈ R. A common
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choice for φ is the normalized symmetric Gaussian φu = gu with mean u and variance σ2 de-

fined as

gu(x, y) = 1

2πσ2
e−[(x−ux )2+(y−uy )2]/2σ2

.

Let f : R2 → R be a nonnegative weighting function that is zero along the horizontal axis,

continuous, and piecewise differentiable. Such a weighting function ensures stability. (See [2]

for full proof.) Depending on prior knowledge of data, one may wish to use a weighting function

such as a sigmoidal function that gives little weight to points close to the diagonal, which in

some cases is thought of as noise. A simple choice for a weighting function which only depends

on the persistence coordinate y is a piecewise linear function, defined as follows:

wb(t ) =



0 if t ≤ 0,

t
b if 0 < t < b, and

1 if t ≥ b.

In our applications, we use f (x, y) = wb(y), where b is the persistence value of the most per-

sistent feature in all persistence diagrams under consideration, chosen for each homological

dimension.

The process of converting a persistence diagram to a persistence image is seen in Fig. 1.12.

The first step in the transformation of a persistence diagram B is to create a persistence surface,

ρB (z) by summing the weighted Gaussians at each point in the transformed diagram T (B). That

is:

ρB (z) = ∑
u∈T (B)

f (u)φu(z).

Next, discretize a relevant subdomain of the surface by overlaying a grid of the desired res-

olution and integrating over each box in the discretization: I (ρB )p =Î
p ρB d yd x. The value of

the integral gives value of each pixel in the image representation. In a number of experiments, it

has been seen that various classification results are fairly robust to a large range of resolutions.

21



Often a resolution of 10×10 is sufficient to capture variations between persistence diagrams in

classification tasks.

Persistence images is a stable vector representation of each persistence diagram. We will use

this tool to leverage on the topological structure of solutions to PDEs for classification tasks.
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Chapter 2

Persistent Homology and Unimodal Maps

Given discrete sampling of data in a time series, it can be difficult to detect whether data

comes from a deterministic or stochastic process, especially when there is not a visually dis-

cernible pattern. In other words, is the data chaotic or random? This simple question turns out

to be more challenging than it initially appears and has intrigued mathematicians and scientists

for quite some time. Efforts to better understand chaotic systems has led to major contributions

to the field of dynamics. A classic signature of chaos is a sensitive dependence on initial con-

ditions. Two orbits with arbitrarily close initial conditions will diverge exponentially. If we start

with a discrete sampling of data, rather than the map describing the mechanism, this signature

is harder to detect. In this chapter, we introduce a method to detect an underlying deterministic

system (of a specific type) given a discrete sampling of chaotic data.

With the assistance of computers, scientists have been able to observe chaotic behavior in

contexts that were unexpected. In 1963, Edward Lorenz noticed a sensitive dependence on ini-

tial conditions while running simulations on an atmospheric model [72]. His idea came to be

known in popular culture as the “butterfly effect”. His finding challenged classical understand-

ing of natural systems and in the next several decades, his work became foundational in chaos

theory. In 1976, biologist Robert May championed the notion that simple one-dimensional

nonlinear systems can display a wide spectrum of complex dynamic behavior, including pe-

riodic orbits and chaotic orbits [74]. Metropolis, Stein, and Stein [76] described characteris-

tics periodic orbits in a large class of one-dimensional systems. A few years later, Li and Yorke

proved that the presence of a period-3 orbit implied the existence of chaos [71].

Strikingly, chaotic systems displayed a type of universal behavior if they were viewed with

the right tools [99]. Feigenbaum discovered that a large class of maps displayed a geometric

universality in a fractal pattern present in the bifurcation diagrams. He also determined uni-

versal scaling invariance that scales the parameter values of the onset of period doubling cas-
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cades [38] which are eigenvalues of a renormalization transform [99]. This discovery led to a

surge in interest in nonlinear dynamics.

Nearly a century earlier, Poincaré had asserted that the most important governing features

of a system are the things that you can’t see—the unstable periodic orbits. By studying these

orbits, one can learn a great deal about the behavior of a nonlinear system. Mathematicians

such as Gilmore began studying topological invariants of dynamical systems [48].

There is, in fact, topological structure in dynamical systems, and there has been growing

interest in recent years in studying chaotic dynamical systems from a topological point of view.

Topological invariants can be extracted from chaotic data that describe the stretching and squeez-

ing mechanisms which create strange attractors [48]. These mechanisms organize the unstable

periodic orbits in specific way; the stretching mechanism causes sensitivity to initial conditions

and the squeezing mechanism is responsible for recurrent non-periodic behavior. This leads to

a strange attractor (displaying chaotic behavior) that has a self-similar structure and is repre-

sented as a branched manifold (also called a template).

Qualitative behaviors studied from the point of view of topology has led to several fixed

point theories [78] such as Conley index theory that seek to study dynamical system from a

topological perspective. These techniques rely heavily on knowing the analytic form of the dy-

namical system, or at a minimum having access to periodic orbits. Work has been done to de-

cide if data is chaotic by, for example, estimating Lyapunov exponents 2 by using a delay embed-

ding to reconstruct the attractor. See [84], for example, for a geometric approach to computing

Lyapunov exponents.

This chapter aims to do the following: to describe and motivate an interesting pattern that

arises in when persistence is computed on several examples of one-dimensional dynamical

systems that display periodic and chaotic behavior, and to provide a connection with universal

behavior of a larger class of dynamical systems.

2Lyapunov exponents measure how quickly two points that are initially close diverge under the given map. A
positive Lyapunov exponent indicates chaotic behavior.
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2.1 Discrete Dynamical Systems

We focus our attention on one-dimensional discrete dynamical systems. Let f : R 7→ R be a

real-valued function, called a map. Starting from an initial point, x0, f maps to the sequence

{x0, f (x0), f 2(x0), · · · f n(x0) · · · }, where f n(x0) represents the nth composition of f with itself. The

set { f n(x0)|n ∈ N} is called the orbit of x0 under f . We can also write this map as a first order

difference equation

xn+1 = f (xn),

where xn = f n(x0), the nth iteration of the initial condition x0. First-order difference equations

are simple dynamical systems that can display rich structure and interesting dynamics.

When f (x∗) = x∗, x∗ is called a fixed point. Fixed points play an important role in under-

standing the dynamics. Similarly, when f n(x0) = x0, x0 is a periodic point. The period of such

a point is n as long as f m(x0) 6= x0 for any 0 < m < n. A periodic point has a finite periodic

orbit (of size n), where f n(xm) = xm for all xm in the orbit. A point x0 is eventually periodic if

f n(xm) = xm for some n and xm in the orbit of x0. In the same way a point x0 is eventually fixed

if f k (xm) = xm , for some k and xm in the orbit of x0. A set U ⊆R is invariant if f (U ) ⊆R.

We can classify fixed points in the following way, based on dynamics of nearby points. We

call x∗ an attracting fixed point for f if there exists some open neighborhood U of x∗ such that

if x ∈U then f n(x) ∈U for all n and f n(x∗) → x∗ as n →∞. The neighborhood (0, x∗
2 ) is such a

neighborhood for the attracting fixed point x∗
1 in Figure . A necessary and sufficient condition

for the local stability of the equilibrium point is given by evaluating the first derivative of the

difference equation evaluated at the fixed point indicated the stability. If x∗ is a fixed point and

| f ′(x∗)| < 1, then x∗ is an attracting fixed point [108]; that is, it is locally stable. Likewise, a fixed

point x∗ can be identified as a repelling fixed point if | f ′(x∗)| > 1, which means the fixed point

is locally unstable. If | f ′(x∗)| = 1, then x∗ is called indifferent or neutral and is neither attracting

nor repelling [56].

It is easy to visualize these systems through graphical iteration using a tool called cobweb-

bing. Plot the difference equation xn+1 = f (xn) and the line xn+1 = x. Start at the point (xa ,0)
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xn

f(xn)

xa x1* xb
x2*
xc

Figure 2.1: Several cobwebs trace the orbits of a few initial conditions. Notice 0 and x∗
2 are repelling fixed

points and x∗
1 is an attracting fixed point.

and move vertically to the graph of f . Now we are at (xa , f (xa)) which is (xa , xa+1). Now move

horizontally back toward the diagonal, to (xa+1, xa+1). Repeat this process, moving vertically to

(xa+1, f (xa+1)) = (xa+1, xa+2) and horizontally back to the diagonal at (xa+2, xa+2). This process

visually shows the orbit of a point and gives us an intuitive understanding of long term behavior.

This is seen in Figure 2.1.

The ω-limit set of x under f is

ω(x, f ) = {y ∈R|there exists n1 < n2 < ... with f ni (x) → y}

ω(x, f ) may be finite, in which case, it contains a periodic limit cycle, or it may be infinite.

Studying the ω-limit sets of a map will give insight into the dynamics that are present. Often

the behavior of discrete dynamical systems depend on a control parameter appearing in the

equation, that is, f (x,r ). We will see that varying the control parameter r can have a large effect

on the dynamics of the system [56].
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n

Figure 2.2: Cobwebbing shows the stability of the period 4-cycle for r =3.52. The left shows the orbit of a
point in time and the right shows the plot of the map and the cobwebbing corresponding to the orbit.

n

Figure 2.3: Cobwebbing displays chaotic behavior when r =3.8. The left shows the orbit of a point in
time and the right shows the plot of the map and the cobwebbing corresponding to the orbit.

2.1.1 The Logistic Map

Our first example will be the logistic map. Championed by biologist Robert May in 1976

[74] as clear example that simple nonlinear maps could have very complicated dynamics, the

logistic map is one of the simplest and most well understood examples of a nonlinear discrete

dynamical system. For various parameter values, it displays the most important features of

low-dimensional chaotic behavior. The logistic map is given by

xn+1 = r xn(1−xn).
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This map is interesting because it provides a rich example to explore periodic regions, com-

plex chaotic behavior and self similarity. The logistic map maps the unit interval I = [0,1] to

itself for values of r ∈ [0,4] which means that I is forward invariant.

Fixed points of this map give some insight into the dynamics of the map. The fixed points

for this map are x∗
0 = 0 and x∗ = 1− 1

r . This means that for all r , the origin is a fixed point and

for r ≥ 1, x∗ = 1− 1
r is in the unit interval. Stability is determined by | f ′(x∗)| = |r −2r x∗|, which

means that the origin is stable for all r < 1 and unstable for r > 1. For the other fixed point to be

stable, |r −2r (1− 1
r )| = |2− r | < 1 must hold, implying that for 1 < r < 3 this fixed point is stable

and for r > 3 this fixed point is unstable.

At r = 1 we say that the fixed point at the origin splits or bifurcates in a transcritical bifur-

cation. That is, one fixed point will lose stability and the other will gain stability. The second

fixed point (shown on the graph as x∗) remains stable as r increases until r reaches 3, at which

point f ′(x∗) =−1 and the map undergoes another bifurcation called a saddle-node bifurcation.

A saddle-node bifurcation occurs when a single, neutral fixed point instantaneously splits into

two fixed points, one attracting, or stable (called the node) and one repelling, or unstable (called

the saddle).

Note that the unstable fixed point occurs on the border between the basin of attraction of

the stable fixed point and the basin of attraction for infinity. We notice from the bifurcation

diagram Figure 2.4) that for 3 < r < 3.449489728. . ., the logistic map has a stable period 2-cycle.

Table 2.1: The parameter values for onset of the first several period 2n-cycles for the logistic map.

Parameter Cycle Value
r1 2 3
r2 4 3.449489728. . .
r3 8 3.544090359. . .
r4 16 3.5644072661. . .
r5 32 3.5687594195. . .
r6 64 3.5696916098. . .
...

r∞ 3.5699456. . .
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Figure 2.4: Bifurcation diagram for the logistic map.

To understand the behavior of this map better, we consider the fixed points of the second iterate

of f , which can be thought of as either p and q such that f (p) = q and f (q) = p or the two

solutions of f 2(x) = x. This is a quartic polynomial, which can be simplified by noting that

the origin and x∗ = 1− 1
r are both solutions, (since in both cases, f (x∗) = x∗) and therefore

f 2(x∗) = x∗) we factor these solutions out of the polynomial and with a little algebra find that

p, q = r +1±p
(r −3)(r +1)

2r
.

From this we can see that for r > 3 the solutions are real and so, for any r > 3 the logistic map

has a 2-cycle. Now we will consider stability. The 2-cycle is stable when p and q are stable fixed

points, that is, when | d
d x f 2(p)| = | f ′( f (p)) f (p)| = | f ′(q) f (p)| < 1 which by symmetry is the same

for q . Plugging in for p and q this simplifies to the condition

|− r 2 +2r +4| < 1 or 3 < r < 1+p
6 (taking into account the domain of r ). For values of r > 1+

p
6 the 2-cycle is unstable, and therefore does not appear in the bifurcation diagram, however,

these unstable areas play an important role in the dynamics of the map. In fact, at r = 1+p
6

there is a saddle node bifurcation to a 4-cycle [108]. This bifurcation pattern will continue,
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producing a period-doubling cascade, which is one of the most well known routes to chaos [27].

The logistic map displays rich self-similar behavior and a complicated intermingling of period-

doubling cascades and chaos [102].

Denote rn as the r value for which the 2n-cycle first appears. From the bifurcation dia-

gram we can only discern the first few locations of period-doubling, however, there are in-

finitely many. The sequence {rn} is an infinite series called a period doubling cascade, where

a 2n-cycle exist for every positive integer n. Successive period doubling bifurcations occur

closer and closer together. The location converges geometrically to the accumulation point

r∞ = 3.569946. . .. It was discovered by Feigenbaum [38] that the distance between successive

bifurcations shrinks by a constant factor:

δ= lim
x→∞

rn − rn−1

rn+1 − rn
= 4.6692016291. . .

known as the Feigenbaum constant. δ is a universal constant for the rate of convergence of

bifurcation locations for maps approaching chaos through period doubling. This is in fact a

very large class of systems!

Since, from the perspective of persistent homology, all necessary information about a func-

tion is encoded in the critical values, it is possible to compute the persistent homology of the

orbit of a one dimensional discrete time dynamical system.

2.1.2 Pattern in the Persistence Diagram

Persistent homology is a novel way to approach these systems. When persistence is com-

puted in this way, there is a distinct pattern that appears in the persistence diagram. All the

persistence points in the persistence diagram fall along a curve. We will restrict ourselves to

considering r < 3, since the dynamics for r < 3 are not particularly interesting.

We will start in the simplest case, let all the points in our orbit be members of a 2-cycle,

{x1, x2}. Without loss of generality assume that x1 < x2. This means that x1 will be a local min-

imum, and x2 will be a local maximum. If we compute persistence on this data, we will end
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Figure 2.5: Points drawn from uniform distribution and the associated persistence diagram. There is no
clear pattern in the way that the persistence points are arranged.
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Figure 2.6: An orbit of the logistic map for parameter valuesr = 3.545, which produces a stable 8-cycle.
There are four bars with high multiplicity associated to the 8-cycle. Even the bars associated with the
orbit prior to stabilizing fall along the same line.
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Figure 2.7: An orbit of the logistic map for parameter value r = 3.75, which is in the chaotic regime. The
points in the persistence diagram all fall along the same curve.
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up with the persistence point (in birth-death coordinates) (x1, x2) with multiplicity up to the

number of cycles that are present in our data.

Most persistence points (for large enough orbits) fall on this expected curve. In fact, for

many choices of initial conditions, this is the only pattern appearing. Occasionally, a few points

in the persistence diagram may break the dominant curve pattern in the persistence diagram.

This is caused when a few of the initial points break the dominant pairing pattern (which will

discussed in detail later). We will address “edge effects” truncating the first several points up

until a maximum. These effects disappear with this caveat.

One might expect a clear pattern in the persistence diagram of a periodic orbit with a higher

period. For example, a 16-cycle, the persistence diagram will have eight persistence points with

multiplicity, since for the logistic map, if there will be four minima and four maxima in the cycle.

The remarkable feature here is that a clear pattern emerges in the locations of the persistence

points for the behavior leading up to a stable periodic cycle and even more remarkably, a clear

pattern emerges for the chaotic regime as well. The persistence points in fact fall on a curve

for the logistic map. To seek to understand this pattern in the persistence diagram, we will first

investigate a simpler map with similar dynamics, namely the tent map.

2.1.3 The Tent Map

The tent map is a one dimensional discrete system given by

xn+1 =µ min(xn ,1−xn)

with 1 ≤ µ ≤ 2, mapping the unit interval to itself. This will provide insight because the tent

map and logistic maps are topologically conjugate, but the tent map is computationally more

accessibility. Topological conjugacy preserves topological features like periodicity.

Consider two metric spaces X,Y and continuous maps f : X → X and g → Y , f and g are

said to be topologically conjugate if there exists a homeomorphism h : X → Y such that h ◦
f (x) = g ◦h(x) for every x ∈ X . [4] The homeomorphism is given by h(x) = sin2

(
π
2 x

)
So that if
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Figure 2.8: The updating function for the tent map is plotted above. The three intervals of the domain
I1, I2, and I3 will play a role in understanding the dynamics and ultimately the pattern in the persistence
diagram.
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Figure 2.9: Iterations of the tent map and the associated persistence diagram.

T (x) is the tent map and L(x) is the logistic map, L(x) = h ◦T ◦h−1(x) [75]. This means that

these maps behave the same dynamically [99]. There is a one-to-one correspondence between

periodic orbits of topologically conjugate maps. Quantitatively these maps may be different,

but qualitatively the two maps display the same behavior.

Stable orbits undergo a period doubling bifurcation that, like the logistic map, cascade to

chaos. At any given parameter for the logistic map, the tent map at the conjugate parameter

has the same number of unstable periodic orbits [88]. Further, Feigenbaum’s scaling by δ and

α are present. As seen in Figure 2.9, there is a clear, decreasing line in the persistence diagram
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Figure 2.10: The persistence points for the tent map will fall along a line with slope −1
µ . This means that

computing the slope of the points in the persistence diagram will recover the parameter µ dirving the
dynamics.
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Figure 2.11: The Markov graph for the tent map. The intervals are shown in Figure 2.8, each edge gives
the probability that a point will move from one interval to the next under a single iteration of the map.

both in the periodic and chaotic regime. We will justify why this pattern appear and connect

these ideas to some tools from symbolic dynamics.

Consider a collection of closed subintervals {Ik } of the interval I . These intervals form a

partition if the interior of the intervals are pairwise disjoint [23]. A Markov graph of f : I → I

associated with the partition Ik is the graph whose vertices are the intervals of the partition and

the edges of pairs (Ii , I j ) such that f (Ii ) ⊃ Ik . Such an edge is denoted Ii → I j . Every path

in the Markov graph is associated with a point whose itinerary follows the path. If the path is

closed, then there exists a periodic point (with period equal to the length of the path). Note the

intervals of the partition are not disjoint (only their interiors are) so there may exist points with

period smaller than the length of the cyclic path.
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When determining the intervals for the Markov graph, we first divide phase space into in-

tervals that are orientation preserving and orientation reversing. Orientation preserving means

that for x < y , f (x) < f (y). Similarly, orientation reversing means that x < y , f (x) > f (y).

Next break these down to intervals where xn+1 = f (xn) > xn (the orbit is increasing) or where

xn+1 = f (xn) > xn (the orbit is decreasing). The resulting intervals are illustrated in Figure 2.8.

If a point falls in the interval I1 = [0,0.5], then applying the tent map to xn will give µxn ≥ xn

since 1 ≤µ≤ 2. Similarly, for points xn ∈ I2 where I2 = [0.5, µ
1+µ ] under the tent map will map to

µ
1+µ <µ(1− xn) < 0.5µ so the next iteration: µ(1− xn) > xn since xn < µ

µ+1 . Therefore, for almost

every point in the interval I1 ∪ I2 the orbit is increasing ( f (xn) > xn). So minima may occur in

I1 ∪ I2, but maxima will not. For xn ∈ I3 where I3 = [ µ
µ+1 ,1] applying the tent map give rise to

µ(1− xn) < mu
µ+1 . Therefore points in this region are decreasing. Maxima will occur in I3, but

minima will not.

Claim. If xn ∈ I1 ∪ I2, then f −1(xn) ∈ I3.

Stated in another way, any minimum is computed directly from a point in I3. Since the

orbits of all points in I1∪ I2 are increasing, if a point was computed from a point in that interval,

then it necessarily came from a smaller point in the same interval, which means that the point

itself cannot be a minimum. So minima are computed from I3.

Now consider how the level set persistence diagram is built. First, the only points that will

contribute are maxima and minima. Any intermediate point is disregarded. Minima are asso-

ciated with the birth of a new feature and maxima are associated with the death of a feature.

As features (or connected components of the level set) are born and die, this information is

recorded in a persistence diagram. The function value at the birth of a feature is on the hori-

zontal axis and the function value of the death of a feature is on the vertical axis. A bar is then

drawn from the diagonal to this point. The persistence diagram captures information regard-

ing the size of geometric features. A long bar signifies a significant Consider a level set rising

from below the graph of the function. As it encounters a minimum, it splits into two connected

components, and this is the birth of a feature. The level set continues to rise and divide as it
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reaches a new minimum. When a feature encounters a maximum, there are two minima asso-

ciated with the level set (one on the left and one on the right). Since these are the associated

births of the feature, they are the candidates for pairing with the maximum to give a description

of the longevity of the feature. The largest minimum is taken to be descriptive of the feature

that disappears at this maximum, and is thus these two values are paired int he persistence.

This pairing scheme along with the structure of the tent map leads to a line in the persistence

diagram for the tent map.

The following argument gives a justification for this pattern. Consider the smallest maxi-

mum point. We have already seen that there is a division between minima and maxima at µ
µ+1 .

So this maximum is the smallest point above µ
µ+1 .

Claim. The iteration immediately following the smallest maxima is the largest minima and will

pair with the smallest maxima.

Suppose, by way of contradiction, that f (M0) = m0 is not the largest minimum. So there

exists mn such that µ
1+µ > mn > m0. The first inequality is enforced since the point must be

increasing in the next iteration to be a minimum. mn is an iteration of the tent map, so mn =
f (Mn), where Mn is the previous iteration. Mn cannot be on the first branch, since that would

mean Mn < mn , but mn is a minima. This means that mn =µ(1−Mn). Similarly, m0 =µ(1−M0).

Substituting into mn > m0 and using the fact that all iterations are in the interval [0,1], this

implies Mn < M0, but by assumption, M0 is the lowest maximum, which is a contradiction.

This means that the lowest maximum (which is the first to pair) will pair with the largest

minimum, which is in fact the next iteration in the tent map. In general, iterating the tent map

gives rise to a distance stretching. By the same reasoning as above, the higher the maximum is,

the lower the subsequent minimum will be. Minima that have a greater value are come from a

maximum with a lower value. This creates a “fanning out” pattern. Eventually, a maximum will

be large enough that it will map to a small minimum that will need to “climb up” again before re-

entering the cycle of a maximum mapping to a minimum. Therefore a point in the persistence
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diagram, which is given as (birth, death) can be written as ( f (xn), xn) = (µ(1− xn), xn) where xn

is a maximum.

Claim. The points in the persistence diagram for the tent map fall along the curve

d = 1− b

µ
,

where b is the birth coordinate and d is the death coordinate in the persistence diagram.

Following the same reasoning, for similarly defined intervals:

I1 = [0, x̄], I2 = [x̄, x∗] I3 = [x∗,1]

where x̄ = 0.5 is the location of the maximum of the updating function and x∗ is the nonzero

fixed point, we can make the following claim for the logistic map.

Claim. The points in the persistence diagram for the logistic map falls along the curve

d =
p

r +p
r −4b

2
p

r
,

where b is the birth coordinate and d is the death coordinate in the persistence diagram.

In the next section we will show where this pattern comes from for a large class of maps, of

which the logistic map is an example.

2.2 Persistence of Unimodal Maps

Unimodal maps have a lot of structure [29, 86]. Such maps were studied extensively by

Feigenbaum and admit the same universality constants δ and α [39]. The logistic map is a uni-

modal map. So is the quadratic family of maps f (xn+1) = c −x2
n . The bifurcation diagram of the

family of quadriatic maps is not only qualitatively ubiquitous, but quantitatively as well [23].

The existence of a period-doubling cascade in a unimodal map guarantees the existence of
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Figure 2.12: The Markov graph for a unimodal map restricted to the dynamic core.

chaotic behavior [69]. The chaotic regime is densely interspersed in the periodic regime [111].

The tent map is not technically considered a unimodal map because the maximum is not dif-

ferentiable, however since this is a single point (a set of measure zero) it does not effect the

dynamics [15].

This can be generalized to a class of one-dimensional difference equations called unimodal

maps, which we define as follows. Given a map f : I → I , where I is the unit interval and f

is continuous with a unique maximum at c ∈ I , and increases to c and decreases away from c.

Without loss of generality, let f (0) = 0 and f (1) = 0. There are two equilibria, 0 and x∗. We also

insist that c < x∗. Define I1 = [0,c], the region on which f is increasing. I2 = [c, x∗], which is the

region on which f is decreasing, to the left of the equilibrium point x∗. I3 = [x∗,1], is the region

to the right of the equilibrium point, f is decreasing on I0 as well.

For f and intervals defined in that way, we can build a Markov graph, pictured in Figure 2.12.

f (I2) = [ f (x∗), f (c)] = [x∗, f (c)] = I3 since f is continuous, decreasing, and therefore orientation

reversing. f (I3) = [ f (x∗), f (1)] = [0, x∗] ⊆ I1 ∪ I2. It it possible for I3 to map into the entire

interval I1 ∪ I2.

Recall, for discrete maps, we consider a point in the orbit, xk , to be a local minimum if

xk−1 > xk and xk+1 > xk . Likewise, if xk−1 < xk and xk+1 < xk , then we consider xk to be a local

maximum. Consider a finite subset of an orbit of f : x0, x1, x2, ...xn .

Claim. For any xk ∈ I1 ∪ I2, xk is not a maximum.
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Proof. Since x∗
0 < c < x∗, f is continuous, increasing to c, decreasing away from c and f (x∗

0 ) =
x∗

0 , f (x∗) = x∗, the orbit of f is increasing. So, for xk ∈ I1 ∪ I2 f (xk ) ≥ xk , which means that xk is

not a maximum.

Claim. For any xk ∈ I3, xk is a maximum.

Proof. xk ∈ I3 implies that f −1(xk ) ⊆ I1∪I2, by the definition of the intervals, max( f −1(xk )) < xk .

Further, f (xk ) ∈ I1 implies that f (xk ) < xk by the definition of the intervals.

Claim. xk is a minimum if and only if f −1(xk ) = xk−1 ∈ I3.

Proof. ⇒) If xk is a minimum, by the previous claim, it cannot be in I3, so xk ∈ I1 ∪ I2. If xk ∈ I1

then by definition of the intervals, f −1(xk ) ∈ I1 ∪ I3. If f −1(xk ) ∈ I1, then f −1(xk ) < xk and xk is

not a minimum. So f −1(xk ) ∈ I3.

Similarly, if xk ∈ I2, then by definition of the intervals, f −1(xk ) ∈ I1 ∪ I3. If f −1(xk ) ∈ I1, then

f −1(xk ) < xk and xk is not a minimum. So f −1(xk ) ∈ I3.

⇐) If f −1(xk ) = xk−1 ∈ I3, by definition of the intervals, f −1(xk ) > xk . Further, xk ∈ I1 ∪ I2. On

I1 ∪ I2, the orbit of f is increasing, so f (xk ) > xk , which means that xk is a minimum.

Claim. For a finite subset of the orbit of a point under the map f , let xM be the smallest maxi-

mum, then xM+1 = f (xM ) is the largest minimum.

Proof. Since xM is a maximum, by claim 2, xM ∈ I3. On I3, f is continuous and decreasing, so

f (min{xk |xk ∈ I3}) = max{ f (xk )|xk ∈ I3}

Claim. The persistence points of a unimodal map defined on (a,b) and stable equilibrium x∗

will have the form ( f (xn), xn), where xn ∈ (x∗,b)

Proof. When building the persistence diagram, we only consider points that are maxima or

minima. By Claim 6, all maxima will be in I3.
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xn

f(xn)

I1	 I2	 I3	

Figure 2.13: A general unimodal map with the intervals marked.

2.2.1 Examples of Unimodal Maps

There are many examples of unimodal maps, several examples follow. One family of maps

has the form

f (xn+1) = 1−a|xn |k

for a ∈ (0,2]. When k = 1 this is equivalent (under a change of variables) to the tent map and

when k = 2 this is equivalent to the Quadratic family of maps [8]. This map is unimodal accord-

ing to the definition in the previous section under the transformation that brings f (0) = f (1) =
0. An example of iterations and the associated persistence diagram is shown in Fig. .

Two other families of unimodal maps are the Gauss map, given by

f (xn+1) = e−ax2
n +b

and the sine map, given by

f (xn+1) =λsin(xn)

Both of which give rise to similar patterns in the associated persistence diagrams.
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Figure 2.14: Iterates and the associated persistence diagram of the Quadratic Map for a = 1.6.

2.3 Poincaré Maps of Higher Dimensional Systems

We see this pattern emerging in the persistence of one-dimensional sections of higher di-

mensional differential equations. The essential behavior of higher dimension dynamical sys-

tems can often be reduced to a one-dimensional map [23]. This can be done by looking at

cross-sections of trajectories of an orbit. This is called the first-return map or the Poincaré map

and represents the system by a discrete difference equation. There are some natural conditions

to the choice of cross-sections [88].

Unimodal maps are two-to-one, so we would not expect them to show up as the Poincaré

map of a two dimensional system, however, they do appear as Poincaré maps of three-dimensional

systems [36]. In fact, it was through looking at a one-dimensional map of the Lorenz attractor

that Lorenz his model for atmospheric advection [72]. Lorenz was able to construct an approx-

imate one dimensional map from this system by plotting successive maximums [36, 72]. When

this is done for the z variable, this gives rise to a single peaked map. Lorenz was able to use this

to convincingly argue that the system was chaotic [75]. We can detect by computing persistence

on the projection of the trajectory in each dimension. The Rössler attractor also has unimodal

maps as the backbone. Because the attractor is so compressive, for all practical purposes, the

return map of the Rössler system is one dimensional.
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Figure 2.16: (Top) One-dimensional maps in each dimension (x,y, and z) in time generated by projecting
the orbit onto the x,y, and z coordinates receptively. The persistence computed for each one-dimensional
time series (Bottom).
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Figure 2.18: (Top) One-dimensional maps in each dimension (x,y, and z) in time generated by projecting
the orbit onto the x,y, and z coordinates receptively. The persistence computed for each one-dimensional
time series (Bottom).
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2.3.1 Noisy Maps

The points on the persistence diagram for the logistic map fall along the line given by

d = 1

2
+ 1

2

√
1− 4d

r

where (b,d) gives a point in the persistence diagram in birth-death coordinates. We can use this

not only to fit data for an unknown r value, but also to fit noisy data.

We generate noisy data from the logistic map in several controlled ways. In the first, we

perturb each iteration by a small amount before the map evolves again. This is given by the

following dynamical system:

xn+1 = r x(1−x)+σν

where σ is a scale parameter on the amount of noise and ν is a Gaussian random number. In

this case, it is possible, but rare, for a point to be mapped outside of the unit interval (especially

for r = 4). If this occurs, we would disregard that orbit. However, this event was rare enough

that it was not necessary in our computations.

We generated 1000 examples for each parameter value and noise level. Each example has

a random initial condition and 1000 iterations. We compute persistence of each orbit and use

a nonlinear least squares algorithm to fit to the expected function of the persistence points for

the logistic map. We take the mean of the difference between r f i t and r . The results are shown

in Table 2.2. Table 2.3 shows the standard deviation of the set of all r f i t for each parameter and

noise level pair. For noisy data generated in this way, in almost every case, r f i t is slightly higher

than r , but is very close to the actual value that was used to generate the data. We also notice

that there is very small variance or the fit parameter across all trials which indicates that this is

a promising method for parameter recovery, even in the presence of noise.

Table 2.2 and Table 2.5 show similar results for data generated with a noisy value for r .

rn = min(max(r +σν,3)4)
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Figure 2.19: (Left) The persistence diagram and the fit for data from the logistic map with a noisy value
for the parameter r . Here r = 3.75 and r f i t = 3.7508 and σ = 0.05. (Center) The persistence diagram
and the fit for data from the logistic map with a noisy value for the parameter r . Here r = 3.75 and
r f i t = 3.7503 and σx = 0.01 and σr = 0.01 (Right) The persistence diagram and the fit for data from the
logistic map with each iteration perturbed by a small random amount. Here r = 3.75 and r f i t = 3.7498
and σ= 0.01

Table 2.2: This table gives the difference between the mean r f i t and the actual parameter r for data from
the logistic map with each iteration perturbed by a small random amount.

σ r = 3.6 r = 3.65 r = 3.7 r = 3.75 r = 3.8 r = 3.85 r = 3.9 r = 3.95 r = 4
0.001 0.0026 0.0022 0.0017 0.0029 0.0036 0.0203 0.0072 0.0068 0.0098
0.005 0.0032 0.0023 0.0019 0.0029 0.0044 0.0066 0.0067 0.0073 0.0097
0.01 0.0041 0.0027 0.0024 0.0031 0.0045 0.0066 0.0068 0.0084 0.0094
0.05 0.0150 0.0180 0.0171 0.0173 0.0187 0.0196 0.0206 0.0236 0.0249
0.1 -0.0044 0.0031 0.0098 0.0179 0.0254 0.0302 0.0361 0.0430 0.0509

where σ is a controlled scale parameter for ν a random Gaussian value. rn is the value of r used

to generate xn+1. We enforce that 3 ≤ r ≤ 4 so that we do not slip into the regime where 0 is

an attracting fixed point. The final way that noise is incorporated is in both the value of r and

each iteration. Even in this case, the parameter fit is still close to the actual parameter value.

This pattern in the persistence diagram appears to be robust to noise that is introduced in the

system in various ways. Our findings for the noisy trails are summarized in the following tables.

Another method one might consider for parameter discovery is fitting the return map. This

method involves plotting the points (xn , xn+1), (xn+1, xn+2) and so on. This technique embeds

the one-dimensional map into 2-dimensions. One would then fit the resulting points to the

known map. This is effective for detecting deterministic behavior [72]. However, this method is

very sensitive to a single missing point and does not provide as good of a fit.
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Table 2.3: This table gives the standard deviation of r f i t and the actual parameter r for data from the
logistic map with a small amount of noise added at each iteration.

σ r = 3.6 r = 3.65 r = 3.7 r = 3.75 r = 3.8 r = 3.85 r = 3.9 r = 3.95 r = 4
0.001 0.0034 0.0026 0.0021 0.0034 0.0040 0.0236 0.0075 0.0071 0.0093
0.005 0.0035 0.0029 0.0029 0.0038 0.0048 0.0073 0.0070 0.0073 0.0094
0.01 0.0044 0.0042 0.0044 0.0049 0.0061 0.0079 0.0083 0.0092 0.0108
0.05 0.0176 0.0190 0.0200 0.0207 0.0212 0.0235 0.0242 0.0278 0.0263
0.1 0.0351 0.0369 0.0363 0.0384 0.0403 0.0395 0.0422 0.0441 0.0461

Table 2.4: This table gives the difference between the mean r f i t and the actual parameter r for data
generated with a noisy value for r .

σ r = 3.6 r = 3.65 r = 3.7 r = 3.75 r = 3.8 r = 3.85 r = 3.9 r = 3.95 r = 4
0.001 0.0024 0.0022 0.0017 0.0030 0.0037 0.0779 0.0071 0.0072 0.0093
0.005 0.0025 0.0020 0.0017 0.0029 0.0035 0.0164 0.0071 0.0070 0.0078
0.01 0.0025 0.0021 0.0017 0.0030 0.0038 0.0092 0.0068 0.0068 0.0058
0.05 0.0024 0.0017 0.0020 0.0022 0.0034 0.0046 0.0053 0.0034 -0.0115
0.1 0.0019 0.0018 0.0015 0.0011 0.0017 0.0003 -0.0039 -0.0136 -0.0326

Table 2.5: This table gives the standard deviation of r and the actual parameter r for data generated with
a noisy value for r .

σ r = 3.6 r = 3.65 r = 3.7 r = 3.75 r = 3.8 r = 3.85 r = 3.9 r = 3.95 r = 4
0.001 0.0033 0.0026 0.0020 0.0035 0.0041 0.0817 0.0073 0.0070 0.0093
0.005 0.0034 0.0026 0.0021 0.0033 0.0039 0.0177 0.0072 0.0070 0.0094
0.01 0.0032 0.0025 0.0022 0.0034 0.0042 0.0098 0.0071 0.0067 0.0093
0.05 0.0039 0.0038 0.0042 0.0047 0.0057 0.0069 0.0078 0.0086 0.0090
0.1 0.0065 0.0065 0.0071 0.0076 0.0082 0.0090 0.0094 0.0094 0.0097

Table 2.6: This table gives the difference between the mean r f i t and the actual parameter r for data
generated with a noisy value for r and with noise added to each iteration. We choose to keep both noise
factors the same, σx =σr =σ.

σ r = 3.6 r = 3.65 r = 3.7 r = 3.75 r = 3.8 r = 3.85 r = 3.9 r = 3.95 r = 4
0.001 0.0025 0.0021 0.0017 0.0030 0.0036 0.0201 0.0076 0.0070 0.0094
0.005 0.0030 0.0022 0.0018 0.0029 0.0041 0.0072 0.0070 0.0072 0.0072
0.01 0.0039 0.0025 0.0023 0.0029 0.0044 0.0065 0.0073 0.0081 0.0055
0.05 0.0151 0.0159 0.0167 0.0177 0.0184 0.0196 0.0217 0.0203 0.0037
0.1 -0.0089 -0.0011 0.0038 0.0151 0.0179 0.0235 0.0228 0.0208 0.0056
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Table 2.7: This table gives the standard deviation of r and the actual parameter r for data generated with
a noisy value for r and with noise added to each iteration. We choose to keep both noise factors the same,
σx =σr =σ.

σ r = 3.6 r = 3.65 r = 3.7 r = 3.75 r = 3.8 r = 3.85 r = 3.9 r = 3.95 r = 4
0.001 0.0033 0.0026 0.0021 0.0034 0.0040 0.0222 0.0076 0.0071 0.0093
0.005 0.0036 0.0029 0.0029 0.0038 0.0048 0.0076 0.0073 0.0074 0.0099
0.01 0.0044 0.0042 0.0044 0.0050 0.0061 0.0076 0.0086 0.0091 0.0106
0.05 0.0184 0.0186 0.0201 0.0207 0.0222 0.0239 0.0260 0.0264 0.0268
0.1 0.0355 0.0383 0.0351 0.0387 0.0395 0.0430 0.0423 0.0439 0.0456
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Chapter 3

Parameter Classification of Pattern-Forming

Systems

3.1 Introduction

Complex patterns in nature are ubiquitous and can be observed in systems of vastly differ-

ent scales; from the distribution of matter in the universe [18], to near-periodic ripples in sand

dunes or stripes on a zebra down to nanoscale structures formed by ion bombardment [6].

Pattern-formation is a prominently studied area of nonlinear dynamics and understanding

such systems is important to a wide variety of fields in the scientific community such as bi-

ology, physics, engineering, and chemistry.

Often these patterns occur in nonlinear systems that are driven from equilibrium, display-

ing spatial and temporal variations. There has been a lot of work done recently [95] in the study

of nonlinear systems driven from equilibrium by, for example, a gradient in temperature, con-

centration or velocity [109]. These systems are challenging due to a lack of established theoret-

ical frameworks [59].

(a) (b) (c) (d)

Figure 3.1: Examples of pattern formation that will be discussed in this chapter. (a) Model of the surface
of a binary compound bombarded with a normal-incidence ion beam.(Section 5.4) (b) and (c) and early
and late time examples of a system that models, for example solidification of a melt (Section 3.4) (d)
Model of pyramidal structures formed on irradiated Geranium (Section 4.3)
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Self-organized pattern formation is frequently the result of interactions a number of dif-

ferent phenomenological processes. On a coarse scale, we may understand mechanisms that

contribute to pattern formation in a number of systems. However, many of the particular de-

tails or complex interactions of physical mechanisms are not fully understood [18, 95]. It can

often be the case that these poorly-resolved or poorly understood processes are parametrized

rather than treated explicitly. Because of this, it becomes important to determine the influence

of model parameters on the system. There are a variety of methods to do this, many of which

require computationally expensive simulations [2]. Irregular time-varying structures and com-

plexity of patterns, and sensitivity to initial conditions, among other things, makes quantifying

or even distinguishing patterns difficult [28]. Recently there has been much interest in using

topological methods in pattern formation and pattern evolution, in particular in material sci-

ences [118]. Computational topology has emerged as a tool that retains essential information

for studying patterns, but significantly reduces the dimensionality of the data [22]. For example,

persistent homology has been used to distinguish between parameters for complex patterns

formed through a phase separation process [28].

We begin this section with a brief introduction to pattern formation in Section 3.2. We will

use persistence images, introduced in 1.6, which are a vector representation of persistence di-

agrams that allow for the use of machine learning techniques [2]. We apply these techniques

to pattern-forming systems. The first is from the anisotropic Kuramoto–Sivashinsky equation

as a way to distinguish by anisotropy parameter (Section 3.4). The next models the formation

of pyramidal and inverted pyramidal structures on an irradiated surface (Section 4.3). Persis-

tent homology provides a valuable tool for distinguishing parameters in these complex spatio-

temporal patterns.

3.2 Pattern Formation

We give a brief introduction to pattern formation in systems driven from equilibrium. Given

a system of partial differential equations (PDEs) ∂tU = F (U ,∂xU , ...,R) where R is a control pa-
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rameter, x is a d-dimensional variable and U = u1(x, t ), ...,un(x, t ) and boundary conditions and

initial conditions, we will investigate the response of the system to single Fourier mode distur-

bances of the system. Linearizing F [U ] around a base state, that is, a solution to the equation

of motion near equilibrium, will reveal basic instabilities. [109]

To understand these stabilities, study the evolution of modes of a given wave vector k in

u j (x, t ) = u0ei kx+σt [19]. The resulting linear equations will give rise to eigenvalues σα(k). The

one with the largest real part is denotedσ(k). Re(σ(k)) is the growth rate. Interestingly, for most

pattern forming systems, k is in a space of dimension 1 or 2, so the pattern formation largely

occurs on a surface [19]. Assume that for the control parameter R, there is a critical point Rc

at which Re(σ(k0)) = 0 at some wave vector k0, and for parameter values R < Rc ,Re(σ(k)) < 0.

This means that a small perturbation of the base state will decay back to the base state (i.e. the

base state is stable).

We define ε= R−Rc
Rc

. For small positive perturbations ε, various types of spatial and temporal

instabilities will set. This occurs when Re(σ) = 0, that is, where the growth rate of the perturba-

tion is zero. The base state loses stability at Rc and the solution spontaneously loses symmetry

which develops into a spatial pattern with characteristic wavelength λ= 2π/kc .

We can categorize the spatial instabilities based on the most unstable wave vector, k0 or a

band of unstable wave vectors. Im(σ(k0)) =ω0 gives information of temporal instability. There

are three classes of behaviors based on the linear instability of the base state. Three main classes

of pattern-forming systems [19]:

• Type Is : stationary periodic, where ω0 = 0 and k0 6= 0

• Type Io : oscillatory periodic, where ω0 6= 0 and k0 6= 0

• Type IIIs : oscillatory uniform, where ω0 6= 0 and k0 = 0

To further understand the instabilities, we can compute interactions between spatial eigen-

functions associated to the same eigenvalue [119]. Different classes will give rise to differences

in amplitude equations, which govern patterns such as rise to ripples, square cells, and hexag-
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onal cells. The dynamics of a solution are described by amplitude equations near equilibrium,

but far from equilibrium, phase equations give a clearer picture.

For nonlinear systems, perturbation methods are provide good characterizations of spatio-

temporal patterns near the base state because nonlinear effects are weak. However, when a

system is driven far from equilibrium the control parameter R is far beyond the critical thresh-

old and perturbation theory no longer gives an accurate description [109]. Nonlinear effects

can play a larger role, the system is often disordered and non-ergodic. There is an absence of

an established theoretical framework here, in part due to these challenges [59]. In this case, ex-

periments and numerical simulations play a larger role in understanding bifurcations and the

types of patterns that can occur.

3.3 Cubical complexes and PDEs

Numerical simulations a PDEs necessarily are discretized on a grid. To characterize the geo-

metric structure of complex patterns that are formed, we turn to topological methods. This for-

mulation lends itself naturally to building cubical complexes of sublevel sets parameterized by

a threshold. The homology of this complex provides information about the geometric structure

present. Computational homology has been used, for example, to study systems known to ex-

hibit spatio-temporal chaos [43], and was proposed as an alternative way to compute Lyapunov

exponents for chaotic systems. Homology has been used to compare experimental data with a

common approximation method in the model for Rayleigh-Bénard convection [68]. Gameiro

et. al track the evolution of Betti numbers as the system evolves in time to characterize com-

plex microstructures that arise due to a process known as spinoidal decomposition [44]. These

techniques rely on the first step of choosing an appropriate threshold. In some cases, like data

arising from Rayleigh-Bénard convection, decomposing the domain into regions that represent

upward flow and downward flow provides a natural division [68]. However, as [64] points out,

homology groups can be very sensitive to small perturbations in the threshold. Considering
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all threshold values–computing persistent homology– avoids this challenge and can provide a

more complete summary of the geometric structure at various scales.

Persistent homology has been used to characterize Kolmogorov flow and Rayleigh-Bernard

convection [66], to study force networks in compressed granular media [64] and to classify com-

plex microstructures that arise in the Cahn-Hillard equations [28]. Based on these initial find-

ings, computational topology is proving to be an important tool in the quantification of com-

plex structures.

However, before jumping in, we note a word of caution mentioned by Kaczynski et. al in [60].

In representing a continuous solution as a numerical approximation on the grid, we introduce

numerical error and topological errors. To expand on this idea, we will look an example that is

given in [60] and illustrated in Figure 3.2. We will represent two lines drawn to form a ‘V’ shape

with a discretization of the domain. Take a discrete grid, for example 10×10, if the line passes

through a cell in the grid, give that pixel a value of one, otherwise, the pixel has a value of 0.

Each pixel corresponds to a (potential) vertex in an associated cubical complex. Building the

cubical complex on the pixels with value 0 (white pixels in the figure), we end up with a white

pixel in the crook of the V is disconnected from the larger white region. Recall, as described in

1.5.1, when building the cubical complex, we choose to consider 4-neighbor connectivity for

the sublevel set and 8-neighbor connectivity for the superlevel set. If we compute homology

of the complex formed by the pixels with value 1, this will correspond to a superlevel set of the

thresholded data, so we use 8-neighbor connectivity. The ‘V’ shape is homotopic to a point, so

the homology group should be 0. However, we can see a spurious signal in the H1homology

group.

We also introduce small numerical errors in the simulation of nonlinear PDEs. We should

be aware of the possibility of these small topological errors as we proceed. However, in practice

the influence of such features is small, especially if we are using persistent homology rather

than just computing the rank of the homology group.
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Figure 3.2: Consider a discrete approximation to the V-shaped red line. We will assign a pixel the value
of 1 if the line crosses through the pixel (shaded above), otherwise the pixel value is 0. Even though the
red V is homotopic to a point, and therefore should admit no H1, there is a small signal present due to
the discretization. Recall that for sublevel sets, we consider 4-neighbor connectivity, so the white pixel in
the crook of the V is disconnected from the larger white region. This is not a matter of resolution, if the
resolution is increased, a small loop is still present. [60]

3.4 Anisotropic Kuramoto–Sivashinsky Equation

The Kuramoto–Sivashinsky (KS) equation is a partial differential equation that has been

independently derived to model a number of pattern-forming systems driven far from equi-

librium [90]. Its first appearance was to model flame front propagation [106]. It has found

many applications in surface pattern-formation including surface patterning by ion-beam ero-

sion [20,83], epitaxial growth and instabilities related to electromagnetism [116], the formation

of suncups in snowfields [112], and solidification from a melt [50]. The nonlinear term is often

anisotropic in applications, giving the anisotropic Kuramoto–Sivashinsky (aKS) equation

∂u

∂t
=−∇2u −∇2∇2u +

(
∂u

∂x

)2

+ r

(
∂u

∂y

)2

, (3.1)

where ∇2 = ∂2

∂x2 + ∂2

∂y2 , and the real parameter r controls the degree of anisotropy.

The KS equation exhibits spatio-temporal chaos [101]. The one-dimensional KS equation

undergoes a period-doubling cascade to chaos [107]. Smyrlis and Papageorgiou compute the

continuum analogs of Feigenbaum’s universality constants α and δ for the one dimensional

KS equation [107]. Feigenbaum predicted universal behavior for continuous flows of infinite

dimension, and observed this phenomenon in Rayleigh-Bernard flows [66]. In our experiments,

we focus on the two dimensional model.
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Figure 3.3: Plots of surface u(x, y, ·) resulting from numerical simulations of the aKS equation (3.1). Each
column represents a different parameter value: (from left) r = 0.5, 0.75, 1, 1.25 and 1.5. Each row repre-
sents a different time: t = 3 (top) and t = 5 (bottom). By t = 5 any anisotropic elongation of the surface
pattern has visibly stabilized.

The nonlinear terms stabilize the linear instabilities, establishing a dynamic steady state of

irregular, bounded fluctuations [95]. The surface is composed of complex cells with a charac-

teristic length that change in time, in a phenomena called chaotic bubbling [95], in which cells

seem to split and merge in a random fashion.

The numerical technique for these simulations is as follows. We use a Fourier spectral

method with periodic boundary conditions on a 512×512 spatial grid, with a fourth-order expo-

nential time differencing Runge-Kutta method for the time stepping [16, 17]. Several examples

of numerical simulations of the aKS equation for a range of parameter values (columns) and

simulation times (rows) are shown in Fig. 3.3. The initial conditions for all of the simulations

was low-amplitude white noise. We choose five parameter values, r = 0.5, 0.75, 1, 1.25 and 1.5,

generate thirty trials for each parameter. These parameters were chosen because visually the

patterns produced are very similar (and therefor difficult to distinguish). The pattern produced

by r =1 is isotropic.

3.4.1 Reduced Resolution and Variance Classification

In this project, our goal is to identify the anisotropy parameter for each simulation using

snapshots of the surfaces u(x, y, ·) as they evolve in time. Inference of the parameter using the
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surface alone proves difficult for several reasons. The aKS equation exhibits sensitivity to initial

conditions, so solutions that are initially close together diverge quickly. The spatial resolution

of the numerical simulations provides a discretization of the surface on which we may con-

sider applying machine learning techniques. However, even for our relatively small spatial grid

(512×512) this means that the surface could be thought of as a vector in R266144. Because of the

high dimensionality, we were unable to perform classification on the surface alone as a first at-

tempt at classification. Dimensionality reduction was necessary. A coarse method of dimension

reduction is generated by replacing blocks of grid elements in the spatial domain with their av-

erage value. The surfaces were resized in this way to a resolution of 10×10, which gives a vector

representation of the surface in R100. We applied a subspace discriminant ensemble to perform

classification. It is not surprising that this method performed very poorly. (See Table 3.1).

The anisotropy parameter influences the mean and variance in the amplitude of the sur-

face pattern. After each simulation, the surface is mean-centered to eliminate such a differ-

ence (which would not be accessible if using data as opposed to numerical simulations). It was

thought that the variance in surface height could provide enough discriminating information.

To test this idea, a normal-distribution based classifier was built on the variances of surface

height. The normal distribution was fit to a set of training data consisting of 2/3 of the simu-

lations for each parameter. Classification was performed on the remaining 1/3 based on the

z-test for each of the different models. This is performed 100 times with random partitions of

the data into training and testing sets. Accuracy is the average over all trials. Early in the for-

mation of the pattern, the variance is not a discriminating feature (as seen in Fig. 3.4) and this

method yields poor classification results. However, after the surface is allowed to evolve for a

sufficient amount of time, the variance is a useful discriminator. We achieve a classification

accuracy of 75% for later times. While this is a large improvement upon purely coarsening the

spatial resolution, there is more structure in the pattern that will prove useful in classification.
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Figure 3.4: Histograms of the variances of surface heights for each parameter value, and the normal
distribution fit to each histogram, for times (a) t = 3 and (b) t = 5. (Figure from [2])

Table 3.1: Classification accuracies for two simple classification methods on the solutions.

Classification Approach
Time
t=3

Time
t=5

Time
t=10

Subspace Discriminant Ensemble,
Resized Surfaces

26.0 % 19.3% 19.3 %

Variance Normal Distribution
Classifier

20.74% 75.2% 77.62 %

3.4.2 Anisotropy Classification

The parameter r controls the anisotropy of the system. For r > 1, the pattern will be stretched

in the y-direction and for r < 1, the pattern will be stretched in the x-direction. We compute a

discrete approximation for the gradient of the solution and then compute the direction of the

gradient between −π
2 and π

2 . Figure 3.5 shows the resulting histogram of the gradient angles for

a single example from each class. If we divide the interval [−π2 , π2 ] into 100 bins and count the

number of gradient vectors falling in each angle range, we can build a feature vector for each

example. Using this feature vector and a linear support vector machine 3 we achieve a classifi-

cation accuracy of 100 %. We maintain this accuracy even when we reduce the number of bins

to 10.

3A linear Support Vector Machine (SVM) is a simple machine learning algorithm that finds the optimal hyper-
plane dividing vector data into classes. [67]
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Figure 3.5: Histogram of the angle of gradient vector (modπ) for a single example of each parameter class
at time step 15. The isotropy is clear for r = 1 as there is no preferential direction shown by the gradient
vectors. Because of the differences in the distribution, it is reasonable to expect that the gradient vectors
serve as a good classifier.

However, this technique relies on being able to distinguish the x and y directions, as there is

a correspondence between the degree of anisotropy and the direction. When using simulated

data, this is accessible, however, this may not be accessible if we are given real data. Homol-

ogy is a topological invariant, and so it does not rely on the orientation of the domain. If one

were to rotate the spatial domain by 90 degrees prior to computing the persistence, the result-

ing persistence diagram of the surface would remain unchanged. We will see that there is more

information that is useful for classification contained in the topological structure of the solu-

tion.

3.4.3 Persistence of the aKS Equation

The sublevel set filtration reflects not only the variance of a surface, but also additional topo-

logical structure which may reveal other influences of the anisotropy parameter on the surface.

We compute persistence of each surface using cubical homology and generate a persistence

image for each snapshot in time of each surface. To generate the persistence images, we used

a Gaussian distribution with variance σ = 0.01, a linear ramp function that was zero along the

diagonal and one for the longest bar and beyond, and were able to reduce the resolution of the

image to 20×20. We tested classification persistence images generated with a range of resolu-

tions and variances of the Gaussian. There is little variation for large sets of parameter choices.

We include classification accuracies for persistence images formed when the resolution is held

constant, and the Gaussian variance is changed in Table 3.3 and for persistence images formed

with various resolutions at a constant variance in Table 3.4.
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Table 3.2: Classification accuracies at different times of the aKS solution, using a subspace discriminant
ensemble with a subspace dimension of half of the vector length and 200 learners. Also shown are the
classification rates if we consider properly classified surfaces as ±1 parameter class. Classification of
times t = 15 and 20 result in accuracies similar to t =10.

PIs
t=3

correct class
t=3

±1 class
t=5

correct class
t=5

±1 class
t=10

correct class
t=10

±1 class

H0 60.7 % 100% 92.0% 100% 89.3 % 100%
H1 68.0 % 97.3 % 84.7% 100% 78.0% 100%

H0 and H1 82.0% 100.0 % 87.3% 100% 82.7% 100%

To classify persistence images, we use a subspace discriminant ensemble [57]. The under-

lying assumption here is that different classes of data are generated by different Gaussian dis-

tributions by estimating a covariance matrix for the data. The parameters of the Gaussians are

estimated for each class. To predict the class of new data, the misclassification cost is mini-

mized. This process is performed repeatedly over random subspaces. The standard subspace

dimension is half the dimension of the total space, so in this case, 50 when a single time step and

single homological dimension are present. 200 iterations (or learners) is more than sufficient

for the classification accuracy to level off. This model was trained with 5-fold cross validation.

We achieve good classification results, especially early in the evolution of the surface. Concate-

nating H0 and H1 persistence images leverages information in both homological dimensions

and leads to a gain in classification accuracy in this case. The high classification accuracy indi-

cates that there are more subtle structural differences influenced by the anisotropy parameter.

Misclassification occurred nearly exclusively between adjacent classes, as shown in the “±1

class” column of Table 3.2. This was the case for various times, resolutions and for classifiers us-

ing H0, H1 and the concatenated data. This is consistent with the results of Dlotko and Wanner,

who applied a similar process to simulations of Cahn-Hilliard equation [28]. In their experi-

ment, they created averaged persistent landscapes for each parameter and each time step. Be-

cause the mean of persistence landscapes is unique [9] they used the mean as a representation

of each parameter.
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Table 3.3: Fixing a resolution of 20×20 and varying the variance of the Guassian distributions, we see
that classification accuracies are similar for a wide range of variances.

σ
Accuracy

H0

Accuracy
H1

Accuracy
H0 and H1

0.0001 92.0 % 87.3 % 88.7 %
0.001 92.7 % 86.0 % 90.0 %
0.01 92.0 % 84.7 % 87.3 %
0.1 92.7 % 85.3 % 84.7 %

Table 3.4: Fixing the variance of the Guassian at σ= 0.01 and varying the resolution, we see that a range
of resolutions result in similar classification accuracies.

resolution
Accuracy

H0

Accuracy
H1

Accuracy
H0 and H1

5 92.7 % 84.0 % 81.3 %
10 96.0 % 87.3 % 95.3 %
15 92.0 % 88.0 % 90.0 %
20 92.0 % 84.7 % 87.3 %
25 86.0 % 82.7 % 93.3 %

3.5 Application to Patterns Produced by Ion Bombardment

Shenoy, Chan and Chason studied the coupling between the surface topography and com-

position that arises during ion bombardment of a binary compound [104]. Bradley and Ship-

man (BS) extended this theory to include the effect of mass redistribution and the leading order

nonlinear terms [6, 7, 105]. The BS equations govern the behavior of u(x, y, t ) and φ(x, y, t ), the

deviations of the surface height and surface concentration from their unperturbed, steady-state

values. Following Bradley-Shipman, we have

∂u

∂t
=φ−∇2u −∇2∇2u +λ(∇u)2

and

∂φ

∂t
=−aφ+b∇2u + c∇2φ+νφ2 +ηφ3

for normal-incidence bombardment. Explicit expressions that relate the dimensionless con-

stants a, b, c, λ, ν and η to the underlying physical parameters may be found in Shipman et
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al. [105]. We study solutions to the BS equations for various parameter values with classifica-

tion based on parameters in mind. We will also use persistence as a summary of the topological

structure to investigate the influence of nonlinear parameters on pattern formation and defects.

For some data sets, for example, the solutions to the aKS equations, a sublevel set filtration

is a natural choice for computing persistence. Here, since the solutions we are considering dis-

play near hexagonal arrays of nanodots, it is natural to consider the Vietoris-Rips filtration of

the xy-coordinates of the peak location of the nanodots. As we have seen in Chapter 5, this will

give a measure of how close to perfectly hexagonal the arrangement of nanodots is. However,

we notice that for some parameter values, long wave lengths influence the pattern. There are

regions where the peaks of the nanodots are higher and areas where they are lower. This phe-

nomena, shown in Figure 3.6 is important as the influence of these long wave lengths on pattern

formation and defect annihilation is not well understood. For this reason, we will also compute

persistence using the Rips filtration on the 3D coordinates of maxima and minima. Lastly, we

include persistence generated with a discrete Morse filtration on the surface height as well.

Soft modes, or Goldstone modes are low-frequency modes effecting the long-range order

of a pattern [87]. A mode with a “soft” dispersion relation so that ω(k) → as k → 0 is a Gold-

stone mode, or soft mode [70]. Spontaneous symmetry breaking with continuous order pa-

rameter degeneracy gives rise to these soft modes [70, 103]. The presence of soft modes reflect

the absence of restoring forces for uniform displacements [19]. Their connection with defect

formation is not well understood, it is believed that soft modes play a role in particularly in

the resolution or lack of defects in ion bombarded systems [81]. Studying various parameter

choices is a step in better understanding these effects.

In this investigation, we generate numerical approximations of the solutions with a Fourier

spectral method with periodic boundary conditions and a fourth-order exponential time differ-

encing Runge-Kutta method for the time stepping as the numerical technique [16, 17]. For all

simulations of Eqs. (5.4) and (5.4), the initial conditions are low-amplitude white noise.
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Figure 3.6: Plotted is the height function u(x, y, ·) which is a solution to the BS equation,. The peak
locations are marked with black dots. Here we can see the influence of long unstable wavelengths in the
variation of the heights of these peaks.

Next, we generate persistence images from the resulting PDs. It should be noted here that

when persistence images are generated, the longest bar in each homological dimension is cho-

sen to be a parameter in the weighting function. This gives the longest bar a weight of one and

scaling for shorter bars depending on the choice of weighting function. Further, the dimensions

of the PI depend on the PDs over the entire data set. This approach is reasonable when the goal

is classification of many examples in a set of data. When generating a PI from the PD com-

puted from real data to compare to simulations, care should be taken in deciding appropriate

parameters for the persistence image that are consistent with the classification model.

3.5.1 Varying Several Parameters

There are a number of parameters in the BS model that influence pattern type, characteris-

tics and defects. We choose two values for λ and ν and three choices of b for the first classifica-

tion task to demonstrate how topological characteristics may be used to distinguish parameter

sets. The following two experiments will vary a linear and a nonlinear parameter (respectively)

with a smaller increment between parameter choices.

First, we choose two different values of λ and ν which govern the formation of nanoholes or

nanodots.There are 30 examples for each set of parameters, on a 256×256 spatial grid with ap-

proximately 40 time steps. We chose the parameters a=0.25 and c=1. bc = (a+c)2

c = 1.252 = 1.5625

defines a critical bifurcation. We let b = 0.9bc ,0.95bc and 0.99bc . Table 3.5 lists the parameters
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Figure 3.7: Examples of surfaces for the first parameter set at an early time (t=5) and a later time (t=40),
after the hexagonal pattern has clearly emerged. One can see the emergence of nanoholes in the first
three examples and nanodots in the second three examples. Both exhibit a nearly hexagonal lattice, rife
with defects.

Table 3.5: Parameters for the first data set, we use N to distinguish classes.

N b λ ν

1 0.9 bc -0.5 2
2 0.95 bc -0.5 2
3 0.99 bc -0.5 2
4 0.9 bc 0 1
5 0.95 bc 0 1
6 0.99 bc 0 1

for each class. λ < 0 produces nanoholes rather than nanodots since ν = 2 is not enough to

overcome the negativeness of λ. This is seen in Figure 3.7.

We compute PH in three ways (with a 2D VR filtration on maxima locations, a 3D VR filtra-

tion on maxima and minima and a discrete Morse filtration on surface height). From the result-

ing persistence diagrams, persistence images are created, which will be used as feature vector

for classification. All persistence images are generated with a bump function as the weighting

function, starting with a minimum bar length of 0, up to a maximum of the longest bar over

the entire data set for each homological dimension. The variance is fixed at σ = 0.001 and the

resolution is chosen to be 20×20.
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Table 3.6: Classification accuracies for ion data set 1. Accuracies are reported for both the subspace
discriminant ensemble and the bagged trees method for all three choices of filtrations. The final thee
columns give the percentage of examples classified in the correct class, or in one adjacent class.

Subspace Discriminant Ensemble
Correct Class Correct Class ±1

H0 H1 H0 H1 H0 H1 H0&H1

t=5, Morse 85.2 % 84.6 % 83.3 % 85.2 % 84.6 % 83.3 %
t=40, Morse 91.4 % 96.3 % 97.5 % 97.5 % 98.1 % 99.3 %
t=40, 3D VR 95.7 % 97.5 % 98.8 % 100 % 100 % 100 %
t=40, 2D VR 95.1 % 98.1 % 98.8 % 100 % 100 % 100 %

Bagged Trees
Correct Class Correct Class ±1

H0 H1 H0 H1 H0 H1 H0&H1

t=5, Morse 84.0 % 90.7 % 88.9% 84.0 % 90.7 % 88.9 %
t=40, Morse 91.4 % 99.4 % 100 % 100 % 100 % 100 %
t=40, 3D VR 92.0 % 96.9 % 97.5 % 100 % 100 % 100 %
t=40, 2D VR 93.2 % 96.3 % 96.3 % 100 % 100 % 100 %

We will start by classifying at a single time step after the pattern has been allowed to emerge

and develop. We use two classification algorithms, the subspace discriminant ensemble (as was

used in Section 3.4) and the bagged trees ensemble.4 For the subspace discriminant ensemble,

we use a subspace dimension of 100 for H0 and H1PIs and 200 for the concatenated vectors. The

number of learners is the number of times the classification on a random subspace is repeated.

We are not concerned with optimizing the number of learners, so we choose 100 learners for

each ensemble since this seems to be well past the threshold where each additional learner

has a large effect on the overall classification. Even with this many learners, classification is

complete in less than a minute. We employ 5-fold cross validation in our model.

The results of the classification are summarized in Table 3.6. In this case, PIs generated

from all filtrations performed very well. Using concatenated H0 and H1 PIs increases the clas-

sification accuracy. There are small differences between the two different machine learning

algorithms and between the different filtrations, however, the difference is small. Interestingly,

4The method of bagged trees, is a Bootstrap Aggregation method, a subspace of interest is chosen at random.
On each subspace, a decision tree classifier is built and “votes” on the appropriate class for each example. Final
classification is decided by totaling the “votes” for each example. [67]
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the 2D VR filtration performs slightly better that the 3D VR filtration, indicating that in this case

there is not additional information useful for differentiating classes that is contained in the lo-

cation of the valleys, nor in the 3D location of the peaks. In general, this does not rule out the

possibility that useful discriminating information is contained in the heights of the maxima,

rather than solely in their planar location. In the next two experiments, we retain the three

types of filtrations.

We also report the percentage of examples classified in the correct class, or in one adjacent

class. For example, a surface whose actual class is N = 5 but is classified as N = 6 is counted

in this column. No examples the first three classes were misclassified as a member of any of

the second three classes or vice versa, indicating that there is a clear separation between the

samples exhibiting nanodots and nanoholes. This is unsurprising given the obvious differences

between the two. This difference is reflected in the persistence diagrams as well. (See Figures

3.8-3.10.) The H1points of the VR filtrations are much more tightly clustered for N = 4−6, which

indicates the regularity of the peak structures (nanodots). For classes 1-3, H1 bars seem to have

a larger variance in birth scale and a smaller variance in the death scale. This is capturing the

fact that most nanoholes at these parameter values are approximately the same size.

To begin to understand the features that are aiding in classification, we first consider the

average variance of the surface as well as the number of bars in the 2D VR PDs. The number

of H0 bars is equivalent to the number of nanodot in the pattern. This is reported in Table 3.7.

While there are notable differences between the first three classes and last three classes, the

number of bars and the variance are not enough to be solely responsible for high classification

accuracy. In fact, class 5 and 6 have the same average variance and the average number of bars

are close to each other. This indicates that PH is detecting more subtle geometric properties of

the pattern.

Good classification accuracies in this experiment, coupled with the fact that misclassifica-

tion occurred in adjacent classes indicates that the topological structure summarized in a PD is

useful for distinguishing the underlying parameters which drive pattern formation. We proceed
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Table 3.7: For the time step t=40, we compute the average number of H0 and H1 bars in the 2D Vietoris-
Rips PD over all examples as well as the average surface variance. Similar variance for N = 1− 3 and
N = 4−6 indicates that the classifier is picking up on more properties than solely a differnece in variance.
Similarly, differences in the numbers of H1 bars alone (which for the 2D VR filtration corresponds to the
number of nanodots) is not enough to account for good classification. This indicates PH is picking up
on more subtle geometric differences in the pattern.

N # H0 bars # H1bars variance
1 417.2 200.8 2.24×10−5

2 440.1 196.7 8.87×10−6

3 369.2 164.3 3.52×10−6

4 261.1 126.6 3.00×10−3

5 252.0 124.3 6.18×10−4

6 246.4 120.3 6.18×10−4

b=0.95bc b=0.99bcb=0.90bc

b=0.95bc b=0.99bcb=0.90bc

Figure 3.8: Example of PDs for set 1 generated from a Rips filtration on the 2D point cloud of maxima
locations only, taken at the last time step in the simulation, t=40
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b=0.95bc b=0.99bcb=0.90bc

b=0.95bc b=0.99bcb=0.90bc

Figure 3.9: Example of PDs for set 1, generated from a Rips filtration on the 3D point cloud of maxima
and minima, taken at the last time step in the simulation, t=40

by varying a single parameter while holding all others fixed. In Section 3.5.2 we vary a linear pa-

rameter and in Section 3.5.3 we vary a nonlinear parameter. We will classify at several times

along the evolution of the pattern. In the last section, we consider one method of including

temporal evolution information in the classification.
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b=0.95bc b=0.99bcb=0.90bc

b=0.95bc b=0.99bcb=0.90bc

Figure 3.10: Example of PDs for set 1, using a Morse sublevel set filtration, taken at the last time step
in the simulation, t=40. One can clearly see the difference between the examples shown on the top row,
where λ is negative and the surface develops nanoholes, indicated by the loner barlengths for H0. The
nanodots are most clearly indicated by the characteristic barlength present in the H1diagram.

3.5.2 Varying a Linear Parameter

First, we vary the linear parameter b with a small incrementation and will try to classify the

resulting PIs by class. This amounts to identifying the parameter b. Fix λ = 0 and ν = 1, which

is in the parameter regime where we expect near hexagonal nanodots. b is varied from 0.9bc to

0.99bc incremented by 0.1. The linearly selected wave length does not depend on b, and there-

fore, we expect that the average inter dot distance to be the same across all examples. (This

means that a difference in the number of H1bars is not the primary feature contributing to clas-

sification.) We expect more defects to be present for lower values of b. Visually, the difference

between the chosen values of b are small and difficult to distinguish, which makes this an inter-

esting machine learning task! Figure 3.11, show an example of each parameter value at several

points in time in the pattern evolution.
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Figure 3.11: Examples of the solutions to the BS equations for values of b, approaching the critical value
bc . Shown are three moments in time; t=5, 10, 15, 25, and 40. Note that for higher values of b, the pattern
takes longer to set in.

68



We use the same PI parameters and the machine learning algorithms as in the previous

experiment. All persistence images are generated with a bump function as the weighting func-

tion, starting with a minimum bar length of 0, up to a maximum of the longest bar over the

entire data set for each homological dimension. The variance is fixed at σ= 0.001 and the res-

olution is chosen to be 20×20. A subspace discriminant ensemble and bagged trees ensemble,

with 100 learners and 5-fold cross validation are used to classify the PI vectors.

Preliminary classification results are shown in Table 3.8. The VR filtration on two and three

dimensional points perform very poorly, though there is a preference towards the correct class.

The percentage of points classified in the correct class ± 1 is much higher. However, classifica-

tion is still not very good when compared to the classification accuracies achieved by the Morse

filtration. We will continue our investigation with the Morse filtration.

Again, we normalize the surface to have a mean height of 0 and a variance of 1 and perform

classification. The data is mean centered already (in all experiments), so this is a way to remove

any discriminating information that variance may have. The results are reported in Table 3.9.

Classification accuracies are two to three times higher than if examples were assigned a class

randomly. Further, there is preference towards the correct class, though the model may miss

by a class or two. This indicates that there is some topological structure that plays a role in

classification, however the variance of the surface overall does play a role in aiding classification

here.

Next we consider several different moments in the evolution of the pattern. Notice in Fig-

ure 3.11, at t = 5 the pattern is just starting to emerge. By t = 25 a nearly hexagonal array of

nanodots has emerged but is rife with defects. By a later time t = 40, the pattern has resolved to

varying degrees, however, there are still many defects. Classifying at each of these moments, us-

ing the Morse filtration only, we achieve reasonable accuracy, especially if adjacent classes are

included. The results are reported in Table 3.10. We notice that for early time, H0 is instrumen-

tal in achieving good classification, however at later times, its utility had dropped significantly.

This is due to the fact that H0 picks up the average inter dot spacing. Since this is governed by
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Table 3.8: Summary of classification accuracies as b varies. We consider a single moment in time, t=25.
In this instance, since most examples exhibit a high degree of hexagonal order, 2D and 3D VR filtrations
do not serve as a good classifiers.

Subspace Discriminant Ensemble
Correct Class Correct Class ±

H0 H1 H0&H1 H0 H1 H0&H1

2D VR 20.0 % 10.3 % 14.3 % 59.7 % 44.7 % 58.7 %
3D VR 16.3 % 9.7% 12.0 % 58.0% 42.0 % 63.3 %
Morse 33.7 % 86.7 % 73.0% 84.0 % 94.7 % 85.0 %

Bagged Trees
Correct Class Correct Class ±1

H0 H1 H0&H1 H0 H1 H0&H1

2D VR 16.3 % 16.0 % 14.3 % 62.7 % 54.7 % 55.7 %
3D VR 14.3 % 13.0 % 16.3 % 63.3 % 49.0 % 57.7 %
Morse 22.0 % 67.3 % 66.7 % 34.7 % 99.0 % 99.0 %

Table 3.9: Classification is performed on surfaces that are normalized to have a mean of 0 and a vari-
ance of 1. This is done for time t=25. Classification accuracy drops significantly on surfaces that are
normalized, however is still better than randomly assigning classes.

subspace discriminant ensemble bagged trees
H0 H1 H0 H1 H0 H1 H0 H1

3D VR 14.0% 13.0 % 18.3% 10.0% 15.0% 13.3%
Morse 24.7 % 17.3 % 20.3% 20.0% 20.7 % 23.3%
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Table 3.10: We perform classification for an earlier time and a later time using PIs generated from the
Morse filtration.

Subspace Discriminant Ensemble
Correct Class Correct Class ±

H0 H1 H0&H1 H0 H1 H0&H1

t=5 63.0% 69.0% 71.0% 88.3% 90.0% 89.3%
t=25 33.7 % 86.7 % 73.0% 84.0% 94.7% 85.0%
t=40 31.3 % 86.0% 76.7% 76.7 % 96.0% 97.3%

Bagged Trees
Correct Class Correct Class ±1

H0 H1 H0&H1 H0 H1 H0&H1

t=5 71.7% 74.7% 76.7% 96.3 % 93.0% 94.3%
t=25 22.0% 67.3 % 66.7% 34.6 % 99.0% 99.0%
t=40 26.0 % 71.7 % 67.3 % 68.7 % 99.0 % 98.0%

the linearly selected wavelength, which does not depend on b, we would not expect there to be

big differences between the classes in this regard. The H0 signal that is aiding in classification

is picking up on the defects in the surface. Examples of the associated persistence diagrams are

shown in Figure 3.12.

Classification using PIs generated from a Morse function classify an example in the correct

class well. If we consider all points that are assigned the correct value of b ±0.01bc , we achieve

nearly perfect accuracy. This is remarkable since for this range of b, the BS equations are not

very sensitive to b. We turn our attention now to varying a nonlinear parameter.
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Figure 3.12: Examples of PDs generated using the Morse filtration for times t=5, 25 and 40. It is easy to
see that the spread of the persistence points for lower values of b contributes to a higher classification
accuracy at early times. As the hexagonal pattern forms and emerges, differences become more subtle.
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3.5.3 Varying a Nonlinear Parameter

We repeat similar classifications on data varying ν, letting ν= 0.5 to 1.7, incremented by 0.1.

Similar to our previous experiment, we choose a = 0.25, c = 1, b = 0.95∗bc and λ= 0 which pro-

duces near hexagonal arrays of nanodots, with defects. Varying ν will have a greater influence

on defects through effecting the soft mode. We generate 30 examples for each choice of ν, each

one of which has 200 time steps. This provides time to observe initial pattern formation and

for the annihilation or continuation of defects. We observe that for some examples defects, like

ripples, remain through the entire duration of the simulation. For other examples in the same

parameter class, the pattern resolves to a nearly perfect hexagonal lattice. The variation of the

pattern in a single class will make this task more challenging.

Again we use two methods of classification, a subspace discriminant ensemble and the

bagged trees ensemble on PIs generated with a bump function as the weighting function, σ =
0.0001 and a resolution of 20×20. The classification accuracies are reported in Table 3.11. In

this case, we notice significantly better classification when using the Morse filtration. Misclas-

sifications occurred primarily as an example being classified in an adjacent class, that is the ν

value assigned by the model was ±0.1.

We investigate simple geometric properties such as the variance of the surface to decide if

PIs are capturing more subtle topological information. The average variance across all exam-

ples for each parameter at time 25 is shown in Table 3.12. Variance increases as ν increases and

could be playing a significant role in the classification.

To decide how much influence variance is having on the classification, we normalize each

solution to have a mean of 0 and variance 1 before computing PDs. We classify the resulting PIs.

This is reported in Table 3.13. Remarkably, the classification accuracy for the PIs generated with

the Morse filtration increased. This indicates that there is more subtle topological information

contained in the pattern that is captured by persistence and enables good classification.

When classifying on the normalized surface using the 3D VR filtration, classification ac-

curacy is much better for ν ≥ 1.2, classifying nearly all examples in the correct class ±2. For
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Figure 3.13: Examples at moments in time as ν is varied. After a long time, for some parameter values,
the pattern has resolved and for others, long wave defects have become pervasive.
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Table 3.11: Summary of classification accuracies as the nonlinear parameter ν is varied. In this experi-
ments, Morse PIs still perfome better, however the difference is not as clearly pronounced.

Subspace Discriminant Ensemble
Correct Class Correct Class ±

H0 H1 H0&H1 H0 H1 H0&H1

t=25, Morse 52.7 % 74.6 % 71.3 % 87.1 % 99.2 % 96.1%
t=25, 3D VR 40.0 % 30.8 % 32.8 % 67.4 % 76.9 % 74.6 %
t=25, 2D VR 38.2 % 33.6 % 37.9 % 87.9 % 72.0 % 78.7 %

Bagged Trees
Correct Class Correct Class ±1

H0 H1 H0&H1 H0 H1 H0&H1

t=25, Morse 64.9 % 70.8 % 74.4 % 91.8 % 98.2 % 97.9 %
t=25, 3D VR 37.7% 34.6 % 35.1 % 69.0 % 69.0 % 74.6 %
t=25, 2D VR 35.6 % 37.7 % 36.4 % 61.1 % 70.0 % 70.0 %
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Figure 3.14: Examples of PDs for t=25 computed using the Morse filtration as ν is varied. Notice the tight
clustering of persistence points for ν ∈ [0.6,0.9]. Longer H0 and H1bars emerge for higher values of ν due
to the large defects.
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Figure 3.15: Examples of PDs computed using the 3D VR filtration on point cloud of maxima and minima
as ν is varied, t=25. The effects of the defects are particularly striking for higher values of ν, indicated by
long H0 and H1bars. Classification is more accurate for ν ≥ 1.2, however for smaller values of ν, this
filtration loses some discriminating information. In fact, classification is poor for ν< 1.2.

Figure 3.16: Examples of persistence diagrams computed using the 2D Rips filtration on xy-maxima
locations, t=25.
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Table 3.12: Computed are the average variances across all trial at t=25. As ν is increased, the average
variance increases.

ν avg # peaks avg variance
0.5 148.3 9.0×10−4

0.6 148.0 1.04×10−4

0.7 146.9 7.95×10−5

0.8 146.4 8.64×10−5

0.9 146.2 1.40×10−4

1.0 146.6 4.08×10−4

1.1 147.1 1.7×10−3

1.2 146.3 8.34×10−3

1.3 137.8 3.08×10−2

1.4 122.3 6.1×10−2

1.5 109.2 6.95×10−2

1.6 97.2 6.94×10−2

1.7 85.0 8.58×10−2

ν< 1.2, classification accuracy is poor and there is less preference towards the correct class. In

this regime, larger low regions without any nanodots have emerged, which would show up as

longer H1bars. These defects create a higher variance of the surface overall, so when the surface

is normalized, the height of an average nanodot is scaled differently that for lower values of ν

for example.

Table 3.13: Classification accuracies of normalized data.

Subspace Discriminant Ensemble
Correct Class Correct Class ±1

H0 H1 H0&H1 H0 H1 H0&H1

Morse 67.9 % 76.7 % 74.9% 93.3 % 98.2 % 99.2 %
3D VR 54.9 % 53.8 % 55.1% 80.5 % 89.0 % 90.0 %

Bagged Trees
Correct Class Correct Class ±1

H0 H1 H0&H1 H0 H1 H0&H1

Morse 69.7% 68.7% 72.8% 95.1 % 96.4 % 98.9 %
3D VR 56.2% 53.6% 57.9% 83.7 % 75.1% 88.7%

So far we have considered only a single time step, but these patterns evolve dynamically.

We will investigate whether incorporating several time steps into a classifier can increase clas-
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sification. First, we discuss scaling options. The height of an individual pixel is the longest

barlength (for each homological dimension over the entire data set of interest), divided by the

chosen resolution of the image. The width of a pixel is the largest birth time (for each homologi-

cal dimension, over the entire data set), divided by the resolution of the image. This means that

often a pixel represents a rectangular region of the original persistence diagram, and may have

a different size for different homological dimensions. This is of no real consequence if we use

PIs as feature vectors for machine learning tasks, even if we concatenate vectors representing

different homological dimensions. However, if we wish to sum or average PIs, we must ensure

that each pixel has the same spatial extent in the metric of our original data set.

Along this line of reasoning, we incorporated several time steps in our model with two dif-

ferent methods of scaling. The first, listed as “indep. class scaling” in Table 3.14, was created by

generating the PIs for each time individually. This is equivalent to choosing two sets of PIs (with

the same filtration) for the previous experiments and concatenating for each example, and is

akin to normalizing. In this case, we still take the bump function parameter to be the length of

the longest bar over the entire data set to be weight 1. In general we have noticed that the max-

imum barlength increases as t increases, likely due to larger defects becoming locked in. The

other way that one could scale is listed as “entire set scaling”, which means that the pixel size

is chosen by taking the longest bar and latest birth time (for each homological dimension) over

the entire set of interest, which includes multiple times. We highlight one example in particu-

lar where this affected classification. For times 10,15 and 20, classification was performed on

PIs generated with both types of scaling. Scaling each class individually performed better than

scaling over the entire data set, in particular for H1, which is consistent with the result that in

this case, PIs produced from normalized data classified better.

Including an additional time almost always improved classification accuracy, with the largest

increase occurring when the times are close together. This would seem to indicate that ν influ-

ences the way these lower regions cause by the soft mode either deepen and persist or even-
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tually are invaded with nanodots. The dynamics of this process are more clearly picked up on

over shorter time differences.

In the future, we hope to investigate incorporating the dynamic component of the pattern

into our classification. Cubical complexes are defined in higher dimensions, [117], for example,

defines a fast algorithm for computing higher dimensional cubical complexes. This is a very

natural way to incorporate the temporal component into the filtration. Our initial findings in

this section indicate that the dynamic evolution of the surface to being able to identify driving

parameters. The next step in this project is to compute PDs on 3D data; two spatial dimensions

and a temporal dimension and use the PIs generated in this way to classify on parameters and

further investigate the effects of parameters on the soft mode defects and defect annihilation.
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Table 3.14: Classification results for several different combinations of times, varying ν. PDs are com-
puted with a Morse filtration. The scaling method in each instance is listed. “indep. class scaling” means
that PIs were generated for each time step individually, and then the PIs were concatenated. “entire set
scaling” indicates that PIs were generated for the entire set all at once. Classification of a single time,
t=25 is listed again for comparison.

Subspace Discriminant Ensemble
Correct Class Correct Class ±1

H0 H1 H0&H1 H0 H1 H0&H1

t=25 52.7 % 74.6 % 71.3 % 87.1 % 99.2 % 96.1%
t=25/50

indep. class scaling 58.5% 75.9 % 78.2% 83.6 % 98.9 % 96.9 %
t=10,15,20

indep. class scaling 67.2% 84.4% 73.3% 95.3 % 98.4 % 91.2 % %
t=10,15,20

entire set scaling 48.5% 70.3% 75.4% 77.7 % 90.0 % % 91.3
t=10,11

entire set scaling 66.7% 90.5% 92.1% 91.5 % 98.7 % 97.4 %
t=15,16

entire set scaling 62.8% 90.0% 93.1% 85.6 % 97.4% 97.7 %
t=15,16,17,18

entire set scaling 85.9% 98.2% 96.9% 95.8 % 100 % 99.2 % %
Bagged Trees

Correct Class Correct Class ±1
H0 H1 H0&H1 H0 H1 H0& H1

t=25 64.9 % 70.8 % 74.4 % 91.8 % 98.2 % 97.9 %
t=25/50

indep. class scaling 65.1 % 82.3% 78.5% 90.7 % 100 % 99.4 % %
t=10,15,20

indep. class scaling 66.9 % 85.6% 86.4% 98.4 % 100% 100 % %
t=10,15,20

entire set scaling 42.6% 67.7% 66.9% 67.7 % 89.5 % 87.4 %
t=10,11

entire set scaling 66.3% 87.4% 85.4% 91.2 % 97.7 % 96.6 %
t=15,16

entire set scaling 70.8% 91.8% 87.2% 91.5 % 97.7 % 96.9 %
t=15,16,17,18

entire set scaling 86.2% 96.9% 96.7% 92.8 % 99.7 % 98.4 %
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Chapter 4

Characterization of Surface Properties

4.1 Introduction

In this chapter we discuss several applications of PH to characterizing geometric properties

of surfaces. The first characterizes surface roughness of melting snow fields in mountainous

terrain. Persistence is able to capture the small scale features of the snow as well as the large

scale features of the terrain. We discuss a persistence-based method of investigating the rough-

ness of snow field from collected data. The second section develops a PH based statistic for

comparing peaks and valleys in a laboratory experiment in which irradiated surfaces exhibit a

pyramid-dominated pattern or an anti-pyramid dominated pattern, depending on system pa-

rameters.

4.2 Snow Roughness

In this section, we use persistence to gauge multiscale surface roughness, specifically the

roughness of snowfields as they melt. The snowpack surface is spatio-temporally complex. The

geometry of the surface can undergo dramatic changes at various length scales due to snow ac-

Figure 4.1: Plot of the entire snow surface and the associated PDs. Topographical features, like mountain
peaks, appear as long bars in the PD. Smaller scale rough features appear as smaller bars.
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cumulation, terrain features and wind. Deems et al. show that snow depth has a fractal distribu-

tion over a wide range of length scales [25]. Ablation hollows, or “suncups” form on the surface

of snowfields in the summer and effect the albedo of the snow surface [112]. Albedo, which can

be loosely described as the “whiteness” of the snow, is the ratio of radiation that is reflected from

a surface to the incident radiation. Tiedje et al. model suncups with a a Kuramoto-Sivashinsky

like equation [112]. The result is a pattern that is a constantly evolving, chaotic pattern with a

fixed amplitude. As the surface changes, albedo, wind resistance, energy exchange and melt-

water production are all affected [55].

Snowpack is at the interface of between the Earth and the atmosphere and influences the

movement of air [37]. Surface roughness influences energy exchange, heat transfer and melt-

ing [55]. Characteristics of the snowpack surface are important input variables in models so

accurate estimates of these parameters are needed. There are a variety of roughness measures,

autocorrelation, random roughness, fractal dimension, geometric roughness length, curvature,

and power spectral density that are all used to characterize snow surface roughness. A compar-

ison is provided in [37].

We introduce two different methods of creating a persistence-based roughness metric. It is

common to use one-dimensional cross sections in analyzing structure formation in snowfields

[80] because wind direction causes anisotropy. In this spirit, we start with one-dimensional

sublevel set persistence. We treat each row or column of the data matrix as a 1D function, and

use a sublevel set filtration to sweep across, either row-by-row or column-by-column. Because

there is the potential for large spatial variations in roughness we can localize this measure we

employ a sliding window technique. Take a w-row wide window, and slide it along a column

and perform level set persistence. At the center of each window, the sum of the bars gives a

local directional roughness score. Likewise, along rows, slide a window that is w-columns wide.

w should be large enough to capture features of interest, but small enough to still give a local

measure. This technique is applied to airborne light detection and ranging (LIDAR) estimates

of the surface elevation of the snowpack of a snowfield in Niwot, CO. Small-scale features con-
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tributing to surface roughness are captured in the bar lengths of the persistence diagrams while

large variations in the underlying terrain affects the birth time of features. If we use bar length

as a metric, then this disregards the terrain and focuses in on surface roughness.

There are some metrics for roughness that do not incorporate a directional component. For

a persistence version of such a measure we use a two-dimensional cubical complex to compute

persistence, again on subdomain or patch that will move to every spatial location possible in

increments of a specified shift. The results of such a measure are shown in Fig. 4.3 for a larger

patch size of 100×100 and in Fig. 4.5 for a small patch size of 20×20. The second figure demon-

strate a few other methods, besides the bar sum to summarize the information contained in the

persistence diagrams for each patch.

A similar idea is used in 2D as well, sliding a smaller patch around the whole surface, and

associating the barsum to the pixel at the center of the patch as a roughness measure. Window

size is chosen so that a number of local peaks (which contribute to small scale roughness), but

is small enough that it is not measuring large terrain-related peaks. Using this method, we can

detect regions that are more rough due to surface morphologies. Future steps for this project

involve a comparison between this method and other common methods.
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Figure 4.2: Dividing the domain into disjoint patches that are 100× 100 m, one can compute a local-
ized measure of roughness using the bar sum. At this scale, the larger topographical features do not
contribute. Below a histogram of bar sums is shown for each homological dimension and for the combi-
nation.

Figure 4.3: Lidar data of the entire region is shown as a contour plot in upper left. PH was computed
using a 2D sublevel set filtration on patches of size 100×100, with a shift of 5. For reference, the entire
dataset is on a 1000×1000 spatial grid. The second row shows an example of a single patch with a high
score, the indexing (matching the heat map of the bar lengths) is i = 10, j = 26, this corresponds to a
patch at a similar location in the contour plot. H0 and H1 persistence diagrams are plotted as well.
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Figure 4.4: 1D sliding windows shown for window sizes w = 20 and w = 50. Row and column bar sums
for each window are plotted at the spatial center of the window.

Figure 4.5: Several different methods of summarizing the persistence diagram for a patch size of 20×20
and a shift of one.
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4.3 Pyramidal Surface Structures

Semiconductor surfaces become amorphous when subjected to ion bombardment, which

can lead to periodic ripple patterns or hexagonally arranged nanodots. This is due to an inter-

play of preferential sputtering yield, momentum transfer and atomic currents on the surface

[6]. The resulting model is an anisotropic Kuramoto-Sivashinsky-type equation, the Bradley-

Shipman equations [6]. Ou et al. observed the novel formation of regular patterns of crystalline

structures when elemental Ge(100) is irradiated at normal incidence and at elevated tempera-

tures (above the recrystallization temperature) [89]. The result is highly-ordered arrays of four-

sided inverted pyramids. They suggest that this is due to a reverse epitaxial growth mechanism.

Hashmi et al. [53] extend the theory for the formation of these nanopyramids with fourfold ro-

tational symmetry, formed on crystalline binary materials. An Ehrlich-Schwoebel (ES) barrier,

which creates uphill atomic currents on the surface of the crystal, is essential for the formation

of this pattern. The temporal evolution of the surface height is given in [89] by

∂u

∂t
=−∇2u +κ∇2∇2u −σ∇2(∇2u)2 +δ(∂xu3

x +∂y u3
y ) (4.1)

The second term, σ∇2(∇2u)2 is called the “conserved Kadar-Parisi-Zhang” term is a non-

linear current and is known to break up-down symmetry [89]. For σ=0, the the solution is in-

variant under the transformation u → −u, and so we should not expect pyramids or inverted

pyramids to dominate. The solutions coarsen with time, that is, the total number of pyramids

will decrease in time. Ou et al. has claimed that for negative values of σ, the surface is domi-

nated by “pits” or inverted pyramids and for positive values of σ, the surface is dominated by

“mounds” [89]. This claim was made by inspection of the surface. We seek to quantify the differ-

ence in structure, with the aim of applying this statistic to laboratory experiments of irradiated

Germanium.

We numerically simulate the solutions to equation 4.1, varying σ while holding all other

parameters constant. We use a Fourier spectral method with periodic boundary conditions on

a 256×256 spatial grid, with a fourth-order exponential time differencing Runge-Kutta method
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Figure 4.6: Plots of surface u(x, y, ·) resulting from numerical simulations of equation 4.1. Each column
corresponds to a parameter value, each row corresponds to a time step. We show a sampling of parameter
values, our entire data set consists of 11 classes, for σ=−5,−4, ..,4,5.
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for the time stepping [16, 17]. Each trial is computed from low-amplitude white noise initial

conditions. We compute 30 trials at each parameter. Following the parameters given in [89],

which qualitatively align with experimental data, we let δ= 25 and κ= 4. σ is varied from -5 to

5 by 1.

Figure 4.7: Plots of the surfaces u(x, y, ·) that demonstrate the inverted pyramidal and pyramidal struc-
ture that forms when Ge is irradiated at elevated temperatures. Two perspectives are plotted to visually
highlight the difference between well-formed pyramids and well-formed inverted pyramids. The first
column is σ = −5 and the second column is σ = 5. The top row shows u(x, y, ·) and the bottom row
shows -u(x, y, ·). One can see that in this example, σ = 5 and the inverted pyramidal structure is more
prominent and for σ=−5 the pyramid structure is more prominent. We will quantify this difference.

We use cubical complexes to compute persistent homology of sublevel sets. Using a sublevel

set filtration, for lower thresholds, the valleys will appear as individual connected components

that merge as the threshold rises. For higher thresholds, the pyramids will appear as holes in
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the sublevel set. Therefore, roughly speaking, the H0 bars roughly correspond to the inverted

pyramids and H1 bars roughly corresponds to pyramids. The total length of the H0 bars then

gives a coarse notion of the prominence of inverted pyramids.

By duality, we note that there is a correspondence between the H0bars of a superlevel set

filtration and the H1bars of a sublevel set filtration [13]. However, in building the cubical com-

plex, we use an open topology for the cubical complex of the sublevel set and a closed topology

for the cubical complex of the superlevel set [34]. This means that the H0bars corresponding

to valleys are computed in a different way than the H1bars corresponding to the (in fact in

this formulation we consider 8-neighbor connectivity for computing the H1features, so “holes”

that correspond to peaks will result in a longer bar than the bar in H0corresponding to the same

feature of the inverted surface. This means that using the mean bar length for H0and H1will

always skew a little bit positive. For a fair comparison on the extent of the peaks and valleys, we

consider H0of the sublevel set filtration of the surface u(x, y, ·) (which will give an indication of

the extent of the valleys) and H0of the sublevel set filtration of the inverted surface, −u(x, y, ·).

We compare and normalize in the following way:

P = mean( H0(−u))-mean( H0(u))

mean( H0(−u))+mean( H0(u))

where mean( H0(u)) is the mean H0bar length of the persistence diagram computed on u. A

positive P indicates there are more prominent peaks, a negative number indicates that there are

more prominent valleys. We compute the pyramid score for each trial at each time step so that

we can track how the pattern evolves over time, plotted in Fig. 4.8. Even as the pattern coarsens,

this statistic remains relatively constant during the evolution of the pattern.

This statistic quantifies visual assessment; pyramids appear for positive values of σ and be-

come more prominent and pronounced as σ increases. Its performance on simulated data in-

dicates not only that quantifies the degree to which the pattern is dominated by pyramids or

inverted pyramids, but also is promising for distinguishing and comparing patterns of labora-

tory experiments.
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Figure 4.8: Mean and variance of the pyramid peak score over all trials, plotted as the system evolves in
time. The earliest time plotted, t=5, is early enough in the pattern evolution that neither clear peaks nor
clear valleys have appeared. See the top row of Figure 4.6.
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Chapter 5

Topological Measure of Order

5.1 Lattice Patterns

Lattice patterns can arise from various natural processes and laboratory experiments, the

most common of which are hexagonal lattices. Some of the most common examples are found

in Raleigh-Bénard convection experiments [45], the Rosenzweig instability in ferrofluids [49],

and nanoscale structures formed by bombarding a binary material by a broad ion beam [5–7,

105]. While these are well-ordered systems, they rarely produce perfect hexagonal lattice pat-

terns. These patterns often contain defects. Penta-hepta pairs, where one point will have 5

nearest-neighbors and one of its neighboring points will have 7 nearest-neighbors, rather than

6, as is the case for a perfect lattice. Grain boundaries which occur where regions of different

lattice orientations come together also cause defects.

The near hexagonal patterns of nanodots produced by ion bombardment form often con-

tain many such defect. Quantifying such defects, and studying their evolution as the pattern

evolves and potentially resolves to a well ordered systems becomes important. There are a

number of methods for quantitatively gauging order. For example, computing the width of the

lowest-order peak in the Fourier transform of the surface can indicate order. A narrow Fourier

peak indicates a highly ordered structure. However, the Fourier peaks may not be separable

from the background or each other. Another common technique is considering how the auto-

correlation function decays with distance. If the decay is exponential for some distance, then

the characteristic length scale of the decay gives an estimate for the range over which order

exists. However, there may not be a region of exponential decay. Böttger et al [5] computed

the characteristic length for a series of imperfectly ordered hexagonal arrays of nanodots and

showed that it remained nearly constant even as the order increased.
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Figure 5.1: Examples of possible defects present in near hexagonal patterns. The gold and blue regions
are nearly perfect hexagonal lattices with different orientations. They meet along a grain boundary,
which is left white. Along the grain boundary, there is a pent-hepta defect in gray. Shaded darker gold is
a defect formed by a displaced lattice point and one formed by a missing lattice point. The dotted gray
lines indicate the Delaunay triangulation and navy the Voronoi cells for this laticce.

A measure of order based on persistence will prove to be a useful tool to complement the

current suite of tools in this context to detect defects and quantify order of nearly perfect and

noisy lattices. This measure was introduced in [91] and developed in [82]. In physics persistence

has been used to study the hierarchical structure in glasses [85], to characterize the structure of

granular media and the force networks in them [3, 64, 65], and to study fluid flow [66].

5.2 Measures of Order

Defects in lattice structures occur in a number of ways. Figure 5.1 has two regions of nearly

perfect hexagonal regions with different lattice orientations, shaded gold and blue. The white

region in between the two highly ordered regions is the grain boundary. There are two defects

shaded darker in the gold region. In the lower left corner, there is a point that is displaced from

a perfect lattice. Above is a single lattice point removed. Shaded in gray along the grain bound-

ary is a penta-hepta defect (there are actually several). A good measure of order should be able

to detect these types of defects. We describe in Section 5.2.1 spectral (that is, using the Fourier

transform), geometric-combinatorial (using the Delaunay triangulation) and topological (using
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Figure 5.2: Left, an example of an ion bombareded binary surface exhibiting hexagonal order with de-
fects. Center, the Fourier transform of the surface. Right, the radial average of the Fourier transforms.
The FWHM measure is marked in orange.

persistent homology) tools for measuring characteristics of sets of points in the plane. In Sec-

tion 5.3, we use each of these tools to define measures for order for nearly hexagonal lattices.

5.2.1 Spectral, Geometric-Combinatorial, and Topological Tools for Describ-

ing Lattice Patterns

The Fourier Width at Half Maximum

Measures of order may be based on the Fourier transform of a pattern. The full-width-at-

half-max (FWHM) of the first Fourier peak is a spectral method computed from the Fourier

transform of the lattice. The spatial domain is discretized and a delta function is centered on

each lattice point. The 2-dimensional Fourier transform is computed and shifted so that the

zero-frequency component is centered. The radial average of the Fourier transform is com-

puted from the center by averaging all pixels that are distance r − ε to r + ε from the center. r

values are chosen by taking the distance to the center of each pixel along the horizontal line

through the center. ε is the distance between two pixels on this axis. FWHM is computed by

finding the width of the first Fourier peak at half of the height of the peak in radially averaged

spectrum. This is done using a linear interpolation between two points when half of the max-

imum value falls is between known values of our radial average. A narrow first Fourier peak

indicates a near perfect lattice.
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Autocorrelation Function

Pichler et al. introduce the use of a local autocorrelation function in [93]. For a discrete set

of 2D data, size N ×M , the discrete 2-dimensional autocorrelation function (ACF) is given by

2D − AC Fdi scr ete ( j , l ) = 1

(N − j )(M − l )

N− j ,M−l∑
i=1,k=1

(ai ,k − ā)(ai+ j ,k+l − ā)

where j and l are shifts, the sum is over all points that overlap under the given shift j and l . The

maximum amplitude is always at the center and is symmetric in antiparallel directions.

For a hexagonal lattice, the 2D-ACF is periodic. The period is the average inter-particle dis-

tance [93]. (For nonperiodic data, the ACF decays following a Gaussian distribution.) For an

imperfect lattice, there is a decay in the peak heights of the ACF. The ACF is fitted to a Gaussian

envelope and the rate of decay is a measure of the “imperfectness” of the lattice structure. The

decay strongly depends on the type of imperfections present. Fitting to a linear combination of

two Gaussians:

AC F f i t (r ) = A∞+ f0 e−
9
2 (r )2 + f e−

1
2 (r /σ)2

where A∞ is the asymptotic peak level. This gives ordering metrics that capture both short

range and long range ordering. These measure are very sensitive to small perturbations in long

range or short range ordering. This method considers line profiles along the main axis of the

2D-ACF. To approach data that displays anisotropy, the peaks in the 2D-ACF are weighted by

1/r (to deal with the fact that peaks farther away from the center are over represented). These

points are plotted against their distance to the center. The data is fit and the average square

residual is computed. This gives a characterization of the anisotropy in the data.

Pourfard et al. [94] generalize the autocorrelation method of Pichler et al. to a global auto-

correlation method. Peaks in the autocorrelation function will appear wherever a texton (build-

ing block of the texture) is repeated. For a perfectly ordered pattern, the peaks will all have the

same size. Less ordered patterns will display a decay in the peak sizes. The slope of the line

between peaks can then be used as a measure of order. A higher slope indicates less order. They
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do note that in order to perform a fair comparison, background noise must be normalized.

This measure is capable of detecting different types of lattice imperfections such as a defect

or regional distortion [93] and enables quantitative comparison of different lattice structure.

However, it is robust to small defects.

Delaunay Triangulation

Given a set P of points in the plane, the plane may be decomposed into a Voronoi tessela-

tion, namely the union of Voronoi polygons Vp for p ∈ P . The Voronoi polygon Vp is the set of

all points in the plane that are closer to p than to any other point in P . That is, Vp = {x ∈ R2 :

|x −p| < |x −q| for all q ∈ P, q 6= p}. The Delaunay triangulation of the set P is a graph (vertices

and edges) formed as the dual to the Voronoi tessellation in the following way: The vertices of

the Delaunay triangulation are the points in P , and there is an edge connecting points p and q

in P if the Voronoi polygons Vp and Vq share a side. The Delaunay triangulation and Voronoi

tesselation are shown in Figure 5.1. For a perfect hexagonal lattice, every lattice point will be

connected to six neighbors (equivalently, the Voronoi polygons are hexagons).

Persistent Homology

We can also use persistent homology to characterize the both the severity of individual de-

fects in nearly hexagonal, planar lattices and a way to quantify the overall degree of order with

a single number. In the context of a lattice, we use a Vietoris-Rips filtration to compute per-

sistence. Fig. 5.3 shows the H0 and H1 persistence diagrams for nearly hexagonal data. Notice

the variance in the lengths of the intervals in the H0 barcode. For a perfect lattice, almost all

connected components collapse into a single connected component at the same connectivity

parameter rc , the nearest-neighbor distance in the hexagonal lattice without defects. However,

the defects result in some components collapsing at values of r less than rc . For a perfect hexag-

onal lattice, points will connect and be filled in with a 2-simplex simultaneously. This means

that there is no H1 signal. Any H1 bars indicate the presence of defects. The more severe the de-
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Figure 5.3: The first panel shows the solution with the peaks indicated with black dots. The third and
fourth panels show two examples of VR complexes in the filtration. Notice that larger defects appear
as holes when the radius is increased passed the average inter-dot distance. The resulting persistence
diagram is shown in panel 5. For a perfect hexagonal lattice, one expects one H0 bar with multiplicity and
no H1 signal. Defects appear in the persistence diagram as deviations from such a persistence diagram.

fect, the larger the bar length. The fourth panel in 5.3 shows a threshold value at which several

defects in the lattice appear as holes.

5.3 Characterizations of Order

Having introduced the Fourier width at half max, Delaunay triangulations, and persistent

homology, we are prepared to define and compare several measures of order in nearly hexag-

onal lattices. We motivate and define these measures through the consideration of Bravais lat-

tices in Section 5.3.1, and then test the measures on perturbations of Bravais lattices in Sec-

tions 5.3.3 and 5.3.4.
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5.3.1 Bravais Lattices

A Bravais lattice in R2 is the integer linear combination L = {z1~ν1 + z2~ν2 : zi ∈ Z} of a basis

{~ν1,~ν2} for R2. In this section, we apply the N3 and PH measures of hexagonal order to Bra-

vais lattices. An ideal measure of hexagonal order should designate only a perfectly hexagonal

Bravais lattice to be perfectly ordered.

Two Bravais latticesL1 andL2 are equivalent for our purposes if there exists an angle-preserving

linear transformation that is a bijection between them. The shaded regions in Fig. 5.4 depict

two representations of the entire set of equivalence classes of Bravais lattices, determined as

follows: Given a Bravais lattice L, choose a shortest vector ~u′ ∈ L; that is,

|~u′| = min~ν∈L|~ν|.

Choose also a vector ~v ′ ∈ L that is a vector of minimal length not in the span of ~u′;

|~v ′| = min~ν∈L−span{~u′}|~ν|.

For any such vector ~v ′, −~v ′ also satisfies the same condition. This allows us to choose ~v ′ so that

|~u′−~v ′| ≤ |~u′+~v ′|, or equivalently so that the angle θ between ~u′ and ~v ′ satisfies 0 < θ ≤ π
2 .

Now let T be the angle-preserving linear transformation of R2 such that T (~u′−~v ′) = (1,0)

and T (~u′) lies in the first quadrant. T is a combination of scaling (by 1/|~u′−~v ′|), rotation, and

reflection. Write ~u = T (~u′) = (x, y), ~v = T (~v ′), and ~w = T (~u′−~v ′) = ~u −~v = (1,0). The choices of

~u′, ~v ′ and T imply that 0 < x, y ; |~u| ≤ |~v | ≤ 1; and |~u−~v | ≤ |~u+~v |. These constraints determine a

region R in R2 in which ~u = (x, y) may lie. R is the region bounded by the following curves:

1. |~u| ≤ 1 implies that x2 + y2 ≤ 1.

2. |~v | ≤ 1 implies that (x −1)2 + y2 ≤ 1.

3. |~u| ≤ |~v | implies that x ≤ 1
2 .

4. |~u −~v | ≤ |~u +~v | (equivalently, 0 ≤~u ·~v) implies that 0 ≤ x2 −x + y2.
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Figure 5.4: Top row: The region R parameterizing the space of inequivalent Bravais lattices in the x, y-
plane (first column) and the L1,L2-plane (third column), where as depicted in the second column, the
side lengths of a fundamental triangle for the Bravais lattice are L1 ≤ L2 ≤ 1. Second row: Each column
is an example of a Bravais lattices and the sequence of simplicial complexes formed for values of the
connectivity parameter r noted on the diagrams. For each sample Bravais lattice, the vector (1,0) is
marked by a solid black arrow, the vector �u that lies in the region R is marked by a dashed colored arrow,
and the vector �v (see text) is marked by a dashed black arrow. These vectors form the fundamental
triangle for the lattice. For each sample lattice, the vector �u and the shape of the fundamental triangle is
marked on the depiction of the region R in the first column of the first row. The H0 and H1 persistence
diagrams for the sample Bravais lattices are shown in the third row.
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The upper left panel of Fig. 5.4 depicts the region R in the (x, y)-plane. The shaded region

is R; a choice of ~u = (x, y) outside of this region determines a lattice that may be transformed

to one in R by an angle-preserving transformation. Colors code for curves on which ~u ·~v = 0

(green), |~u| = |~v | or |~u| = |~w | (red), and |~v | = |~w | (blue).

Examples of Bravais lattices and the triangle∆ formed by the vector triad~u (colored, dotted),

~v (black, dotted), and ~w (black, solid line) are shown in the second row of Fig. 5.4. The triangle∆

is crucial to the computation of the measures of order. Its side lengths are L1 = |~u|, L2 = |~v |, and

|~w | = 1, as depicted in the upper central panel of Fig. 5.4. It is helpful to also visualize the region

R in terms of the side lengths L1 and L2 of ∆, as depicted in the upper right panel of Fig. 5.4.

For each example Bravais lattice in Fig. 5.4, the position of the corresponding fundamental

triangle is marked in the plots of the region R. These examples include a hexagonal lattice

(L1 = L2 = 1; purple), a square lattice (L1 = L2 < 1; red), a lattice for which L1 < L2 = 1 (blue), and

a lattice for which ~u ·~v = 0 and L1 < L2 < 1 (green).

Measures of hexagonal order using the Delaunay triangulation

For a perfect hexagonal lattice, each polygon in the Voronoi tesselation is a hexagon, so

the number of sides of each Voronoi polygon is 6. Equivalently, the degree of each vertex in

the Delaunay triangulation is 6. For the square or rectangular Bravais lattice, the number of

nearest neighbors to any point is 4, and defects in a lattice can alter the degree of vertices in

the Delaunay triangulation, as shown in Fig. 5.5. The N3 measure is computed by taking the

variance of Ni -6, where Ni is the number of nearest neighbor of the i th lattice point. This will

give a N3 score of 0 for a perfect hexagonal lattice. The N3 measure is, however, a very crude

measure of hexagonal order, since the N3 of any lattice that is not rectangular (such as a square

lattice) is 0.

The DT measure of order is a statistic on the lengths of the edges in a Delaunay triangula-

tion. For perfect hexagonal ordering, each triangle in the triangulation is equilateral. Compute

the dominant edge length, Ldom , for a lattice by averaging over all edge lengths appearing in the

triangulation. Assign to each triangle a score: Li ,dev = ∑3
k=1 |Li ,k −Ldom | where Li ,k is the edge
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Figure 5.5: (Left) Voronoi cells of the peaks from ion data. Shaded are two penta-hept defect pairs.
(Right) The Delaunay trinagulation on the same set of peaks. Defects appear as a distortion of equilateral
triangles in the triangulation.

length of the kth edge of the i th triangle. The DT measure is the mean of Li ,dev . For a perfect

hexagonal lattice, the DT measure will be 0. This is a simplification of a measure used in Mátéfi-

Tempfli et al. [73] and has the advantage of being highly computable and effective in discrimi-

nation between examples of varying degrees. However, it is less sensitive for long-range order,

in highly ordered structures [73] and does not take into account orientation of regions [94].

In the Delaunay triangulation, triangles appearing along the edges of the domain can be

highly distorted. To avoid edge effects form such triangles, tile the area surrounding the lattice

with copies of the same lattice, compute the triangulation of the tiled domain and only retain

edges that appear both in the triangulation of the original domain and the tiled domain.

For a Bravais lattice, the DT measure of order is L2
1 +L2

2 −L1L2 −L1 −L2 +1. We show in the

first and third panels of Fig. 5.6 the DT measure of order as a function of Bravais lattice in the

region R. Note that the DT measure is an insensitive measure of hexagonal order for lattices

with L1 = L2 (marked by the red curves in the figures).

The PH Measures of Order:

The first step in using PH to measure order of Bravais lattices is to determine the nested se-

quence of simplicial complexes formed as the connectivity parameter r increases. For the four

example Bravais lattices of Fig. 5.4, we show the entire nested sequence of simplicial complexes
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(second row), and the corresponding H0 (third row) and H1 (fourth row) persistence diagrams.

The generic case 0 < L1 < L2 < 1 for which there are four simplicial complexes in the nested

sequence, illustrated by the fourth column of Fig. 5.4, applies to all lattices represented by the

interior of the region R as well as those on the (green) curve given by ~u ·~v = 0.

Recall that the H0 persistence diagram is computed by observing the changes in the num-

bers of components in the simplicial complex as r increases. The number of components is

equal to the number of points at r = 0, decreases at r = L1, and decreases to 1 at r = L2. In the

H0 persistence diagram, there are therefore an equal number of bars of lengths L1 and L2. For

the hexagonal lattice, L1 = L2, so there is only one barlength. The variance of the barlengths in

the H0 persistence diagram, is therefore 0 for a perfect hexagonal lattice. This variance, var(H0)

is our first topological measure of hexagonal order. For a Bravais lattice, the H0 variance is

var(H0) = 1

4
(L2 −L1)2.

The H1 persistence diagram is computed by observing changes in the numbers of topolog-

ical holes in the simplicial complex as r increases. For a Bravais lattice, topological holes form

at r = L2 and are filled in by faces at r = 1. Since L2 = 1 for a perfect hexagonal lattice, the H1

persistence diagram for such a lattice is empty (devoid of bars). We define a second topological

measure of order as the sum of all the lengths of the bars in the H1 persistence diagram and call

this the H1 sum, ΣH1. For a Bravais lattice, the H1 sum is therefore

ΣH1 = 1−L2

times the number of holes.

Fig. 5.7 shows, as functions of position in the region R, var(H0) (first column) and ΣH1 (sec-

ond column); darker shading indicates a larger value. var(H0) ranges from 0 along the entire line

L1 = L2 (in red) which includes both the hexagonal and square lattices to 1
4 as L1 approaches 0
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(and L2 approaches 1). ΣH1 ranges from 0 along the entire curve L2 = 1 (in blue) to (
�

2−1)/
�

2

at L1 = L2 = 1/
�

2.

Both var(H0) and ΣH1 are equal to zero along 1-dimensional curves that intersect at exactly

one point, namely the point representing the hexagonal lattice. Hence, although neither mea-

sure completely distinguishes the hexagonal lattice, a linear combination c1var(H0) + c2ΣH1

with positive constants c1,c2 is equal to zero only for the hexagonal lattice. Choosing c1 = 2 and

c2 = 1/(2−�
2) so that the maximum values of c1var(H0) and c2ΣH1 in the region R are both

equal to 1
2 , we plot in the third column of Fig. 5.7 the combined PH measure of order

C PH = 2var(H0)+ 1

2−�
2
ΣH1.

For a Bravais lattice,

C PH = 1

2
(L2 −L1)2 + 1

2
�

2
(1−L2).

The DT measure of order turns out to nearly also be a linear combination of varH0 and ΣH1.

Indeed,

DT = 9

6
(4var(H0)+ (1−L1)ΣH1) .

Figure 5.6: Gray-scale plots (with darker shading indicating larger values) of the DT (panels 1 and 3) and
total PH (panels 2 and 4) measures of order within the region R parameterizing Bravais lattices, depicted
in the x, y-plane (panels 1 and 2) and the L1,L2-plane (panels 3 and 4).
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Figure 5.7: Gray-scale plots (with darker shading indicating larger values) of the PH measures of order
within the region R parameterizing Bravais lattices, depicted in the x, y-plane (top row) and the L1,L2-
plane (bottom row). The measures var(H0), ΣH1, and c1var(H0)+ c2ΣH1 = 2var(H0)+1/(2−�

2)ΣH1 are
respectively graphed in the first, second, and third columns.

5.3.2 Variations on Filtrations

For the previous computations, a Vietoris-Rips filtration was used to create the filtration of

which persistence was computed. This had a distinct advantage in the case where lattice points

were near perfectly hexagonal. The signature of a perfectly hexagonal lattice is that var(H0) and

ΣH1 are both zero. Computing persistence using the Čech complex results in a slightly different

ΣH1.

We recall the difference between the Čech complex and the Vietoris-Rips (VR) complex. Let

X be a finite set of points in Rn . We center balls Bx(r ) at each point x. To build the associated

Čech complex, add a d-simplex when there is a common point of intersection of all d (ε/2)-

balls. To build the associated VR complex, add a d-simplex when d+1 ε-balls all have nonempty

pairwise intersections.

In a Čech complex, the 2-simplex corresponding to the fundamental triangle will not be

added to the filtration until the threshold value that corresponds with the radius of the circum-
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Table 5.1: PH and PH statistics for the VR and Čech complexes on a Bravais lattice. Note that ΣH1 is
multiplied by n, the number of H1 bars

Complex H0 H1 var(H0) ΣH1

VR [0,L1], [0,L2] [L2,1] 1
4 (L2 −L1)2 (1−L2)n

Čech [0, L1
2 ], [0, L2

2 ] [ L2
2 , L1L2

2y ] 1
16 (L2 −L1)2 nL2(L1−y)

2y

circle containing the three vertices of our fundamental triangle. This radius is given by L1L2
2y ,

where (x, y) is the coordinate of the third vertex of the fundamental triangle.

Similar to Fig. 5.7, one can plot functions of position in the region R, var(H0). var(H0) for

the Čech complex is the same as var(H0) for the Rips complex, scaled by 1
4 due to convention

of choosing the radius or diameter of a ball to index the threshold. ΣH1 is 0 only for a square

lattice and is maximized at L1 = L2 =
p

2/2. ΣH1=0 therefore distinguished a square lattice.

Having used Bravais lattices to motivate definitions of spectral (Fourier Width at Half Max),

combinatorial (N3), geometric-combinatorial (DT), and topological (var(H0), ΣH1, C PH) mea-

sures of order, we now use these measures on perturbed Bravais lattices, returning to a Vietoris-

Rips filtration.

5.3.3 Bravais lattices perturbed at one point

To understand the sensitivity of each measure to small perturbations in the lattice, we start

by perturbing a single point in a perfect hexagonal lattice. For each configuration, we com-

pute the various measures of order and at the location of the perturbed center, colored by the

value of the measure of order. This is shown in Fig. 5.8. The point at the center of the hexagon

represents a perfect, unperturbed lattice. The vertices of the hexagonal region are the nearest

unperturbed lattice points. From this, we can see a large region in which the N3 is not sensitive

to a perturbation of the center point. In fact, in the whole center region, the value of the N3

is zero since the center is not perturbed enough to change the configuration of the Delaunay

triangulation until the point enters the semi-circular regions along the edges. The DT measure

displays a small discontinuity in values along the same contour for the same reason. Notably,

there are much smaller regions where var(H0) and ΣH1 are less sensitive. Taking a linear com-

104



bination of the two measures provides better sensitivity to small perturbations of a single point

in the lattice.

(a) (b) (c)

(e) (f)(d)

Figure 5.8: Measures of order for a perfect hexagonal lattice with the center point perturbed: (a) FWHM,
(b) DT, (c) N3, (d) var(H0), (e) ΣH1, and (f) CPH. The location of the plotted point gives the location of
the perturbed center point and the color indicates the value of the measure for each configuration.

5.3.4 Randomly perturbed Bravais lattices

To test the sensitivity of each measure to noise present in a lattice, we compute each mea-

sure of order for lattices produced by perturbing each point of a perfectly hexagonal lattice.

Starting with a perfect hexagonal lattice comprised of 2500 points, each point is displaced from

its original position in a random direction (chosen from a uniform distribution) by a distance

νδ, where ν is a fixed scaling factor and δ is chosen from a uniform distribution. ν ranges from

0.01 to 1. Subsets of the noisy lattice at several ν values are shown in Figure 5.9. The mean and

variance of each measure of order over 100 trials, for various values of the scaling factor ν are

shown in Figure 5.9 as a function of ν.
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Figure 5.9: Plotted are the normalized measures for perturbed lattices as a function of noise. The error
bars indicate the variance of each measure over 100 trials. Each measure has been normalized so that the
expected measure has a value of one for points drawn from a uniform distribution rather than perturbed
from a perfect lattice. Examples of a section of the lattice at various noise scales are shown below.
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In order to fairly compare the various measures, each measure was normalized so that the

mean value of the measure is 1 for a set of points chosen randomly with a uniform distribution.

The value of the normalization factor was found by computing each measure of order for 500

trials of 2500 points drawn from a uniform distribution on the same square domain used for the

randomly perturbed Bravais lattices. The N3 measure shows little sensitivity for lower levels of

noise. There is a large start region in which the center point may be displaced without changing

the number of nearest neighbors. In this region, ΣH1 is more sensitive, which makesΣH1 useful

for detecting very small perturbations. As the noise increases, the ΣH1 levels off. However, this

is a regime for which var(H0) retains sensitivity to changing noise levels. A linear combination

of the two PH measures allows us to capitalize on the sensitivity in different regimes. The DT

measure displays a similar degree of sensitivity. By ν = 0.5 there is visually very little order,

however the N3 measure and var(H0) are much lower than 1, the normalized measure for a

noisy sample. This indicates that these measures are picking up some underlying structure of

the points.

Classification can be preformed using the normalized var(H0) and ΣH1 scores to create a

two dimensional feature vector for each example. We take a subset of the noisy lattice, for ν

from 0 to 0.6, incremented by 0.05. ν= 0.6 is a large amount of noise, at this level, lattice struc-

ture is not visually distinguishable. With a K-Nearest Neighbors clustering algorithm5, a 99.8 %

classification accuracy is achieved. The one example that is misclassified in an adjacent class at

ν= 0.6. 98.8% accuracy is achieved when the normalized var(H0)+ΣH1 score is used as a single

feature, again with a K-nearest neighbors classifier. If we include all noise levels from ν = 0 to

0.6 incremented by 0.01, classification is 50.4 %, correctly classifying all examples for ν ≤ 0.1

and only misclassifying in the next adjacent class for ν≤ 0.3. Using var(H0) andΣH1 scores sep-

arately, a classification accuracy of 74.0 % is achieved, only misclassifying in the next adjacent

5The k-nearest neighbor classification algorithm assigns an example a class based on the class of it’s k closest
neighbors. [67] The metric can vary, here we choose Euclidean distance, and the contribution of each example can
be weighted. We consider the 10 nearest neighbors, and weight by the inverse of the squared distance between the
example and it’s neighbor.
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class for ν≤ 0.35, and never misclassifying by more than ν= 0.03. This indicates that these PH

statistics are useful in estimating a noise level in a near hexagonal lattice.

5.4 Application to Patterns Produced by Ion Bombardment

In this section, we return to the Bradley-Shipman (BS) equations [105], which models nanoscale

pattern formation when a solid surface of a binary compound is bombarded by a broad ion

beam. For certain values of the parameters, this system produces hexagonal patterns with de-

fects. This application motivated the development of a persistence based measure for nearly

hexagonal patterns. Recall the BS equations govern the behavior of u(x, y, t ) and φ(x, y, t ), the

deviations of the surface height and surface concentration from their unperturbed, steady-state

values and are given by

∂u

∂t
=φ−∇2u −∇2∇2u +λ(∇u)2

and

∂φ

∂t
=−aφ+b∇2u + c∇2φ+νφ2 +ηφ3

for normal-incidence bombardment. Explicit expressions that relate the dimensionless con-

stants a, b, c, λ, ν and η to the underlying physical parameters may be found in Shipman et

al. [105].

Linear stability analysis of the system given by Eqs. (5.4) and (5.4) reveals that the spatially

uniform solution u = 0,φ= 0 is stable for values of b above a critical value b = bc = (a + c)2/(4c)

[6, 105]. For values of b smaller than bc , the spatially uniform state is unstable to linear combi-

nations of perturbations of the form

 u

φ

=

 u∗

φ∗

exp(i k ·x +σt ),

where k ≡ kx x̂ + ky ŷ , x ≡ xx̂ + y ŷ and u∗ and φ∗ are constants. Re(σ) gives the rate with

which the amplitude of the mode grows (for Re(σ) > 0) or attenuates (for Re(σ) < 0). For all
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Figure 5.10: Several examples of the resulting surface for k1 kT = 10, 20 and 35. There are fewer and less
severe defects present at k1 kT =20. The orientation of the hexagonal lattice is more consistent across
the entire domain as well. k1 kT = 35 is better ordered than k1 kT =10, but there remains some large
defects and grain boundaries.

simulations of Eqs. (5.4) and (5.4), the initial conditions are low-amplitude white noise. We

employ a Fourier spectral method with periodic boundary conditions and a fourth-order ex-

ponential time differencing Runge-Kutta method for the time stepping as the numerical tech-

nique [16, 17]. The spatial grid is 256×256.

5.4.1 Templated Surfaces

It has been shown that beginning with a topographically prepatterned or templated surface

can lead to a more highly ordered lattice than would be formed on an initially flat surface [91].

Pearson et. al consider prepatterning with hexagonally ordered arrays of nanoholes, sinusoidal

ripples and straight line scratches. For appropriately chosen parameters governing the prepat-

terning, they note a large improvement in global order. We will investigate sinusoidal templat-

ing, using persistence measures to guage the overall order. Here, we start with simulations with

a sinusoidal initial condition. Sinusoidal templating is possible in a laboratory through stan-

dard lithographic techniques [91].

kT = 2π/λT where λT is the wavelength with the largest linear growth rate of the surface

height. k1 = 2π/λ1, where λ1 is the wavelength of the sinusoid in out template. For a domain

that is [0,L]× [0,L], then N = 2L
λ1

∝ k1. We restrict to integer N due to periodic boundary condi-

tions. We use a 2D Rips filtration on the locations of the peaks to compute PH. Several examples

of surfaces with different choices of sinusoid wavelength are seen in Figure 5.10. We plot the re-
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sulting PH scores in Figure 5.11. It can be seen, especially in the var(H0), that for k1 kT ∈ [19,21]

there is a significant improvement in the order. This is less clear in ΣH1. We notice that there is

a distinct increase in the total number of H1 bars around k1 kT =18, and so in the third row, we

scale ΣH1 by
p

N where N is the number of H1 bars.
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Figure 5.11: PH statistics computed for simulations with sinusoidal templated initial conditions. The
final plot scales ΣH1 by

p
N , where N is the number of bars. We believe this was a necessary scaling in

this case because there was an increase in the number of H1 bars around k1 kT =18.
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5.5 Conclusion

Persistent homology is a valuable tool through which one can characterize and quantify

underlying topological and geometric order that is present in complex patterns. The ubiquity

of data that arises as a result of dynamic processes makes studying the orbits of differential

equations and the solutions of PDEs interesting, not only in their own right, but also for model

validation, understanding mechanisms that drive patterns and defects of these patterns.

Unique pattern arising in the persistence diagram of a class of one-dimensional discrete dy-

namical systems–even in chaotic parameter regimes, were connected to the dynamics of the

system in Chapter 2. This pattern was shown to be robust to noisy perturbations in both the

orbit and the parameter values. We generalized this to the class of unimodal maps in general.

Geometric pattern structure, for example of the suncups that form on melting snow fields, can

be quantified by using persistence. This gives a multiscale picture of a surface that has under-

lying large scaled topography that can be difficult to remove from small scale considerations.

Sublevel set persistence provides a natural way to compare pyramidal and inverted pyramidal

structures that occur when Ge is irradiated with ions. This allows us to clearly see the influence

of a model parameter on surface topography. Finally, we exploit the VR filtration to detect per-

fect hexagonal lattices, developing a PH based measure for quantifying order and comparing

this to other common methods of quantifying order.

Persistent homology has allowed us to exploit topological and geometric characteristics of

several different complex data sets. We believe there is much more to be learned by using PH as

a representation of complex data.
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