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Abstract—Eigendecomposition is a common technique that is
performed on sets of correlated images in a number of computer
vision and robotics applications. Unfortunately, the computation
of an eigendecomposition can become prohibitively expensive
when dealing with very high-resolution images. While reducing
the resolution of the images will reduce the computational ex-
pense, it is not known a priori how this will affect the quality of the
resulting eigendecomposition. The work presented here provides
an analysis of how different resolution reduction techniques affect
the eigendecomposition. A computationally efficient algorithm
for calculating the eigendecomposition based on this analysis is
proposed. Examples show that this algorithm performs well on
arbitrary video sequences.

Index Terms—Computational complexity, computer vision, cor-
relation, data compression, eigenspace, image resolution, image
sampling, image sequences, singular value decomposition (SVD),
video coding.

1. INTRODUCTION

IGENDECOMPOSITION-based techniques play an im-

portant role in numerous image processing and computer
vision applications. The advantage of these techniques, also
referred to as subspace methods, is that they are purely ap-
pearance based and require few online computations. Variously
referred to as eigenspace methods, singular value decomposi-
tion (SVD) methods, principal component analysis methods,
and Karhunun—Loeve transformation methods [1], [2] they have
been used extensively in a variety of applications such as face
characterization [3], [4] and recognition [5]-[9], lip-reading
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[10], [11], object recognition [12]-[15], pose detection [16],
[17], visual tracking [18], [19], and inspection [20]-[23]. All
of these applications take advantage of the fact that a set of
highly correlated images can be approximately represented by
a small set of eigenimages [24]-[32]. Once the set of principal
eigenimages is determined, online computation using these
eigenimages can be performed very efficiently. However, the
offline calculation required to determine both the appropriate
number of eigenimages, as well as the eigenimages themselves
can be prohibitively expensive.

The resolution of the given correlated images, in terms of
the number of pixels, is one of the factors that determines the
computational cost of eigendecomposition. In particular, many
common algorithms that compute the complete SVD of a gen-
eral matrix require on the order of mn? flops, where m is the
total number of pixels in a single image and 7 is the number
of images. Most users of eigendecomposition techniques would
like to use as high a resolution as is available for the original
images in order to maintain as much information as possible;
however, this frequently results in an impractical computational
burden. Thus users are typically forced to downsample their im-
ages to a lower resolution using a “rule of thumb” or some ad
hoc criterion to obtain a manageable level of computation. The
purpose of the work described here is to provide an analysis
of how different resolution reduction techniques affect the re-
sulting eigendecomposition. This analysis is then used to im-
prove the computational efficiency of one of the fastest known
eigendecomposition algorithms, proposed by Chang et al. [32],
without sacrificing the quality of the resulting eigenimages.

The remainder of this paper is organized as follows. Section II
provides a review of the fundamentals of applying eigendecom-
position to related images and reviews the previous works that
address the problem of calculating the partial SVD of large ma-
trices. This section also defines comparison criteria to quantify
errors in eigendecompositions. Section III illustrates two dif-
ferent techniques of using a low-resolution SVD to approxi-
mate a high-resolution SVD. Section IV gives an overview of
Chang’s algorithm [32] and points out the limitation of its com-
putational efficiency. A mathematical analysis along with some
empirical results is provided in Section V that explains why re-
duction by random sampling can be more effective than any low-
pass filtering technique. This analysis along with the low-resolu-
tion properties of correlated images from Section III motivated
several changes to Chang’s algorithm, outlined in Section VI, to
quickly compute the desired portion of the eigendecomposition
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based on a user-specified measure of accuracy. In Section VII,
the performance of the proposed algorithm is evaluated on ar-
bitrary video sequences. Finally, some concluding remarks are
given in Section VII.

II. PRELIMINARIES

A. Singular Value Decomposition of Correlated Images

In this work, a grayscale image is an h X v array of square
pixels with intensity values normalized between 0 and 1. Thus,
an image will be represented by a matrix X € [0,1]"*v.
Because sets of related images are considered here, the image
vector x of length m = h x v can be obtained by “row-scan-
ning” an image into a column vector, i.e., x = vec(X'T). The
image data matrix of a set of images X;,..., X, isanm X n
matrix, denoted X, and defined as X = [xy---X,], where
typically m > n. The case with fixed n is considered in this
study, as opposed to cases where X is constantly updated with
new images.

The SVD of X is given by

X =uxvT (1

where U € R™*™ and V' € R™*™ are orthogonal, and ¥ =
[£40]T € R™*X" where ©y = diag(oy,...,0,) with o1 >
o9 > -+ > 0, > 0and 0 is an n by m — n zero matrix. The
SVD of X plays a central role in several important imaging ap-
plications such as image compression and pattern recognition.
The columns of U, denoted 1;,7 = 1, ..., m, are referred to as
the left singular vectors or eigenimages of X, while the columns
of V, denoted v;,7 = 1,...,n, are referred to as the right sin-
gular vectors of X . The corresponding singular values measure
how “aligned” the columns of X are with the associated eigen-
image.

In practice, the singular values and the corresponding singular
vectors are not known or computed exactly, and instead their
estimates are used. Hence, it is important to define appropriate
comparison criteria that can measure the errors between the true
and approximated eigenspaces. The next section defines four
such error measures that are relevant to a user’s motivation for
preforming an eigendecomposition.

B. Difference Measures for SVD

The simplest error measures considered in this paper are:
1) the difference between the true and the approximated sin-
gular values and 2) the angles between the corresponding sin-
gular vectors calculated for a set of correlated images. However,
the 7th approximated singular vector may not be aligned with the
ith true singular vector even though the subspaces containing
the first £ vectors may span the same vector space. Hence, two
more error measures are defined in this section that will com-
pare the subspaces consisting of the singular vectors rather than
the individual vectors.

1) Energy Recovery Ratio: True and approximated eigenim-
ages of X can be compared in terms of their capability of recov-
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ering the amount of the total energy in X . This “energy recovery
ratio” can be given by

k xT
XN Doim I8y X||2

uk) = <1 (2)

p(X7u17u27"'7 ”XH% >
where || - ||p represents the Frobenius norm and u; is
the ¢th approximated eigenimage. The true eigenimages
{1, 02, ..., 0} yield the maximum energy recovery ratio.

2) Residue Between Subspaces: The possibility that the data
matrix B € R™** can be rotated into the data matrix A €
Rm>k is explored [33] by solving the problem

A = min |4 - BQ|Ir )

where @ € R*** is an orthogonal matrix, and A is the residue.
The Qmin that minimizes ||A — BQ||r can be calculated as
follows:

o form the matrix C = BT A;

 compute the SVD of C, i.e., C = U.X.V.T;

* find the orthogonal matrix Q i, = UCVCT
where U,, ., and V. are the U, Y, and V matrices for C, re-
spectively. If A and B are orthogonal matrices, it can be shown
that the residue becomes

A? = |A - BQuinll%
= tr(ATA) + tr(BTB) — 2tr ( z;inC)

.
=2 (k - Za> )
=1

with the Y, matrix containing the singular values, o.; of C pro-
viding the principal angles between the subspaces, i.e.,

diag(cos(61),...,cos(;)) = X 3)

where 6; is the ith principal angle. The smaller the residue A,
the closer A and B are to representing the same subspace.

The above two error measures provide slightly different in-
formation regarding the “quality” of the estimated eigenimages.
The energy recovery ratio p, implicitly includes the effect of
the singular values and thus weights the estimated eigenimages
differently based on their importance. In contrast, the residue
between the subspaces A, is purely a subspace measure. The
principal angles that constitute A provide detailed information
about how the estimated eigenspace is oriented relative to the
true eigenspace.

C. Previous Work

The precomputation of estimates of the left singular vectors
Uy, ..., 0 of the matrix X can be a computationally expensive
operation when m and n are very large. Reducing this compu-
tational expense by taking advantage of the fact that only the
principle singular vectors are of interest has been the subject of

previous work.
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One class of techniques relies on finding the eigenimages it-
eratively. The variants of the SVD power method, which calcu-
lates the dominant singular values and vectors one at a time, are
discussed in [24] and [25]. In [28], Vogel et al. considered the
block power method and the Lanczos method to solve the SVD
of ill-posed problems. These methods, unlike the power method,
iterate with & pairs of singular vectors at a time instead of one.
The gradient-type algorithms [26], [27] recast the search for the
dominant singular vectors into an optimization problem that is
solved using gradient or conjugate gradient methods. There are
other iterative methods that work on symmetric matrices [27],
[34] that have been applied to either X7 X or X X 7.

Another class of techniques relies on updating a small set
of eigenimages by recursively adding one image at a time.
Murakami et al. [29] illustrated a method for updating a fixed
number of eigenimages. Chandrasekaran’s method [30], on
the other hand, adaptively changed the number of eigenimages
calculated.

Other techniques include Murase et al. [31] that compute the
eigenimages of the approximated matrix X7 X in the discrete
cosine transform domain. Chang et al. [32] use a fundamentally
different algorithm (refer to Section IV) that was motivated by
the fact that for a set of planar rotated images, the matrix X7 X
is a circulant matrix and the (unordered) SVD of X for this
case is known in closed form. However, the major drawback
of all these approaches is that their computation time is highly
dependent on the resolution of the original images.

III. EFFECT OF RESOLUTION ON THE EIGENDECOMPOSITION

This section illustrates two possible ways of using low-res-
olution SVD to approximate eigenimages of the original high-
resolution images. Section III-A explains the required modifica-
tions of a low-resolution SVD for a meaningful comparison with
its high-resolution counterpart. Sections III-A1 and I1I-A2 illus-
trate two techniques that can be used to approximate high-res-
olution eigenimages using a low-resolution SVD. These two
techniques are then evaluated using some empirical results in
Sections III-B.

A. Comparison of SVDs at Different Resolutions

The SVD of correlated images at different resolutions give
different U, X, and V' matrices. To perform a meaningful com-
parison, the singular values and singular vectors of the low-res-
olution image data matrix must be modified. To distinguish both
the resolution and the size of a singular vector, the notation
(@e, (m) 18 used, where the preceding superscript g denotes the
fact that the vector is associated with g-dimensional image vec-
tors and the subscript m denotes the actual dimension of the
vector e;. The matrix consisting of (’I)ei(m) column is repre-
sented as (q)E(an).

The size of the right singular vectors is not affected by the
resolution of the images and hence these vectors at different res-
olutions can be directly compared with each other. On the other
hand, low-resolution eigenimages need to be enlarged properly
before they can be compared with high-resolution eigenimages.
Finally, low-resolution singular values must be scaled up prop-
erly before they can be compared with those at high resolution.
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(This is due to the change in the norm of an image vector when
an image is reduced.)

1) Interpolation of Low-Resolution Eigenimages: One ob-
vious way to compare eigenimages at different resolutions is to
enlarge the eigenimages at lower resolutions to match in size
with those at higher resolution. This can be performed by using
a number of different interpolation techniques. Due to the en-
largement and interpolation, the resulting eigenimages are typ-
ically no longer orthonormal. If (@) U(mxn) consists of all the
interpolated eigenimages, (q)ui(m), as its columns, then QR de-
composition can be carried out on this matrix, i.e.,

where R is an upper triangular matrix and the columns of
@7 (mxn) are an orthonormal basis for the interpolated
eigenimages. These approximated eigenimages can now be
compared with the true eigenimages in (m) [, (mxn)-

Because the low-resolution eigenimages are enlarged to the
size of high-resolution eigenimages, each low-resolution sin-
gular value should be scaled using

@ g, =(@) 5, ||(q)ui(m,) I 7

where (9)&; represents the ith low-resolution singular value that
is to be compared with a higher resolution singular value.

2) Using Low-Resolution Right Singular Vectors: The high-
resolution image data matrix X can also be multiplied by (17
to obtain the basis for the corresponding approximate high-res-
olution eigenimages, i.e.,

(q)U(an) - x @y (®)

Again, the QR decomposition can be carried out to find an or-
thonormal basis for (‘I)U<mxn), ie.,

(@) U(mxn) :((1) U('mX'n)R (9)

The orthonormal eigenimages in @7 (mxn) €an now be com-
pared with the true eigenimages in (m)ﬁ(mxn).

The norms of the (Q)ui(m)s can be used as an approximation
of the corresponding singular values of X. This approximation
can also be obtained from the matrix R, i.e.,

@Dg, = ||(q)1171(m)|| - (10)

B. Empirical Results To Evaluate Two Techniques

The two techniques used to approximate high-resolution
eigenimages were evaluated using a data set consisting of
images from successive frames of arbitrary video sequences.
Specifically, there are 18 such video sequences that were used.
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Fig. 1. First, middle, and last frames of the 18 video sequences used in this paper. Each video sequence consists of 150 images and the corresponding image sizes
are given in Table I in the row labeled “Index (0).”

TABLE I
IMAGE SIZES AT DIFFERENT RESOLUTIONS FOR THE VIDEO SEQUENCES

Videos

dex | (1)-(@) | &)-® | ©-03) | an,a5 | e (17) (18)
) 352 x 240 | 320 x 240 | 160 x 120 | 304 x 228 | 240 x 180 | 320 x 180 | 192 x 144
1) 176 x 120 | 160 x 120 80 x 60 152 x 114 | 120 x 90 160 x 90 96 x 72
2) 88 x 60 80 x 60 40 x 30 76 x 57 60 x 45 80 x 45 48 x 36
3) 44 x 30 40 x 30 20 x 15 38 x 28 30 x 22 40 x 22 24 x 18
4 22 x 15 20 x 15 10x 8 19 x 14 15 x 11 20 x 11 12x9
5) 12x 8 10 x 8 5x4 10x7 8x6 10 x 6 6x4
6) 6 x4 5x4 3x2 5x4 4x3 5x3 3x2
@) 3x2 3x2 3x2

Each video sequence consists of 150 images; the first, middle,
and last frames from each set are shown in Fig 1.

The original image sizes for all the video sequences are given
in Table I in the second row labeled “Index (0).” This “Index”
gives the reduction factor for the original images (the larger the

index, the larger the reduction of the original images). The high-
resolution image data matrices X are formed for all 18 video se-
quences using the original images and the corresponding “true”
SVDs are computed. The images are then reduced to some lower
resolutions using a number of common low-pass filtering tech-
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Fig. 2. Comparison of the true and approximated high-resolution eigenimages
for video #1 in Fig 1. In particular, the first row shows the comparison plots
between the true eigenimages and bilinear interpolated low-resolution eigenim-
ages for the two comparison metrics, i.e., energy recovery ratios (p) and rota-
tion indices (A ), when the subspace dimension k is varied from 1 to 20. The
second row shows the same comparison plots between the true eigenimages and
the approximated eigenimages computed using the low-resolution right singular
vectors. The plots with o, ¢, and V¥ give the comparison between true and ap-
proximated eigenimages using images with reduction index (1), (3), and (5),
respectively (refer to Table I). Solid lines in the p plots give the “true” energy
recovery ratio plot.

niques! and the corresponding low-resolution SVDs are com-
puted. These low-resolution SVDs are then used to approximate
the high-resolution SVD using the two techniques described ear-
lier.

Fig. 2 shows that using right singular vectors to compute es-
timates of high-resolution eigenimages is much more accurate
than using the interpolation of low-resolution eigenimages. This
is also illustrated in Fig. 3 when using the resultant eigenimages
for image reconstruction. The mathematical analysis in [35] fur-
ther supports these results.2

IV. OVERVIEW OF CHANG’S ALGORITHM

The previous section has shown that reduction in spatial reso-
lution has less of an effect on right singular vectors as compared
to left singular vectors (assuming m > n). Therefore, eigende-
composition algorithms that operate on right singular vectors
are less likely to be affected by reduction in spatial resolution.
One such algorithm is Chang’s eigendecomposition algorithm
[32], which is one of the fastest known algorithms for computing
the first k approximate eigenimages of correlated images to the
user-specified accuracy. This section gives an overview of that
algorithm, along with its computational efficiency. For this pur-
pose, consider X where each x;; is obtained from x; by a

IThe low-pass filtering techniques implemented were box filtering, Gaussian
filtering, and finite impulse response filtering with no appreciable differences
between any of the results.

2A mathematically tractable analysis was performed on all 4 X 2 image data
matrices. It was shown that there always exists a family of such matrices where
the interpolation of low-resolution eigenimages gives the worst possible approx-
imations of the high-resolution eigenimages. However, using the right singular
vectors always gives good approximations of the high-resolution eigenimages.
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= Original image

73
sm
W

eigenimages computed from
right singular vectors

Reconstruction using
interpolated eigenimages

Fig. 3. Comparison of image reconstruction using approximated eigenimages
computed by both techniques presented in Section III (the first image in the
video sequence #1 in Fig. 1 is used here as an illustrative example). The middle
image gives the reconstruction using eigenimages obtained from low-resolution
right singular vectors, while the image on the bottom gives the reconstruction
using interpolated eigenimages [in both cases, index = (5) and k£ = 20].

planar rotation of § = 27 /n. The correlation matrix X7 X is
given by

T T T
X] X1 X X2 X] Xp
- X2Tx1 xgxz x2Txn
XX = (11
T T T
X,X1 X,Xz -+ X;Xp

It is shown in [32] that X7 X is a circulant matrix with cir-
cularly symmetric rows. Hence, its eigendecomposition [36] is
given by

XTX =HDHT (12)
where D is an n X n matrix given by
D = diag()\17)\2,/\2,)\3,)\37...) (13)

and H is an n X n matrix consisting of the successively higher
frequencies, starting from zero frequency, as its columns, which
is given by

1
3 Co —S0 Co —S0
1
2 | 2 C1 —S1 C2 —S52
H=\/-
n .
1
V2 Cn—1 —Sn—-1 C2(n-1) —S52(n-1)

(14)
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where ¢, = cos(k(27/n)) and s, = sin(k(27/n)). If n, the
dimension of H, is odd, then the eigenvalues and eigenvectors
of XT X come in pairs except for the first one. If . is even, then
the eigenvalue A, 12/2) does not repeat and its corresponding
eigenvector is

—1]%. (15)
The above development means that an unordered SVD for
planar rotated image sequence can be given in closed form.
In particular, V' = H, i.e., the right singular vectors are pure
sinusoids of frequencies that are multiples of 27 /n radians and
the dominant frequencies of the power spectra of the (ordered)
right singular vectors increase linearly with their index. To
compute U, observe that UY, = X H, which can be computed
efficiently using fast Fourier transform (FFT) techniques [32].
Although the above eigendecomposition analysis does not hold
true for an arbitrary image sequence, it is shown in [32] that the
analytical expressions for planar rotation can serve as good ap-
proximations for general 3-D cases. In particular, the following
two properties are observed in arbitrary video sequences.

1) The right singular vectors are well-approximated by sinu-
soids of frequencies that are multiples of 27 /n radians,
and the magnitude-squared of the spectra, i.e., the “power
spectra” of the right singular vectors consist of a narrow
band around the corresponding dominant harmonics.

2) The dominant frequencies of the power spectra of the
(ordered) singular vectors increase approximately linearly
with their index.

These two properties indicate that the right singular vectors
are approximately spanned by the first few harmonics. Conse-
quently, by projecting the row space of X to a smaller subspace
spanned by a few of the harmonics, the computational expense
associated with the SVD computation can be significantly
reduced.

Chang’s algorithm makes use of the above two properties to
determine the first & left singular vectors of X . Let p be such that
the power spectra of the first k singular vectors are restricted to
the band [0, 27p/n]. Owing to the properties of the singular vec-
tors discussed earlier, p is typically not much larger than k. Let
H,, denote the matrix comprising the first p columns of /. Then
the first & singular values 61, . .., 7 and the corresponding left
singular vectors 1y, . . . , i, of X H,, serve as excellent estimates
to those of X.

It was shown in [32] that when p is chosen so as to satisfy
p(XT hy,... h,) > p, the quantity p(X,wy,...,0;) turns
out to exceed p for some k£ < p, with 1:11, cen uy, being
very good estimates for 1y,...,0, and &1,...,5; being
very good estimates for oi,...,0,. The energy recovery
ratio p(X,10y,...,0) can be efficiently approximated by
Sict 621X

The entire algorithm in [32] for the fast computation of a par-
tial SVD of X is summarized as follows.

1) Form the matrix Y, whose sth row is the FFT of the ith row

of X.
2) Determine the smallest number p such that p(X7 hy,
..,hp) > p, where 1 is the user-specified reconstruction
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ratio. The key observation here is that the matrix X H,
can be constructed as the first p columns of the ma-
wix /(2/n)[(1/V2)yo Ry1 Sy1 Rys Sys--,
where y; denotes the ith column of Y, while R and & give
real and imaginary parts of the vector, respectively.

3) With Z, denoting the first p columns of the matrix
[(1/vV2)yo Ry:r Syi Ry Syz--], compute the
SVD Z, = S Gituv; .

4) Return 4y, . .., 0y such that (X, ..., ﬁk) > .

If p < n, then the total computation required for Chang’s algo-
rithm is approximately O(mn log, n). This compares very fa-
vorably with the direct SVD approach, which requires O(mn?)
flops, and in most cases with the updating SVD method [29] as
well, which requires O(mnk?) flops.

V. EFFECT OF SPATIAL REDUCTION ON TEMPORAL PROPERTIES

Chang’s eigendecomposition algorithm reduces X in the
temporal dimension and thus is more computationally effi-
cient than directly computing the SVD of correlated images.
However, the first two steps in Chang’s algorithm, i.e., the
calculation of the value p (referred to here as the “true” p) and
the computation of the SVD of X H,,, still requires a significant
amount of time because the algorithm works with the full
spatial resolution of the images. Hence, it is desirable to reduce
the images in the spatial dimension first. It was shown in Sec-
tion III that the low-resolution SVD can be used to approximate
high-resolution eigenimages. Hence these properties are used
here to modify Chang’s algorithm so that its computational
efficiency is improved without sacrificing the accuracy of the
resulting eigendecomposition.

As shown earlier, the low-resolution right singular vectors can
be effectively used to determine approximate high-resolution
eigenimages, when images are reduced using any filtering tech-
nique. Therefore, in Chang’s algorithm, images can be reduced
using a low-pass filtering technique and the corresponding right
singular vectors can be used to approximate the eigenimages
of X H,. However, a reduced resolution version of an image
can also be determined by random sampling of the pixels from
X. The following sections present an illustrative example, em-
pirical evaluation, and a mathematical analysis to demonstrate
why this random sampling is typically more effective than any
low-pass filtering technique.

A. llustrative Example

This section presents two artificial examples to illustrate the
behavior of low-pass filtering as compared to random sampling.
For these examples, box filtering was used to simplify the illus-
tration. Fig. 4 shows the two “high-resolution” image sequences
with images of size 4 x 4 each. The corresponding box-filtered
image frames (of size 2 x 2 each) are shown in Fig. 5.

The sequence in Fig. 4(a) was selected to illustrate the
worst case for box filtering, while also being the best case for
random sampling. It consists of image frames corresponding to
a checkerboard with all pixels changing their intensity between
the two extreme values from one frame to the next. Hence all
four temporal frequencies are required to attain any user-spec-
ified reconstruction ratio for this sequence (p = 4). However,
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Artificial image sequences

(@)

(b)
Fig. 4. Two artificial image sequences are used to compare box filtering with
random sampling. (a) Sequence #1. (b) Sequence #2.

Box filtered artificial image sequences

TT L
=Ll

Fig. 5. This figure shows the box filtered image sequences in Fig. 4 with a
reduction factor of 2 in both directions. (a) Sequence #1. (b) Sequence 2.

4 OO0O0O0000O0OO000OOO0
3
a
2
10000
0
0.8 0.85 0.9 0.95

(@) (b)

Fig. 6. Results for the video sequence shown in Fig. 4(b). Part (a) plots the true
p values against p, while part (b) plots the values of p,. for different values of
4 for all ( 146 ) = 1820 realizations using random sampling (the value of p; for
the corresponding box filtered sequence in Fig. 5(b) always remains 4 for all
values of ).

for the corresponding box-filtered sequence in Fig. 5(a), only
the zero frequency is required to attain any reconstruction ratio
(pp = 1),3 thus giving the worst possible approximation of
the original temporal properties. Now consider reducing the
original sequence by randomly sampling 4 out of 16 pixels in
all the images. Because the same permutation of four pixels
is used over all four image frames, the reduced sequence will
always give p, = 4.

Now consider the sequence in Fig. 4(b) which was selected
to illustrate what is arguably the best case for box filtering.
Fig. 6(a) shows the corresponding values of the true p when
w is varied from 0.8 to 0.99 in steps of 0.01. It is easy to see
that the corresponding box-filtered image frames in Fig. 5(b)

3The values of p for box-filtered, Gaussian-filtered and randomly sampled
sequences are referred to as ps, py, and p,., respectively.
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Video #1 (p = 15) Video #2 (p = 6)
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Reduction index
Video #4 (p = 65)

Reduction index

Video #3 (p = 68)

a 40
40 — P

20
= &

Reduction index

Reduction index

Fig. 7. Plots for the first four video sequences in Fig. 1. The image data ma-
trices at different resolutions are formed after reducing the original images from
m = 240 X 352 to the sizes corresponding to indices (1) through (6) given in
Table I. Each subplot title gives the video number and its corresponding p value
(plotted with a horizontal dashed line) at the highest resolution, where p is the
smallest number of frequency harmonics required to obtain p > 0.95 in (2).
The plots p,. and p, give the p values at the lower resolutions when the images
are reduced using random sampling and Gaussian filtering, respectively. For the
random sampling technique, the images are reduced four different times to cal-
culate four different p values and the maximum p value is assigned to p,..

give pp = 4 for any reconstruction ratio. Now consider reducing
this sequence using random sampling. There are (146) = 1820
such realizations and the corresponding p,. values are plotted in
Fig. 6(b). It is easy to see that the median p, equals the true p
for all values of u. Thus random sampling performs very well
even in this case. As the following section will show, this is true
in general, even when applied to real video sequences.

B. Empirical Results

The empirical results shown in Fig. 7 for arbitrary video se-
quences depict similar behavior to those seen in the illustra-
tive example. For all the video sequences, the p, values de-
crease rapidly even for small reduction factors, indicating that
Gaussian filtering makes the first few frequency components in
the low-resolution images more dominant than they actually are
in the high-resolution images. On the other hand, the p,. values
are always above the true p values for all the video sequences,
indicating that random sampling does not significantly alter the
temporal properties of high-resolution images. The mathemat-
ical analysis given in the following section explains why spa-
tial reduction of image frames using any low-pass filtering tech-
nique will have an undesired effect on the temporal frequencies
of the original video sequence.

C. Mathematical Analysis

Objects in a video sequence typically experience relatively
simple motions, e.g., translations, rotations, scaling, etc. Con-
sequently, low-pass filtering the images of a video sequence
tends to attenuate temporal as well as spatial high frequency in-
formation content. This observation will be illustrated with a
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mathematical example of a video sequence of an object expe-
riencing a constant linear motion. For simplicity, assume that
a video sequence consists of a single object in a black back-
ground moving in the negative = direction. To further simplify
the equations, assume without loss of generality that the object
is moving with a velocity of one pixel per frame and that the
video runs at a rate of one frame per second. If the object is rep-
resented by a function f(z,y), the image at time ¢ is given by
f(z,y,t) = f(z + t,y). The three-dimensional (3-D) discrete
Fourier transform (DFT) of the video sequence f(z,y, t) can be
determined directly from the two-dimensional (2-D) DFT rep-
resentation of f(z,y), which is given by

(16)

where IV, and N, represent the numbers of rows and columns
in an image, respectively and the F'(k,, k, ) terms are the corre-
sponding Fourier coefficients. More specifically

f(x,y,t)
1

]V;

g

i F(ky, k)2 (R 05)

.1/

1Ny

127 _7;"_1_;,_ "'_y_;,_tk_i
E E:Nf (K, ky) Ok 1 € (s Ryt +it)
ka ky=0 k;=0

Z
b
~N.N,N,
—1N,—
Z,
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where the number of frames N, = IV, and 0}, is the Kronecker
delta function with the property that a; = >_;'_; §;xax. Thus
the 3-D DFT representation of the video sequence is

N,—1Ny,—1N,—1

fla,y.t) = NNNtZ > >
ke=0 ky=0 k;=0

F(kx,ky,kt)eﬂﬂ(z%ﬂ%ﬂf"_i) (18)

where

NiF(ka, ky),

F(kmkwkt):{o if by = k.

otherwise.

19)
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Applying an ideal low-pass spatial filter to eliminate higher spa-
tial frequencies in the individual frames, (18) becomes

Ny N> N;—1

Floant) = iy 20 30 3

ke =0 ky=0 k;=0

F(kx’ky k)i 2 (sRE R+
N, N

jor (x4 Lty xe L= +t—
= L 2 Pl Z
Y kp=0ky=0
(20)
where Ny and N, are smaller than N, — 1, N, —1,and N, — 1.

Note that (19) was used to reduce the number of summations
from three to two in the representation of f (z,y,t) so that the
label k; was replaced with k,. From (20), it is clear that not
only are the higher spatial frequency components corresponding
to k, > Nj and k, > N, in the individual frames lost, but
so are the higher temporal frequency components k; > N in
the video sequence. This is because the linear motion coupled
the temporal and spatial information as exhibited in this case
by the 0y, term in (17) [cf., (19)]. This argument also holds
for video sequences of an object experiencing an arbitrary con-
stant linear motion. Similar results hold for objects experiencing
planar rotations or scaling, although the equations are some-
what more complicated. This inherent loss of important high
frequency temporal information makes low-pass filtering an un-
desirable option for reducing the resolution of a video sequence.
Random sampling on the other hand does not suffer from this
phenomenon as it does not tend to selectively eliminate temporal
frequencies. This motivates a modified version of Chang’s algo-
rithm, which is the topic of the next section.

VI. FAST EIGENSPACE DECOMPOSITION

The objective here is to determine the first few left singular
vectors of X [37]. Using the analysis of the resolution reduc-
tion techniques in the previous section, one can now make the
appropriate modifications to Chang’s algorithm to improve its
computational efficiency. Random sampling is used to reduce
X in the spatial dimension and then Chang’s method is used to
reduce it further in the temporal dimension. An overview of the
algorithm is presented first with the details following.

1) Generate the matrix Hy xpn) for Xy xn)-

2) Randomly sample n pixels from each image in X to obtain

the n X n reduced image data matrix X,..4

3) Determine the smallest number p such that

f:1 ”thi”%

T
p Xr7h17"'
( X7

) = >p @D

where 1 is the userspecified reconstruction ratio.

4The same permutation of n pixels is used over all m images, however, the
order of these randomly sampled pixels in the reduced images does not matter.
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4) Compute the thin5 SVD of

(XTHP)G(VLXP) = (UT)(HXP)(ST)(I)XP)(w)axp)'

5) Repeat Steps 2)-4) for three more times and concatenate
all S, V,T matrices to form

I vack

T1L " 7ry
S Ve
S, V.1

SrV,

Ta " ry

A{PXS) =

where s is the maximum of the four values of p and P is
the sum of all values of p.”
6) Compute the SVD of

Agsxp) = (Us)(sx5)(8s) (sx Py (Va) Py -

7) Compute Z(,xs) = (Hs)(nxs)(Us)(sxs) to get an initial
estimate of right singular vectors of X .8

8) Perform Steps 2) and 3). If p > s, perform Step 4) and
compute Z"°V = (H,)(V;). Update Z using:

for i =1,2,...,p
w = [I — Z2z7)z;
if ||lwl > €
Z = [Z,w];
s=s5+1;
end

end

where [ is an n X n identity matrix and e is a user-specified
threshold.
9) Repeat Step 8) until p < s for four consecutive times.
10) Compute [NJ(mXS) = X(mxn)Z(nxs) that gives an approx-
imate basis for the left singular vectors of X.
11) Find the orthonormal basis for f{(mXS) using the thin QR

c#:composition, ie., U(mxs) = U(mxs)B(sxs) and return

U(mxs)-
The above steps will now be explained in more detail. Steps
2)-4) compute the p value for X, and the SVD of the X, H,
matrix. Here, it is described why n pixels are selected as the
resolution of the downsampled version of an image. Recall that
itis always true that p < n (typically with p < n) for any image
data matrix [32]; therefore, more than n pixels in each column
in the reduced image data matrix are never needed to preserve
the rank of X,. at p. However, if the resolution is selected at a
value less than 7, one always runs the risk of artificially reducing

SA thin SVD refers to a decomposition that returns only the first n left singular
vectors for an m X n image data matrix.

6X, H, is readily available after Step 3).

7All S, VT matrices should be padded with the appropriate number of
columns of zeros if necessary, so that each of them has s columns.

8H ., consists of the first s columns of H in (14).
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the rank below p. However, if n is large, then one may want to
incrementally determine an appropriate number of rows for X,..

Once the SVD of X, H, is calculated, (H,)(V,) gives the
right singular vectors of X,.. These right singular vectors can
be considered a “good” approximation of their high-resolution
counterparts [35]. However, different X,.s require different
numbers of harmonics to satisfy the user-specified reconstruc-
tion ratio, because the random pixels used to create a specific
X, may not accurately represent the temporal properties of
the entire X. Hence, Steps 2)—4) are performed four times to
improve the probability of accurately representing the high-res-
olution image data matrix. The number of times to repeat Steps
2)-4) was empirically determined (on average) to optimize
computational efficiency.?

Step 5) concatenates all S,.V,I" matrices to form the matrix
A whose range will approximately span the dominant right sin-
gular vectors of X [35]. The SVD of A is computed in Step 6)
to find its range, given by U,. Thus, (H,)(Us) computed in Step
7) can be considered as a good initial estimate of the right sin-
gular vectors of X. Note that if V,.s are used instead of S,.V,.s
to form A, then Step 7) will result in an unordered estimate of
the right singular vectors of X. To obtain an ordered estimate,
the right singular vectors in each V,. are scaled by their corre-
sponding singular values before being concatenated in Step 5).

Fig. 7 shows that even after performing Steps 2) and 3) four
different times, the maximum p values for videos 3 and 4 may
fall below the true p values. Hence, Steps 8) and 9) are per-
formed to check if there is any new information available in ad-
ditional samplings of X . If the new information in any z}*" is
above a threshold, the Z matrix is updated. When no columns
are added to the Z matrix for four consecutive times, the algo-
rithm assumes that the final Z matrix provides a “good” basis
for the right singular vectors of X.10 In short, Steps 2)-9) are
performed to find the approximate right singular vectors of X.

Step 10) computes the approximate basis for the left singular
vectors of X, while Step 11) computes the corresponding or-
thonormal basis using the QR decomposition. Optionally, one
can also compute the minimum subspace that will satisfy the
user-specified reconstruction ratio by checking if £ < s such
that p(X, 0y, ..., 0%) > p.

The computational expense of the proposed algorithm is now
briefly analyzed. The cost incurred in Step 2), i.e., constructing
X, from X requires n? flops, while the estimation of the
smallest number p in Step 3) requires O(n?p) flops. In Step
4), the cost of computing the SVD of the n x p matrix X, H,,
requires O(np?) flops. Step 5) performs Steps 2)—4) four times.
In Step 6), the cost of computing the SVD of the s x P matrix A
requires O(sP?) flops, while finding the initial estimate of the
right singular vectors of X in Step 7) requires ns? flops. Steps
8) and 9) that check if any new information should be added to
Z require (n% +n2p+ np?) flops and are repeated an unknown,
but typically small, number of times. In Step 10), multiplication
of X with Z requires ms? flops and the QR decomposition of

9Using more than four iterations may be unnecessary and using fewer than
four may require more iterations of the more computationally expensive Step
8).

10The value four was empirically determined to make it highly unlikely that
the number of columns in Z is far from the true value of p.
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TABLE II TABLE III
TIME REQUIRED FOR THE PROPOSED ALGORITHM (ALL TIMES COMPARISON OF DIFFERENT ALGORITHMS
ARE IN SECONDS AVERAGED OVER TEN TRIALS)
Speedup factor of Required subspace
Time required for different steps ) ) .
proposed algorithm as dimension (k) for
Video s 2—-51| 6,7 | 8,9 10 11 Total - .
compared to different algorithms
1 17.1 0.08 | 0.00 | 007 0.68 1.34 218 Video | Chang Matlab | Proposed | Chang | Matlab (k™)
2 6.9 0.05 | 0.00 | 0.05 0.44 0.27 0.81 1 6.73 34.92 15.0 15 15
3 70.5 0.33 | 0.21 | 0.24 2.33 | 19.40 | 22.51 21 1552 88.78 4.0 4 4
4 71.9 0.31 | 0.18 | 0.22 235 | 20.04 | 23.11 3 2.55 322 66.1 66 63
5 7.7 0.05 | 0.00 | 0.04 0.40 0.31 0.80 4 2.04 3.13 63.0 63 60
6 23 0.04 | 0.00 | 0.04 0.29 0.05 0.41 5| 1531 80.53 4.0 4 4
7 12.2 0.06 | 0.00 | 0.05 0.50 0.67 1.28 6| 28.69 155.01 1.0 1 1
8 7.7 0.05 | 0.00 | 0.05 0.40 0.31 0.80 7| 1027 50.93 10.0 10 9
9 479 | 018 (002|014 | 031 | 200 | 265 8] 1538 79.71 50 5 5
10| 174 | 007 | 000|006 | 0.15| 029 | 057 2] 230 351 392 39 36
11 59| 005|000 |004] 009 004 022 10| 5% 26.74 100 10 ?
2] 167| 007|000 006| 015] 027 054 1] 1149 7101 40 4 4
12 2 28. . 4
13 3.0 0.04 | 0.00 | 0.04 0.07 0.01 0.16 525 8.53 >0 >
13 14.91 95.48 2.0 2 2
14 11.2 0.06 | 0.00 | 0.05 0.40 0.51 1.02
14 4.47 54.86 8.0 8 7
15 19.1 0.08 | 0.00 | 0.07 0.55 1.32 2.03
15 3.16 27.60 15.0 15 15
16 8.0 0.05 | 0.00 | 0.05 0.20 0.18 0.48
16 5.24 73.66 52 5 5
17 8.4 0.05 | 0.00 | 0.05 0.31 0.26 0.67 7 | 1140 70.16 50 5 5
18 1.0 0.04 | 0.00 | 0.03 0.10 0.00 0.17 18| 2514 139.82 10 1 1
Avg. percentage | 10.63 | 0.22 | 8.90 | 36.66 | 43.58 100 Ave | 1028 60.55

U in Step 11) requires O(ms?) flops. If s < n < m, then the
total computation required is O(ms?), which is essentially the
cost of the QR decomposition.

VII. EXPERIMENTAL RESULTS

The proposed eigendecomposition algorithm was evaluated
using all 18 video sequences in Fig 1. In particular, the algo-
rithm was used to calculate the partial SVD of X for each set,
with 1+ = 0.95 and € = 1076, Table II shows a breakdown of
the average time required for the different steps in the proposed
algorithm over ten trials for each video sequence. The last row
shows the average percentage over all 18 video sequences, i.e.,
over 180 cases. It shows that in the typical cases, when s < n,
the algorithm is computationally very efficient with Steps 10)
and 11) sharing the major computational burden. However, as
the value of s increases, the computational time required for
Step 11) that computes the orthonormal basis for U, (mxs) USing
QR decomposition dominates the first ten steps combined. This
agrees with the computational expense analysis of the proposed
algorithm provided in the previous section. The total average
time required for the algorithm is given in the column labeled
“Total.”

Table III summarizes the performance of the proposed algo-
rithm, showing k*, k, and the speedup factors for the video se-
quences. Compared to the direct SVD, the speedup factors with

the proposed algorithm are in the range of 3.13—155.01. The
original image frames for these video sequences do not have
the same resolution, hence the speedup factor depends both on
the value of s and the original image resolution. However, one
can observe a strong correlation between the value of s and the
speedup factor. This is evident from the table results, as the min-
imum speedup factor is obtained for video 3. Hence, in the typ-
ical cases when s < n, the speedup factors will generally be
more than 25.

The  difference  between  p(X,y,...,0x-) and
p(X,ay,...,0x) for each set was less than 0.13%, with an
average of 0.07%, which reveals that {111,...,0x} provides
a very good approximate basis for the first £* eigenimages
{111, ..., 0« }. Table III also shows that the average k values
obtained with the proposed algorithm are virtually the same
as those obtained with Chang’s algorithm, while the speedup
factors are in the range of 2.04-28.69. Thus, the proposed
algorithm results in almost the same subspace with much better
computational efficiency than Chang’s algorithm.

The quality of the resulting eigendecomposition was also
evaluated using the error measures described in Section II-B
with all video sequences. The first video sequence is used as
a representative example, the results of which are shown in
Fig. 8. These results reveal that the subspaces obtained using
the proposed algorithm are as good as those obtained using
Chang’s algorithm when a k-dimensional eigenspace is used.



2386

-3

1
2 X0 5
-~ True - Proposed —©- Proposed
—*— True - Chang — Chang
15 1.5
5 1 < 1
0.5 0.5
0 0
0 5 10 15 0 5 10 15

Subspace dimension Subspace dimension

Fig. 8. Comparison of the approximated SVDs with the true SVD for video #1
from Fig 1. The plots with o and X give the results of the proposed and Chang’s
algorithm, respectively. The plot on the left shows the difference between the
energy recovery ratio using true and approximated eigenimages, while the plot
on the right shows the residue between the subspaces consisting of true and
approximated eigenimages, when the subspace dimension is varied from 1 to k.

In particular, the residue between subspaces show that both
the algorithms give nearly the same quality eigenspaces when
the same dimension of % is used. The difference between the
energy recovery ratio Ap plots, on the other hand, reveal that
both the algorithms give virtually perfect image reconstruction
for the k-dimensional subspaces used.

VIII. CONCLUSION

In this paper, a framework was presented for quantifying the
tradeoff associated with performing eigendecomposition of cor-
related images at lower resolutions in order to mediate the high
computational expense of performing these calculations at high
resolutions. While doing so, it was shown that the low-resolu-
tion right singular vectors can be effectively used to approximate
the high-resolution eigenimages without introducing significant
error. It was also shown that the low-resolution right singular
vectors can be accurately approximated by using a random sam-
pling of pixels from the high-resolution videos. Finally, the sim-
ilarity between the right singular vectors of correlated images at
different resolutions was used to improve the computational ef-
ficiency of one of the fastest known eigenspace decomposition
algorithms. Examples showed that the modified algorithm per-
formed very well on arbitrary video sequences.
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