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Abstract: The problem of identification and
control of a Wiener model is studied. The
proposed identification model uses a hybrid
model consisting of a linear autoregressive
moving average model in cascade with a
multilayer feedforward neural network. A two-
step procedure is proposed to estimate the linear
and nonlinear parts separately. Control of the
Wiener model can be achieved by inserting the
inverse of the static nonlinearity in the
appropriate loop locations. Simulation results
illustrate the performance of the proposed
method.

1 Introduction

System identification and modelling is a very important
step in control applications since it is a prerequisite for
analysis and controller design. Due to the nonlinear
nature of most of the processes encountered in many
engineering applications there has been extensive
research covering the field of nonlinear system identifi-
cation [1]. One of the most promising and simple non-
linear models is the Wiener model which is
characterised by a linear dynamic part and a static
nonlinearity connected in cascade as shown in Fig. 1
[2, 3]. The signal between the two parts is not available
for measurement. The identification of Wiener systems
involves estimating the parameters describing the linear
and the nonlinear parts from input-output data. The
Wiener model has been used in many important appli-
cations including pH control [4], fluid flow control [5],
identification of biological systems [6], and identifica-
tion of linear systems with nonlinear sensors [7]. These
examples show an apparent need for algorithms able to
recover nonlinearities in systems of various kinds.
Previous literature relating to the identification of the
Wiener model includes a correlation analysis method to

© IEE, 1996
IEE Proceedings online no. 19960376
Paper first received 7th April 1995 and in revised form lst February 1996

H. Al-Duwaish is with the Department of Electrical Engineering, King
Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Ara-
bia

M.N. Karim is with the Department of Chemical and Bioresource
Engineering, Colorado State University, Fort Collins, CO 80523, USA

V. Chandrasekar is with the Department of Electrical Engineering,
Colorado State University, Fort Collins, CO 80523, USA

IEE Proc.-Control Theory Appl., Vol. 143, No. 3, May 1996

separate the identification of the linear part from the
nonlinearity [8]. The input signal is assumed to be
white Gaussian noise with zero mean. In [9, 4], the
Hammerstein model is used for the identification of the
inverse of the Wiener model. The resulting algorithm
requires that the nonlinearity is invertible and the lin-
ear part must be minimum phase, restrictive conditions
in some applications. A method for approximating the
nonlinearity by a piecewise linear functions is discussed
in [10]. Some a priori knowledge about the nonlinearity
must be known to define the approximating functions.
Methods for identifying systems with known static
nonlinearity are given in [11].
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Fig.1  Wiener model

In this study, we have developed a two-step method
for identification of the Wiener model. In the first step,
a small signal which ensures linear perturbation of the
nonlinear system is applied to identify the linear
dynamics using the recursive least square (RLS) algo-
rithm [12]. This method of identifying the linear part
using small-signal analysis is proposed in [4]. Once the
linear part is identified the input signal is then
increased and the backpropagation (BP) algorithm [13]
is used to train a multilayer feedforward neural net-
work (MFNN) to model the static nonlinearity. Con-
trol of the Wiener model has been studied and a
method is proposed based on the cancellation of the
nonlinearity using the nonlinearity inverse modelled by
a MFNN.

u(t) y(t) x(t)
ARMA MFNN

Fig.2 ARMA/MFNN identification method structure

2 ARMA/MFNN model structure

The Wiener model is represented by the autoregressive
moving average (ARMA) description. The MFNN
model consisting of an ARMA model in series with a
MFNN is shown in Fig. 2. The ARMA model is used
to model the linear part and the MFNN is used to
model the nonlinear part. The use of the MFNN is
motivated by its ability to model any nonlinear func-
tion to any desired accuracy [12-14]. Considering sin-
gle-input single-output systems, the output of the
ARMA model is given by
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y(t) =2 —aw Zbut 7 (1)

where u(z) i 1s the input to the system »(f) 1s the output,
and @; (i =1, ..., n) and b; (f = 0, ..., m) are the param-
eters of the system.

Fig.3 MFNN structure

Fig. 3 shows the structure of the MFNN which is a
feedforward network that is fully interconnected by
layers. No feedback or bypass connections are used.
Although only two layers are shown in Fig. 3 and used
in the discussion, more than one hidden layer can be
constructed. The input to the jth hidden unit is given
by

net(t) = w y(t) + ﬁh (2)
where w are the welghts on the connection from the
input umt B are the weights on the connection from
the bias unit, and y(¢) is the input to the network. The

h superscript refers to the hidden layer. The output of
the jth hidden unit is

#(t) = [} (net} (1)) 3)
where f/ is the activation function. The equations for
the output node are

net®(t Zw z;i(t) + p° (4)
2(t) = f°(net* ) (5)

where the o superscript denotes the output, L is the
number of neurons in the hidden layer, w? are the
weights on the connections from the jth hidden node to
the output, 3 is the weight on the connection from the
bias to the output, f° is the activation function of the
output node and x(#) is the output of the network. The
identification method involves the estimation of the
weights of the neural network and the parameters of
the linear system. This problem is solved by first esti-
mating the linear part parameters using RLS algorithm
with small input signals to ensure linear perturbation of
the nonlinear system. The second step involves increas-
ing the amplitude of the input signal and then estimat-
ing the weights of the MFNN from the outputs of the
identified linear part and the outputs of the actual
process using the BP learning algorithm.

3 Identification algorithm

The proposed identification algorithm is based on the
well known BP and the RLS algorithms. First, the BP
and the RLS algorithms are reviewed briefly; details
may be found in [15, 16]. The BP is used to update the
weights of MFNN and is derived based on the minimi-
sation of the following error measure:
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Fa(t) = 5 (walt) — 2())? (6)

where x,1) is the desired output and x(¢) is the output
of the MFNN. The weights and biases of the output
layer are updated according to the following equations:

wh(t+1) = wi (1) +n(oalt) — oft))f(net*(1))z;(t) (7)

3(t+1) = 5°(t) + noa(t) = o())f *(net°(t)  (8)
where 1 is the learning rate parameter, and
o (nett(t) = 5t ©)

Also, the weights and biases of the hidden layer are
updated according to the following equations:

wh(t+1) = wk(t) + nd? (t)y(t) (10)
Br(t+1) = B2 (t) + ok (t) (11)
where
68 (t) = f}h(netﬁ(t))(afd(t) —z(t))w] (12)
and
, ofh
£ et () = 5o (13)

Thus if the error at the output layer is known it can be
propagated backward and used to update the weights
on the hidden layers.

The initial weights and biases are usually selected as
small random numbers. The motivation for starting
from small weights is that large absolute values of
weights cause hidden nodes to be highly active or inac-
tive for all training samples, and thus insensitive to the
training process. The randomness is introduced to pre-
vent nodes from adopting similar functions.

The RLS is a standard procedure which has been
derived to estimate the parameters of linear systems
based on a set of input—output data [16]. The RLS is
derived to minimise the following error measure:

N
E) = 5 Y A0 -y (4
Tot=1

where y,(7) is the actual output of the system, y(¢) is the
estimated output, A(¢) is the forgetting factor and N is
the number of data points used in the identification.
Now, y(f) can be written as the output of a linear time-
invariant system. That is,

y(t) = $(6)T6(t 1) (15)
where
o (t) = [~y(t-1)... -
is the data vector and
07 (t—1) = [a1...a, bo...b] (17)

is the parameter vector. The paramecters vector are
updated according to the following recursive equations

0(t) = 0(t=1) +y(")[ya(t) ~ vT (HO(t-1)] (18)

where the correcting vector y(z — 1) is given by

y(E—n)u(t)..u(t—m)] (16)

1
T = e YO 49
and
U(t) - []_'Y(t-l)wT(t)}’U(t~1) (20)

\(2)
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To start the recursive algorithm one usually sets
8(0) = 0 (21)
v(0) = al (22)
where o is a large positive scalar. The convergence is
usually fast. Discussions regarding identifiability prob-
lems and persistent excitation of the input signal can be
found in [16].
The proposed identification algorithm for the Wiener
model can be summarised in the following steps:
(i) Apply small input signal to the system being identi-
fied and record the output signal. Make sure that the

amplitude of the input signal is small enough to ensure
linear perturbation of the nonlinear system.

(il) Use the RLS and the input-output data obtained in
step (i) to estimate the parameters of the ARMA
model.

(iii) Increase the amplitude of the input signal and
apply it to the system being identified and record the
output signal.

(iv) Apply the same input signal generated in step (iii)
to the ARMA model identified in step (ii) to compute
the signal between the linear and the static nonlinear-
ity.

(v) The computed signal in step (iv), together with the
recorded output of step (iii), can now be used to iden-
tify the static nonlinearity using the BP algorithm.

(vi) Terminate the training of the MFNN when an
acceptable sum of square errors is achieved.

(vii) The parameters of the ARMA model obtained in
step (ii) and the weights of the MENN from step (vi)
represent the ARMA/MFNN model.

4 Controller structure for Wiener model

Nonlinear Wiener systems represented by the ARMA/
MFNN model can be controlled by a control loop
structure, Fig. 4. Compensation for the nonlinear part
of the model is possible in the controller by inversion
of the MFNN in the model using another MFNN.
This compensation will cancel the effect of the nonlin-
ear MFNN and hence a linear controller can be
designed for the ARMA model using well-known linear
control theory.

x (1) linear | || {x(t)

controtler [ "] ARMA MFNN =

-1
MENN

MENN"!

Fig.4 Control loop structure for Wiener model

5 Simulation results

In this example, the proposed identification method is
applied to a model that describes a valve for control of
fluid flow described in [10]. In this model, u(f) repre-
sents the pneumatic control signal applied to the stem
and p(t) represents the stem position. The linear
dynamics describe the dynamic balance between the
control signal, a counteractive spring force and friction.
The resulting flow through the valve is given by the
nonlinear function £,(y(7)) of the stem position.
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y(t) = 1.4138y(t—1) — 0.6065y(t—2)
+£0.1044u(t—1) + 0.0883u(t-2)  (23)

ly(t) = — U (24
V/(0.10 + 0.90(y(1))?
Now, the proposed identification method is applied to
identify the linear and nonlinear parts of the model. To
identify the linear part, an ARMA model structure
similar to the process is used which is given by

y(t) = —ary(t—1) — azy(t —2) + bou(t)
+byu(t—1) + byu(t—2) (25)

The small signal analysis is used to identify the param-
eters of the ARMA model. A uniform random variable
in the interval [-0.05, 0.05] is used as the identification
input. The output of the system f,(y(¢)) is recorded.
Using the RLS algorithm, the parameters of the
ARMA model converged to 1.4137, -0.6065, 0, 0.1042,
and 0.0882, respectively.

The second step is the identification of the nonlinear
part which is done by increasing the amplitude of the
input to a uniform random variable in the interval
[-4.0, 4.0] and applying it to both the actual model of
the process and to the identified linear part. The train-
ing data set of the MFNN consists of the output of the
identified ARMA model as the input and the output of
the actual system as the output. Using the BP algo-
rithm, the actual and identified nonlinearity is shown in
Fig. 5.
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To test the validity of the identified model, a test
input given by 0.5cos(f) + 0.5cos(57) is applied to both
the actual and the identified models. The outputs of the
two models are shown in Fig. 6, which shows very
good agreement between the actual and the identified
models. The performance of the ‘best’ linear model is
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compared with the actual model in Fig. 7 which indi- 6 Conclusions
cates that linear modelling of this process will give poor
results. A new method for the identification and control of the
nonlinear Wiener model has been proposed. The pro-
0.4 posed identification method estimates the linear and
nonlinear parts of the Wiener model separately. First,
an input signal with small amplitude to ensure linear
perturbation of the process is applied. The input-out-
put data obtained in the first step is used with the RLS
algorithm to identify the linear part of the process.
Then, the amplitude of the input signal is increased and
the identified linear part is used to compute the signal
between the linear and nonlinear parts. The output of
the linear part and the output of the Wiener model are
0 10 20 3 40 50 60 used to identify the static nonlinearity using the BP
time algorithm. The main contribution of this method is the
Fig.7  Outputs of acwal process and ‘best’ linear model use of the MFNN to model the static nonlinearity of
e ﬁggﬁ}near the Wiener model. Thus, systems with very violent non-
linearities can be identified. Also, this approach has the
advantage of using standard tools from linear system
identification and neural networks. Control of the
Wiener model can be achieved by inserting the nonline-
r arity inverse in the appropriate loop locations. The
inverse of the static nonlinearity is modelled by another
MFNN. This approach is restricted to systems with
invertible nonlinearities. Simulation results are included
to demonstrate the effectiveness of the proposed identi-
fication and control algorithms.
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