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* 

ABSTRACT 

* 

Development of frontal disturbances is considered from a non-

linear initial value point of view. The frontal model is a two layer 

model with a wedge of cold air to the north represented by a homogeneous 

fluid layer of density PI' and an overlying warm air layer represented 

by another homogeneous fluid of density P;z «P I) . The warm and cold ai r 

layers have finite depths and the region of integration is bounded in the 

north-south direction by rigid boundaries. Inside this region, the 

depth of cold air goes to zero at some point, depicting the intersection 

of the frontal surface with the ground. The point of intersection 

essentially represents a free boundary. The west-east boundaries are 

periodic. A sinusoidal disturbance is imposed on the frontal surface 

and the growth of this disturbance is calculated numerically for two

different initial conditions. For each set of initial conditions. 

various wave lengths and initial shears are considered. The frontal 

surface at each time step is determined by a simple linear extrapolation 

of the cold air height fields from the north. 



I . INTRODUCTION 

One of the characteristic features of the atmospheric motions 

in middle latitudes is the motion of wave like disturbances which 

propagate on a surface of discontinuity between a layer of cold air 

near the ground and an overlying layer of warm air. The theory 

associated with the development of these disturbances was originallY 

formulated by the Bergen School of Norway and is now referred to as the 

polar front theory (Bjerknes and Solberg 1922). The layer of cold air 

occupies a wedge shaped area to the north with the depth of the cold air 

being zero at some point and increasing north of that point as shown 

in Figure 1. The warm air is superimposed on this cold air layer. The 

transition from the cold air mass to the warm air mass occurs through 

a narrow zone which is normally characterized by strong temperature and 

wind gradients. This finite transition zone is idealized as a surface 

of discontinuity and it is found that wave like disturbances on this 

frontal surface grow in time to generate frontal cyclones. 

For theoretical purposes, the warm and cold air layers ure 

represented by incompressible, homogeneous fluids of different densities 

on a plane of constant rotation. Each of the fluid layers moves with 

some constant zonal speed so that there is a discontinuity in the 

tangential speed at the frontal surface. The existence of non-zero 

zonal velocities in the basic state on a rotating plane then produces 

a slope of the frontal surface in the north-south direction to balance 

the coriolis forces acting on the zonal wind. The theoretical studies 

on such an idealized frontal configuration were first approached using 

a perturbation method or stability considerations. 
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One of the earliest theoretical attempts at the stability analysis 

was that of Solberg (1928) [see also Bjerknes and Godske 1936]. Later, 

the stability studies on frontal models were considered by Kotschin (1932), 

Hlliasen (1960), and Or1anski (1968). The purpose of the stability 

studies is to determine whether waves of incipient cyclone scales can 

indeed become unstable in a linearized sense for the typically observed 

range of tangential velocity shear and the density ratio between the \varm 

and cold air masses. However, the results from a linearized analysis 

can at best give an indication of the behavior of the perturbation 

initially. Once a perturbation starts growing, the non-linear effects 

will become important which would completely alter its subsequent 

behavior. 

The importance of non-linear effects for the development of 

frontal disturbances was pointed out be Freeman (1952), Abdullah (1949) 

and Tepper (1952) who treated the frontal problem using the method of 

characteristics which restricts the treatment to only one space dimension. 

Kasahara et a1 (1965) solved the full two-dimensional non-linear shallow 

water equations for the motion of frontal disturbances assuming an 

infinitely deep upper layer. By this assumption, the dynamics of the 

warm air and its influence on the cold air are ignored and the number of 

depelldent variables in the :orob1an a-e reduced to three: the x and y-components 

of the velocity and the height of the cold air. The initial sinusoidal 

disturbance on the frontal surface is represented by marker particles and 

a quasi-Lagrangian approach is taken in keeping track of the future move

ment of these particles. The results obtained by Kasahara et al (ibid) 

showed a realistic distortion of the initial sinusoidal wave and a 
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tendency towards occlusion. The non-linear frontal problem was sub

sequently considered by Alterman and Isaacson (1969) using a tWO-layer 

mode I but with only one-space dimension. Eliassen and Raustein (1968) 

considered the frontal problem using isentropic co-ordinates. Grammeltvcdt 

(l970) considered the two-layer problem using material particles to 

calculate the frontal position by a method different from Kasahara et al 

(ibid). 

In the present study, we considered the growth of a frontal 

disturbance using the two-dimensional quasi-static equations of a t\vO

layer system. The dynamical equations are solved by finite-difference 

integrations for a few different initial conditions. In order to keep 

the computations relatively simple, the frontal surface, which is defined 

as the point where the cold air depth is zero, is determined, at 

each time step, by a linear extrapolation of the cold air depth field 

from the morth. Admittedly, this method of locating the frontal surface 

Is not as accurate as the method used by Kasahara et al (ibid). 

Nevertheless, the results obtained by using the simple extrapolation 

technique on a one-layer model identical to that of Kasahara et al (ibid) 

have shown that the differences in the frontal motion are not too 

signi ficant. 
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2. DYNAMICAL EQUATIONS 

We consider two incompressible homogeneous fluids of densities 

P
J 

and P
2
,super-imposed one on top of another in a gravitationally 

stable configuration as shown in Figure 1. The heavier fluid (PI) 

represents the cold air and the lighter fluid (P 2) the warm air. Each 

of these fluids is initially moving with a different but constant 

trans 1 ational speed (ul and u
2

) in the eastward direction. This f1 uiJ 

configuration is bounded by rigid boundaries to the north and south and 

rotating about a vertical axis with constant angular speed of rotation 

Ut). In addition to the assumption of constant speed of rotation, I\'e 

assume that the horizontal scale of the motions is much larger than the 

depth of the fluids so that the quasi-static (or shallow water) 

approximation may be made. This assumption is equivalent to assuming 

that the vertical accelerations are negligible and the pressure field 

is hydrostatically determined by the mass of the fluid above a point. 

f\ consequence of the quasi-static approximation is that if the horizontal 

velocity fields are initially independent of depth, they will remain 

independent of depth for all time. The pressure field in each layer 

then may be written as: 

p z 

P 
1 

gpZ(h-z) 

= + 

(1) 

o < z < 

In equation (1), h represents the total depth of the fluid, hI the Jepth 

of the cold layer and g represents the gravitational force/unit mass. 

4 

2. DYNAMICAL EQUATIONS 

We consider two incompressible homogeneous fluids of densities 

P J and P
2

' super-imposed one on top of another in a gravitationally 

stable configuration as shown in Figure 1. The heavier fluid (PI) 

represents the cold air and the lighter fluid (P 2) the warm air. Each 

of these fluids is initially moving with a different but constant 

trans 1 ational speed (ul and u
2

) in the eastward direction. This fluid 

configuration is bounded by rigid boundaries to the north and south and 

rotating about a vertical axis with constant angular speed of rotation 

Ut). In addition to the assumption of constant speed of rotation, we 

assume that the horizontal scale of the motions is much larger than the 

depth of the fluids so that the quasi-static (or shallow water) 

approximation may be made. This assumption is equivalent to assuming 

that the vertical accelerations are negligible and the pressure field 

is hydrostatically determined by the mass of the fluid above a point. 

f\ consequence of the quasi-static approximation is that if the horizontal 

velocity fields are initially independent of depth, they will remain 

independent of depth for all time. The pressure field in each layer 

then may be written as: 

p z 

P 
1 

gpZ(h-z) 

= + 

(1) 

o < z < 

In equation (1), h represents the total depth of the fluid, hI the depth 

of the cold layer and g represents the gravitational force/unit mass. 



5 

The dynamic condition of pressure continuity at the interface z = hI 

is automatically satisfied by equation (1). The dynamical equations 

may now be written as: 

a\V I \" -- + 'VI· (2) 
at 

()h I 
+ \VI· V'h l + hlV'· \VI= 0 

at (3) 

d \V2 +\V2. V'\V2- f[\V2]= - gV'h (4) 
Zlt 

ah 2 +\V2· V'h2+ h 2V'· \V2= 0 (5) 
at 

In the above equations, f = 2nsin6 is the coriolis parameter. \V 

is the horizontal velocity vector with the components u, v in the 

x, y-directions. The vector [\V] indicates a rotation of \V through 

(u ,v) 

ninety-degrees in the negative sense of the x, y-plane. £(:: P2/pd is 

the density ratio of the two fluids and 0<£<1 for a gravitationally 

stab Ie configuration. V' is the horizontal gradient operator. h2 = h-h 1 

represents the depth of the warm air. The above equations have an 

exact solution corresponding to the state given by: 

(6) 

where u
l 

and u2 are constants or possibly some functions of y. Corrcsponliing 

to equation (6) we obtain from equations (2-5): 

o 
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Figure 1 

Vertical cross section of the frontal model. 

WARM AIR 0' 
~ __________________ -i~X.(EAST) 

figure 2 

The domain of integration. 
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(7) 

The second of the above formulas is the Margule's formula for the slope 

of the frontal surface. Equations (7) show that both the interface 

and the free surface slope in the north-south direction in order to 

generate the necessary pressure gradients which balance the coriolis 

forces in the basic state. 

We now have to solve the system of equations (2-5) subject to 

some initial and boundary conditions. As shown in Figure 2) the domain 

of integration consists of two regions D and D'. In domain U, we have 

cold air below and warm air above and in domain D' we have only warm 

ai r. The surface C separating the two domains is the frontal surface. 

The tlomains U and U' are bounded to the north and south respectively by 

rigid boundaries. The boundary conditions appropriate to this system 

arc: 

vI = 0, V2 = 0 at y = YN 

V2 o at y = y s 

(8) 

wh i ch s imply states that the normal velocity of the fluids vanishes on 

the rigid boundaries. In the west-east direction, we assume all quantities 

are periodic. If the length of the domain of integration in x-direction 

is L, then this condition states: 

a(x) a(x+L). (9) 
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where a is anyone of the dependent variables. The frontal surfaceC 

.is defined by the condition 

o (10) 

The warm air velocity and height fields are assumed to change continuously 

as we proceed from domain D to D' across the frontal surface. 

The initial conditions here are the following: 

Case (i): Only the zonal flow is assumed to be geostrophic. The initial 

conditions are 

ul = ul ' u2 

vI = 0 v2 

hI 
f EU2- Ul 
g l-E 

hI = 0 for 0 

= u2 

= 0 

(y-y c) 

< y < y 
- - c 

H 
o 

for y c .:.y.:.Y. 

(11) 

In the above equations, Y is the north-south width of the channel. 

Yc represents the initial disturbance superimposed on the frontal surface 

and is given by 

y = a sin (kx + 6) + b 
c 

where a, b, and 6 are constants. H in equation (11) represents the 
o 

depth of the warm air at the southern boundary. The equation for Yc 
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determines the y co-ordinate of the front as a function of x. One can 

represent y by a certain number of particles and apply the equations of 
c 

motion to these particles to calculate their trajectories. This is 

essentially the procedure adopted by Kasahara et al (ibid). Here, 

however, we have determined the y co-ordinate of the frontal surface, 

usin g the condition 

(12) 

as a function of x,by simple linear extrapolation of the cold air depth 

field from the north. 

Case (ii): Initially both the zonal as well as the meridional flows 

arc assumed to be geostrophic. The height fields are given by the same 

formulas as in equation (11), but the zonal and meridional velocity 

fields arc given by: 

vI = g [aill + E: a112] g all 
f , v2 = fax ax ax 

(13) 

= _£[dil + aill] -g ail ul E: u2 = fay f ay oy 

For computational purposed, it proves convenient to introduce the 

following non-dimcnsionalization scheme. 

x-ullt Y t I -
U2) z: - lis 

, n - t;S , T - 6t 
, u - 2(Ul+ 

U. (u. - u) lit 
1 - 1 liS 

lit 
(14) 

v. - v. 
lis 1 1 
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A ~t 2 
h. - h.gh-) 

1 1 uS 

F fllt 

[n the above equations, ~t and b.s are units of time and space. By 

introducing the non-dimensional quantities in equations (2, 3, 4, 5) 

and dropping the caps on u, v and h, on the understanding that all quantities 

arc now non-dimensional, we obtain 

a hI + V. (h i \ VI) = 0 
aT 

o 

= _ vh - F (UM) . . 
~s JJ 

(16) 

(17) 

( 18) 

In these equations jj is the unit vector in the y-direction. Gradient 

operator V is given by V :: ii alar;, + jj a/an. 
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3. FINITE-DIFFERENCE EQUATIONS 

The domain of integration with sides of lenghts Ll and L2 in the 

l; and 11 directions is divided into rectangular mesh such that the co-

ordinates are given by l;. = j~~, 11. = i~11 where ~l;, ~11 are the grid 
J 1 

intervals in the l; and n directions. The continuous equations (15 and 17) 

are written in an advective form: 

a\V1 + 
h V·\Vl\Vl-W1V. \Vl- F [\V 1 ] = - e: V (h -h d 

h F--6t .. -V 1- u-JJ 
~s 

a \V2 
'V. \V2 \V2-\V2V, \V2- F[\V2 ]= -vh - F(u~t) .. --+ AS JJ h 

Define now the following finite difference operators: 

a x 

-x a If ( ~) ( ~)} = ~a xi + 2 + a xi - 2 

(19) 

(20) 

where a is any variable and ~(= ~l; or ~11) is the grid interval. Then, 

using the definitions, we get 

Let us define in addition: 



-u 

f 

HO 

~s 

L 

a 

b 

Table 1. Initial Conditions 

zonal velocity of cold air (m/sec) 

meridional yelocity of cold air (m/sec) 

zonal velocity of warm air (m/sec) 

meridional velocity of warm air (m/sec) 

velocity of coordinate system (m/sec) 

north and south boundary condition 

Corio lis parameter (sec-I) 

density discontinuity (non-dimensional) 

height of warm layer (km) 

height of cold layer (km) 

height of warm layer at n = 0 (km) 

grid length (km) 

east-west extent of grid (km) 

amplitude of initial wave 

positional constant 

A 

3.05 

o 

15.53 

o 

3.05 

v = 0 

10-4 

0.9813386995 

infinite 

see eq (11) 

infini te 

76.2 

20~s 

2~s 

9.5L1s 

B 

10 

see eq (13) 

20 

o 

15 

v = 0 

10-4 

0.980 

see eq (11) 

see eq (11) 

15 

76.2 

20~s 

2~s 

21.3ns 
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1 
-4[a(x.+~) + 2a(x.) + a(x.-~)]. 
111 

Using these notations, the governing equations (16, 18, 19, 20) may be 

expressed as follows: These equations are written in component form 

now for convenience. 

(21) 

~ = - (~--l.;) (~~) + vI (~l + V'li ) aT ul vI ~- 1 I n 
~ n 

- (Fu~t) _ e: (~ -~ ) - ilf 
t.s n n n 

(22) 

(23) 

for the lower layer. For the upper layer, we obtain 

aU2 = _ (~ ~) (u n~) + ~ -:'i1 
ar 2 2 ~ - 2 2 n U2(U2 +v2 ) 

I:; n 

-~ 
(24) 

+ FV2 
I:; 

~= - (ul:; V"I:;) (vn vn) + -I:; -:;Tl - v2(u2 +v2 ) aT 2 2 ~ 2 2 n 
I:; n 

(F ut.t) -j11l 
(25) 

- Fu2-
t.s n 
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(26) 

The integration in time is performed using the Heun method which is 

a one-step method requiring information at only the preceding time level 

in order to proceed to the next time level (see Lilly 1965, Young 

1968). Each of the preceding equations is in the form 

(27) 

where the quantity on the right is known at any given instant. Then 

the time integration proceeds according to the formula: 

(n+1) * 
a 

(n+1) 
a 

= 

= 

(n) fen) a + 

where the quantity f* is evaluated using the value of 0.*. 
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4. METHOD OF INTEGRATION 

The integration is performed using the numerical constants given 

in Table 1. At each time step the integration starts from the northern 

boundary and proceeds southwards. At the northern boundary the meridional 

components of the velocity fields vI and v2 are always zero, but we need 

to calculate the zonal components ul ' u2 and the height fields hI and h. 

In the equations (21, 23, 24, 26) governing this calculation, the quantity 

~)v/'Jn on the boundary is required. This is obtained by fitting a 

quadratic curve to three points - the boundary point and the first two 

interior points-and differentiating this expression to determine avIan 

on the northern boundary. Similar situation occurs on the southern 

boundary in calculating the u2 and h fields and the same procedure is 

adopted there. 

The integration then proceeds southward from the northern 

boundary until a grid point is reached where it is no longer possible 

to apply the central difference formula either in the ~ or n-directions 

because of the fact that the domain D is getting terminated. For 

example, see points marked 1, 2, and 3,in Figure 3. In such cases, a rather 

simple extrapolation procedure was used using the two points immediately 

north of points, such as 1, 2, or 3,to first determine the n-co-ordinate 

corresponding to the frontal surface-namely, the h l = 0 point. The values 

for ul ' u2 ' VI' v2 ' h, hI are then calculated at points 1 wld 2 using 

the formula generated by the two-point extrapolation. Attempts at using 

three points instead of two for the extrapolation purposes have proved 

rather unsuccessful since the n-co-ordinate corresponding to h
l
= 0 

has to be solved as the appropriate root of a quadratic equation and there 
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f 0 
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.-t 0 
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0 0 0 0 0 
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0 0 

0 0 

0 0 

0 2 

0 

WARM AIR 

Figure 3 

Types of grid points. 

0 

0 

0 Boundary point 
o Normal point 

Non-uniform b. 1') 

2 Non-uniform b. r 
3 Non- uniform b. ~ and b.t 

• Frontal point 
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is no obvious a priori argument to show which root of the quadratic is 

the right one. Further, the radical has occasionally become imaginary. 

In view of these difficulties, a simple linear extrapolation has been 

adopted. This is one of the serious limitations imposed by this study. 

However, a comparison of the results obtained by this method with the 

more rigorous technique of Kasahara et al on a one-layer model showed, 

as mentioned earlier, a good agreement in a qualitative sense. The 

frontal surface thus determined marks the end of domain 0 where the 

cold and warm air layers have existed together. The integration proceeds 

south now into the domain 0' where only the warm air component exists 

using the fact that u2 , v2, and h2 are continuous across the frontal 

surface. The computations were smoothed every 30 time steps using the 

formula 

a.. . 
1,) 

a.. I . + a.. 1 . +a. . . I + a.. . I + 4a. .. 1+ ,J 1-,J 1,J+ 1,)- 1J 

8 
(28) 

in order to minimize the noise generated by the finite-difference integrations. 
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5. RESULTS 

Various initial conditions representative of observed atmospheric 

conditions were selected for investigation. In addition, the frontal 

motion was determined for the same initial conditions (Table 1, column A) 

as used by Kasahara, Isaacson, and Stoker (ibid). Since in the latter 

model the dynamics of the warm layer have been neglected by assuming 

an infinitely deep warm layer, the numerical problem reduces to one of 

predicting only the motion of the cold air. This particular problem shall 

be referred to as the "one layer" case. 

Even though the initial conditions and the governing equa.tions 

of a physical system may be the same, the solution to the system may change 

slightly due to differences in numerical integration schemes. In the 

frontal problem, an additional discrepancy may occur since the method for 

calculating the frontal position is also variable (see section 4). 

Figure 4 shows the initial frontal position and the subsequent position 

after eight hours for the one layer model from Kasrulara et al and from 

using the procedure described in section 4. As is evident from this 

diagram, except for the crest of the wave, the agreement in the 

results is fairly good. The curvature at the crest was reduced primarily 

by a Laplacian type smoothing operation which was used for controlling 

noise effects. This smoothing operation tended to flatten heights in 

areas where the slope of the height changed sign, for example, at the 

crest of the wave. 

Since the real atmosphere frequently exhibits significant interaction 

between upper air dynamics and low level wave development, it was 

desirable to determine the effect of including the dynamics of a 

finite upper layer on the system described above. Therefore, for the 
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22 ••••• Initial frontal position 

8 hour frontal position 
20 from Kasahara et 01 

- 8 hour fronta I position 

1 
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described in Section 3 
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• 

• • • • • • 8 • • • • • • • - - --' 

6 
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t • 

Figure 4 

Initial and eight hour frontal positions calculated from "one layer" models. 
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same initial conditions used in the one layer case, the frontal motion 

was determined for a system which included an upper layer having a 

depth of 18 km at the southern boundary. A time sequence of frontal 

positions was constructed for both the one layer case (Figure 5) and 

the two layer case (Figure 6). Wind direction and velocity in the cold 

air is shown for the ninth hour. The unusual kinematic structures in 

the one layer case (Figure 5 points A and B) apparently result from 

the inability of the cold layer to adequately adjust its mass in response 

to the dynamics. This is a direct result of the neglect of the warm 

layer perturbations. The most unrealistic feature of the one layer 

calculation is the direction of flow of the cold air around the crest 

of the wave. This flow cannot easily be reconciled in terms of the 

characteristic circulation associated with developing frontal waves. In 

contrast, the two layer model appears to be in good agreement with the 

observed kinematics for a developing wave. Counter clockwise flow has 

developed around the wave and warm frontogenesis has appeared at the 

ninth hour. 

In order to explain the southward shift of the entire front in 

the initial stages of integration (Figure 6, sixth hour), a more detailed 

analysis was performed on the first six hours of frontal motion. The 

analysis indicated that several hours were required for the initial wind 

and height fields to adjust to the unbalanced initial conditions. At 

time t = 0, the zonal wind was in geostrophic balance while the meridional 

wind was left unbalanced and set equal to zero (refer to initial condition, 

Table 1, column A). In response to this imbalance, the cold air rapidly 

accelerated southward. The one layer case required about four hours to 
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Frontal movement and ninth hour wind speed and direction for the "one layer" model. 

Wind speed is given in meters per second. 
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Figure 6 

Frontal movement and ninth hour wind speed and direction for the tKO layer model. 

Wind speed is given in meters per second. 
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correct the imbalance while the two layer case needed approximately five. 

This rapid "sinking" of cold air was accompanied by a corresponding 

increase in kinetic energy. Figure 7 shows the change in total kinetic 

energy (relative to the moving coordinate system) during the adjustment 

periods. During this process the change in total energy, kinetic plus 

potential, was less than a tenth of a percent in the eight hour period 

for both cases. 

In addition to the effects discussed above, the inclusion of the 

upper layer dynamics reduced the wave speed from approximately 17 meters 

per second in the one layer case to about 10 meters per second in the 

two layer case. Thus it seems that the general effect of including the 

warm air perturbations is an overall stabilization of the system. 

Following the investigation into the effects of imposing an 

upper layer on the frontal system, an effort was made to study the 

individual effects on the frontal motion due to specific parameters. In 

order to make such a study, a mean or basic set of initial conditions, 

representative of frequently observed atmospheric conditions. was defined. 

Once the behavior of the front was determined for these mean conditions. 

a single parameter such as shear or wavelength could be varied and its 

cffccts isolated. As discussed previously, the use of the geostrophic 

balance only in the zonal wind field required a significant amount of 

time to set up a reasonable kinematic structure. Therefore, it was 

decided to begin integration with the cold layer in total geostrophic 

balance. The complete set of base conditions is shown in Table 1, 

column B. Previous results, for example the warm frontogenesis at the 

ninth hour of the two layer model (Figure 6), indicated that perhaps 
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additional time was required for instability to develop. This seemed 

particularly true since the upper layer acted as a stabilizing force on 

the entire system. Thus, the geostrophic base state was integrated for 

36 hours real time. The results are shown in Figure 8. In general, 

the base condition produced a slow moving, slightly decaying, easterly 

propagating wave. 

Having generated the reference case, the following two special 

cases were investigated: 1) wavelength increased to one and one-half 

times the base wavelength; and 2) shear increased to twice the base shear. 

After twelve hours, the long wavelength case produced no significant 

change from the base state results and was therefore terminated. The high 

shear case proved to be unstable and will be discussed in detail. Figure 9 

shows the time sequence of development of the high shear case along with 

the wind speed and direction at the twelfth hour. All analyses shown 

are relative to the moving coordinate system. Altho~gh the pOSitions of 

the model'S wind speed maxima and minima generally agree with observed 

positions, the magnitude of the wind speed maxima (24 and 12 meters per 

second) are rather large for surface winds (normally 5 to 10 meters per 

second). Considering that the model is friction-less and that the wind 

speed is indicative of the mean speed for the layer, perhaps 850 or 

700 mb wind speeds would be more suitable for comparison. In this 

case the wind speeds are reasonable. Figures 10 and 11 show the wind 

direction and vorticity patterns at the twelfth hour for both the upper 

and lower layers. The initially zonal warm layer has interacted with the 

cold layer to produce an upper level trough to the west of the low level 

trough, which agrees with baroclinic theory. Considerable vorticity 

advection and associated divergence developed in advance of the upper 
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trough. As would be expected, convergence developed ahead of the trough 

in the cold layer. Similarly, upper level convergence and low level 

divergence developed behind the trough. 

Relative to the ground, the speed of both the cold and warm fronts 

was Slightly faster than normal. The average speed of the cold front 

was about 14 meters per second while the warm front moved at about 12 

meters per second. Due to a numerical limitation on the technique used 

for calculating the frontal position, it was not possible to continue the 

integration past the point where the front ceased to be a single-valued 

function. Thus the frontal model could not be integrated to the occlusion 

stage. The relative speeds of the cold and warm fronts, however, suggest 

that occlusion would occur. 
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5. CONCLUSION 

The two layer frontal model appears to be capable of reproducing 

the basic features of developing frontal waves. Circulation around the 

model wave agrees with most observations and the corresponding fields of 

vorticity and divergence support the general baroclinic theory associated 

with developing cyclones. Although the limitations of the numerical scheme 

prevented integration of the frontal motion past occlusion, the results 

agreed rather well with observed frontal behavior and indicated an 

occlusion process would occur. The overall effect of including the 

dynamics of an upper layer seems to be a general stabilization of the 

entire system. Since the normal initial upper air streamflow pattern 

associated with developing waves is very rarely zonal, this stabilizing 

effect may be peculiar to our initial conditions. In the real atmosphere 

there is frequently a substantial degree of upper level support in the 

form of a cold core high level synoptic scale wave. Normally, this 

synoptic wave propagates eastward above the low level frontal system 

and interacts with it. The strength of the upper support is highly 

variable and depends, among other things, on the intensity and orientation 

of the upper wave with respect to the front. Thus, for the model's 

case, if the upper layer would have initially been in a position to 

support surface development, the potential energy consumed to deform the 

zonal upper layer could have been used for wave development. 

Although the results of this study are indicative of the importance 

of the upper layer, in view of the above discussion, it seems logical 

that the next step in an attempt to understand the mechanism at work 

in frontal wave development would be to begin integration with a wave 
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in the upper level. However, from Grammeltvedt (1970). it appears that 

the effect of introducing the initial disturbance either in the upper 

layer alone, or in both layers, is not likely to modify the results 

in any significant manner. 
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