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ABSTRACT

THICKNESS EFFECTS IN THE FREE VIBRATION OF LAMINATED

MAGNETO-ELECTRO-ELASTIC BEAMS AND PLATES

A semi-analytical discrete-layer approach is used to evaluate thickness effects in the

free vibration of laminated magneto-electro-elastic beams and plates under various lateral

boundary conditions. To match the primary physical phenomenon and simplify the study,

piecewise continuous approximations are used through the thickness direction and either con-

tinuous global polynomial or trigonometric functions are used to simulate the deflection in

axial or planar displacement fields. Thin plate models can be recovered to predict frequency

estimation for various boundary conditions and compared with continuum-based theories

using more complex approximations. Based on symmetry the natural vibratory modes can

be grouped to optimize computation. Numerical examples are used to show the thick-

ness effects, with non-dimensional frequencies computed to multiple plates under six lateral

boundary conditions: simply supported, clamped, and four different combinations of free and

clamped/simply-supported edges. As the out-of-plate dimension becomes small and two op-

posite sides are free, this methodology can also be applied to beams under simply-supported,

fixed-fixed and cantilever support conditions. Along with the influence of electro-elatstic and

magneto-elastic coupling, the results of these analyses clearly illustrate the thickness effects

within laminated plates by showing how the results vary with length/thickness ratio. Find-

ing the accurate ratio varied with thickness is expected to provide useful specifications for

the further study and design of multilayered magneto-electro-elastic beams and plates.
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CHAPTER 1 INTRODUCTION

The free vibration of solids can be used to evaluate elastic constants, study internal

friction, and detect the presence of internal voids or flaws among other behaviors. Although

closed-form solutions have been found for the vibration of many plate geometrics in simple

cases, a large number of problems have not been solved through this methodology. Once the

equations of motion have been derived, it is also common to use approximate methods for

plates under various boundary conditions. For simply-supported plates, Kirchhoff’s plate

theory yields many exact solutions that can predict the behavior of elastic deformations and

stresses near or across the interface of material layers under static and dynamic loading, but

usually only when the planar dimensions are much larger than the thickness. Those methods

can also be used for solving more complicated situations for multilayered composites that are

more complex than for homogeneous elastic materials. An example of this is smart materials/

structures where piezoelectric (PE) and piezomagnetic (PM) materials have been involved

in engineering fields. Applications range from cell phone to space shuttle technology. As

piezoelectric solids link the electric and mechanical behaviors, so do piezomagnetic materials

link magnetic and mechanical behaviors. From a combination of different materials, this

class of smart structure not only contains the characteristics of elastic or electric/magnetic

materials but also the potential to model new phenomenon associated with energy conversion,

which means the converting energy could be transform from one form (among magnetic,

electric, and mechanical energies) to others in the materials.

The free vibration of plates made of PE and PM materials have been investigated by sev-

eral researchers. By expending the general boundary conditions in terms of series expansion,
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Vel and Batra 1 solved the static deformation of multilayered piezoelectric plates using a

three-dimensional solution. The corresponding bending vibration problem has been studied

by Vel et al. 2. Moreover, as an advanced application, materials labeled magneto-electro-

elastic (MEE) materials have recently appeared. These materials contain both characters of

electric and magnetic fields. Applications of these types of materials are seeing broader use

and are the focus of the present study.

For a simply-supported multilayered MEE plate, the exact free vibration behavior using

the exact closed-form solution in deflection has been derived using the pseudo Stroh formu-

lation by Pan and Heyliger 3. The state-space formulation is another method to analyze the

static and dynamic behaviors of MEE multilayered plates 45. This methodology was used by

Chen et al. 6 in the study of the free vibration of a non-homogeneous isotropic MEE plate.

Kondaiah, Shankar, and Ganesan using finite element method investigated beams made of

magneto-electro-thermo-elastic smart composite materials with different volume fractions

under uniform temperature rise on clamped-free boundary condition 7. The discrete-layer

(DL) and domain-discretization methods have also been widely used in analysis of anisotropic

elastic and MEE plates and shells. The free vibration of an anisotropic and MEE plate was

1S.S. Vel, R.C. Batra, Three-dimensional analytical solution for hybrid multilayered piezoelectric plates,
ASME Journal of Applied Mechanics 67 (2000) 558-567.

2S.S. Vel, R.C. Mewer, R.C. Batra, Analytical solution for the cylindrical bending vibration of piezoelectric
composite plates, International Journal of Solids and Stuctures 41 (2004) 1625-1643.

3E. Pan, P.R. Heyliger, Free vibrations of simply supported and multilayered magneto-electro-elastic
plates, Journal of Sound and Vibration 252 (2002) 429-442.

4J.G. Wang, L.F. Chen, S.S. Fang, State vector approach to analysis of multilayered magneto-electro-
elastic plates, International Journal of Solids and Structure 40 (2003) 1669-1680.

5J.Y. Chen, H.L. Chen, E. Pan, P.R. Heyliger, Modal analysis of magneto-electro-elastic plates using the
state vector approach, Journal of Sound and Vibration 304 (2007) 722-734.

6W.Q. Chen, K.Y. Lee, H.J. Ding, On free vibration of non-homogeneous transversely isotropic magneto-
electro-elastic plates, Journal of Sound and Vibration 279 (2005) 237-251.

7P. Kondaiah, k. Shankar, N. Ganesan. Studies on magneto-electro-elastic cantilever beam under thermal
environment, Coupled systems mechanics (2012) pp.205-217
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worked out by Chen, Heyliger and Pan 8 corresponding to different lateral boundary con-

ditions. The studies of many computational schemes for the solution of the equations of

motions are based on the early work of Demarest 9 and Eer Nisse 10 through algorithms for

elastic and piezoelectric parallelepipeds. However, if there is no existing closed-form solution,

by expanding the displacements in terms of reasonable approximations, Hamiltons principle

can be used to solve the weak form of the equations of motion. Furthermore, at an inter-

face made of different materials, such as elastic, pezoelectric, and piezomagnetic properties,

additional considerations may apply. Between two dissimilar materials, interface conditions

include continuous stress, normal electric displacement, and normal magnetic induction. At

a region of discontinuous material properties, these cause a discontinuity in the slope of

the displacement and potential fields. The use of piecewise linear functions through the

thickness with continuous global polynomial or trigonometric functions in the plane parallel

to the interface allows a relatively accurate solution to be achieved. Via a semi-analytical

discrete-layer model, Heyliger 11 developed the governing equations of layered elastic and

piezoelectric parallelepipeds and obtained frequencies for a number of geometries and mate-

rial combinations using this sort of approach.

When the thickness of the plate, h, is at least 10 times smaller than its lateral dimensions,

Kirchhoff’s classical theory of thin plates can often give sufficiently accurate results instead

8J.Y. Chen, P.R. Heyliger, E. Pan, Free Vibration of Three-dimesional Multilayered Magneto-electro-
elastic Plates under combined Clamped/Free Boundary Conditions, Journal of Sound and Vibration 333
(2014) 4017-4029.

9H.H. Demarest, Jr., Cube Resonance Method to Determine the Elastic Constants of Solids,J. Acoust.
Soc. Am. 49, (1971) 768-775.

10E.P. Eer Nisse, Variational Method for Electroelastic Vibration Analysis, IEEE Trans. Sonics Ultrason.
SU-14(1976) 153-160.

11P.R. Heyliger, Traction-free Vibration of Layered Elastic and Piezoelectric Rectangular Parallelepipeds,
The Journal of the Acoustical Society of America 107, 1235 (2000).
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of carrying out a full three-dimensional stress analysis. But accuracy usually decreases with

increasing thickness of the plate. Many authors qualify the value of the thickness relative

to the larger plate dimensions as being “small” 12, “much smaller” 13, or “significantly

smaller” 14. Several authors have suggested limits with numbers attached: the thickness is

“less than 1/20” 15 the lateral dimensions or that the lateral dimensions are “at least ten

times” the thickness 16. There has always been significant latitude assumed in applying

these limits, since they are clearly influenced by plate geometry, the nature of the loading,

and the material constitution. Such an inherent limitation of classical plate theory for the

moderately thick plates necessitated the development of more refined theories in order to

obtain reliable results for the behavior of these new materials. By plotting the frequencies

as a function of the length-to-thickness ratio a/h, the present results indicate the level of

errors influenced by thickness effects. The errors even within prior recommendations of a/h

ratios can be significant.

The objective of this studying is to use Hamilton’s principle and appropriate approxima-

tions to make the link between the thin plate theory and more accurate continuum models

to determine at what a/h ratios thin plate theory may be adequate for beams and plates of

laminated MEE material.

12Rao, S. S. Vibration of Continuous Systems, John Wiley and Sons, Hoboken, NJ (2007). Technomic
Publishing Co., Lancaster PA (1987).

13Whitney, J. M. Structural Analysis of Laminated Composite Plates, Technomic Publishing Co., Lancaster
PA (1987).

14Hjelmstad, K. D. Fundamentals of Structural Mechanics, Prentice Hall, Upper Saddle River, NJ (1997).

15Ugural, A. C. and Fenster, S. K. Advanced Strength and Applied Elasticity, Third Edition, Prentice Hall,
Englewood Cliffs, NJ (1995).

16Szilard, R. Theory and Analysis of Plates Prentice Hall, Englewood Cliffs, NJ (1974).
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CHAPTER 2 THEORY

This section details the generation of the discrete-layer model for MEE plates under six

boundary conditions. Applying basic mechanical electric and magnetic relations, the varia-

tional form of Hamilton’s principle for a MEE medium is presented. The equations resulting

from this variational statement are solved by reducing the three-dimensional elasticity the-

ory to a two-dimensional theory due to assuming a piecewise linear relationship through the

thickness direction. Therefore, the approximate funcitons of the in-plane field variables can

be generated respect to various lateral boundary conditions.

2.1 Governing Equations

A plate is a structural element that is flat and thin. The lateral dimension is relatively

larger than the thickness, typically at least 10 times bigger. Normally, a plate is formed by

multiple off-axis orthotropic layers and all constitutive relations are linear. Hence, Hooke’s

law applies for each layer. The interest in this work is the free vibration response of the

plate. A rectangular Cartesian coordinate is used to formulate the governing equations with

the origin located at one of the four corners on the tops surface, as shown in Figure 1.

Figure 1: The definition of rectangular Cartesian coordinate
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Of primary interest in this work are the thickness effects in laminated plate vibration for

plates composed of elastic, electric and magnetic materials. Square laminates with lateral

dimensions a=b and a total thickness h are considered in this study. As the plate can be

composed of MEE materials, keeping the elastic parameters and changing the electric or

magnetic variables and set the appropriate coupling coefficients (either piezomagnetic or

piezoelectric constants) to zero can easily carry out the corresponding results for purely

PE, PM, or elastic materials. Each layer is homogeneous and each interface is perfectly

bonded; therefore, the compatibility of displacements and the potentials are enforced. Even

though the elastic displacements, electric and magnetic potentials, elastic traction, and the

z-components of the electric displacement and magnetic induction are continuous, there is

a discountinuity of the gradient of displacement components, the electrostatic potential and

magnetostatic potential at the interface of two layers.

In a linear, isotropic MEE solid, the coupled constitutive law for each lamina can be

expressed as:

σij = CijklSkl − ekijEk − qkijHk, (1)

Dm = emklSkl + ǫmkEk + dmkHk, (2)

Bm = qmklSkl + dmkEk + µmkHk (3)

Here σij, Dm and Bm are respectively the components of stress, electric displacement and

magnetic induction; Skl, Ek and Hk represent the components of strain, electric field and

magnetic field; Cijkl, ǫmk and µmk indicate the elastic, dielectric, and magnetic permeability

coefficients; and ekij, qkij and dmk are the piezoelectric, piezomagnetic and magnetoelectric

coefficients.
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In these expressions, the indices, i and j range over the values 1 to 3, which represent the

values of the rectangular Cartesian coordinates x, y and z. It is common to use a standard

contracted notation that uses a single subscript for the stress components instead of the

double subscript notation. The indices can be replaced by 11=1, 22=2, 33=3, 23=4, 13=5

and 12=6, and the matrix form representing the components of the elastic stiffness tensor

in Cartesian coordinates can be given by







σ1

σ2

σ3

σ4

σ5

σ6







=























C11 C12 C13 0 0 C16

C12 C22 C23 0 0 C26

C13 C23 C33 0 0 C36

0 0 0 C44 C45 0

0 0 0 C45 C55 0

C16 C26 C36 0 0 C66





























ǫ1

ǫ2

ǫ3

ǫ4

ǫ5

ǫ6







(4)

Moreover, by setting the values emkl or qmkl equal to zero, the results for either purely PE,

PM, or elastic material can be achieved.

The relationship between the strain and displacement, electric (magnetic) field and its

potential can be written as:

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)

, (5)

Ek = −
∂φ

∂xk
, (6)

Hk = −
∂ψ

∂xk
(7)
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Here, ui are the infinitesimal displacement components and φ and ψ are the electric and

magnetic potentials, respectively. The components xk are related to the x, y and z in the

rectangular Cartesian coordinates for k=1,2,3.

The weak form of the equations of motion, the charge equation and the electromagnetic

equation for a MEE medium within Hamilton’s principle can be expressed as 17:

δ

∫ t

t0

dt

∫

V

[
1

2
ρu̇ju̇j −H(Skl, Ek, Hk)

]

dV

+

∫ t

t0

dt

∫

S

(Tkδuk − σδφ− Iδψ) dS = 0

(8)

Here, t0 and t are two specified times, V is the volume of the plate and S is the surface that

bounds V. δ is the variational operator. The . superscript represents differentiation with

respect to time, and T , σ, and I are surface tractions, surface charge, and surface current.

H is the system enthalpy and can be written as

H =
1

2
CijklSijSkl − eijkEiSjk −

1

2
ǫijEiEj − qijkHiSjk −

1

2
µijHiHj − dikEiHk (9)

Based on the specific material properties used in this study, and setting x1 = x, x2 = y, and

x3 = z, with the corresponding displacement field as u, v, w, the weak form can be expanded

as:

17H.F. Tiersten, Linear Piezoelectric Plate Vibrations, Plenum, New York (1969).
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0 =

∫ t

t0

dt

∫

V

{

ρ (u̇δu̇+ v̇δv̇ + ẇδẇ)−

[

C11
∂u

∂x

∂δu

∂x
+ C12

∂u

∂x

∂δv

∂y
+ C12

∂δu

∂x

∂v

∂y

+C13
∂u

∂x

∂δw

∂z
+ C13

∂δu

∂x

∂w

∂z
+ C22

∂v

∂y

∂δv

∂y
+ C23

∂v

∂y

∂δw

∂z
+ C23

∂δv

∂y

∂w

∂z

+C33
∂w

∂z

∂δw

∂z
+ C16

∂u

∂x

(
∂δu

∂y
+
∂δv

∂x

)

+ C16
∂δu

∂x

(
∂u

∂y
+
∂v

∂x

)

+C26
∂v

∂y

(
∂δu

∂y
+
∂δv

∂x

)

+ C26
∂δv

∂y

(
∂u

∂y
+
∂v

∂x

)

+ C36
∂w

∂z

(
∂δu

∂y
+
∂δv

∂x

)

+C36
∂δw

∂z

(
∂u

∂y
+
∂v

∂x

)

+ C44

(
∂v

∂z
+
∂w

∂x

)(
∂δv

∂z
+
∂δw

∂x

)

+C55

(
∂u

∂z
+
∂w

∂y

)(
∂δu

∂z
+
∂δw

∂y

)

+ C66

(
∂u

∂y
+
∂v

∂x

)(
∂δu

∂y
+
∂δv

∂x

)

+C45

(
∂v

∂z
+
∂w

∂x

)(
∂δu

∂z
+
∂δw

∂y

)

+ C45

(
∂δv

∂z
+
∂δw

∂x

)(
∂u

∂z
+
∂w

∂y

)

−e15δE1

(
∂u

∂z
+
∂w

∂x

)

− e15E1

(
∂δu

∂z
+
∂δw

∂x

)

− e24δE2

(
∂v

∂z
+
∂w

∂y

)

−e24E2

(
∂δv

∂z
+
∂δw

∂y

)

− e31δE3
∂u

∂x
− e31E3

∂δu

∂x
− e32δE3

∂v

∂y
− e32E3

∂δv

∂y

−e33δE3
∂w

∂z
− e33E3

∂δw

∂z
− q15δH1

(
∂u

∂z
+
∂w

∂x

)

− q15H1

(
∂δu

∂z
+
∂δw

∂x

)

−q24δH2

(
∂v

∂z
+
∂w

∂y

)

− q24H2

(
∂δv

∂z
+
∂δw

∂y

)

− q31δH3
∂u

∂x
− q31H3

∂δu

∂x

−q32δH3
∂v

∂y
− q32H3

∂δv

∂y
− q33δH3

∂w

∂z
− q33H3

∂δw

∂z
− ǫ11E1δE1

−ǫ22E2δE2 − ǫ33E3δE3 − µ11H1δH1 − µ22H2δH2 − µ33H3δH3]} dV

+

∫ t

t0

dt

∫

S

(Tkδuk − σδφ− Iδψ) dS = 0 (10)

It is possible to integrate the weak form by parts and collect the cofficients with re-

spect to δu, δv, δw, δφ, and δψ. Since we use Ritz method, there is no need for this step.

Here the focus is on the quasi-static state which means there is no electric charge or current

densities across the surface. Body forces are also assumed to be zero in the results that follow.

9



2.2 Ritz Approximations

The five primary field variables (u, v, w, φ and ψ) can be approximated with x, y, z and

t as follows:

u(x, y, z, t) =
n∑

j=1

Uj (x, y, t) Ψ̄
u
j (z) =

m∑

i=1

n∑

j=1

Uji (t)Ψ
u
i (x, y) Ψ̄

u
j (z)

v(x, y, z, t) =
n∑

j=1

Vj (x, y, t) Ψ̄
v
j (z) =

m∑

i=1

n∑

j=1

Vji (t)Ψ
v
i (x, y) Ψ̄

v
j (z)

w(x, y, z, t) =
n∑

j=1

Wj (x, y, t) Ψ̄
w
j (z) =

m∑

i=1

n∑

j=1

Wji (t)Ψ
w
i (x, y) Ψ̄

w
j (z)

φ(x, y, z, t) =
n∑

j=1

Φj (x, y, t) Ψ̄
v
j (z) =

m∑

i=1

n∑

j=1

Φji (t)Ψ
φ
i (x, y) Ψ̄

φ
j (z)

ψ(x, y, z, t) =
n∑

j=1

Ψj (x, y, t) Ψ̄
v
j (z) =

m∑

i=1

n∑

j=1

Ψji (t)Ψ
ψ
i (x, y) Ψ̄

ψ
j (z)

(11)

Here Uji, Vji, Wji, Φji and Ψji are unknown constants. Ψi(x, y) are the in-plane approxi-

mation functions, while Ψ̄j are the one-dimensional Lagrangian interpolation polynomials in

the thickness direction respect to each variable.

The corresponding virtual fields can be expressed as:

δu = Ψu
i (x, y) Ψ̄

u
j (z) , δv = Ψv

i (x, y) Ψ̄
v
j (z) , δw = Ψw

i (x, y) Ψ̄
w
j (z)

δφ = Ψφ
i (x, y) Ψ̄

φ
j (z) , δψ = Ψψ

i (x, y) Ψ̄
ψ
j (z) (12)

By assuming periodic motion, substituting these approximations into the weak form, and

collecting the coefficients of the variations of the displacements and placing the results in

matrix form, the system can be written as:

10





















[M11] [0] [0] [0] [0]

[0] [M22] [0] [0] [0]

[0] [0] [M33] [0] [0]

[0] [0] [0] [0] [0]

[0] [0] [0] [0] [0]

























{U}

{V }

{W}

{Φ}

{Ψ}







ρω2 +



















[K11] [K12] [K13] [K14] [K15]

[K21] [K22] [K23] [K24] [K25]

[K31] [K32] [K33] [K34] [K35]

[K41] [K42] [K43] [K44] [K45]

[K51] [K52] [K53] [K54] [K55]

























{U}

{V }

{W}

{Φ}

{Ψ}







=







{0}

{0}

{0}

{0}

{0}







(13)

The submatrices here are related to the materials’ characteristics that include the elastic

stiffnesses, piezoelectric coefficients, piezomagnetic coefficients or shape functions. These

matrices are given in the Appendix A.

The DL model is based on separating the field variables in the thickness direction and

within the plane of the plate. This can effectively reduce the computational effort. Since

there is a break in the gradients of displacement in the z direction, one-dimensional La-

grangian polynomials are sufficient to describe these displacements in the thickness direction.

The in-plane functions are generated depending on the various lateral boundary conditions.

These are described below.
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2.3 Boundary Conditions

The following classes of boundary conditions are discussed:

1. SSSS: simply supported around all edges

Srinivas 18 solved this problem using an exact method . The in-plane approximation

functions are treated as harmonic functions as by Heyliger 11 to determine the fundamental

in-plane modes.

For the simple supported condition:

w = σxx = σxy = φ = ψ = 0 at x = 0, a (14)

w = σxy = σyy = φ = ψ = 0 at y = 0, b (15)

To satify the essential boundary conditions on w, φ, and ψ, Fourier series are selected.

The in-plane approximations can be written as:

Ψu
i (x, y) = cos

mπx

a
sin

nπy

b

Ψv
i (x, y) = sin

mπx

a
cos

nπy

b

Ψw
i (x, y) = sin

mπx

a
sin

nπy

b

Here φ and ψ have the same expression as w, and each individual pair of (m,n) contain a

different value of i.

18S. Srinivas, C.V. Joga Rao, and A.K. Rao, Some Results From an Exact Analysis of Thick Laminates

in Vibration and Buckling, J. Appl. Mech. 37, 868-870(1970).

12



2. CCCC: clamped around all edges

u = v = w = φ = ψ = 0 at x = 0, a and at y = 0, b (16)

Since displacements are zero at the domain endpoints, it is convenient to give the approx-

imations along (x, y) directions written in “parent” domain (ξ, η) which allows computations

in terms of coordinate origins. Chen et al. 8 used this approximation for the all clamped con-

dition and compared their results with frequencies from a FEM approach. The coordinate,

ξ and η are introduced as ξ = 2x
a

and η = 2y
b
and varying from -1 to 1, with ξi and ηi the

equally spaced locations within (-1, 1). For example, within the ξ domain the displacements

are expressed as following:

When i = 1, fx = (1− ξ) (1 + ξ)

When i = 2, fx = (1− ξ) ξ (1 + ξ)

When i = 3, fx = (1− ξ)

(
1

3
− ξ

)(
1

3
+ ξ

)

(1 + ξ)

3. FCFC: Here two opposite sides of the plate are “free” (in that all components of the

stress-traction vector are 0, as are the electric displacement and normal flux), and the others

are clamped. In this case it is assumed that the plate is clamped along the x direction, while

the y direction is free. Therefore the appropriate boundary conditions are:

u = v = w = φ = ψ = 0 at x = 0, a (17)

σyy = σxy = σyz = Dy = By = 0 at y = 0, b (18)
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Demarest 9 showed that group theory can be used to simplify vibration analysis. He

used cubic Legendre polynomials which give accurate results. The approximate functions

are given in the even/odd terms. The lowest three terms in the even group are 1, (3x2−1)/2,

and (35x4 − 30x2 + 3)/8, while for the odd functions are shown as x, (5x3 − 3x)/2, and

(63x5 − 70x3 + 15x)/8 19.

4. CFFF: only one edge is clamped, the others are free. This is also know as the cantilever

plate.

u = v = w = φ = ψ = 0 at x = 0 (19)

σxx = σxy = σxz = Dx = Bx = 0 at x = a (20)

σyy = σxy = σyz = Dy = By = 0 at y = 0, b (21)

Here, to match the displacements at x=0, we use power series of at least first order along

the x direction and maintain the Legendre polynomials in the y direction.

5. CCFF: two adjacent edges are clamped, while the others are free

u = v = w = φ = ψ = 0 at x = 0, y = 0 (22)

σxx = σxy = σxz = Dx = Bx = 0 at x = a (23)

σyy = σxy = σyz = Dy = By = 0 at y = b (24)

The displacements and potential along x and y directions are extended as power series in a

manner similar to the cantilever plate.

19M. Abromowitz, I.A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1965.
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6. SFSF: two opposite sides are simply supported and the others are free

w = σxx = σxy = φ = ψ = 0 at x = 0, a (25)

σyy = σxy = σyz = Dy = By = 0 at y = 0, b (26)

Fourier series are used in the x direction. The only difference is specified terms for approx-

imate function, as m and n are either 2i+1 or 2i. The approximation functions in u and

v are coupled with the displacement in w. And the modes are separated into two groups

(odd and even) according to these groupings. For example, the first term in odd group

are: Ψu
1(x, y) = cosπx

a
sinπy

b
, Ψv

1(x, y) = sinπx
a
cosπy

b
, and Ψw

1 (x, y) = sinπx
a
sinπy

b
. The first

terms in the even group are given as: Ψu
2(x, y) = cos2πx

a
sin2πy

b
, Ψv

2(x, y) = sin2πx
a
cos2πy

b
, and

Ψw
2 (x, y) = sin2πx

a
sin2πy

b
.

2.4 General Group Theories

Because of symmetries about the middle lines of the plate, the eigenvalue problem

achieved from the governing equations can be separated into different groups. This allows a

significant computational effort reduction. In general, this separation can be represented by

the following sums:

Ψu
i (x, y, z) =

m∑

i=1

n∑

j=1

Ψu
i (x, y)Ψ̄

u
j (z)

=
n∑

k=1

m∑

i=1

Ψu
ik(x)Ψ

u
ik(y)

n∑

j=1

Ψ̄u
j (z) (27)
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n∑

k=1

m∑

i=1

Ψu
ik(x)Ψ

u
ik(y)

=

N1∑

k=1,3,5...

N1∑

i=1,3,5...

Ψu
ik(x)Ψ

u
ik(y)

︸ ︷︷ ︸

NO(x)NO(y)

+

N1∑

k=1,3,5...

N2∑

i=2,4,6...

Ψu
ik(x)Ψ

u
ik(y)

︸ ︷︷ ︸

NO(x)NE(y)

)

+

N2∑

k=2,4,6...

N1∑

i=1,3,5...

Ψu
ik(x)Ψ

u
ik(y)

︸ ︷︷ ︸

NE(x)NO(y)

+

N2∑

k=2,4,6...

N2∑

i=2,4,6...

Ψu
ik(x)Ψ

u
ik(y)

︸ ︷︷ ︸

NE(x)NE(y)

= NO(x)NO(y)
︸ ︷︷ ︸

group1

+NO(x)NE(y)
︸ ︷︷ ︸

group2

+NE(x)NO(y)
︸ ︷︷ ︸

group3

+NE(x)NE(y)
︸ ︷︷ ︸

group4

(28)

For simply supported plates, there is no deflection in z direction at the supports. The first

four mode shapes of each direction as shown as follows. Each shape of deflection will fall

into the combination of these, as shown in Figure 2.

Figure 2: The first four modes for the simply supported condtion

For the all clamped and clamped and free on the opposite sides conditions, due to the

symmetry of the center groups of displacement field can be written as in Table 1, where the
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designations OD, EX, and so on were introduced by Ohno 20. Therefore, instead of solving

the entire problem, 4 reduced eigenvalueproblems can be solved.

Group displacment x y Group displacemnet x y

OD,EZ u O E OX,EY u O O

v E O v E E

w E E w E O

ψ E E ψ E O

φ E E φ E O

EX,OY u E E EV,OZ u E O

v O O v O E

w O E w O O

ψ O E ψ O O

φ O E φ O O

Table 1: Group theory for CCCC and FCFC conditions

20I. Ohno, Free Vibration of a Rectangular Papallelepiped Crystal and its Application to Determination
of Elastic Constants of Orthorhombic Crystals, J. Phys. Earth. 24, (1976) 355-379
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CHAPTER 3 ISOTROPIC BEAMS

Beams are one of the most basic elements in the engineering field and are frequently used

to model framed structures. Since the deflected shape of the beam can be caused by loads

or support motion, especially those associated with wind and earthquakes, beam response

can have a strong correlation to the natural frequency of vibration. Although the DL model

is mainly used for plates in this thesis, it can also be used to represent beam response

as the out-of-plane lateral dimension becomes small. To assess the accuracy and test the

limitations of the DL model, a series of comparisons with Euler-Bernoulli (EB) beam theory

12 is provided in this section. The EB beam theory is the simplest theory for calculating the

deflection characteristics of beams and gives the most accurate results for beams where the

length is much larger than the other dimensions. As is the case for the plate, it is of interest

to determine the level of accuracy of the elementary EB kinematic model as the length of

the beam decreases, which is known as slenderness or thickness effect as following.

Except for the deflection, the elongation along the longitudianl direction is another sig-

nificant charateristic of beams. Bar theory is the simplyest theory to detect the vibration of

longitudinal direction. Since Kirchhoff’s beam theory assumes that the cross section of the

beam originally plane stay plane after deformation 12. As beams become longer, the effect

of the cross section can be neglected. The longitudinal vibration of beams is closer to the

vibration of bars. Hence, axial frequencies are also inspected in this section.

Three types of beam boundary conditions are considered here that are among those most

frequently encountered: simply supported, fixed-fixed and cantilever beams. The completely

isotropic homogeneous beam is chosen first to study comparisons with the DL model. All
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variables are assumed to be independent of the out-of-plane coordinate y in the examples that

follow. Discrete layers of equal thickness are used. There are two convergence behaviors that

are studied here: the number of axial terms with the layers fixed, and the number of layers

with the axial terms fixed. Two different isotropic materials are considered with Poisson

ratios: ν = 0 and ν = 0.3 . The dimensionless frequency parameter used is ̟ = ω
√

ρh/G,

and all frequencies are reported using this quantity. The cross section of the beam is square

with b=h, where b is the width in the y-direction. Two values of length to thickness ratio

are initially used: a/h=10 and a/h=20, respectively, to assess the influence of slendeness.

3.1 Free Vibrations of Simply Supported Isotropic Beams

3.1.1 Frequency Comparison with EB/ Axial/ Torsion Theory

The dimensionless frequencies for the representative beams are given in Tables 2 and 3.

Several observations can be made. First, a single axial term can provide excellent results

depending on the boundary conditions, as in the case of simple support. Other conditions

may require at least two or more functions. Second, the axial frequency for ν = 0 has

excellent agreement with bar theory for all conditions considered here. However, when the

beam is constrained in a Poisson sense, higher frequencies are achieved using the DL model.

Third, in general, the bending frequencies for zero Poisson ratio are in excellent agreement

with the EB result for a/h=20, but the agreement is not as good for a/h=10 when shear

is more likely to influence the results. In every case, however, accounting for a non-zero

Poisson ratio tends to increase the frequencies by about 18 percent.

Table 4 shows the dimensionless frequencies as a function of the number of axial terms.

Maintaining five axial terms, the DL model can give relatively good results even with rela-

tively few layers.
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Table 2: Dimensionless frequencies of simply supported beams(a/h=20) with 8 layers

Isotropic
materials

Terms in
x

DL Model

1st bending 2nd bending 3rd bending 1st axial

Terms
(ν = 0)

1 1.0038e-2 3.9749e-2 ——— 0.2221

2-6 1.0038e-2 3.9749e-2 8.7990e-2 0.2221

Terms
(ν = 0.3)

1 1.2009e-2 4.7430e-2 ——— 0.2655

2-6 1.2009e-2 4.7430e-2 0.1046 0.2655

EB/Bar 1.0073e-2 4.0293e-2 9.0658e-2 0.2221

Table 3: Dimensionless frequencies of simply supported beams(a/h=10) with 8 layers

Isotropic
materials

Terms in
x

DL Model

1st bending 2nd bending 3rd bending 1st axial

Terms
(ν = 0)

1 3.9749e-2 0.1531 ——— 0.4443

2-6 3.9749e-2 0.1531 0.3258 0.4443

Terms
(ν = 0.3)

1 4.7430e-2 0.1810 ——— 0.5306

2-6 4.7430e-2 0.1810 0.3809 0.5306

EB/Bar 4.0293e-2 0.1612 0.3626 0.4442

Table 4: Dimensionless frequencies of discrete isotropic beams under simply supported con-
dition(a/h=20) with five axial terms and ν = 0

Layers
DL Model

1st bending 2nd bending 3rd bending 1st axial

1 1.0042e-2 3.9807e-2 8.8269e-2 0.2221

2 1.0042e-2 3.9807e-2 8.8269e-2 0.2221

4 1.0039e-2 3.9763e-2 8.8056e-2 0.2221

8 1.0038e-2 3.9749e-2 8.7990e-2 0.2221

16 1.0038e-2 3.9745e-2 8.7972e-2 0.2221

32 1.0038e-2 3.9744e-2 8.7968e-2 0.2221
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3.1.2 Comparison with Other Theories

Natural frequencies of an isotropic beam under simply supported condition have been

studied by Karin et al. 21 using what they called the Enhanced Continuum Mechanics Based

Formulation (CMF) and Structural Mechanics Based Formulation (SMF). The dimensions of

their beam were taken to be: a=2 m and b=h=0.4 m. The material properties are considered

as follows: ρ = 7850kg/m3, E = 1 × 109N/m2 and ν = 0.3. This problem is treated here

using a 8-layer discretization through the thickness. Results are calculated by 5 terms in x

and 3 terms in y. The comparisons are shown in Table 5.

Table 5: Frequencies for simply supported beams(rad/s)

Theory 1st bend-
ing

2nd bend-
ing

1st tor-
sional

1st axial 1st
shear

2nd
shear

CMF 95.6340 332.235 319.346 560.642 1766.99 1878.87

SMF 95.6341 332.236 319.347 560.642 1766.99 1878.87

Timoshenko 95.6340 332.235 319.350 560.642 1766.99 1878.87

Present 96.8729 337.132 320.575 641.714 1749.63 1856.65

As opposed to the DL model of the pin-pin beam, Karin et al. treat their simply-

supported beam as a fixed-roller condition. Therefore, for the axial frequencies, their results

are closer to the frequencies of cantilever beams, which is shown as w = (2n−1)π
2L

√

E/ρ

(n=1,2,3,...) 12. To compare with frequency given by w = nπ
L

√

E/ρ (n=1,2,3,...) 12, we

double the 1st axial values. In Karin et al ’s paper, they define the shear modes, which

we call the transverse shear modes, meaning that there is only shear deformation in the xz

plane. By comparing the possible mode shapes given by Karin et al. to these values, the

corresponding 1st shear and 2nd shear mode shapes calculated by the DL model are plotted

21K. Nachbagauer, P. Gruber, and J. Gerstmayr, A 3D Shear Deformable Finite Element Based on the
Absolute Nodal Coordinate Formulation, Multibody Dynamics, Springer Netherlands, (2013) pp 77-96.
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in Figure 3. As the DL model uses a piecewise linear function through the thickness, results

are slightly lower than Karinet al ’s calculations. The remaining frequencies are in excellent

agreement.

1st shear mode shape 2nd shear mode shape

Figure 3: The first two tranverse shear mode shapes of simply supported beams with a/h=5

3.1.3 Influence of a/h

Using 8 layers, 5 terms in x and 3 terms in y, Figures 4 and 5 show the differences

between the DL and elementary beam/bar results for different Poisson ratios. Here, ωA

stands for the EB beam theory, St. Venant torsion theory, or the one-dimensional axial bar

theory values. The analytical value for the torsional frequency is given by ω̄ =
√

Gkt/ρL2

21, where kt is 0.846 in this case. The correspending ratios with respect to each a/h point

are listed in Tables 6 and 7. It is clearly seen that with zero Poisson ratio and a length to

the thickness ratio that is relatively large, the lower frequencies from the DL model are in

nearly perfect agreement with the classical results. As the EB beam theory is kinematically

stiff, the differences are larger for the higher modes. For most length-to-thickness ratios,

there are only small differences for the axial and torsional frequencies.
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Figure 4: Differences between the DL model and the analytical values with ν = 0 as a
function of a/h ratio

Table 6: Ratios between the DL model and the analytical values with ν = 0

a/h 1 2 3 4 5 6 7 8 9 10

1 0.5521 0.7830 0.8796 0.9252 0.9499 0.9641 0.9732 0.9792 0.9834 0.9865

2 0.3272 0.5521 0.6937 0.7831 0.8409 0.8796 0.9063 0.9254 0.9393 0.9498

3 0.2283 0.4137 0.5521 0.6536 0.7280 0.7830 0.8242 0.8555 0.8796 0.8984

4 1.0002 1.0002 1.0002 1.0002 1.0002 1.0002 1.0002 1.0002 1.0002 1.0002

5 1.0043 1.0027 1.0034 1.0023 1.0022 1.0022 1.0022 1.0022 1.0022 1.0022

a/h 11 12 13 14 15 16 17 18 19 20

1 0.9888 0.9905 0.9919 0.9930 0.9939 0.9946 0.9952 0.9958 0.9962 0.9966

2 0.9578 0.9641 0.9691 0.9732 0.9765 0.9792 0.9815 0.9834 0.9851 0.9865

3 0.9134 0.9254 0.9351 0.9431 0.9498 0.9554 0.9601 0.9641 0.9676 0.9706

4 1.0002 1.0002 1.0002 1.0002 1.0002 1.0002 1.0002 1.0002 1.0002 1.0002

5 1.0021 1.0021 1.0021 1.0021 1.0021 1.0021 1.0021 1.0021 1.0021 1.0021
1: the 1st bending frequency 2: the 2nd bending frequency 3: the 3rd bending frequency

4: the 1st axial frequency 5: the 1st torsional frequency
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Figure 5: Differences between the DL model and the analytical values with ν = 0.3 as a
function of a/h ratio

Table 7: Ratios between the DL model and the analytical values with ν = 0.3

a/h 1 2 3 4 5 6 7 8 9 10

1 0.5241 0.7654 0.8722 0.9244 0.9527 0.9695 0.9802 0.9874 0.9924 0.9961

2 0.3036 0.5241 0.6700 0.7848 0.8289 0.8722 0.9025 0.9244 0.9405 0.9527

3 0.2108 0.3867 0.5241 0.6281 0.7063 0.7654 0.8104 0.8451 0.8722 0.8935

4 0.8832 0.9832 0.9930 0.9962 0.9976 0.9983 0.9988 0.9991 0.9993 0.9994

5 1.0087 1.0040 1.0030 1.0026 1.0024 1.0023 1.0023 1.0022 1.0022 1.0022

a/h 11 12 13 14 15 16 17 18 19 20

1 0.9988 1.0009 1.0026 1.0039 1.0050 1.0058 1.0066 1.0072 1.0077 1.0081

2 0.9621 0.9695 0.9754 0.9802 0.9841 0.9874 0.9901 0.9924 0.9944 0.9961

3 0.9106 0.9244 0.9356 0.9449 0.9527 0.9592 0.9648 0.9695 0.9736 0.9771

4 0.9995 0.9996 0.9996 0.9997 0.9997 0.9998 0.9998 0.9998 0.9998 0.9999

5 1.0022 1.0022 1.0022 1.0022 1.0022 1.0022 1.0022 1.0022 1.0021 1.0021
1: the 1st bending frequency 2: the 2nd bending frequency 3: the 3rd bending frequency

4: the 1st axial frequency 5: the 1st torsional frequency
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There is a Poisson end effect that results in a relatively large difference in axial frequency

for smaller a/h ratios as shown in Figure 5. This effect can be observed with the side view

of the middle surfaces in Figure 6. This demonstrates the proportion of end effects over the

entire beam under simply supported conditions. It can be seen that as the a/h ratio increases

the influence of end effects are decreased. Since torsional frequencies only vary with shear

modulus, there is virtually no change for torsional frequencies.

a/h=2 with ν=0 a/h=2 with ν=0.3

Figure 6: Poisson effects of simply supported beams in axial motion for Mode 1

3.1.4 Mode Shapes

For a non-zero Poisson ratio of ν = 0.3 and fixed length-to-thickness ratio of 10, the

first nine mode shapes for the simply-supported beam are illustrated in Figure 7. As layers

are discreted in the thickness direction, beams are easier bended within xz plane. Bending

mode shapes are repeated in xz and yz planes. Here, only show bending deflection in the

transverse direction. The lengths are frequently exaggerated in these plots because of the

scale factors used to visualized the modes.
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Mode 1: 1st bending Mode 2: 2nd bending Mode 3: 1st torsional

Mode 4: 3rd bending Mode 5: 1st axial Mode 6: 2nd torsional

Mode 7: 4th bending Mode 8: 3rd torsional Mode 9: 4th bending

Figure 7: First nine mode shapes of simply supported beams

3.1.5 Slenderness

The first eleven nondimensional frequencies of simply supported beams composed of

this isotropic materials are plotted as a function of a/h ratio in Figure 8. Frequencies are

normalized by Ω = ω̄a2
√

ρh/Cmax, where Cmax is the maximum value in the stiffness matrix

(Cij). The full curved lines represent the transverse bending modes. The curved lines

represent the in-plane bending modes, and the torsional or axial mode shapes are displayed

by straight dashed lines. The capital letters near lines are abbreviations of the corresponding
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Figure 8: The first eleven frequencies for simply supported beams with ν = 0.3 as a function
of a/h ratio

mode type: B= bending, A= axial, and T= torsional. The labels given in the bracket

indicate the in-plane bending modes. The nature of the mode was identified by monitoring

the motion of the vertical straight lines perpendicular the x axis. The label in the figure

shows the corresponding mode shapes as a/h ratio is equal to 10 in sequence. One special

case needs to be mentioned. At the intersection of two lines of different mode types, two

mode patterns can occur together. Hence the freqencies are the same but the modal response

is of a different type.
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3.2 Free Vibrations of Fixed-fixed Isotropic Beams

3.2.1 Frequency Comparion with EB/ Axial/ Torsion Theory

As in the case of simply supported beams, the out-of-plane terms are eliminated to test

the convergence of the DL model for the fixed-fixed case. The dimensionless frequencies

of fixed-fixed beams at ratio of a/h=20 and a/h=10 are shown in Tables 8 and 9. With

higher values of approximation in x, the convergence is apparent for this boundary condition.

Results from the DL model are close to the classical EB and bar results for zero Poisson

ratio but the differences are again higher when this value is non-zero. From Table 10, there

is little difference in frequency as the number of layers increases beyond 8.

Table 8: Dimensionless frequencies of fixed-fixed beams(a/h=20) with 8 layers

Isotropic
materials

Terms in
x

DL Model

1st bending 2nd bending 3rd bending 1st axial

Terms
(ν = 0)

1 0.1581 ——— ——— 0.2236

2 8.8256e-2 0.2957 ——— 0.2236

3 2.2615e-2 0.1921 0.4583 0.2221

4 2.2599e-2 6.2247e-2 0.3268 0.2221

5 2.2537e-2 6.2028e-2 0.1230 0.2221

6 2.2536e-2 6.1088e-2 0.1218 0.2221

Terms
(ν = 0.3)

1 0.1581 ——— ——— 0.2958

2 8.9394e-2 0.2958 ——— 0.2761

3 2.7894e-2 0.1953 0.4587 0.2703

4 2.7790e-2 7.6207e-2 0.3331 0.2681

5 2.7233e-2 7.5446e-2 0.1494 0.2679

6 2.7214e-2 7.3141e-2 0.1464 0.2671

EB/Bar 2.2834e-2 6.2944e-2 0.1234 0.2221
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Table 9: Dimensionless frequencies of fixed-fixed beams(a/h=10) with 8 layers

Isotropic
materials

Terms in
x

DL Model

1st bending 2nd bending 3rd bending 1st axial

Terms
(ν = 0)

1 0.3162 ——— ——— 0.4472

2 0.1853 0.5909 ——— 0.4472

3 8.7170e-2 0.4083 0.9165 0.4443

4 8.7003e-2 0.2293 0.6974 0.4443

5 8.6858e-2 0.2276 0.4289 0.4443

6 8.6842e-2 0.2256 0.4217 0.4443

Terms
(ν = 0.3)

1 0.3162 ——— ——— 0.5916

2 0.1927 0.5914 ——— 0.5523

3 0.1059 0.4254 0.9196 0.5405

4 0.1050 0.2725 0.7258 0.5364

5 0.1036 0.2679 0.4987 0.5358

6 0.1035 0.2639 0.4857 0.5346

EB/Bar 9.1337e-2 0.2518 0.4936 0.4442

Table 10: Dimensionless frequencies of discrete isotropic beams under fixed-fixed condi-
tion(a/h=20) with five axial terms and ν = 0

Layers
DL Model

1st bending 2nd bending 3rd bending 1st axial

1 2.2575e-2 6.2306e-2 0.1238 0.2221

2 2.2575e-2 6.2306e-2 0.1238 0.2221

4 2.2546e-2 6.2094e-2 0.1231 0.2221

8 2.2537e-2 6.2028e-2 0.1230 0.2221

16 2.2535e-2 6.2011e-2 0.1229 0.2221

32 2.2534e-2 6.2006e-2 0.1229 0.2221
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3.2.2 Influence of a/h

From Figures 9-10, it is clear that the frequency reduction for fixed-fixed beams is larger

than those under the simply supported condition at lower a/h ratios for the DL model

compared to the simply-supported condition. The fundamental frequency from the classical

result is nearly 10 percent different when a/h is less than 6. Additionally, the non-zero

Poisson ratio gives a much higher axial frequency for small length-to-thickness ratios. This

is likely because of the additional end restraint.

3.2.3 Mode Shapes

The lateral views of the first nine modes of the fixed-fixed beam are shown in Figure 11.

The mode types are similar to those of the beam under simply supported conditions.

Figure 9: Differences between the DL model and the analytical values with ν = 0 as a
function of a/h ratio
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Table 11: Ratios between the DL model and the analytical values with ν = 0

a/h 1 2 3 4 5 6 7 8 9 10

1 0.3087 0.5358 0.6852 0.7797 0.8403 0.8802 0.9074 0.9266 0.9405 0.9510

2 0.1945 0.3833 0.5281 0.6367 0.7172 0.7771 0.8222 0.8565 0.8830 0.9039

3 0.1683 0.3140 0.4390 0.5439 0.6301 0.6999 0.7563 0.8018 0.8388 0.8689

4 1.0002 1.0002 1.0002 1.0002 1.0002 1.0002 1.0002 1.0002 1.0002 1.0002

5 1.0346 1.0192 1.0144 1.0125 1.0115 1.0110 1.0107 1.0105 1.0103 1.0102

a/h 11 12 13 14 15 16 17 18 19 20

1 0.9589 0.9651 0.9700 0.9740 0.9772 0.9799 0.9821 0.9840 0.9856 0.9870

2 0.9205 0.9339 0.9449 0.9540 0.9615 0.9679 0.9733 0.9780 0.9820 0.9854

3 0.8936 0.9140 0.9311 0.9453 0.9574 0.9677 0.9765 0.9841 0.9907 0.9964

4 1.0002 1.0002 1.0002 1.0002 1.0002 1.0002 1.0002 1.0002 1.0002 1.0002

5 1.0102 1.0101 1.0101 1.0100 1.0100 1.0100 1.0100 1.0099 1.0099 1.0099
1: the 1st bending frequency 2: the 2nd bending frequency 3: the 3rd bending frequency

4: the 1st axial frequency 5: the 1st torsional frequency

Table 12: Ratios between the DL model and the analytical values with ν = 0.3

a/h 1 2 3 4 5 6 7 8 9 10

1 0.2793 0.4998 0.6566 0.7623 0.8332 0.8815 0.9152 0.9394 0.9573 0.9707

2 0.1869 0.3551 0.4957 0.6086 0.6973 0.7666 0.8208 0.8635 0.8976 0.9251

3 0.1570 0.2913 0.4091 0.5123 0.6015 0.6774 0.7414 0.7952 0.8402 0.8780

4 1.0373 1.0263 1.0224 1.0203 1.0191 1.0184 1.0180 1.0178 1.0176 1.0175

5 1.0436 1.0242 1.0175 1.0145 1.0129 1.0120 1.0114 1.0111 1.0108 1.0106

a/h 11 12 13 14 15 16 17 18 19 20

1 0.9810 0.9891 0.9956 1.0008 1.0051 1.0086 1.0116 1.0141 1.0162 1.0181

2 0.9475 0.9660 0.9814 0.9943 1.0053 1.0147 1.0228 1.0298 1.0359 1.0413

3 0.9098 0.9367 0.9595 0.9789 0.9956 1.0099 1.0223 1.0331 1.0425 1.0508

4 1.0174 1.0173 1.0173 1.0173 1.0172 1.0172 1.0172 1.0172 1.0171 1.0171

5 1.0105 1.0104 1.0103 1.0102 1.0102 1.0101 1.0101 1.0101 1.0100 1.0100
1: the 1st bending frequency 2: the 2nd bending frequency 3: the 3rd bending frequency

4: the 1st axial frequency 5: the 1st torsional frequency
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Figure 10: Differences between the DL model and the analytical values with ν = 0.3 as a
function of a/h ratio

3.2.4 Slenderness

Figure 12 illustrates the influence of a/h for first eleven dimensionless frequencies for

isotropic beams under fixed-fixed conditions. Same notation as the previous condition. The

full curved lines indicate the transverse bending modes. The curved dash lines represent

the in-plane bending modes. Since only polynomials are used in y direction, the beams

are kinematically stiffer deformed in the xy plane. Also, due to different approximation

terms used in the x and y directions, the bending modes are quite different for the higher

frequencies. Under this condition, more axial and torsional mode shapes appear between each

of the bending modes. Compared with the simply supported condition, axial and torsional
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Mode 1: 1st bending Mode 2: 2nd bending Mode 3: 1st torsional

Mode 4: 3rd bending Mode 5: 1st axial Mode 6: 2nd torsional

Mode 7: 3rd torsional Mode 8: 2nd axial Mode 9: 4th bending

Figure 11: First nine mode shapes of fixed-fixed beams

modes change sides for higher frequencies under this boundary condition.

3.3 Free vibrations of Cantilever Isotropic Beams

3.3.1 Frequency Comparsion with EB/ Axial/ Torsion Theory

The natural frequencies at the ratio of a/h=20 and a/h=10 for the two different

isotropic cantilever beams are shown in Tables 13 and 14. Due to the small number of

degrees of freedom, some frequencies do not appear for small numbers of terms in the ap-

proximation. From the tables, as the number of terms is increased, the better convergence
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Figure 12: The first eleven frequencies for fixed-fixed beams with ν = 0.3 as a function of
a/h ratio

appears to be obtained.

3.3.2 Influence of a/h

Figures 13 and 14 represent frequencies as a function of the a/h ratio. Similar ten-

dencies are achieved as for the fixed-fixed beams, except that the precent reduction for this

condition is much smaller than that under the fixed-fixed case. For example, a 10 percent

reduction for the fundamental frequency occurs when the length-to-thickness ratio is nearly

3, which is the half length of beams under that condition for fixed-fixed beams. Additionally,

the torsional frequency is consistantly 4 percent higher than the analytical values. This is
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Table 13: Dimensionless frequencies of cantilever beams(a/h=20) with 8 layers

Isotropic
materials

Terms in
x

DL Model

1st bending 2nd bending 3rd bending 1st axial

Terms
(ν = 0)

1 4.3372e-3 ——— ——— 0.1225

2 4.5247e-3 0.1167 ——— 0.1115

3 3.5988e-3 3.3951e-2 0.2240 0.1111

4 3.5837e-3 2.2430e-2 0.1084 0.1111

5 3.5827e-3 2.2340e-2 6.2845e-2 0.1111

Terms
(ν = 0.3)

1 4.3413e-3 ——— ——— 0.1504

2 5.4700e-3 0.1173 ——— 0.1376

3 4.4078e-3 4.0227e-2 0.2276 0.1345

4 4.3633e-3 2.7265e-2 0.1260 0.1338

5 4.3355e-3 2.7026e-2 7.6099e-2 0.1335

EB/Bar 3.5885e-3 2.2489e-2 6.2968e-2 0.1111

most likely because of warping restraint at the fixed end.

3.3.3 Mode Shapes

For an a/h ratio of 10, the first nine mode shapes are plotted in Figure 15.

3.3.4 Slenderness

Figure 16 demonstrates the lowest frequencies for cantilever beams as a function of a/h.

The trends are similar to those for the fixed-fixed beams. However, the angles between

the lines representing the torsional and axial modes are more uniformly distributed for this

condition. The sequence of these two modes appear alternatively.
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Table 14: Dimensionless frequencies of cantilever beams(a/h=10) with 8 layers

Isotropic
materials

Terms in
x

DL Model

1st bending 2nd bending 3rd bending 1st axial

Terms
(ν = 0)

1 8.7165e-2 ——— ——— 0.2449

2 1.7676e-2 0.2401 ——— 0.2230

3 1.4318e-2 0.1219 0.4841 0.2221

4 1.4265e-2 8.6821e-2 0.3490 0.2221

5 1.4262e-2 8.6422e-2 0.2340 0.2221

6 1.4269e-2 8.6189e-2 0.2316 0.2221

Terms
(ν = 0.3)

1 8.7490e-2 ——— ——— 0.3008

2 2.1253e-2 0.2446 ——— 0.2751

3 1.7517e-2 0.1411 0.5044 0.2690

4 1.7331e-2 0.1046 0.3915 0.2676

5 1.7232e-2 0.1034 0.2775 0.2670

6 1.7181e-2 0.1027 0.2727 0.2667

EB/Bar 1.4354e-2 8.9956e-2 0.2519 0.2221

Table 15: Dimensionless frequencies of discrete isotropic beams under fixed-free condi-
tion(a/h=20) with five axial terms and ν = 0

Layers
DL Model

1st bending 2nd bending 3rd bending 1st axial

1 3.5833e-3 2.2371e-2 6.3065e-2 0.1111

2 3.5833e-3 2.2371e-2 6.3065e-2 0.1111

4 3.5829e-3 2.2347e-2 6.2936e-2 0.1111

8 3.5827e-3 2.2340e-2 6.2845e-2 0.1111

32 3.5363e-3 2.2060e-2 6.2032e-2 0.1107
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Figure 13: Differences between the DL model and the analytical values with ν = 0 as a
function of a/h ratio

Table 16: Ratios between the DL model and the analytical values with ν = 0

a/h 1 2 3 4 5 6 7 8 9 10

1 0.6830 0.8741 0.9363 0.9620 0.9753 0.9831 0.9865 0.9898 0.9932 0.9962

2 0.2973 0.5555 0.7108 0.8030 0.8599 0.8966 0.9213 0.9387 0.9513 0.9605

3 0.1925 0.4215 0.5704 0.6779 0.7558 0.8127 0.8547 0.8862 0.9103 0.9289

4 1.0002 1.0002 1.0002 1.0002 1.0002 1.0002 1.0002 1.0002 1.0002 1.0002

5 1.0501 1.0468 1.0456 1.0450 1.0447 1.0445 1.0444 1.0444 1.0443 1.0443

a/h 11 12 13 14 15 16 17 18 19 20

1 0.9947 0.9952 0.9961 0.9968 0.9969 0.9970 0.9986 0.9977 0.9982 0.9911

2 0.9685 0.9733 0.9788 0.9805 0.9855 0.9875 0.9895 0.9905 0.9921 0.9893

3 0.9436 0.9553 0.9648 0.9726 0.9790 0.9839 0.9891 0.9931 0.9960 0.9978

4 1.0002 1.0002 1.0002 1.0002 1.0002 1.0013 1.0027 0.9968 1.0002 1.0002

5 1.0442 1.0442 1.0442 1.0442 1.0442 1.0443 1.0437 1.0440 1.0441 1.0441
1: the 1st bending frequency 2: the 2nd bending frequency 3: the 3rd bending frequency

4: the 1st axial frequency 5: the 1st torsional frequency
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Figure 14: Differences between the DL model and the analytical values with ν = 0.3 as a
function of a/h ratio

Table 17: Ratios between the DL model and the analytical values with ν = 0.3

a/h 1 2 3 4 5 6 7 8 9 10

1 0.6643 0.8758 0.9475 0.9781 0.9935 1.0023 1.0078 1.0114 1.0139 1.0157

2 0.2797 0.5268 0.6888 0.7911 0.8566 0.9001 0.9301 0.9514 0.9671 0.9789

3 0.1600 0.3944 0.5428 0.6543 0.7391 0.8035 0.8527 0.8904 0.9198 0.9430

4 1.0207 1.0152 1.0129 1.0120 1.0115 1.0112 1.0111 1.0109 1.0109 1.0108

5 1.0524 1.0479 1.0463 1.0455 1.0451 1.0448 1.0446 1.0445 1.0444 1.0444

a/h 11 12 13 14 15 16 17 18 19 20

1 1.0171 1.0182 1.0190 1.0196 1.0202 1.0205 1.0210 1.0213 1.0210 1.0008

2 0.9880 0.9952 1.0009 1.0057 1.0095 1.0127 1.0151 1.0177 1.0195 1.0216

3 0.9614 0.9762 0.9883 0.9983 1.0066 1.0136 1.0187 1.0245 1.0289 1.0328

4 1.0108 1.0108 1.0107 1.0107 1.0107 1.0107 1.0107 1.0107 1.0107 1.0107

5 1.0443 1.0443 1.0443 1.0443 1.0442 1.0442 1.0442 1.0442 1.0442 1.0442
1: the 1st bending frequency 2: the 2nd bending frequency 3: the 3rd bending frequency

4: the 1st axial frequency 5: the 1st torsional frequency
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Mode 1: 1st bending Mode 2: 2nd bending Mode 3: 1st torsional

Mode 4: 1st axial Mode 5: 3rd bending Mode 6: 2nd torsional

Mode 7: 4th bending Mode 8: 2nd axial Mode 9: 3rd torsional

Figure 15: First nine mode shapes of cantilever beams

3.4 Characteristics of Isotropic Beams

By examining behaviors of free vibration of isotropic beams under three basic boundary

conditions using the DL model, results are useful and can also be used as a reference for the

studying of sandwiched MEE plates. Hence, a brief summary of isotropic beams is presented

as following:

1. Because of Poisson end effects, using results calculated by the classical beam theories

causes relatively large differences for the bending and axial frequencies with small
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Figure 16: The first eleven frequencies for cantilever beams with ν = 0.3 as a function of
a/h ratio

length-to-thickness ratios.

2. Due to te end restriction, the non-zero Poisson ratio gives higher axial frequencies for

small slenderness ratios under fixed-fixed and fixed-free conditions.

3. When frequencies are calculated by ω̄ = ωa
√

ρmax/Cmax and plotted with equation

Ω = ω̄a2
√

ρh/Cmax , the configurations of bending frequencies as a function of a/h ratio

are demonstrated as curved lines, while the lines of axial and torsional frequencies are

straight. The intersections of two lines indicate the occurance of coupled mode shapes.
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CHAPTER 4 COMPOSITE MEE BEAMS

Using regularities found in isotropic beams detect frequencies as a function of slenderness

of composite MEE beams under the similar boundary conditions. The following section

contains results for hexagonal and MEE composite beams. Four stacking sequences of MEE

beams are considered here: BBB, FFF, BFB and FBF, where B stands for BaTiO3 and F

stands for CoFe2O4 material. Properties of these materials are listed in Appendix B.

4.1 Characteristics of Composite MEE Beams

Composite beams frequently possess discontinuity of gradients of the displacements through

the thickness direction. An example of this is shown in Figure 17. This plot represents the

normalized u displacement component across the thickness of the beam with a/h=2 and

b=h=0.3 at the corner for the fundamental mode under simply supported condition. The

beam is made of BGB materials, where G stands for the Graphite-polymer materials. Prop-

erties of G material are listed in Table 18. The dashed lines represent the intersurface

between each layers. Kinks in the curves are caused by the linear approximate function in z

direction.

Figure 17: Through-thickness modal distribution of u at corner of bimaterial
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Table 18: Properties of Graphite-polymer materials

material coefficients of Graphite-polymer materials

E1 12.1(109) Pa ν23 0.248 G23 4.4(109) Pa

E2 155.0(109) Pa ν13 0.458 G13 3.2(109) Pa

E3 12.1(109) Pa ν21 0.248 G12 4.4(109) Pa

The dimensions of the cross section are b=h=0.3. The frequencies are calculated accord-

ing to the dimensionless parameter ω̄ = ωh
√

ρmax/Cmax and plotted by Ω = ω̄a2
√

ρmaxh/Cmax.

Here, ρmax and Cmax are the maximum values within beams of the densities and elastic stiff-

ness tensor components.

4.2 Simply Supported Condition

The DL model gives good convergence for isotropic beams with lower terms. Hence, 12

layers and 3 terms in x and y are used in this case.

Figure 18: Differences of the fundamental frequency with five stacking sequences under
simply supported conditions

The fundamental frequency variation with thickness ratio for five different material com-

binations is shown in Figure 18. ωA is taken as the value at a/h=30 with respect to each

stacking. From Figure 18, the differences between beams are quite small for the first bending

frequency.
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Figures 19-23 illustrate the influence of slenderness for the first eleven frequencies for

the five stacking sequences. The same notation is used as for the simply supported beams

composed of isotropic materials. The horizontal dashed lines give the a/h=30 value of each

transverse bending mode to show the influence of slenderness.

Figure 19: The influence of slenderness for the first eleven frequencies for beams with
anisotropic materials under simply supported conditions

Frequencies for the other beams are shown through Figure 26-29. The anisotropic beams

are controlled by in-plane bending modes at lower a/h ratios. This trait is especially obvious

for higher frequencies. With the increasing length over thickness ratios, the in-plane bending

and the correspending transverse bending frequencies are nearly identical. This is because

of the trigonometic function used in the K matrix which is shown in the appendix. As the

length increases, the length square is in the denominator. After integration those terms

become small. Then when the frequencies are computed, the same number nearly gets.
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Figure 20: The influence of slenderness for the first eleven frequencies for beams with BBB
materials under simply supported conditions

Figure 21: The influence of slenderness for the first eleven frequencies for beams with FFF
materials under simply supported conditions

44



Figure 22: The influence of slenderness for the first eleven frequencies for beams with BFB
materials under simply supported conditions

Figure 23: The influence of slenderness for the first eleven frequencies for beams with FBF
materials under simply supported conditions
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For MEE composite beams, it is shown that with large slenderness, beams are easily

bended in the transverse direction. This phenomenon is especially clear as increasing the

component of F material, even for lower a/h ratios. The differences between in-plane and

transverse bending frequencies increase with slenderness ratio.

Tables 19 and 20 list the first eleven frequencies according to each stacking sequences at

a/h ratio of 10 and 20. And Table 21 gives the bending frequency for the first four modes.

Results for all beams with a/h=10 and a/h=20 are listed in Table 22. Due to the

asymptote chosen as a/h=30, percent differences shown here are slightly lower than the actual

results for higher bending frequencies, such as the 4th bending frequency. An incremental

increase of F material, reductions tread higher under this lateral boundary condition. As

the amount of F material increases, the reductions also increase. For example, at a/h=10,

for the 3rd bending frequency, 11.9(FFF)>11.11(FBF)>10.83(BFB)>9.41(BBB).

Table 19: Frequencies for simply supported beams composed of five stacking sequences at
a/h=10

Mode Hex BBB FFF BFB FBF

1 9.51E-6 2.24E-5 1.40E-5 1.33E-5 1.50E-5

2 9.52E-6 2.32E-5 1.48E-5 1.45E-5 1.54E-5

3 3.66E-5 8.61E-5 5.30E-5 5.09E-5 5.72E-5

4 3.67E-5 8.82E-5 5.63E-5 5.52E-5 5.84E-5

5 6.93E-5 1.36E-4 8.14E-5 8.07E-5 8.75E-5

6 7.75E-5 1.83E-4 1.11E-4 1.07E-4 1.20E-4

7 7.84E-5 1.85E-4 1.18E-4 1.15E-4 1.22E-4

8 1.06E-4 2.47E-4 1.55E-4 1.52E-4 1.61E-4

9 1.29E-4 2.73E-4 1.63E-4 1.62E-4 1.75E-4

10 1.31E-4 3.02E-4 1.80E-4 1.77E-4 1.96E-4

11 1.39E-4 3.03E-4 1.92E-4 1.88E-4 2.00E-4
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Table 20: Frequencies for simply supported beams composed of five stacking sequences at
a/h=20

Mode Hex BBB FFF BFB FBF

1 9.60E-6 2.27E-5 1.42E-5 1.35E-5 1.52E-5

2 9.62E-6 2.35E-5 1.50E-5 1.47E-5 1.56E-5

3 3.80E-5 8.96E-5 5.59E-5 5.34E-5 6.01E-5

4 3.80E-5 9.29E-5 5.94E-5 5.81E-5 6.15E-5

5 1.39E-4 2.72E-4 1.63E-4 1.61E-4 1.75E-4

6 8.41E-5 1.98E-4 1.23E-4 1.17E-4 1.32E-4

7 8.43E-5 2.04E-4 1.31E-4 1.28E-4 1.35E-4

8 2.12E-4 4.94E-4 3.10E-4 3.05E-4 3.22E-4

9 1.46E-4 5.45E-4 3.26E-4 3.23E-4 3.50E-4

10 1.47E-4 3.53E-4 2.12E-4 2.04E-4 2.29E-4

11 2.77E-4 3.44E-4 2.25E-4 2.21E-4 2.34E-4

Table 21: Bending frequencies for simply supported beams composed of five stacking se-
quences at a/h=30

Bending
Mode

Hex BBB FFF BFB FBF

1 9.62E-6 2.27E-5 1.42E-5 1.35E-5 1.53E-5

2 3.84E-5 9.04E-5 5.65E-5 5.37E-5 6.07E-5

3 8.57E-5 2.02E-4 1.26E-4 1.20E-4 1.35E-4

4 1.51E-4 3.55E-4 2.20E-4 2.10E-4 2.37E-4

This phenomenon may be caused by the influence of piezoelectric and piezomagnetic

constants. From these properties, the F material is stiffer than B material in bending. Two

possible conditions may cause this. First, the piezomagnetic coefficients are relatively large.

This parameter represents the ability of magnetic potential energy transfer to mechanic

energy which is associated with the deformation. Second, the coupling between displacements
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Table 22: Differences for simply supported beams composed of five stacking sequences

a/h
Bending
frequency

% Differences below a/h=30 ω̄

Hexagonal BBB FFF BFB FBF

10

1 1.14 1.32 1.41 1.48 1.96

2 4.43 4.76 6.19 5.21 5.77

3 8.52 9.41 11.90 10.83 11.11

4 13.25 14.65 18.18 15.71 17.30

20

1 0.21 0.00 0.00 0.00 0.65

2 1.04 0.77 1.06 0.93 0.99

3 1.63 1.98 2.38 2.50 2.22

4 2.65 3.10 3.64 2.86 3.38

caused by strain energy and magnectic field is stronger than that caused by strain energy

and electric field.

4.3 Fixed-fixed Condition

As observed from the case of isotropic beams, a large number of terms are required to

satisfy convergence for the fixed-fixed case. Frequencies are calculated using 12 layers and 4

axial terms. Figure 24 presents the difference of fundamental frequency as a function of a/h

ratio. Compared with the simply-supported case, the differences are significantly larger.

Figure 24: Differences of the fundamental frequency with five stacking sequences under
fixed-fixed conditions
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Figures 25-29 give the effect of a/h ratio for the first eleven frequencies under fixed-fixed

conditions. For purely piezoelectric beams, the in-plane bending frequencies are slightly

lower than the transverse bending frequencies. This phenomenon is more obvious for the

third bending frequency in Figure 26. However, for purely piezomagnetic materials, the lines

are switched.

Figure 25: The influence of slenderness for the first eleven frequencies for beams with
anisotropic materials under fixed-fixed conditions

Tables 23 and 24 show the first eleven frequencies for five stacking sequences at a/h ratios

of 10 and 20, respectively.

Table 25 gives the values of the first three bending frequencies with length-to-thickness

ratio is 30. The corresponding percent difference of the first two frequencies at slenderness

of 10 and 20 respect below these values are listed in Table 26. When the a/h ratio is equal

to 10, the reduction in frequency is relatively large. As the a/h ratio increases to 20, the
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Figure 26: The influence of slenderness for the first eleven frequencies for beams with BBB
materials under fixed-fixed conditions

Figure 27: The influence of slenderness for the first eleven frequencies for beams with FFF
materials under fixed-fixed conditions
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Figure 28: The influence of slenderness for the first eleven frequencies for beams with BFB
materials under fixed-fixed conditions

Figure 29: The influence of slenderness for the first eleven frequencies for beams with FBF
materials under fixed-fixed conditions
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Table 23: Frequencies for fixed-fixed beams composed of five stacking sequences at a/h=10

Mode Hex BBB FFF BFB FBF

1 2.07E-5 5.06E-5 3.20E-5 2.99E-5 3.46E-5

2 2.09E-5 5.12E-5 3.38E-5 3.24E-5 3.47E-5

3 5.45E-5 1.32E-4 8.22E-5 7.80E-5 8.84E-5

4 5.54E-5 1.32E-4 8.28E-5 8.14E-5 8.95E-5

5 6.99E-5 1.37E-4 8.73E-5 8.35E-5 8.99E-5

6 1.06E-4 2.51E-4 1.60E-4 1.56E-4 1.65E-4

7 1.40E-4 2.76E-4 1.65E-4 1.63E-4 1.77E-4

8 1.61E-4 3.46E-4 2.01E-4 2.12E-4 2.22E-4

9 1.75E-4 3.67E-4 2.21E-4 2.15E-4 2.28E-4

10 2.12E-4 4.56E-4 2.72E-4 2.69E-4 2.93E-4

11 2.31E-4 5.01E-4 3.17E-4 3.11E-4 3.29E-4

Table 24: Frequencies for fixed-fixed beams composed of five stacking sequences at a/h=20

Mode Hex BBB FFF BFB FBF

1 2.16E-5 5.32E-5 3.49E-5 3.17E-5 3.75E-5

2 2.16E-5 5.43E-5 3.63E-5 3.46E-5 3.72E-5

3 5.95E-5 1.49E-4 1.64E-4 8.71E-5 1.77E-4

4 5.98E-5 1.47E-4 9.61E-5 1.63E-4 1.02E-4

5 1.40E-4 2.75E-4 9.99E-5 9.48E-5 1.03E-4

6 2.12E-4 5.01E-4 3.19E-4 3.11E-4 3.30E-4

7 2.80E-4 5.50E-4 3.29E-4 3.26E-4 3.54E-4

8 3.00E-4 6.35E-4 3.66E-4 3.88E-4 4.00E-4

9 3.29E-4 6.64E-4 4.03E-4 3.94E-4 4.17E-4

10 4.25E-4 9.07E-4 5.43E-4 5.37E-4 5.85E-4

11 4.62E-4 1.00E-3 6.36E-4 6.22E-4 6.59E-4
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Table 25: Bending frequencies for fixed-fixed beams composed of five stacking sequences at
a/h=30

Bending
Mode

Hex BBB FFF BFB FBF

1 2.18E-5 5.39E-5 3.57E-5 3.21E-5 3.79E-5

2 6.07E-5 1.50E-4 9.94E-5 8.92E-5 1.07E-4

3 4.86E-4 9.66E-4 5.29E-4 5.65E-4 5.76E-4

Table 26: Differences for fixed-fixed beams composed of five stacking sequences

a/h
Bending
frequency

% Differences below a/h=30 ω̄

Hexagonal BBB FFF BFB FBF

10
1 4.13 6.12 10.36 6.85 8.71

2 8.73 12.00 17.30 12.56 15.98

20
1 0.46 1.11 2.24 1.25 1.85

2 1.65 2.00 3.32 2.35 3.74

difference is reduced to within 5 percent.

4.4 Fixed-free Condition

A total of 4 terms in x and y directions accompanied with 3 discrete layers through

the thickness are used for this boundary condition. The difference of the fundamental fre-

quency are plotted in Figure 30. These lines are similar to beams with the simply supported

boundary condition.

Figures 31-35 demonstrate the first eleven frequencies influenced by slenderness for can-

tilever beams. There is a litte difference between each in-plane bending and transverse

bending frequences. It is caused by two conditions. First, the plate is layered through the

thickness; therefore, the plate is slightly stiffer for the in-plane bending. Second, different

approximate terms are used for the y and z directions. Hence, as the length increases, this
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Figure 30: Differences of the fundamental frequency with five stacking sequences under
fixed-free conditions

difference increases quickly with the integration of the K matix.

Figure 31: The influence of slenderness for the first eleven frequencies for beams with
anisotropic materials under fixed-free conditions

Tables 27 and 28 give the first eleven frequencies of five stacking sequencies under can-

tilever condition at a/h=10 and a/h=20.
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Figure 32: The influence of slenderness for the first eleven frequencies for beams with BBB
materials under fixed-free conditions

Figure 33: The influence of slenderness for the first eleven frequencies for beams with FFF
materials under fixed-free conditions
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Figure 34: The influence of slenderness for the first eleven frequencies for beams with BFB
materials under fixed-free conditions

Figure 35: The influence of slenderness for the first eleven frequencies for beams with FBF
materials under fixed-free conditions
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Table 27: Frequencies for fixed-free beams composed of five stacking sequences at a/h=10

Mode Hex BBB FFF BFB FBF

1 3.41E-6 8.09E-6 5.25E-6 4.88E-6 5.42E-6

2 3.41E-6 8.17E-6 5.29E-6 5.08E-6 5.66E-6

3 2.07E-5 4.90E-5 3.19E-5 2.96E-5 3.29E-5

4 2.08E-5 4.98E-5 3.19E-5 3.08E-5 3.43E-5

5 3.58E-5 7.04E-5 4.22E-5 4.17E-5 4.53E-5

6 5.30E-5 1.25E-4 7.92E-5 7.74E-5 8.20E-5

7 8.21E-5 1.84E-4 1.13E-4 1.12E-4 1.21E-4

8 8.54E-5 1.89E-4 1.17E-4 1.14E-4 1.22E-4

9 1.08E-4 2.12E-4 1.27E-4 1.26E-4 1.37E-4

10 1.60E-4 3.76E-4 2.28E-4 2.26E-4 2.46E-4

11 1.91E-4 3.81E-4 2.39E-4 2.33E-4 2.47E-4

Table 28: Frequencies for fixed-free beams composed of five stacking sequences at a/h=20

Mode Hex BBB FFF BFB FBF

1 3.42E-6 8.15E-6 5.30E-6 4.91E-6 5.46E-6

2 3.43E-6 8.22E-6 5.35E-6 5.12E-6 5.71E-6

3 2.14E-5 5.10E-5 3.36E-5 3.07E-5 3.44E-5

4 2.15E-5 5.15E-5 3.34E-5 3.21E-5 3.60E-5

5 7.16E-5 1.41E-4 8.43E-5 8.34E-5 9.06E-5

6 1.06E-4 2.50E-4 1.58E-4 1.55E-4 1.64E-4

7 1.03E-4 2.35E-4 1.48E-4 1.42E-4 1.55E-4

8 1.05E-4 2.39E-4 1.50E-4 1.46E-4 1.59E-4

9 2.16E-4 4.24E-4 2.54E-4 2.51E-4 2.73E-4

10 3.19E-4 7.53E-4 4.56E-4 4.50E-4 4.91E-4

11 3.39E-4 7.61E-4 4.78E-4 4.67E-4 4.95E-4
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Table 33 shows the difference for five stacking sequences, while the corresponding fre-

quencies at a/h=30 are listed in Table 29. The percentages increase rapidly for the third

bending frequency. For the a/h ratio of 20, the reduction is 5 percent or higher. For the first

two frequencies, the differences are quite small.

Table 29: Bending frequencies for fixed-free beams composed of five stacking sequences at
a/h=30

Bending
Mode

Hex BBB FFF BFB FBF

1 3.43E-6 8.23E-6 5.36E-6 4.91E-6 5.73E-6

2 2.16E-5 5.19E-5 3.37E-5 3.10E-5 3.63E-5

3 1.10E-4 2.55E-4 1.60E-4 1.52E-4 1.71E-4

Table 30: Differences for fixed-free beams composed of five stacking sequences

a/h
Bending
frequency

% Differences below a/h=30 ω̄

Hexagonal BBB FFF BFB FBF

10
1 0.58 0.73 1.31 0.61 1.22

2 3.70 4.05 5.34 3.58 5.51

3 22.36 25.88 29.38 26.32 28.65

20
1 0.00 0.12 0.19 0.00 0.35

2 0.46 0.77 0.89 0.00 0.83

3 4.55 6.27 7.50 6.58 7.02
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CHAPTER 5 ISOTROPIC PLATES

One of the key issues in the use of plate theory is determining the limits of its accuracy

as the plate thickness increases relative to the side dimensions. Before considering the case

of the laminated MEE plate, it is instructive to consider the frequency of the reduced case of

the isotropic square plate. This crucial topic has seen much discussion in recent years, and

it provides a useful comparison for the elasticity/continuum solution presented in this study.

We calculate the dimensionless frequencies for an isotropic square plate for six different lateral

boundary condition combinations. The continuum theory results clearly depend on the a/h

ratio of the plate, and we examine this influence by showing the frequencies calculated by

the continuum theory and comparing with the analytical thin-plate results. The results

show the limitations with the respect to the application of analytical thin isotropic plate

theory. Several of the lowest modes have fairly large differences with classical plate theory

results even when the plate has a fairly large a/h ratio. There has always been an element

of uncertainty regarding acceptable values for the thickness ratio of plates for which the

equations of thin plate theory will still apply, and this work attempts to further quantity

those limits.

Starting from isotropic plate and moving on to MEE plate using the discrete-layer

method, the non-dimensional vibration charateristics of individual plates with varied dif-

ferent thickness ratio a/h are presented and compared with the results available in the

literature with respect to different kinds of boundary conditions. The limitations of classical

thin plate theory and previously tabulated values for several frequencies in vibration are

59



discussed. The effects of the thickness ratio on each of the primary modal frequencies are

also examined, and limitations of thin plate theory are finally presented.

5.1 Classical Isotropic Plates’ Theories

Kirchhoff’s assumptions 12 are the basic kinematic restrictions in thin plate theory under

small deflection:

• Compared to the lateral dimensions of the plate, the thickness is much smaller.

• The mid-plane stays as the neutral plane after deformation.

• The deflection of the mid-plane is small while comparing to the thickness of the plate,

which is also known as the small-deflection theory.

• Plane sections perpendicular to the mid-surface stay normal to the mid-surface after

deflection. This assumption implies that the shear strains are zeros.

• The thickness of the plate does not change during a deflection. Thus, compared to the

other components of stress the transverse normal stress is small and can be neglected.

Since it is assumed that the straight-line perpendicular to the middle surface stays normal

to the middle surface without extension after the deformation of the plate, shear strains γxz

and γyz are zeros for the plate. This assumption requires that the shear stress σxz and σyz

must be recovered from equilibrium since they are zero using the constitutive law. As the

thickness decreases, typically 10 times smaller than the laterial dimensions, thin plate theory

can give relatively good results. By recovering the shear stresses directly from the strains,

the Mindlin model provides some improvement and the results are more accurate 12 . Using

the piecewise approximation through the thickness direction, the DL model is more flexible

than the previous models. Lower and more accurate frequencies can be obtained.
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As a number of references provide the results of the natural vibration of isotropic square

plates, a variety of frequency comparison are presented below for specific sets of boundary

conditions along the edges.

5.2 Simply Supported Condition

The convergence of the semi-analytical discrete layer model has been explored using the

natural frequencies of a square isotropic plate. For the simply supported condition, the

Navier solution gives an exact result for Kirchhoff’s plate theory. The in-plane variations

in transverse displacement are given as a single term in sine or cosine components of the

expansion. Fixing a/b=1, a/h=10 and ν = 0.3, the natural frequencies are compared with

Srinivas’s elasticity theory and Reddy’s higher-order shear deformation theory (HSDPT) 22.

Equal thicknesses of each discrete layer were used. The results are presented in terms

of the non-dimensional parameter ω̄ = ω (ρh2/G)
1/2

. Using 6 terms in x and y directions,

the results are shown in Table 31 as a function of the number of discrete layers (N). The

highlights in bold indicate the in-plane modes for which the transverse displacement is zero.

Each frequency was computed using 36 in-plane terms and 8 sub-layers, with the corre-

sponding mode shapes plotted using the plate mid-plane and 3D are shown in Figures 36

and 37. Since the transverse displacement is w(x, y) = sinnπx
a
sinmπy

b
, the numbers given in

brackets are shown as Navier grouping function(m,n).

It is clear that because of the symmetric boundary condition for the plate, repeated

frequencies appear in the mode shapes. All modes shown are bending modes with the

exception of mode 7, which is an in-plane stretching mode that were not computed by

22J.N. Reddy and N.D. Phan, Stability and Vibraiton of Isotropic, Orthotropic and Laminted Plates
according to a Higher-order Shear Deformation Theory, Journal of Sound and Vibration 98(2), 157-170
(1985).
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Table 31: The first ten non-dimensional frequencies of an isotropic square plate under simply

supported condition with ν = 0.3 and a/h = 10, normalized by ω̄ = ω (ρh2/G)
1/2

Boundary
conditions

Freq.
number

Srinivas
at al. 18

HSDPT
22

Present solution

N=4 N=8 N=16

SSSS 1 0.0932 0.0931 0.0939 0.0933 0.0932

2,3 0.226 0.2222 0.2245 0.2231 0.2227

4 0.3421 0.3411 0.3452 0.3429 0.3423

5,6 0.4171 0.4158 0.4211 0.4182 0.4174

7 —— —— 0.4443 0.4443 0.4443

8,9 0.5239 0.5221 0.5292 0.5253 0.5243

10 —— 0.6545 0.6642 0.6589 0.6575

Srinivas and Reddy. The displacement component w is quite small compared with the

displacements in other direction, and we use the deformation of the in-plane mesh to show

the deformed state as viewed from below.

Mode 1: (1,1) Mode 2: (1,2) Mode 3: (2,1)

Mode 4: (2,2) Mode 5: (1,3) Mode 6: (3,1)
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Mode 7 Mode 8: (2,3) Mode 9: (3,2)

Mode 10: (1,4) Mode 11: (4,1) Mode 12: (3,3)

Figure 36: First twelve mode shapes for isotropic plates under simply supported condition
plotted using the mid-plane

Mode 1: (1,1) Mode 2: (1,2) Mode 3: (2,1)

Mode 4: (2,2) Mode 5: (1,3) Mode 6: (3,1)
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Mode 7 Mode 8: (2,3) Mode 9: (3,2)

Mode 10: (1,4) Mode 11: (4,1) Mode 12: (3,3)

Figure 37: First twelve mode shapes for isotropic plates under simply supported condition
plotted in 3D

5.3 All-Clamped Condition

The natural frequencies of an all clamped isotropic(ν = 0.3) plate have been computed

by Liew et al.23 using the Rayleigh-Ritz procedure solve the energy function derived from

Mindlin’s plate theory 23. The frequency parameter was given as ω̄ = (ωa2/π2)
√

ρh/D,

where D = Eh3/[12(1 − ν2)] and h is the total thickness. Using 36 in-plane terms with

8 layers, results are shown in Table 32 and the corresponding mode shapes shown in mid-

surface and 3D are plotted in Figures 38 and 39.

Once again, the present model captures in-plane modes that were not considered by Liew

et al.. It is clear that as the thickness increases, the in-plane frequencies are reduced and

approach the lowest bending frequency given by simpler theories.

23K.M. Liew, Y.Xiang and S. Kitipornchai, Transverse vibration of thick rectangular plates-1. Compre-
hensive sets of boundary conditions,Computers and Structures 49(1) 1-29(1993).
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Table 32: The first ten non-dimensional frequencies of an isotropic square plate under CCCC
condition with ν = 0.3, normalized by ω̄ = (ωa2/π2)

√

ρh/D

Boundary
conditions

Freq.
number

a/h=10 a/h=5

Liew et al. [?] Present Liew et al. [?] Present

CCCC 1 3.2954 3.3297 2.6875 2.7370

2 6.2858 6.3633 4.6907 4.7940

3 6.2858 6.3633 4.6907 4.7940

4 8.8098 8.9295 —— 6.2751

5 10.3788 10.5316 —— 6.2751

6 10.4778 10.6316 6.2985 6.4484

7 ——- 12.5221 7.1767 7.3598

8 ——- 12.5221 —— 7.4371

9 12.5529 12.7474 7.2759 7.4621

10 12.5529 12.7474 8.5155 8.7416

Mode 1 Mode 2 Mode 3

Mode 4 Mode 5 Mode 6
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Mode 7 Mode 8 Mode 9

Mode 10 Mode 11 Mode 12

Figure 38: First twelve mode shapes of isotropic plates under CCCC condition plotted using
the mid-plane

Mode 1 Mode 2 Mode 3

Mode 4 Mode 5 Mode 6
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Mode 7 Mode 8 Mode 9

Mode 10 Mode 11 Mode 12

Figure 39: First twelve mode shapes of isotropic plates under CCCC condition plotted in
3D

5.4 FCFC Condition

Table 33 lists the first ten non-dimensional natural frequencies of isotropic square plates

for the FCFC condition. This case was also considered by Liew et al. 23 . A total of 36

in-plane terms are used along with 8 layers in the thickness direction.

Figures 40 and 41 show the first twelve mode shapes of this kind of plates in mid-surface

and 3D. Due to the Poisson effect, there are some extension in transverse direction at ends,

like Mode 1. By making cut planes perpendicular to the y axis, it is possible to detect the

deflection of bending modes. The opposite deflections of free sides indicate the torsional

modes, for example Mode 2.
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Table 33: The first ten non-dimensional frequencies of an isotropic square plate under FCFC
condition with ν = 0.3, normalized by ω̄ = (ωa2/π2)

√

ρh/D

Boundary
conditions

Freq.
number

a/h=10 a/h=5

Liew at al. 23 Present Liew at al. 23 Present

FCFC 1 2.0904 2.1094 1.7772 1.8061

2 2.4342 2.4533 2.0151 2.0429

3 3.9055 3.9312 —– 2.9771

4 5.3392 5.3996 3.1652 3.2004

5 5.7811 5.8408 4.0413 4.1242

6 —— 5.9501 4.3472 4.4262

7 6.9368 6.9834 —– 5.3326

8 7.3046 7.3757 —– 5.4493

9 9.6241 9.7567 5.3813 5.4827

10 9.9989 10.0960 5.3813 5.4831

Mode 1 Mode 2 Mode 3

Mode 4 Mode 5 Mode 6
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Mode 7 Mode 8 Mode 9

Mode 10 Mode 11 Mode 12

Figure 40: First twelve mode shapes of isotropic plates under FCFC condition

Mode 1 Mode 2 Mode 3

Mode 4 Mode 5 Mode 6
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Mode 7 Mode 8 Mode 9

Mode 10 Mode 11 Mode 12

Figure 41: First twelve mode shapes of isotropic plates under FCFC condition plotted in 3D

5.5 CFFF Condition

The cantilever plate is an extremely important case that has numerous practical applica-

tions, ranging from balconies and sunshades in the daily life to touch spots in the cellphone.

Liew et al. gave results without showing the mode shapes. Frequencies are compared respect

to the approaching values in Table 34. The present model consistantly gives bending and

torsional frequencies that are larger than those of the Mindlin results compared with Liew

et al. 23 . The in-plane frequencies are normally smaller.

Using 16 in-plane terms together with 4 layers, Figures 42 and 43 demonstrates the

corresponding mode shapes.
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Table 34: The first ten non-dimensional frequencies of an isotropic square plate under CFFF
condition with ν = 0.3, normalized by ω̄ = (ωa2/π2)

√

ρh/D

Boundary
conditions

Freq.
number

a/h=10 a/h=5

Liew at al. 23 Present Liew at al. 23 Present

CFFF 1 0.3476 0.3573 0.3384 0.3471

2 0.8168 0.8401 0.7445 0.7637

3 2.0356 2.1111 —— 1.1181

4 2.5836 2.2349 1.7806 1.8451

5 2.8620 2.9795 2.2765 2.5154

6 4.8162 3.0007 2.4205 2.5742

7 5.4834 5.3357 3.8851 2.6689

8 5.7769 5.4769 4.3168 2.9809

9 6.2381 5.9619 4.5996 4.3811

10 7.9181 7.9682 4.8966 4.8979

Mode 1 Mode 2 Mode 3

Mode 4 Mode 5 Mode 6
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Mode 7 Mode 8 Mode 9

Mode 10 Mode 11 Mode 12

Figure 42: First twelve mode shapes of isotropic plates under CFFF condition plotted using
the mid-plane

Mode 1 Mode 2 Mode 3

Mode 4 Mode 5 Mode 6
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Mode 7 Mode 8 Mode 9

Mode 10 Mode 11 Mode 12

Figure 43: First twelve mode shapes of isotropic plates under CFFF condition plotted in 3D

5.6 CCFF Condition

Results for this case are computed using 4 terms in both x and y directions together

with 4 layers. Comparison of frequencies is domenstrated in Table 35 and the corresponding

mode shapes shown in 2D and 3D are plotted in Figures 44 and 45. Compared with Liew et

al.’s results, frequencies calculated by Liew et al.’s might miss some in-plane values under

this condition for the a/h=5 case.

Mode 1 Mode 2 Mode 3
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Mode 4 Mode 5 Mode 6

Mode 7 Mode 8 Mode 9

Mode 10 Mode 11 Mode 12

Figure 44: First twelve mode shapes of isotropic plates under CCFF condition plotted using
the mid-plane

Mode 1 Mode 2 Mode 3
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Mode 4 Mode 5 Mode 6

Mode 7 Mode 8 Mode 9

Mode 10 Mode 11 Mode 12

Figure 45: First twelve mode shapes of isotropic plates under CCFF condition plotted in 3D

5.7 SFSF Condition

Table 36 shows the comparison with Liew et al.’s results. It is clear that Liew et al.’s

theory can only cover bending frequencies under SFSF condition. The corresponding mode

shapes for a/h=10 are shown in Figures 46 and 47.
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Table 35: The first ten non-dimensional frequencies of an isotropic square plate under CCFF
condition with ν = 0.3, normalized by ω̄ = (ωa2/π2)

√

ρh/D

Boundary
conditions

Freq.
number

a/h=10 a/h=5

Liew at al. 23 Present Liew at al. 23 Present

CCFF 1 0.6762 0.6946 0.6328 0.6489

2 2.2438 2.3246 1.9221 1.9856

3 2.5049 2.6055 2.1499 2.2313

4 4.2557 4.5059 —— 2.6032

5 5.5633 5.2043 —— 3.3287

6 5.8188 6.6564 3.4217 3.5729

7 7.2399 7.9353 4.3468 3.9720

8 7.5055 7.9449 4.5533 5.3123

9 9.9651 8.6372 5.4276 5.6800

10 10.1661 9.5767 5.6539 6.1263

Table 36: The first ten non-dimensional frequencies of an isotropic square plate under SFSF
condition with ν = 0.3, normalized by ω̄ = (ωa2/π2)

√

ρh/D

Boundary
conditions

Freq.
number

a/h=10 a/h=5

Liew at al. 23 Present Liew at al. 23 Present

SFSF 1 0.9565 0.9593 0.9102 0.9139

2 1.5593 1.5670 1.4280 1.4342

3 3.4307 3.4808 —— 2.4697

4 3.6838 3.7036 2.9521 2.9845

5 4.3358 4.3634 3.1684 3.1994

6 —— 4.9400 3.6435 3.6777

7 6.2971 6.4010 —— 4.6127

8 6.7071 6.9051 5.0216 5.0994

9 7.7648 7.8291 5.3173 5.4507

10 8.3513 8.4230 —— 5.6993
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Mode 1 Mode 2 Mode 3

Mode 4 Mode 5 Mode 6

Mode 7 Mode 8 Mode 9

Mode 10 Mode 11 Mode 12

Figure 46: First twelve mode shapes of isotropic plates under SFSF condition plotted using
the mid-plane
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Mode 1 Mode 2 Mode 3

Mode 4 Mode 5 Mode 6

Mode 7 Mode 8 Mode 9

Mode 10 Mode 11 Mode 12

Figure 47: First twelve mode shapes of isotropic plates under SFSF condition plotted in 3D
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CHAPTER 6 COMPOSITE MEE PLATES

6.1 Comparison with Existing Results

The free vibration of composite MEE plates under CCCC and FCFC conditions have

already been studied by Chen, Heyliger and Pan 8 using the semi-analytical DL approach. To

ensure that the present model works well under these conditions, choose the same coefficients

used by Chen et al.. Using the same layers and number of in-plane terms, exactly same values

were achieved for the hexagonal material under CCCC and FCFC conditions as shown in

Table 37.

Table 37: The first six non-dimensional frequencies of an elastic square plate with hexagonal
materials under CCCC & FCFC conditions, normalized by ω̄ = ωh

√

ρ/C11

CCCC Chen et al. 8 Present FCFC Chen et al. 8 Present

1 0.3332 0.3332 1 0.2193 0.2193

2 0.5987 0.5987 2 0.2572 0.2572

3 0.5987 0.5987 3 0.3798 0.3798

4 0.7459 0.7459 4 0.3967 0.3967

5 0.7459 0.7459 5 0.5182 0.5182

6 0.8138 0.8138 6 0.5656 0.5656

To verify the results for MEE materials, Table 38 lists the first six non-dimensional

frequencies for homogeneous plates of BBB or FFF under CCCC condition. Good agreement

can be found in each case.
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Table 38: The first six non-dimensional frequencies of square plates composed of BBB &
FFF materials under CCCC condition, normalized by ω̄ = ωa

√

ρmax/Cmax

the B material the F material

Chen et al. 8 Present Chen et al. 8 Present

1 1.7817 1.7817 1.3667 1.3667

2 2.9486 2.9486 2.2311 2.2311

3 2.9486 2.9486 2.2311 2.2311

4 3.2195 3.2195 2.7905 2.7905

5 3.2195 3.2195 2.2311 2.2311

6 3.7120 3.7120 2.9345 2.9345

6.2 SSSS Condition

Fixing the total thickness as h=0.3, the non-dimensional frequencies are calculated by

ω̄ = ωh
√

ρmax/cmax and plotted with Ω = ω̄a2
√

ρmaxh/cmax. Using 3 terms in x and y

associated with 12 layers, the fundamental frequency various with thickness ratio respect

to five different material combinations is displayed in Figure 48. The same notation as for

MEE composite beams, where ωA is the value of a/h=30 for each stacking. From the figure,

when slenderness ratio is 5, the reductions of these five materials are close to 10 percent.

Figure 48: Differences of the fundamental frequency with five stacking sequences under SSSS
conditions
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According to the same slenderness, the order of the reduction ratio is FFF >FBF >BFB

>BBB >Hex.

Figure 49 displays the influence of slenderness for the first six frequencies of hexagonal

material and the corresponding mode shapes. The horizontal dashed lines indicate the

asymptote of each frequency which is chozen as the value at a/h=30. Since the boundary

condition is symmetric about the center, mode shapes are repeated(Mode 2: (2,1) & Mode

3: (1,2) and Mode 5: (1,3) & Mode 6: (3,1)) and the frequency lines are coincident for these

modes. It is clear that the shape of each mode is similar to the same condition of isotropic

plates.

Figures 50-53 show the frequency arrangement of the other four stacking sequences. The

figurations are almost the same as the hexagonal material, except that the in-plane mode

appears for the FBF sequence which is illustrated by a straight dashed line in Figure 53.

By drawing a line perpendicular to the x axis, it is apparent that the appearance of order

sequence is different for the FBF sequence. Using the same notation as mode shapes for

isotropic plates, mode 6(3,1) comes after mode 7 which is a in-plane mode shape under this

condition.

Tables 39-41 list the first six frequencies at a/h ratios of 10, 20 and 30, respectively. The

corresponding difference percentages are given in Table 42. The same phenomenon occurs as

shown in simply supported beams. With the increased amount of F material, the reductions

also increase. For the a/h ratio larger than 20, the differences are within 3 percent.
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The influence of slenderness for the first six frequencies for plates
with ansotropic materials under SSSS condition

Mode 1 Mode 2 Mode 3

Mode 4 Mode 5 Mode 6

First six mode shapes for plates with ansotropic materials under SSSS condition

Figure 49: First six frequencies and mode shapes under SSSS condition
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Figure 50: The influence of slenderness for the first six frequencies for plates with BBB
materials under SSSS conditions

Figure 51: The influence of slenderness for the first six frequencies for plates with FFF
materials under SSSS conditions
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Figure 52: The influence of slenderness for the first six frequencies for plates with BFB
materials under SSSS conditions

Figure 53: The influence of slenderness for the first seven frequencies for plates with FBF
materials under SSSS conditions
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Table 39: Frequencies for homogeneous plates composed of five stacking sequences under
SSSS condition at a/h=10

Mode Hex BBB FFF BFB FBF

1 1.88E-5 4.67E-5 2.90E-5 2.77E-5 3.12E-5

2 4.55E-5 1.12E-4 6.86E-5 6.61E-5 7.42E-5

3 4.55E-5 1.12E-4 6.86E-5 6.61E-5 7.42E-5

4 7.06E-5 1.72E-4 1.05E-4 1.01E-4 1.13E-4

5 8.65E-5 2.10E-4 1.27E-4 1.24E-4 1.38E-4

6 8.65E-5 2.10E-4 1.27E-4 1.24E-4 1.38E-4

Table 40: Frequencies for homogeneous plates composed of five stacking sequences under
SSSS condition at a/h=20

Mode Hex BBB FFF BFB FBF

1 1.92E-5 4.78E-5 2.99E-5 2.84E-5 3.21E-5

2 4.75E-5 1.18E-4 7.37E-5 7.00E-5 7.92E-5

3 4.75E-5 1.18E-4 7.37E-5 7.00E-5 7.92E-5

4 7.54E-5 1.87E-4 1.16E-4 1.11E-4 1.25E-4

5 9.37E-5 2.32E-4 1.44E-4 1.37E-4 1.55E-4

6 9.37E-5 2.32E-4 1.44E-4 1.37E-4 1.55E-4

Table 41: Frequencies for homogeneous plates composed of five stacking sequences under
SSSS condition at a/h=30

Bending
Mode

Hex BBB FFF BFB FBF

1 1.93E-5 4.80E-5 3.01E-5 2.85E-5 3.23E-5

2 4.80E-5 1.19E-4 7.47E-5 7.09E-5 8.02E-5

3 4.80E-5 1.19E-4 7.47E-5 7.09E-5 8.02E-5

4 7.64E-5 1.90E-4 1.19E-4 1.13E-4 1.28E-4

5 9.52E-5 2.37E-4 1.48E-4 1.40E-4 1.59E-4

6 9.52E-5 2.37E-4 1.48E-4 1.40E-4 1.59E-4
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Table 42: Differences for homogeneous plates composed of five stacking sequences under
SSSS condition

a/h
Bending
frequency

% Differences below a/h=30 ω̄

Hexagonal BBB FFF BFB FBF

10

1 2.59 2.71 3.65 2.81 3.41

2 5.21 5.88 8.17 6.77 7.48

3 5.21 5.88 8.17 6.77 7.48

4 7.59 9.47 11.76 10.62 11.72

5 9.14 11.39 14.19 11.43 13.21

6 9.14 11.39 14.19 11.43 13.21

20

1 0.52 0.42 0.66 0.35 0.62

2 1.04 0.84 1.34 1.27 1.25

3 1.04 0.84 1.34 1.27 1.25

4 1.31 1.58 2.52 1.77 2.34

5 1.58 2.11 2.70 2.14 2.52

6 1.58 2.11 2.70 2.14 2.52

6.3 CCCC Condition

Group theory was used for this condition, with 4 terms used in both lateral directions

with 12 sub-layer through the thickness. The differences of the first frequency with respect

to the five stacking sequences are shown in Figure 54. The reductions are bigger than the

all simply supported condition. Around slenderness of 10, differences can be less than 10

percent.

Figure 55 gives the first six frequencies as a function of a/h ratio and the corresponding

mode shapes. It is clear that as the slenderness increases, the fifth and the sixth frequencies

are identical.
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Figure 54: Differences of the fundamental frequency with five stacking sequences under
CCCC conditions

Figures 56-59 show the effect of length-to-thickness ratio for the first six frequencies for

other four stacking sequences under all-clamped conditions. The configuration of difference

is similar to that of all simply supported condition. Frequencies are repeated and lines are

coincident for mode 2 and 3. Otherwies, there is a litte difference for the fifth and sixth

frequencies of the pure BBB and FFF materials. Hence, asymptotes of these two frequencies

are slightly separated in Figures 56 and 57.

Tables 43-45 list the first six frequencies of the five stacking sequences under all-clamped

condiiton with a/h are equal to 10, 20 and 30. Table 46 gives the percentage of difference

according to five stacking sequences. The differences are larger for the higher frequencies at

a/h=10. For the fifth frequency of FFF plates, the reduction is over 20 percent. Differences

are reduced for the sixth frequency, which is quite apparent for the hexagonal material with

a/h ratio of 20. It is caused by the occurrent order of mode shapes are changed for the

higher frequencies at this point.
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The influence of slenderness for the first six frequencies for plates
with ansotropic materials under CCCC conditions

Mode 1 Mode 2 Mode 3

Mode 4 Mode 5 Mode 6

First six mode shapes for plates with ansotropic materials under CCCC conditions

Figure 55: First six frequencies and mode shapes under CCCC conditions
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Figure 56: The influence of slenderness for the first six frequencies for plates with BBB
materials under CCCC conditions

Figure 57: The influence of slenderness for the first six frequencies for plates with FFF
materials under CCCC conditions
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Figure 58: The influence of slenderness for the first six frequencies for plates with BFB
materials under CCCC conditions

Figure 59: The influence of slenderness for the first six frequencies for plates with FBF
materials under CCCC conditions
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Table 43: Frequencies for homogeneous plates composed of five stacking sequences under
CCCC condition at a/h=10

Mode Hex BBB FFF BFB FBF

1 3.29E-5 8.05E-5 4.94E-5 4.75E-5 5.35E-5

2 6.39E-5 1.54E-4 9.29E-5 9.05E-5 1.01E-4

3 6.39E-5 1.54E-4 9.29E-5 9.05E-5 1.01E-4

4 9.05E-5 2.16E-4 1.29E-4 1.27E-4 1.41E-4

5 1.08E-4 2.55E-4 1.51E-4 1.50E-4 1.65E-4

6 1.08E-4 2.59E-4 1.53E-4 1.51E-4 1.67E-4

Table 44: Frequencies for homogeneous plates composed of five stacking sequences under
CCCC condition at a/h=20

Mode Hex BBB FFF BFB FBF

1 3.46E-5 8.61E-5 5.41E-5 5.11E-5 5.82E-5

2 6.95E-5 1.72E-4 1.07E-4 1.02E-4 1.16E-4

3 6.95E-5 1.72E-4 1.07E-4 1.02E-4 1.16E-4

4 1.01E-4 2.49E-4 1.55E-4 1.48E-4 1.67E-4

5 1.22E-4 3.01E-4 1.86E-4 1.78E-4 2.01E-4

6 1.23E-4 3.03E-4 1.87E-4 1.79E-4 2.02E-4

Table 45: Frequencies for homogeneous plates composed of five stacking sequences under
CCCC condition at a/h=30

Bending
Mode

Hex BBB FFF BFB FBF

1 3.49E-5 8.74E-5 5.53E-5 5.19E-5 5.93E-5

2 7.08E-5 1.76E-4 1.11E-4 1.05E-4 1.19E-4

3 7.08E-5 1.76E-4 1.11E-4 1.05E-4 1.19E-4

4 1.04E-5 2.58E-4 1.62E-4 1.53E-4 1.74E-4

5 1.26E-4 3.13E-4 1.96E-4 1.85E-4 2.11E-4

6 1.26E-4 3.15E-4 1.97E-4 1.86E-4 2.12E-4

91



Table 46: Differences for homogeneous plates composed of five stacking sequences under
CCCC conditions

a/h
Bending
frequency

% Differences below a/h=30 ω̄

Hexagonal BBB FFF BFB FBF

10

1 5.73 7.89 10.67 8.48 9.78

2 9.75 12.50 16.31 13.81 15.13

3 9.75 12.50 16.31 13.81 15.13

4 12.98 16.28 20.37 16.99 18.97

5 14.29 18.53 22.96 18.92 21.80

6 14.29 17.78 22.34 18.82 21.23

20

1 0.86 1.49 2.17 1.54 1.85

2 1.84 2.27 3.60 2.86 2.52

3 1.84 2.27 3.60 2.86 2.52

4 2.88 3.49 4.32 3.27 4.02

5 3.17 3.83 5.10 3.78 4.74

6 2.38 3.81 5.08 3.76 4.72

6.4 FCFC Condition

Using a total of 16 in-plane terms and 12 layers, Figure 60 demonstrates the difference

of the basic frequency for these five sequences under FCFC condition. Comparing with the

previous conditions, reductions are much larger and frequency lines are more scattered under

lateral boundary conditions.

Figure 61 gives the first seven frequencies of homogeneous plates made of hexagonal

materials under FCFC condition and the first six corresponding mode shapes. For the first

six frequencies, in-plane mode 6 which is indicated as a straight dashed line starts to appear

in this condition. With lower slenderness, frequencies are more close to each other, while

with large a/h ratios frequency lines are well separated. Two frequency lines relatively close
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Figure 60: Differences of the fundamental frequency with five stacking sequences under
FCFC condiitons

to each other represent the bending and torsional modes along the fixed-fixed edges, while

the little separate lines are the bending modes along free edges.

Figures 62-65 show the influence of a/h ratio for the following four stacking sequences.

Except for the order in sequence the arrangement of frequencies and mode shapes are almost

the same as those of hexagonal materials.

Tables 47 and 48 give the values of the first seven mode frequencies according to these

five materials at slenderness of 10 and 20, respectively. The order of these values are given as

frequencies appear in sequences at a/h=10 ratio. Table 49 only gives the bending frequency

values at a/h ratio of 30. Table 50 lists the difference of five stacking MEE plates under

FCFC condition. Differences are increased gradually in this case. Reductions are smaller

for the piezoelectric and piezomagnetic plates in the sixth frequency. This is apparent from

the different curvature of each frequency lines. As a/h ratios approach 20, the percentages

differences are within 5 percent.
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The influence of slenderness for the first seven frequencies for
plates with anisotropic materials under FCFC conditions

Mode 1 Mode 2 Mode 3

Mode 4 Mode 5 Mode 6

First six mode shapes for plates with anisotropic materials under FCFC conditions

Figure 61: First seven frequencies and first six mode shapes under FCFC conditions

94



Figure 62: The influence of slenderness for the first six frequencies for plates with BBB
materials under FCFC conditions

Figure 63: The influence of slenderness for the first six frequencies for plates with FFF
materials under FCFC conditions
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Figure 64: The influence of slenderness for the first six frequencies for plates with BFB
materials under FCFC conditions

Figure 65: The influence of slenderness for the first six frequencies for plates with FBF
materials under FCFC conditions
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Table 47: Frequencies for homogeneous plates composed of five stacking sequences under
FCFC condition at a/h=10

Mode Hex BBB FFF BFB FBF

1 2.09E-5 4.92E-5 3.13E-5 3.00E-5 3.39E-5

2 2.52E-5 5.69E-5 3.58E-5 3.43E-5 3.86E-5

3 4.04E-5 9.13E-5 5.75E-5 5.53E-5 6.20E-5

4 5.45E-5 1.25E-4 7.86E-5 7.64E-5 8.54E-5

5 6.01E-5 1.35E-4 8.43E-5 8.20E-5 9.15E-5

6 6.44E-5 1.37E-4 8.60E-5 8.45E-5 8.93E-5

7 7.04E-5 1.62E-4 1.02E-4 9.89E-5 1.11E-4

Table 48: Frequencies for homogeneous plates composed of five stacking sequences under
FCFC condition at a/h=20

Mode Hex BBB FFF BFB FBF

1 2.16E-5 5.20E-5 3.35E-5 3.16E-5 3.60E-5

2 2.64E-5 6.10E-5 3.90E-5 3.68E-5 4.18E-5

3 4.32E-5 9.96E-5 6.35E-5 6.02E-5 6.82E-5

4 5.87E-5 1.40E-4 8.97E-5 8.51E-5 9.66E-5

5 6.52E-5 1.52E-4 9.70E-5 9.21E-5 1.04E-4

6 1.19E-4 2.67E-4 1.70E-4 1.66E-4 1.79E-4

7 7.68E-5 1.81E-4 1.15E-4 1.10E-4 1.24E-4
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Table 49: Frequencies for homogeneous plates composed of five stacking sequences under
FCFC condition at a/h=30

Bending
Mode

Hex BBB FFF BFB FBF

1 2.18E-5 5.26E-5 3.40E-5 3.19E-5 3.65E-5

2 2.66E-5 6.20E-5 3.97E-5 3.74E-5 4.26E-5

3 4.38E-5 1.02E-4 6.51E-5 6.15E-5 6.98E-5

4 5.96E-5 1.43E-4 9.24E-5 8.71E-5 9.93E-5

5 6.63E-5 1.56E-4 1.00E-4 9.46E-5 1.08E-4

6 7.84E-5 1.86E-4 1.19E-4 1.13E-4 1.28E-4

Table 50: Differences for homogeneous plates composed of five stacking sequences under
FCFC conditions

a/h
Bending
frequency

% Differences below a/h=30 ω̄

Hexagonal BBB FFF BFB FBF

10

1 4.13 6.46 7.94 5.96 7.12

2 5.26 8.23 9.82 8.29 9.39

3 7.76 10.49 11.67 10.08 11.17

4 8.56 12.59 14.94 12.28 14.00

5 9.35 13.46 15.70 13.32 15.28

6 10.20 12.90 14.29 12.48 13.28

20

1 0.92 1.14 1.47 0.94 1.37

2 0.75 1.61 1.76 1.60 1.88

3 1.37 2.35 2.46 2.11 2.29

4 1.51 2.10 2.92 2.30 2.72

5 1.66 2.56 3.00 2.64 3.70

6 2.04 2.69 3.36 2.65 3.12
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6.5 CFFF Condition

As an extension of cantilever beams, cantilever plates are also an important case for

plates. Four terms are used in both x and y directions with 3 layers through the thickness.

Figure 66 shows the difference of these five stacking sequences respect to the fundamental

frequency. Reductions are less variable under this condition. BFB material has the biggest

difference. Even with a/h=10 BFB material still maintains a 5 percent reduction.

Figure 66: Differences of the fundamental frequency with five stacking sequences under
CFFF conditions

Figure 67 displays the first eight frequencies as a function of a/h ratio and the first

six mode shapes under CFFF condition. The straight dashed lines represent the in-plane

modes. The mode shapes are almost the same as isotropic plates under this boundary

condition. Figures 68-71 give the configuration of frequencies of the other four stacking

sequences. The lines of the fourth and fifth frequencies are identical with large slenderness.

Tables 51 and 52 show at fixing a/h of 10 and 20, the values of first eight frequencies with

respect to these five materials. Table 53 lists the frequency values of the first six bending

modes at a/h=30. Table 54 demonstrates the differences of these five stacking plates under

frequencies at length-to-thickness ratio of 30. Differences are quite small for this condition.

The percent difference are below 10 percent even up to the fifth frequency with a/h=10.
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The influence of slenderness for the first eight frequencies for
plates with anisotropic materials under CFFF condition

Mode 1 Mode 2 Mode 3

Mode 4 Mode 5 Mode 6

First six mode shapes for plates with anisotropic materials under CFFF condition

Figure 67: First eight frequencies and first six mode shapes under CFFF condition
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Figure 68: The influence of slenderness for the first six frequencies for plates with BBB
materials under CFFF condition

Figure 69: The influence of slenderness for the first six frequencies for plates with FFF
materials under CFFF condition
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Figure 70: The influence of slenderness for the first six frequencies for plates with BFB
materials under CFFF condition

Figure 71: The influence of slenderness for the first six frequencies for plates with FBF
materials under CFFF condition
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When length-to-thickness ratio is 20, even for the sixth frequency reductions are nearly 2

percent. And since modes change sequence order, such as mode 5 and mode 6, differences

for the forth bending frequency are larger than those of the fifth bending frequency.

Table 51: Frequencies for homogeneous plates composed of five stacking sequences under
CFFF condition at a/h=10

Mode Hex BBB FFF BFB FBF

1 3.42E-6 8.41E-6 5.55E-6 5.11E-6 5.93E-6

2 8.91E-6 1.94E-5 1.23E-5 1.16E-5 1.32E-5

3 2.09E-5 4.92E-5 3.19E-5 2.97E-5 3.42E-5

4 2.30E-5 5.16E-5 3.30E-5 3.22E-5 3.44E-5

5 3.00E-5 6.95E-5 4.43E-5 4.18E-5 4.77E-5

6 3.11E-5 6.97E-5 4.49E-5 4.24E-5 4.81E-5

7 5.31E-5 1.24E-4 7.95E-5 7.60E-5 8.23E-5

8 5.87E-5 1.26E-4 7.95E-5 7.77E-5 8.57E-5

Table 52: Frequencies for homogeneous plates composed of five stacking sequences under
CFFF condition at a/h=20

Mode Hex BBB FFF BFB FBF

1 3.44E-6 8.50E-6 5.65E-6 5.17E-6 6.02E-6

2 9.12E-6 2.00E-5 1.28E-5 1.20E-5 1.37E-5

3 2.15E-5 5.14E-5 3.37E-5 3.10E-5 6.83E-5

4 4.60E-5 1.03E-4 6.60E-5 6.44E-5 3.61E-5

5 3.14E-5 7.42E-5 4.79E-5 4.46E-5 5.13E-5

6 3.27E-5 7.36E-5 4.77E-5 4.48E-5 5.10E-5

7 1.06E-4 2.48E-4 1.59E-4 8.30E-5 1.65E-4

8 6.33E-5 1.38E-4 8.80E-5 1.55E-4 9.44E-5

3
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Table 53: Frequencies for homogeneous plates composed of five stacking sequences under
CFFF condition at a/h=30

Bending
Mode

Hex BBB FFF BFB FBF

1 3.44E-6 8.53E-6 5.67E-6 5.41E-6 6.11E-6

2 9.16E-6 2.01E-5 1.29E-5 1.20E-5 1.38E-5

3 2.16E-5 5.18E-5 3.41E-5 3.13E-5 3.65E-5

4 3.17E-5 7.52E-5 4.87E-5 4.50E-5 5.21E-5

5 3.30E-5 7.45E-5 4.84E-5 4.52E-5 5.15E-5

6 6.43E-5 1.41E-4 9.01E-5 8.49E-5 9.65E-5

Table 54: Frequencies for homogeneous plates composed of five stacking sequences under
CFFF condition

a/h
Bending
frequency

% Differences below a/h=30 ω̄

Hexagonal BBB FFF BFB FBF

10

1 1.16 1.41 2.12 5.55 2.95

2 2.73 3.48 4.65 3.33 4.35

3 3.24 5.02 6.45 5.11 5.75

4 5.36 7.58 9.03 7.11 8.45

5 5.76 6.44 7.23 6.19 6.60

6 8.71 10.64 11.76 10.48 11.19

20

1 0.58 0.35 0.35 4.44 1.47

2 0.44 0.50 0.78 0.00 0.72

3 0.46 0.77 1.17 0.96 1.10

4 0.95 1.33 1.64 0.89 1.54

5 0.91 1.21 1.45 0.88 0.97

6 1.56 2.13 2.33 2.24 2.18
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6.6 CCFF Condition

With 4 terms used in x and y with 3 sub-layers, Figure 72 demonstrates the reduction

for the basic frequency various with a/h ratio. At a/h ratio around 6, percent difference can

within 10 percent for each material.

Figure 72: Differences of the fundamental frequency with five stacking sequences under
CCFF conditions

Figure 73 shows the first nine frequencies and the first six mode shapes of the plates

made of anisotropic materials under CCFF condition. More in-plane modes appear within

these bending frequencies. Figures 74-77 give the influence of slenderness for the first nine

frequencies for the rest four stacking sequences. The fifth frequency and the sixth frequency

are well separated in these cases.

Tables 55 and 56 list the corresponding frequencies according to the sequence of these

frequencies fixing an a/h ratio of 10. Table 57 illustrates the first six bending frequencies’

values for the five material combinations, while Table 58 shows differences below these values

respect to plates composed of five stacking sequences. It is apparent that there is a large

reduction for the fifth frequency. Even as a/h is equal to 20, the reductions are still over 5

percent.
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The influence of slenderness for the first nine frequencies for
plates with anisotropic materials under CCFF condition

Mode 1 Mode 2 Mode 3

Mode 4 Mode 5 Mode 6

First six mode shapes for plates with FBF materials under CCFF condition

Figure 73: First nine frequencies and first six mode shapes under CCFF condition
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Figure 74: The influence of slenderness for the first nine frequencies for plates with BBB
materials under CCFF condition

Figure 75: The influence of slenderness for the first six frequencies for plates with FFF
materials under CCFF condition
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Figure 76: The influence of slenderness for the first six frequencies for plates with BFB
materials under CCFF condition

Figure 77: The influence of slenderness for the first six frequencies for plates with FBF
materials under CCFF condition
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Table 55: Frequencies for homogeneous plates composed of five stacking sequences under
CCFF condition at a/h=10

Mode Hex BBB FFF BFB FBF

1 7.02E-6 1.62E-5 1.05E-5 9.75E-6 1.13E-5

2 2.40E-5 5.39E-5 3.46E-5 3.23E-5 3.72E-5

3 2.52E-5 6.12E-5 4.00E-5 3.73E-5 4.31E-5

4 4.67E-5 1.05E-4 6.66E-5 6.33E-5 7.17E-5

5 5.27E-5 1.21E-4 7.71E-5 7.54E-5 7.99E-5

6 6.51E-5 1.56E-4 1.00E-4 9.80E-5 1.04E-4

7 8.47E-5 1.82E-4 1.12E-4 1.10E-4 1.20E-4

8 8.70E-5 1.83E-4 1.15E-4 1.13E-4 1.21E-4

9 8.92E-5 2.01E-4 1.24E-4 1.24E-4 1.35E-4

Table 56: Frequencies for homogeneous plates composed of five stacking sequences under
CCFF condition at a/h=20

Mode Hex BBB FFF BFB FBF

1 7.14E-6 1.66E-5 1.08E-5 9.98E-6 1.16E-5

2 2.50E-5 5.69E-5 3.70E-5 3.41E-5 3.96E-5

3 2.62E-5 6.46E-5 4.28E-5 3.94E-5 4.58E-5

4 5.03E-5 1.16E-4 7.47E-5 6.99E-5 8.01E-5

5 1.05E-4 2.41E-4 1.54E-4 1.51E-4 1.60E-4

6 1.30E-4 3.11E-4 2.00E-4 1.96E-4 2.08E-4

7 1.69E-4 2.31E-4 1.44E-4 1.39E-4 2.39E-4

8 1.06E-4 3.65E-4 2.31E-4 2.26E-4 1.55E-4

9 1.10E-4 2.63E-4 1.68E-4 1.62E-4 1.80E-4
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Table 57: Frequencies for homogeneous plates composed of five stacking sequences under
CCFF condition at a/h=30

Bending
Mode

Hex BBB FFF BFB FBF

1 7.16E-6 1.66E-5 1.09E-5 9.99E-6 1.17E-5

2 2.52E-5 5.75E-5 3.75E-5 3.45E-5 4.01E-5

3 2.63E-5 6.56E-5 4.34E-5 3.98E-5 4.64E-5

4 5.11E-5 1.19E-4 7.68E-5 7.19E-5 8.22E-5

5 1.12E-4 2.46E-4 1.55E-4 1.48E-4 1.67E-4

6 1.16E-4 2.85E-4 1.84E-4 1.75E-4 1.97E-4

Table 58: Differences for homogeneous plates composed of five stacking sequences

a/h
Bending
frequency

% Differences below a/h=30 ω̄

Hexagonal BBB FFF BFB FBF

10

1 1.96 2.41 3.67 2.40 3.42

2 4.76 6.26 7.73 6.38 7.23

3 4.18 6.71 7.83 6.28 7.11

4 8.61 11.76 13.28 11.96 12.77

5 22.32 26.02 27.74 25.68 27.54

6 23.10 29.47 32.61 29.14 31.47

20

1 0.28 0.00 0.92 0.10 0.85

2 0.79 1.04 1.33 1.16 1.25

3 0.38 1.52 1.38 1.01 1.29

4 1.57 2.52 2.73 2.78 2.55

5 5.36 6.10 7.10 6.08 7.19

6 5.17 7.72 8.70 7.43 8.63
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6.7 SFSF Condition

Keeping 4 terms in two lateral directions and 12 layers, Figure 78 shows the difference

of the fundamental frequency of five MEE composite materials. The configuration is similar

to the all simply supported condition; however, reductions are slightly small with lower

slenderness.

Figure 78: Differences of the fundamental frequency with five stacking sequences under SFSF
conditions

Figure 79 demonstrates the configuration of the first seven frequencies and the first six

modes of anisotropic materials under SFSF condition. The distribution of bending frequency

lines are in a series of cascades, while the straight dashed line is corresponding to the in-

plane mode 6. Figures 80-83 show the configuration of frequency lines for the following four

materials. The arrangement of frequency lines are almost the same as those for anisotropic

plates, except that the difference between the third and fourth bending frequencies which are

the bending mode along simply supported edges and the bending mode along free edges are

much smaller. Tables 59 and 60 give the frequency values with respect to the above figures at

a/h=10 and 20. And Table 61 lists the first six bending frequencies of five stacking sequences

at fixing a/h ratio is 30.
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The influence of slenderness for the first eight frequencies for
plates with anisotropic materials under SFSF conditions

Mode 1 Mode 2 Mode 3

Mode 4 Mode 5 Mode 6

First six mode shapes for plates with FBF materials under SFSF conditions

Figure 79: First six frequencies and mode shapes under SFSF conditions
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Figure 80: The influence of slenderness for the first six frequencies for plates with BBB
materials under SFSF conditions

Figure 81: The influence of slenderness for the first six frequencies for plates with FFF
materials under SFSF conditions
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Figure 82: The influence of slenderness for the first six frequencies for plates with BFB
materials under SFSF conditions

Figure 83: The influence of slenderness for the first six frequencies for plates with FBF
materials under SFSF conditions

114



Table 59: Frequencies for homogeneous plates composed of five stacking sequences under
SFSF condition at a/h=10

Mode Hex BBB FFF BFB FBF

1 9.52E-6 2.24E-5 1.43E-5 1.36E-5 1.53E-5

2 1.67E-5 3.65E-5 2.29E-5 2.19E-5 2.47E-5

3 3.68E-5 8.66E-5 5.48E-5 5.27E-5 5.92E-5

4 4.00E-5 8.88E-5 5.60E-5 5.36E-5 6.03E-5

5 4.48E-5 1.02E-4 6.41E-5 6.17E-5 6.93E-5

6 5.20E-5 1.14E-4 7.21E-5 7.09E-5 7.49E-5

7 7.22E-5 1.57E-4 9.79E-5 9.46E-5 1.06E-4

Table 60: Frequencies for homogeneous plates composed of five stacking sequences under
SFSF condition at a/h=20

Mode Hex BBB FFF BFB FBF

1 9.61E-6 2.27E-5 1.45E-5 1.38E-5 1.56E-5

2 1.70E-5 3.76E-5 2.37E-5 2.25E-5 2.55E-5

3 3.81E-5 9.12E-5 5.83E-5 5.54E-5 6.27E-5

4 4.19E-5 9.36E-5 5.94E-5 5.64E-5 6.38E-5

5 4.69E-5 1.09E-4 6.90E-5 6.57E-5 7.42E-5

6 1.04E-4 2.28E-4 1.44E-4 1.42E-4 1.50E-4

7 7.74E-5 1.70E-4 1.08E-4 1.20E-4 1.16E-4

Differences for plates composed of these five materials are shown in Table 62. Based

on the thin plate theory, normally 10 is the slenderness suggested for the isotropic plates.

Hence, results are excellant as expected with classical plate theory. With slenderness of 10,

the differences are within 10 percent. And within ratio of 20, the precent difference are

smaller than 2.
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Table 61: Frequencies for homogeneous plates composed of five stacking sequences under
SFSF condition at a/h=30

Bending
Mode

Hex BBB FFF BFB FBF

1 9.63E-6 2.28E-5 1.46E-5 1.38E-5 1.56E-5

2 1.71E-5 3.78E-5 2.39E-5 2.26E-5 2.56E-5

3 3.84E-5 9.22E-5 5.91E-5 5.60E-5 6.34E-5

4 4.23E-5 9.47E-5 6.02E-5 5.70E-5 6.46E-5

5 4.73E-5 1.10E-4 7.01E-5 6.65E-5 7.53E-5

6 7.85E-5 1.73E-4 1.10E-4 1.04E-4 1.18E-4

Table 62: Differences for homogeneous plates composed of five stacking sequences under
SFSF condition

a/h
Bending
frequency

% Differences below a/h=30 ω̄

Hexagonal BBB FFF BFB FBF

10

1 1.14 1.75 2.05 1.45 1.92

2 2.34 3.44 4.18 3.10 3.52

3 4.17 6.07 7.28 5.89 6.62

4 5.44 6.23 6.98 5.96 6.66

5 5.29 7.27 8.56 7.22 7.97

6 8.03 9.25 11.00 9.04 10.17

20

1 0.21 0.44 0.68 0.00 0.00

2 0.58 0.53 0.84 0.44 0.39

3 0.78 1.08 1.35 1.07 1.10

4 0.95 1.16 1.33 1.05 1.24

5 0.85 0.91 1.57 1.20 1.46

6 1.40 1.73 1.82 1.92 1.69
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CHAPTER 7 CONCLUSION

In this studying, using the piecewise linear function through the thickness with appropri-

ate approximate functions for the in-plane terms, the free vibration of laminated magneto-

electro-elastic beams and plates are studied by a semi-analytical discrete-layer approach.

Comparing with the classical beam and plate theories, and previous efforts, the discrete-

layer model is accurate and efficient. By plotting the frequencies as a function of length-to-

thickness ratio for isotropic materials, some significant phenomenons come out. Further, the

DL model is applied to the MEE composite materials. The limitation of classical beam and

plate theories under various laterial boundary conditions are shown for each case. From the

analyses considered here, results are highlight as following:

• The non-zero Poisson ratio causes large reductions between real and analytical values

for the axial and bending frequencies with lower slenderness. Otherwise, because the

warping function is restricted at the fixed ends, torsional frequencies higher than the

analytical values with respect to the lower a/h ratios.

• Drawing frequencies as a function of a/h ratio, it is clear that torsional and axial

freqiencies are presented as linear functions, while the bending frequencies are tend to

be curved lines.

• For MEE composite beams, contrary to some recommendations for isotropic beams,

having a length-to-thickness ratio of 10 results in errors well into low double-digits

for commonly computed frequencies under the simply-supported conditions. Situation

gets worse for the fixed-fixed and cantilever beams. For an accurate application of
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classical beam theory, a a/h ratio of at least 20 is suggested for errors within several

percent for beams made of composite MEE materials.

• For the common used frequencies of composite MEE plates, the application of thin

plate theory results around up to 10 percent errors in frequencies with slenderness of

10 for all simply supported and all-clamped conditiions. Keep using the a/h ratios

over 20 can significantly lessen the differences within 5 percent for these cases. Adding

more free edges can slightly reduce the percent differences caused by applying classical

plate theory, as for FCFC, SFSF, and CFFF lateral boundary conditions. Otherwise,

the unbalanced condition worsens the differences, as the fifth frequency under CCFF

conditions.

The purpose of this study is to give a specification of the limits by using the classical

thin beam and plate theories under various laterial boundary conditions. Some typical

mode shapes are also plotted as a benefit for furture studying in this field. The present

results of isotropic and composite MEE materials could be used as references for the furture

investigation of MEE materials ranged from corrosion testing and weld evaluation to life

testing and repair method validation.
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APPENDIX B

Table 63: material coefficients of Hexagonal, BaTiO3 and CoFe2O4

material coefficients of Hexagonal

c11 = c22 298.2(109) c44 = c55 165.5(109) c13 = c23 11.0(109)

c33 340.9(109) c66 135.3(109) c12 27.7(109)

ρ 1850

material coefficients of BaTiO3

c11 = c22 166(109) ǫ11 = ǫ22 11.2(10−9) e31 = e32 -4.4

c33 162(109) ǫ33 12.6(10−9) e33 18.6

c44 = c55 43(109) µ11 = µ22 5(10−6) e24 = e15 11.6

c66 44.5(109) µ33 10(10−6)

c12 77(109)

c13 = c23 78(109) ρ 5800

material coefficients of CoFe2O4

c11 = c22 286(109) ǫ11 = ǫ22 0.08(10−9) q31 = q32 580.3

c33 269.5(109) ǫ33 0.093(10−9) q33 699.7

c44 = c55 45.3(109) µ11 = µ22 590(10−6) q24 = q15 550

c66 56.5(109) µ33 157(10−6)

c12 173(109)

c13 = c23 170.5(109) ρ 5300

the units here: cij(N/m2),eij(C/m2),qij(N/Am),ǫij(C
2/Nm2), µij(Ns2/C2),ρ(kg/m3)
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